WorldWideScience

Sample records for preparation germination properties

  1. Homeopathically prepared gibberellic acid and barley seed germination.

    Science.gov (United States)

    Hamman, B; Koning, G; Lok, K Him

    2003-07-01

    The potentisation process by which homeopathic preparations are produced raises the concern that these medicines have placebo effects only, since they theoretically no longer contain active molecules of the diluted substance. Plant models offer a method of examining the efficacy of homeopathically prepared solutions. This study examined the effects of homeopathically prepared gibberellic acid (HGA3) on the germination performance of barley (Hordeum vulgare L.) seeds. The effect of HGA3 (4-200 cH) on seed germination rate and seedling development was compared to that of the most commonly used form of gibberellic acid (GA3), 0.5 g l(-1), and control (distilled water). The extent and type of response was dependent on the vigour level of the seedlot. Treating seeds from three vigour groups in HGA3 consistently resulted in larger seedlings. High-vigour seeds treated with HGA3 4, 30 and 200 cH germinated faster, and roots of medium-vigour seedlots treated in HGA3 15 cH were longer. Biphasic effects of HGA3 were also demonstrated. As a plant model, germinating barley seeds successfully demonstrated the ability of HGA3 to produce a biological response.

  2. Some physicochemical properties of flour from germinated sorghum grain.

    Science.gov (United States)

    Elkhalifa, Abd Elmoneim O; Bernhardt, Rita

    2013-02-01

    A Sudanese sorghum cultivar (Fetarita) was germinated for 3 days. Stability and clarity of sorghum pastes, freeze-thaw stability, gel consistency, and swelling power were measured every 24 h. There is no substantial difference in stability and clarity between flour samples from germinated and ungerminated sorghum, but a different behavior was observed between samples stored at room temperature and at 4 °C. Cooked paste derived from germinated sorghum flour presented higher syneresis than that derived from ungerminated sorghum flour over the first three cycles but when the cycle number increased, both flours showed zero syneresis value. For the gel consistency the flours derived from germinated sorghum produced thinnest gels. The neutral and acid gel consistency increased when the germination time increased. Germination had not much effect on the swelling power of sorghum flour.

  3. Antidiabetic Properties of Germinated Brown Rice: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Mustapha Umar Imam

    2012-01-01

    Full Text Available Diet is an important variable in the course of type 2 diabetes, which has generated interest in dietary options like germinated brown rice (GBR for effective management of the disease among rice-consuming populations. In vitro data and animal experiments show that GBR has potentials as a functional diet for managing this disease, and short-term clinical studies indicate encouraging results. Mechanisms for antidiabetic effects of GBR due to bioactive compounds like γ-aminobutyric acid (GABA, γ-oryzanol, dietary fibre, phenolics, vitamins, acylated steryl β-glucoside, and minerals include antihyperglycemia, low insulin index, antioxidative effect, antithrombosis, antihypertensive effect, hypocholesterolemia, and neuroprotective effects. The evidence so far suggests that there may be enormous benefits for diabetics in rice-consuming populations if white rice is replaced with GBR. However, long-term clinical studies are still needed to verify these findings on antidiabetic effects of GBR. Thus, we present a review on the antidiabetic properties of GBR from relevant preclinical and clinical studies, in order to provide detailed information on this subject for researchers to review the potential of GBR in combating this disease.

  4. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice.

    Science.gov (United States)

    Lin, You-Tung; Pao, Cheng-Cheng; Wu, Shwu-Tzy; Chang, Chi-Yue

    2015-01-01

    This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR) and germinated brown rice (GBR). We used two rice cultivars (Oryza sativa L.), Taiwan Japonica 9 (TJ-9) and Taichung Indica 10 (TCI-10), as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C), long soaking time (72 h), darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR). We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity) and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol). Higher temperature (36°C) is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.

  5. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet.

    Science.gov (United States)

    Li, Cheng; Oh, Sea-Gwan; Lee, Dong-Hyun; Baik, Hyun-Wook; Chung, Hyun-Jung

    2017-07-22

    Four selected grains (brown rice, oat, sorghum, and millet) were subjected to germinate and changes in granule morphology, molecular structure, crystalline structure, and physicochemical properties of isolated starch were investigated. The germinated starches showed pits and holes on the surface of the starch granules and the particle size distributions shifted slightly to smaller size as the germination time increased. Germination led to decrease in amylose content, while molecular weights of the germinated starches showed no significant changes. The relative crystallinity of all selected grain starches decreased significantly during germination. Compared to the native starches, the germinated starches had lower retrogradation enthalpy. Brown rice and oat starches exhibited marginal increases in peak viscosities, whereas those of sorghum and millet starches decreased significantly during germination. Amylose leaching of brown rice and oat starches decreased after germination, whereas sorghum and millet starches showed an increase in amylose leaching. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of germination on chemical composition and functional properties of sesame (Sesamum indicum L.) seeds.

    Science.gov (United States)

    Hahm, Tae-Shik; Park, Sung-Jin; Martin Lo, Y

    2009-02-01

    The changes of chemical composition and functional properties of derooted sesame (Sesamum indicum L.) seeds (DSS) before, during, and after germination were investigated. Sesame seeds germinated in dark chambers maintained near 100% relative humidity at 35 degrees C without presoaking reached >99% germination rate in 4 days with the final moisture content stayed ca. 2% (w/w), characterizing sesame seeds as orthodox seeds that are suitable for long term storage at low temperature and humidity under defined environment. With noticeable reduction in fat content (23%), germinated DSS were found rich in linolenic acid, P, and Na, increasing from 0.38% (w/w), 445 mg/100 g, and 7.6 mg/100 g before germination to 0.81% (w/w), 472 mg/100 g, and 8.4 mg/100 g after germination, respectively. DSS after germination contained considerable amount of Ca (462 mg/100 g), higher than that of soybean. Germinated DSS presents an excellent source of sesamol (475 mg/100 g), a potent natural antioxidant, and alpha-tocopherol (32 mg/100 g), the most active form of vitamin E.

  7. Recycling probability and dynamical properties of germinal center reactions

    CERN Document Server

    Meyer-Hermann, M; Or-Guil, M; Meyer-Hermann, Michael; Deutsch, Andreas; Or-Guil, Michal

    2001-01-01

    We introduce a new model for the dynamics of centroblasts and centrocytes in a germinal center. The model reduces the germinal center reaction to the elements considered as essential and embeds proliferation of centroblasts, point mutations of the corresponding antibody types represented in a shape space, differentiation to centrocytes, selection with respect to initial antigens, differentiation of positively selected centrocytes to plasma or memory cells and recycling of centrocytes to centroblasts. We use exclusively parameters with a direct biological interpretation such that, once determined by experimental data, the model gains predictive power. Based on the experiment of Han et al.(1995) we predict that a high rate of recycling of centrocytes to centroblasts is necessary for the germinal center reaction to work reliably. Furthermore, we find a delayed start of the production of plasma and memory cells with respect to the start of point mutations, which turns to be necessary for the optimization process ...

  8. Germination of sorghum grain results in significant changes in paste and texture properties.

    Science.gov (United States)

    Yi, Cuiping; Li, Yan; Ping, Junai

    2017-10-01

    The changes in sorghum [Sorghum bicolor (L.) Moench] proteins during germination and the resultant effects on the physicochemical properties of sorghum flour were studied using non-germinated grains as a control. Results showed that flour obtained from germinated sorghum grains had lower protein levels, higher protease levels, and higher free amino nitrogen content compared with the control. There was an increase in the albumin and globulin protein fractions and a decrease in kafirin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that this decrease was the result of a decrease in γ-kafirins, while microscopy found that a continuous protein network was formed. Following the germination-associated protein changes, the viscosities of sorghum paste decreased with germination from a peak viscosity value of 1,324 rapid visco units (RVU) down to 727 RVU in white sorghum (WS), and from 1,549 RVU to 1,295 RVU in red sorghum (RS). The hardness of the sorghum gels was significantly enhanced after germination, with WS increasing from 1,640 g to 5,374 g and RS from 970 g to 5,529 g. Thus, the study revealed that germination decreased the viscosity of sorghum paste and increased the strength of sorghum gel by changing the content and structure of sorghum protein, making it possible to design new foods that require thickening and gelling using germinated sorghum. Germination triggers the protease system of sprouting seeds, leading to the breakdown of proteins into simpler forms that decrease the viscosity of sorghum paste and improve the strength of sorghum gel, allowing the use of germinated sorghum to design new foods that require thickening and gelling. © 2016 Wiley Periodicals, Inc.

  9. Effect of Germination on Functional Properties of Soybean Protein Isolate%发芽对大豆分离蛋白功能性质的影响

    Institute of Scientific and Technical Information of China (English)

    王素雅; 赵甲慧; 杨玉玲; 鞠兴荣

    2011-01-01

    研究发芽对大豆分离蛋白(SPI)功能性质的影响。采用碱提酸沉法制备不同发芽阶段的SPI,研究大豆蛋白功能性质变化。结果表明:发芽使大豆SPI溶解性、吸水性、起泡性和乳化性均有所增加,其中芽长1cm大豆SPI具有最佳的蛋白功能性质。SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)结果表明:大豆发芽过程中7S球蛋白更易受蛋白酶影响而发生降解,使其内部疏水性氨基酸残基暴露,从而使大豆SPI的功能性质不能持续改善。%In this paper,we report the results of experiments intended to reveal the effect of germination on functional properties of soybean protein isolate(SPI).SPI from germinated soybean seeds at different stages of germination was prepared using the method of alkaline extraction and subsequent acid precipitation,and then determined for functional properties.Our results showed that solubility,foaming properties,emulsifying properties and water-holding capacity of SPI extracted from germinated soybean seeds were all better than those of SPI extracted from non-germinated ones.Furthermore,SPI from germinated soybean seeds with 1 cm long sprouts was observed to have the best functional properties.The results from SDS-PAGE indicated that most hydrophobic amino acids of 7S globulin were exposed on the surface due to being easily hydrolyzed by endogenous protease,improving functional properties of SPI.

  10. Physico-chemical properties of the encapsulation matrix and germination of carrot somatic embryos.

    Science.gov (United States)

    Timbert, R; Barbotin, J N; Kersulec, A; Bazinet, C; Thomas, D

    1995-06-20

    Carrot somatic embryos were encapsulated in alginate gel beads. To improve the quality of a "synthetic seed" coating, the rheology and dehydration properties of different matrices were tested. By increasing alginate and CaCl(2) concentrations, additional mineral elements were shown to increase resistance to rupture, and to depress the germination of somatic embryos. A polysaccharide addition was found to slow the alginate matrix dehydration; alginate-gellan gum and alginate-kaolin matrices could preserve the viability of somatic embryos at low relative humidities (30% to 35% germinations at 50% relative humidity) to a greater extent than other matrices.

  11. INVESTIGATION ON THE INFLUENCE OF THE BIO PREPARATION “BIOAKTIV” ON THE GERMINATION QUALITY OF AGRICULTURAL SEEDS

    Directory of Open Access Journals (Sweden)

    Krasimira Tanova

    2014-09-01

    Full Text Available It was investigated the influence of bio preparation “Bioaktiv” on the initial rate of growth of wheat, sorghum, common bean, tomato and beetroot. The seeds of these crops were treated with solution of “Bioaktiv” for plants and was placed for germination on agar medium. It was rendered an account the seed microflora on agar medium with added Bioaktiv. It was established that the treating of seeds of common bean, variety “Abritos” and tomatoes, variety “Rila” with Bioaktiv increase their germination energy as well as their germination. Treating wheat seeds, variety Enola and sorghum, variety “Yantar” with “Bioaktiv” changes the content of the seeds microflora and decreasing mostly the quantity of the damping-off seedlings.

  12. Effect of cooking on functional properties of germinated black glutinous rice (KKU-ULR012

    Directory of Open Access Journals (Sweden)

    Thapanan Konwatchara

    2014-06-01

    Full Text Available The aim of this research was to investigate the changes in functional properties of germinated black glutinous rice (KKU-ULR012 after cooking. Black glutinous rice grains were obtained from Faculty of Agriculture, Khon Kaen University, Thailand. The rough grains were soaked for 12 hrs, then germinated for 30 hrs at 35±2°C (95%RH, dried at 45±2°C for 8 hrs, dehusked and cooked either using a microwave oven or a pressure cooker. The cooked grains were dehydrated in two stages, 85±2°C for 1 hr and 45±2°C for 12 hrs until the final moisture content was 10±2%wb. The antioxidant activity, anthocyanins, GABA and -oryzanol contents, and the microstructure of the dehydrated grains were then characterized. Germination process induced a 2.55 fold increase in GABA content compared to non-germinated KKU-ULR012. The germinated KKU-ULR012 gave DPPH value, anthocyanins and -oryzanol contents of 33.74±0.15 mgTrolox/100gdb, 182.89±0.48 mg/100gdb and 37.72±0.16 mg/100gdb, respectively. Anthocyanins in cooked germinated KKU-ULR012 diminished almost 88-89% after cooking. The cooking methods employed strongly influenced the antioxidant activity and anthocyanins content that the pressure cooking tended to prevent loss of anthocyanin content and antioxidant activity. The GABA, -oryzanol and antho-cyanins contents and antioxidant activity of germinated grains cooked in the pressure cooker were higher than the samples cooked in the microwave oven (p<0.05. For pressure cooking, the cooked grains gave DPPH, ABTS, anthocyanins and -oryzanol contents of 9.89±0.35 mgTrolox/100gdb, 1.79±0.04 mgTrolox/100gdb, 21.60±0.14 mg/100gdb and 37.16±0.70 mg/100gdb, respectively. The rice grains cooked by pressure cooking were more moist and sticky than the grains cooked by microwave cooking. The microstructure examined by SEM showed that the center of the dehydrated cooked rice grain was smooth indicating starch gelatinization whereas the surface revealed

  13. 大豆萌发对大豆酸奶品质的影响%Effect of germinated soybean to soy yogurt preparation

    Institute of Scientific and Technical Information of China (English)

    刘爱洁; 冯立科; 李理

    2013-01-01

    应用SDS-PAGE法、BAPNA法分析采用不同芽长的萌发大豆制备的豆乳的蛋白亚基组成和胰蛋白酶抑制因子活性变化,应用哈克流变仪、激光共聚焦显微镜等分析豆乳发酵后大豆酸奶的理化性质、流变特性和微观结构.结果表明,大豆在萌发过程中,7S蛋白的α'、α亚基及11S蛋白的酸性亚基逐渐被降解,胰蛋白酶抑制因子含量降低、热敏感性提高;大豆酸奶的酸度增大,持水力发生变化;大豆酸奶的流变特性得到改善,粘弹性、屈服应力和表观黏度显著性降低;酸奶的微观结构变得细腻.%The changes of protein subunit composition and trypsin inhibitors activity in soymilk and physicochemical, rheological properties and microstructure characters of soybean yogurt were analyzed. Soy yogurts were prepared from germinated soybean with different lengths of germ. The results showed that in the process of germination, the subunit of α, α' in β-conglycinin and acid subunit in glycinin were gradually degraded and trypsin inhibitors activity (TIA) decreased and became heat sensitive. Comparing the ungerminated soy yogurt, the comprehensive qualities of germinated soy yogurt were improved. The titratable acidity increase and water-holding power changed. Moreover, the Theological properties of soybean yogurt were improved, and viscoelasticity, yield stress and apparent viscosity significantly decreased. The microstructure of soy yogurt gel became exquisite and soft.

  14. Effect of Soaking, Cooking, Germination and Fermentation Processing on Physical Properties and Sensory Evaluation of Sorghum Biscuits

    Directory of Open Access Journals (Sweden)

    Abd El-Moneim M. R. AFIFY

    2015-03-01

    Full Text Available Three white sorghum varieties (named ‘Dorado’,‘Shandaweel-6’ and ‘Giza-15’ were investigated for grain characteristics and processed whole meal flour (via soaking, cooked, germinated and fermented sorghum. ‘Giza-15’ variety was the highest one in 1,000 kernel weight and hectolitre, followed by ‘Dorado’ and ‘Shandaweel-6’ that were significant lower. Sorghum varieties were non-significant different in L scales. ‘Giza-15’ was the highest variety in a and b scales. Sorghum varieties were significant different in c scales and non-significant different in h scales. Shandaweel-6 recorded the highest value in water holding capacity (WHC.‘Giza-15’recorded the highest variety in oil holding capacity (OHC. The most significant increase in WHO was after fermentation treatment, followed by cooking treatment. Regarding OHC, the most significant increase was after germination treatment. Biscuits prepared from 50% whole meal flour of raw, soaked, cooked, germinated and fermented sorghum were evaluated for sensory and physical characteristics. The sensory results showed that 50% sorghum whole meal flour could be incorporated to prepare acceptable quality biscuits. The diameter of sorghum biscuits increased, while the diameter of wheat biscuits decreased. Hardness of sorghum biscuits was significant decreased in all treatments compared with wheat biscuits. Hardness of germinated sorghum biscuits was close to wheat biscuits values.

  15. La préparation des catalyseurs. Première partie : Germination et croissance des particules. Importance de la sursaturation du milieu Preparation of Catalysts. Part One: Particle Germination and Growth. Importance of the Supersaturation of the Medium

    Directory of Open Access Journals (Sweden)

    Marcilly C.

    2006-11-01

    Full Text Available Cet article présente les deux notions fondamentales et générales de germination et croissance des particules ou cristaux élémentaires qui peuvent former aussi bien le support du catalyseur que l'agent actif dispersé à sa surface. Germination et croissance sont deux étapes très importantes qui interviennent à divers stades de la préparation des catalyseurs : précipitation, séchage, calcination, etc. On montre que le paramètre essentiel qui régit ces deux étapes et qui détermine la dimension, la structure et le faciès des particules élémentaires est la sursaturation du milieu. This article describes the two fundamental and general concepts of germination and growth of elementary particles or crystals which may form either the catalyst support or the dispersed active agent on its surface. Germination and growth are two very important steps which occur at dif-ferent stages of the preparation of catalysts, i,e. precipitation, drying, calcination, etc. The supersaturation of the medium is shown to be the essential parameter governing these two steps and determining the size, structure and facies of elementary particles.

  16. Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2014-02-01

    Full Text Available Temperature and relative humidity (RH dependence of moisture sorption phenomena for agricultural products provide valuable information related to the thermodynamics of the system. So the equilibrium moisture contents (EMC, effective moisture diffusivity (Deff and thermo-physical properties in terms of void fraction, specific heat capacity, and the apparent density of germinated non-waxy Suphanburi 1 paddy were evaluated. Five commonly cited EMC equations were fitted to the experimental data among temperatures of 40-60°C correlating with RH of 0-90%. The results showed that the modified GAB equation was the best function for describing experimental results while those evaluated thermo-physical properties depended on moisture content. To determine drying kinetics model, the simulated values using Midilli et al. (2002 model and Page’s model was the best fitting to exact drying kinetics values for infrared (IR and hot air (HA drying, respectively. Finally, the Deff value of paddy dried with IR and HA sources were also evaluated and the calculated Deff value of both HA and IR drying was in order of 10-9 m2/s.

  17. Salinity Effects on Germination Properties ofPurslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    m Kafi

    2011-02-01

    Full Text Available Abstract In order to study seed germination and seedling growth responses of purslane to different levels of salinity, an experiment was conducted in a completely randomized desgin with six levels of salinity (0, 7, 14, 21, 28 and 35 dS/m using NaCl and five replications. Persentage and rate of germination, length and dry weight of radicle and plumule were measured, and ratio radicle to plumule length, mean germination time and seedling vigor index were calculated. The results showed that up to 28 dS/m salinity did not impose any significant different in germination percentage compared with control, but in 35 dS/m salinity it decreased to 19%. germination rate did not show any significant different up to 14 dS/m in comparison with control but beyond this level it significantly decreased with increasing salt stress. Mean germination time up to 21 dS/m did not have significant different in comparison with control, but increased with increasing salinity significantly. Length, fresh and dry weight of radicle and plumule, and seedling vigor index significantly decreased by increasing salinity. Ratio of radicle to plumule length decreased with increasing salt concentration, but there were not significant different among salt levels. According to the results, the germination stage of purslane is remarkably resistant to elevated levels of salinity and it seems that by exerting proper management in farms, it could be established in saline environments. Keywords: Plumule, Radicle, Seedlings of purslane

  18. Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat.

    Science.gov (United States)

    Zhang, Ge; Xu, Zhicun; Gao, Yuanyuan; Huang, Xianxiao; Zou, Yanping; Yang, Tiankui

    2015-05-01

    Germination is considered to be an effective process for improving the nutritional quality and functionality of cereals. In this study, changes of nutritional ingredients, antinutritional components, chemical composition, and antioxidant activities of buckwheat seeds over 72 h of germination were investigated, and the reasons for these changes are discussed. With the prolonged germination time, the contents of crude protein, reducing sugar, total phenolics, total flavonoids, and condensed tannins increased significantly, while the levels of crude fat, phytic acid, and the activity of trypsin inhibitor decreased. Phenolic compounds, such as rutin, vitexin, isovitexin, orientin, isoorientin, chlorogenic acid, trans-3-hydroxycinnamic acid, and p-hydroxybenzoic acid increased significantly during the germination process, which may be due to the activation of phenylalanine ammonialyase. The improvement of flavonoids led to significant enhancement of the antioxidant activities of germinated buckwheat. Germinated buckwheat had better nutritional value and antioxidant activities than ungerminated buckwheat, and it represented an excellent natural source of flavonoids and phenolic compounds, especially rutin and C-glycosylflavones. Therefore, germinated buckwheat could be used as a promising functional food for health promotion.

  19. [Changes in Properties of Water during Germination of Zucchini Seed in Water Used].

    Science.gov (United States)

    Novikov, S N; Novikov, L N; Ermolaeva, A I; Timoshenkov, S P; Goryunova, E P

    2015-01-01

    In this research the changes in the supramolecular structure of distilled water during germination of the seed in this water were studied. We used three methods: gravimetry, precision thermal analysis, electron work function measurements. In the first stage of seed germination--seed swelling--the seed extracts coherent domains in the water, herewith due to the transition of coherent domains adsorbed in nanofields into a stable state the flow of electromagnetic energy appears. In the second stage of the experiment--germ growing--the flow of biophotons occurs. This is evidenced by the increased water electron work function. A hypothetical model of the process of zucchini seed germination is suggested.

  20. Study the effect of salinity levels and seed priming on germination and seedling properties of two medicinal plant species from Asteraceae family

    Directory of Open Access Journals (Sweden)

    M. Kafi

    2016-04-01

    Full Text Available Soil and water sources salinity are important constrains which threat the sustainable agriculture production in Iran. In order to evaluate the effect of different antioxidants and salinity levels on germination and seedling properties of two medicinal species (Cnicus benedictus L., and (Cichorium intybus L., an experiment was conducted using a factorial based on completely randomized design with four replications at Special Crops Laboratory of Ferdowsi University of Mashhad. The studied factor for each plant included: seed priming at 4 levels including control (distilled water, ascorbic acid (40 mM, gibberlic acid (75 mg.lit-1 and salicylic acid (1.5 mM, and five salinity levels according to electrical conductivity by adding NaCl to distilled water (control, 5,10,15 and 20 ds.m-1. According to results, pretreatment with salicylic acid improved all of the germination and seedling properties in Cnicus benedictus L. but gibberlic acid could to improved germination and seedling properties in Cichorium intybus L. species. There were strong correlation between germination rate and radical and caulicle length especially on Cichorium intybus species. Generally, seed priming with gibberlic acid and salicylic acid could improve germination and seedling properties of these two species. Both species showed a reliable tolerance to NaCl salinity at germination stage, and germination was 60% compared with control at 20 ds.m-1 treatment.

  1. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  2. Bimetallic nanoparticles: Preparation, properties, and biomedical applications.

    Science.gov (United States)

    Nasrabadi, Hamid Tayefi; Abbasi, Elham; Davaran, Soodabeh; Kouhi, Mohammad; Akbarzadeh, Abolfazl

    2016-01-01

    Many studies of non-supported bimetallic nanoparticle (BMNP) dispersions, stabilized by ligands or polymers, and copolymers, were started only about 10 years ago. Several preparative procedures have been proposed, and full characterizations on BMNPs have been approved. Studies on BMNPs received huge attention from both scientific and technological communities because most of the NPs' catalytic activity depends on their structural aspects. In this study, we focus on the preparation, properties, and bio-application of BMNPs and introduction of the recent advance in these NPs.

  3. Physicochemical and sensory properties of soy bread made with germinated, steamed, and roasted soy flour.

    Science.gov (United States)

    Shin, Doo-Jee; Kim, Wook; Kim, Yookyung

    2013-11-01

    For the development of healthful gluten-free soy bread acceptable to consumers, we evaluated the effects of various processing procedures for soy flour on bread quality, in terms of beany flavour and texture. We pretreated soy flour by both non-heating (raw:NS and germinated:GS) and heating (steamed:SS and roasted:RS) methods. In addition, to improve the loaf volume, we added 1% hydroxypropyl-methylcellulose (HPMC) to RS flour. Lipoxygenase activity was retained in the non-heat-treated flours (279 U/g for NS and 255 U/g for GS), but was significantly reduced in the heat-treated flours (106U/g for SS and 69 U/g for RS). Moreover, heat-treated flour had higher isoflavone and ferric reducing antioxidant power than had non-heat-treated flour. However, RS flour had the lowest moisture content and lowest L value. The GS bread had the highest specific loaf volume (3.53 cm(3)/g), followed by NS (2.96 cm(3)/g), RS (2.25c m(3)/g), and SS (1.81 cm(3)/g) bread. GS bread had the lowest hardness (1.53N), followed by NS (1.65 N), RS (2.00 N), and SS (3.75 N) bread. The addition of 1% HPMC to RS increased the loaf volume (2.44 cm(3)/g), but decreased the bread's hardness (1.80N). As to the sensory properties, the bread with heat-treated flour was perceived to have a less beany odour and taste than was the bread with non-heat-treated flour. However, the latter had a better appearance than the former. These results indicated that soy flour pretreatment could enhance the loaf volume and reduce the beany flavour of whole soy bread.

  4. Effects of properties of metal-contaminated soils on bacterial bioluminescence activity, seed germination, and root and shoot growth.

    Science.gov (United States)

    Kang, Il-Mo; Kong, In Chul

    2016-01-01

    This study examined the effects of several factors (metal contents and soil properties) on bacterial bioluminescence activity, seed germination and root/shoot growth of Lactuca in metal-contaminated soils. Each bioassay showed different sensitivities to extractants of soil samples. Average sensitivities of the bioassay were in the following order: root growth > bioluminescence ≥ shoot growth ≥ seed germination. Both total and weak acid-extracted metal contents showed no observable correlations with the activity of any bioassays (r(2) bioluminescence activity and organics (r(2) = 0.7198) as well as between root growth and CEC (r(2) = 0.6676). Effects of soils were difficult to generalize since they were dependent on many factors, such as soil properties, metal contents, and the organism used in each test. Nonetheless, these results indicated that a battery of bioassays is an effective strategy for assessment of contaminated soils. Furthermore, specific soil factors were shown to more influence on soil toxicity, depending on the type of bioassay.

  5. Biochemical Changes Associated with Germinating Rice Grains and Germination Improvement

    Institute of Scientific and Technical Information of China (English)

    Subajiny VELUPPILLAI; Ketheeswary NITHYANANTHARAJAH; Seevaratnam VASANTHARUBA; Sandrasegarampillai BALAKUMAR; Vasanthy ARASARATNAM

    2009-01-01

    To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp. indica var. Mottaikaruppan) and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfate (SDS) (1.0 g/L) and Triton-X-100 (1.0 mL/L)], whole rice grains soaked in distilled water for 12 h at 30oC were germinated in the dark at 30oC for five days. The highest germination rate (77.1%) was obtained on the 5th day. An increase in the content of reducing sugars from 7.3 to 58.1 mg/g DM (dry matter) was observed from the 1st day of germination. Free amino acids and soluble protein contents increased to 3.69 and 5.29 mg/g DM, respectively on the 5th day of germination. Total protein content decreased from 100.5 to 91.0 g/kg DM during germination. Increases in amylolytic (1.1 to 190.0 U/g DM) and proteolytic (0 to 0.12 U/g DM) activities were observed during germination. Effects of different concentrations of gibberellic acid on the germination of rice grains were evaluated and 0.1 g/L was found to promote germination. When effects of gibberellic acid (0.1 g/L) and surfactants were evaluated individually and together, higher germination rate was observed in the control experiment (grains germinated in distilled water), whereas giberellic acid and surfactants decreased the germination rate. Therefore, the flour obtained from the grains germinated for four days using distilled water to obtain high content of soluble materials and enzyme activities can be used in preparation of bakery items.

  6. Preparation and properties of dental zirconia ceramics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Y2O3-stabilized tetragonal zireonia polyerystalline (Y-TZP) ceramics with high-performance were prepared for dental application by use of the micro-emulsion and two-step sintering method.The crystal phase,morphology,and microstructure of the reaction products were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),and transmission electron microscopy (TEM).XRD results show that the ceramics mainly consist of tetragonal zirconia.Physical and mechanical properties test results show that the bending strength,fracture toughness,and the density of full sintered Y-TZP ceramics are llS0 MPa,5.53 crown machined with this material by CAD/CAM system exhibits a verisimilitude configuration and the material's expansion coefficient well matches that of the glaze.These results further indicate that the product can be used as a promising new ceramic material

  7. Tellurium quantum dots: Preparation and optical properties

    Science.gov (United States)

    Lu, Chaoyu; Li, Xueming; Tang, Libin; Lai, Sin Ki; Rogée, Lukas; Teng, Kar Seng; Qian, Fuli; Zhou, Liangliang; Lau, Shu Ping

    2017-08-01

    Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics.

  8. Germinated barley as a functional ingredient in chicken sausages: effect on physicochemical and technological properties at different levels.

    Science.gov (United States)

    Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Jeong, Tae-Jun; Choi, Yun-Sang; Kim, Cheon-Jei

    2016-01-01

    The objective of this study was to evaluate the effect of germinated barley (GB) levels on physicochemical and technological properties of cooked chicken sausages. The chicken sausages were formulated with 0-4 % GB. Addition of GB increased pH and yellowness but decreased lightness of the cooked chicken sausages. However, there was no difference in redness among treatments (P > 0.05). Based on the positive effects of GB on measurements related to water and/or fat retention ability, such as emulsion stability, cooking loss, and thawing loss, such results depended upon the added amount of GB. In addition, apparent viscosity increased with increasing levels of GB, resulting in hardness, springiness, and chewiness (P fiber, β-glucan, and starch. Therefore, our results suggests that GB could be a functional ingredient to improve physicochemical and technological properties of chicken sausages and optimal level of GB was determined as minimum 2 %.

  9. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    López, Ana; El-Naggar, Tarek; Dueñas, Montserrat; Ortega, Teresa; Estrella, Isabel; Hernández, Teresa; Gómez-Serranillos, M Pilar; Palomino, Olga M; Carretero, M Emilia

    2013-05-01

    Legumes are the basés diet in several countries. They hold a high nutritional value, but other properties related to human health are nowadays being studied. The aim of this work was to study the influence of processes (boiling or germination) on the phenolic composition of dark beans (Phaseolus vulgaris L. c.v. Tolosana) and their effect on their antioxidant, neuroprotective and anticancer ability. Phenolic composition of raw and processed dark beans was analysed by HPLC-PAD and HPLC-ESI/MS. The antioxidant activity was evaluated by ORAC. Astrocytes cultures (U-373) have been used to test their neuroprotective effect. Anticancer activities were evaluated on three different cell lines (renal adenocarcinoma (TK-10), breast adenocarcinoma (MCF-7) and melanoma (UACC-62)) by sulphorhodamine B method. Qualitative and quantitative differences in phenolic composition have been observed between raw and processed dark beans that influence the antioxidant activity, mainly for germinated samples which show a decrease of antioxidant capacity. Although every assayed extracts decreased reactive oxygen species release and exhibited cytotoxicity activities on cancer cell lines, raw beans proved to be the most active in neuroprotective and antitumoral effects; this sample is especially rich in phenolic compounds, mainly anthocyanins. This study further demonstrated that phenolic composition of dark beans is related with cooking process and so with their neuroprotective and anticancer activity; cooking of dark beans improves their digestion and absorption at intestinal level, while maintaining its protective ability on oxidative process at cellular level.

  10. Preparation and characterization of antigenic properties of ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... A rapid, simple and low cost procedure for preparing hapten-protein conjugates was developed using .... using a GS-800 Calibrated Densitometer (Bio-rad, USA). .... is to develop a method to prepare effective immunogens.

  11. General Properties, Occurrence, and Preparation of Carbohydrates

    Science.gov (United States)

    Robyt, John F.

    D-Glucose and its derivatives and analogues, N-acetyl-D-glucosamine, N-acetyl-D-muramic acid, D-glucopyranosyl uronic acid, and D-glucitol represent 99.9% of the carbohydrates on the earth. D-Glucose is found in the free state in human blood and in the combined state in disaccharides, sucrose, lactose, and α,α-trehalose, in cyclic dextrins, and in polysaccharides, starch, glycogen, cellulose, dextrans; N-acetyl-D-glucosamine and an analogue N-acetyl-D-muramic acid are found in bacterial cell wall polysaccharide, murein, along with teichoic acids made up of poly-glycerol or -ribitol phosphodiesters. Other carbohydrates, D-mannose, D-mannuronic acid, D-galactose, N-acetyl-D-galactosamine, D-galacturonic acid, D-iduronic acid, L-guluronic acid, L-rhamnose, L-fucose, D-xylose, and N-acetyl-D-neuraminic acid are found in glycoproteins, hemicelluloses, glycosaminoglycans, and polysaccharides of plant exudates, bacterial capsules, alginates, and heparin. D-Ribofuranose-5-phosphate is found in many coenzymes and is the backbone of RNAs (ribonucleic acid), and 2-deoxy-D-ribofuranose-5-phosphate is the backbone of DNA (deoxyribonucleic acid). D-Fructofuranose is found in sucrose, inulin, and levan. The general properties and occurrence of these carbohydrates and general methods of isolation and preparation of carbohydrates are presented.

  12. 发芽糙米淀粉理化特性研究%The Study on Physicochemical Properties of Germinated Brown Rice Starch

    Institute of Scientific and Technical Information of China (English)

    杨慧萍; 李常钰; 王超超; 宋伟

    2012-01-01

    采用富集γ-氨基丁酸(GABA)的优选糙米发芽工艺条件,通过碱酶两步法提取糙米淀粉,研究发芽对糙米淀粉结构和理化特性的影响.结果表明:糙米发芽后,淀粉膨胀度增大,且随温度升高而提高;透明度升高了57.14%;峰值黏度基本不变;冻融稳定性提高,凝沉特性得到改善;淀粉凝胶的凝胶粘性有所提高,硬度和胶凝性有所降低;碘兰值减小,说明糙米发芽后其直链淀粉含量降低或聚合度减小;电镜分析结果显示,发芽后糙米淀粉颗粒变得圆滑,棱角较发芽前不明显.综上得出,发芽对糙米淀粉的理化特性具有一定的改善作用.%With the optimal germination conditions on brown rice of GABA enrichment,two - step by alkali and enzyme was used to extract the starch from the brown rice,ar.d the changes of starch structure of brown rice and physi-cochemical properties after germination were studied in the paper. The results showed that;The swelling power was increased after germination,and increased with the temperature rising;the transparency was increased by 57. 14% ;the peak viscosity was inhibited obviously and the freeze - thawing stability was enhanced strongly after germination; the adhesiveness of starch gelatin was increased after germination, hardness and gumminess were both decreased; iodine blue value was decreased;it indicated that the amylose content or the degree of polymerization decreased after germination; electron microscopy analysis showed that germinated brown rice starch granules were round, and the angular were not obvious after germination. It showed that germination could improve the physicochemical properties of brown rice starch.

  13. Evaluation of germination capacity and selected biometric parameters (length and dry weight of roots and coleoptile of sunflower seeds (Helianthus annuus after application of preparations containing effective microorganisms (EM

    Directory of Open Access Journals (Sweden)

    Tomasz SEKUTOWSKI

    2015-09-01

    Full Text Available Seed germination and early growth microbiotest PhytotoxkitTM was used in the experiment, which consisted of 3 independent laboratory experimental series with one month intervals each and 3 replications. The aim of this study was to evaluate germination dynamics and capacity as well as selected biometric parameters after seed treatment with two preparations containing effective microorganisms: EM Farma (EMF and EM Farma Plus (EMFP. Sunflower seeds (H. annuus were chosen as the experimental material. Seeds soaked in distilled water were control objects (K in these experiment. Apart from control (K, reference material was prepared in the form of two biostimulants: Kelpak SL (KSL and gibberellic acid (GA3. The effect of the two biopreparations EM Farma (EMF and EM Farma Plus (EMFP was beneficial related to germination capacity and biometric parameters of sunflower (H. annuus.

  14. Prospective Isolation and Comparison of Human Germinal Matrix and Glioblastoma EGFR+ Populations with Stem Cell Properties

    Directory of Open Access Journals (Sweden)

    Jessica Tome-Garcia

    2017-05-01

    Full Text Available Characterization of non-neoplastic and malignant human stem cell populations in their native state can provide new insights into gliomagenesis. Here we developed a purification strategy to directly isolate EGFR+/− populations from human germinal matrix (GM and adult subventricular zone autopsy tissues, and from de novo glioblastoma (GBM resections, enriching for cells capable of binding EGF ligand (LBEGFR+, and uniquely compared their functional and molecular properties. LBEGFR+ populations in both GM and GBM encompassed all sphere-forming cells and displayed proliferative stem cell properties in vitro. In xenografts, LBEGFR+ GBM cells showed robust tumor initiation and progression to high-grade, infiltrative gliomas. Whole-transcriptome sequencing analysis confirmed enrichment of proliferative pathways in both developing and neoplastic freshly isolated EGFR+ populations, and identified both unique and shared sets of genes. The ability to prospectively isolate stem cell populations using native ligand-binding capacity opens new doors onto understanding both normal human development and tumor cell biology.

  15. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  16. Bioethanol production from germinated grain by inherent enzymes

    OpenAIRE

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    The malting in brewing process develops enzymes that are required to hydrolyze the complex starch in grain into simple fermentable sugars. These proceed the three following steps: Steeping encourages germination to start, germination prepares the conversion of the starch to sugars, and kilning stops the germination. In this study, a method for bioethanol production from rye grain was developed by utilizing the inherent amylase activity from germination of the seed. Grain germination was pe...

  17. Preparation, Properties and Application of Polymeric Organic-Inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    任杰; 刘艳; 唐小真

    2003-01-01

    Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.

  18. Preparation and Properties of Graphene Straw Retardant Composites

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available This article was prepared by spin-coating the evaporation process graphene oxide having a shell core structure GO/straw flame retardant composite materials, through the oxygen index apparatus and SEM measured the relationship between the flame retardant properties and the morphological structure of the flame retardant composite material, the experiment preparation process is simple, environmentally friendly non-toxic, and the resulting GO/straw flame retardant composite material having a high fire retardant properties.

  19. Preparation, properties, and some recent studies of the actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing ..mu..g to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs.

  20. Preparation and Properties of Polyaniline Composite Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-hua

    2002-01-01

    Polyaniline (PAn) was synthesized by chemical oxidation polymerization. The conductive polymer doped by camphor sulfonic acid (CSA) and a matrix polymer,polyamide- 66, polyamide - 1010 or polyamide- 11, were dissolved in m-cresol and the blend solution was cast in a glass and dried for preparing polyaniline composite films.Conductivity was from 10 -6 to 10 0Ω-1·cm-1 with different weight fraction of PAn-CSA. The crystallizttion of the films was studied by means of differential scanning calorimeter (DSC). The treatment of the composite films in different pH value solution would result in decrease of conductivity, especially in an alkaline solution.

  1. Preparation and Properties of Cornstarch Adhesives

    Directory of Open Access Journals (Sweden)

    Li Yang

    2013-08-01

    Full Text Available The main goal of this study was to use cornstarch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly cornstarch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of cornstarch adhesives increased and then decreased with the increasing of temperature and the maximum value was obtained at 10oC; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared wither cornstarch adhesives which was pseudo-plastic fluids. Cornstarch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  2. Progress in preparation, properties and application of boron nitride nanomaterials

    Science.gov (United States)

    Wang, Youjun; Han, Jiaqi; Li, Yanjiao; Chen, Hao

    2017-08-01

    Boron nitride nanomaterials have attracted much and more interest in scientific research workers because of their excellent physical and chemical properties. They have become an important research hotspot in today's materials field. In this paper, boron nitride nanoparticles, "fullerenes", nanotubes, nanoribbons and Nano sheets were reviewed in terms of preparation methods, properties and potential applications.

  3. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  4. Pulling the trigger: the mechanism of bacterial spore germination.

    Science.gov (United States)

    Foster, S J; Johnstone, K

    1990-01-01

    In spite of displaying the most extreme dormancy and resistance properties known among living systems, bacterial endospores retain an alert environment-sensing mechanism that can respond within seconds to the presence of specific germinants. This germination response is triggered in the absence of both germinant and germinant-stimulated metabolism. Genes coding for components of the sensing mechanism in spores of Bacillus subtilis have been cloned and sequenced. However, the molecular mechanism whereby these receptors interact with germinants to initiate the germination response is unknown. Recent evidence has suggested that in spores of Bacillus megaterium KM, proteolytic activation of an autolytic enzyme constitutes part of the germination trigger reaction.

  5. Effect of Germination on Chemical and Functional Properties of Lotus Seeds%莲子发芽对其功能及化学特性的影响

    Institute of Scientific and Technical Information of China (English)

    Sathithon PURINTRAPHIBAN; 夏延斌

    2012-01-01

    Lotus seeds were soaked in warm water at different temperatures(25 ℃ and 35 ℃) for different periods(24,36 h and 48 h) for accelerating their germination.Their chemical and functional properties were examined and compared with those of non-germinated lotus seeds(control).Germination resulted in significant increases in crude protein and crude lipid contents in lotus seeds(P 0.05) while no significant variations were observed in ash and moisture contents.Germinated seeds also exhibited significantly(P 0.05) lower total phenolics,tannins,and catechins contents and significantly(P 0.05) higher phytic acid content.Likewise,germination significantly increased(P 0.05) the water absorption capacity,oil absorption capacity,emulsifying activity and foaming activity of endosperm starch from lotus seeds,but decreased its protein solubility.Furthermore,the embryo of germinated seeds demonstrated a significant rise in total phenolics,total flavonoids and phenolic alkaloids(neferine,liensinine and isoliensinine) contents.Therefore,germination could improve the nutrition quality and functional properties of locus seeds,attenuate its anti-nutritional quality,and increase phenolic alkaloids content in lotus seed embryos.In conclusion,germination is a good method for improving the nutritional quality of lotus seeds and embryos.%将莲子浸泡于水中,放置不同时间(24、36h和48h)和温度(25℃和35℃)促进其发芽,以未发芽莲子为空白对照,比较发芽种子化学和功能特性的变化。种子发芽导致胚乳中粗蛋白质和粗脂肪(P〈0.05)显著增加,而灰分和水分含量则没有可观测到的显著变化,其他成分除了植酸显著增加(P〈0.05)外,总酚、单宁和儿茶酚类物质的含量显著降低(P〈0.05)。发芽莲胚乳粉的吸水能力、吸油能力、乳化活性以及起泡性增加,而蛋白质溶解性下降(P〈0.05)。此外,发芽后莲

  6. Preparation and Properties of Orthogonal Piezoelectric Composite Materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Lu Ying; Zhang Xingguo; Shen Yi; Chen Chun

    2004-01-01

    . PZT piezoelectric ceramic with La2O3, SrCO3, BaO and Sb2O5 was prepared. It has high value of the piezoelectric strain constant d33 ( -681 PC/N) and high value of-d33/d31 (2.65). Orthogonal piezoelectric composite materials was designed and prepared by PZT, DAD- 40 electric conductive adhesive and E51 epoxy resin. The OPCM shows obvious orthogonal anisotropy. The matching property of the interface between piezoelectric ceramic and polymer of OPCM relies on the defects of interface. The proper conductive mid-layer could improve the matching property of the interface.

  7. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    Science.gov (United States)

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development.

  8. Investigations of rheological properties of diclofenac sodium gel preparation

    Directory of Open Access Journals (Sweden)

    Firuza Maksudova

    2013-04-01

    Full Text Available It is well-known that the majority of non-steroidal anti-inflammatory drugs (NSAIDs are ulcerogenic. Gel or ointment preparations of NSAIDs are free from this side-effect, which is a prerequisite for the increase of aforementioned forms of NSAIDs. A major quality indicator of gels and ointments are rheological properties. Along with determining the quality of preparation, they influence manufacturing, expiration date and terms of storage. This article demonstrates the results of investigation of rheological indices of 3% gel preparation of diclofenac sodium such as plasticity, structural viscosity, and thixotropy. Obtained results confirm that the developed gel preparation has thixotropy, plasticity and is classified as a Bingham system.

  9. La préparation des catalyseurs. Première partie : Germination et croissance des particules. Importance de la sursaturation du milieu Preparation of Catalysts. Part One: Particle Germination and Growth. Importance of the Supersaturation of the Medium

    OpenAIRE

    Marcilly C.

    2006-01-01

    Cet article présente les deux notions fondamentales et générales de germination et croissance des particules ou cristaux élémentaires qui peuvent former aussi bien le support du catalyseur que l'agent actif dispersé à sa surface. Germination et croissance sont deux étapes très importantes qui interviennent à divers stades de la préparation des catalyseurs : précipitation, séchage, calcination, etc. On montre que le paramètre essentiel qui régit ces deux étapes et qui détermine la dimension, l...

  10. Properties of the FCC Catalyst Additive Prepared from Guizhou Kaoline

    Directory of Open Access Journals (Sweden)

    Xianlun Xu

    2006-09-01

    Full Text Available The properties of a FCC catalyst additive prepared from Guizhou kaoline were extensively investigated. The samples were characterized by N2 adsorption, X-ray diffraction, IR spectrometry, and scanning electron microscope (SEM. The results showed that the crystallinity of NaY zeolite synthesized from this kaoline was 25% and the silica alumina ratio was rk/s ˇ m = 5.05. The catalyst additive prepared from above crystallization product exhibited excellent performance of nickel and vanadium passivation, offered 21% lower coke versus base catalyst, while maintaining high bottoms upgrading selectivity.

  11. Preparation and Properties of Tung Oil-Based Polyurethane

    Institute of Scientific and Technical Information of China (English)

    袁才登; 赵晓明; 邵丽英; 唐克华

    2014-01-01

    Tung oil-based polyols were synthesized by the esterification and transesterification between Tung oil-based anhydride and butanediol. The hydroxyl values of the polyols prepared were tested and discussed. Polyurethane was prepared by using Tung oil-based polyols and/or poly(propylene glycol) as polyols and by using isophorone diisocyanate as isocyanate. The effect of the ratio of Tung oil-based polyols to poly(propylene glycol) on the proper-ties of polyurethane prepared was investigated by the water resistance, alcohol resistance and hardness tests. The re-sults show that Tung oil-based polyols are effective to improve the hardness, water resistance and alcohol resistance of polyurethane.

  12. Germination Time Dependence of Bioactive Compounds and Antioxidant Activity in Germinated Rough Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Anuchita Moongngarm

    2011-01-01

    Full Text Available Problem statement: Germinated rice has been recognized as a functional food and its health benefits. However, most related studies were on germinated brown rice but our previous study indicated that germination of rough rice was an effective method to obtain high concentrations of bioactive compounds. Germination time is one of the most important factors affecting the level of biochemical compositions and antioxidant activity. Approach: Rough rice seeds were soaked in water for 2 days and germinated for four different days (1- 4 days. Total phenolic compounds, phytic acid, á-tocopherol, á- tocopherol, á-tocotrienol and á-oryzanol were investigated compared with those of ungerminated brown rice. The antioxidant activity of germinated rice was evaluated through four different methods, the 1, 1- Diphenyl-2-Picrylhydrazyl (DPPH free radical scavenging assay, hydroxyl radical scavenging activity, lipid peroxidation assay and linoleic acid emulsion system-thiocyanate method. Results: The results showed that the germination for 2 days or longer, after soaking, yielded significantly higher level of total phenolic, á-tocopherol, á-tocopherol, á-tocotrienol and á-oryzanol than those of ungerminated brown rice and soaked rice, whilst the concentration of phytic acid was reduced significantly when germination time was increased. The samples germinated for one day or longer also revealed greater antioxidant activity than those of ungerminated rice. Conclusion: The level of bioactive compounds and antioxidant activity of germinated rough rice were affected by germination time. Germination for 2 and 3 days was the optimum time for germination rough rice to obtain high concentration of bioactive compounds and high antioxidant activity. The germination process of rough rice could be a potential method to obtain functional germinated rice flour with high bioactive compounds and health beneficial properties and could be applied to produce

  13. Effects of germination on the activities of amylases and phenolic enzymes in sorghum varieties grouped according to food end-use properties

    NARCIS (Netherlands)

    Dicko, M.H.; Gruppen, H.; Zouzouho, O.C.; Traore, A.S.; Berkel, van W.J.H.; Voragen, A.G.J.

    2006-01-01

    Fifty sorghum varieties were screened to determine the effects of germination on levels of starch, -amylase, -amylase, phenylalanine ammonia lyase (PAL), peroxidase (POX) and polyphenol oxidase (PPO). Germination decreased starch content, with amylose being more degraded than amylopectin. In

  14. Preparation and electrocatalytic properties of tungsten carbide electrocatalysts

    Institute of Scientific and Technical Information of China (English)

    马淳安; 张文魁; 成旦红; 周邦新

    2002-01-01

    The tungsten carbide(WC) electrocatalysts with definite phase components and high specific surface area were prepared by gas-solid reduction method. The crystal structure, phase components and electrochemical properties of the as-prepared materials were characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and electrochemical test techniques. It is shown that the tungsten carbide catalysts with definite phase components can be obtained by controlling the carburizing conditions including temperature, gas flowing rate and duration time. The electrocatalysts with the major phase of W2C show higher electrocatalytic activity for the hydrogen evolution reaction. The electrocatalysts with the major phase of WC are suitable to be used as the anodic electrocatalyst for hydrogen anodic oxidation, which exhibit higher hydrogen anodic oxidation electrocatalytic properties in HCl solutions.

  15. Preparation and properties of pitch carbon based supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using the mesophase pitch as precursor, KOH and CO2 as activated agents, the activated carbon electrode material was fabricated by physical-chemical combined activated technique for supercapacitor. The influence of activated process on the pore structure of activated carbon was analyzed and 14 F supercapacitor with working voltage of 2.5 V was prepared. The charge and discharge behaviors, the properties of cyclic voltammetry, specific capacitance, equivalent serials resistance (ESR), cycle properties, and temperature properties of prepared supercapacitor were examined. The cyclic voltammetry curve results indicate that the carbon based supercapacitor using the self-made activated carbon as electrode materials shows the desired capacitance properties. In 1 mol/L Et4NBFVAN electrolyte, the capacitance and ESR of the supercapacitor are 14.7 F and 60 mΩ, respectively. The specific capacitance of activated carbon electrode materials is 99.6 F/g; its energy density can reach 2.96 W·h/kg under the large current discharge condition. There is no obvious capacitance decay that can be observed after 5000 cycles. The leakage current is below 0.2 mA after keeping the voltage at 2.5 V for 1 h. Meanwhile, the supercapacitor shows desired temperature property; it can be operated normally in the temperature ranging from -40 ℃ to 70 ℃.

  16. Preparation and properties of ZnO nano-whiskers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By a novel controlled combustion synthesis method, a large amount of ZnO nano-whiskers with different morphologies like nanotetrapods, long-leg nanotetrapod and multipods, were prepared without any catalysts and additives in open air at high temperature. Their morphologies, structures and optical properties were in-vestigated by using SEM, XRD and PL spectrum. The possible growth mechanisms on the ZnO nano-whiskers were proposed in this paper.

  17. Preparation and Properties of Cereal-Metal Complex Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Various kinds of biodegradable polymer materials have been researched[1]. In our previous papers,cereals such as wheat,buckwheat,glutinous rice and nonglutinous rice were polycondenced with citric acid and polysilicic acid to prepare copolymer films respectively[2,3].These copolymer fims have relatively good mechanical properties but the water proofness is not so good.Recently,some cereals such as wheat,glutinous rice,nonglutinous rice,kaoliang,millet and maize were reacted with copper chlorid...

  18. Preparation

    Directory of Open Access Journals (Sweden)

    M.M. Dardir

    2014-03-01

    Full Text Available Some hexanamide-mono and di-linoleniate esters were prepared by the reaction of linolenic acid and hexanamide (derived from the reaction of hexanoic acid and diethanolamine. The chemical structure for the newly prepared hexanamide-mono and di-linoleniate esters were elucidated using elemental analysis, (FTIR, H 1NMR and chemical ionization mass spectra (CI/Ms spectroscopic techniques. The results of the spectroscopic analysis indicated that they were prepared through the right method and they have high purity. The new prepared esters have high biodegradability and lower toxicity (environmentally friendly so they were evaluated as a synthetic-based mud (ester-based mud for oil-well drilling fluids. The evaluation included study of the rheological properties, filtration and thermal properties of the ester based-muds formulated with the newly prepared esters compared to the reference commercial synthetic-based mud.

  19. Preparation and Properties of Carbon Fiber Chiral Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; HUANG Zhixin; WANG Guoqing

    2008-01-01

    The chiral materials were prepared by using the carbon fiber helices as chiral inclusions,and the composite of Fe3O4 and polyaniline as matrix.The electromagnetic properties,including the rotation angles,the axial ratios and the complex chirality parameters,were measured by using a circular waveguide method in the 8.5-11.0 GHz frequency range.The dependence of these electromagnetic properties on the frequency and the concentration of the Fe3O4 in the composite matrix were analyzed.The results show that an appropriate concentration of Fe3O4 in the matrix is useful in improving the electromagnetic properties of the chiral material.

  20. [Preparation and spectroscopic properties of terbium polypropenic acid film].

    Science.gov (United States)

    Wang, Xi-gui; Wu, Hong-ying; Weng, Shi-fu; Wu, Jin-guang

    2002-12-01

    The bonding-type rare earth polymers-polypropenic-acid terbium film was prepared through the bonding way. Three-dimension fluorescence spectra showed that the optimum excitation wavelength was 306 nm, the strongest emission wavelength was 544 nm. The terbium polypropenic-acid film showed the characteristic Tb3+ emission when excited at 306 nm due to 5D4-7FJ transition (J = 6, 5, 4 and 3). The emission maximum at 544 nm was ascribed to 5D4-7F5 transition of Tb3+ and presented strong green emission. The luminescent properties of Tb3+ were not affected by polymerism of propenic-acid and the transparency of polypropenic-acid in visible light region was not affected by the dopping Tb3+. The fluorescence properties and spectroscopic properties of the terbium polypropenic-acid were investigated by excitation spectrum, emission spectrum, IR, far-IR, and Raman spectrum.

  1. Preparation and Properties of Phenolic Resin/Montmorillonite Intercalation Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    YU Jian-ying; WEI Lian-qi; CAO Xian-kun

    2003-01-01

    Phenolic resin/ montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation. Properties and structure of the composites were investigated by using XRD , TG and test of softening point. It is indicated that both the pressing intercalation and melt intercalation can be used to prepare the phenolic resin/organo-montmorillonite intercalation nanocomposites. Compared with phenolic resin, the intercalation nanocomposites have better heat-resistance, higher decomposition temperatures and less thermal weight-loss. However , these two intercalation methods have different effects on the softening point of the intercalation nanocomposites . Pressing intercalation almost does not affect the softening point of the intercalation nanocomposites, while melt intercalation signifwantly increases the softening point of the intercalation nanocomposites ,probably due to the chemical actions happening in the process of melt intercalation.

  2. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2013-01-01

    Full Text Available Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite.

  3. Preparation and Properties of Water-soluble Conjugated Polyelectrolyte

    Institute of Scientific and Technical Information of China (English)

    BAO Xiangjun; HONG Ruibin; HU Jianhua; ZHONG Yiping; LIU Ping; DENG Wenji

    2014-01-01

    The water-soluble conjugated polyelectrolyte, poly[3-(1′-ethyloxy-2′-N- methylimidazole) thiophene] (PEOIMT), was prepared. Its photophysical and electrochemical properties, and response characteristics to the external condition (e g, temperature response, solvent response and pH response), were investigated. The results show the PEOIMT belongs to the organic semiconductor. The interaction between the PEOIMT and the bovine serum albumin (BSA) was investigated using UV-vis spectroscopy. It was found that the PEOIMT could interact with the BSA. The PEOIMT can be used as a biosensor to detect the BSA.

  4. Preparation and properties of wheat gluten/silica composites

    Institute of Scientific and Technical Information of China (English)

    SONG Yi-Hu; ZHENG Qiang; ZHOU Wen-Ce

    2009-01-01

    Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG disper-sion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Mor-phology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents.

  5. Preparation and properties of wheat gluten/silica composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG disper-sion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Morphology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents.

  6. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  7. Study on the preparation and properties of ultrafine copper powder

    Institute of Scientific and Technical Information of China (English)

    LIU; Wei-ping; HUANG; Lin; YIN; Yan-hong

    2005-01-01

    In the study, the common copper powder is used as sample, the ultrafine copper powder is researched by a new process of high energy ball milling. The influence of the milling time, the milling intensity, the milling medium, the ratio of hall to material, the dry milling and the wet milling on copper powder size are studied and the rule of every factors influencing properties of copper particle size and specific surface area under the best experimental conditions are acquired. By the regressive analysis of experimental results under the best conditions, the characteristic equation of copper particle prepared by high energy milling is confirmed.

  8. PRELIMINARY DATA REGARDING THE KINETIC PROPERTIES OF AN ALPHA-AMYLASE FROM ROBINIA PSEUDACACIA L. GERMINATED SEEDS

    Directory of Open Access Journals (Sweden)

    Vlad Artenie

    2005-08-01

    Full Text Available We have accomplished a partial purification of a alpha amylase from germinated seeds of Robinia pseudacacia L. by affinity precipitation. The key element is the sodium alginate, a polymer that proved affinity for this enzyme, and also has the propriety to reversibly precipitate with Ca2+. The enzyme binds to the alginate and the complex is precipitated with Ca2+. The amylase activity is recovered by dissolving the precipitate in 1M maltose and precipitating the alginate alone by addition of Ca2+. The  enzyme has a molecular weight estimated between 50 and 65 kDa, an optimum pH between 5 and 6; it is inhibited by ammonium sulfate and activated by CaCl2.

  9. Effect of germination and fermentation on the proximate composition and functional properties of full-fat and defatted cucumeropsis mannii seed flours.

    Science.gov (United States)

    Omowaye-Taiwo, Omolara Adenike; Fagbemi, Tayo Nathaniel; Ogunbusola, Eunice Moriyike; Badejo, Adebanjo Ayobamidele

    2015-08-01

    Germinated, fermented and raw Cucumeropsis mannii (melon) seeds were processed into flours. A portion of the flours were defatted using n-hexane; both the full fat and defatted flours were evaluated for proximate composition and functional properties. The proximate compositions of the full fat and defatted C. mannii seed flours were: moisture, 4.97-5.67 % and 6.17-8.13 %; total ash, 1.95-3.24 % and 4.38-7.19 %; crude protein, 36.62-39.91 % and 71.91-77.05 %; crude fat, 45.06-49.57 % and 1.56-2.57 %; crude fibre, 2.71-3.63 % and 4.34-4.59 %; carbohydrate, 3.78-4.07 % and 4.45-6.54 %, respectively. The functional properties of the flour from full-fat and defatted seed were: water absorption capacity, 116.67-183.33 % and 216.67-267.67 %; oil absorption capacity, 252.33-274.00 % and 292.00-345.00 %; foaming capacity 17.36-30.34 % and 34.78-44.69 %; foaming stability, 5.17-11.54 % and 11.41-14.55 %; least gelation concentration, 24.67-28.00 and 13.33-18.67 %; emulsion capacity, 49.73-79.28 mL/g and 40.34-65.61 mL/g; bulk density 0.65-0.81 g/mL and 0.36-0.39 g/mL; protein solubility 4.00-5.89 % and 5.21-7.11 %, respectively. Germination enhanced the water absorption capacity, foaming capacity and protein solubility while fermentation increased the emulsion capacity. Defatting improved the water and oil absorption capacities, foaming capacity and protein solubility. The flour from germinated seeds may find use as ingredients in food emulsion and salad dressing, while those from fermented seeds may be used as food thickeners.

  10. Preparation and dielectric properties of porous silicon nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Jun-qi; LUO Fa; ZHU Dong-mei; ZHOU Wan-cheng

    2006-01-01

    Porous silicon nitride ceramics with difference volume fractions of porosity from 34.1% to 59.2% were produced by adding different amount of the pore-forming agent into initial silicon nitride powder. The microwave dielectric property of these ceramics at a frequency of 9.36 GHz was studied. The crystalline phases of the samples were determined by X-ray diffraction analysis. The influence of porosity on the dielectric properties was evaluated. The results show that α-Si3N4 crystalline phase exists in all the samples while the main crystalline phase of the samples is β-Si3N4,indicating that the a/b transformation happens during the preparation of samples and the transformation is incomplete. There is a dense matrix containing large pores and cavities with needle-shaped and flaky β-Si3N4 grains distributing. The dielectric constant of the ceramics reduces with the increase of porosity.

  11. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Lizeng Zuo

    2015-10-01

    Full Text Available Aerogels are synthetic porous materials derived from sol-gel materials in which the liquid component has been replaced with gas to leave intact solid nanostructures without pore collapse. Recently, aerogels based on natural or synthetic polymers, called polymer or organic aerogels, have been widely explored due to their porous structures and unique properties, such as high specific surface area, low density, low thermal conductivity and dielectric constant. This paper gives a comprehensive review about the most recent progresses in preparation, structures and properties of polymer and their derived carbon-based aerogels, as well as their potential applications in various fields including energy storage, adsorption, thermal insulation and flame retardancy. To facilitate further research and development, the technical challenges are discussed, and several future research directions are also suggested in this review.

  12. Preparation and electrical properties of oil-based magnetic fluids

    Science.gov (United States)

    Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.

    2005-05-01

    This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.

  13. A Novel Domperidone Hydrogel: Preparation, Characterization, Pharmacokinetic, and Pharmacodynamic Properties

    Directory of Open Access Journals (Sweden)

    Chun-Hui Zhang

    2011-01-01

    Full Text Available The purpose of the present study was to prepare a novel domperidone hydrogel. The domperidone dispersion was prepared by the solvent evaporation method. The characteristics of domperidone dispersion were measured by dynamic light scattering (DLS, scanning electronic microscopy (SEM, differential scanning calorimetry (DSC, X-ray diffractometry, and solubility test, respectively. Domperidone hydrogel was prepared by directly incorporating the domperidone dispersion in Carbopol hydrogel to increase its mucoadhesive properties to gastrointestinal tract (GIT. The in vivo pharmacokinetic and pharmacodynamic studies were investigated to evaluate the relative oral bioavailability and the propulsion efficacy of domperidone hydrogel as compared with market domperidone tablet (Motilium tablet. The particle size of domperidone dispersion in distilled water was 454.0 nm. The results of DSC and X-ray indicated that domperidone in dispersion was in amorphous state. The solubility of domperidone in the dispersion in distilled water, pH of 1, 5, and 7 buffer solution was 45.7-, 63.9-, 13.1-, and 3.7-fold higher than that of raw domperidone, respectively. The area under the plasma concentration curve (AUC0–24 in domperidone hydrogel was 2.2-fold higher than that of tablet. The prolonged propulsion efficacy in the domperidone hydrogel group compared to that in tablet group was observed in the pharmacodynamic test.

  14. Preparation and thermal properties of chitosan/bentonite composite beads

    Directory of Open Access Journals (Sweden)

    Teofilović Vesna

    2014-01-01

    Full Text Available Due to their biodegradable and nontoxic nature, biopolymer composites are often used as remarkable adsorbents in treatment of wastewater. In this study chitosan/bentonite composite beads were obtained by addition of clay into the polymer using solution process. Before the composite preparation, bentonite was modified with surfactant cetyltrimethyl ammonium bromide (CTAB. The morphology of beads was examined by scanning electron microscopy (SEM. Thermal properties of the composite beads were studied by simultaneous thermogravimetry coupled with differential scanning calorimetry (SDT and differential scanning calorimetry (DSC. TG results showed that the complex decomposition mechanism of the composites depends on the preparation procedure. It was observed that the concentration of NaOH used for composites precipitation affects the final structure of beads. The influence of preparation procedure on the glass transition temperature Tg of chitosan/bentonite samples was not found (Tg values for all samples were about 144 °C. [Projekat Ministarstva nauke Republike Srbije, br. III45022 and ON172014 and Provincial Secretariat of Vojvodina for Science and Technological Development 114-451-2396/2011-01.

  15. The preparation, properties and application of carbon fibers for SPME.

    Science.gov (United States)

    Gierak, A; Seredych, M; Bartnicki, A

    2006-07-15

    The conditions of preparation of new types of carbon fibers for solid phase micro extraction (SPME) prepared by methylene chloride pyrolysis (at 600 degrees C) on the quartz fiber (100 microm) as well as by supporting synthetic active carbon (prepared especially for this purposes) supported in a special epoxide-acrylic polymer is described. The properties of such carbon fibers for SPME were defined by determination of the partition coefficient of the tested substances (i.e., benzene, toluene, xylenes, trichloromethane and tetrachloromethane) and by the microscopic investigations with the application of the optical and scanning electron microscope. The obtained carbon SPME fibers were applied to the analysis of some volatile organic compounds from its aqueous matrix. During chromatographic GC test, at the investigated SPME carbon fibers, we obtained different but mostly high partition coefficients for the determined compounds (Kfs from 120 for trichloromethane up to 11,500 for tetrachloromethane). Owing to the high partition coefficients of the studied substances obtained on carbon fibers, it was possible to do the analysis of organic substances occurring in trace amounts in different matrices. In this paper, we present the analysis of BTX contents in the petrol analyzed with the application carbonized with CH(2)Cl(2) SPME fiber (C1NM) and a headspace over the petrol sample (concentration of each BTX approximately g/dm(3)).

  16. The Property, Preparation and Application of Topological Insulators: A Review

    Directory of Open Access Journals (Sweden)

    Wenchao Tian

    2017-07-01

    Full Text Available Topological insulator (TI, a promising quantum and semiconductor material, has gapless surface state and narrow bulk band gap. Firstly, the properties, classifications and compounds of TI are introduced. Secondly, the preparation and doping of TI are assessed. Some results are listed. (1 Although various preparation methods are used to improve the crystal quality of the TI, it cannot reach the industrialization. Fermi level regulation still faces challenges; (2 The carrier type and lattice of TI are affected by non-magnetic impurities. The most promising property is the superconductivity at low temperature; (3 Magnetic impurities can destroy the time-reversal symmetry of the TI surface, which opens the band gap on the TI surface resulting in some novel physical effects such as quantum anomalous Hall effect (QAHE. Thirdly, this paper summarizes various applications of TI including photodetector, magnetic device, field-effect transistor (FET, laser, and so on. Furthermore, many of their parameters are compared based on TI and some common materials. It is found that TI-based devices exhibit excellent performance, but some parameters such as signal to noise ratio (S/N are still lower than other materials. Finally, its advantages, challenges and future prospects are discussed. Overall, this paper provides an opportunity to improve crystal quality, doping regulation and application of TI.

  17. Preparation and Properties of Nanocellulose from Organosolv Straw Pulp

    Science.gov (United States)

    Barbash, V. A.; Yaschenko, O. V.; Shniruk, O. M.

    2017-03-01

    The object of this work is to present a study of nanocellulose preparation from organosolv straw pulp (OSP) and its properties. OSP was obtained through thermal treatment in the system of isobutyl alcohol-H2O-KOH-hydrazine followed by processing in the mixture of acetic acid and hydrogen peroxide for bleaching and removal of residual non-cellulosic components. We have obtained nanocellulose from OSP through acid hydrolysis with lower consumption of sulfuric acid and followed by ultrasound treatment. The structural change and crystallinity degree of OSP and nanocellulose were studied by means of SEM and XRD techniques. It has been established that nanocellulose has a density up to 1.3 g/cm3, transparency up to 70%, crystallinity degree 72.5%. The TEM and AFM methods shown that nanocellulose have diameter of particles in the range from 10 to 40 nm. Thermogravimetric analysis confirmed that nanocellulose films have more dense structure and smaller mass loss in the temperature range 220-260 °C compared with OSP. The obtained nanocellulose films had high Young's modulus up to 11.45 GPa and tensile strength up to 42.3 MPa. The properties of obtained nanocellulose from OSP exhibit great potential in its application for the preparation of new nanocomposite materials.

  18. PREPARATION AND PROPERTIES OF FUMED SILICA/CYANATE ESTER NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Elhussein A.Taha; Jun-tao Wu; Kai Gao; Lin Guo

    2012-01-01

    Fumed silica/bisphenol A dicyanate ester (BADCy) nanocomposites were prepared by introducing different contents of nano-sized fumed SiO2 into the BADCy matrix.Two different average primary particle diameters of 12 and 40 nm were chosen.Dibutyltindilaurate (DBTDL) catalyst was chosen to catalyze the cyanate ester group into triazine group via cyclotrimerization reaction.The SEM micrographs indicated that the fumed SiO2 particles were homogeneously dispersed in the poly(bisphenol A dicyanate) matrix by means of ultrasonic treatment and the addition of a coupling agent.The FTIR spectroscopy shows that,not only DBTDL catalyzes the polymerization reaction but also-OH groups of the SiO2 particles surface help the catalyst for the complete polymerization of BADCy monomer.The thermal stability of the cured BADCy can be improved by adequate addition of fumed SiO2.A slight increase in the dielectric constant and dielectric loss values were identified by testing the dielectric properties of the prepared nanocomposite samples.By increasing the SiO2 content,there was a slight increasing in the thermal conductivity values of the tested samples.The obtained results proved that the fumed silica/BADCy nanocomposites had good thermal and dielectrical properties and can be used in many applications such as in the thermal insulation field.

  19. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  20. Preparation and properties of cellulose nanocrystals reinforced collagen composite films.

    Science.gov (United States)

    Li, Weichang; Guo, Rui; Lan, Yong; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2014-04-01

    Collagen films have been widely used in the field of biomedical engineering. However, the poor mechanical properties of collagen have limited its application. Here, rod-like cellulose nanocrystals (CNCs) were fabricated and used to reinforce collagen films. A series of collagen/CNCs films were prepared by collagen solution with CNCs suspensions homogeneously dispersed at CNCs: collagen weight ratios of 1, 3, 5, 7, and 10. The morphology of the resulting films was analyzed by scanning electron microscopy (SEM), the enhancement of the thermomechanical properties of the collagen/CNCs composites were demonstrated by thermal gravimetric analysis (TGA) and mechanical testing. Among the CNCs contents used, a loading of 7 wt % led to the maximum mechanical properties for the collagen/CNCs composite films. In addition, in vitro cell culture studies revealed that the CNCs have no negative effect on the cell morphology, viability, and proliferation and possess good biocompatibility. We conclude that the incorporation of CNCs is a simple and promising way to reinforce collagen films without impairing biocompatibility. This study demonstrates that the composite films show good potential for use in the field of skin tissue engineering.

  1. MUCOADHESIVE GEL WITH IMMOBILIZED LYSOZYME: PREPARATION AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Dekina S. S.

    2015-08-01

    Full Text Available The study of non-covalent immobilized lysozyme, as well as physico-chemical and biochemical properties of obtained mucoadhesive gel was the aim of the research. Lysozyme activity was determined by bacteriolytic method (Micrococcus lysodeikticus cells acetone powder was a substrate. Lysozyme immobilization was conducted by the method of entrapment in gel. Enzyme carrier interaction was studied by viscometric, spectrophotometric and spectrofluorimetric methods. Mucoadhesive gel with immobilized lysozyme, possessing antiinflammatory and antimicrobial activities, was prepared. Due to immobilization, protein-polymer complex with the original enzymatic activity was formed. The product is characterized by high mucoadhesive properties, quantitative retaining of protein and bacteriolytic activity, prolonged release of the enzyme, improved biochemical characteristics (extended pH-activity profile, stability in acidic medium and during storage for 2 years, and it is perspective for further studies. The proposed method for lysozyme immobilization in the carboxymethyl cellulose sodium salt gel allows to obtain a stable, highly efficient product, with high adhesive properties for attachment to the mucous membranes, that is promising for use in biomedicine.

  2. Initiation of bacterial spore germination.

    Science.gov (United States)

    Vary, J C; Halvorson, H O

    1968-04-01

    To investigate the problem of initiation in bacterial spore germination, we isolated, from extracts of dormant spores of Bacillus cereus strain T and B. licheniformis, a protein that initiated spore germination when added to a suspension of heat-activated spores. The optimal conditions for initiatory activity of this protein (the initiator) were 30 C in 0.01 to 0.04 m NaCl and 0.01 m tris(hydroxymethyl)aminomethane (pH 8.5). The initiator was inhibited by phosphate but required two co-factors, l-alanine (1/7 of K(m) for l-alanine-inhibited germination) and nicotinamide adenine dinucleotide (1.25 x 10(-4)m). In the crude extract, the initiator activity was increased 3.5-fold by heating the extract at 65 C for 10 min, but the partially purified initiator preparation was completely heat-sensitive (65 C for 5 min). Heat stability could be conferred on the purified initiator by adding 10(-3)m dipicolinic acid. A fractionation of this protein that excluded l-alanine dehydrogenase and adenosine deaminase from the initiator activity was developed. The molecular weight of the initiator was estimated as 7 x 10(4). The kinetics of germination in the presence of initiator were examined at various concentrations of l-alanine and nicotinamide adenine dinucleotide.

  3. Preparation and properties of polymer foams for ICF targets

    Energy Technology Data Exchange (ETDEWEB)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 ..mu..m. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs.

  4. Preparation and properties of waste tea leaves particleboard

    Institute of Scientific and Technical Information of China (English)

    Shi Jin-shu; Li Jian-zhang; Fan Yong-ming; Ma Hong-xia

    2006-01-01

    Urea-formaldehyde (UF) adhesive is the main source of formaldehyde emission from UF-bonded boards. The components in waste tea leaves can react with formaldehyde to serve as a raw material in the production of low formaldehyde emission boards. In our study, waste tea leaves and UF adhesive were employed in the preparation of waste tea leaves particleboard (WTLB). An orthogonal experimental method was applied to investigate the effects of process parameters on formaldehyde emission and mechanical properties of WTLB. The results indicated that: 1) waste tea leaves had the ability to abate formaldehyde emission from boards; and 2) density of the WTLB was a significant factor affecting its modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB).

  5. Preparation and properties of biomedical porous titanium alloys by gelcasting.

    Science.gov (United States)

    Yang, Donghua; Shao, Huiping; Guo, Zhimeng; Lin, Tao; Fan, Lianpeng

    2011-08-01

    Porous titanium alloys have been prepared by gelcasting in this study. The elastic solid green body was first polymerized and then vacuum sintered to porous titanium alloys with low contamination by controlling sintering conditions. The microstructure and the total porosity of the vacuum sintered porous Ti-Co and Ti-Mo alloys were analyzed by using scanning electron microscopy and x-ray diffraction. Moreover, compression and bending tests were conducted to investigate their mechanical properties. The results show that open and closed three-dimensional pore morphologies and total porosity ranging from 38.34% to 58.32% can be achieved. In contrast to porous Ti by gelcasting, the compression and bending strengths of porous titanium alloys were significantly increased by adding Mo and Co with Young's modulus ranging between 7-25 GPa, which is close to that of human cortical bone, therefore being suited for potential application in load-bearing implants.

  6. PREPARATION AND SURFACE PROPERTIES OF ACRYLIC COPOLYMERS CONTAINING FLUORINATED MONOMERS

    Institute of Scientific and Technical Information of China (English)

    Tai-jiang Gui; Hao Wei; Ying Zhao; Xiu-lin Wang; Du-jin Wang; Duan-fu Xu

    2006-01-01

    A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content ofperfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.

  7. Preparation, Characterization and Properties of Graphene-silver Sulphide Hybrid

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-yi; WEI Zhi-yong; LIANG Ce; WANG De-jin; LIANG Ji-cai; ZHANG Wan-xi

    2012-01-01

    A facile and efficient strategy was reported for the preparation of graphene nanosheets-Ag2S hybrid by a simple hydrothermal process.First,Ag2S particles deposited on the surface of graphene oxide(GO) sheet.GO was then reduced by hydrazine hydrate to graphcne.The results of X-ray diffraction(XRD) and Fourier transform infrared(FTIR) demonstrated the efficient reduction of GO to graphene.Transmission electron microscopy(TEM) image of the sample reveals the morphology of the architecture of graphene-Ag2S hybrid.Ultraviolet-visible spectroscopy(UV-Vis) and photoluminescence(PL) measurement were further employed to study the optical properties of the obtained nanocomposite.This work can be extended to design other graphene-based hybrid nanomaterials,and the as-grown architectures may hold promise for many applications.

  8. Preparation and catalytic properties of tungsten oxides with different morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Bi Yunfei, E-mail: beiyf2003@yahoo.com.cn [Research Institute of Petroleum Processing, SINOPEC, 18 Xue Yuan Road, 100083 Beijing (China); Li Dadong; Nie Hong [Research Institute of Petroleum Processing, SINOPEC, 18 Xue Yuan Road, 100083 Beijing (China)

    2010-09-01

    Tungsten oxides with different morphologies including platelet-like sheets, nanobelts, and nanoparticles have been successfully prepared by changing the ions in the synthetic solution. Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared analysis and N{sub 2} adsorption were employed to reveal the morphological evolution, and results show that the morphological evolution can be attributed to the alteration of coordination environment of tungstenic cations contained in the synthetic solution. Furthermore, these products have been applied into hydrodesulfurization measurement to investigate the relationship between the morphologies of tungsten oxides and their catalytic properties. It is concluded that the catalysts originating from nanobelt-like tungsten oxides have highest catalytic activity and excellent selectivity due to their scrolled character and strong metallic edges.

  9. The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning

    Science.gov (United States)

    Viswanathamurthi, Periasamy; Bhattarai, Narayan; Kim, Hak Yong; Lee, Douk Rae

    2004-03-01

    The morphology and optical properties of zinc oxide fibres with diameters in the nanometre to micrometre range are reported. The PVA/zinc acetate organic/inorganic hybrid nanofibres were successfully prepared by electrospinning using polyvinyl alcohol (PVA) and zinc acetate. Pure zinc oxide fibres were obtained by high-temperature calcination of the hybrid fibres in air. The nanofibres were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffractometry (XRD) and Raman spectroscopy. The photoluminescence spectra under excitation at 325 nm showed an ultraviolet emission at 3.13 eV and a green emission at 2.21 eV. These nanofibres could be used as light emitting devices in nanoscale optoelectronic applications.

  10. The preparation and fluorescence properties of europium nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new structured metallic nanomaterial of europium nanoparticle was prepared using tannic acid as the reductive agent, and nanoeuropium protein conjugates were synthesized by the method of lipoic acid modification on the surface of nanoparticle, which opens a new field of application of lanthanides in nanotechniques. Their properties were also characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), and fluorescence spectroscopy. The europium nanoparticle and its protein conjugates solution were stable and water-soluble. The fluorescence intensity of the composite europium nanoparticles was significantly increased in the presence of trace protein, and was linear proportional to the concentration of proteins under optimum conditions. According to this, a fluorimetric method for the determination of protein was developed in this paper.

  11. Preparation and Electrical Property of Polypyrrole-Polyethylene Composite

    Science.gov (United States)

    Yoshino, Katsumi; Yin, Xiao Hong; Morita, Shigenori; Nakanishi, Yutaka; Nakagawa, Shinichi; Yamamoto, Hideo; Watanuki, Toshiro; Isa, Isao

    1993-02-01

    Polypyrrole-polyethylene composites have been prepared by pressing the mixture of polypyrrole coated and non-coated polyethylene spheres. Electrical conductivity is enhanced by more than 16 orders of magnitude and its activation energy decreases remarkably at concentration of polypyrrole coated polyethylene above around 10-20%, which corresponds to effective polypyrrole concentration of 0.1-0.2%. These characteristics can be explained by a percolation model. That is, at this concentration electrodes are bridged by conducting channel of doped polypyrrole. Thermoelectric power increases in proportion to absolute temperature and is independent on concentration of polypyrrole coated polyethylene sphere above 30%, which support the percolation model. The electrical property of this polypyrrole-polyethylene composite is found to be stable up to 160°C. The application of this composite to the semiconducting layer of a cable has been proposed.

  12. Preparation and properties of copper-oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Xie Wenjie

    2011-01-01

    Full Text Available Abstract In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  13. Preparation and properties of copper-oil-based nanofluids.

    Science.gov (United States)

    Li, Dan; Xie, Wenjie; Fang, Wenjun

    2011-05-05

    In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  14. Preparation and properties of lignin-epoxy resin composite

    Directory of Open Access Journals (Sweden)

    Quanfu Yin

    2012-11-01

    Full Text Available A cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending lignin with an epoxy resin and polyamine using a hot press molding process. The characteristics of the curing reaction of lignin with epoxy resin were studied using DSC and FTIR analysis. The effect of molding temperature and molding pressure on the mechanical properties and microstructure of the lignin/epoxy resin composite was also studied by SEM, DMA, and TG analyses. The results showed that the epoxy resin can be cured by lignin, and the curing temperature for the blends can be reduced by the introduction of a polyamine cure agent. The properties of the composite, such as bending strength, impact strength, glass-transition temperature, and thermal stability, were evidently influenced by the molding process. A good interfacial combination was formed between lignin and epoxy resin. Increasing the molding temperature and pressure proved beneficial to achieve a better interfacial combination for the composite, and the degree of ductile fracture was increased in the fracture surface of the composite.

  15. Preparation of insoluble fibroin films and its tensile property

    Institute of Scientific and Technical Information of China (English)

    Lü Qiang; CAO Chuanbao; ZHAI Huazhang; ZHU Hesun

    2004-01-01

    Silk fibroin is becoming a promising biomaterial because of its excellent biocompatibility. However, the regenerated fibroin is usually soluble in water and its mechanical properties should be improved. Although many methods, such as adding other polymers or treating with methanol, can ameliorate the mechanical properties and insolubility, the biocompatibility of fibroin is usually damaged in these processes. In this article, it is first reported that the insoluble fibroin films are directly prepared without methanol treatment. According to the results of Fourier transform infrared spectroscope (FTIR) and the X-ray diffraction (XRD), the amount of β-sheet conformation increased with the increasing of concentration. When fibroin films are dried from 15 wt% at 60℃, the films become insoluble in water. More importantly, The tensile strength and elongation of the insoluble fibroin films dried from 15% solution at 60℃ reached 15.9 MPa and 49.4% respectively in the wet state, which is distinctly superior to the fibroin films treated with methanol.

  16. Sponge Gourd (Luffa Cylindrica Reinforced Polyester Composites: Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Valcineide O.A. Tanobe

    2014-05-01

    Full Text Available Increasing environmental concern along with the drive to find substitutes for synthetic fibers and value added applications for low cost and renewable plant fibers have led to the development of composites based on biomaterials. One of the drawbacks encountered in such exercise is the lack of adhesion between the incorporated plant fibers and synthetic polymeric matrices. Such drawback can be reduced by appropriate treatment of fibers. This paper describes the chemical treatments used on sponge gourd (Luffa cylindrica fibers of Brazil to prepare their composites with polyester resin. Production of short fiber-polymer composite as well as mat-polyester composites is presented here. Characterization of the composites in respect of evaluation of density, water absorption, thermalstability, tensile properties and impact strength were made and the results are discussed. Observed impact strengthand tensile properties are discussed based on the fractographic studies of the composites.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 273-280, DOI:http://dx.doi.org/ 10.14429/dsj.64.7327

  17. Systematic studies of tannin–formaldehyde aerogels: preparation and properties

    Directory of Open Access Journals (Sweden)

    Gisele Amaral-Labat, Andrzej Szczurek, Vanessa Fierro, Antonio Pizzi and Alain Celzard

    2013-01-01

    Full Text Available Gelation of tannin–formaldehyde (TF solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer–Emmett–Teller (BET surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g−1, is remarkably high for organic aerogels derived from a natural resource.

  18. Properties of tin oxides prepared by ion-beam-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Martin; Hamann, Robert; Polity, Angelika; Feili, Davar; Meyer, Bruno K. [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2013-07-01

    The success of n-type oxide semiconductors and its application in oxide-based electronic devices has motivated the interest in p-type oxide based semiconductors. Therefore synthesis of tin monoxide (SnO) recently has received increasing attention. Another phase of this binary system, SnO{sub 2}, is of great technological interest in manifold applications, such as transparent electrodes, heat-reflecting filters and gas sensing. The preparation of tin oxide thin films has been performed by many different procedures such as sol/gel, epitaxial procedures or methods working under vacuum conditions like sputtering techniques. Radio-Frequency-Ion-Thrusters, as designed for propulsion applications, are also qualified for thin film deposition and surface etching if utilized as ion source. Tin oxide thin films were grown by ion-beam sputtering using a 3 inch metallic tin target. Different aspects of growth and properties of the tin oxide phases were investigated in relation to growth parameters such as substrate temperature or flux of oxygen. Structural, optical and electrical properties of the films are discussed.

  19. Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method.

    Science.gov (United States)

    Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M

    2017-02-01

    In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.

  20. Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen

    OpenAIRE

    Ge, Weina; Song, Yun; Zhang, Cuijun; Zhang, Yafang; Burlingame, Alma L; Guo, Yi

    2011-01-01

    Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) satura...

  1. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  2. PROPERTIES OF PREPARATIONS FUNCTIONAL BIOPOLYMERS OF A FISH ORIGIN

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2014-01-01

    Full Text Available Development of theoretical and practical bases of technology of biocompatible materials of a domestic production on the basis of the natural polymeric systems allocated from raw materials of an animal, fish and a phytogenesis is actual in interests of development of science, health care, ecology. Now practically there are no domestic materials on the basis of products of modification of biopolymers for production of biocompatible materials with adjustable physical and chemical and biological properties. In this regard the special importance is gained by works on studying of functional properties of natural biopolymers, in particular collagen, elastin, hyaluronic acid. Interest of researchers to biopolymers of the proteinaceous nature is quite reasonable as they possess sufficient permeability, a big specific surface and sorption capacity, possibility of receiving convenient in technological forms, a low immunogenicity, possibility of regulation лизиса. Data on possible ways of use are presented in article secondary the collagenic wastes - skins of fishes of internal reservoirs of Russia. Innovative processing methods of processing of secondary raw materials with receiving functional biopolymers of a wide range of application are developed. With application of modern methods of researches their characteristics and property are defined. On a complex of organoleptic, physical and chemical indicators, indexes of biological activity the received preparations hyaluronic acid and collagen can find broad application in medicine, cosmetology. The resource-saving technology of receiving tanning semi-finished products easily giving in to further processing for the purpose of receiving leather haberdashery and textile production is developed. Thus, scientific new approaches in processing of skins of pond fishes on the basis of their deep processing are proved.

  3. Preparation and Properties of OMMT/PU Composites

    Directory of Open Access Journals (Sweden)

    Chen Yufei

    2015-01-01

    Full Text Available Prepolymer of polyurethane (PU was prepared by toluene diisocyanate (TDI and polyether diol through polymerization, organically modified montmorillonite (OMMT gained by montmorillonite (MMT that was modified by octadecyl trimethyl ammonium chloride (OTAC, and the OMMT was used as intercalator; alcohol-based OMMT/PU adhesive was synthesized. The micromorphology of OMMT/PU adhesives was observed by XRD, SEM, and AFM, and the shear strength, elongation at break, peel strength, and water resistance were tested and the relationship between structure and properties of the adhesives was observed and analyzed. XRD suggested that OMMT has been completely peeled in the polyurethane matrix and the spacing of layers has increased. SEM and AFM indicated that the OMMT dispersed evenly in the PU matrix and had a good transition with PU matrix, and the interface effects between two phases were strong. The results of the mechanical properties showed that OMMT could significantly help to improve properties of OMMT/PU adhesive, and the shearing strength, fracture tensile strength, and peel strength of 4 wt% OMMT/PU adhesive were 7.24 MPa, 2.14 MPa, and 451.2 N/m, respectively; the water absorption quantity was 2.82%. Compared with the unmodified PU, the shearing strength, tensile strength, and elongation at break of 4 wt% OMMT/PU adhesive were increased by 36.75%, 134.90%, and 76.80%, respectively. The peel strength decreased by 30.76%, and the water absorption decreased by 17.54%, in the meanwhile.

  4. Preparation, Investigation and the Study of the Effect of Mn(II Complex of Catechol and 2-Aminopyridine on Seed Germination

    Directory of Open Access Journals (Sweden)

    F. I. El-Moshaty

    2011-01-01

    Full Text Available The formation of mixed ligand complex of Mn(II with catechol (L1 and 2-aminopyridine (L2 was determined by elemental analyses (C, H and N, molar conductance measurement, thermogravimetric analysis, infrared, electronic and electron paramagnetic resonance spectroscopies. The elemental analysis data show the formation of 1:1:1 [M: L1: L2] complex. The molar conductance measurement shows a non-electrolyte nature. The thermogravimetric analysis data of the complex display the existence of hydrated and coordinated water molecules. The infrared spectral data exhibit the coordination sites that are through -OH,-C=N and –NH2 groups. The electronic spectral data display the electronic transitions of the ligands and suggest an octahedral structure for the complex. The electron paramagnetic resonance spectrum of the complex reveals the existence of paramagnetic phenomena and supports its geometrical structure. Seed germination and root length of grass were also assayed under the effect of MnCl2.4H2O, catechol, 2-aminopyridine and its complex. Mn(II salt was the most effective on germination than its complex which possess the high test effect on root length, while the ligands are the least active of all.

  5. Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris).

    Science.gov (United States)

    Pal, R S; Bhartiya, Anuradha; Yadav, Pradhuman; Kant, Lakshmi; Mishra, K K; Aditya, J P; Pattanayak, A

    2017-03-01

    The changes in chemical composition, antioxidant activity and fatty acid composition of lentil flour after dehulling, germination and cooking of seeds were investigated. Dehulling showed no significant effect on protein content, however, protein content decreased in most of the varieties after germination and cooking. Total soluble sugars (TSS) content increased significantly after dehulling (2.0-41.64 %) and cooking (2.08-31.07 %) whereas, germination had no significant effect on TSS content. Total lipids increased significantly after dehulling (21.56-42.86 %) whereas, it decreased significantly after germination (2.97-26.52 %) and cooking (23.05-58.63 %). Cooking was more effective than other methods in reducing trypsin inhibitors (80.51-85.41 %). Dehulling was most effective in reducing tannins (89.46-92.99 %) and phytic acid (52.63-60.00 %) content over raw seed. Myristic, palmitic, stearic, oleic and linoleic acid content decreased while linolenic acid content increased after dehulling. Dehulling, germination and cooking decreased the content of antioxidant metabolite (gallic acid, catechin and quercetin) and also antioxidant activities. Raw samples followed by germinated samples showed the highest concentrations of phytochemicals responsible for antioxidant activity and also the antioxidant capacities. Present study showed germination and cooking would be useful in formulation and development of lentil based functional foods for human health benefits.

  6. Effects of Germination and Fermentation on the Functionality of Whole Soy Flour

    Directory of Open Access Journals (Sweden)

    Livia Patrascu

    2016-11-01

    Full Text Available Nutritional quality and technological performances of grains can be modulated through germination and controlled fermentation. The aim of the work was to estimate the effect of germination (72 h at 23oC and fermentation on the fundamental rheological properties of the soy flour based suspensions and sourdoughs, and to assess the bread making potential of the whole soy flours by considering the thermo-mechanical functionality of soy in admixture with white wheat flour. Soy flour based sourdough were prepared using three different starter cultures, consisting of mixtures of lactic acid bacteria like Lactobacillus plantarum, Lb. brevis, Lb. rhamnosus, Lb. casei, Lb. acidophilus, Bifidobacterium BB12®, and Streptococcus thermophilus and/or yeast Kluyveromyces marxianus subsp. Marxianus. The rheological behaviour of the suspensions and sourdoughs was influenced by the soy germination and fermentation processes. The stress sweep tests indicated significant narrowing of the linear viscoelastic regions, as well as the decrease of the stress values required for the beginning of flow. The temperature ramp test showed more intense swelling in case of the germinated and fermented samples. Both native and germinated soy flours were used to replace 15% of the wheat flour, and the Mixolab test indicated that the germination process caused the decrease of protein weakening and dough stability. The sourdoughs addition to the wheat flour resulted in significant changes of the thermo-mechanical properties of the dough. Properties related to stability of starch gel during heating, starch gelatinization and retrogradation depended on the type of starter culture used for fermentation.

  7. Seed germination and vigor.

    Science.gov (United States)

    Rajjou, Loïc; Duval, Manuel; Gallardo, Karine; Catusse, Julie; Bally, Julia; Job, Claudette; Job, Dominique

    2012-01-01

    Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.

  8. Preparation and properties of β-tricalcium phosphate porous bioceramic

    Institute of Scientific and Technical Information of China (English)

    张士华; 熊党生; 崔崇

    2004-01-01

    Porous β-tricalcium phosphate bioceramic (PTCP) has important roles in surgical implants because of good biocompatibility. But the low compressive strength of the ceramic limits its application. The preparation of PTCP was improved with the adjustment of the constituents and the sintering-process. A new type of PTCP material with high compressive strength was made. The compositions, microstructure and properties of PTCP were analyzed by TG-DSC, XRD, TEM, SEM and so on. The result indicates that stearic acid burns sufficiently and gives out carbon dioxide and water vapor when slowly heated between 200 ℃ and 400 ℃ so that the porous structure like coral in β-TCP bioceramic is formed. Through crystallization at 470 ℃ and 570 ℃, more CaO-P2O5 glass-cement is converted into crystallite-glass, which is beneficial for improving the compressive strength of β-TCP bioceramic.PTCP can form a support action in bone imperfect section with good solubility.

  9. Preparation and mechanical properties of graphene oxide: cement nanocomposites.

    Science.gov (United States)

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.

  10. Preparation and properties of polyvinyl acetal sponge modified by chitosan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The polyvinyl acetal sponge modified by chitosan was prepared by adding chitosan/polyvinyl alcohol (PVA) solution during the acetalation reaction of PVA and formaldehyde.The effect of vesicant and chitosan to the pore morphology,water absorption ratio,water absorption rate,expansion time and mechanical properties were studied.The polyvinyl acetal sponge modified by chitosan was used as a hemostatic packing material for the injured rabbit nasal tissue.The hemostatic effect and the healing effect of the modified sponge on the nasal mucosa after nasal surgery were studied.The results indicated that the polyvinyl acetal sponge modified by chitosan has an interconnected pore structure and the wall between large pores also has small pores.The chitosan adhered on the inner surface of the pores.The increased content of vesicant led to an increase in pore diameter,in the water absorption ratio and in expansion time.However,there was only a small change in the water absorption rate and a decrease in tensile strength and compression strength were noted.With an increase in chitosan content,the pore diameter and interconnection of the sponge was reduced.Water absorption ratio,expansion time and water absorption rate decreased,but tensile strength and compression strength improved.Observation of the rabbit nasal tissue after surgical operation suggested that polyvinyl acetal sponge modified by chitosan has an anti-inflammatory,hemostatic and antiadherent characteristic and could promote the healing and functional recovery of rabbit nasal mucosa.

  11. Preparation of cobalt-modified magnetite and its magnetic properties

    Institute of Scientific and Technical Information of China (English)

    YANG Xi-yun; GONG Zhu-qing; LIU Feng-liang; HUANG Jian

    2005-01-01

    Magnetite was modified by reaction with alkaline solution containing Co2+ and Fe2+ to obtain a cobalt ferrite layer on the surface of particles.The influences of modification conditions on the properties were investigated.The as-prepared particles were characterized by X-ray diffraction(XRD)and transmission electron microscope(TEM).The results show that pH value influences the particles composition directly,the desirable CoFe2O4 is obtained as pH value is 12.The coercivity of particles increases with the increase of cobalt content,and the cobalt efficiency reaches a maximum value at cobalt content of 2.71%(mass fraction).With cobalt modification,the magnetite particles have the similar lattice constant and structure to that without cobalt modification,and the squareness ratio is almost 0.5.The increase of the coercivity is attributed to the uniaxial magnetic anisotropy and magnetocrystalline anisotropy of cobalt-ferrite itself.

  12. Properties of vermicompost aqueous extracts prepared under different conditions.

    Science.gov (United States)

    Hanc, Ales; Boucek, Jiri; Svehla, Pavel; Dreslova, Marketa; Tlustos, Pavel

    2016-09-23

    The aim of this work was to determine the influence of aeration and time of extraction on the agrochemical properties of aqueous extracts from vermicomposts made from horse manure (M) and apple pomace (P) waste. There were two extract treatments: stirring without aeration (S), and stirring with aeration (A) for 48 h. Aeration significantly increased the levels of electrical conductivity (EC) and the concentration of [Formula: see text], [Formula: see text], and macro-elements in the extracts. In the (A) treatment, the extraction efficiency of K and Mg increased twofold, and the extraction efficiency of Ca and P increased by one-third compared with the (S) treatment. Simultaneously, the extracts prepared under aeration were characteristic with a higher pH value compared with non-aerated variants. The EC and content of macro-elements in the extracts increased proportionally with time. Their highest growth was found within the first 6 h. After 48 h, the highest release of macro-elements into the extract was found in the case of the horse manure under stirring with aeration.

  13. Preparation, Characterization and Dielectric Properties of Epoxy and Polyethylene Nanocomposites

    Science.gov (United States)

    Zhang, Chao; Mason, Ralf; Stevens, Gary

    Two very different kinds of polymer nanocomposites have been prepared, characterized and investigated by dielectric spectroscopy to investigate the effects of polymer-nanofiller matrix difference on the dielectric response of nanodielectric composites. Linear low density polyethylene (LLDPE) is a non-polar thermoplastic which has a high viscosity even in the melt phase and bisphenol-A epoxy resin with an anhydride hardener is a polar low viscosity thermosetting resin. Nanometric sized aluminium oxide filler was chosen as the common inorganic phase for both nanodielectrics. Generally, nanoparticles aggregate easily and are difficult to separate due to strong surface interactions. In this study various mixing methods were employed from ultrasonic liquid processing to controlled shear flow mixing to investigate the dispersion of the nanofillers. The resultant epoxy and polyethylene nanocomposites were characterized with SEM, TEM, and DSC. The dielectric properties and frequency response of the nanocomposites were measured in the frequency domain from 10-2 Hz to 106 Hz at different temperatures. In polyethylene nanocomposites, significant interfacial polarization is clearly seen. However, in epoxy nanocomposites, no obvious interfacial polarization is found. The results are discussed in terms of the difference in the electrical characteristics of the interfacial region between the polymers and the nano-alumina.

  14. Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianhong; Xiang, Jinzhong, E-mail: jzhxiang@ynu.edu.cn [School of Physical Science and Technology, Yunnan University, Kunming 650091 (China); Tang, Libin, E-mail: scitang@163.com; Ji, Rongbin, E-mail: jirongbin@gmail.com; Yuan, Jun; Zhao, Jun; Yu, Ruiyun; Tai, Yunjian; Song, Liyuan [Kunming Institute of Physics, Kunming 650223 (China)

    2014-09-15

    Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.

  15. Preparation and properties of biodegradable starch–clay nanocomposites

    KAUST Repository

    Chung, Yi-Lin

    2010-01-01

    Well-dispersed starch-clay nanocomposites were prepared by adding a dilute clay dispersion to a solution of starch followed by coprecipitation in ethanol. The clay didn\\'t significantly influence the type of crystalline structure of starch molecules although the amount of crystallinity appears to be somewhat lower in the nanocomposites. The nanocomposites show improved modulus and strength without a decrease in elongation at break. The increase in modulus and strength is 65% and 30%, respectively for the nanocomposite containing 5 wt.% clay compared to the unfilled starch materials. Further increases in clay result in deterioration in properties most likely due to poorer clay dispersion and lower polymer crystallinity. As the amount of water increases, the modulus of both pure starch and starch nanocomposites decreases, although the change is less pronounced in the nanocomposites suggesting that the addition of clay to form nanocomposites can improve the stability of starch-based products during transportation and storage. © 2009 Elsevier Ltd. All rights reserved.

  16. Properties of Polyacrylate Latex Prepared Under Different Emulsified Systems

    Institute of Scientific and Technical Information of China (English)

    CHEN Lijun; WU Fengqin

    2012-01-01

    The polyacrylate latexes were synthesized via pre-emulsified and semi-continuous seeded emulsion polymerization technology when conventional surfactant or polymerizable surfactant was used as emulsifiers.The resultant latexes and their films were characterized with the contact angle determinator and rheometer.Effect of the polymerizable surfactant on water resistance,stability and rheology of the latex was studied.Results show that the water resistance of film is increased first then decreased with the increase of the amount of the polymerizable surfactant.There exists the optimum value of the amount of the polymerizable surfactant for the water resistance of the film.In comparison with the latex prepared with the conventional surfactant,both the mechanical stability and the freezing-thaw stability of the latex are improved when the polymerizable surfactant is used during the course of the emulsion polymerization.The resultant latex has rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.

  17. Coagulation properties of anelectrochemically prepared polyaluminum chloride containing active chlorine

    Institute of Scientific and Technical Information of China (English)

    HU Chengzhi; LIU Huijuan; QU Jiuhui

    2006-01-01

    With high content of the Al13 species and the active chloride, an electrochemically prepared polyaluminum chloride (E-PACl) presents integrated efficiency of coagulation and oxidation. The coagulation properties of E-PACl were systemically investigated through jar tests in the various water quality conditions. The active chlorine in E-PACl can significantly influence the coagulation behavior due to the active chlorine preoxidation, which can change the surface charge characteristic of organic matter (OM) in water. The active chlorine preoxidation could improve the E-PACl coagulation efficiency if the water possessed the characteristics of relatively low OM content (2 mg/L) and high hardness (278 mg CaCO3/L). In the water with medium content of OM (5 mg/L), dosage would be a crucial factor to decide whether the active chlorine in E-PACl aided coagulation process or not. Comparing with alkaline condition, active chlorine would show a more significant influence on the coagulation process in acidic region.

  18. Preparation and properties of scintillating glass doped with organic activators

    Institute of Scientific and Technical Information of China (English)

    ZHU Dong-mei; LUO Fa; ZHAO Hong-sheng; ZHOU Wan-cheng

    2006-01-01

    A series of scintillating glasses were developed by doping organic activators into low melting temperature glasses according to different ratios. The fluorescence spectra and the transmission spectra of some scintillating glasses were explored and the actual concentration organic in scintillating glass was estimated. The results show that it is feasible to prepare the scintillating glass by doing organic scintillating activators into the low-melting glasses. There are two main reasons for the weak optical properties of the scintillation glasses: one is that the actual concentration of organic activators doped in the glasses is very low,and the other is the existence of lots of defects formed in the scintillating glasses due to the evaporation of organic activator,lowering the transmission of glasses. The fluorescence emission peaks of the glasses move to a longer wavelength compared with those in organic matrixes. To increase the light output of the glass,the optical transmittance of the glasses must be improved and the concentration of activators in the glasses must be increased.

  19. Preparation and Immunomodulatory Properties of Modified Peptidoglycan Fragments

    Directory of Open Access Journals (Sweden)

    Tomić, S.

    2013-01-01

    enables man- nosylated compounds to interact with lectins specific for mannose, such as mannose receptors (MR expressed at macrophages and dendritic cells. Therefore, it is possible to increase the activity of the parent immunologically active compound by mannosylation. One of the ways is the preparation of mannosylated liposomes by using mannosylated lipids (Fig. 9. Mannosylation can also influence the direction of the immune reaction. This is shown by the examples of mannosylated PGM and adamantyl tripeptides. Mannosylated PGM derivatives (Scheme 2 are the first PGM derivatives comprising carbohydrate substituents. Mannosylation changed the immunostimulating activity of PGM, but did not affect the susceptibility of the lactylamide bond to hydrolysis with N-acetylmuramyl-L-alanine amidase (Scheme 3. Adamantyl tripeptides, structurally related to PGM, can be mannosylated using the same method (Scheme 4. The greatest potential showed the mannosylated (adamant-1-yltripeptide (Fig. 10 whose immunostimulating activity is comparable to that of PGM. Numerous MDP derivatives have been synthesized with the intention of improving the pharma- cological properties and reducing the side effects of the parent molecule. Furthermore, the study of their structure-activity relationship contributes to the clarification of the mechanism of action of MDP. All presented examples indicate that relatively small changes in the primary structure of peptidoglycan fragments affect their immune reaction. Mannosylation is particularly important modification of muramylpeptide adjuvants since it may allow the targeted delivery of these active substances.

  20. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Xu, Hui; Zhang, Yingping [School of Architecture, Tsinghua University, Beijing 100084 (China)

    2003-12-01

    Phase change microcapsule slurry and phase change emulsion are two novel two-phase heat transfer fluids. Compared with a conventional single-phase heat transfer fluid such as water, their apparent specific heats in the phase change temperature range are greatly increased. Due to this, the heat transfer ability and energy transport ability can be obviously improved. Therefore, they have many potentially important applications in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this paper, a phase change emulsion was prepared by mixing film synthesis, and a phase change microcapsule slurry was prepared by in situ polymerization with polystyrene, polymethyl methacrylate, polyethyl methacrylate as encapsulation material, respectively. Physical properties, such as viscosity, diameter and its distribution of microcapsule and emulsion were investigated. The relationship between the concentration of tetradecane and physical properties have been discussed in detail. Meanwhile, the thermal physical properties of these two fluids were determined by DSC. Also, the influence of tetradecane concentration on phase change temperature and phase change heat has been discussed.

  1. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rui Yang [Tsinghua Univ., Dept. of Chemical Engineering, Beijing (China); Hui Xu; Yingping Zhang [Tsinghua Univ., School of Architecture, Beijing (China)

    2003-12-01

    Phase change microcapsule slurry and phase change emulsion are two novel two-phase heat transfer fluids. Compared with a conventional single-phase heat transfer fluid such as water, their apparent specific heats in the phase change temperature range are greatly increased. Due to this, the heat transfer ability and energy transport ability can be obviously improved. Therefore, they have many potentially important applications in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this paper, a phase change emulsion was prepared by mixing film synthesis, and a phase change microcapsule slurry was prepared by in situ polymerization with polystyrene, polymethyl methacrylate, polyethyl methacrylate as encapsulation material, respectively. Physical properties, such as viscosity, diameter and its distribution of microcapsule and emulsion were investigated. The relationship between the concentration of tetradecane and physical properties have been discussed in detail. Meanwhile, the thermal physical properties of these two fluids were determined by DSC. Also, the influence of tetradecane concentration on phase change temperature and phase change heat has been discussed. (Author)

  2. Nanoemulsions: Preparation, Structure, Functional Properties and their Antimicrobial Effects

    Directory of Open Access Journals (Sweden)

    Najmeh Shams

    2016-06-01

    Full Text Available Background and Objectives: Recently, due to the interest of healthy lifestyle demand for research on novel methods of increasing the shelf-life of food products without the necessity of using preservatives has extended rapidly in the world. Ability of nanoemulsions to improve global food quality has attracted great attention in food preservation. This is as a result of a number ofattributes peculiar to nanoemulsions such as optical clarity, ease ofpreparation, thermodynamic stability and increased surface area. This review discusses the potential food applications of nanoemulsions as vehicles for the delivery of antimicrobial compounds. Moreover, the preparation, structure, and functional properties of nanoemulsions and their antimicrobial effects on foodborne pathogens and biofilms will be reviewed in detail. Antimicrobial nanoemulsions are formulated from the antimicrobial compounds that are approved by the Food and Drug Administration (FDA for use in foods.Results and Conclusion: The antimicrobial activity of nanoemulsions is nonspecific, unlike that of antibiotics, thus they have a broad-spectrum of antimicrobial activity against bacteria (e.g., Escherichia coli, Salmonella, and Staphylococcus aureus, enveloped viruses (e.g., HIV, and herpes simplex, fungi (e.g., Candida, Dermatophytes, and spores (e.g., anthrax at concentrations that are nontoxic in animals (while limiting the capacity for the generation of resistance and kill pathogens by interacting with their membranes. This physical kill-on-contact mechanism significantly reduces the possibility of the emergence of resistant strains. In general, more research is needed to improve the application processes of antimicrobial nanoemulsion, especially sensory aspects, to be appropriate for each product.Conflict of interests: The authors declare no conflict of interest.

  3. Microwave-assisted Preparation of Temperature Sensitive Poly(N-isopropylacrylamide) Hydrogel with Improved Responsive Properties

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Poly(N-isopropylacrylamide)-based hydrogel was prepared under microwave irradiation.The hydrogel thus prepared, comparing with that prepared by thermal heating method, exhibits faster swelling and shrinking kinetics. The improved responsive properties are due to the more heterogeneous and porous networks formed under microwave irradiation.

  4. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA(2mob) Operon in Foodborne Strains of Bacillus subtilis

    NARCIS (Netherlands)

    Krawczyk, Antonina O.; de Jong, Anne; Omony, Jimmy; Holsappel, Siger; Wells-Bennik, Marjon H. J.; Kuipers, Oscar P.; Eijlander, Robyn T.

    Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. Highlevel heat resistance and slow germination of spores of some

  5. Proteomics of Rice Seed Germination

    Institute of Scientific and Technical Information of China (English)

    Dongli He; Chao Han; Xiaojian Yin; Hui Zhang; Pingfang Yang

    2012-01-01

    Seed germination is a complex physiological which starts from the uptake of water by the dry seeds and ends at the protrusion of the radicle.In order to elucidate the mechanism of rice seed germination,we have conducted a systematic proteomic analyses combining with 1-D via LC MS/MS,comparative 2-DE and iTRAQ techniques using the whole seed or dissected embryos and endosperm.During rice seed germination,the embryo and endosperm played different roles.The seed weight increased and complied by a triphasic model.Phase I accompanied with rapid seed water-up-take,the embryo produced gibberellic acid (GA) and diffused to aleurone and then prepared to initiate a signaling cascade to drive the reserves degradation in the starchy endosperm.Phase II is the most important stage for metabolic reactions reactivation,the reserves mobilization,cell construction respiration,cell wall loosening and coleoptile elongation,most of the metabolism related proteins sorted to different pathways were identified at 24 h after imbibition,but the metabolism of nucleotides was not active at this stage for few related proteins have been involved.The degradation of seed maturation and desiccation-associated proteins seemed to be earlier than that of the storage proteins and starch.The glycolysis was the main pathway for energy and substance providing.Phase III is another rapid water-uptake stage accompanying with TCA and aerobic respiration strengthening,cell division initiation and the radical protrusion.Interesting,both biosynthesis and degradation of the same macromolecule were concurrence even in the dry seed,which implied the sequentially matabolic and regulatory events triggered by water uptake during rice seed germination have been programmed during seed maturation.

  6. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  7. Preparation and Property of the Water Absorbent Hybrid Resin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Water absorption material has been attracted much more attention for its wide use in soil and water conservation, agriculture, etc. But this material will actually apply in agriculture, soil and water conservation only when it is cheap enough. Pulp fiber and starch to prepare high absorbing-water resin is a good method for decreasing the cost [1,2]. However, it still has a long way to turn it into reality. Now the montmorillonite is widely used in preparing nanocomposites [3]. But used it in preparing absorbing-water resin has little report. In this article the water absorption hybrid resin has been prepared by one step intercalation polymerization method. In the process of intercalation the partly neutralization acrylic acid and urea have been used as intercalating reagent. Beside that, the urea also has been used as cross-linking agent.

  8. Preparation and Property of the Water Absorbent Hybrid Resin

    Institute of Scientific and Technical Information of China (English)

    WANG; YunPu

    2001-01-01

    Water absorption material has been attracted much more attention for its wide use in soil and water conservation, agriculture, etc. But this material will actually apply in agriculture, soil and water conservation only when it is cheap enough. Pulp fiber and starch to prepare high absorbing-water resin is a good method for decreasing the cost [1,2]. However, it still has a long way to turn it into reality.  Now the montmorillonite is widely used in preparing nanocomposites [3]. But used it in preparing absorbing-water resin has little report. In this article the water absorption hybrid resin has been prepared by one step intercalation polymerization method. In the process of intercalation the partly neutralization acrylic acid and urea have been used as intercalating reagent. Beside that, the urea also has been used as cross-linking agent.   ……

  9. The biomechanics of seed germination.

    Science.gov (United States)

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2016-12-07

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening.

  10. The Preparation and Properties of RDX-Composition A

    Science.gov (United States)

    1945-12-29

    accordingly RDX particles adhere to wax globules and re- tain them in the slurry. The RDX is neither capable of acting as an efficient powder- emulsifier for...prepared by the addition of extra wax and aluminum, plus lecithin , to a rollod Composition A. "ith a total of 12fr wax, such a mixture can be poured, but

  11. Tetragonal zirconia: Wet chemical preparation, mechanical and electrical properties

    NARCIS (Netherlands)

    Keizer, K.; Hemert, van M.; Graaf, van de M.A.C.G.; Burggraaf, A.J.

    1985-01-01

    Yttria-stabilized zirconia powders were prepared in the composition range of 3 to 13 at% yttria. The hydrolysis-gel precipitation technique was used, starting from metal alkoxides or chlorides. In the composition range between 5 and 10 at% yttria, the materials sintered at 1250°C have a fully tetrag

  12. Effect of osmotic stress and post-stress recovery on the content of phenolics and properties of antioxidants in germinating seeds of grapevine Vitis californica

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2011-05-01

    Full Text Available The tested material consisted of grapevine Vitis californica stratified seeds germinated under optimum conditions (+25°C in water, under osmotic stress (-0.2 MPa in PEG solution and submitted to recovery after stress (+25°C in water. The germinating seeds were determined to contain tannins, catechins and the following phenolic acids: gallic, caffeic, p-coumaric and ferulic. The acids occurred in free, ester- and glycoside-bound forms. The dominant form of phenolic acids was the ester-bound fraction. Gallic acid was the most abundant phenolic acid in germinating seeds, while ferulic acid appeared in the smallest amounts. Our analysis of tannins demonstrated that osmotic stress depressed their concentration. Presence of catechin group compounds such as catechin and epicatechin was also determined. In each sample epicatechin was dominant. The total concentration of catechin increased under stress conditions and declined during post-stress recovery. Catechins are a constituent of tannins and their increase under osmotic stress is most probably caused by the breakdown of some tannins in seeds germinating under stress conditions. Samples submitted to osmotic stress were also found to contain less of total phenolic compounds, whereas in samples which underwent post-stress recovery the total level of phenolic compounds increased. Compared to extracts from seeds germinating under optimum conditions, osmotic stress depressed the capacity of extract to scavenge DPPH● (2,2-diphenyl-1-picrylhydrazyl and ABTS●+ – 2,2-Azino-bis (3-etylbenzothiazoline-6-sulfonic acid free radicals, but the antioxidant activity rose in seeds submitted to recovery after stress. Positive correlation was therefore demonstrated between the total content of phenolic acids in germinating grapevine seeds and the reducing power of extracts obtained from these seeds and their free radical scavenging activity. The results suggest that osmotic stress inhibits the activity of

  13. The Hypoglycemic Properties of BAE Maca Max Preparation

    Directory of Open Access Journals (Sweden)

    Lim K. Choong

    2009-01-01

    Full Text Available Problem statement: Considering an urgency of a question of diabetes treatment and decrease the side effects of hypoglycemic therapies, there is a necessity to elaborate a new approaches to this problem. This study was directed on estimation of possibilities of a preparation of naturally modified BAE maca max product for improvement of semeiology of diabetes and reduce the glucose level in the blood. Approach: Experiment was carried out on not purebred rats, received from Rappolovo (Russia nursery, with use of alloksan preparation for creation of models of type 1 and type 2 forms of diabetes. During the basic experiment animals have been divided into three groups: First group was made with control animals; second group, represented type 2 form of diabetes and third group represented animals with type 1 form of diabetes. Animals received BAE Maca Max preparation, which consists of two major active ingredients which are Maca and Tribulus Terresteris plants, in the form of drink, dissolved in 200 mL potable water from standard drinking bowls (after development of hyperglycemia. Glucose level defined before consumption of preparation, for 3rd day, 7th day and 10th day of consumption. Results: Result of experiences established that: Glucose level in blood of healthy animals for 10 day of experiment was in 1,26 times below than initial level (remaining in the range of norm; in group of animals with type 2 form of diabetes glucose level has reduced in 1,2 times; in the second group of animals with type 1 form of diabetes glucose level reduced in a range from 9,8±0,8-8,3±0,8 mmol L?1. Conclusion: Results of experiments showed that BAE maca max preparation possesses ability to statistical significant reduce the level of glucose in both type 1 and 2 forms of diabetes.

  14. Silver confined within zeolite EMT nanoparticles: preparation and antibacterial properties

    Science.gov (United States)

    Dong, B.; Belkhair, S.; Zaarour, M.; Fisher, L.; Verran, J.; Tosheva, L.; Retoux, R.; Gilson, J.-P.; Mintova, S.

    2014-08-01

    The preparation of pure zeolite nanocrystals (EMT-type framework) and their silver ion-exchanged (Ag+-EMT) and reduced silver (Ag0-EMT) forms is reported. The template-free zeolite nanocrystals are stabilized in water suspensions and used directly for silver ion-exchange and subsequent chemical reduction under microwave irradiation. The high porosity, low Si/Al ratio, high concentration of sodium and ultrasmall crystal size of the EMT-type zeolite permitted the introduction of a high amount of silver using short ion-exchange times in the range of 2-6 h. The killing efficacy of pure EMT, Ag+-EMT and Ag0-EMT against Escherichia coli was studied semi-quantitatively. The antibacterial activity increased with increasing Ag content for both types of samples (Ag+-EMT and Ag0-EMT). The Ag0-EMT samples show slightly enhanced antimicrobial efficacy compared to that of Ag+-EMT, however, the differences are not substantial and the preparation of Ag nanoparticles is not viable considering the complexity of preparation steps.The preparation of pure zeolite nanocrystals (EMT-type framework) and their silver ion-exchanged (Ag+-EMT) and reduced silver (Ag0-EMT) forms is reported. The template-free zeolite nanocrystals are stabilized in water suspensions and used directly for silver ion-exchange and subsequent chemical reduction under microwave irradiation. The high porosity, low Si/Al ratio, high concentration of sodium and ultrasmall crystal size of the EMT-type zeolite permitted the introduction of a high amount of silver using short ion-exchange times in the range of 2-6 h. The killing efficacy of pure EMT, Ag+-EMT and Ag0-EMT against Escherichia coli was studied semi-quantitatively. The antibacterial activity increased with increasing Ag content for both types of samples (Ag+-EMT and Ag0-EMT). The Ag0-EMT samples show slightly enhanced antimicrobial efficacy compared to that of Ag+-EMT, however, the differences are not substantial and the preparation of Ag nanoparticles is not

  15. Preparation and Dielectric Properties of Nanostructured ZnO Whiskers

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Ling; YUAN Jie; ZHOU Wei; RONG Ji-Li; CAO Mao-Sheng

    2007-01-01

    By a novel controlled combustion synthesis method, a large number of nanostructured ZnO whiskers with different morphologies, such as tetra-needles, long-leg tetra-needles and multi-needles, are prepared without any additive in open air at high temperature. The morphologies and crystalline structures of the as-prepared ZnO nanostructured whiskers are investigated by SEM and XRD. The possible growth mechanism on the nanostructured ZnO whiskers is proposed. The experimental results indicate that the dielectric constants and losses of the nanostructured ZnO whiskers are very low, demonstrating that the nanostructured ZnO whiskers are low-loss materials for microwave absorption in X-band. However, obvious microwave absorption in nanostructured ZnO whiskers is observed. The quasi-microantenna model may be attributed to the microwave absorption of the ZnO whiskers.

  16. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  17. Preparation and properties of polymer and quantum dot composites

    Institute of Scientific and Technical Information of China (English)

    Tian Hongye; Shao Jun; He Rong; Gao Feng; Cui Daxiang; Gu Hongchen

    2006-01-01

    Quantum dots (QDs) were prepared in an organic system through a simple and low-cost wet chemistry method.Polymer beads with a diameter of 60-70 nm and specific functional groups were synthesized by a particular seeded emulsion polymerization technique.QDs were embedded in the polymer beads with the specific functional groups through dissolving and swelling method,which provided the condition for the conjunction of biomolecules and QDs as fluorescent probes.The prepared composites were characterized with UV-Vis,PL,TEM,FTIR,CLSM and conductance titration etc.The results show that QDs are successfully embedded in polymer beads,which breaks the limitation that the conjunction of biomolecules and QDs can be achieved only for those synthesized in aqueous system.

  18. The Intelligent Properties of Micro-reactors for Preparating Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Gang WEI; Hai Yan HUANG; Rong Chun XIONG

    2003-01-01

    TiO2 nanoparticles were synthesized by using micro-reactors. The shape and size of the nanoparticles produced from the original micro-reactors and the five times recycled micro-reactors mother liquor were investigated on transmission electron microscopy (TEM) by using the original sample, freeze prepared sample, and dyeing treated sample, respectively. UV-VIS spectrometry was used to study the growth process of TiO2 nanoparticles in main reactors. The results showed that micro-reactors with nanometer magnitude had spherical or oval structures, and could restore to their original structure after they were destroyed. The products prepared in the original micro-reactors were similar to that in the micro-reactors recycled for many times, suggesting that the micro-reactors had memory function.

  19. Preparation and Physical Properties of One-Dimensional Structures: Bap(Fe2S4)q.

    Science.gov (United States)

    Swinnea, J. S.; Steinfink, H.

    1980-01-01

    Reviews the structure, preparation, and physical properties of a series of compounds characterized by structures formed from sublattices which have incommensurate repeat distances in one or two directions. (Author/CS)

  20. Preparation and study of properties of dispersed graphene oxide

    Directory of Open Access Journals (Sweden)

    Evgeniya Seliverstova

    2015-09-01

    Full Text Available Ability of graphene oxide to form stable dispersion in organic solvents was studied in this work. As it was shown, sonication of graphene leads to the decreas of the particle size. Stability of prepared graphene dispersions was studied upon measurements of distribution of number of the particles via size and change of optical density of the solutions with time. It was found that graphene oxide forms a more stable dispersion in tetrahydrofuran and dimethylformamide than in chloroform and acetone.

  1. Evaluation of homeopathy in seed germination of yellow ipe

    Directory of Open Access Journals (Sweden)

    Naira Maranhão Silva

    2014-09-01

    Full Text Available Studies with homeopathie on seed germination of native forest species are scarce, regardless of its potential as low impact technology. Therefore, the objective of this study was to evaluate the use of homeopathic medications in different dynamizations in the seed germination of yellow ipe. The experimental design was completely randomized with three replications, in a factorial scheme with the three medicines in five dynamizations, totaling 16 treatments with the control consisting of distilled water. The medications used were Calcarea carbonica, Carbo vegetabilis and Silicea. The mediations were applied in of 6, 12, 30, 100 and 200 centesimals hahnemanianas (CH dynamizations. Regarding germination percentage and speed of germination index the medicament Silicea in 12CH dynamization was less efficient when compared to others medications and dynamizations. The use of homeopathic preparations does not benefit the pattern of yellow ipe seeds germination.

  2. Preparation and physical properties of CuxWO3

    Science.gov (United States)

    Koriche, N.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.

    2012-04-01

    We report on the study of WO3 doped with Cu using sol-gel (CuxWO3d) and impregnation (CuxWO3i) methods. All materials are well crystallized and exhibit single phases whose crystallite size ranges from 17 to 100 nm depending on Cu amount and the preparation technique. The conductivity dependence on temperature demonstrates semiconductor behavior and follows the Arrhenius model, with activation energies, Eσ, commonly in the range 0.4-0.6 eV. Moreover, the thermopower study shows that CuxWO3d is mainly of p-type conductivity, whereas CuxWO3i is n-type. The mechanism of conduction is attributed to a small polaron hopping. The doping process is found to decrease the interband transition down to 520 nm depending on the preparation conditions. The photoelectrochemical characterization confirms the conductivity type and demonstrates that the photocurrent Jph increases with Cu-doping. Taking into consideration the activation energy, the flat band potential and the band gap energy, the band positions of each material are proposed according to the preparation method and Cu amount.

  3. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei-fei

    2015-01-01

    Objective:To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods:Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP) with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q) and time were observed. Results: MIP was prepared successfully by nimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of speciifc recognition performance on nimodipine. The static adsorption distribution coefifcient (KD) was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer. Conclusion:Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  4. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Fei-fei CHEN

    2015-09-01

    Full Text Available Objective: To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods: Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q and time were observed. Results: MIP was prepared successfully bynimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of specific recognition performance on nimodipine. The static adsorption distribution coefficient (KD was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer.Conclusion: Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  5. Superconducting Properties of MgB2 Prepared by High and Ambient Pressures

    Institute of Scientific and Technical Information of China (English)

    REN Zhi-An; CHE Guang-Can; ZHAO Zhong-Xian; CHEN Hong; DONG Cheng; NI Yong-Ming; JIA Shun-Lian; WEN Hai-Hu

    2001-01-01

    The new superconductor MgB2 has been prepared in two ways, by high pressure and ambient pressure synthesis.The superconducting properties were measured and compared. It is found that the sample prepared by highpressure is much denser than that prepared under ambient pressure. Accordingly the high pressure sample has avery narrow transition width and a much higher bulk critical current densityC

  6. Preparation and anti-bacterial properties of a temperature sensitive gel containing silver nanoparticles

    Science.gov (United States)

    The purpose of this study was to prepare a novel temperature-sensitive spray gel containing silver nanoparticles and investigate its anti-bacterial properties in vitro. Methods: The aqueous complex gel was prepared by Pluronic F127 (18-22%) and Pluronic F68 (3-9%) through a cold method to obtain a p...

  7. Preparation, processing and properties of lignosulfonate-flax composite boards.

    Science.gov (United States)

    Privas, Edwige; Navard, Patrick

    2013-03-01

    Hemp, hay, straw for animal litters, raffia and sisal stems, abaca and jute bleached pulp fibres, miscanthus stems and flax fibres were mixed to lignosulfonate at 70% filler concentration and compressed in the form of 5 cm-thick boards. Flax was found to give the best mechanical properties measured in bending mode and used for all tests. Several methods able to improve adhesion between matrix and flax fibres were studied. A treatment of flax fibres with NaOH-water was found to decrease the mechanical properties of composites. Ethanol or dichloromethane solvents that are known to dewax flax fibre surfaces improve the mechanical properties of final board. The addition of pectin to the lignosulfonate matrix was found to improve the mechanical properties in the same order of magnitude as with the ethanol treatment. Both methods improve the flexural strength by 60% while keeping the elastic modulus constant. Mechanical improvement shows that these two methods are increasing the lignosulfonate/flax fibre interfacial adhesion. The best compositions have mechanical properties above the normalized minimum required for wood-based boards.

  8. Efeito de diferentes métodos de preparo na germinação de sementes de tomate Effects of different methods of seed preparation on the germination of tomato seeds

    Directory of Open Access Journals (Sweden)

    Antônio Augusto do Lago

    1976-01-01

    Full Text Available Sementes de tomate, extraídas mecanicamente dos frutos e após diferentes métodos de preparo, tiveram seu poder germinativo determinado após 0, 4 e 12 meses de armazenagem. Ao todo, foram estudados os efeitos de 30 métodos de preparo conseguidos com a combinação de cinco tipos de fermentação, dois de desinfecção e três de secagem. O poder germinativo das sementes diminuiu com o aumento do tempo de fermentação e, principalmente, quando se utilizou ácido acético glacial na massa de fermentação. A desinfecção das sementes com sublimado corrosivo proporcionou melhores resultados, o mesmo ocorrendo quando da secagem das sementes à sombra. Os efeitos de interações entre as variáveis foram também analisados.Tomato seeds mechanically extracted from the fruits were subjected to different methods of preparation, i.e., five types of fermentation, two of desinfection, and three of drying. Viability of such seeds was determined after 0, 4, and 12 months of storage. Germination of tomato seeds decreased with the increase of time of fermentation, and, mostly when acetic acid was added to the mass being fermented. The best product for seed desinfection was HgCl2, and shade-drying was the most adequate for tomato seeds.

  9. Investigation of superconducting properties of nanowires prepared by template synthesis

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2003-01-01

    We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have a uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter of the n......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have a uniform diameter of ∼40 nm and a very large aspect ratio (∼500). The diameter...

  10. Preparation and property of polyurethane/nanosilver complex fibers

    Science.gov (United States)

    Qu, Rongjun; Gao, Jingjing; Tang, Bo; Ma, Qianli; Qu, Baohan; Sun, Changmei

    2014-03-01

    Utilizing terminal reactive groups in polyurethane, nanometer silvers were reduced in situ. The formation mechanism of nanosilver in PU was under preliminary discussion. UV-vis spectroscopy and TEM analysis were used to monitor reduction process; and the PU/nanosilver complex fibers were produced by dry spinning, which were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, differential scanning calorimetry and so on. The influence of nanosilver on the thermal, mechanical and antimicrobial properties of PU was studied. It is inferred that 0.030% Ag should be a proper concentration for the PU/nanosilver complex fibers with favorable mechanical properties and highly effective antibacterial activities.

  11. PREPARATION AND PROPERTIES OF SILICONE-ACRYLATE COPOLYMER LATEX

    Institute of Scientific and Technical Information of China (English)

    Mu-jie Yang; Wei Zhang

    2004-01-01

    Silicone-acrylate copolymer latex was prepared through three different polymerization processes, i.e., the batch process, preemulsified monomer addition and the monomer addition process. The results revealed that the monomer addition process is a desirable approach to produce narrow particle size distribution latex with higher polymerization conversion and less amount of coagulum. The effect of silicone content on the glossiness and water absorption of latex film was investigated and the results showed that the glossiness of latex film is improved up to a silicone content of 10% of total monomers, but becomes impaired thereafter, whereas water absorption is reduced accordingly.

  12. Preparation, characterization and properties of ZnO nanomaterials

    Science.gov (United States)

    Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin

    2017-06-01

    In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.

  13. Preparation and properties of gluten/calcium carbonate composites

    Institute of Scientific and Technical Information of China (English)

    Min Zuo; Zheng Zheng Lai; Yi Hu Song; Qiang Zheng

    2008-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.

  14. Preparation, properties and applications of wheat gluten edible films

    Directory of Open Access Journals (Sweden)

    P. TANADA-PALMU

    2008-12-01

    Full Text Available Edible films from wheat gluten were prepared with various amounts of glycerol as a plasticizer. Water vapor permeability, oxygen permeability, tensile strength and percentage elongation at break at different water activities ( aw were measured. Films with low amounts of glycerol had lower water vapor and oxygen permeabilities, higher tensile strength and lower elongation at break. Wheat gluten coatings reduced weight loss during two weeks of storage for cherry tomatoes and sharon fruits compared to uncoated controls. A bilayer film of wheat gluten and beeswax significantly lowered weight loss from coated cheese cubes compared to single layer coating of wheat gluten.;

  15. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  16. Properties of porous magnesium prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2013-01-01

    Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone.

  17. Preparation and Electrochemical Properties of Porous Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    HE Xin; CHEN Boxun; CHEN Qiao

    2012-01-01

    Porous platinum electrodes were prepared by adding YSZ,as an active material,in platinum paste.Relationship between microstructure and electrochemical performance of O2(g),Pt/YSZ electrode have been characterized by SEM and cyclic voltammetry.Results showed that the microstructure of platinum electrode is a significant impact on the cyclic voltammetry.With the increase of platinum electrode's porosity,the area of three-phase boundary of O2(g)/Pt/YSZ was increased.The electrochemical reactivity was also enhanced.These were presented as the increase of current density and cathode voltage in cyclic voltammetry.

  18. [Preparation and drug releasing property of curcumin nanoparticles].

    Science.gov (United States)

    Liu, Zhan-jun; Han, Gang; Yu, Jiu-gao; Dai, Hong-guang

    2009-02-01

    To prepare curcumin nanoparticles and evaluate the in vitro release of curcumin. The chitosan-graft-vinyl acetate copolymers were synthesized by free radical polymerization. Curcumin nanoparticles were synthesized by ultrasonic irradiation. The encapsulation efficiency of the nanoparticles and the in vitro release of curcumin were studied. The nanoparticles were discrete and uniform spheres, covered with positive charges. The encapsulation efficiency of nanoparticles was up to 91.6%. The in vitro release profile showed the slower release rate of curcumin. The methods is simple. The nanoparticles possess good physical performance and sustained release character in vitro.

  19. Preparation and property of polyurethane/nanosilver complex fibers

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Rongjun, E-mail: rongjunqu@sohu.com [School of Chemistry and Materials Science, Ludong University, Yantai 264025 (China); College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 (China); Gao, Jingjing [School of Chemistry and Materials Science, Ludong University, Yantai 264025 (China); College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 (China); Tang, Bo [College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 (China); Ma, Qianli [Yantai Spandex Co., Ltd, Yantai 264006 (China); Qu, Baohan [College of Chemistry and Pharmacology, Qingdao Agricultural University, Qingdao 266109, Shandong (China); Sun, Changmei [School of Chemistry and Materials Science, Ludong University, Yantai 264025 (China)

    2014-03-01

    Highlights: • Utilizing terminal reactive groups in polyurethane, nanometer silvers were reduced in situ. And the PU/nanosilver complex fibers were produced by dry spinning. • The influence of nanosilver on the properties of PU was studied. • It is inferred that 0.030% Ag should be a proper concentration for the PU/nanosilver complex fibers with favorable mechanical properties and highly effective antibacterial activities. - Abstract: Utilizing terminal reactive groups in polyurethane, nanometer silvers were reduced in situ. The formation mechanism of nanosilver in PU was under preliminary discussion. UV–vis spectroscopy and TEM analysis were used to monitor reduction process; and the PU/nanosilver complex fibers were produced by dry spinning, which were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, differential scanning calorimetry and so on. The influence of nanosilver on the thermal, mechanical and antimicrobial properties of PU was studied. It is inferred that 0.030% Ag should be a proper concentration for the PU/nanosilver complex fibers with favorable mechanical properties and highly effective antibacterial activities.

  20. Preparation, characterization, and electrochemical properties of lithium vanadium oxide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo Shujuan [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123 (China); Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000 (China); Shao Mingwang, E-mail: mwshao@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123 (China); Zhou Qing; Liao Fan [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123 (China)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The lithium ions can easily move between the layers of lithium vanadium oxide. > It can highly increase the electron transfer between the electrode and dopamine. > The reversibility of electrochemical process was significantly improved. - Abstract: Highly uniform lithium vanadium oxide nanoribbons were successfully prepared in large quantities using a facile hydrothermal approach without employing any surfactants or templates. The as-prepared products were up to hundreds of micrometers in length, about 200 nm in width, and 20 nm in thickness. These nanoribbons and nafion composite were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity and rapid response in detecting dopamine in phosphate buffer solution. Lithium ions can greatly increase the electron transfer between the electrode and biological materials, and significantly increase the reversibility of electrochemical process. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The linear range for the detection of dopamine was 2.0 x 10{sup -6} to 1.0 x 10{sup -4} M with a detection limit of 1.0 x 10{sup -7} M. In addition, the good reproducibility and long-term stability of the sensor make it valuable for further application.

  1. Electrostaticspray preparation and properties of RDX/DOS composites

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2017-08-01

    Full Text Available A composite explosive based on 1, 3, 5-trinitro-1, 3, 5-triazinane (RDX was prepared by electrostaticspray method with dioctyl sebacate (DOS as desensitizer. After preparation, the particle size and crystal structure were characterized and chemical features, such as chemical bonds, functional groups, thermal decomposition parameters and mechanical sensitivity were investigated as well. In terms of the morphologies of the composites, the particle sizes were in the range of 1–3 μm. Compared with RDX, the crystal types, chemical bonds and functional groups of the RDX/DOS composites were unchanged. The activation energy of the composites was lower than that of raw RDX, and the 3wt % DOS composites had the lowest activation energy. The impact sensitivity and friction sensitivity of the RDX/DOS composites were lower than those of raw RDX, and the 10wt% DOS composites had the highest H50 (125.9 cm and the lowest friction sensitivity (8%.

  2. Nutrient profile of porridge made from Eleusine coracana (L.) grains: effect of germination and fermentation.

    Science.gov (United States)

    Subastri, Ariraman; Ramamurthy, Chitteti; Suyavaran, Arumugam; Mareeswaran, Ramachandran; Mandal, Priyanka; Rellegadla, Sandeep; Thirunavukkarasu, Chinnasamy

    2015-09-01

    Porridge (koozh) is one of the traditional foods made from Eleusine coracana L. grains (Finger millet). It is a soft food prepared from processed (germinated & fermented) finger millet flour (FMF). However, in the modern world of fast food, koozh is usually prepared from non-processed (non-germinated & non-fermented) FMF. Hence, present study was undertaken to evaluate the macro and micro nutrient contents in koozh prepared from germinated (fermented & non-fermented) and non-germinated (fermented & non-fermented) FMF. Highest protein, carbohydrate and glycoprotein contents were found in koozh prepared from germinated & non-fermented FMF. The free amino acid contents are higher in germinated & fermented condition when compare to other preparations. No significant change was observed in the calorific value of all preparations. There is no statistical difference in macro-nutrients & micro-nutrients minerals such as calcium, iron, magnesium, manganese, phosphorous and zinc among all the preparations. However, copper content is higher in non-germinated condition, whereas selenium, silicon and sulphur are higher in germinated FMF when compared to others. Significant level of total phenol, total flavonoid and free radical scavenging activity was observed in all preparations, which increased further during fermentation. The present observations, lead us to conclude that koozh prepared from germinated & non-fermented FMF contains higher level of carbohydrate, protein and glycoprotein, however germinated & fermented koozh has increased aminoacids, phytochemicals and free radical scavenging activity. Hence it is suggested that the consumption of koozh made from germinated & fermented FMF may provide easily digestible and energetic nutrients for healthier life.

  3. Preparation and Properties of Iminodiacetic Acid Chelate Fiber

    Directory of Open Access Journals (Sweden)

    QIAN Jin-xin

    2016-07-01

    Full Text Available The iminodiacetic acid chelate fiber(IDACF which has a property of selective adsorption, was fabricated by amination and carboxylation using chloramethylated polypropylene grafted styrene fiber as raw material. Orthogonal experiment was adopted to study the effect of temperature, time, liquor ratio and the amount of chloroacetic acid on carboxylation reaction. The maximum adsorption capacity of iminodiacetic acid chelate fiber to Cu2+ is 65.54mg·g-1, which is 10.52 times of that of Fe3+. Elementary analysis(EA, Fourier transform infrared spectrum(FT-IR, scanning electron microscopy(SEM and thermogrametry(TG were used to characterize the structure and the properties of the iminodiacetic acid chelate fiber. The results show that iminodiacetic acid has been transformed to the raw fiber successfully after amination and carboxymethylation, and IDACF has good thermal stability.

  4. Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β-d-glucan & enhances its antioxidant potential.

    Science.gov (United States)

    Ahmad, Mudasir; Gani, Adil; Shah, Asima; Gani, Asir; Masoodi, F A

    2016-11-20

    The nutraceutical potential of β-d-glucan is largely dependent on its structure, size and viscosity. The present study analyzed the effect of germination and microwave processing of barley on the structural, size, antioxidant and thermal characteristics of β-d-glucan. The molecular weight and viscosity of β-d-glucan obtained from germinated barley (GGB) were the lowest (144kDa and 37.33cp) as compared to β-d-glucan from microwave processed barley (GMB) and unprocessed barley (GUB). The GGB exhibited higher antioxidant potential than GMB and GUB. The Structural elucidation by ATR-FTIR revealed scission in polymeric chain and β glycosydic linkage of β-d-glucan obtained from processed barley. The highest peak intensity at glycosydic linkage in GGB confirms more scission in the molecule. The DSC curve of GGB showed the highest transition temperature. It was concluded that germination of barley can be a good approach for enhancing the antioxidant potential of β-d-glucan.

  5. Preparation and Properties of Antibacterial Lyocell Fibers Containing Chitosan Derivative

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Xu-pin; LIU Xiao-fei; CHENG Bo-wen; KANG Wei-min

    2006-01-01

    The O-carboxymethyl chitosan sodium salt, NaCMCh, was initially synthesized and analyzed with better antibacterial activity than chitosan. Then NaCMCh was dissolved in the N-methylmorpholine-N- oxide, NMMO, solution with cellulose for spinning of the lyocell fiber. The results showed that the lyocell fibers modified with over 2 wt% NaCMCh has good antibacterial activity in against the E. coli and with NaCMCh content below 6 wt% has considerable mechanical properties.

  6. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    Science.gov (United States)

    Reznickova, A.; Orendac, M.; Kolska, Z.; Cizmar, E.; Dendisova, M.; Svorcik, V.

    2016-12-01

    We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV-vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV-vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  7. Preparation and properties of PAn/ATTP/PE conductive composites

    Institute of Scientific and Technical Information of China (English)

    QIU Jian-hui; FENG Hui-xia

    2006-01-01

    Polyaniline/Attapugite/ PE(PAn-ATTP/PE)composites containing particles with core-shell structure were obtained via the two-step blending processs. The experimental condition is as follows: Organo-attapulgite and PAn was obtained by modifying attapulgite with laury benzenesulfonic acid sodium salt and,then added to PE. The electrical conductivity,structure and properties of the composites were studied. Under the function of shear stress,core-shell structure particles with ATTP as the core and PAn as the shell were formed in the composites. The structure of PAn-ATTP/PE composites were characterized by FTIR,XRD,SEM,etc,respectively. The effects of concentration of doping agent on the conductivity and mechanical property of the composites were investigated. The mechanical properties and impact fracture surface of the ternary composites were studied by means of the tensile tester,SEM,etc. The results show that polyaniline encapsulated ATTP enhances the strength of the PE. And the conductivity of PAn-ATTP/PE composites of is improved effectively when polyaniline encapsulated ATTP is added. The composite have good conductivity when 10% polyaniline encapsulated ATTP is added.

  8. Reactively sputtered titanium carbide thin films: Preparation and properties

    Science.gov (United States)

    Eizenberg, M.; Murarka, S. P.

    1983-06-01

    The low resistivity and refractory nature of titanium carbide makes it potentially useful as a diffusion barrier in thin film metallization schemes. In the present investigation, deposition and properties of thin titanium carbide films have been investigated. The films were deposited by reactive radio frequency sputtering in methane-argon mixtures on a variety of substrates. The effects of methane to argon ratio, total sputtering pressure, and power on the film deposition rate, composition and properties were determined. There were interactive effects of these parameters on the composition and properties of these films. Resistivity increased with carbon content; for Ti/C≥1 it was ˜200 μΩ cm. Stress that was compressive was maximum in the nearly stoichiometric TiC film. Grain size was small in all films, especially so in carbon rich films. All stoichiometric titanium carbide films were resistant to HF solutions. Films with TiC/≥1 dissolved easily in ethylene dinitrilo tetra acetric acid (EDTA) solution.

  9. Preparation, characterization and photocatalytic properties of nanometer zinc ferrite

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Guo; Youli Qi; Xien Li; Shengyin Li; Wu Yang; Jinzhang Gao

    2004-01-01

    A combustion synthesis method was adapted for the efficient preparation of pure zinc ferrite particles (ZnFe204). It is based on the exothermic reaction of the corresponding metal nitrates with a reducing agent, to produce extremely fine-grained ashes that readily convert into pure ZnFe2O4 with treating thermally. The composition and microstructure of the so-obtained samples were studied by XRD (X-ray powder diffraction), TEM (Transmission Electron Microscopy) and AFM (Atomic Force Microscopy). These results showed that the range of particle size of ZnFe2O4 is about 15-25 nm. Photocatalytic activities of nanometer ZnFe2O4 were also evaluated by degradation of the curcumin solution.

  10. Preparation and properties of magnetic iron oxide nanotubes

    Institute of Scientific and Technical Information of China (English)

    Baoliang Lv; Yao Xu; Dong Wu; Yuhan Sun

    2008-01-01

    Magnetite (Fe3O4) nanotubes were prepared by reducing synthesized hematite (α-Fe2O3) nanotubes in 5% H2+95% Ar atmosphere,and then maghemite (γ-Fe2O3) nanotubes were obtained by re-oxidizing the Fe3O4 nanotubes.The nanotube structure was kept from collapsing or sintering throughout the high temperature reducing and re-oxidizing processes.The coercivities of the Fe3O4 and γ-Fe2O3 nanotubes synthesized were found to be 340.22 Oe and 342.23 Oe,respectively,both higher than other nanostructures with the same phase and of similar size.Both adsorbed phosphate and the nanotube structure are considered responsible for this high coercivity.

  11. Preparation and properties on hollow nano-structured smoke material

    Science.gov (United States)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  12. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    Science.gov (United States)

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  13. Preparation and luminescence properties of organogel doped with Eu(TTA)3phen complex

    Science.gov (United States)

    Cocca, M.; Di Lorenzo, M. L.; Avella, M.; Gentile, G.; Aubouy, L.; Della Pirreira, M.; Gutiérrez-Tauste, D.; Kennedy, M.; Doran, J.; Norton, B.

    2012-07-01

    In this contribution we report the preparation and the luminescence property of Eu(TTA)3phen complex doped toluene gels. Gels were prepared by using either a low molecular weight gelator, 12-hydroxystearic acid (HSA), or a macromolecular gelator, syndiotactic polymethylmethacrylate (s-PMMA). The gelation properties and their reversible behavior from solid-like to liquid systems have been investigated. In addition, photophysical investigations, as well as morphology, thermal properties and ageing behavior of the gels were analyzed as a function of composition of the gels.

  14. Industrial preparation and performance testing of property-modified prebaked carbon anodes for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    肖劲; 李劼; 邹忠; 胡国荣; 赖延清; 刘业翔

    2003-01-01

    On the base of filtering composite additives in laboratory, the industrial property-modified prebaked car-bon anodes containing composite additives were prepared in factory. The performance tests show that this kind ofanodes not only have the same excellent physical performance as common (contrasting) ones used in aluminum elec-trolysis production at the present time, but also have better chemical and electrochemical performance than that ofthe common ones. Furthermore, the industrial preparation of the property-modified prebaked anode lays the founda-tion of electrolysis test. It can be forecasted that property-modified anodes will have good behavior in aluminum elec-trolysis production.

  15. PREPARATION AND PERVAPORATION PROPERTIES OF PROPENE/1-DECENE COPOLYMER MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Xiu-zhi Tian; Bao-ku Zhu; Xue Jiang; You-yi Xu

    2005-01-01

    Propene/1-decene copolymers (P-co-D) were synthesized by means of slurry polymerization process under atmospheric pressure using Ziegler-Natta catalyst (MgCl2/TiCl4/AlEt3). The random P-co-Ds were elastic, low-crystalline,thermally stable and therefore suitable to be used as membrane materials in organophilic pervaporation with chloroform/water mixture. Its mechanical strength is better than polydimethylsiloxane (PDMS). The correlation between structural parameters (glass transition temperature and crystallinity) and properties of organophilic pervaporation were investigated.

  16. Preparation, Characterization, and Photocatalytic Properties of Modified Red Mud

    OpenAIRE

    Ma, MingJie; Wang, Guanyu; Yang, Zhengpeng; Huang, Shanxiu; Guo, Weijie; Shen, Yuxia

    2015-01-01

    Solid waste red mud was modified by HCl leaching. The structure property and composition of modified red mud were investigated by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET). Under UV irradiation, methyl orange (MO) aqueous solution was photodegraded by modified red mud. The obtained results showed that the specific surface area of modified red mud was 317.14 m2/g, which was about 40 times higher than tha...

  17. Preparation, Characterization, and Photocatalytic Properties of Modified Red Mud

    OpenAIRE

    Mingjie Ma; Guanyu Wang; Zhengpeng Yang; Shanxiu Huang; Weijie Guo; Yuxia Shen

    2015-01-01

    Solid waste red mud was modified by HCl leaching. The structure property and composition of modified red mud were investigated by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET). Under UV irradiation, methyl orange (MO) aqueous solution was photodegraded by modified red mud. The obtained results showed that the specific surface area of modified red mud was 317.14 m2/g, which was about 40 times higher than tha...

  18. Optimising functional properties during preparation of cowpea protein concentrate.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René; Mbome, Israël Lape

    2014-07-01

    Response surface methodology (RSM) was used for modelisation and optimisation of protein extraction parameters in order to obtain a protein concentrate with high functional properties. A central composite rotatable design of experiments was used to investigate the effects of two factors, namely pH and NaCl concentration, on six responses: water solubility index (WSI), water absorption capacity (WAC), oil holding capacity (OHC), emulsifying activity (EA), emulsifying stability (ES) and foam ability (FA). The results of analysis of variance (ANOVA) and correlation showed that the second-order polynomial model was appropriate to fit experimental data. The optimum condition was: pH 8.43 and NaCl concentration 0.25M, and under this condition WSI was ⩾17.20%, WAC⩾383.62%, OHC⩾1.75g/g, EA⩾0.15, ES⩾19.76min and FA⩾66.30%. The suitability of the model employed was confirmed by the agreement between the experimental and predicted values for functional properties.

  19. Preparation, structural analysis, and properties of tenoxicam cocrystals.

    Science.gov (United States)

    Patel, Jagdishwar R; Carlton, Robert A; Needham, Thomas E; Chichester, Clinton O; Vogt, Frederick G

    2012-10-15

    Cocrystals of tenoxicam, a non-steroidal anti-inflammatory drug, are screened, prepared, and characterized in this study. Nine tenoxicam cocrystals were identified using solvent-drop grinding (SDG) techniques. Structural characterization was performed using powder X-ray diffraction (PXRD), differential scanning calorimetry, and multinuclear solid-state NMR (SSNMR). Thermal analysis, PXRD, and 1D SSNMR are used to detect solvates and phase mixtures encountered in SDG cocrystal screening. 2D SSNMR methods are then used to confirm cocrystal formation and determine structural aspects for selected cocrystals formed with saccharin, salicylic acid, succinic acid, and glycolic acid in comparison to Forms I and III of tenoxicam. Molecular association is demonstrated using cross-polarization heteronuclear dipolar correlation (CP-HETCOR) methods involving (1)H and (13)C nuclei. Short-range (1)H-(13)C CP-HETCOR and (1)H-(1)H double-quantum interactions between atoms of interest, including those engaged in hydrogen bonding, are used to reveal local aspects of the cocrystal structure. (15)N SSNMR is used to assess ionization state and the potential for zwitterionization in the selected cocrystals. The tenoxicam saccharin cocrystal was found to be similar in structure to a previously-reported cocrystal of piroxicam and saccharin. The four selected cocrystals yielded intrinsic dissolution rates that were similar or reduced relative to tenoxicam Form III.

  20. Mesoporous hydroxyapatite: Preparation, drug adsorption, and release properties

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com

    2014-11-14

    Mesoporous hydroxyapatite (HA) was synthesized through gas–liquid chemical precipitation method at ambient temperature without any template. Structure, morphology and pore size distribution of HA were analyzed via X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution electron microscopy and N{sub 2} adsorption/desorption. The chemotherapeutic agent doxorubicin (DOX) was used to investigate the drug adsorption and release behavior of HA. The kinetics of DOX adsorption on HA followed the pseudo-second-order rate expression. Adsorption isotherms at various temperatures were obtained, and the equilibrium data fitted the Langmuir model. The values of thermodynamic parameters (Gibbs free energy, entropy, and enthalpy changes) demonstrated that the adsorption process was spontaneous and endothermic. In vitro pH-responsive (pH = 7.4, 5.8) controlled release was investigated. DOX-loaded HA showed a slow, long-term, and steady release rate. The release rate at pH5.8 was larger than that at pH7.4. Consequently, the as-prepared mesoporous HA has potential applications in controlled drug delivery systems. - Highlights: • Mesoporous HA was synthesized by a simple precipitation method without any template. • The kinetics of adsorption followed the pseudo-second-order rate expression. • Thermodynamics investigation showed that adsorption was spontaneous and endothermic. • DOX-loaded HA showed a long-term, steady, and pH-controlled release rate.

  1. Further studies on preparation and properties of phagocytin.

    Science.gov (United States)

    HIRSCH, J G

    1960-03-01

    PHAGOCYTIN AND HISTONE DIFFER SIGNIFICANTLY IN THE FOLLOWING REGARDS: (a) the bactericidal action of histone is rapidly lost on peptic digestion, while that of phagocytin is but little affected; (b) the lethal effect of phagocytin on coliform bacteria is much more resistant than that of histone to antagonism by spermine or by increasing ionic strength of the medium; (c) phagocytin can be extracted from disrupted granulocytes with dilute citric acid whereas effective extraction of histone requires stronger mineral acid or strong salt solution; (d) phagocytin is limited in distribution to polymorphonuclear leucocytes while histone is demonstrable in many tissues. A new technique has been devised which permits extraction of phagocytin essentially free of lysozyme and histones. Phagocytin thus prepared kills certain Gram-positive bacteria as well as Gram-negative bacilli under appropriate in vitro test conditions. Among susceptible Gram-positive microbes are Group A streptococci and staphylococci. Phagocytin is demonstrable in citric acid extracts of granulocytes obtained from rabbit, man, horse, and guinea pig, the only species thus far investigated. Circulating blood leucocytes as well as exudate cells contain this bactericidal substance. The lethal effects of phagocytin on bacteria may be influenced, depending on the particular microorganism, by either pH or ionic strength of the medium. The bactericidal action of phagocytin is only slightly reduced following digestion with trypsin, chymotrypsin or papain. The active ingredient is, however, non-dialyzable and apparently precipitated by trichloracetic acid. Data available at present are insufficient to define the chemical nature of phagocytin.

  2. Preparation and magnetic properties of Co-P thin films

    Institute of Scientific and Technical Information of China (English)

    Haicheng Wang; Zhongmei Du; Lijin Wang; Guanghua Yu; Fengwu Zhu

    2008-01-01

    Magnetic Co-P thin films were prepared by eleetroless deposition. The experiment results show that the film thickness has a significant influence on the coercivity. While the film thickness varied from 300 nm to 5 μm, the coercivity dropped sharply from 45.36 to 22.28 kA/m. As the film thickness increased further, the coercivity varied slowly. When the thickness of the film was 300 nm, the deposited film could realize the coercivity as high as 45.36 kA/m, and the remanent magnetization as high as 800 kA/m .The Co-P films were deposited on the surface of magnetic drums of encoders, whose diameter was 40 mm, and then 512 magnetic poles were recorded, meaning that the magnetizing pitch was 0.245 mm. The testing results indicate that the output signals are perfect, the output waveforms are steady and the pulses account is integral. Compared with the γ-Fe2O3 coating, the Co-P thin film is suitable to be the magnetic recording media for the high resolution magnetic rotary encoder.

  3. Preparation and properties of evaporated CdTe films

    Science.gov (United States)

    Bube, R. H.; Fahrenbruch, A. L.; Chien, K. F.

    1987-07-01

    Previous work on evaporated CdTe films for photovoltaics showed no clear path to successful p-type doping of CdTe during deposition. Post-deposition annealing of the films in various ambients thus was examined as a means of doping. Anneals were done in Te, Cd, P, and As vapors and in vacuum, air and Ar, all of which showed large effects on series resistance and diode parameters. With As, series resistance values of In/p-CdTe/graphite structures decreased markedly. This decrease was due to a decrease in grain boundary and/or back contact barrier height, and thus was due to large increases in mobility; the carrier density was not altered substantially. Although the series-resistance decreases were substantial, the diode characteristics became worse. The decreases were not observed when CdS/CdTe cells were fabricated on Te vapor-annealed films. Preparation of ZnO films by reactive evaporation yielded promising results. Deposition of p-ZnTe films by hot-wall vapor evaporation, using conventional techniques, yielded acceptable specimens.

  4. PREPARATION AND SWELLING PROPERTIES OF SUPER-ABSORBENT POLYMER

    Institute of Scientific and Technical Information of China (English)

    LIU Mingzhu; CHENG Rongshi; WU Jingjia

    1996-01-01

    A super-absorbent polymer is prepared by graft polymerizing acrylamide (AM) onto potato starch using ceric ammonium nitrate (CAN) and N, N'-methylene-bis-acrylamide (bisAM) as an initiator and cross-linking agent respectively, and then subjecting the potato starch- poly(acrylamide)(PAM) graft copolymer (SPAM) to alkaline saponification. The water absorbency (WA) of the sample is nearly 5000 g H2O/g for dry sample in 24 h at room temperature and is far larger than that of reported in the literature[1]. The variables affecting the WA were investigated and optimized, they were: concentrations of potato starch, AM, CAN and bisAM were 26.3 g/L, 1.14 mol/L, 10.3 mmol/L and 0.53 mmol/L, respectively. The amount of sodium hydroxide was 15 g and the temperatures of graft copolymerization and saponification reactions were 60℃ and 95℃. The time of graft copolymerization and saponification reactions was 2 h, respectively.

  5. Preparation and thermoluminescence properties of aluminium oxide doped with europium.

    Science.gov (United States)

    Azorín, J; Esparza, A; Falcony, C; Rivera, T; García, M; Martínez, E

    2002-01-01

    There is little information concerning the use of rare earths as dopants of Al2O3. This paper presents the preparation method and the results of studying the thermoluminescence characteristics of Al2O3:Eu exposed to ultraviolet light. Phosphor powder was obtained by the evaporation method. Optimum dopant concentration was 10% at an evaporation temperature of 700 degrees C. The powder obtained was submitted to thermal treatments at high temperatures in order to stabilise the traps. Diffraction patterns showed amorphous powder up to 500 degrees C; as the temperature was raised crystalline phases of Al2O3 appeared. The photoluminescence spectrum induced by 250 nm UV light exhibited four well defined peaks characteristic of the Eu3+ ion. The glow curve exhibited two peaks at 180 and 350 degrees C. The sensitivity of Al2O3:Eu was 10 times lower than Al2O3:C. The thermoluminescence response was linear from 2.4 to 3000 microJ.cm(-2) of spectral irradiance, and the fading 2% in a month. From these results it can be concluded that Al2O3:Eu has potential as an UV dosemeter.

  6. Magnetic properties of iron nanoparticles prepared by exploding wire technique.

    Science.gov (United States)

    Alqudami, Abdullah; Annapoorni, S; Lamba, Subhalakshmi; Kothari, P C; Kotnala, R K

    2007-06-01

    Nanoparticles of iron were prepared in distilled water using very thin iron wires and sheets, by the electro-exploding wire technique. Transmission electron microscopy reveals the size of the nanoparticles to be in the range 10 to 50 nm. However, particles of different sizes can be segregated by using ultrahigh centrifuge. X-ray diffraction studies confirm the presence of the cubic phase of iron. These iron nanoparticles were found to exhibit fluorescence in the visible region in contrast to the normal bulk material. The room temperature hysteresis measurements upto a field of 1.0 tesla were performed on a suspension of iron particles in the solution as well as in the powders obtained by filtration. The hysteresis loops indicate that the particles are superparamagnetic in nature. The saturation magnetizations was approximately 60 emu/gm. As these iron particles are very sensitive to oxygen a coating of non-magnetic iron oxide tends to form around the particles giving it a core-shell structure. The core particle size is estimated theoretically from the magnetization measurements. Suspensions of iron nanoparticles in water have been proposed to be used as an effective decontaminant for ground water.

  7. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane-polyacrylate block copolymers

    Science.gov (United States)

    Li, Xiaohui; Zhao, Yunhui; Li, Hui; Yuan, Xiaoyan

    2014-10-01

    Five polymethyltrifluoropropylsiloxane (PMTFPS)-polyacrylate block copolymers (PMTFPS-b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10-50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at -15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS-b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  8. Preparation and properties of CuInS{sub 2} thin film prepared from electroplated precursor

    Energy Technology Data Exchange (ETDEWEB)

    Onuma, Yoshio; Takeuchi, Kenji; Ichikawa, Sumihiro; Suzuki, Yasunari; Fukasawa, Ryo; Matono, Daisuke; Nakamura, Kenji; Nakazawa, Masao; Takei, Koji [Core Technology Research Laboratory, Shinko Electric Industries Co., Ltd., 80 Oshimada, Nagano 381-2287 (Japan)

    2006-01-15

    Thin CuInS{sub 2} films were prepared by sulfurization of Cu/In bi-layers. First, the precursor layer was electroplated onto the treated surface of Mo-coated glass. Observation of the cross-section prepared by focused ion beam (FIB) etching revealed that the void-free film was initially formed on the top surface of the precursor layer and continued to grow until the advancing front of the film reached the Mo layer. The nucleation of voids near the bottom of the CuInS{sub 2} film followed. To determine whether the condition of the Cu/In alloy influences the CuInS{sub 2} quality we investigated the Cu/In alloy state using FIB. We found that the annealed precursor of low Cu/In ratio (1.2) has several voids in the mid position in the layer compared with Cu-rich precursor (1.6). The cross-sectional view of the Cu-rich absorber layer is uniform compared with the low copper absorber layer. Thin film solar cells were fabricated using the CuInS{sub 2} film (Cu/In ratio: 1.2) as an optical absorber layer. It was found that the optimization of a sulfurization period is important in order to improve the cell efficiency. We have not yet obtained good results with high Cu-rich absorber because of a blister problem. This blister was found before sulfurization. So, we are going to solve this blister problem before sulfurization.

  9. [Preparation and optical properties of tantalum tungsten bronze].

    Science.gov (United States)

    Mu, Wan-jun; Xie, Xiang; Li, Xing-liang; Zhang, Rui; Lü, Kai; Wei, Hong-yuan

    2015-01-01

    Tantalum tungsten bronze(TaxWO3)nanowires were successfully synthesized via hydrothermal method using TaCl5 and Na2WO4 . 2H20 as raw materials. The morphology, crystal structure and optical properties of synthesized products were characterized by means of XRD, TEM, SEM, UV-Vis and Raman technologies. The XRD results showed that TaxWO3 nanowire exhibited hexagonal structure. By increasing the doping content, the cell parameter was kept increasing gradually till Ta/W= 0. 04, then it remained almost constant. The UV-Vis diffraction spectrum analysis showed that the absorption peaks redshifted, the band gap energy decreased with increasing the doping content. The Raman peaks moved with a downshift, and the peak gradually became broader, which further proved the influence of the tantalum doping for tungsten oxide. The reactions of decomposing liquid rhodamine B solution showed that the nanosized TaxWO3 had a high photo-catalytic activity.

  10. Preparation, Characterization, and Photocatalytic Properties of Modified Red Mud

    Directory of Open Access Journals (Sweden)

    Mingjie Ma

    2015-01-01

    Full Text Available Solid waste red mud was modified by HCl leaching. The structure property and composition of modified red mud were investigated by X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, scanning electron microscopy (SEM, and Brunauer-Emmett-Teller (BET. Under UV irradiation, methyl orange (MO aqueous solution was photodegraded by modified red mud. The obtained results showed that the specific surface area of modified red mud was 317.14 m2/g, which was about 40 times higher than that of the normal red mud. After UV irradiation for 50 min, the removal percentage of MO reached 94.2%. The study provided a novel way for the application of red mud to the photocatalytic degradation of organic wastes.

  11. Optical properties of rubrene thin film prepared by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    陈亮; 邓金祥; 孔乐; 崔敏; 陈仁刚; 张紫佳

    2015-01-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo-ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm–1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.

  12. DEVELOPMENTAL CHANGES IN THE GERMINATION, GROWTH AND CHLOROPHYLLASE ACTIVITY OF VIGNA MUNGO L. USING SEAWEED EXTRACT OF ULVA RETICULATA FORSSKAL.

    Directory of Open Access Journals (Sweden)

    Ganapathy Selvam G.

    2013-01-01

    Full Text Available The effect of seaweed extract prepared from Ulva reticulata on seed germination, seedling growth and chlorophyllase activity of Vigna mungo L. was studied. 100% germination was recorded in the seeds treated with lower concentration of seaweed extract. The V. mungo seeds soaked with lower concentrations of the seaweed extracts showed higher rates of germination, while the higher concentrations of the extracts inhibited the germination.

  13. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  14. Preparation-Properties Relation of Mn-Cu Hopcalite Catalyst

    Directory of Open Access Journals (Sweden)

    Ardita Mele

    2012-01-01

    Full Text Available Problem statement: The Mn-Cu hopcalite catalyst was used for the conversion of CO to CO2 at low temperatures. It was the catalyst of choice in the gas masks for respiratory protection in mines, aircrafts, military, spatial laboratories. Approach: The efficiency of hopcalite catalyst depends on its surface parameters. Its surface characteristics can be influenced from the chosen way of the MnO2 and CuO precipitation and from the pressure of pelletizing. Results: The hopcalite samples has been prepared by precipitation of MnO2 and by adding CuSO4 further in the solution the adsorption of Cu2+ ions on MnO2 particles surface is achieved. After acidification of the solution up to pH = 3 the copper is precipitated in form of Cu (OH2CuCO3 by adding NaHCO3. Precipitate was washed, dried, pressed, crushed, sieved (1-2 mm and calcined at 180°C for 3 h. MnO2 and hopcalite samples were characterized by XRD. The activity was evaluated by determination of its protection time and it was 610 min, better than activity of a commercial catalyst. Specific surface area, pore volume and density were measured by nitrogen adsorption and mercury intrusion porosimetry. The X-Ray diffractograms shows that the only crystallinity of hopcalite comes from MnO2, which is present mainly in amorphous form. By increasing the pressure in the pelletizing step, a significant decrease in the specific surface area (247.64-147.77 m2 g-1 and in the total pore volume (446-278 mm3 g-1 is observed in the hopcalite samples. Conclusion: The obtained hopcalite catalyst by the two step precipitation method shows high catalytic activity. The increasing pressure increases the strength and reduces the specific surface area and pore volume. A pressure of 500 kg cm-2 is recommended for the hopcalite production procedure.

  15. Investigation of antibacterial properties silver nanoparticles prepared via green method

    Directory of Open Access Journals (Sweden)

    Shameli Kamyar

    2012-07-01

    Full Text Available Abstract Background This study aims to investigate the influence of different stirring times on antibacterial activity of silver nanoparticles in polyethylene glycol (PEG suspension. The silver nanoparticles (Ag-NPs were prepared by green synthesis method using green agents, polyethylene glycol (PEG under moderate temperature at different stirring times. Silver nitrate (AgNO3 was taken as the metal precursor while PEG was used as the solid support and polymeric stabilizer. The antibacterial activity of different sizes of nanosilver was investigated against Gram–positive [Staphylococcus aureus] and Gram–negative bacteria [Salmonella typhimurium SL1344] by the disk diffusion method using Müeller–Hinton Agar. Results Formation of Ag-NPs was determined by UV–vis spectroscopy where surface plasmon absorption maxima can be observed at 412–437 nm from the UV–vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD. The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM revealed that Ag-NPs synthesized were in spherical shape. The optimum stirring time to synthesize smallest particle size was 6 hours with mean diameter of 11.23 nm. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 6 h stirring time of reaction. The Fourier transform infrared (FT-IR spectrum suggested the complexation present between PEG and Ag-NPs. The Ag-NPs in PEG were effective against all bacteria tested. Higher antibacterial activity was observed for Ag-NPs with smaller size. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field. Conclusions Ag-NPs were successfully synthesized in PEG suspension under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs with

  16. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Feng, Shengbao; Liu, Yuancai; He, Guangyuan; Yioe, Yoecelyn; Liu, Shao Quan; Huang, Dejian

    2012-09-05

    The effect of germination on bioactive components in legume seeds was investigated in terms of the antioxidant capacity and total phenolic contents. Germination increased the total phenolic content and antioxidant capacity of most seeds. Particularly in chickpea seeds, the isoflavone contents increased by over 100 fold, mainly due to the increase of formononetin and biochanin A level. As a result, these two compounds were conveniently isolated from the germinated seeds in preparative scale and structurally confirmed by UV-vis, ESI-MS, and (1)H NMR spectroscopies. Isoflavonoid fingerprints analyzed by HPLC-PDA and LC-ESI-MS demonstrated that germination could significantly increase isoflavonoids diversity. Twenty-five isoflavonoids were detected and identified tentatively. These include 20 isoflavones, 2 isoflavanones, and 3 pterocarpan phytoalexins. Total isoflavonoid content of germinated chickpea was approximately 5-fold of that of germinated soybean. Our findings suggest that the germinated chickpea seeds could serve as a promising functional food rich in isoflavonoids.

  17. Preparation, Thermal Stability and Electrochemical Properties of LiODFB

    Institute of Scientific and Technical Information of China (English)

    Hongming Zhou; Furong Liu; Jian Li

    2012-01-01

    Lithium oxalyldifluoroborate (LiODFB) was synthesized in dimethyl carbonate solvent and purified by the method of solvent-out crystallization. The structure characterization and thermal stability of LiODFB were performed by Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance (NMR) spectrometry and thermogravimetric analyzer (TGA). LiODFB was exposed to 50% humid air at 25 ℃for different time, then dried at 80 ℃ for 12 h, and the electrochemical properties of the cells using 1 mol/L dried LiODFB in ethylene carbonate -I- dimethyl carbonate + ethyl(methyl)carbonate were investigated. The results showed that, pure crystallization LiODFB was obtained; it had good thermal stability with a thermal decomposition temperature of 248 ℃; when it was exposed to humid air, it was firstly converted into LiODFB.H20; with increasing exposure time, more and stronger impurity peaks in the X-ray diffraction (XRD) patterns of LiODFB were observed, and both the discharge specific capacity and the capacity retention decreased gradually.

  18. Biodegradable Polycaprolactone-Titania Nanocomposites: Preparation, Characterization and Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2013-04-01

    Full Text Available Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM, wide/small angle X-ray diffraction (WAXS/SAXS, respectively and differential scanning calorimetry (DSC. TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites.

  19. Preparation and fluorescence properties of 6-carboxyfluorescein/hydrotalcite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunfang, E-mail: lichunfang@mail.ipc.ac.cn [State Key Laboratory Base of Eco-chemical Engineering, Lab of Colloid and Functional Nanostructures, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Qi, Yanhai; Li, Qianru [State Key Laboratory Base of Eco-chemical Engineering, Lab of Colloid and Functional Nanostructures, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Li, Dongxiang, E-mail: lidx@iccas.ac.cn [State Key Laboratory Base of Eco-chemical Engineering, Lab of Colloid and Functional Nanostructures, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Hou, Wanguo, E-mail: wghou@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China)

    2014-03-15

    The nanocomposites of fluorescent dye/hydrotalcite-like compounds (HTlc) synthesized by intercalation and/or surface adsorption methods have exhibited specific photophysical and photochemical property. In this work, 6-carboxyfluorescein (6CF)/HTlc nanocomposites were synthesized by ammonia coprecipitation and reconstruction-induced surface adsorption methods, and they were characterized by powder X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Thermogravimetric differential thermal measurements (TG-DTA) and fluorescence spectra. The results demonstrate that the dye molecules are primarily adsorbed on HTlc surface. The fluorescence emission of 6CF/Mg–Al HTlc composites is related with 6CF dosage due to the self-quenching mechanism. The 6CF/Zn–Al HTlc nanocomposite reconstructed at high temperature have much strong luminescence than that reconstructed at room temperature and the 6CF/Mg–Al HTlc nanocomposites. -- Highlights: • Fluorescent 6-carboxyfluorescein/HTlc nanocomposites were synthesized. • Fluorescent dye molecules are primarily adsorbed on HTlc surface. • Nanocomposite luminescence is related with the cluster structure of fluorescent dyes.

  20. Ethylene-Octene Copolymers/Organoclay Nanocomposites: Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Alice Tesarikova

    2016-01-01

    Full Text Available Two ethylene-octene copolymers with 17 and 45 wt.% of octene (EOC-17 and EOC-45 were compared in nanocomposites with Cloisite 93A. EOC-45 nanocomposites have a higher elongation at break. Dynamical mechanical analysis (DMA showed a decrease of tan⁡δ with frequency for EOC-17 nanocomposites, but decrease is followed by an increase for EOC-45 nanocomposites; DMA showed also increased modulus for all nanocomposites compared to pure copolymers over a wide temperature range. Barrier properties were improved about 100% by addition of organoclay; they were better for EOC-17 nanocomposites due to higher crystallinity. X-ray diffraction (XRD together with transmission electron microscopy (TEM showed some intercalation for EOC-17 but much better dispersion for EOC-45 nanocomposites. Differential scanning calorimetry (DSC showed increased crystallization temperature Tc for EOC-17 nanocomposite (aggregates acted as nucleation agents but decrease Tc for EOC-45 nanocomposite together with greatly influenced melting peak. Accelerated UV aging showed smaller C=O peak for EOC-45 nanocomposites.

  1. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lard diacylglycerols.

    Science.gov (United States)

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Diao, Xinping; Kong, Baohua

    2016-11-01

    The objective of this study was to investigate the physicochemical and structural properties of composite gels prepared with porcine myofibrillar protein (MP) and lard, glycerolized lard (GL) or purified glycerolized lard (PGL). The gels prepared with MP and GL or PGL had significantly higher penetration force and water-holding capacity (WHC) than the gel with lard (Pgel, T21 and T22 of the gels that were prepared with GL or PGL moved in the direction of slower relaxation time, which suggests that the water mobility in the gel system was restricted. The presence of lard, GL and PGL did not affect the participating proteins in composite gels. The presence of GL and PGL altered the secondary and tertiary structures of MP in composite gels, which changed the gel properties. In general, the composite gels that were prepared with MP and GL or PGL showed improved gel quality.

  2. Structure and properties of nanocrystalline rare earth bulks prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    卢年端; 宋晓艳; 刘雪梅; 张久兴

    2009-01-01

    A series of rare earth bulks with the ultrafine nanocrystalline structure were prepared by applying an "oxygen-free" (an environmental oxygen concentration less than 0.5 ppm) in-situ synthesis system, where the inert-gas condensation was combined with the spark plasma sintering technology into an entirely closed system. The thermal and mechanical properties of the prepared ultrafine nanocrystalline bulks were characterized and compared with those of the raw polycrystalline bulks. It was found that the speci...

  3. Studies on the Preparation Properties and Drug Loading of theStarch Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    WangJin; HouXinpu

    2001-01-01

    On the basis of studies of starch microspheres, we carried out the research program of starch nanoparticles(SNP)which included preparation, physical and chemical properties and drug loading. The SNP was prepared using reversedphase-microemulsion polymerization method, with soluble starch as raw material. The particle size, quantity ofphosphorous, degradability, scanning electron microgragh, IR spectra and stability of SNP were investigated. Thepharmacodynamics and concentration-time curve of insulin starch nanoparticles were determined.

  4. Water-in-diesel fuel nanoemulsions: Preparation, stability and physical properties

    Directory of Open Access Journals (Sweden)

    M.R. Noor El-Din

    2013-12-01

    Full Text Available In this work, water-in-diesel fuel nanoemulsions were prepared with mixed nonionic surfactants. Several mixtures of sorbitan monooleate and polyoxyethylene (20 sorbitan monooleate, with different Hydrophilic–Lipophilic Balance (HLB values (9.6, 9.8, 10, 10.2 and 10.4 were prepared to achieve the optimal HLB value. Three mixed surfactant concentrations were prepared at 6%, 8% and 10% to identify the optimum concentration. Five emulsions with different water contents: 5%, 6%, 7%, 8% and 9% (wt./wt. were prepared using high energy method at the optimum conditions (HLB = 10 and mixed surfactant concentration = 10%. The effect of HLB value, mixed surfactant concentration and water content on the droplet size has been studied. The interfacial tension and thermodynamic properties of the individual and the blended emulsifiers were investigated. Droplet size of the prepared nanoemulsions was determined by dynamic light scattering and the nanoemulsion stability was assessed by measuring the variation of the droplet size as a function of time. From the obtained results, it was found that the mean droplet sizes were formed between 49.55 and 104.4 nm depending on HLB value, surfactant concentration and water content of the blended emulsifiers. The physical properties, kinematic viscosity and density, of the prepared nanoemulsions and the effect of different temperatures on these properties were measured.

  5. The preparation, processing and properties of thin and thick films for microelectric applications

    Science.gov (United States)

    Bagley, B. G.; Greene, L. H.; Barboux, P.; Tarascon, J. M.; Venkatesan, T.

    High-Tc thin and thick films of YBa2Cu2O(7-y) and thick films based on the Bi-Sr-Ca-Cu and Tl-Ba-Ca-Cu systems were prepared and their properties investigated. It was found that YB2Cu3O(7-y) thin films prepared at temperatures up to 400 C, have amorphous structures, and those prepared in the 400-650 C region exhibit polyphase microstructure, due to the rapid crystallization kinetics of the competing phases. Methods for bipassing the 'forbidden' temperature region are described. Preparation of YBa2Cu2O(7-y) thick films was achieved via an aqueous sol-gel technique. Bi-Sr-Ca-Cu- and Tl-Ba-Ca-Cu-based thick films were prepared via the decomposition of glycerol-based solutions containing nitrates of the elements.

  6. In vitro and in vivo properties differ among liquid intravenous immunoglobulin preparations

    OpenAIRE

    Dhainaut, F.; Guillaumat, P-O; Dib, H; Perret, G.; Sauger, A; de Coupade, C; Beaudet, M; Elzaabi, M; Mouthon, L

    2013-01-01

    Objective To compare in vitro and in vivo biological and biochemical properties of five liquid intravenous immunoglobulin (IVIg) preparations licensed for therapeutic use in Europe. Methods ClairYg® was compared in a blinded manner to four other liquid IVIg preparations licensed in Europe (Octagam®, Kiovig®, Gamunex®, Privigen®). Three batches of each preparation were tested, except for the IgG repertoires and the animal model. Results Levels of anti-A and anti-B antibodies were lower in Clai...

  7. Preparation and structural properties of thin carbon films by very-high-frequency magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    高明伟; 叶超; 王响英; 何一松; 郭佳敏; 杨培芳

    2016-01-01

    Growth and structural properties of thin a-C films prepared by the 60 MHz very-high-frequency (VHF) magnetron sputtering were investigated. The energy and flux of ions impinging the substrate were also analyzed. It is found that the thin a-C films prepared by the 60 MHz sputtering have a lower growth rate, a smooth surface, and more sp3 contents. These features are related to the higher ion energy and the lower ions flux onto the substrate. Therefore, the 60 MHz VHF sputtering is more suitable for the preparation of thin a-C film with more sp3 contents.

  8. Anti-miroestrol polyclonal antibodies: a comparison of immunogen preparations used to obtain desired antibody properties.

    Science.gov (United States)

    Kitisripanya, Tharita; Jutathis, Kamonthip; Inyai, Chadathorn; Komaikul, Jukrapun; Udomsin, Orapin; Yusakul, Gorawit; Tanaka, Hiroyuki; Putalun, Waraporn

    2016-04-01

    Immunogen quality is one important factor that contributes to desirable antibody characteristics. Highly specific antibodies against miroestrol can be used to develop a quality control immunoassay for Pueraria candollei products. In this study, we investigated how various immunogen preparations affect antibody properties. The results show that immunogen prepared using the Mannich reaction provides antibodies with higher specificity and sensitivity against miroestrol than immunogen prepared with the periodate reaction. The results suggest the Mannich reaction maintains the original structure of miroestrol and generates useful antibodies for developing immunoassays.

  9. Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xin; HOU Zhi-Ling; LI Feng; QI Xin

    2010-01-01

    @@ We prepare NiZnFe2O4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties.In the layered precursor,metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation.After high temperature calcinations,spinel ferrites with uniform structural component and single magnetic domain can be obtained,and the magnetic property is improved greatly.NiZnFe2O4 ferrites prepared have the best specific saturation magnetization of 79.15 emu.g-1,higher than that of 68 emu.g-1 prepared by the chemical co-precipitation method and that of 59 emu.g-1 prepared by the emulsion-gel method.Meanwhile the coercivity of NiZnFe2O4 ferrites prepared by layered precursor method is 14 kA.m-1,lower than that of 50emu.g-1 prepared by the co-precipitation method and that of 59 emu.g-1 prepared by the emulsion-gel method.

  10. Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen.

    Science.gov (United States)

    Ge, Weina; Song, Yun; Zhang, Cuijun; Zhang, Yafang; Burlingame, Alma L; Guo, Yi

    2011-12-01

    Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) saturation labeling techniques. One hundred and three proteins differentially expressed (p value≤0.01) in pollen germinated for 6h compared with un-germination mature pollen, and 98 spots, which represented 71 proteins, were identified by LC-MS/MS. By bioinformatics analysis, 50 proteins were identified as secreted proteins. These proteins were mainly involved in cell wall modification and remodeling, protein metabolism and signal transduction. Three of the differentially expressed proteins were randomly selected to determine their subcellular localizations by transiently expressing YFP fusion proteins. The results of subcellular localization were identical with the bioinformatics prediction. Based on these data, we proposed a model for apoplastic proteins functioning in pollen germination and pollen tube growth. These results will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth.

  11. Preparation and Mechanical Properties of Layered Double Hydrotalcides/ /Polystyrene Nanocomposites Prepared by an in-situ Bubble Stretching Method

    Directory of Open Access Journals (Sweden)

    Xiu-ting ZHENG

    2014-12-01

    Full Text Available Layered double hydrotalcides/polystyrene (LDHs/PS nanocomposites were produced by an in-situ bubble stretching (ISBS method and simple shear method; the effect of LHDs content on the dispersion and the mechanical properties of nanocomposites was studied. The field emission scanning electron microscopy (FE-SEM images indicated that the ISBS method leads to a high degree of dispersion of LDHs nanoparticles in PS matrix. Furthermore, it did not form a significant re-aggregation after defoaming by means of twin-screw extruder. Compared with the simple shear method, the un-notched impact strength and tensile strength of nanocomposites prepared by ISBS method were higher at the same amount of LDHs. The un-notched impact strength of the nanocomposites prepared by ISBS method reached a maximum value at the LDHs mass fraction of 5 % , the strength increased is 57.29 % greater than that of pure PS. The enhanced mechanical properties attributed to the effective dispersion of nanoscale LDHs by ISBS method. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6197

  12. Hydrolysis of cortex peptidoglycan during bacterial spore germination.

    Science.gov (United States)

    Makino, Shio; Moriyama, Ryuichi

    2002-06-01

    Despite the most extreme dormancy and resistance properties among living systems, bacterial endospores retain an alert sensory mechanism to respond to the germinants and initiate germination. Although the molecular mechanism of the germination process is not completely described, current progress in the studies on the enzymes involved in the process gave us a somewhat clearer picture of the process of spore peptidoglycan (cortex) hydrolysis, a major biochemical event in germination. Germination-specific cortex-lytic enzymes require muramic acid d-lactam in their substrates. At least two types of enzymes are involved in the germination process: a spore cortex-lytic enzyme (SCLE) and a cortical fragment-lytic enzyme (CFLE). Except for their peptidoglycan-binding regions, the primary structures of SCLE and CFLE vary according species. Both enzymes differ in their hydrolytic bond-specificities and recognition of the substrates morphology. SCLE appears to initiate germination by uncrosslinking the intract cortex, and the CFLE further degrades the polysaccharide moiety of the SCLE-modified cortex. In vivo CFLE activity is likely regulated by its requirement for partially un-crosslinked cortex, while SCLE requires activation process. Clostridium perfringens SCLE is activated by a germination-specific serine protease during germination, but the activation mechanism of SCLE in Bacillus species is unknown. Cortex-lytic enzymes are expressed at the early stage of sporulation but the compartment of expression depends on proteins. However, all enzymes are located outside the cortex layer in dormant spores, suggesting that the hydrolysis process initiates at the exterior side of the cortex. The assembly of the germination apparatus is also discussed.

  13. 发芽糙米膳食纤维制备及其降血脂活性研究%Study on dietary fiber prepared from germinated brown rice and its activity of anti-hyperlipidemia

    Institute of Scientific and Technical Information of China (English)

    袁列江; 付湘晋; 李忠海; 林亲录

    2016-01-01

    发芽糙米(PGBR)能显著改善高脂血症,其膳食纤维(DF)可能是主要活性成分之一。采用酶法制备了发芽糙米膳食纤维(PGBR–DF),测定了PGBR–DF的组成,并研究了PGBR–DF的功能特性及降血脂活性。PGBR–DF得率为61.5%,可溶性DF含量为26.4%。与米糠DF相比, PGBR–DF持水(5.96 g/g)、持油力(5.47 g/g)更高;吸附胆酸钠能力更强,特别是可溶性PGBR–DF胆汁酸钠吸附量达0.034 g/g,普通米糠DF仅为0.018 g/g。PGBR-DF能显著改善高脂小鼠的胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)指标(ρ<0.05);特别是高剂量(10%)PGBR–DF可使高脂鼠的TC、TG指标恢复正常,与正常对照无显著差异(ρ<0.05)。%Pre–germinated brown rice(PGBR)could significantly improve hyperlipidemia,and the dietary fiber(DF)was suggested as one of the main active ingredients. The dietary fiber of pre–germinated brown rice(PGBR–DF)was prepared by enzymatic method,the composition of PGBR–DF was determined,the functionalities and anti–hypolipidemic activity of PGBR–DF were studied. The yield of PGBR–DF was 61.5%,the content of soluble DF was 26.4%. Compared with the rice DF,water holding(5.96 g/g),and oil holding capacity(5.47 g/g)of PGBR–DF were higher and adsorption of sodium cholate ability was stronger,especially the amount of bile acid sodium adsorbed by soluble PGBR–DF was 0.034 g/g,and that for ordinary rice bran DF was only 0.018g/g. PGBR–DF could improve TC,TG,HDL–C and LDL–C indicators of high fat rats significantly(ρ<0.05). There was no significant difference(ρ<0.05)between the H group(10%)and normal control for TC and TG.

  14. Mechanical Property of Low Chromium Semi-Steel Grinding Ball Prepared by Cross Rolling

    Institute of Scientific and Technical Information of China (English)

    CHANG Li-min; MENG De-liang; NIE Pu-lin; LIU Jian-hua

    2004-01-01

    The preparing method, rolling technology and mechanical properties of low chromium semi-steel grinding ball by cross rolling were studied. The results show that when the low chromium semi-steel bar is forged from 55 mm to 50 mm, cross-rolled into grinding ball at 1 000-1 050 ℃, air cooled and tempered at 550 ℃ for 2 h, the best mechanical properties, especially the abrasive resistance under the action of hard abrasive, can be obtained.

  15. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    OpenAIRE

    Zhijian Tan; Yongjian Yi; Hongying Wang; Wanlai Zhou; Yuanru Yang; Chaoyun Wang

    2016-01-01

    The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability) and degradation characteristics (evaluated by micro-organic cultur...

  16. Preparation of BSAS Powders and Its Effect on Properties of Coatings

    Directory of Open Access Journals (Sweden)

    JIAO Chun-rong

    2016-08-01

    Full Text Available BSAS (BaO-SrO-Al2O3-SiO2 powders were prepared by different methods. The characteristics of the powders, their effect on the structures and properties of the plasma-sprayed environmental barrier coatings (EBC were analyzed. The results show that BSAS powders prepared by powder granulation process have uneven particles and poor fluidity, and the coatings prepared by this method have rough surface and high porosity structure with bonding strength of 24.1MPa. BSAS powders prepared by agglomerate sintered method have smooth surface, good fluidity and high deposition efficiency, while the coating prepared has an uniform structure with few pores and no cracks with the bonding strength up to 29.8MPa and BSAS phase retention rate is 53.2% after spraying,which is the highest among the three kinds of powders. BSAS particles prepared by fused crushed method are dense and irregular, good liquidity and high deposition efficiency, and the coatings prepared by this powders are smooth with very few pores, but there are lots of micro-cracks, and the bonding strength is only 14.2MPa. The coating phase is restructured after spraying, and the BSAS phase retention rate is 20.5%, which can decrease the properties of the coatings at high temperatures. Results show that the agglomerate sintered method simplifies the preparing process of the spraying powders, and by this method, BSAS powders of excellent quality and high phase stability can be produced. Compared with other methods, BSAS powders prepared by agglomerate sintered method is more suitable for plasma spraying.

  17. The plasma membrane proteome of germinating barley embryos

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Jensen, O.N.

    2009-01-01

    was used to reduce soluble protein contamination and enrich for hydrophobic proteins. Sixty-one proteins in 14 SDS-PAGE bands were identified by LC-MS/MS and database searches. The identifications provide new insight into the plasma membrane functions in seed germination.......Cereal seed germination involves a complex coordination between different seed tissues. Plasma membranes must play crucial roles in coordination and execution of germination; however, very little is known about seed plasma membrane proteomes due to limited tissue amounts combined...... with amphiphilicity and low abundance of membrane proteins. A fraction enriched in plasma membranes was prepared from embryos dissected from 18 h germinated barley seeds using aqueous two-phase partitioning. Reversed-phase chromatography on C-4 resin performed in micro-spin columns with stepwise elution by 2-propanol...

  18. Cortex Peptidoglycan Lytic Activity in Germinating Bacillus anthracis Spores▿

    OpenAIRE

    2008-01-01

    Bacterial endospore dormancy and resistance properties depend on the relative dehydration of the spore core, which is maintained by the spore membrane and its surrounding cortex peptidoglycan wall. During spore germination, the cortex peptidoglycan is rapidly hydrolyzed by lytic enzymes packaged into the dormant spore. The peptidoglycan structures in both dormant and germinating Bacillus anthracis Sterne spores were analyzed. The B. anthracis dormant spore peptidoglycan was similar to that fo...

  19. Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina

    2014-01-01

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination...... (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p ... abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins...

  20. Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance.

    Science.gov (United States)

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna I; Jensen, Ole Nørregaard; Møller, Ian Max; Song, Song-Quan

    2014-02-07

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively.

  1. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Science.gov (United States)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  2. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    Energy Technology Data Exchange (ETDEWEB)

    Muttalib, Siti Nadzirah Abdul, E-mail: sitinadzirah.amn@gmail.com; Othman, Nadras, E-mail: srnadras@usm.my; Ismail, Hanafi, E-mail: ihanafi@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-07-22

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  3. Preparation and magnetic properties of Fe2O3 microtubules prepared by sol-gel template method

    Institute of Scientific and Technical Information of China (English)

    CHANG Chuanbo; ZHANG Cunrui; WANG Wenyan; LI Qiaoling

    2010-01-01

    Fe(OH)3 precursor sol was prepared by a sol-gel method.The precursor sol was dipped onto the absorbent cotton,and gel was formed on the absorbent cotton template after the volatilization of moisture.Fe2O3 microtubules were synthesized after the process of self-propagation or calcination.The phase,morphology,and particle diameter of the samples were examined by X-ray diffraction(XRD)and scanning electron microscopy(SEM),and the magnetic properties of the samples were measured using a vibrating sample magnetometer(VSM).The external diameters of Fe2O3 microtubules ranged between 8 and 13 μm,and the wall thicknesses ranged between 0.5 and 2 μm The type of the calcination method plays a significant role in developing the Fe2O3 phase and the variation in the magnetic properties in the sol-gel template complexing method.γ-Fe2O3 was synthesized by a self-propagation method.However,α-Fe2O3 was synthesized after calcination at 400℃ for 2 h.The coercivity of the samples synthesized by calcination at 400℃ for 2 h after self-propagation was found to increase significantly,thereby presenting hard magnetic properties.

  4. Effect of Estrogen and Progeterone on seed germination

    Directory of Open Access Journals (Sweden)

    Nirmala

    Full Text Available Early pregnancy detection in dairy cattle is an integral part of a successful animal husbandry practice. A simple seed germination technique (Punyakoti test comprises observation of differential seed germination response of wheat seeds to diluted fresh urine samples as reflected by significant inhibition of germination percentage in pregnant cow urine when compared to non pregnant cow urine. Hormone metabolites excreted through urine might affect the seed germination in pregnant cow urine. In the present study an attempt was made to test the effect of hormones (in their natural forms at different concentrations of estrogen (17-ß estradiol and progesterone on wheat and green gram germination. Stock solutions of estrogen and progesterone were prepared in alcohol (1mg/ml and serial dilutions made using distilled water to get the concentrations of T1=10, T2=1, T3=0.1 and T4=0.01 μg/ml respectively in treatment groups. About 15 seeds each of wheat and green gram were taken in sterile Petri dishes into which 15ml of each test preparation was poured. The treatments were compared with distilled water and alcohol controls. The study was conducted for a period of five days during which seed germination was observed after 48 hrs and shoot lengths were also measured by the end of study. The average seed germination and shoot length in treatment groups did not vary significantly (P>0.05 when compared with that of control groups. Thus from the present study, it can be concluded that estrogen and progesterone in their natural form will not affect seed germination and shoot length. [Veterinary World 2008; 1(8.000: 241-242

  5. Preparation, Characterization and Optical Properties of Host-guest Nanocomposite Material Mordenite-silver Iodide

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Silver iodide nanoclusters were successfully prepared in the channels of mordenite by a heat diffusion method. Powder X-ray diffraction, adsorption technique and infrared spectroscopy were used to characterize the prepared materials, which showed that the guest silver iodide had been encapsulated in the channels of mordenite. The optical properties of the solid phase diffuse reflectance absorption of nanocomposite material NaM-AgI were studied, showing that the absorption bands of the diffuse reflectance absorption of the prepared material moved to the region of high energy. The absorption peak of the material prepared shifted to the region of high energy. Namely, blue shift was caused. This has demonstrated the incorporation of silver iodide into the channels of the zeolite. We observed the luminescence and surface photovoltage spectra of NaM-AgI sample, proposing the mechanisms of the photoluminescence and photovoltaic responses.

  6. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...... increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp3carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics...... with a conductivity of 267.2-537.5S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp2networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective...

  7. Preparation,Characterization and Optical Properties of Hostguest Nanocomposite Material Mordenite—silver Iodide

    Institute of Scientific and Technical Information of China (English)

    ZHAIQing-zhou; QIUShi-lun

    2003-01-01

    Silver iodide nanoclusters were successfully prepared in the channels of mordenite by a heat diffusion method.Powder X-ray diffraction.adsorption technique and infrared spectroscopy were used to characterize the prepared materials,which showed that the guest silver iodied had been encapsulated in the channels of mordenite.The optical properties of the solid phase diffuse reflectance absorption of nanocomposite material NaM-AgI were studied,showing that the absorption bands of the diffuse reflectance absorption of the prepared material moved to the region of high energy.The absorption peak of the material prepared shifted to the region of high energy.Namely,blue shift was caused.This has demonstrated the incorporation of silver iodide into the channels of the zeolite.We observed the luminescence and surface photovoltage spectra of NaM-AgI sample,proposing the mechanisms of the photoluminescence and photovoltaic responses.

  8. Thermoplastic Starch Prepared with Different Plasticizers:Relation between Degree of Plasticization and Properties

    Institute of Scientific and Technical Information of China (English)

    ZUO Yingfeng; GU Jiyou; TAN Haiyan; ZHANG Yanhua

    2015-01-01

    Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch (TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.

  9. Preparation and properties evaluation of biolubricants derived from canola oil and canola biodiesel.

    Science.gov (United States)

    Sharma, Rajesh V; Somidi, Asish K R; Dalai, Ajay K

    2015-04-01

    This study demonstrates the evaluation and comparison of the lubricity properties of the biolubricants prepared from the feed stocks such as canola oil and canola biodiesel. Biolubricant from canola biodiesel has a low cloud and pour point properties, better friction and antiwear properties, low phase transition temperature, is less viscous, and has the potential to substitute petroleum-based automotive lubricants. Biolubricant from canola oil has high thermal stability and is more viscous and more effective at higher temperature conditions. This study elucidates that both the biolubricants are attractive, renewable, and ecofriendly substitutes for the petroleum-based lubricants.

  10. The dormant property of hypericum perforatum seed and effect of light on germination%贯叶连翘种子休眠特性及光对种子萌发的影响

    Institute of Scientific and Technical Information of China (English)

    李惠民

    2012-01-01

    Taking the hypericum perforatum seeds as material,using relieving dormancy method,the dormaney property of bypericum perforatum seed and the effect of different light condition on the seed germination were studied. It is found that the seed germination has light-degendence after the dormaney relieved,the impact is produced at the existed factors;continual illumination in and dark interruption in different luminous intensity,illumination and light nature in different absorption time. It is also showed that hypericum perforatum seed has dormant property and light-dependence. The light has restraining effect when light quantity is over 14.904mol · m-2. The light acceptor of seed is the photo sensitive pigment and the seeds light sensitive period is in 12h.%以贯叶连翘种子为材料,探讨贯叶连翘种子的休眠特性及不同光照条件对其种子萌发的影响.采取体眠解除及不同光照条件的种子萌发实验,结果发现,当休眠解除后该种子萌发仍需要光,不同光强下连续光照/光暗间断、光量,不同吸涨时间下光照、光质均能对该种子的萌发产生影响.表明贯叶连翘种子具有休眠特性和需光性,光量超过14.904rmol·m-2后,光照具有抑制效应.该种子的光敏感期在12h以内.其光受体为光敏色素.

  11. NATO Advanced Study Institute on Preparation and Properties of Stereoregular Polymers

    CERN Document Server

    Ciardelli, Francesco

    1980-01-01

    This book contains the texts of the main lectures presented at the NATO Advanced Studies Institute on "Advances in Preparation and Properties of Stereoregular Polymers" held at Tirrenia near Pisa, Italy, from October 3 to 14, 1978. A few contributed papers have also been included because they were concerned with topics not included in the main lectures. The primary objective of the Institute was to assist in the further development of stereoregular polymers because of the ever-increasing demand for new products with exceptional chemical and physical properties. This need has reawakened interest in the field. Indeed there is now a rapidly increasing activity in the study of stereoregular polymerization and the preparation of structurally-ordered polymers with the aim of achieving apprecia­ ble improvements in existing polymeric materials through new developments in synthesis and properties as well as in discovering new polymeric structures. In order to achieve these objectives, a broad interdiscipli­ nary co...

  12. Eco-materials Research — Study on Preparation and Properties of Woodceramics

    Institute of Scientific and Technical Information of China (English)

    WuWentao

    2005-01-01

    A new technique has been developed to prepare woodceramics with the raw material of wheat straws.The partial properties of woodceramics such as the remains of carbon, the density, the porosity, the bending strength, and resistivity are tested at the same time. Systematic analyses of the material properties, the forming mechanism, and the regularity of woodceramics are made. The effects of the formula of raw materials, the consistencies of phenol resin, and the temperature, on the technique and the properties of woodceramics are displayed. It is shown that wheat straws can be used to produce woodceramics with this technique. The presented work provides useful ideas for the study of the preparation of woodceramics.

  13. Comparison of physicomechanical properties of films prepared from organic solutions and aqueous dispersion of Eudragit RL

    Directory of Open Access Journals (Sweden)

    H Afrasiabi Garekani

    2011-05-01

    Full Text Available Background and the purpose of the study: Mechanical properties of films prepared from aqueous dispersion and organic solutions of Eudragit RL were assessed and the effects of plasticizer type, concentration and curing were examined. Methods: Films were prepared from aqueous dispersion and solutions of Eudragit RL (isopropyl alcohol-water 9:1 containing 0, 10 or 20% (based on polymer weight of PEG 400 or Triethyl Citrate (TEC as plasticizer using casting method. Samples of films were stored in oven at 60ºC for 24 hrs (Cured. The stress-strain curve was obtained for each film using material testing machine and tensile strength, elastic modulus, %elongation and work of failure were calculated. Results and major conclusion: The films with no plasticizer showed different mechanical properties depending on the vehicle used. Addition of 10% or 20% of plasticizer decreased the tensile strength and elastic modulus and increased %elongation and work of failure for all films. The effect of PEG400 on mechanical properties of Eudragit RL films was more pronounced. The differences in mechanical properties of the films due to vehicle decreased by addition of plasticizer and increase in its concentration. Curing process weakened the mechanical properties of the films with no plasticizer and for films with 10% plasticizer no considerable difference in mechanical properties was observed before and after curing. For those with 20% plasticizer only films prepared from aqueous dispersion showed remarkable difference in mechanical properties before and after curing. Results of this study suggest that the mechanical properties of the Eudragit RL films were affected by the vehicle, type of plasticizer and its concentration in the coating liquid.

  14. Precocious germination and its regulation in embryos of triticale caryopses

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2014-01-01

    Full Text Available Triticale var. Lasko embryos, isolated from grain gathered at milk ripeness, the beginning of wax ripeness and at full ripeness, were allowed to germinate for 48 h on agar with glucose. The highest incorporation of tritiated adenosine into polyribosomal RNA during germination was found in the ribosome fractions from embryos of grain gathered at full ripeness, lower incorporation was in preparations from embryos of milk ripe grain and the lowest in preparations from embryos of wax ripe grain. Different tendencies were observed in respect to the synthesis of ribosomal proteins. The highest incorporation of 14C-amino acids into ribosomal proteins was found in preparations of ribosome fractions from embryos of milk ripe grain, lower in preparations of embryos from fully ripe grain, the lowest in preparations of embryos from wax ripe grain. ABA (10-4 M completely inhibited the external symptoms of germination of immature embryos, while its inhibition of the synthesis of polyribosomal RNA and ribosomal proteins was greater the more mature the embryos that were germinated. The greatest stimulation of precocious germination by exogenous BA and GA3 was demonstrated in the least mature embryos isolated from milk ripe grain. Under the influence of both stimulators, an increase of the proportion of polyribosomes in the total ribosome fraction occurred in this sample, as did a rise in the intensity of ribosomal protein synthesis. The incorporation of 3H-adenosine into polyribosomal RNA, however, was lower than in the control sample. The results obtained suggest that the regulation of precocious germination of triticale embryos by phyto-hormones is not directly related to transcription.

  15. Structural and optical properties of silicon nanoparticles prepared by pulsed laser ablation in hydrogen background gas

    Science.gov (United States)

    Makino, T.; Inada, M.; Yoshida, K.; Umezu, I.; Sugimura, A.

    We studied the structural and optical properties of silicon (Si) nanoparticles (np-Si) prepared by pulsed laser ablation (PLA) in hydrogen (H2) background gas. The mean diameter of the np-Si was estimated to be approximately 5 nm. The infrared absorption corresponding to Si-Hn (n=1,2,3) bonds was observed at around 2100 cm-1, and a Raman scattering peak corresponding to crystalline Si was observed at around 520 cm-1. These results indicate that nanoparticles are not an alloy of Si and hydrogen but Si nanocrystal covered by hydrogen or hydrogenated silicon. This means that surface passivated Si nanoparticles can be prepared by PLA in H2 gas. The band-gap energy of np-Si prepared in H2 gas (1.9 eV) was larger than that of np-Si prepared in He gas (1.6 eV) even though they are almost the same diameter. After decreasing the hydrogen content in np-Si by thermal annealing, the band-gap energy decreased, and reached the same energy level as np-Si prepared in He gas. Thus, the optical properties of np-Si were affected by the hydrogenation of the surface of np-Si.

  16. Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina

    2014-01-01

    abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins...... in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively....

  17. Preparation and Optical Properties of SnO2/SiO2 Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    FENG Yi-Si; YAO Ri-Sheng; ZHANG Li-De

    2004-01-01

    SnO2/SiO2 nanocomposites have been prepared by the soaking-thermal-decomposing method, tin oxide nanoparticles are uniformly dispersed in the mesopores of silica. The optical absorption edge of the obtained nanocomposite presents a redshift compared with bulk tin oxide. With the increasing annealing temperature during the procedure of the sample preparation, the optical absorption edge of the sample moves to shorter wavelength (blueshift). These optical properties can be ascribed to the amorphous structure and band defects of surface lavers of the tin oxide nanoparticles.

  18. Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property.

    Science.gov (United States)

    Li, Zhiwei; Tao, Xiaojun; Wu, Zhishen; Zhang, Pingyu; Zhang, Zhijun

    2009-02-01

    In this paper, we describe a facile and rapid method for preparing In2S3 nanoparticles via ultrasound dispersion. This method allows us to prepare In2S3 nanoparticles from bulk indium and sulfur with ease and without using expensive agents and in a short time. The possible growing mechanism of the In2S3 nanoparticles was presented. In addition, we provide detailed characterizations including TEM, XRD, TG-DTA, and XPS to study the shape, composition and structure of In2S3 nanoparticles. We also studied the tribology property of In2S3 nanoparticles made using this novel recipe.

  19. Study on Preparation and Properties of Grease Based on Ultraifne Bentonite Powder

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Guo Xiaochuan; Jiang Mingjun; He Yan

    2016-01-01

    The feasibility for preparation of ultraifne bentonite powder by different milling methods was studied. And the comparison of comprehensive performance between ultraifne bentonite grease and traditional bentonite grease was also investigated. The results indicated that the statistic Z-average size of ultraifne bentonite prepared by sand milling was 250 nm with a narrow size distribution and the lattice structure of ultraifne bentonite maintained good character despite a slight distortion occasioned. The mechanical stability, colloid stability, antiwear ability and friction-reducing property of ultraifne bentonite grease were superior to the traditional one.

  20. Electrical properties of silver selenide thin films prepared by reactive evaporation

    Indian Academy of Sciences (India)

    M C Santhosh Kumar; B Pradeep

    2002-10-01

    The electrical properties of silver selenide thin films prepared by reactive evaporation have been studied. Samples show a polymorphic phase transition at a temperature of 403 ± 2 K. Hall effect study shows that it has a mobility of 2000 cm2V–1s–1 and carrier concentration of 1018 cm–3 at room temperature. The carriers are of -type. X-ray diffraction study indicates that the as-prepared films are polycrystalline in nature. The lattice parameters were found to be = 4.353 Å, = 6.929 Å and = 7.805 Å.

  1. Magnetic properties of nanocrystalline pyrrhotite prepared by high-energy milling

    DEFF Research Database (Denmark)

    Balaz, P.; Godocikova, E.; Alacova, A.;

    2004-01-01

    The nanocrystalline pyrrhotite was prepared by high-energy milling of lead sulphide with elemental Fe acting as reducing element. X-ray diffractometry, Mossbauer spectroscopy and VSM magnetometry were used to determine the properties of nanocrystalline iron sulphide prepared by the corresponding...... mechanochemical reaction. Pyrrhotite Fe1-xS together with the residual Fe metal were identified by the X-ray diffractometry. The kinetic studies performed by Mossbauer spectroscopy and VSM magnetometry allowed us to follow in more details the progress of the nanocrystalline magnetic phase formation during...... the milling....

  2. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds.

    Science.gov (United States)

    Nomura, Saki; Nakashima, Hitomi; Mizutani, Masaharu; Takikawa, Hirosato; Sugimoto, Yukihiro

    2013-06-01

    Structure-activity relationship studies of strigolactones and Striga gesnerioides seed germination revealed strict structural requirements for germination induction and a new function of the plant hormones as germination inhibitors. Stereoisomers of the naturally occurring strigolactones, strigol, sorgolactone, orobanchol, sorgomol and 5-deoxystrigol, 36 in total, were prepared and screened for the ability to induce and/or inhibit the germination of Striga hermonthica and Striga gesnerioides seeds collected from mature plants that parasitized on sorghum and cowpea, respectively. All of the compounds induced S. hermonthica seed germination, albeit displayed differential activities. On the other hand, only a limited number of the compounds induced significant germination in S. gesnerioides, thus indicating strict structural requirements. Strigolactones inducing high germination in S. gesnerioides induced low germination in S. hermonthica. Strigolactones with the same configuration at C3a, C8b and C2' as that in 5-deoxystrigol (9a) induced high germination of S. hermonthica seeds, but most of them inhibited the germination of S. gesnerioides. The differential response of S. gesnerioides to strigolactones may play an important role in the survival of the species. However, the compounds could be used as means of control if mixed cropping of cowpea and sorghum is adopted.

  3. [Properties of O-antigens of enterobacteria and construction of preparations for serological diagnosis of enteric infections by passive hemagglutination].

    Science.gov (United States)

    Karal'nik, B V; Melikhova, R B; Doroshkevich, L Ts

    1976-07-01

    Quantitative assessment of the main properties of the O-antigens of enterobacteria of significance in the reactions based on passive hemagglutination revealed the character of inter-relations between the antibody-binding, hemosensitive and specific agglutinating activity in various O-antigen preparations, and to lay foundation under the most effective method for obtaining the preparations with set properties for various preparations and reactions.

  4. Effect of surfactants on the properties of hydrotalcites prepared by the reverse micelle method

    Energy Technology Data Exchange (ETDEWEB)

    Holgado, Patricia H., E-mail: h.holgado@usal.es; Holgado, María J., E-mail: holgado@usal.es; San Román, María S., E-mail: sanroman@usal.es; Rives, Vicente, E-mail: vrives@usal.es

    2015-02-01

    Layered double hydroxides with the hydrotalcite-type structure have been prepared by the reverse micelles method. The layer cations were Ni{sup 2+} and Fe{sup 3+} in all cases and the interlayer anion was carbonate. We have studied the effect of the surfactant used (with linear chains of different lengths, or cyclic) and the effect of the pH on the properties of the solids formed. These have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric analysis, temperature-programmed reduction, FT-IR and Vis–UV spectroscopies and scanning electron microscopy. It has been found that the samples prepared at pH 9 are more crystalline than those prepared at pH 11 and their crystallite sizes are always larger than for samples prepared by the conventional precipitation method. Surfactants with cyclic organic chains lead to a larger crystallite size, probably because the water pool vesicle where the crystallite grows is larger due to sterical hindrance of the organic chains. - Graphical abstract: Layered double hydroxides with the hydrotalcite-type structure with Ni{sup 2+} and Fe{sup 3+} cations in the layers have been prepared by the reverse micelles method. Different surfactants were used at different pH synthesis. Samples prepared at pH 9 are higher crystalline than those prepared at pH 11. Surfactants with cyclic organic chains lead to a larger crystallite size. - Highlights: • Hydrotalcites were prepared by the micelles reverse method. • Straight alkyl or cyclic chain surfactants were used. • All hydrotalcites are well crystallized at pH = 9 and 11. • The crystallite size depends on the linear/cyclic nature of the surfactant chain.

  5. Germination and storage of pollen

    NARCIS (Netherlands)

    Visser, T.

    1955-01-01

    Germination of pear pollen markedly improved when boric acid was added to the medium. The pollen was more sensitive to boron in water than in 10 % sugar solution. Supplying weak solutions of boron to pear branches before flowering resulted in a good germination of the pollen in sugar solution withou

  6. The generation of germinal centers

    NARCIS (Netherlands)

    Kroese, Fransciscus Gerardus Maria

    1987-01-01

    Germinal centers are clusters of B lymphoblastoid cells that develop after antigenic stimulation in follicles of peripheral lymphoid organs. These structures are thought to play a major role in the generation of B memory cells. This thesis is dealing with several aspects of these germinal centers. I

  7. Preparation and photoluminescence properties of Sm3+-doped ZrO2 nanotube arrays

    Science.gov (United States)

    Fu, Ning; Wang, Xixin; Ma, Yuanhui; Wang, Mingli; Li, Jiaxin; Zhao, Jianling

    2016-04-01

    Zr-Sm (3 at.% Sm) alloy was prepared through a powder metallurgical method. Sm3+-doped ZrO2 nanotube arrays have been achieved directly by anodizing the Zr-Sm alloy. The effects of electrolyte and annealing temperature on the morphologies and structures of the nanotube arrays were studied. The photoluminescence properties of Sm3+-doped ZrO2 nanotube arrays prepared in aqueous solution and formamide  +  glycerol solution were studied in detail as well. Results show that tetragonal ZrO2 promoted the photoluminescence efficiency of this system. Under excitation at 407 nm, the sample prepared in aqueous solution annealed at 600 °C displayed the strongest emission peak at 571 nm, corresponding to the 4G5/2  →  6H5/2 samarium transition.

  8. Preparation of Mg2FeH6 Nanoparticles for Hydrogen Storage Properties

    Directory of Open Access Journals (Sweden)

    N. A. Niaz

    2013-01-01

    Full Text Available Magnesium (Mg and iron (Fe nanoparticles are prepared by thermal decomposition of bipyridyl complexes of metals. These prepared Mg-Fe (2 : 1 nanoparticles are hydrogenated under 4 MPa hydrogen pressure and 673 K for 48 hours to achieve Mg2FeH6. Their structural analysis was assessed by applying manifold techniques. The hydrogen storage properties of prepared compound were measured by Sieverts type apparatus. The desorption kinetics were measured by high pressure thermal desorption spectrometer (HP-TDS. More than 5 wt% hydrogen released was obtained by the Mg2FeH6 within 5 min, and during rehydrogenation very effective hydrogen absorption rate was observed by the compound.

  9. Emission properties of Ce3+ centers in barium borate glasses prepared from different precursor materials

    Science.gov (United States)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki; Ohkubo, Takahiro

    2017-10-01

    The photoluminescence (PL) and X-ray induced luminescence properties of Ce-doped barium borate glasses prepared from different precursor materials have been investigated. Oxidation of Ce3+ takes place during the melting process performed using a pre-vitrified non-doped glass. Residual groups originated from the precursor materials, such as fluorine atoms and OH groups, are found to affect the optical and emission properties of the glasses. Moreover, both the PL and the X-ray induced luminescence properties of the glasses depend on the precursor materials used for their synthesis. Based on a thorough analysis of the emission properties, we conclude that the best synthesis conditions involve melting a batch containing Ce(CH3COO)3·H2O, BaCO3, and B2O3 in Ar atmosphere.

  10. Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand

    Institute of Scientific and Technical Information of China (English)

    WANG Qiankun; LI Peng; TIAN Yapo; CHEN Wei; SU Chunyi

    2016-01-01

    The feasibility of using coral reef sand (CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densiifed compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of ifne pores in the range of 100 nm.

  11. Preparation of Ag/TiO2/ITO UV Detector and Its Photoelectronic Properties

    Directory of Open Access Journals (Sweden)

    DAI Songyan

    2016-12-01

    Full Text Available TiO2-based UV detectors with Ag antidot/TiO2/ITO sandwich structure were prepared by RF magnetron sputtering and colloidal crystal template technology. The microstructure and photoelectronic properties of the UV detectors were investigated by SEM, XRD, four point probe and semiconductor parameter instrument. The experimental results show that pore size of Ag antidot has an obvious effect on the photoelectronic properties of the detectors. With the increase of pore size, the dark current increases and the response time is prolonged, while the photocurrent is increased at first, then is decreased. Meanwhile, it is found that photoelectronic properties are optimum when the pore size is 4.2 μm. Antidot array electrodes with large pore size possess higher electrical conductivity, lower ultraviolet transmittance and higher recombination probability of electron-hole pair. Therefore, the pore size variation exhibits significant effluence on the photoelectronic properties of the UV detector.

  12. Preparation and properties of Cu matrix composite reinforced by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-hua; LI Wen-hua; CHEN Chuan-sheng; XU Long-shan; YANG Zhi; HU Jing

    2005-01-01

    Cu matrix composites reinforced by carbon nanotubes(CNTs) were prepared. The effect of carbon nanotubes on mechanical and tribological properties of the Cu matrix composites were investigated. The chemical method for coating CNTs was reported. The morphology of the fracture surfaces and worn surface were examined by SEM.The results show that Cu/coated-CNTs composites have higher hardness, much better wear resistance and antifriction properties than those of the reference Cu alloy (Cu-10Sn) and Cu/uncoated-CNTs composite sintered under the same conditions. The optimal mechanical properties of the composites occurred at 2. 25% (mass fraction) of CNTs. The excellent wear resistance and anti-friction properties are attributed to the fiber strengthening effect of CNTs and the effect of the spherical wear debris containing carbon nanotubes on the tribo-surface.

  13. EFFECTS OF THE PULP PREPARATION AND PAPERMAKING PROCESSES ON THE PROPERTIES of OCC FIBERS

    Directory of Open Access Journals (Sweden)

    Jinquan Wan

    2011-03-01

    Full Text Available Changes of the pore structure of recycled fibers and the strength properties of papers produced by old corrugated container (OCC recycled fibers were studied, after they were subjected to different stock preparation and papermaking processes. In this paper, the effects of beating, sizing, pressing, and drying on fiber properties were investigated, and the porous structure of fibers was analyzed by nitrogen adsorption technique. The results showed that beating, pressing, and other physical processes significantly influenced the fiber properties, whereas the effects of sizing were minor. Significant changes of water retention value (WRV, crystallinity index, and paper strength were observed after those processes. Further, an effort has been made to show relationships between pore structure and macroscopic properties (WRV, crystallinity index of recycled fibers.

  14. Physical properties and bioactive constituents of powdered mixtures and drinks prepared with cocoa and various sweeteners.

    Science.gov (United States)

    Belscak-Cvitanović, Ana; Benković, Maja; Komes, Drazenka; Bauman, Ingrid; Horzić, Dunja; Dujmić, Filip; Matijasec, Matea

    2010-06-23

    In the present study the physical properties of powdered cocoa drink mixtures prepared from two cocoa powders with various fat contents and different sweeteners, as well as the bioactive content and sensory properties of cocoa drinks prepared from them, were investigated. Particle size and bulk density of the used sugars and sweeteners, as well as the formulated mixtures, were determined and their influence on cohesion index was evaluated. To compare the content of polyphenols in the formulated cocoa drink mixtures, UV-vis spectrophotometric methods were applied. Antioxidant capacity of cocoa drinks was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and ferric reducing/antioxidant power (FRAP) assays. The analyzed cocoa drinks prepared from cocoa powder and different sugars or sweeteners delivered a substantial content of cocoa antioxidants, whereas the content and the type of sugar or sweetener did not affect the polyphenolic constituents of the prepared cocoa mixtures. Cocoa powder mixtures prepared with the cocoa powder containing higher fat content (16-18%) generally provided lower total polyphenol, total flavonoid, flavan-3-ol, and proanthocyanidin contents, compared to the mixtures prepared with cocoa containing lower fat content (10-12%). Total phenol content of cocoa drinks prepared from experimental mixtures ranged from 320.45 to 480.45 mg of GAE/L, whereas the ranking of the antioxidant capacities varied depending on the used assay, and the fat content of cocoa powder did not affect the antioxidant capacity of cocoa mixtures. As determined, the addition of sugar to cocoa powder increases the solubility and dispersibility of the mixtures; on the basis of their cohesion index all mixtures can be classified as very cohesive or hardened/extremely cohesive. Results of the sensory evaluation, using the 9-point hedonic scale, showed that there was a preference for the cocoa drinks made

  15. Catalytic properties of Cu/Co/Zn/Zr oxides prepared by various methods

    Institute of Scientific and Technical Information of China (English)

    Limin Shi; Wei Chu; Siyu Deng; Huiyuan Xu

    2008-01-01

    The new Cu-Co based (Cu/Co/Zn/Zr) catalysts for higher-alcohol synthesis were prepared using coprecipitation method, plasma enhanced method and reverse coprecipitation method under ultrasound irradiation. The catalysts were investi-gated by the means of BET, SEM, XRD, H2-TPR and XPS. Catalytic properties of the catalysts prepared by various methods were examined using CO hydrogenation reaction. It was found that plasma enhanced method and reverse coprecipitation method under ultrasound irradiation were both effective in enhancing the catalytic properties of Cu/Co/Zn/Zr mixed oxides. The small particle size, high dispersion of active components, the improvement of specific surface area and surface contents of active phases could account for the excellent performance of the experimental Cu/Co/Zn/Zr catalysts.

  16. Preparation of YSZ solid electrolyte by slip casting and its properties

    Institute of Scientific and Technical Information of China (English)

    DOU Jing; LI Heping; XU Liping; ZHANG Lei; WANG Guangwei

    2009-01-01

    Fully stabilized YSZ solid electrolyte was prepared by slip casting. The density was measured according to the Archimedes principle and the linear shrinkage was calculated from measuring the sizes of samples before and after sintering. XRD analysis was conducted to verify the phase structure of both the starting YSZ powder and the prepared YSZ electrolyte. The microstructure of fracture surface and the electrical properties of the samples sintered at different temperatures were investigated via SEM and a complex impedance method, respectively. By comparison of the properties and features among the samples, a slip casting method was established to be a simple way to manufacture high-quality YSZ electrolyte at the sintering temperature of 1550℃ for 3 h, which provides a new approach for YSZ electrolyte with com-plex shapes and mass production.

  17. Study of microstructure and electrical properties of bulk YBCO prepared by melt textured growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Gonal, M. R.; Krishnan, Madangopal [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, INDIA 400 085 (India); Tewari, R. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai, INDIA 400 085 (India); Tyagi, A. K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, INDIA 400 085 (India); Gyore, A.; Vajda, I. [Department of Electric Power Engineering, Budapest Univ. of Technology & Economics, Budapest (Hungary)

    2015-06-24

    Bulk YBCO components were prepared using Melt Texture Growth (MTG) technique. Components were fabricated using MTG by addition of Y{sub 2}BaCuO{sub 5} (Y211) and Ag to YBCO, which leads to improved grain size without affecting superconducting properties. Green compacts prepared by cold isostatic pressing were pre-sintered at 930°C before subjecting melt texturing. Cooling rates lower than 1 °C.h{sup −1} was used, in between (peritectic) temperature of about 995 and 1025°C, to obtain large grained components. Microstructure studies in details were carried out by Scanning Electron Microscope (SEM), Electron Probe Micro Analysis (EPMA), Orientation Imaging Microscope (OIM) and TEM correlated with electrical properties like Critical current density (J{sub c})

  18. Preparation, thermal property and morphology analysis of waterborne polyurethane-acrylate

    Science.gov (United States)

    Zhao, Zhenyu; Jing, Zefeng; Qiu, Fengxian; Dai, Yuting; Xu, Jicheng; Yu, Zongping; Yang, Pengfei

    2017-01-01

    A series of waterborne polyurethane-acrylate (WPUA) dispersions were prepared with isophorone diisocyanate (IPDI), polyether polyol (NJ-210), dimethylol propionic acid (DMPA), hydroxyethyl methyl acrylate (HEMA), different proportions of methyl methacrylate (MMA) and ethyl acrylate (MMA and EA) and initiating agent by the emulsion co-polymerization. The structures, thermal properties and morphology of WPUA films were characterized with FT-IR, DSC, SEM and AFM. Performances of the dispersions and films were studied by means of apparent viscidity, particle size and polydispersity, surface tension and mechanical properties. The obtained WPUA have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.

  19. Microstructure and Properties of W-Cu Alloys Prepared with Mechanically Activated Powder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    W-15% Cu (mass fraction) alloys were sintered with mechanically activated powder in order to develop new preparing processes and improve properties of alloys. The microstructures of the activated powder and the sintered alloy were observed. Properties such as density were measured. The results show that through mechanical activation, the particle size of the powder becomes finer to sub-micron or nanometer level, some copper was soluble in tungsten, and high density W-Cu alloys can be obtained by mechanically activated powder for its action to the activation sintering.

  20. Tribological Properties of DLC Film Prepared by C + Ion Beam-assisted Deposition (IBAD)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    C + ion beam-assisted deposition was utilized to prepare deposit diamond-like carbon (DLC) film.With the help of a series of experiments such as Raman spectroscopy, FT- IR spectroscopy, AFM and nanoindentation, the DLC film has been recognized as hydrogenated DLC film and its tribological properties have been evaluated.The ball-on-disc testing results show that the hardness and the tribological properties of the DLC film produced by C + ion beam-assisted deposition are improved significandy.DLC film produced by C+ ion beam-assisted deposition is positive to have a prosperous tribological application in the near future.

  1. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    Science.gov (United States)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  2. Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role.

    Science.gov (United States)

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-04-01

    Ionic liquids (ILs) are a broad group of organic salts of varying structure and properties, used in energy conversion and storage, chemical analysis, separation processes, as well as in the preparation of particles in nano- and microscale. In material engineering, ionic liquids are applied to synthesize mainly metal nanoparticles and 3D semiconductor microparticles. They could generally serve as a structuring agent or as a reaction medium (solvent). This review deals with the resent progress in general understanding of the ILs role in particle growth and stabilization and the application of ionic liquids for nano- and microparticles synthesis. The first part of the paper is focused on the interactions between ionic liquids and growing particles. The stabilization of growing particles by steric hindrance, electrostatic interaction, solvation forces, viscous stabilization, and ability of ILs to serve as a soft template is detailed discussed. For the first time, the miscellaneous role of the ILs in nano- and microparticle preparation composed of metals as well as semiconductors is collected, and the formation mechanisms are graphically presented and discussed based on their structure and selected properties. The second part of the paper gives a comprehensive overview of recent experimental studies dealing with the applications of ionic liquids for preparation of metal and semiconductor-based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids are presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting, and microwave or ultrasound-mediated methods.

  3. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi

    2004-01-01

    Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.

  4. Field emission property of ZnO nanowires prepared by ultrasonic spray pyrolysis

    OpenAIRE

    2015-01-01

    The field emission property of cold cathode emitters utilizing the ZnO nanowires with various conditions prepared by ultrasonic spray pyrolysis technique was discussed. It is found that the emission current was enhanced in the emitters having higher aspect ratio as well as smaller sheet resistance. Applying of post-annealing process, utilization of additional Mo back electrode in the cathode, and coating of Moon the ZnO nanowires resulted in the improvement of the emission current and lowerin...

  5. Preparation and properties of thick not intentionally doped GaInP(As)/GaAs layers

    CERN Document Server

    Nohavica, D; Zdansky, K

    1999-01-01

    We report on liquid-phase epitaxial growth of thick layers of GaInP(As), lattice matched to GaAs. Layers with thicknesses up to 10 mu m were prepared in a multi-melt bin, step-cooling, one-phase configuration. Unintentionally doped layers, grown from moderate purity starting materials, show a significant decrease in the residual impurity level when erbium is added to the melt. Fundamental electrical and optical properties of the layers were investigated. (author)

  6. Polyurethaneurea-silica nanocomposites: Preparation and investigation of the structure-property behavior

    OpenAIRE

    Malay Heinz, Özge; Malay Heinz, Ozge; Oğuz, Oğuzhan; Oguz, Oguzhan; Koşak, Çağla; Kosak, Cagla; Yılgör, Emel; Yilgor, Emel; Yılgör, İskender; Yilgor, Iskender; Menceloğlu, Yusuf Z.; Menceloglu, Yusuf Z.

    2013-01-01

    Accepted Manuscript Polyurethaneurea-Silica Nanocomposites: Preparation and Investigation of the Structure-Property Behavior Ozge Malay, Oguzhan Oguz, Cagla Kosak, Emel Yilgor, Iskender Yilgor, Yusuf Z. Menceloglu PII: S0032-3861(13)00691-5 DOI: 10.1016/j.polymer.2013.07.043 Reference: JPOL 16366 To appear in: Polymer Received Date: 6 April 2013 Revised Date: 3 July 2013 Accepted Date: 19 July 2013 Please cite this article as: Malay O, Oguz O, Kosak C, Yilg...

  7. Preparation and Properties of Functional Graphene/Thermoplastic Polyurethane Composite Film

    OpenAIRE

    ZHENG Hui-dong; OU Zhong-xing; ZHENG Yu-ying; XIAO Dong-sheng; CAO Ning-ning

    2016-01-01

    The modified graphene oxide(DD-GO) was reacted by the Didodecyldimethylammonium bromide (DDAB) and graphene oxide,and then reduced via L-ascorbic acid to obtain functional graphene(DD-RGO). Functional graphene (DD-RGO)/thermoplastic polyurethane (TPU) composite films were prepared by solution on the coating machine. The morphology and properties of DD-RGO/TPU composite films were investigated by FTIR, XRD, FE-SEM, oxygen transmission rate tester and high resistance meter. The results show tha...

  8. Preparation and Adsorption Properties of PAM Based Adsorbents for Plasma Lipoproteins

    Institute of Scientific and Technical Information of China (English)

    Hai Tao LI; Zhi YUAN; Xin Fu CHEN; Bin LIU; Bin SHEN; Bing Lin HE

    2004-01-01

    Crosslinked macroporous polyacrylamide(PAM)was prepared with inverse phase suspension polymerization technique.After treatment with hydrazine,the polymer was functionalized with chloroacetic acid,trifluoroacetic acid diethylenetriaminepentaacetic acid (DEPAA), and maleic acid, respectively,and PAM based adsorbents bearing carboxyl functional groups for low density lipoprotein(LDL)apheresis use were obtained.The blood compatibility and the adsorption properties for plasma lipoproteins of PAM based adsorbents were investigated.

  9. Preparation and properties of a POSS-containing organic-inorganic hybrid crosslinked polymer

    Institute of Scientific and Technical Information of China (English)

    Wang Yan Nie; Gang Li; Yang Li; Hong Yao Xu

    2009-01-01

    A novel POSS-containing organic-inorganic hybrid crosslinked polymer was prepared by hydrosilylation reaction of octahydridosilsesquioxane (T8H8) with 4,4'-bis(4-allyloxybenzoyloxy)phenyl (diene A). Its structure and property was character-ized by FTIR, 29Si NMR, TGA and ellipsometer, respectively. The results show that the hybrid polymer possesses high thermal stability and low dielectric constant of 1.97 at optical frequencies.

  10. Use of sorption properties of fungus mycelium in preparation of biological adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jilek, R. (Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia))

    1982-01-01

    The binding of uranium to fungal biomass of organisms living in culture mediums with a uranium content is described. Uranium also binds to fungal biomass prepared on the usual culture media without uranium, both native and dried. The analysis of sorption properties was studied on the waste mycelium Pen. chrysogenum from penicillin production. The time dependences were determined of the uranium binding, as were the basic mechanisms of the binding and the contributions of fungal components to this binding.

  11. [Composition, physico-chemical properties and molecular superstructure of dietary fiber preparations of the cellan type].

    Science.gov (United States)

    Dongowski, G; Frigge, K; Zenke, I

    1995-07-01

    Dietary fiber preparations of "cellan" type were prepared from apples, white cabbage, sugar beet pulp, soy hulls and wheat bran by treatment with amylolytic and proteolytic enzymes as well as by chemical extractions. Scanning electron microscopic examinations show different morphological structures of the preparations and a high maintenance of native biomolecular superstructure. The content of pectin, protein, polysaccharide-hexoses and -pentoses and the composition of monosaccharides (also after their treatment with 4 or 8% sodium hydroxide) were determined. The cellans possess waterbinding capacities (WBC) between 25 g H2O/g and waterholding capacities between 50 g H2O/g. The WBC is related to the internal surface; it diminishes after treatment with NaOH. The interactions between the cellans and the adsorbed water were characterized by NMR-spin-lattice relaxation time T1. The molecular mobility increases as the water content grows. The T1-values of dried cellans decreased with increasing degree of moisture before drying. The supermolecular structure is comparatively disordered. Only in case of soy cellan a crystalline cellulose-I-modification could be identified by X-ray-diffraction pattern, esp. after NaOH treatment. The low degree of order of cellans was observed in the 13C-NMR spectra, too. Only the soy hull preparation resulted in a spectrum corresponding to well-ordered cellulose. The botanic source has an essential influence on the physico-chemical properties of dietary fiber preparations of cellan type.

  12. Preparation, characterization, and biological properties of organic-inorganic nanocomposite coatings on titanium substrates prepared by sol-gel.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2014-02-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of the sol-gel dip-coating technique, the biological proprieties of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study has been to synthesize, via sol-gel, organoinorganic nanoporous materials and to dip-coat a substrate to use in dental applications. Different systems have been prepared consisting of an inorganic zirconium-based matrix, in which a biodegradable polymer, the poly-ε-caprolactone was incorporated in different percentages. The materials synthesized by the sol-gel process, before gelation, when they were still in sol phase, have been used to coat a titanium grade 4 (Ti-4) substrate to change its surface biological properties. Thin films have been obtained by means of the dip-coating technique. A microstructural analysis of the obtained coatings was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. The biological proprieties have been investigated by means of tests in vitro. The bone-bonding capability of the nanocomposite films has been evaluated by examining the appearance of apatite on their surface when plunged in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. The examination of apatite formation on the nanocomposites, after immersion in SBF, has been carried out by SEM equipped with energy-dispersive X-ray spectroscopy. To evaluate cells-materials interaction, human osteosarcoma cell line (Saos-2) has been seeded on specimens and cell vitality evaluated by WST-8 assay.

  13. 利用发芽糙米制备γ-氨基丁酸低度饮料酒的研究%The Study of Using Germinated Grown Rice Preparation of γ-aminobutyric Acid of Low Alcoholic Beverage

    Institute of Scientific and Technical Information of China (English)

    陈成; 常洪娟

    2012-01-01

    In this article,firstly,by making brown rice germinate,then germination brown rice and germ peeling corn,sorghum,barley were mixed in proportion to join the drinking water to enter the colloid mill ultrafine powder slurry,after pasting,saccharification,fermentation,refining.The rich gamma-aminobutyric acid,low-grade alcoholic beverage was manufactured.%首先通过糙米进行发芽处理,然后将发芽糙米与脱胚脱皮玉米、高粱、大麦按比例混合后加入饮用水进入胶体磨进行超微粉浆,经过糊化、糖化、发酵、精制后,生产富含γ-氨基丁酸低度饮料酒。

  14. PREPARATION OF ACTIVATED CARBON FIBER AND THEIR XENON ADSORPTION PROPERTIES (Ⅱ)-XENON ADSORPTION PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The adsorption of xenon from air has an interest in the monitoring of nuclear explosion oraccident, or in the treatment of nuclear waste gas. In this paper, the pore structure of several series ofactivated carbon fibers has been characterized. The adsorption properties of xenon on theseactivated carbon fibers under different temperatures have been studied in details. The results showthat the xenon adsorption amount on activated carbon fibers do not increase with specific surfacearea of adsorbents, but are closely related to their pore size distribution. Pores whose radius equal toor narrow than 0.4nm would be more advantageous to the adsorption of xenon.

  15. Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals.

    Science.gov (United States)

    Ma, Qianyun; Hu, Dongying; Wang, Lijuan

    2016-05-01

    Cellulose nanocrystals (CNC) prepared from microcrystalline cellulose were blended in tara gum solution to prepare nanocomposite films. The morphology, crystallinity, and thermal properties of the CNC and films were evaluated by using transmission electron microscopy, X-ray diffractometry, and thermogravimetric analysis, respectively. The resultant CNC was rod-shaped with diameters of around 8.6 nm. The effect of CNC content on physical and thermal properties of films was studied. The composite film tensile strength increased from 27.86 to 65.73 MPa, elastic modulus increased from 160.98 MPa to 882.49 MPa and the contact angle increased from 55.8° to 98.7° with increasing CNC content from 0 to 6 wt%. However, CNC addition increased the thermal stability slightly and CNC content above 6 wt% decreased the tensile strength by CNC aggregation in the matrix. The nanocomposite film containing 6 wt% CNC possessed the highest light transmittance, mechanical properties, and lowest oxygen permeability. CNC addition is a suitable method to modify tara gum matrix polymer properties.

  16. Thermoelectric Properties of Fe1+y Te Prepared by a High Pressure Sintering Method

    Science.gov (United States)

    Di, Jiaxin; Li, Hong-Tao; Xu, Gui-Ying

    2016-11-01

    Enhancing thermoelectric properties by utilizing topological properties of topological insulators has attracted increasing attention. Here, powder metallurgy technology combined with high pressure sintering (HPS) was used to prepare Fe1+y Te (y = 0.1, 0.15, 0.1978, 0.22) alloys at 1173 K. The prepared products were identified by x-ray diffraction, and their microstructures were examined by field-emission scanning electron microscopy (FE-SEM). Electric conductivities (σ) and Seebeck coefficient (S) were measured in the temperature range of 303-623 K. The influence of variation in Fe content on thermoelectric properties was studied. The experimental results show that all HPS samples are nanometer composites consisting of Fe3Te2 and FeTe2. Fe1+y Te have electrical charges on the boundaries of topological insulators, which have the potential to be studied in the future. The Fe1+y Te with y = 0.1 shows the best thermoelectric properties at room temperature.

  17. Properties of Polymer Electrolyte Membranes Prepared by Blending of Sulfonated Polystyrene-Lignosulfonate

    Directory of Open Access Journals (Sweden)

    Siang Tandi Gonggo

    2012-11-01

    Full Text Available Electrolyte polymer membrane widely used in PEMFC and DMFC is a perfluorosulfonated membrane such as Nafion. This membrane material exhibits good chemical stability and proton conductivity, but it is very expensive and difficult to recycle. It has high cross-over methanol in DMFC that causes the decrease efficiency and performance of fuel cell, so that the electrolyte polymer membrane with low cross-over methanol has been needed to substitute Nafion membrane. One of the materials used as a polymer electrolyte membrane is polyblends of a sulfonated polystyrene-lignosulfonate (SPS-LS. These polyblends have been prepared by casting polymer solution and characterized as a polyelectrolyte membrane for DMFC. SPS was prepared by sulfonation of polystyrene with acetyl sulfate used as a sulfonating agent. The membranes of SPS-LS were characterized by analysis of functional groups, mechanical properties, and methanol permeability. The maximum mechanical properties of the SPS-LS membrane were observed in LS ratio of 7.5%. However, the methanol permeability of membrane increases as the increase of LS ratio in SPS-LS membranes. The properties of membranes, especially the mechanical property and methanol permeability close to that of Nafion® 117 membrane, so the SPS-LS membrane is highly potential used as the electrolyte membrane for direct methanol fuel cell.

  18. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  19. Portable Diagnostics and Rapid Germination

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Zachary Spencer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versions of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.

  20. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.)

    OpenAIRE

    Manzer H. Siddiqui; Al-Whaibi, Mohamed H.

    2013-01-01

    Agricultural biotechnology is very familiar with the properties of nanomaterial and their potential uses. Therefore, the present experiment was conducted to test the beneficial effects of nanosilicon dioxide (nSiO2: size- 12 nm) on the seed germination of tomato (Lycopersicum esculentum Mill. cv Super Strain B). Application of nSiO2 significantly enhanced the characteristics of seed germination. Among the treatments, 8 g L−1 of nSiO2 improved percent seed germination, mean germination time, s...

  1. Preparation and characterization of polystyrene based Nickel molybdate composite membrane electrical–electrochemical properties

    Directory of Open Access Journals (Sweden)

    Urfi Ishrat

    2016-09-01

    Full Text Available The functional properties of the polystyrene based Nickel Molybdate composite membrane prepared by applying 70 MPa pressure are described. The fabricated membrane was characterized by using Fourier Transform Infrared, X-ray diffraction, particle size analyzer and Scanning electron microscopy technique and has been investigated for its functional, diffusive, electrochemical and electrical properties. The impedance data of membrane having capacitive and resistive components are plotted, which show the sequence of semicircles representing an electrical phenomenon due to grain material, grain boundary and interfacial phenomenon. The diffusion of electrolytes was determined by the TMS method revealing dependence of membrane potential on the charge on the membrane matrix, charge and size of permeating ions. The membrane determined the activity of cations with good accuracy in the higher concentration range and shows a great selectivity for K+. Other electrochemical properties like transport number have been discussed its selectivity.

  2. Preparation and Properties of a New Composite of Epoxy Emulsion(EEM)Modified Cement

    Institute of Scientific and Technical Information of China (English)

    XIAO Liguang; JIN Yujie; GU Lixia

    2009-01-01

    High performance cement based composite materials was prepared by adding epoxy emulsion.The epoxy emulsion was synthesized with epoxy phosphoric acid ester and poly-glycol in laboratory.This epoxy emulsion has advantages over other emulsion,such as dehydrated slightly,and well film formation abilities.The mechanical properties, corruptness resistance and structure of ep-oxy emulsion modified cement mortars were studied.Experimental results show that the mechanical properties of modified cement mortars are slightly increased with increasing epoxy emulsion content, especially the flexure strength.The corruptness resistance of all modified mortars is better than the unmodified mortar.The polymer film forms the bridge phases between the matrix and the aggregate regions,and forms a three-dimension structure in the cement hydration system,which improves the mechanical properties of modified mortars.

  3. Properties of TiO2 Thin Films Prepared by Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With rapid progressive application of TiO2 thin films, magnetron sputtering becomes a very interesting method to prepare such multi-functional thin films. This paper focuses on influences of various deposition processes and deposition rate on the structures and properties of TiO2 thin films. Anatase, rutile or amorphous TiO2 films with various crystalline structures and different photocatalytic, optical and electrical properties can be produced by varying sputtering gases, substrate temperature, annealing process, deposition rate and the characteristics of magnetron sputtering. This may in turn affect the functions of TiO2 films in many applications. Furthermore, TiO2-based composites films can overcome many limitations and improve the properties of TiO2 films.

  4. Preparation, tribological properties and biocompatibility of fluorinated graphene/ultrahigh molecular weight polyethylene composite materials

    Science.gov (United States)

    Xu, L.; Zheng, Y.; Yan, Z.; Zhang, W.; Shi, J.; Zhou, F.; Zhang, X.; Wang, J.; Zhang, J.; Liu, B.

    2016-05-01

    Fluorinated graphene (FG)/ultra-high molecular weight polyethylene (UHMWPE) composites were successfully prepared by ultrasonic dispersion and liquid thermoforming method. The mechanical and tribological properties of pure UHMWPE and FG/UHMWPE composites were investigated using micro-hardness tester and high-speed reciprocating friction tester. The results showed that: adding FG could not only increase the micro-hardness of the composites, but also decrease the wear volume of the composite significantly. The friction coefficients of the composites were also reduced with the increasing of FG content. In addition, the MC3T3-E1 cells adhered and grew well on the surface of the FG/UHMWPE composites as observed by SEM and fluorescence microscope, indicating the addition of FG did not affect the morphology and activity of the cells. The FG/UHMWPE composites exhibited excellent mechanical properties, tribological properties and biocompatibility, which could be used as the potential artificial joint replacement material.

  5. Evaluation of the Properties of Bituminous Concrete Prepared from Brick-Stone Mix Aggregate

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available The paper describes an investigation into mechanical properties of brick-stone bituminous concrete mix. The effect of brick-stone mix on various mechanical properties of the bituminous concrete such as Marshall stability, flow, Marshall Quotient (stability to flow ratio, Indirect Tensile Strength, stripping, rutting, and fatigue life of bituminous concrete overlay has been evaluated. In this study over-burnt brick aggregate (OBBA and stone aggregate (SA have been mixed in different ratios (by weight such as 20 : 80, 40 : 60, 60 : 40, and 80 : 20, respectively. The laboratory results indicate that bituminous concrete, prepared by 20% brick aggregate and 80% stone aggregate, gives the highest Marshall stability. This bituminous concrete mix shows considerable improvement in various mechanical properties of the mix as compared to the other mixes.

  6. Bioactive titanium metal surfaces with antimicrobial properties prepared by anodic oxidation treatment

    Institute of Scientific and Technical Information of China (English)

    YUE ChongXia; YANG BangCheng; ZHANG XingDong

    2009-01-01

    In order to endow titanium metals with bioactivity and antimicrobial properties,titanium plates were subjected to anodic oxidation treatment in NaCI solutions in this study.The treated titanium metals could induce apatite formation in the fast calcification solution,and osteoblasts on the treated titanium surfaces proliferated well as those on the untreated titanium metal surfaces.The treated metals could inhibit S.aureus growth in the microbial culture experiments.It was assumed that Ti-OH groups and Ti-CI groups formed on the treated titanium surface were responsible for the bioactivity and antimicrobial properties of the metals.The anodic oxidation treatment was an effective way to prepare bioactive titanium surfaces with antimicrobial properties.

  7. Preparation and properties of three dimensional printing materials made from biopolymers for medical applications

    Directory of Open Access Journals (Sweden)

    Jintamai Suwanprateeb

    2006-05-01

    Full Text Available A preliminary study employing a mixture of natural polymers for three dimensional printing (3DP technology was carried out to determine the influence of mixture composition and post-processing technique on their physical and mechanical properties. Series of blended natural polymers including cassava starch, maltodextrin, cellulose fiber and gelatin with different amount were formulated. It was observed that the percentage of individual component influenced the properties and characteristics of prepared samples including part stability, dimension accuracy and flexural properties. Starch aided part stability and the fineness of the mixture. Maltodextrin and gelatin increased flexural strength whereas cellulose fiber helped in both part stability and strength. Infiltration by light-cured resin could further enhance flexural modulus and flexural strength of samples to be close to generally used acrylate resin. Preliminary in vitro toxicity test of infiltrated sample showed that the cells which were in contact with samples were healthy. No inhibition zone was observed.

  8. PREPARATION AND PROPERTIES OF STARCH-BASED BIOPOLYMERS MODIFIED WITH DIFUNCTIONAL ISOCYANATES

    Directory of Open Access Journals (Sweden)

    Ramzi Belhassen

    2011-02-01

    Full Text Available The present work reports on the preparation of thermoplastic starch (TPS modified in situ with a diisocyanate derivative. Evidence of the condensation reaction between the hydroxyl groups of starch and glycerol with the isocyanate function (NCO was confirmed by FTIR analysis. The evolution of the properties of the ensuing TPS, in term of mechanical properties, microstructure, and water sensitivity, was investigated using tensile mechanical, dynamic mechanical thermal analysis (DMTA, X-ray diffraction (XRD, and water uptake. The results showed that the addition of isocyanate did not affect the crystallinity of the TPS and slightly reduced the water uptake of the material. The evolution of the mechanical properties with ageing became less pronounced by the addition of the isocyanate as their amount exceeded 4 to 6wt%.

  9. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. J., E-mail: yadav.pooja75@yahoo.in [Department of Electronics, RTM Nagpur University, Nagpur (India); Joshi, C. P. [Physics Department, RCOEM, Nagpur (India); Moharil, S. V., E-mail: svmoharil@yahoo.com [Physics Department, RTM Nagpur University, Nagpur (India)

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  10. Physical Properties Investigation of Reduced Graphene Oxide Thin Films Prepared by Material Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Veronika Schmiedova

    2017-01-01

    Full Text Available The article is focused on the study of the optical properties of inkjet-printed graphene oxide (GO layers by spectroscopic ellipsometry. Due to its unique optical and electrical properties, GO can be used as, for example, a transparent and flexible electrode material in organic and printed electronics. Spectroscopic ellipsometry was used to characterize the optical response of the GO layer and its reduced form (rGO, obtainable, for example, by reduction of prepared layers by either annealing, UV radiation, or chemical reduction in the visible range. The thicknesses of the layers were determined by a mechanical profilometer and used as an input parameter for optical modeling. Ellipsometric spectra were analyzed according to the dispersion model and the influence of the reduction of GO on optical constants is discussed. Thus, detailed analysis of the ellipsometric data provides a unique tool for qualitative and also quantitative description of the optical properties of GO thin films for electronic applications.

  11. Preparation and property analysis of a hepatocyte targeting pH-sensitive liposome

    Institute of Scientific and Technical Information of China (English)

    Si-Yuan Wen; Xiao-Hong Wang; Li Lin; Wei Guan; Sheng-Qi Wang

    2004-01-01

    AIM: To develop a hepatocyte targeting pH-sensitive liposome for drug delivery based on active targeting technology mediated by asialoglycoprotein receptors.METHODS: Four types of targeting molecules with galactose residue were synthesized and mixed with pH-sensitive lipids DC-chol/DOPE to prepare liposome with integrated property of hepatocyte specificity and pH sensitivity. Liposome 18-gal was selected with the best transfection activity through cellular uptake experiment. Property analysis was made through experiments of competitive inhibition of receptors,red blood cell hemolysis,in vitro cytotoxicity test by MTS assay and mediation of inhibitory effects of antisense phosphorothioate ODN on gene expression, etc.RESULTS: Liposome L8-gal had the desired properties of hepatocyte specificity, pH sensitivity, low cytotoxicity, and high transfection efficiency.CONCLUSION: Liposome 18-gal can be further developed as a potential hepatocyte- targeting delivery system.

  12. Preparation of Basalt Incorporated Polyethylene Composite with Enhanced Mechanical Properties for Various Applications

    Directory of Open Access Journals (Sweden)

    Bredikhin Pavel

    2017-01-01

    Full Text Available The present article showed the possibility of increasing the complex of mechanical properties of polyolefins with dispersed mineral fillers obtained by fine grinding of basalt rocks via ball mill processing. The composites based on dispersed basalt, which were derived from Samara rock mass (Russia with rare earth elements containing, were obtained by extrusion combining the binder and filler, followed by preparation injection-molded test samples. The study of mechanical properties of materials developed showed the possibility of a significant increase in strength characteristics of different types of polyethylene: the breaking stress at static bending for HDPE can be increasing more than 60% and the impact strength by more than 4 times. In addition the incorporation of the dispersed basalt also enhanced the thermal properties of the composites (the oxygen index of HDPE increases from 19 to 25%.

  13. Food Quality Improvement of Soy Milk Made from Short-Time Germinated Soybeans

    Directory of Open Access Journals (Sweden)

    Susu Jiang

    2013-05-01

    Full Text Available The objectives of this study were to develop soy milk with improved food quality and to enhance the functional attributes by incorporating short-time germination into the processing. Changes in trypsin inhibitor activity (TIA, phytic acid content and total phenolic content (TPC in soy milk produced from soybeans germinated within 72 h were investigated to determine the optimum germination condition. Results from the present research showed significant (p < 0.05 improvement of TPC in cooked germinated soybean milk, while both the TIA and phytic acid content were decreased significantly (p < 0.05. In the subsequent evaluation on the quality attributes under the optimum germination condition, soy milk made from 28 h-germinated soybeans presented enhanced nutritional value and comparable physicochemical properties to conventional soy milk. The current approach provides a feasible and convenient way for soy-based product innovation in both household and industrial settings.

  14. Influence of germination time of brown rice in relation to flour and gluten free bread quality.

    Science.gov (United States)

    Cornejo, Fabiola; Rosell, Cristina M

    2015-10-01

    The effect of germination time on physicochemical characteristics of brown rice flour and its effect on gluten free bread qualities have been investigated. Germination was carried out at 28 °C and 100 % RH for 12, 24 and 48 h; brown rice and soaked brown rice was also analyzed. Significant changes on hydration and pasting properties of brown rice flour were found during germination. The starch degradation by enzyme activity could be evidenced with the decrease in viscosity and water binding capacity (WBC). No significant effect in specific volume, humidity and water activity of the gluten free bread was found as germination time increase, but a significant softness of the crumb was obtained. However, at 48 h of germination, the intense action of α amylase could result in excessive liquefaction and dextrinisation, causing inferior bread quality. Overall, germinated rice flour showed appropriate functionality for being used as raw ingredient in gluten free breadmaking.

  15. Zn-Al layered double hydroxide prepared at different molar ratios: Preparation, characterization, optical and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Abdullah Ahmed Ali [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Talib, Zainal Abidin, E-mail: zainalat@science.upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zobir bin Hussein, Mohd [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2012-07-15

    The co-precipitation method was used to prepare Zn-Al-NO{sub 3}-LDH at different Zn{sup 2+}/Al{sup 3+} molar ratios (2, 3, 4, 5 and 6) and pH value of 7.5. The structure, textural, composition and morphological properties were investigated using powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and scanning electron microscope (SEM), respectively. The crystallinity of LDH samples were found to improve as molar ratio decreased which is attributed to the distortion of the hydroxide layers networks of the LDH crystal by the larger difference in ionic radii of Zn{sup 2+} and Al{sup 3+}. The optical band gap energy of LDH samples were evaluated using absorbance data from UV-Vis-NIR Diffuse reflectance spectroscopy. Band gaps were affected by the variation of the Zn{sup 2+}/Al{sup 3+} molar ratio is due to the formation of the low crystalline phases (ZnO and ZnAl{sub 2}O{sub 4}). The water molecules and anionic NO{sub 3}{sup -} in the LDH interlayer were responsible for the generation of the dielectric response. This response can be described by an anomalous low frequency dispersion using the second type of Universal Power Law. The dominance of ZnO dipoles and charge carriers (NO{sub 3}{sup -} ions) in the dielectric relaxation increases with the increasing molar ratio. - Graphical abstract: (a) Schematic diagram of Zn-Al- NO{sub 3}-LDH shows the LDH structure, (b) Kubelka-Munk transformed reflectance spectra and c. The dielectric constant versus frequency of Zn-Al- NO{sub 3}-LDH samples. Highlights: Black-Right-Pointing-Pointer Zn-Al-NO{sub 3}-LDH was prepared at different Zn{sup 2+}/Al{sup 3+} molar ratios (2, 3, 4, 5 and 6). Black-Right-Pointing-Pointer The crystallinity of LDH phase decreased with increase of Zn{sup 2+}/Al{sup 3+} molar ratio. Black-Right-Pointing-Pointer The optical band gaps of LDH samples have been measured. Black-Right-Pointing-Pointer Dielectric response of LDH can be described by anomalous low

  16. Preparation and properties of low cement castable sintered at different temperatures

    Directory of Open Access Journals (Sweden)

    Sanja Martinović

    2009-12-01

    Full Text Available The low cement high alumina castable (LCC studied in this paper was synthesised, cured and then treated at different sintering temperatures. Since any inhomogeneity introduced during the castable preparation can remain inside the material degrading its properties and therefore the quality during service life, particular attention was given to the processing procedure in order to produce the material with the optimum characteristics. Composition of the castable regarding particle size distribution was adjusted according to the Andreassen’s packing model. The samples were sintered at 1100, 1300 and 1600°C for three hours. Influence of the different sintering temperatures on the castable properties is discussed. Compressive and flexural strengths were determined by destructive testing method, while the water immersion method was used for determination of the bulk density and the water absorption. Changes of elastic properties and microstructure (porosity were observed by the non-destructive testing methods, ultrasonic measurements and image analysis. Based on the results, it can be concluded that sintering temperature has strong influence on the properties of the LCC. Exceptionally good properties were obtained for the sample sintered at 1600°C, but it should be highlighted that the samples treated at 1100 and 1300°C were provided with good properties, too. This should not be neglected because of the energy saving importance, in cases where the material sintered at lower temperature satisfies the application requirements.

  17. Physical-chemical and biocatalytic properties of a proteolytic complex of the preparation "Protepsin"

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2016-01-01

    Full Text Available Enzymatic technologies were included strongly into practical activities of the person, the volume of the world market constantly grows and is updated. However the domestic production of enzymatic preparations very lags behind world level that is in many respects connected with insufficient scientific and technical base for a wide circulation of technologies in large-scale production. At the same time there were Russian producers of enzymatic preparations from animal fabrics and bodies for processing of raw materials of an animal origin, according to forecasts, of interest in rational use of resources of an animal origin. In article data on research of properties of the enzymatic preparation "Protepsin" and an assessment of prospects of application are provided in processing of raw materials of an animal origin. The enzymatic preparation "Protepsin" made in the conditions of JSC Plant of Endocrine Enzymes (Rzhavki, Moscow region activity at action on proteins of meat shows, including the strengthened structure, has milk-clotting effect, is active in the field of pH 4,0-6,0 and temperature 20-45zs. The proteinaceous complex includes 4 fractions, 2 from which possess the general proteolytic activity. One of them shows the general proteolytic and milk-clotting activity. Enzymes differ in an amino-acid set and molecular weight. The method of a disk electrophoresis determined molecular-mass structure of "Protepsin". The preparation inactivation conditions guaranteeing its safety in the production technology of foodstuff as active proteolytic enzymes in the course of digestion can cause violations of integrity of fabrics and corresponding diseases are shown. Thus, conditions of use of a perspective proteolytic preparation in technology of a wide range of food of an animal origin are in a complex proved and picked up.

  18. Preparation of fluconazole buccal tablet and influence of formulation expedients on its properties

    Institute of Scientific and Technical Information of China (English)

    MOHAMED Saifulla P; MUZZAMMIL Shariff; PRAMOD Kumar TM

    2011-01-01

    The aim of present study was to prepare buccal tablets of fluconazole for oral candidiasis.The dosage forms were designed to release the drug above the minimum inhibitory concentration for prolonged period of time so as to reduce the frequency of administration and to overcome the side effects of systemic treatment.The buccal tablets were prepared by using Carbopol 71G and Noveon AA-1 by direct compression method.Microcrystalline cellulose was used as the filler and its effect was also studied.The prepared dosage forms were evaluated for physicochemical properties,in vitro release studies and mueoadhesive properties using sheep buccal mucosa as a model tissue.Tablets containing 50% of polymers(Carbopol & Noveon)were found to be the best with moderate swelling along with favorable bioadhesion force,residence time and in vitro drug release.The in vitro drug release studies revealed that drug released for 8 h,which in turn may reduce dosing frequency and improved patient compliance in oral candidiasis patients.

  19. Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala47@hotmail.com [Materials Science Lab. (1), Physics Department, Cairo University, Giza (Egypt); Afify, H.H.; El Zawawia, I.K.; Azab, A.A. [Solid State Physics Department, National Research Center, Dokki, Cairo (Egypt)

    2012-07-15

    Nanoferrites of the general formula Cu{sub 1-x}Mg{sub x}Fe{sub 2}O{sub 4} with 0{<=}x{<=}0.6 were prepared by standard ceramic and wet methods. The structure was studied by X-ray diffraction and IR spectroscopy. The density and lattice constant were calculated and reported. The particle size of the prepared nanoferrites ranged from 8.7 to 41.1 nm. It was found that the lattice parameter decreases with increasing cation substitution of Mg{sup 2+} due to the difference of ionic radius and atomic mass. The dc magnetic susceptibility was measured out using Faraday's method. The magnetic hysteresis measurement was performed using a vibrating sample magnetometer. Magnetic constants such as Curie temperature, effective magnetic moment, saturation magnetization, remanent magnetization and corecivicty were obtained and reported. The magnetic constants decrease with increasing Mg{sup 2+}, except the remanent magnetization which increased. - Highlights: Black-Right-Pointing-Pointer We study the effect of Mg{sup 2+} on structural and magnetic properties of copper ferrite prepared by the different methods. Black-Right-Pointing-Pointer To determine which method gives the smallest particle size and optimize the physical properties. Black-Right-Pointing-Pointer To determine which sample is suitable for different applications.

  20. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Science.gov (United States)

    Umeda, Minoru; Katagiri, Mitsuhiko; Shironita, Sayoko; Nagayama, Norio

    2016-12-01

    This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor's technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  1. Chemical Composition and Rheological Properties of Set Yoghurt Prepared from Skimmed Milk Treated with Horseradish Peroxidase

    Directory of Open Access Journals (Sweden)

    Yan Wen

    2012-01-01

    Full Text Available The aim of this work is to determine the impact of an enzymatic treatment on the fermentation and rheological properties of set yoghurt prepared from skimmed milk. Skimmed bovine milk was treated with horseradish peroxidase added at the level of 645 U per g of proteins in the presence (addition level of 7.8 mmol per L of milk or absence of ferulic acid as a cross-linking agent, and used to prepare set yoghurt with commercial direct vat set starter culture. The evaluation showed that the treatment of skimmed milk with horseradish peroxidase enhanced its apparent viscosity, and storage and loss moduli. The prepared yoghurt contained protein, fat and total solids at 3.49–3.59, 0.46–0.52 and 15.23–15.43 %, respectively, had titratable acidity of 0.83–0.88 %, and no significant difference in the composition was found among the yoghurt samples (p>0.05. Compared to the control yoghurt, the yoghurt prepared from the milk treated with horseradish peroxidase had a higher apparent viscosity, storage and loss moduli and flow behavior indices, especially when ferulic acid was added. Yoghurt samples from the skimmed milk treated either with horseradish peroxidase only or with the additional ferulic acid treatment had better structural reversibility, because their hysteresis loop area during rheological analysis was larger (p<0.05.

  2. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lasheen, M.R., E-mail: ragaei24@link.net [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Sherif, Iman Y., E-mail: iman57us@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); Tawfik, Magda E., E-mail: magdaemileta@yahoo.com [Polymers and Pigments Department, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Wakeel, S.T., E-mail: shaimaa_tw@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Shahat, M.F., E-mail: elshahatmf@hotmail.com [Faculty of Science, Ain Shams University, Khalifa El-Maamon St., Abbasiya Sq., 11566, Cairo (Egypt)

    2016-08-15

    Highlights: • Nano magnetite–chitosan films were prepared by casting method. • The efficiency of the prepared films for removing heavy metals was investigated. • The adsorption mechanism was studied using different isotherm and kinetic models. • Films reuse and metals recovery were studied. - Abstract: Nano magnetite chitosan (NMag–CS) film was prepared and characterized with different analytical methods. X-ray diffraction (XRD) patterns confirmed the formation of a pure magnetite structure and NMag–CS nanocomposite. TEM image of the film, revealed the uniform dispersion of magnetite nanoparticles inside chitosan matrix. The adsorption properties of the prepared film for copper, lead, cadmium, chromium and nickel metal ions were evaluated. Different factors affecting the uptake behavior by the composite films such as time, initial pH and film dose were investigated. The adsorption equilibrium attained using 2 g/L of the film after 120 min of reaction. The equilibrium data were analyzed using Langmuir and Freundlich models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all metals. The metals regenerated from films with an efficiency greater than 95% using 0.1 M ethylene diamine tetra acetic acid (EDTA) and films were successfully reused for adsorption.

  3. Mn-Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal-magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Arulmurugan, R. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: arulphysics@rediffmail.com; Vaidyanathan, G. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: gvn_pec@yahoo.com; Sendhilnathan, S. [Department of Physics, Sri Manakula Vinayagar Engineering College, Pondicherry 605107 (India); Jeyadevan, B. [Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579 (Japan)

    2006-03-15

    Mn{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (with x varying from 0.1 to 0.5) ferrite nanoparticles used for ferrofluid preparation have been prepared by chemical co-precipitation method and characterized. Characterization techniques like elemental analysis by atomic absorption spectroscopy and spectrophotometry, thermal analysis using simultaneous TG-DTA, XRD, TEM, VSM and Moessbauer spectroscopy have been utilized. The final cation contents estimated agree with the initial degree of substitution. The Curie temperature (T{sub c}) and particle size decrease with the increase in zinc substitution. In the case of particles with higher zinc concentration, both ferrimagnetic nanoparticles and particles exhibiting superparamagnetic behavior at room temperature are present. In addition, some of the results obtained by slightly altering the preparation condition are also discussed. The precipitated particles were used for ferrofluid preparation. The fine particles were suitably dispersed in heptane using oleic acid as the surfactant. The volatile nature of the carrier chosen helps in altering the number concentration of the magnetic particles in a ferrofluid. Magnetic properties of the fine particles and ferrofluids are discussed. Ferrofluids having Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} particles can be used for the energy conversion application utilizing the magnetically induced convection for thermal dissipation.

  4. Composition and antioxidant properties of wild mushrooms Boletus edulis and Xerocomus badius prepared for consumption.

    Science.gov (United States)

    Jaworska, Grażyna; Pogoń, Krystyna; Skrzypczak, Aleksandra; Bernaś, Emilia

    2015-12-01

    Wild edible mushrooms Boletus edulis and Xerocomus badius were prepared for consumption by braising with 10 % canola oil (half of the batch was blanched prior to braising). Fresh X.badius had comparable to B.edulis amounts of proximate components and higher levels of most B-group vitamins and antioxidants. Analyzed mushrooms prepared for consumption fulfilled 7-14 % RDA of vitamin B1 for healthy adults and 15-35, 18-37 and 1 % RDA of B2, B3 and B3 respectively. Prepared for consumption mushrooms were rich in antioxidants containing in 100 g dry weight 164,601 mg total polyphenols, 19-87 mg total flavonoids, 22.1-27.4 mg L-ascorbic acid, 0.531-1.031 mg β-carotene, 0.325-0.456 mg lycopene and 38.64-44.49 mg total tocopherols and presented high antioxidant activity against ABTS (4.9-36.5 mmol TE), against DPPH (7.8-21.3 mmol TE) and in FRAP assay (15.0-28.1 mmol Fe(2+)). Mushrooms prepared for consumption with blanching prior to culinary treatment showed lower antioxidant properties and vitamin content in comparison to mushrooms braised raw.

  5. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Giuseppina Roviello

    2016-06-01

    Full Text Available The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

  6. Effect of PVP Additive on Properties of Cobalt Ferrite Nanoparticles Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    P. Razmjouee

    2015-05-01

    Full Text Available In this investigation, the effect of Polyvinylpyrrolidone (PVP additive on microstructure, morphology and magnetic properties of cobalt ferrite nanoparticles prepared by hydrothermal method was studied. X-ray diffraction (XRD studies in different synthesis conditions showed the formation of cobalt ferrite and cobalt oxide. Comparing IR spectrum of PVP additive, sol prepared before hydrothermal process and C-0.1PVP3, 190 obtained by FTIR spectroscopy indicated the formation of bond between PVP and surface of metallic hydroxide and cobalt ferrite particles, which prevented them from growing and coarsening. Scanning electron microscope (SEM was used to study the morphology of samples. According to vibration sample magnetometer (VSM results, as PVP amount increases from 0.1 to 0.3 volume percent, coercive field increases from 298 to 684 Oe and saturation magnetization decreases from 58 to 51 emu/g.

  7. Preparation of transparent conductive ZnO:Tb films and their photoluminescence properties

    Institute of Scientific and Technical Information of China (English)

    Fang Ze-Bo; Tan Yong-Sheng; Liu Xue-Qin; Yang Ying-Hu; Wang Yin-Yue

    2004-01-01

    Tb-doped Zinc oxide (ZnO:Tb) films were prepared by RF reactive magnetron sputtering of a Zn target withsome Tb-chips attached. The results show that the appropriate Tb ions incorporated into ZnO films can improve the structural and electrical properties of ZnO films. Photoluminescence (PL) measurements show that the characteristic emission lines correspond to the intra-4fn-shell transitions in Tbs+ ions at room temperature. Under the optimal conditions, the ZnO:Tb films were prepared with the lowest resistivity (ρ) of 9.34 × 10-4Ωcm, transmittance over 80% at the visible region and the strong blue emission.

  8. Preparation and properties of SYNROC D containing simulated Savannah River Plant high-level defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, C.; Rozsa, R.; Bazan, F.; Otto, R.; Grens, J.

    1981-07-23

    We describe in detail the formulation and processing steps used to prepare all SYNROC D samples tested in the Comparative Leach Testing Program at the Savannah River Laboratory. We also discuss how the composition of the Savannah River Plant sludge influences the formulation and ultimate preparation of SYNROC D. Mechanical properties are reported in the categories of elastic constants, flexural and compressive strengths, and microhardness; thermal expansion and thermal conductivity results are presented. The thermal expansion data indicated the presence of significant residual strain and the possibility of an unidentified amorphous or glassy phase in the microstructure. We summarize the standardized (MCC) leaching results for both crushed Synroc and monoliths in deionized water, silicate water, and salt brine at 90/sup 0/C and 150/sup 0/C.

  9. Sol-gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property

    Institute of Scientific and Technical Information of China (English)

    WANG, Xuejing; YAO, Shuwen; LI, Xiaobo

    2009-01-01

    Using carbon nanotubes (CNT) as templete, CNT/ZnO nanocomposite was prepared by a sol-gel method. Its structure was characterized by XRD, IR and TEM. The UV absorbing properties were detected by a UV spectro- photometer. Photo degradation of methyl red in aqueous solution was investigated by using CNT/ZnO nanocompo- site as photocatalyst. The results showed that the nanocomposite was composed of carbon nanotubes coated evenly by ZnO particles, with a diameter of 50-60 nm. UV-vis spectra indicated that the as-prepared CNT/ZnO nano- composite had absorption of visible light as well as ultraviolet light. 60% CNT-added nanocomposite had the high- est degradation rate for methyl red under the sunlight irradiation.

  10. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    Science.gov (United States)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2017-01-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  11. Preparation and properties of nanosize MnZn ferrite from δ-FeOOH

    Institute of Scientific and Technical Information of China (English)

    HAO Shunli; WANG Xin; WEI Yu; Wang Yongming; Liu Chunjing

    2006-01-01

    Ferrous ion was transformed into feroxyhyte (δ-FeOOH) by oxidation. Then, manganese sulfate and zinc sulfate in some ratio were added to the feroxyhyte solution. The co-precipitation was boiling reflux conditions sometime under constant stirring. The nanosize MnZn ferrite powder was formed. The mechanism of preparation of the nanosize MnZn ferrite was discussed, and the formation of feroxyhyte which was playing a key role during the process was mentioned. The properties of powder was tested by means of X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results show that the samples of spherical particles about 20 nm, which have characteristics of ferrimagnetism, has larger saturation magnetization, but the remanent magnetization and coercivity are comparatively smaller. The spinel MnZn ferrite nanosize powder was successfully prepared from δ-FeOOH at low temperature, with low-carbon steel and peroxide as main material.

  12. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    Science.gov (United States)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer.

  13. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    Science.gov (United States)

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  14. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties.

    Science.gov (United States)

    Roviello, Giuseppina; Ricciotti, Laura; Tarallo, Oreste; Ferone, Claudio; Colangelo, Francesco; Roviello, Valentina; Cioffi, Raffaele

    2016-06-09

    The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

  15. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties

    Science.gov (United States)

    Roviello, Giuseppina; Ricciotti, Laura; Tarallo, Oreste; Ferone, Claudio; Colangelo, Francesco; Roviello, Valentina; Cioffi, Raffaele

    2016-01-01

    The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building. PMID:28773582

  16. Preparation, characterization and mechanical properties of rare-earth-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Musbah S.S.

    2012-01-01

    Full Text Available This study reports research related to different preparation methods and characterization of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 nanophosphor powder with different nanoparticle content was embedded in the matrix of PMMA. Preparation was carried out by mixing molding (bulk, electrospinning (nanofibers and solution casting (thin films with neat particles and particles coated with AMEO silane. Among the pros and cons for proposed methods, the mixing molding enables to avoid solvent use while the best deagglomeration and nanoparticle distribution is gained using the electrospinning method. The results of dynamic mechanical analysis (DMA and nanoindentation revealed that the storage modulus of the composites was higher than that of pure PMMA and increased with nanophosphor content. Surface modification of particles improved the mechanical properties of nanocomposites.

  17. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    Science.gov (United States)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2016-11-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  18. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Bobadilla, L.F., E-mail: lbobadilla@iciq.es [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain); Garcia, C. [Physics Department, Bogazici University, North Campus KB 331-O, Bebek/Istambul (Turkey); Delgado, J.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real, Cadiz (Spain); Sanz, O. [Grupo de Ingenieria Quimica, Departamento de Quimica Aplicada, Facultad de Ciencias Quimicas, UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 San Sebastian (Spain); Romero-Sarria, F.; Centeno, M.A.; Odriozola, J.A. [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain)

    2012-11-15

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution. - Highlights: Black-Right-Pointing-Pointer Ni{sub x}Sn{sub y} alloys nanoparticles have been prepared by polyol method. Black-Right-Pointing-Pointer NiSn nanoparticles exhibit superparamagnetic behavior. Black-Right-Pointing-Pointer The PVP addition favours the particles isolation.

  19. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    Science.gov (United States)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  20. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer.

    Science.gov (United States)

    You, Lijun; Lu, Feifei; Li, Dan; Qiao, Zhongming; Yin, Yeping

    2009-12-15

    A novel flocculant (CATCS) based on corn starch and chitosan was prepared and its flocculation behaviors were studied. The synthesis conditions of CATCS were discussed and the production obtained was characterized using Fourier infrared spectra and scanning electron microscopy. Flocculation properties of the products were evaluated in terms of transmittance, removal of organic contaminant and solid suspending substances. Influences of temperature, pH and flocculant dosage on flocculation efficiency of CATCS were examined. CATCS had better flocculation performance at lower temperature for the wastewater investigated. CATCS showed better flocculation performance than cationic starch and chitosan in 5 g/L kaolin suspension trended to performance well in acidic and alkaline solution. The comparison of the flocculation performance between CATCS, Fe2(SO4)3 and polyacrylamide showed CATCS had much efficient flocculation performance. In addition, cationic starch was prepared from corn starch using microwave-assisted method.

  1. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer

    Energy Technology Data Exchange (ETDEWEB)

    You Lijun; Lu Feifei; Li Dan; Qiao Zhongming [Department of chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070 (China); Yin Yeping, E-mail: yljyoyo@yahoo.cn [Department of chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070 (China)

    2009-12-15

    A novel flocculant (CATCS) based on corn starch and chitosan was prepared and its flocculation behaviors were studied. The synthesis conditions of CATCS were discussed and the production obtained was characterized using Fourier infrared spectra and scanning electron microscopy. Flocculation properties of the products were evaluated in terms of transmittance, removal of organic contaminant and solid suspending substances. Influences of temperature, pH and flocculant dosage on flocculation efficiency of CATCS were examined. CATCS had better flocculation performance at lower temperature for the wastewater investigated. CATCS showed better flocculation performance than cationic starch and chitosan in 5 g/L kaolin suspension trended to performance well in acidic and alkaline solution. The comparison of the flocculation performance between CATCS, Fe{sub 2} (SO{sub 4}){sub 3} and polyacrylamide showed CATCS had much efficient flocculation performance. In addition, cationic starch was prepared from corn starch using microwave-assisted method.

  2. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  3. Electrospinning preparation and electrical and biological properties of ferrocene/poly(vinylpyrrolidone composite nanofibers

    Directory of Open Access Journals (Sweden)

    Ji-Hong Chai

    2013-03-01

    Full Text Available Nanofibers containing ferrocene (Fc have been prepared for the first time by electrospinning. In this paper, Fc was dispersed uniformly throughout the poly(vinypyrrolidone (PVP matrix for the purpose of combining the properties of PVP and Fc. The effects of solvents and Fc concentration on the morphologies and diameters of nanofibers were investigated. In the DMF/ethanol solvent, the morphologies of the obtained nanofibers significantly changed with the increase of Fc concentration. The results demonstrated that the morphologies of the nanofibers could be controlled through adjusting solvents and Fc concentration. Scanning electron microscopy (SEM showed that the diameters of the obtained composite fibers were about 30–200 nm at different Fc concentrations. Thermogravimetric analysis (TGA results confirmed the presence of ferrocene within the PVP nanofibers. X-ray diffraction (XRD results showed that the crystalline structure of Fc in the fibers was amorphous after the electrospinning process. A biological evaluation of the antimicrobial activity of Fc/PVP nanofibers was carried out by using Gram-negative Escherichia coli (E. coli as model organisms. The nanofibers fabricated by this method showed obvious antibacterial activity. Electrochemical properties were characterized based on cyclic voltammetry measurements. The CV results showed redox peaks corresponding to the Fc+/Fc couple, which suggested that Fc molecules encapsulated inside PVP nanofibers retian their electrochemical activity. The properties and facile preparation method make the Fc/PVP nanofibers promising for antibacterial and sensing applications.

  4. Preparation and Antibacterial Properties of Substituted 1,2,4-Triazoles

    Directory of Open Access Journals (Sweden)

    Ionuţ Ledeţi

    2015-01-01

    Full Text Available Background. Both 1,2,3- and 1,2,4-triazoles are nowadays incorporated in numerous antibacterial pharmaceutical formulations. Aim. Our study aimed to prepare three substituted 1,2,4-triazoles and to evaluate their antibacterial properties. Materials and Methods. One disubstituted and two trisubstituted 1,2,4-triazoles were prepared and characterised by physical and spectroscopic properties (melting point, FTIR, NMR, and GC-MS. The antibacterial properties were studied against three bacterial strains: Staphylococcus aureus (ATCC 25923, Escherichia coli (ATCC 25922, and Pseudomonas aeruginosa (ATCC 27853, by the agar disk diffusion method and the dilution method with MIC (minimal inhibitory concentration determination. Results. The spectroscopic characterization of compounds and the working protocol for the synthesis of the triazolic derivatives are described. The compounds were obtained with 15–43% yields and with high purities, confirmed by the NMR analysis. The evaluation of biological activities showed that the compounds act as antibacterial agents against Staphylococcus aureus (ATCC 25923, while being inactive against Escherichia coli (ATCC 25922 and Pseudomonas aeruginosa (ATCC 27853. Conclusions. Our results indicate that compounds containing 1,2,4-triazolic moiety have great potential in developing a wide variety of new antibacterial formulations.

  5. New crosslinked cast films based on poly(vinyl alcohol: Preparation and physico-chemical properties

    Directory of Open Access Journals (Sweden)

    C. Birck

    2014-12-01

    Full Text Available In this paper, we propose a green route to prepare insoluble poly(vinyl alcohol (PVOH cast films with potential application as antimicrobial packaging. First PVOH films were cast from different aqueous solutions and analyzed by Differential Scanning Calorimetry (DSC and Dynamic Mechanical Analysis (DMA to determine their physical properties under two storage conditions. In order to obtain insoluble films, PVOH was then crosslinked by citric acid (CTR as confirmed by Nuclear Magnetic Resonance (NMR analyses. The crosslinking reaction parameters (curing time, crosslinker content were studied by comparing the characteristics of PVOH/CTR films, such as free COOH content and glass transition temperature (Tg value, as well as the impact of the crosslinking reaction on mechanical properties. It was found that for 40 and 10 wt% CTR contents, 120 and 40 min of crosslinking times were necessary to bind all CTR respectively. Brittle films were obtained for 40 wt% CTR whereas 10 wt% CTR content led to ductile films. Finally, films containing hydroxypropyl-β-cyclodextrin (HPβCD, chosen as a potential vector of antimicrobial agent, were prepared. The obtained results show that the incorporation of HPβCD in the PVOH matrix does not mainly influence the physical and mechanical properties of the films.

  6. Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2

    Institute of Scientific and Technical Information of China (English)

    Hao Yang; Maochu Gong; Yaoqiang Chen

    2011-01-01

    Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD,FT-IR and texture property test.The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces.The texture property test reveals that the activated carbons displayed different texture properties,especially the micropore size distribution.The adsorption capacities of the activated carbons were investigated by adsorbing CH4,CO2,N2 and O2 at 25 ℃ in the pressure range of 0-200 kPa.The results reveal that all the activated carbons had high CO2 adsorption capacity,one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa.And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa.In the pressure range of 0-200 kPa,the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.

  7. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  8. Effect of additives on the properties of polyaniline nanofibers prepared by high gravity chemical oxidative polymerization.

    Science.gov (United States)

    Zhao, Yibo; Arowo, Moses; Wu, Wei; Chen, Jianfeng

    2015-05-12

    Polyaniline (PANI) nanofibers with improved properties were prepared by high gravity chemical oxidative polymerization in a rotating packed bed with the assistance of p-aminodiphenylamine (AD) and p-phenylenediamine (AP). The effects of reactor type, additive dosage, reaction temperature, and high-gravity level on the properties of products were investigated in detail. Three conclusions were made: (1) a small amount of additive can significantly improve some properties of the nanofibers such as uniformity, specific surface area, and specific capacitance; (2) in order to obtain high-quality nanofibers, the high-gravity level should coordinate with the reaction rate; (3) the molecular weight and conductivity of PANI decrease with the increase of additive dosage. The products have larger specific surface areas of up to 73.9 and 68.4 m(2)/g and consequently improved specific capacitance of up to 527.5 and 552 F/g for the PANI nanofibers prepared with AD and AP, respectively. However, the specific surface area and specific capacitance of pure PANI are only 49.1 m(2)/g and 333.3 F/g, respectively. This research provides a simple, reliable, and scalable method to produce PANI nanofibers of high performances.

  9. Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass.

    Science.gov (United States)

    Zhu, Hailin; Hu, Chao; Zhang, Fangfang; Feng, Xinxing; Li, Jiuming; Liu, Tao; Chen, Jianyong; Zhang, Jianchun

    2014-09-01

    The modified mesoporous 58S bioglass (SM58S) was prepared through surface modification of the mesoporous 58S bioglass (M58S) with γ-aminopropyl triethoxysilane (KH550). The results of Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) showed that the amino groups were grafted to the surface of M58S after modification with KH550. The silver-containing SM58S (Ag-SM58S) and M58S (Ag-M58S) were prepared by the dipping method. The Ag(+) loading capacity, release rate and antibacterial properties of Ag-SM58S and Ag-M58S were investigated. It is indicated that surface modification of M58S with KH550 can improve the Ag(+) loading capacity. The result of antibacterial property showed that Ag-SM58S exhibited significant anti-bacterial effects against Escherichia coli and Staphylococcus aureus. The sustained release of Ag(+) from Ag-SM58S for 768h ensured excellent antibacterial property of Ag-SM58S. In vitro osteoblast proliferation and differentiation tests showed that Ag-SM58S was a good matrix for the growth of osteoblasts. Consequently, the results of the study suggested that Ag-SM58S might be a promising bone repair material.

  10. seed germination and seedlings growth

    African Journals Online (AJOL)

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... African Journal of Biotechnology Vol. 6 (24), pp. 2792-2802 ... needed for rapid cell respiration during germination, however, abscisic ... PAGE) was carried out in a vertical slab gel apparatus as described by Laemmli (1970).

  11. Ferroelectric-Like Properties of Amorphous Metal Oxide Thin Films Prepared by Sol-Gel Technique.

    Science.gov (United States)

    Xu, Yuhuan

    1995-01-01

    Advances in the field of both optical and electrical integrated circuit devices require new thin film materials. Ferroelectric materials have attractive properties such as hysteresis behavior, pyroelectricity, piezoelectricity and nonlinear optical properties. Many ferroelectric thin films have been successfully prepared from metal organic compounds via sol-gel processing. Thus far, research has concentrated upon polycrystalline or epitaxial ferroelectric films. For amorphous ferroelectric thin films, preliminary experimental results in our laboratory indicated that these amorphous films possessed good ferroelectric -like properties. The purpose of this research is (1) to fabricate amorphous metal oxide thin films by the sol-gel technique, (2) to determine whether these amorphous metal oxide thin films have ferroelectric-like properties and (3) to propose a theoretical model ("ferrons model") to explain the ferroelectric-like properties of amorphous thin films, which deals with a structure of permanent dipoles of "partially ordered clusters" (ferrons) in the amorphous films. The theoretical model is based on our experimental results of thin films of two amorphous materials (barium titanite and lead zirconate titanate). This research may provide a new functional material which could be useful for producing integrated electronic and electrooptic devices.

  12. Preparation and Properties of Functional Graphene/Thermoplastic Polyurethane Composite Film

    Directory of Open Access Journals (Sweden)

    ZHENG Hui-dong

    2016-11-01

    Full Text Available The modified graphene oxide(DD-GO was reacted by the Didodecyldimethylammonium bromide (DDAB and graphene oxide,and then reduced via L-ascorbic acid to obtain functional graphene(DD-RGO. Functional graphene (DD-RGO/thermoplastic polyurethane (TPU composite films were prepared by solution on the coating machine. The morphology and properties of DD-RGO/TPU composite films were investigated by FTIR, XRD, FE-SEM, oxygen transmission rate tester and high resistance meter. The results show that DD-RGO with fold layer structure is evenly dispersed in TPU matrix, and the thermal stability, barrier properties and antistatic properties of TPU composite film have been significantly improved. When the mass fraction of DD-RGO is 2%, compared with the pure TPU film, the oxygen transmission rate has been reduced by 50% and the volume resistivity has been increased by 7 orders of magnitude. The barrier properties and antistatic properties of composite films have been improved significantly.

  13. Chemometric evaluation of physicochemical properties of carbonated-apatitic preparations by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Otsuka, Makoto; Papangkorn, Kongnara; Baig, Arif A; Higuchi, William I

    2012-08-01

    The purpose of this study was to develop a simple and quick method of evaluating the physicochemical properties of carbonated apatite preparations (CAP) as an index of the bioaffinity of implantable materials based on Fourier-transformed-infrared (IR) spectra by chemometrics. The wet-synthesized CAPs contained various levels of carbonate content (CO(3)), and were analyzed microstrain parameter (MS), crystallite size parameter (CP), specific surface area (Sw), CO(3), and solubility parameter (pK(HAP)) using by X-ray powder diffraction, nitrogen gas adsorption, IR, and UV absorption. The IR spectral results of CAPs suggested that the peak intensities of CAP reflected the physicochemical properties of the samples. The IR data sets were calculated to obtain calibration models evaluating the physicochemical properties of CAPs by a partial least squares regression analysis (PLS). As validation of the calibration model, physicochemical properties of CAP could be evaluated based on validation IR data sets of independent samples, and those values had sufficient accuracy. The regression vector of each calibration model suggested that the physicochemical properties of CAP, such as CO(3), Sw, MS, CP, and pK(HAP), were affected by phosphate, hydroxyl, and carbonate groups.

  14. Effect of Heat Treatment on Mechanical Properties and Phase Composition of Magnesium-Aluminum Composite Prepared by Explosive Welding

    Science.gov (United States)

    Arisova, V. N.; Trykov, Yu. P.; Slautin, O. V.; Ponomareva, I. A.; Kondakov, A. E.

    2015-09-01

    Results are given for a study of the effect of heat treatment regimes on the nature of change in micromechanical properties and phase composition of magnesium-aluminum composite material AD1-MA2-1 prepared by explosive welding.

  15. Structure and Properties of Thick-Walled Joints of Alloy 1570s Prepared by Friction Stir Welding

    Science.gov (United States)

    Velichko, O. V.; Ivanov, S. Yu.; Karkhin, V. A.; Lopota, V. A.; Makhin, I. D.

    2016-09-01

    The microstructure and mechanical properties of thick-walled joints of Al - Mg - Sc alloy 1570S, prepared by friction stir welding are studied. Joint microstructural and mechanical inhomogeneity are revealed.

  16. Synthesis and Properties of ZnO/Al Thin Films Prepared by Dip-Coating Process

    OpenAIRE

    Juhņeviča, I; Mašonkina, M; Mežinskis, G; Gabrene, A

    2015-01-01

    In this work sol–gel dip-coating technique was used to synthesize ZnO and ZnO/Al films. The influence of annealing regime and dopant concentration on the structural properties of ZnO and aluminum doped ZnO (ZnO/Al) films was investigated. The surface morphology and crystallinity of ZnO films were determined using atomic force microscopy and Xray diffraction, respectively. The experimental results show that ZnO and ZnO/Al films prepared using “shock” conditions have smo...

  17. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Directory of Open Access Journals (Sweden)

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  18. Thermal properties and water repellency of cotton fabric prepared through sol-gel method

    Directory of Open Access Journals (Sweden)

    Gu Jia-Li

    2016-01-01

    Full Text Available Cotton fabrics were treated by one-step sol-gel method. The pure silica hydrosol and phosphorus-doped hydrosol were prepared with the addition of a hydrophobic hexadecyltrimethoxysilane to decrease the surface energy of cotton fabric. The thermal properties and water repellency of treated cotton fabric were characterized by thermo-gravimetric analysis, micro combustion, limiting oxygen index, and contact angle measurement. The results showed that cotton fabric treated by phosphorus-doped silica hydrosol had excellent flame retardance, and the water repellence was apparently improved with the addition of hexadecyltrimethoxysilane.

  19. Preparation and properties of monoclonal antibodies to individual prekeratins of simple rat epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Troyanovskii, S.M.; Krutovskikh, V.A.; Bannikov, G.A.

    1986-11-01

    The authors study the properties of a series of hybridoma clones producing antibodies to individual prekeratins (PK) from simple types of epithelium. BALB/c mice were immunized with a preparation of intermediate filaments isolated from the mucosa of the rat large intestine. The specificity of the five clones studied was studied by monoautoradiography. For a more detailed study of the specificity of the experimentally obtained antibodies, the authors used the same immunoautoradiographic method to study their reaction with proteins of cells of other types. The authors have obtained monoclonal antibodies to three individual PK of simple types of rat epithelium: PK40, PK49, and PK55.

  20. Fast preparation and thermal transport property of TiCoSb-based half-Heusler compounds

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Jie; Tang Xin-Feng; Zhang Qing-Jie

    2007-01-01

    TiCoSb-based half-Heusler compounds with the substitution of Zr for Ti have been prepared quickly by combining high-energy ball milling method with spark plasma sintering technique, and their thermal transport properties have been investigated. With the increase of the concentration of Zr, the thermal conductivity of Ti1-xZrxCoSb compounds decreases significantly. Compared with the thermal conductivity of TiCoSb compound, that of Ti0.5Zr0.5CoSb decreases by 200% at 1000 K.

  1. Stability and physicochemical properties of model salad dressings prepared with pregelatinized potato starch.

    Science.gov (United States)

    Bortnowska, Grażyna; Balejko, Jerzy; Schube, Violetta; Tokarczyk, Grzegorz; Krzemińska, Natalia; Mojka, Katarzyna

    2014-10-13

    The effects of pregelatinized potato starch concentration (PSC) ranged from 0 to 5 wt% on the physical stability, color, rheological, textural, and sensory properties of model salad dressings prepared with 2 wt% dried egg yolk (DEY) or sodium caseinate (SC) were explored. All dressings showed shear-thinning behavior with yield stress. Raising PSC increased storage (G') and loss (G") moduli decreasing loss tangent (tanδ) and samples containing ≥ 3 wt% starch showed a weak gel-like (tanδpotato starch may be suitable ingredient in low-fat dressings applications.

  2. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    Science.gov (United States)

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials.

  3. Preparation, microstructure and properties of Al-Zn-Mg-Sc alloy tubes

    Institute of Scientific and Technical Information of China (English)

    何振波; 尹志民; 林森; 邓英; 商宝川; 周向

    2010-01-01

    The Al-6.0Zn-2.0Mg-0.2Sc-0.10Zr hollow tube ingots, prepared by semi-continuous casting technology, were subjected to ho- mogenization treatment, hot extrusion, intermediate annealing, tension, solution and aging treatment. The microstructures and properties of as-cast Al-Zn-Mg-Sc alloy at different homogenization treatment conditions were studied using hardness measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The results showed th...

  4. Studies on preparation and property of high-substitutional starch acetate hydrophode for the membrane material

    Institute of Scientific and Technical Information of China (English)

    ZUO Xiu-jin; DAI Xiao-min; MA Xiao-jun

    2005-01-01

    @@ Control-release technique is probably the most widely used,films control-release technique is the key of control-release technique,and film materials are the elements.The high-substitutional starch acetate was prepared by acetylation of starch with an acetic anhydride mixture.The best parameter of the technics (time of activation and reaction, reactant ratio) was obtained by orthogonal experiments.It was the hydrophode membrane material that property of the high-substitutional starch acetate was proofed.

  5. Cu-doped zinc oxide and its polythiophene composites: preparation and antibacterial properties.

    Science.gov (United States)

    Ma, Ge; Liang, Xiaoxi; Li, Liangchao; Qiao, Ru; Jiang, Donghua; Ding, Yan; Chen, Haifeng

    2014-04-01

    Cu-doped zinc oxide and its polythiophene nanocomposites were prepared by the Sol-Gel and in situ polymerization methods, respectively. The structures, morphologies and compositions of the samples were characterized. The antibacterial properties of the samples on three kinds of strains were determined by using powder inhibition zones, minimum inhibitory concentrations and minimal bactericidal concentrations. The study confirmed that the antibacterial activities of the composites were better than those of their each component. The antibacterial mechanisms of the samples were discussed further.

  6. Preparation and magnetic properties of Fe0.3Co0.7 nanowire array

    Institute of Scientific and Technical Information of China (English)

    Qin Donghuan; Guo Yun; Li Hulin

    2006-01-01

    Fe0.3Co0.7 nanowire arrays were prepared by electrodeposition into the porous anodic aluminum oxide templates.The change of magnetic characteristic of the array with the diameter and heat treatment was investigated.It was found that the vertical magnetic anisotropy would drop lineally with the increase of the array diameter.Annealing can improve the coercively of the nanowire arrays.Coercivity as high as 3000 Oe was obtained in the sample annealing at 500℃.Magnetic properties of nanowire arrays may be developed to ultra-high-density recording on the quantum disk.

  7. Electrical and optical properties of CZTS thin films prepared by SILAR method

    OpenAIRE

    2016-01-01

    In the present work, Cu2ZnSnS4 (CZTS) thin film was deposited onto the glass substrate by simple and economic SILAR method and its structural, morphological, optical and electrical properties were analyzed. X-ray diffraction (XRD) analysis confirms the formation of CZTS with kesterite structure and the average crystallite size is found to be 142 nm. Scanning electron microscope (SEM) image shows that the film has homogeneous, agglomerated surface without any cracks. The prepared CZTS film sho...

  8. Preparation and Properties of Biocomposite Based on Natural Rubber and Bagasse Nanocellulose

    Directory of Open Access Journals (Sweden)

    Jarnthong Methakarn

    2015-01-01

    Full Text Available Biocomposite based on natural rubber (NR and bagasse nanocellulose (BNC was prepared in latex state. The mechanical, morphological and thermal properties of NR/BNC biocomposite were investigated. It was found that the addition of 3 wt% of BNC in NR film caused significant increase in modulus at 100% and 300% elongations and improved thermal stability of NR/BNC biocomposite. However, the strength at break and elongation at break of the biocomposite were not enhanced correlating to the morphological result obtained from scanning electron microscope (SEM.

  9. Photocatalytic properties of ZnO micromaterials prepared by hydrothermal method

    Science.gov (United States)

    Gao, Junshan; Huang, Shaofu; Luo, Pengfei; Huang, Shuanghe

    2016-12-01

    ZnO microrods were prepared by a simple and inexpensive hydrothermal method. The structure, morphology and optical properties of the micromaterials were characterized by XRD, FE-SEM and UV-Vis spectroscopy. The FE-SEM micrographs indicated that the sizes of the microrods were 0.2-1 μm in width and 2-5 μm in length. With methyl orange as a model degradation target, photocatalytic performance of the microrods under ultraviolet radiation was evaluated. The results indicate that the photocatalytic activity of ZnO microrods was satisfactory even under low power ultraviolet irradiation.

  10. Physical, mechanical, and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying

    Science.gov (United States)

    Lepeshev, A. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2013-12-01

    The physical, mechanical, and tribological properties of quasicrystalline coatings based on the Al65Cu23Fe12 alloy prepared by plasma spraying have been investigated. The specific features of the phase formation due to the competitive interactions of the icosahedral ψ and cubic β phases have been elucidated. A correlation between the microhardness and the content of the icosahedral phase in the coating has been determined. The decisive role of the quasicrystalline phase in the formation of high tribological characteristics of the coatings has been revealed and tested.

  11. Preparation and Property Study of Graphene Oxide Reinforced Epoxy Resin Insulation Nanocomposites with High Heat Conductivity

    Science.gov (United States)

    Shan, Xinran; Liu, Yongchang; Wu, Zhixiong; Liu, Huiming; Zhang, Zhong; Huang, Rongjin; Huang, Chuanjun; Liu, Zheng; Li, Laifeng

    2017-02-01

    In this paper, graphene oxide reinforced epoxy resin nanocomposites were successfully prepared. Compared with unmodified epoxy resin, the heat conductivity of the graphene oxide reinforced epoxy resin nanocomposites had been improved while keeping the insulation performance. The tensile strength was investigated at both room temperature (300 K) and liquid nitrogen temperature (77 K). And the fracture surfaces were examined by scanning electron microscopy (SEM). Results showed that the materials had excellent mechanical properties, which could be advantages for the applications as insulating layer in low temperature superconducting magnets.

  12. Preparation and Properties of Ni-plated Glass Beads/PVC Composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; WANG Sijie; ZHAO Yang

    2014-01-01

    Ni-plated glass beads (GB) was obtained by electroless plating, based on PVC adhesive, Ni-plated GB/PVC composite was prepared. Temperature insulation, fire retardation and microwave absorption properties were tested, the results showed that the nickel coating was compact and continuous, Ni-plated GB/PVC composite is a kind of excellent temperature insulated, fire retardate and light-weight material, and especially for microwave absorption well;Reflectivity was lower than -2 dB in the frequency range of 11-17 GHz.

  13. Preparation and Properties of Friction Materials by Using Two Kinds of Fibrous Industrial Minerals

    Institute of Scientific and Technical Information of China (English)

    SHEN Shang-yue; HU Shan; LI Zhen; ZHANG De; LIU Xin-hai; SONG Xu-bo

    2003-01-01

    The basic technology and properties of the brake blocks made of modified needle-like wollastonite and fibrous sepiolite were intensively researched.The impact strengthes and fixed velocity friction of the brake blocks prepared by different recipes were tested. The testing results show that it is feasible for needle-like wollastonite and fibrous sepiolite to take the place of asbestos as the reinforced materials of friction materials.The braking effect of the brake blocks is the best when the ratio of the needle-like wollastonite to the fibrous sepiolite was 1∶6.

  14. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  15. Preparation And Properties Of Black Zinc Selective Absorbers Formed By Reactive rf Sputtering

    Science.gov (United States)

    Hutchins, Michael G.; Figgures, Christopher C.; Childs, Geoffrey N.

    1989-03-01

    Black zinc selective solar absorber coatings with solar absorptance 0.94 and thermal emittance 0.21 have been prepared by the reactive rf sputtering of Zn targets in Ar-02 atmospheres. For these films the zinc to oxygen ratio is greater than one and the films are composed of both zinc and zinc oxide. The surface microstructure of the films considerably enhances the short wavelength absorptance properties. The coatings represent a possible low-cost selective absorber for flat plate and evacuated tube solar collector applications.

  16. Luminescence properties of Lu2O3: Tb film prepared by Pechini sol-gel method

    Science.gov (United States)

    Shen, Siqing; Wang, Jian; Xu, Zhibin; Xie, Jianjun; Shi, Ying

    2011-02-01

    Uniform and crack free Tb3+ doped lutetium oxide (Lu2O3:Tb) films were prepared by Pechini sol-gel method combined with the spin-coating technique. The influence of the different substrate (monocrystalline silicon (111) and silica glass) and atmosphere (N2 and Air) on the luminescence properties of films was investigated. According to the emission spectra, we found that the luminous intensity was higher on silica glass substrate. Moreover, it was found that the luminous intensity calcined in N2 was higher almost twice as that calcined in air.

  17. Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion.

    Science.gov (United States)

    López-Barrios, Lidia; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A

    2016-07-15

    Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparison of pharmaceutical properties of topical non-steroidal anti-inflammatory drug preparations on quality of life.

    Science.gov (United States)

    Shibata, Yuuka; Ikeda, Hiroaki; Kondou, Yoshihiro; Kihira, Kenji

    2005-05-01

    To compare the effects of different pharmaceutical properties of commercially available topical nonsteroidal antiinflammatory drugs (NSAIDs) on the quality of life, we administered a questionnaire to 65 healthy volunteers. We investigated five creams, five gels, and four solutions of topical NSAID preparations in this study. The survey was conducted to clarify the relationship of their answers and pharmaceutical properties of the topical NSAID preparations. Questions addressed spreadability, smell, viscosity, and comfort level of the topical NSAID preparations. Among the five creams, Napageln had lower spreadability, less smell, and greater viscosity than the other preparations. Because of its easy spreadability, weak smell, and low viscosity, the volunteers favored Sector cream among the cream preparations. Among the five gel preparations, Inteban had less spreadability, stronger smell, and higher viscosity than the other preparations. The volunteers favored Epatec over the other gel preparations. All four solutions had the odor of menthol and other artificial ingredients, except for Napageln. These findings indicate that information on the pharmaceutical properties of commercially available topical NSAID preparations will be helpful to physicians and pharmacists in conducting medical treatment and prescribing.

  19. Structural and optical properties of Ba-doped CdO films prepared by SILAR method

    Science.gov (United States)

    Sahin, B.; Gülen, Y.; Bayansal, F.; Çetinkara, H. A.; Güder, H. S.

    2014-01-01

    Nanostructure materials have opened a new discussion in the field of semiconductor device technology because material properties could be changed by changing the crystal morphology and size. In this article, Ba doped CdO films were prepared by SILAR method. The crystal morphology, structure and optical properties of the films were characterized by scanning electron microscopy, X-ray diffraction and ultraviolet-visible spectroscopy, respectively. From the SEM analysis it is seen that Ba-doping concentration affects the shapes of the nanostructures. XRD analysis showed that the films have poly-crystalline structures. The room temperature UV-vis analysis showed that the optical band gap of the CdO films was firstly decreased then increased with the increasing barium doping concentration.

  20. PREPARATION AND PROPERTIES OF WHEAT GLUTEN/RICE PROTEIN COMPOSITES PLASTICIZED WITH GLYCEROL

    Institute of Scientific and Technical Information of China (English)

    Yan-yan Yang; Kai-zhou Zhang; Yi-hu Song; Qiang Zheng

    2011-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) and rice protein (RP) at different weight ratios with glycerol as plasticizer followed by compression molding the mixture at 120C to crosslink the proteins. Reducing agent of sodium bisulfate and sodium sulfite and crosslinking agent formaldehyde were used to adjust the properties of the composites. Morphology, moisture absorption and tensile properties were evaluated. The results showed that formaldehyde could increase tensile strength of the composites without significant influence on Young's modulus and elongation at break. On the other hand, reducing agents could improve tensile strength and extensibility simultaneously, which was much marked at WG/RP ratios from 7/3 to 3/7.

  1. Electrical properties of ZnO varistors prepared by direct mixing of constituent phases

    Directory of Open Access Journals (Sweden)

    Žunić M.

    2006-01-01

    Full Text Available Varistor samples containing different amounts of constituent phases were prepared by direct mixing of constituent phases. Detailed electrical characterization was performed to explain the influence of minor phases (spinel and intergranular phases on overall properties. Characterization included investigation of the non-linear coefficients (α, breakdown electric field (EB, leakage currents (JL, grain boundary barrier hight (ΦB and constant β from current-voltage characteristics, as well as calculation of activation energies for conduction (EA from ac impedance spectroscopy in the temperature interval 30-410°C. Varistors sintered at 1100 °C for 1 h showed pronounced differences in electrical properties depending on relative molar ratios of the phases. Results were discussed in the sense of possible reduction of the content of minor phases in ZnO varistors.

  2. Preparation of Silica Modified with 2-Mercaptoimidazole and its SorptionProperties of Chromium(III

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2009-01-01

    Full Text Available Modified silica gel was prepared to remove the heavy metal of chromium(III from water sample. Silica gel was used as supporting material and the 2-mercaptoimidazole was immobilized onto surface silica so that the silica would have selective properties to adsorb the heavy metal chromium(III through the formation of coordination compound between the 2-mercaptoimidazole and chromium(III. The characterization of modified silica gel was carried out by analyzing the Fourier Transform Infrared Spectrum of this material in order to ensure the immobilization of 2-mercaptoimidazole onto the surface. The effect of pH solution, initial concentration of chromium(III, and interaction time were investigated in batch mode to find the adsorption properties of chromium(III onto modified silica. The condition optimum of these parameters was applied to determine the removal percentage of chromium(III in water sample using the modified silica gel

  3. PREPARATION AND PROPERTIES OF THERMOSETTING ACRYLIC COATINGS USING TITANIUM-OXO-CLUSTER AS A CURING AGENT

    Institute of Scientific and Technical Information of China (English)

    Kun Xu; Shu-xue Zhou; Li-min Wu

    2009-01-01

    Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide. The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical (DEA) curing monitor, Fourier transformed infrared spectroscopy (FTIR), and Soxhlet extraction experiments, and the properties of the resulted coatings were investigated with pendulum hardness tester, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and ultraviolet-visible spectrometer. The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed. An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content. The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.

  4. Preparation and Tribological Properties of Ni-P Electroless Composite Coating Containing Potassium Titanate Whisker

    Institute of Scientific and Technical Information of China (English)

    Yaxu JIN; Lin HUA

    2007-01-01

    Nickel-phosphorus (Ni-P) composite coatings containing potassium titanate (K2Ti6O13) whiskers (PTWs) were prepared by electroless plating. The surface morphology and component of coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively before and after wear test. The tribological performance was evaluated using a pin-on-disk wear tester under dry conditions. It is found that the Ni-P-PTWs composite coatings exhibit higher wear resistance than Ni-P and Ni-P-SiC electroless coatings. The favorable effects of PTWs on the tribological properties of the composite coatings are attributed to the super-strong mechanical properties and the specific tunneling structures of PTWs. The PTWs greatly reinforce the structure of the Ni-P-based composite coatings and thereby greatly reduce the adhesive and plough wear of Ni-P-PTWs composite coatings.

  5. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation

    Science.gov (United States)

    Chen, Chao; Li, Weiqi; Zhou, Ying; Chen, Cheng; Luo, Miao; Liu, Xinsheng; Zeng, Kai; Yang, Bo; Zhang, Chuanwei; Han, Junbo; Tang, Jiang

    2015-07-01

    Sb2Se3 is a very promising photovoltaic material because of its attractive material, optical and electrical properties. Very recently, we reported a superstrate CdS/Sb2Se3 solar cell with 5.6% certified efficiency. In this letter, we focused on the optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Using temperature dependent transmission spectrum and temperature dependent photoluminescence, the indirect optical transition nature and bandgap values as functions of temperature were acquired. Using ellipsometry measurements and Swanepoel's envelope method, the refractive indices as well as the dielectric constant in a wide wavelength range of 193-2615 nm were obtained. These works would lay the foundation for the further development of Sb2Se3 thin film solar cells.

  6. Magnetic properties of crystalline and amorphous Fe-B alloys prepared by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bangwei (CCAST (World Lab.), Beijing (China) Dept. of Physics, Hunan Univ., Changsha (China)); Hu Wangyu; Zhu Deqi (Dept. of Physics, Hunan Univ., Changsha (China))

    1993-01-01

    Amorphous samples of Fe[sub 100-x]B[sub x] (x=18, 24, 27.4) and crystalline samples of Fe[sub 100-x]B[sub x] (x=2.2, 10.6) have been prepared by electroless plating. Their magnetic properties have been studied. The Curie temperature Tc increases upon increasing the boron concentration for the amorphous alloys from 613 K (x=18) to 776 K (x=27.4). However, the saturation magnetization and magnetic moment decrease with increasing boron concentration for both the crystalline and amorphous alloys. The data have been analyzed and discussed using the molecular-field theory and the rigid-band theory and the charge transfer of sp electrons from the metalloids to the d-band of the transition metals. The dependence of the magnetic properties of the amorphous alloys on heat treatment has also been studied. (orig.).

  7. Nonlinear optical properties measurement of polypyrrole -carbon nanotubes prepared by an electrochemical polymerization method

    Directory of Open Access Journals (Sweden)

    Shahriari

    2017-02-01

    Full Text Available In this work, the optical properties dependence of Multi-Walled Carbon Nanotubes (MWNT on concentration was discussed. MWNT samples were prepared in polypyrrole by an electrochemical polymerization of monomers, in the presence of different concentrations of MWNTs, using Sodium Dodecyl-Benzen-Sulfonate (SDBS as surfactant at room temperature. The nonlinear refractive and nonlinear absorbtion indices were measured using a low power CW laser beam operated at 532 nm using z-scan method. The results show that nonlinear refractive and nonlinear absorbtion indices tend to be increased with increasing the concentration of carbon nanotubes. Optical properties of  carbone nanotubes indicate that they are good candidates for nonlinear optical devices

  8. Preparation and tribological properties of DLC/Ti film by pulsed laser arc deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen-Yu; Lu Xin-Chun; Luo Jian-Bin; Shao Tian-Min; Qing Tao; Zhang Chen-Hui

    2006-01-01

    This paper reports that DLC (diamond like carbon)/Ti and DLC films were prepared by using pulsed laser arc deposition. R-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, atomic force microscopy, nanoindenter, spectroscopic ellipsometer, surface profiler and micro-tribometer were employed to study the structure and tribological properties of DLC/Ti and DLC films. The results show that DLC/Ti film, with I(D)/I(G) 0.28 and corresponding to 76% sp3 content calculated by Raman spectroscopy, uniform chemical composition along depth direction, 98 at% content of carbon, hardness 8.2 GPa and Young's modulus 110.5 GPa, compressive stress 6.579 GPa, thickness 46 nm,coefficient of friction 0.08, and critical load 95mN, exhibits excellent mechanical and tribological properties.

  9. Preparation and hydrogen sorption properties of Mg-Cu-Y-H systems

    Institute of Scientific and Technical Information of China (English)

    LI Zhinian; LIU Xiaopeng; HUANG Zuo; JIANG Lijun; WANG Shumao

    2006-01-01

    Mg-xwt.%CuY (x=15, 20, 25) composites were successfully prepared by reactive mechanical alloying (RMA).X-ray diffraction (XRD) measurement shows that main phases of the as milled composites are MgH2 and Mg2Cu, and they converted into Mg and MgCu2 after dehydrogenation, respectively.Pressure-Composition-Isotherm (PCI) test shows that the composites exhibit double pressure plateau at each isothermal desorption process.The hydrogen absorption and desorption kinetics of the composites become worse with increasing x content, indicating that Mg-Cu phase has a negative effect on the hydrogen sorption properties of the composites.It is supposed that the good hydrogen sorption properties of the composites attribute to the catalyst effect of yttrium hydride distributed in Mg substrate and the particles size reduction and crystal defects formed by RMA.

  10. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    Science.gov (United States)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  11. Preparation and Properties of Paraffin/TiO2/Active-carbon Composite Phase Change Materials

    Directory of Open Access Journals (Sweden)

    HAO Yong-gan

    2016-11-01

    Full Text Available A novel composite phase change materials (PCMs of paraffin/TiO2/active-carbon was prepared by a microemulsion method, where paraffin acted as a PCM and titanium dioxide (TiO2 as matrix material, and a small amount of active carbon was added to improve the thermal conductivity. The compositions, morphology and thermal properties of the paraffin/TiO2/active-carbon composite PCMs were characterized by XRD, SEM, TGA and DSC respectively. The shape stability during phase change process of this composite was also tested. The results show that paraffin is well encapsulated by TiO2 matrix, and thus exhibiting excellent shape-stabilized phase change feature. Besides, this composite PCM also presents superhydrophobic property. Therefore, these multifunctional features will endow PCMs with important application potential in energy efficient buildings.

  12. Design and preparation of Zn-based materials possessing both high damping and good mechanical properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new idea of design and manufacture of metal-based materials possessing both high damping and good mechanical properties was proposed. The key of the idea is the combination of fining restriction-damping structures, using all mechanisms and taking advantages of different materials. Based upon this idea a foam ZA27 was prepared by the technology of prefabricated salt-mass centrifugal seeping foundry, its tensile strength and compressive strength are 83~119 MPa and 100~189 MPa, respectively. The damping properties of the foam ZA27 increase remarkably after the carpenter pastern or rosin (the damping-increased materials) was immerged into it, which approaches to the level of viscous-elastic polymer materials (Q-1≥20×10-3).

  13. The Preparation and Investigation of Magnetic Properties of Magnesium Zinc ferrites

    Directory of Open Access Journals (Sweden)

    A. Rittidech

    2008-01-01

    Full Text Available Mg0.7Zn0.3Fe2O4 (MZF is a ferrites material, displaying interesting magnetic properties. It has a wide range of magnetic coils and electronic devices. In this research, MZF ceramics was prepared by solid state reaction route and interested on sintering temperature that have effective on phase formation of MZF, microstruce and magnetic properties. The phase identification of ceramic ferrites was performed using X-ray diffraction technique (XRD. It has been found that the dense of MZF ceramics were successfully obtained for sintering at 1300 oC. Moreover, the microstructure of MZF ceramics were examined by scanning electron microscopy (SEM and showed that the sizes of grain from 0.65-19.87 µm. The highly dense of MZF ceramics were obtained the magnetic permeability medium (µ as 14.38×10-14 N/A2.

  14. Preparation,Photo and Electroluminescence Properties of Novel Rare Earth Aromatic Carboxylates

    Institute of Scientific and Technical Information of China (English)

    林秦; 符连社; 等

    2002-01-01

    Novel soluble rare earth aromatic carboxylates were prepared.The triplet energy level of organic ligand was measured.The photoluminescence properties of the Tb3+and Eu3+aromatic carboxylates and lifetimes were investated ,which indicated that these rare earth complexes have high quantum efficiency,Because of their excellent solubility,polmer-doping rare earth carboxylates were fabricated as thin fimls by spin-coating method and theri luminescence properties were studied,Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color,The maximum luminacnce of the device of ITO/PVK/PVK:Tb(AS)3Phen:PBD/PBD/Al is 32cd·m-2at28V.

  15. MWCNTs/Cellulose Hydrogels Prepared from NaOH/Urea Aqueous Solution with Improved Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Yingpu Zhang

    2015-01-01

    Full Text Available Novel high strength composite hydrogels were designed and synthesized by introducing multiwalled carbon nanotubes (MWCNTs into cellulose/NaOH/urea aqueous solution and then cross-linked by epichlorohydrin. MWCNTs were used to modify the matrix of cellulose. The structure and morphology of the hydrogels were characterized by Fourier transform infrared (FT-IR spectroscopy, high resolution transmission electron microscopy (HR-TEM, and scanning electron microscopy (SEM. The results from swelling testing revealed that the equilibrium swelling ratio of hydrogels decreased with the increment of MWCNTs content. Thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA results demonstrated that the introduction of MWCNT into cellulose hydrogel networks remarkably improved both thermal and mechanical properties of the composite hydrogels. The preparation of MWCNTs modifiedcellulose-based composites with improved mechanical properties was the first important step towards the development of advanced functional materials.

  16. [Preparation, characterization and surface-enhanced Raman properties of agarose gel/gold nanoparticles hybrid].

    Science.gov (United States)

    Ma, Xiao-yuan; Liu, Ying; Wang, Zhou-ping

    2014-08-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Naniocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Experimental data indicated a uniform distribution of gold nanoparticles adsorbed on agarose gel network And the excellent optical absorption properties were shown. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nano-composites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules Nile blue A. Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal.

  17. Preparation and properties of dough-modeling compound/fly ash/reclaim powder composites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.L. [Qiqihar University, Qiqihar (China)

    2007-12-15

    A novel composite was prepared with reclaim powder (RP) matrix, dough-modeling compound (DMC) reinforcement and fly ash (FA) filler in this article. The compatibility and crosslinking construction of the FA/RP composites were respectively, studied by the polarizing microscope and IR, the optimal formulation and experimental process were determined by measuring the mechanical properties such as shore A hardness, tensile strength, elongation at break, wear resistance and the thermal stability. The results showed that DMC/FA/RP composites exhibited extremely high mechanical and thermal properties when the mass ratio of the DMC/FA/RP composites was 45/25/100, and the cure condition is at 145 {sup o}C for 30 min under 9 MPa.

  18. Fabrication and properties of nanocrystalline zinc oxide thin film prepared by sol-gel method

    Directory of Open Access Journals (Sweden)

    Sumetha Suwanboon

    2008-01-01

    Full Text Available Zinc oxide (ZnO thin films were prepared on glass substrate by sol-gel dip-coating method. The structural properties were investigated by x-ray diffraction (XRD method and atomic force microscope (AFM. The optical properties were measured by UV-Vis spectrophotometer. The XRD patterns showed that the films formed preferred orientation along c-axis which increased as a function of polyvinyl pyrrolidone (PVP concentration. The films gave the crystallite size of 15-18 nm calculated by Scherrer’s formula and grain size of 48-70 nm measured by AFM at different PVP concentrations. The direct optical band gap of the films was in the range of 3.80-4.08 eV.

  19. Preparation, Photo and Electroluminescence Properties of Novel Rare Earth Aromatic Carboxylates

    Institute of Scientific and Technical Information of China (English)

    林秦; 符连社; 梁玉军; 郑佑轩; 林君; 张洪杰

    2002-01-01

    Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb3+ and Eu3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK∶Tb(AS)3Phen∶PBD/PBD/Al is 32 cd*m-2 at 28 V.

  20. A Magnetic Properties and Corrosion Resistance of Fe-Si Alloy Coating Prepared on Mild Steel

    Directory of Open Access Journals (Sweden)

    Yi WANG

    2014-12-01

    Full Text Available The present work deals with preparation of Fe3Si coatings on mild steel and evaluation of its magnetic property and corrosion behavior. Magnetic property of coatings was measured using a vibrating sample magnetometer, the result shows that the saturation magnetization reached to the maximum value (214.1 emu•g-1 and the coercivity fell to the lowest (23.11 Oe in 1000oC. Corrosion behaviour of the coatings was studied using polarization in 3.5%NaCl solution. It was found that the corrosion current density (icorr decreased with increasing of heat treatment temperature up to 1000oC, indicating an improvement in corrosion resistance. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6446

  1. Research on Preparation and Properties of Coated Polyether Silicone Microencapsulation Based on Polystyrene

    Directory of Open Access Journals (Sweden)

    Ren Shuiyun

    2015-01-01

    Full Text Available By the method of interfacial polymerization, the novel microcapsules were prepared with polystyrene as wall material and polyether silicone as core material. In order to demonstrate the morphologies, particle size distribution and properties of microcapsules, scanning electron microscopy (SEM, laser particle size analysis and infrared spectroscopy (FTIR are also applied in the experiments, and the thermal stability of microcapsules is obtained by thermal gravimetric (TG and differential scanning calorimetry (DSC. The material ratio (core to wall in weight of microcapsules and stirring rate ratio are discussed. The results show that under the optimum process conditions of a material ratio (core to wall in weight which is 4:10 and agitating rate of 500r·min‒1, the synthesized polyether silicone microcapsules have a higher yield and the coating and densification properties; their average size is 210μm, and the thermal stability temperature can reach up to 390°C.

  2. Study on the Property of α-Galactosidase from the Germinating Coffee Bean%发芽咖啡豆α-半乳糖苷酶的性质研究

    Institute of Scientific and Technical Information of China (English)

    沈汪洋; 金征宇

    2011-01-01

    [ Objective ] The research aimed to study the enzymatic properties of α-Gal from the germinating coffee bean. [ Method ] α-Gal was ex tracted from the germinating coffee bean. The enzyme activities in the different temperature and pH were studied. Moreover,the optimum tempera ture and pH were determined. The influences of different metal ions and ion strengths (NaCl) on the enzyme activity of α-Gal were studied. Lin eweaver-Burk double reciprocal plot was used to measure Km and Vmax of α-Gal. [ Result]The optimum temperature and pH of α-Gal were respec tively 45 ℃ and 6. 0. The thermal stable temperature range was 20 - 50 ℃ ,and pH stable range was 5.0 - 7.0. The influences of Na+ ,K + ,Mg2+and Cu2+ on the enzyme activity of α-Gal weren' t big. Zn2+ promoted the enzyme activity,and Ba2+ slightly inhibited the enzyme activity. Hg2+ strongly inhibited the activity of α-Gal. When the ion strength (NaCl) was during 0 -0.25 mol/L,the activity of α-Gal Wasn' t affected. By Lineweaver-Burk double reciprocal plot ,Km and Vmax of α-Gal were respectively 0.556 mmol/L and 1.19 μmol/min. [ Conclusion]The research provided the theory guidance for the further application of α-Gal from the germinating coffee bean.%[目的]研究发芽咖啡豆α-半乳糖苷酶的酶学性质.[方法]从发芽咖啡豆中提取α-半乳糖苷酶,研究不同温度和pH下的酶活,并确定该酶的最适温度和pH.研究了不同金属离子和不同离子强度(NaCl)对α-半乳糖苷酶酶活的影响.Lineweaver-Burk双倒数作图法测定该酶的Km和Vmax.[结果]α-半乳糖苷酶的最适温度和pH分别为45 ℃、6.0,热稳定温度范围为20~50 ℃,pH稳定范围为5.0~7.0.Na+、K+、Mg2+和Cu2+对α-半乳糖苷酶酶活的影响不大,Zn2+促进酶活,Ba2+对酶活稍有抑制,Hg2+强烈抑制α-半乳糖苷酶的活性.在0~0.25 mol/L离子强度(NaCI)范围内,α-半乳糖苷酶的酶活不受影响.Lineweaver-Burk双倒数作图法测定该酶的Km和Vmax

  3. Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion.

    Science.gov (United States)

    Liu, J; Zhang, F; McGinity, J W

    2001-09-01

    The objective of the present study was to investigate the influence of formulation factors on the physical properties of hot-melt extruded granules and compressed tablets containing wax as a thermal binder/retarding agent, and to compare the properties of granules and tablets with those prepared by a high-shear melt granulation (MG) method. Powder blends containing phenylpropanolamine hydrochloride, Precirol and various excipients were extruded in a single-screw extruder at open-end discharge conditions. The extrudates were then passed through a 14-mesh screen to form granules. The extrusion conditions and the optimum amount of wax to function as the thermal binder were dependent on the properties of the filler excipients. At the same wax level, drug release from tablets decreased in the order of using microcrystalline cellulose (MCC), lactose and Emcompress as the filler excipient. The observed differences in the dissolution properties of the tablets were due to the differences in the solubility, swellability and density of the filler excipients. Replacing Precirol with Sterotex K, a higher melting point wax, resulted in slightly increased dissolution rates, when the extrusion was performed at the same temperature conditions. Hot-melt extruded granules were observed to be less spherical than high-shear melt granules and showed lower values of bulk/tap densities. However, tablets containing MCC or lactose granules prepared by hot-melt extrusion (HME) exhibited higher hardness values. Slower drug release rates were found for tablets containing MCC by HME compared with MG. Analysis of the hot-melt extruded granules showed better drug content uniformity among granules of different size ranges compared with high-shear melt granules, resulting in a more reproducible drug release from the corresponding tablets.

  4. Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hailin; Hu, Chao [Key Laboratory of Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zhang, Fangfang [Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006 (China); Feng, Xinxing, E-mail: f0712@tom.com [The Quartermaster Research Institute of the General Logistic Department of CPLA, Beijing 100082 (China); Li, Jiuming; Liu, Tao [Key Laboratory of Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chen, Jianyong, E-mail: cjy@zstu.edu.cn [Key Laboratory of Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zhang, Jianchun [The Quartermaster Research Institute of the General Logistic Department of CPLA, Beijing 100082 (China)

    2014-09-01

    The modified mesoporous 58S bioglass (SM58S) was prepared through surface modification of the mesoporous 58S bioglass (M58S) with γ-aminopropyl triethoxysilane (KH550). The results of Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) showed that the amino groups were grafted to the surface of M58S after modification with KH550. The silver-containing SM58S (Ag-SM58S) and M58S (Ag-M58S) were prepared by the dipping method. The Ag{sup +} loading capacity, release rate and antibacterial properties of Ag-SM58S and Ag-M58S were investigated. It is indicated that surface modification of M58S with KH550 can improve the Ag{sup +} loading capacity. The result of antibacterial property showed that Ag-SM58S exhibited significant anti-bacterial effects against Escherichia coli and Staphylococcus aureus. The sustained release of Ag{sup +} from Ag-SM58S for 768 h ensured excellent antibacterial property of Ag-SM58S. In vitro osteoblast proliferation and differentiation tests showed that Ag-SM58S was a good matrix for the growth of osteoblasts. Consequently, the results of the study suggested that Ag-SM58S might be a promising bone repair material. - Highlights: • The amino groups are grafted to the surface of M58S after modification with KH550. • Surface modification of M58S with KH550 can improve the Ag{sup +} loading capacity. • The sustained release of Ag{sup +} from Ag-SM58S ensures good antibacterial property.

  5. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    Science.gov (United States)

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  6. Production of African breadfruit (Treculia africana) and soybean (Glycine max) seed based food formulations, 1: Effects of germination and fermentation on nutritional and organoleptic quality.

    Science.gov (United States)

    Ariahu, C C; Ukpabi, U; Mbajunwa, K O

    1999-01-01

    Germination and fermentation were investigated as methods of improving the nutritional and organoleptic properties of soybean and African breadfruit seed based food formulations. Four products consisting of germinated-fermented soy-breadfruit seeds (GFSB), nongerminated-fermented soy-breadfruit seeds (NGFSB), germinated-nonfermented soy-breadfruit seeds (GNFSB) and nongerminated-nonfermented soy-breadfruit seeds (NGNFSB) were prepared. Phytic acid contents, in vitro protein digestibilities, protein efficiency ratios (PER), net protein ratios (NPR), flavor, appearance and overall acceptability were evaluated. Germination followed by natural lactic fermentation significantly (p phytic acid by a factor of 11.6 in NGNFSB compared to reduction factors of 2.1 and 1.5 in GNFSB and NGFSB, respectively. The in vitro protein digestibility (%), PER and NPR values of 73.4, 2.46 and 3.62 for GFSB; 71.1, 2.35 and 3.46 for NGFSB; 68.7, 2.16 and 3.41 for GNFSB were significantly (p < 0.05) higher than the 64.7, 1.82 and 2.11 for NGNFSB. The mean sensory scores were 5.26-5.67 for GNFSB, 4.66-4.94 for NGNFSB, 4.33-4.80 for GFSB and 4.27-4.34 for NGFSB on a 7-point rating scale.

  7. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis.

    Science.gov (United States)

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)-carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2-carbon composite powders. The amorphous bare WS2 and WS2-carbon composite powders have Brunauer-Emmett-Teller (BET) surface areas of 2.8 and 4 m(2) g(-1), respectively. The initial discharge and charge capacities of the WS2-carbon composite powders at a current density of 100 mA g(-1) are 1055 and 714 mA h g(-1), respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g(-1), respectively. The discharge capacities of the WS2-carbon composite powders for the 2(nd) and 50(th) cycles are 716 and 555 mA h g(-1), respectively, and the corresponding capacity retention measured after first cycle is 78%.

  8. Preparation of human hepatocellular carcinoma-targeted liposome microbubbles and their immunological properties

    Institute of Scientific and Technical Information of China (English)

    Ai-Na Bian; Yun-Hua Gao; Kai-Bin Tan; Ping Liu; Gong-Jun Zeng; Xin Zhang; Zheng Liu

    2004-01-01

    AIM: To prepare the human hepatocellular carcinoma.(HCC)-targeted liposome microbubbles and to investigate their immunological properties.METHODS: Human hepatocarcinoma specific monoclonal antibody HAb18 was attached to the surface of home-made liposome microbubbles by static attraction to prepare the targeted liposome microbubbles. The combination of HAb18 with liposome microbubbles was confirmed by the slide agglutination test and immunofluorescent assay. Their immunological activity was measured by ELISA. Rosette formation test, rosette formation blocking test and immunofluorescent assay were used to identify the specific binding of targeted liposome microbubbles to SMMC-7721 hepatoma cells, and cytotoxicity assay was used to detect their effect on human hepatocytes.RESULTS: The targeted liposome microbubbles were positive in the slide agglutination test and immunofluorescent assay. ELISA indicated that the immunological activity of HAb18 on the liposome microbubbles was similar to that of free HAb18. SMMC-7721 cells were surrounded by the targeting liposome microbubbles to form rosettes, while the control SGC-7901 gastric cancer cells were not. Proliferation of SMMC-7721 cells and normal human hepatocytes was not influenced by the targeted liposome microbubbles.CONCLUSION: The targeted liposome microbubbles with a high specific biological activity have been successfully prepared, which specifically bind to human hepatocarcinoma cells, and are non-cytotoxic to hepatocytes. These results indicate that the liposome microbubbles can be used as a HCC-targeted ultrasound contrast agent that may enhance ultrasound images and thus improve the diagnosis of HCC,especially at the early stage.

  9. Preparation of Ag/HBP/PAN Nanofiber Web and Its Antimicrobial and Filtration Property

    Directory of Open Access Journals (Sweden)

    Li-Rong Yao

    2016-01-01

    Full Text Available To widen the application of nanofibers web in the field of medical health materials, a new Ag/amino-terminated hyperbranched polymer (HBP/polyacrylonitrile (PAN nanofiber web with excellent antimicrobial activity and filtration property was produced with Ag/HBP dispersion solution and PAN nanofiber. Ag/HBP dispersion solution was prepared with HBP as reducer and stabilizer, and Ag/HBP/PAN nanofiber was prepared by modifying electrospun PAN nanofiber with Ag/HBP aqueous solution. The characterization results showed that spherical Ag nanoparticles were prepared and they had a narrow distribution in HBP aqueous solution. The results of Ag/HBP/PAN nanofiber characterized with SEM and EDS showed that the content of silver nanoparticles on the surface of PAN nanofiber was on the increase when the treating temperature rose. The bacterial reduction rates of HBP-treated PAN nanofiber against S. aureus and E. coli were about 89%, while those of the Ag/HBP/PAN nanofiber against S. aureus and E. coli were 99.9% and 99.96%, respectively, due to the cooperative effects from the amino groups in HBP and Ag nanoparticles. Moreover, the small pores and high porosity in Ag/HBP/PAN nanofiber web resulted in high filtration efficiency (99.9% for removing smaller particles (0.1 μm~0.7 μm, which was much higher than that of the gauze mask.

  10. Magnetic and electrical properties of oxygen stabilized nickel nanofibers prepared by the borohydride reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, V. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur West Bengal 721 302 India (India)], E-mail: veeturi@phy.iitkgp.ernet.in; Barik, S.K.; Bodo, Bhaskarjyoti [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur West Bengal 721 302 India (India); Karmakar, Debjani; Chandrasekhar Rao, T.V. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Bombay 400085 India (India)

    2008-03-15

    Fine nickel fibers have been synthesized by chemical reduction of nickel ions in aqueous medium with sodium borohydride. The thermal stability and relevant properties of these fibers, as-prepared as well as air-annealed, have been investigated by structural, magnetic and electrical measurements. As-prepared samples appear to have a novel crystal structure due to the presence of interstitial oxygen. Upon annealing in air, the fcc-Ni phase emerges out initially and develops into a nanocomposite subsequently by retaining its fiber-like structure in nano phase. The as-prepared sample is observed to be weakly magnetic at room temperature, but attains surprisingly high magnetization values at low temperatures. This is attributed to the modified spin structure, presumably due to the presence of interstitial oxygen in the lattice. Development of a weakly ferromagnetic and electrically conducting phase upon annealing in air is attributed to the formation of the fcc-Ni phase. The structural phase transformations corroborate well with magnetic and electrical measurements.

  11. Electrical properties of Si-doped GaN prepared using pulsed sputtering

    Science.gov (United States)

    Arakawa, Yasuaki; Ueno, Kohei; Imabeppu, Hideyuki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-01-01

    In this study, we investigated the basic electrical properties of Si-doped wurtzite GaN films prepared using a low-temperature pulsed sputtering deposition (PSD) process. We found that the electron concentration can be controlled in the range between 1.5 × 1016 and 2.0 × 1020 cm-3. For lightly Si-doped GaN ([Si] = 2.1 × 1016 cm-3), the room temperature (RT) electron mobility was as high as 1008 cm2 V-1 s-1, which was dominantly limited by polar optical phonon scattering. Moreover, we found that heavily Si-doped GaN prepared using PSD exhibited an RT mobility as high as 110 cm2 V-1 s-1 at an electron concentration of 2 × 1020 cm-3, which indicated that the resistivity of this film was almost as small as those of typical transparent conductive oxides such as indium tin oxide. At lower temperatures, the electron mobility increased to 1920 cm2 V-1 s-1 at 136 K, and the temperature dependence was well explained by conventional scattering models. These results indicate that Si-doped GaN prepared using PSD is promising not only for the fabrication of GaN-based power devices but also for use as epitaxial transparent electrode materials for nitride based optical devices.

  12. Preparation and Mechanical Properties of Glass Coats with High Temperature Radar Absorber

    Institute of Scientific and Technical Information of China (English)

    ZHU Dong-mei; LUO Fa; XIONG Liang-ming; ZHOU Wan-cheng

    2006-01-01

    BaO-La2O3-B2O3 (BLB) glass, suitable to be used as a sealing between metals, was chosen to be the binder in preparing glass coats on the Ti-alloy substrate. The SiCN nano-powder was introduced as the filler for the absorbing coat because it is considered to be a good high temperature absorber. The effect of the coating temperature and coating time on the tensile strength of the glass coat was investigated and the proper coating parameters to get good mechanical properties were determined. In addition, the effects of the SiCN content on the tensile strength of the absorbing coat were also discussed. Results show that it is possible to prepare the glass coat using the BLB glass as a binder. That the coat formed at 730 ℃ for 30 min has the best tensile strength witnesses 730 ℃, 30 min to be the proper parameter to prepare the glass coat. The BLB glass coat without SiCN powder possesses good tensile strength and the introduction of the SiCN absorber into the glass coat will lower the tensile strength. As the SiCN content increases, the tensile strength of the absorbing coat decreases, which could be attributed to the aggregation of SiCN in the coats.

  13. Preparation and tribological properties of lanthanum-doped TiO2 nanoparticles in rapeseed oil

    Institute of Scientific and Technical Information of China (English)

    GU Kecheng; CHEN Boshui; CHEN Yong

    2013-01-01

    Oleic acid (denoted as OA) surface-capped lanthanum-doped titanium dioxide composite nanoparticles,abbreviated as OA/La-TiO2,were prepared via sol-gel method in association with surface modification by oleic acid.The microstructure of as-prepared OA/La-TiO2 was characterized by means of X-ray diffraction,scanning electron microscopy and Fourier transform infrared spectrometry,and their thermal stability was evaluated by thermogravimetry and differential scanning calorimetry.Moreover,the tribological properties of OA/La-TiO2 as lubricant additives in rapeseed oil were evaluated with a four-ball friction and wear tester.The morphology as well as elemental composition and chemical characteristics of worn steel surfaces was investigated by scanning electron microscopy,energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy.Results showed that as-prepared OA/La-TiO2 particles were of spherical shape and had an average diameter of 20 nm.In the meantime,OA/La-TiO2 particles doped with 1.5% (molar ratio; the same hereafter) and 2.5% of lanthanum could markedly improve the anti-wear and friction-reducing capacities of rapeseed oil.This is attributed to the formation of a complex boundary lubrication film mainly composed of the oxides of iron,titanium and lanthanum as well as the formation of an adsorption film of oleic acid on steel sliding surfaces.

  14. Effect of humidity on microstructure and properties of YBCO film prepared by TFA-MOD method

    Institute of Scientific and Technical Information of China (English)

    WANG Lianhong; LI Tao; GU Hongwei

    2009-01-01

    Epitaxial YBCO superconducting films were deposited on the single crystal LaAlO3. (001) substrate by metal organic deposition method. All YBCO films were fired at 820 ℃ in humidity range of 2.6%-19.7% atmosphere. Microstructure of YBCO thin films was ana-lyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Superconducting properties of YBCO films were measured by four-probe method. XRD results showed that the second phase (such as BaF2)and a-axis-oriented grains existed in the films prepared at 2.6% humidity condition; a-axis-oriented grains increased in the film prepared at higher than 4.2% humidity condition; almost pure c-axias-oriented grains existed in the films fired at 4.2% humidity condition. Morphologies of the YBCO films showed that all films had a smooth and crack-free surface. YBCO film prepared at 4.2% humidity condition showed Jc value of 3.3 MA/cm2 at 77 K in self-field.

  15. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods.

    Science.gov (United States)

    Zeng, Shaoxiao; Wu, Xiaoting; Lin, Shan; Zeng, Hongliang; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2015-11-01

    Lotus seed resistant starch (LRS) is commonly known as resistant starch type 3 (LRS3). The objective of this study was to investigate the effect of different preparation methods on the structural characteristics and physicochemical properties of LRS3. The molar mass of LRS3 prepared by autoclaving method (GP-LRS3) and ultrasonic-autoclaving method (UP-LRS3) was mainly distributed in the range 1.0 × 10(4)-2 × 10(4) g/mol while a decrease of LRS3 prepared by microwave-moisture method (MP-LRS3) was observed. The particle of MP-LRS3 was smaller and relatively smoother while UP-LRS3 was bigger and rougher compared to GP-LRS3. Among these samples, GP-LRS3 exhibited the highest degree of ordered structure and crystallinity, the amorphous region of MP-LRS3 was the biggest and UP-LRS3 displayed the highest degree of double helical structure. Additionally, MP-LRS3 displayed the strongest solubility and swelling power while UP-LRS3 exhibited the strongest iodine absorption ability and thermostability, which were affected by their structural characteristics.

  16. Preparation of semi-IPN(BA–VAc–VAE) by emulsion polymerization and its properties investigation

    Indian Academy of Sciences (India)

    Shi Luo; Zonghui Liu; Bailing Liu; Qi Liu

    2011-12-01

    A semi-interpenetrating polymer network (semi-IPN) combining vinyl acetate–ethylene (VAE) and butyl acrylate (BA), as well as vinyl acetate (VAc), was prepared through emulsion polymerization with the help of self-made dispersant and diethylene glycol diacrylate (DEGDA), the cross-linking agent. Both the dispersant and DEGDA had significant contribution on the preparation of semi-IPN(BA–VAc–VAE). And, the DEGDA had a strong influence on the conversion of polymerization system. The effects of emulsifiers and their amounts on the stability of obtained emulsions have been determined, and the best choices have been made after series experiments. The optical microscopy (OM), FTIR and DSC methods were adopted to characterize the structure and composition, morphology, and Tg of the prepared emulsions, respectively. Various comparisons have been made between the semi-IPN and VAE emulsions, and the experimental results indicated that the semi-IPN(BA–VAc–VAE) had been developed with improved properties in both water resistance and adhesion.

  17. Preparation, properties and potential applications of a photocurable varnish with pleasant limonene smell

    Directory of Open Access Journals (Sweden)

    Bednarczyk Paulina

    2016-06-01

    Full Text Available Photocurable materials which are obtained on the basis of urethane acrylate resins are often used in the industry for the production varnishes or protective coatings. The main disadvantage which is connected with the utilization of these varnishes is their unpleasant smell during the process of production and curing. This work presents the photocurable varnish which was obtained on the basis of aliphatic urethane acrylate and R-(+-limonene. The utilization of this raw materials allows to obtain the smelling coatings. The aim of this work were the studies on the influence of limonene molecules on the mechanical properties of the UV-cured coatings. These studies showed that the coatings with limonene molecules retain their properties, and are characterized by the very good adhesion, cohesion and high gloss. These kinds of varnishes can be applied for preparation of appropriate protective coatings on the surface of wood, metals, and nail plates. These protective coatings have not only pleasure smell but also can have the bactericidal and fungicidal properties. The studies performed with Escherichia coli ATCC29425 and Candida albicans confirmed these properties.

  18. Catalytic property of TiO2/PS complex nanoparticles prepared via a novel TSM

    Indian Academy of Sciences (India)

    Bitao Su; Xiaohong Zhang; Zhanying Ma; Peng Fei; Jiaxing Sun; Ziqiang Lei

    2010-12-01

    With an average size of 7 nm and good catalytic property under the natural light, TiO2/PS complex nanoparticles were successfully prepared through a novel two-step method (TSM) from TiCl4, used as both the catalyst for polymerization of styrene and Ti source, and styrene monomer and characterized by TG-DTA, XRD, IR, TEM and UV-Vis techniques. Its catalytic property was evaluated by the decolourization and degradation of dye MB solution under the natural light. From its TEM, the particles with an average size of 7 nm were observed without the separation of TiO2 and PS phases, i.e., TiO2/PS was hybrid material in nanosize scale. IR spectrum of TiO2/PS showed increase of unsaturated degree and growth of the group C=O on the chain of PS and Ti–O–C coordination bond between TiO2 and PS. The nanosize of the TiO2/PS complex particles and the conjugated structure and polar groups of PS were advantageous to good adsorptive property and strong interaction of PS and TiO2. And they brought multi-functions of inorganic and organic materials in the single material. Catalytic experiments indicated that the complex nanoparticles could catalytically degrade dye MB solution in 10 min under the natural light while P25 basically showed adsorptive property for MB molecules under the same conditions.

  19. Preparation and Determination of the Physical and Chemical Properties of Margarine

    Directory of Open Access Journals (Sweden)

    Habazin, S.

    2012-02-01

    Full Text Available Nutrition is one of the most basic needs of the human body. It ensures the introduction of substances needed to sustain life of the organism, its growth and proper development. In the food pyramid, fats together with carbohydrates are at the very top. One source of fat in human nutrition is margarine. Margarine comprises at least 82 % vegetable fats and 16 % water. The remainder consists of lecithin, sugar, salt, colours, and vitamins.The margarine production process involves hydrogenation of vegetable fats, assembling the margarine mixture, emulsifying, crystallization and packing.The objective of this study was to show that margarine could be prepared in a school laboratory under conditions that are applicable for such laboratory. Meaning:a In a school laboratory at normal pressure and at elevated temperature with nickel as catalyst, i.e. without the use of an autoclave, carry out the reaction of hydrogenation soybean and palm oil in order to obtain a vegetable fat that is the basic ingredient of margarine. During the preparation of margarine, the hydrogenation reaction was carefully monitored by determining the iodine value.b Preparation of margarine obtained from vegetable fats.c Determination and comparison of selected physical and chemical properties of the product with the same properties of several types of margarines available on the market. The following properties were determined:– Melting point, in order to obtain composition of fat phase and determine suitability for humanuse.– Acid value, as an indicator of the amount of free fatty acids that influence the taste.– Peroxide value, for insight into the oxidative stability of fats.This work has shown that it is possible to make vegetable fat in a school lab by hydrogenation of vegetable oils. Unlike the industrial process of hydrogenation carried out under a pressure of 0.36 to 2 atm, which takes about two hours, our reaction was carried out at atmospheric pressure but with a

  20. Preparation of MWNTs/Al2O3 composites and their mechanical and electrical properties

    Institute of Scientific and Technical Information of China (English)

    FAN; Jinpeng; ZHAO; Daqing; XU; Zening; WU; Minsheng

    2005-01-01

    The mechanical and electrical properties of MWNTs/Al2O3 composite prepared fabricated by hot pressing are investigated. The relation between properties and microstructure of composites is also discussed. With 4wt% MWNTs as reinforcement, the fracture toughness of composite obtained reaches 5.55 Mpa·m1/2, which is 80% higher than that of pure Al2O3 obtained in the same conditions. The main toughening mechanism is CNTs' pinning alumina grain boundaries, and the pullout of CNTs takes effect also. Through adding 2wt% MWNTs and altering the mix method, the fracture toughness of the composite obtained is 3.97 Mpa·m1/2. Furthermore, the electrical resistivity is as low as 8.4×10-3Ω·m, decreasing by 14 orders of magnitude compared with pure alumina ceramics. The function of CNTs in composite is related to the distribution state of CNTs in composite, and the distribution state of CNTs in matrix is dependent on preparation procedures.

  1. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite

    Science.gov (United States)

    Zhou, Yingying; Zhou, Wancheng; Li, Rong; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2016-03-01

    To solve the serious electromagnetic interference problems at elevated temperature, one thin microwave-absorbing sheet employing Co-coated carbonyl iron particles and polyimide was prepared. The Co-coated carbonyl iron particles were successfully prepared using an electroless plating method. The microstructure, composition, phase and static magnetic properties of Co-coated carbonyl iron particles were characterized by combination of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The electromagnetic parameters of Co-coated carbonyl iron particles/polyimide composite were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanism of the material-obtained was discussed. The microwave absorption properties of composites before and after heat treatment at 300 °C for 100 h were characterized in 2-18 GHz frequency range. It was established that composites based on Co-coated carbonyl iron demonstrate thermomagnetic stability, indicating that Co coating reduces the oxidation of carbonyl iron. Thus, Co-coated carbonyl iron particles/polyimide composites are useful in the design of microwave absorbers operating at temperatures up to 300 °C.

  2. Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting

    Science.gov (United States)

    Gustmann, T.; dos Santos, J. M.; Gargarella, P.; Kühn, U.; Van Humbeeck, J.; Pauly, S.

    2016-12-01

    Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, β 1' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.

  3. Preparation of silica thin films by novel wet process and study of their optical properties.

    Science.gov (United States)

    Im, Sang-Hyeok; Kim, Nam-Jin; Kim, Dong-Hwan; Hwang, Cha-Won; Yoon, Duck-Ki; Ryu, Bong-Ki

    2012-02-01

    Silicon dioxide (SiO2) thin films have gained considerable attention because of their various industrial applications. For example, SiO2 thin films are used in superhydrophilic self-cleaning surface glass, UV protection films, anti-reflection coatings, and insulating materials. Recently, many processes such as vacuum evaporation, sputtering, chemical vapor deposition, and spin coating have been widely applied to prepare thin films of functionally graded materials. However, these processes suffer from several engineering problems. For example, a special apparatus is required for the deposition of films, and conventional wet processes are not suitable for coating the surfaces of substrates with a large surface area and complex morphology. In this study, we investigated the film morphology and optical properties of SiO2 films prepared by a novel technique, namely, liquid phase deposition (LPD). Images of the SiO2 films were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM) in order to study the surface morphology of these films: these images indicate that films deposited with different reaction times were uniform and dense and were composed of pure silica. Optical properties such as refractive index and transmittance were estimated by UV-vis spectroscopy and ellipsometry. SiO2 films with porous structures at the nanometer scale (100-250 nm) were successfully produced by LPD. The deposited film had excellent transmittance in the visible wavelength region.

  4. Preparation of magnetic rubber with high mechanical properties by latex compounding method

    Science.gov (United States)

    Hou, Chunlin; Gao, Li; Yu, Hailing; Sun, Youyi; Yao, Junru; Zhao, Guizhe; Liu, Yaqing

    2016-06-01

    the magnetic rubber based on Fe3O4 nanoparticles and nature rubber were prepared by latex compounding method, in which stable Fe3O4 aqueous solutions were mixed with natural rubber latex and additives. This process was fast, versatile, reliable, safe, environmentally friendly and inexpensive. What's more, it was found that the magnetic and mechanical properties of magnetic rubber increased together with increase in doping content of Fe3O4 nanoparticles. Especially, it was demonstrated that the tensile strength (25.0 Mpa) of magnetic rubber was improved to be 478.0% comparing to neat natural rubber (5.2 Mpa), which was 5 times higher than maximal value reported in previous work. At the same time, the magnetic rubber revealed better thermal stability and solvent resistance comparing to the neat natural rubber, too. The work dose not only provides a new way to environmentally friendly preparation of magnetic rubber at low temperature, but also improve the mechanical and magnetic properties of magnetic rubber applied in industry.

  5. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment.

    Science.gov (United States)

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Noguchi, Shuji; Itai, Shigeru

    2014-07-01

    The impact of different active pharmaceutical ingredients (APIs) loading on the properties of orally disintegrating tablets (ODTs) prepared according to our previously reported microwave (MW) treatment process was evaluated using famotidine (FAM), acetaminophen (AAP), and ibuprofen (IBU). None of the APIs interrupted the tablet swelling during the MW treatment and the tablet hardness were improved by more than 20 N. MW treatment, however, led to a significant increase in the disintegration time of the ODTs containing IBU, but it had no impact on that of the ODTs containing FAM or AAP. This increased disintegration time of the ODTs containing IBU was attributed to the relatively low melting point of IBU (Tm=76 °C), with the IBU particles melting during the MW treatment to form agglomerates, which interrupted the penetration of water into the tablets and delayed their disintegration. The effects of the MW treatment on the chemical stability and dissolution properties of ODTs were also evaluated. The results revealed that MW treatment did not promote the degradations of FAM and AAP or delay their release from the ODTs, while dissolution of the ODTs containing IBU delayed by MW treatment. Based on these results, the MW method would be applicable to the preparation of ODTs containing APIs with melting points higher than 110 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Preparation and Characterization of UV-Curable Cyclohexanone-Formaldehyde Resin and Its Cured Film Properties

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2014-01-01

    Full Text Available UV-curable cyclohexanone-formaldehyde (UVCF resin was prepared with cyclohexanone-formaldehyde (CF resin, isophorone diisocyanate (IPDI, and pentaerythritol triacrylate (PETA as base substance, bridging agent, and functional monomer, respectively. The structure of UVCF was characterized by Fourier transform infrared spectroscopy (FT-IR, 1H-nuclear magnetic resonance spectroscopy (1H-NMR, and gel permeation chromatography (GPC. The viscosity and photopolymerization behavior of the UV-curable formulations were studied. The thermal stability and mechanical properties of the cured films were also investigated. The results showed that UVCF resin was successfully prepared, the number of average molecular weight was about 2010, and its molecular weight distribution index was 2.8. With the increase of UVCF resin content, the viscosity of the UV-curable formulations increased. After exposure to UV irradiation for 230 s, the photopolymerization conversion of the UV-curable formulations was above 80%. Moreover, when the UVCF content was 60%, the formulations had high photopolymerization rate, and the cured UVCF films showed good thermal stability and mechanical properties.

  7. Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting

    Science.gov (United States)

    Gustmann, T.; dos Santos, J. M.; Gargarella, P.; Kühn, U.; Van Humbeeck, J.; Pauly, S.

    2017-03-01

    Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, β 1' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.

  8. Effects of sample preparation on the optical properties of breast tissue

    Science.gov (United States)

    Marks, Fay A.

    1996-04-01

    The optical properties of biological tissue should be determined in vivo whenever possible. However, for those instances when in vivo studies are impractical, too expensive or inappropriate, and when blood flow is not an issue, the ability to perform in vitro studies then becomes invaluable. Optical absorption spectroscopy shows that it may be possible to obtain meaningful information about the optical properties of human breast tissue from in vitro samples if strict preparation and measuring protocols are used. That a strict protocol for storing and handling tissue is critical can be seen from our observations of changes in the optical absorption spectra that occur in response to formalin fixation, the passage of time, application of stains and dyes, and storage in growth medium of the excised tissue. In vivo optical absorption spectroscopy measurements have been made on human breast cancer xenografts and compared with in vitro measurements on breast biopsies prepared according to precise collection and treatment protocols. There is a 'window of opportunity' before time dependent changes in the UV optical absorption spectra of the excised tissue specimens occur. This time window of opportunity widens at longer wavelengths with the least changes occurring in the optical spectra in the NIR.

  9. CoFe2O4-SiO2 Composites: Preparation and Magnetodielectric Properties

    Directory of Open Access Journals (Sweden)

    T. Ramesh

    2016-01-01

    Full Text Available Cobalt ferrite (CoFe2O4 and silica (SiO2 nanopowders have been prepared by the microwave hydrothermal (M-H method using metal nitrates as precursors of CoFe2O4 and tetraethyl orthosilicate as a precursor of SiO2. The synthesized powders were characterized by XRD and FESEM. The (100-x (CoFe2O4 + xSiO2 (where x = 0%, 10%, 20%, and 30% composites with different weight percentages have been prepared using ball mill method. The composite samples were sintered at 800°C/60 min using the microwave sintering method and then their structural and morphological studies were investigated using X-ray diffraction (XRD, Fourier transformation infrared (FTIR spectra, and scanning electron microscopy (SEM, respectively. The effect of SiO2 content on the magnetic and electrical properties of CoFe2O4/SiO2 nanocomposites has been studied via the magnetic hysteresis loops, complex permeability, permittivity spectra, and DC resistivity measurements. The synthesized nanocomposites with adjustable grain sizes and controllable magnetic properties make the applicability of cobalt ferrite even more versatile.

  10. Mechanical and Thermal Properties of Poly(urethane urea Nanocomposites Prepared with Diamine-Modified Laponite

    Directory of Open Access Journals (Sweden)

    Joe-Lahai Sormana

    2008-01-01

    Full Text Available Nanocomposites based on segmented poly(urethane urea were prepared by reacting a poly(diisocyanate with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constant NH2 to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea, all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading increased, tensile properties passed through a maximum at a particle concentration of 1 mass%, at which a 300% increase in tensile strength and 40% increase in elongation at break were observed. A maximum in urea and urethane hard-domain melting endotherms was also observed at this Laponite loading. Optimal mechanical and thermal properties coincided with a minimum in the size of the inorganic Laponite phase. Nanocomposites containing diamine-modified Laponite had higher tensile strengths than those with nonreactive monoamine-modified Laponite or diamine-modified Cloisite.

  11. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2015-01-01

    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  12. Preparation,structure and properties of PP-g-AA grafting copolymer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polypropylene grafting with AA was prepared by reactive extrusion with pre-irradiated PP (rPP) as the homogeneous initiator.The effects of the pre-irradiated dose,the fraction of rPP and the concentration of acrylic acid on the grafting reaction were studied and the grafted PP was characterized by Fourier transition infrared spectroscopy (FTIR),differential scanning calorimeter (DSC)and polarized light microscopy (PLM).The results show that the degradation of PP was suppressed efficiently with this novel method for preparing PP-g-AA copolymers,and the grafted copolymers with good mechanical properties were obtained.It was found that the product with higher graft degree (Gd)(0.19%) and relatively excellent mechanical properties can be produced if the mass ratio of PP/rPP/AA 4 kGy.Moreover,an adhesive strength of 4.88 kN/m was reached in the PP-g-AA/aluminum laminate.

  13. Film properties of alumina passivation layer for silicon solar cells prepared by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Ryosuke, E-mail: rwatanabe@st.seikei.ac.jp; Kawashima, Mizuho; Saito, Yoji

    2015-09-01

    We prepared alumina passivation films deposited by a sol-gel wet process for silicon substrates. Aluminum acetylacetonate was used as a precursor, and the solution was spin-coated onto silicon substrates. Calcination temperature dependence of the passivation quality of the films was evaluated mainly by measuring effective lifetime using a photo conductance decay technique and capacitance–voltage measurements. Also, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were carried out to evaluate film properties. A large amount of negative fixed charge density (Q{sub f} = − 3.1 × 10{sup 12} cm{sup −2}) exists in the films calcined at 300 °C. On the other hand, a long effective lifetime of 400 μs was obtained for the sample calcined at 600 °C, and the passivation films had a large amount of positive fixed charge density (Q{sub f} = 3.6 × 10{sup 12} cm{sup −2}) with a low interface state density. - Highlights: • Alumina passivation films for silicon solar cells were prepared by spin-coating. • Electronic properties and the quality of passivation films were investigated. • Carrier lifetime was enhanced for the samples that were calcined above 400 °C. • The films calcined at 300 °C have high amount of negative fixed charge.

  14. Design and Preparation of a Unique Segregated Double Network with Excellent Thermal Conductive Property.

    Science.gov (United States)

    Wu, Kai; Lei, Chuxin; Huang, Rui; Yang, Weixing; Chai, Songgang; Geng, Chengzhen; Chen, Feng; Fu, Qiang

    2017-03-01

    It is still a challenge to fabricate polymer-based composites with excellent thermal conductive property because of the well-known difficulties such as insufficient conductive pathways and inefficient filler-filler contact. To address this issue, a synergistic segregated double network by using two fillers with different dimensions has been designed and prepared by taking graphene nanoplates (GNPs) and multiwalled carbon nanotubes (MWCNT) in polystyrene for example. In this structure, GNPs form the segregated network to largely increase the filler-filler contact areas while MWCNT are embedded within the network to improve the network-density. The segregated network and the randomly dispersed hybrid network by using GNPs and MWCNT together were also prepared for comparison. It was found that the thermal conductivity of segregated double network can achieve almost 1.8-fold as high as that of the randomly dispersed hybrid network, and 2.2-fold as that of the segregated network. Meanwhile, much higher synergistic efficiency (f) of 2 can be obtained, even greater than that of other synergistic systems reported previously. The excellent thermal conductive property and higher f are ascribed to the unique effect of segregated double network: (1) extensive GNPs-GNPs contact areas via overlapped interconnections within segregated GNPs network; (2) efficient synergistic effect between MWCNT network and GNPs network based on bridge effect as well as increasing the network-density.

  15. Preparation and property of UV-curable polyurethane acrylate film filled with cationic surfactant treated graphene

    Science.gov (United States)

    Xu, Jinghong; Cai, Xia; Shen, Fenglei

    2016-08-01

    The preparation of nanocomposite films composed of UV-curable polyurethane acrylate (PUA) and modified graphene were demonstrated in this paper. Cetyl trimethyl ammonium bromide modified graphene (CTAB-G) was prepared via intercalation of cationic surfactant and subsequently incorporated into PUA by UV curing technology. Fourier transform infrared spectra, wide-angle X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the structure and morphology of CTAB-G, as well as CTAB-G/PUA nanocomposite films. The results revealed that the CTAB-G sheets were layer-by-layer structure and dispersed uniformly in PUA matrix. Thermal gravimetric analysis showed that the thermal stabilities of UV-curable PUA nanocomposite films in this work were much higher than that of PUA nanocomposites previously reported. Dynamic mechanical analysis indicated that the dynamic mechanical properties of nanocomposite films were greatly enhanced in the presence of modified graphene sheets. In addition, the CTAB-G/PUA nanocomposite films exhibited improved dielectric properties and electrical conductivities compared with the pure PUA.

  16. Preparation and electrochemical properties of polymer Li-ion battery reinforced by non-woven fabric

    Institute of Scientific and Technical Information of China (English)

    HU Yong-jun; CHEN Bai-zhen; YUAN Yan

    2007-01-01

    A polymer electrolyte based on poly(vinylidene)fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl for mamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple.The polymer membrane has rich micro.porous structure on both sides and exhibits 280% uptake of electrolyte solution.The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m.The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate.After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V The discharge capacities of 0.5 and 1.0 current rates are 96%and 93% of mat of 0.1 current rate.respectively.

  17. Structural and ferroelectrical properties of bismuth titanate ceramic powders prepared by mechanically assisted synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2007-01-01

    Full Text Available Nanosized bismuth titanate, Bi4Ti3O12, was prepared via a high-energy ball milling process through mechanically assisted synthesis directly from the oxide mixture of Bi2O3 and TiO2. The Bi4Ti3O12 phase started to form after 1 h of milling. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduce significantly. The grain size was less than 16 nm and showed a strong tendency to agglomeration. The nucleation and phase formation of Bi4Ti3O12, crystal structure, microstructure, powder grain size and specific surface area were followed by XRD, Rietveld refinement analysis, SEM and the BET specific surface area measurements. Raman spectroscopy was used to explain the structural properties of Bi4Ti3O12 powder, prepared by mechanically assisted synthesis. Reduction in grain size with the increase of milling time was also noted (change in the position and relative intensity, which indicated changes in the structure, caused by nanodimension grains. The sample milled for 12 h and subsequently sintered at 1000°C for 24 h exhibited a hysteresis loop, confirming that the synthesized material possesses ferroelectric properties. .

  18. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    Science.gov (United States)

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase.

  19. Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-M. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)]. E-mail: smchen78@ms15.hinet.net; Liao, C.-J. [Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (China)

    2004-11-15

    Osmium hexacyanoferrate films have been prepared using repeated cyclic voltammetry, and the deposition process and the films' electrocatalytic properties in electrolytes containing various cations have been investigated. The cyclic voltammograms recorded the deposition of osmium hexacyanoferrate films directly from the mixing of Os{sup 3+} and Fe(CN){sub 6}{sup 3-} ions from solutions containing various cations. An electrochemical quartz crystal microbalance, cyclic voltammetry, and UV-visible spectroscopy were used to study the growth mechanism of the osmium hexacyanoferrate films. The osmium hexacyanoferrate films showed a single redox couple, and the redox reactions included 'electron transfer' and 'proton transfer' with a formal potential that demonstrates a proton effect in acidic solutions up to a 12 M aqueous HCl solution. The electrochemical and electrochemical quartz crystal microbalance results indicate that the redox process was confined to the immobilized osmium hexacyanoferrate film. The electrocatalytic reduction of dopamine, epinephrine, norepinephrine, S{sub 2}O{sub 3}{sup 2-}, and SO{sub 5}{sup 2-} by the osmium hexacyanoferrate films was performed. The preparation and electrochemical properties of co-deposited osmium(III) hexacyanoferrate and copper(II) hexacyanoferrate films were determined, and their two redox couples showed formal potentials that demonstrated a proton effect and an alkaline cation effect, respectively. Electrocatalytic reactions on the hybrid films were also investigated.

  20. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid Composite Microparticles

    Directory of Open Access Journals (Sweden)

    Zongrui Tong

    2017-04-01

    Full Text Available Alginate (Alg is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly(γ-glutamic acid (PGA is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.

  1. Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material

    Institute of Scientific and Technical Information of China (English)

    Li Han; Tang Xin-Feng; Cao Wei-Qiang; Zhang Qing-Jie

    2009-01-01

    This paper reports that the nanostructured β-FeSi2 bulk materials are prepared by a new synthesis process by combining melt spinning (MS) and subsequent spark plasma sintering (SPS). It investigates the influence of linear speed of the rolling copper wheel, injection pressure and SPS regime on microstructure and phase composition of the rapidly solidified ribbons after MS and bulk production respectively, and discusses the effects of the microstructure on Sis2 and ε-FeSi) in the rapidly solidified ribbons;thermal transport properties. There are two crystalline phases (α-Fe the crystal grains become smaller when the cooling rate increases (the 20 nm minimum crystal of ε-FeSi is obtained). Having been sintered for 1 min above 1123K and annealed for 5min at 923K, the single-phase nanostructured β- FeSi2 bulk materials with 200-500 nm grain size and 98% relative density are obtained. The microstructure of β-FeSi2has great effect on thermal transport properties. With decreasing sintering temperature, the grain size decreases, the thermal conductivity of β-FeSi2is reduced remarkably. The thermal conductivity of β-FeSi decreases notably (reduced 72% at room temperature) in comparison with the β-FeSi2prepared by traditional casting method.

  2. Preparation and Properties of Nanocomposites from Pristine and Modified SWCNTs of Comparable Average Aspect Ratios

    Science.gov (United States)

    Smith, Joseph G.; Delozier, Donavon M.; Watson, Kent A.; Connell, John W.; Bekyarova, E.; Haddon, R.; Yu, A.

    2008-01-01

    Low color, flexible, space-durable polyimide films with inherent and robust electrical conductivity to dissipate electrostatic charge (ESC) have been under investigation as part of a materials development activity for future NASA space missions. The use of single-walled carbon nanotubes (SWCNTs) is one means to achieving this goal. Even though the concentration of SWCNTs needed to achieve ESC dissipation is typically low, it is dependent upon purity, size, dispersion, and functionalization. In this study, SWCNTs prepared by the electric arc discharge method were used to synthesize nanocomposites using the LaRC(TradeMark) CP2 backbone as the matrix. Pristine and functionalized SWCNTs were mixed with an alkoxysilane terminated amide acid of LaRC(TradeMark) CP2 and the soluble imide form of the polymer and the resultant nanocomposites evaluated for mechanical, thermal, and electrical properties. Due to the preparative conditions for the pristine and functionalized SWCNTs, the average aspect ratio for both was comparable. This permitted the assessment of SWCNT functionalization with respect to various interactions (e.g. van der Waals, hydrogen bonding, covalent bond formation, etc.) with the matrix and the macroscopic effects upon nanocomposite properties. The results of this study are described herein.

  3. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.

    Science.gov (United States)

    Wang, Xinge; Chen, Haiming; Luo, Zhigang; Fu, Xiong

    2016-03-15

    In this research, 1-hexadecyl-3-methylimidazolium bromide C16mimBr/butan-1-ol/cyclohexane/water ionic liquid microemulsion was prepared. The effects of n-alkyl alcohols, alkanes, water content and temperature on the properties of microemulsion were studied by dilution experiment. The microregion of microemulsion was identified by pseudo-ternary phase diagram and conductivity measurement. Then starch nanoparticles were prepared by water in oil (W/O) microemulsion-cross-linking methods with C16mimBr as surfactant. Starch nanoparticles with a mean diameter of 94.3nm and narrow size distribution (SD=3.3) were confirmed by dynamic light scattering (DLS). Scanning electron microscope (SEM) data revealed that starch nanoparticles were spherical granules with the size about 60nm. Moreover the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) demonstrated the formation of cross-linking bonds in starch molecules. Finally, the drug loading and releasing properties of starch nanoparticles were investigated with methylene blue (MB) as drug model. This work may provide an efficient pathway to synthesis starch nanoparticles.

  4. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    Science.gov (United States)

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering.

  5. Thermoelectric properties and nanostructures of materials prepared from rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Pukird, S.; Tipparach, U.; Kasian, P. [Ubon Ratchathani Univ., Ubon Ratchathani (Thailand). Dept. of Physics; Limsuwan, P. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Dept. of Physics

    2009-07-01

    Thailand produces large amounts of agricultural residues such as rice husk and coconut shells. Rice husk is considered to be a potential source for solar grade silicon. Studies have shown that reasonably pure polycrystalline silicon can be prepared from rice husk white ash by a metallothermic reduction process. This paper reported on a study that investigated the thermoelectric properties of ceramic material prepared by mixing silica from rice husk ash and carbon obtained from coconut shell charcoal. The thermoelectric properties of the materials were examined along with their microstructures. The materials were made from burning rice husk ash and coconut shell at different temperatures and then doped with metal oxides. Pellets were heated at temperature of 700 degrees C for 1-3 hours. The voltage on both sides of the pellets was observed. The electromotive force was found when different temperatures were applied on both sides of the pellet specimens. The Seebeck coefficient was then calculated. The results showed that these materials can be used as thermoelectric devices. Scanning electron microscope (SEM) and energy dispersive X-rays (EDX) were used to investigate the source of materials and the products on the substrates. The images of SEM and EDX showed nanostructures of materials such as nanowires, nanorods and nanoparticles of the products and sources. 22 refs., 2 tabs., 9 figs.

  6. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    Science.gov (United States)

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  7. Preparation and tribological properties of stearic acid-modified hierarchical anatase TiO 2 microcrystals

    Science.gov (United States)

    Qian, Jianhua; Yin, Xiangyu; Wang, Ning; Liu, Lin; Xing, Jinjuan

    2012-01-01

    Hierarchical TiO2 microcrystals were synthesized through a facile solvothermal method. X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements were used to characterize the structure of the as-prepared samples. The results indicated that the synthesized hierarchical titania (TiO2) microspheres were composed of numerous anatase phase TiO2 particles. The as-prepared samples were chemically modified with stearic acid to improve their dispersion in oil. Fourier transmission infrared spectroscopy (FT-IR) and thermogravimetry analysis (TGA) were carried out to evaluate the characteristics of the modified TiO2 microcrystals. The tribological properties of the modified TiO2 microcrystals as additives of liquid paraffin were studied by a four-ball tester, and the results showed that they could significantly improve anti-wear performance, friction-reduction property and load-carrying capacity of liquid paraffin. These advantages make the modified TiO2 microcrystals promising for green lubricating oil additives.

  8. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    Science.gov (United States)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  9. Microstructure and mechanical properties of magnesium alloy prepared by lost foam casting

    Institute of Scientific and Technical Information of China (English)

    TIAN Xue-feng; FAN Zi-tian; HUANG Nai-yu; WU He-bao; DONG Xuan-pu

    2005-01-01

    The microstructure and mechanical properties of AZ91 alloy prepared by lost foam casting(LFC) and various heat treatments have been investigated.The microstructure of the AZ91 alloy via LFC consists of dominant α-Mg and β-Mg17Al12 as well as a new phase Al32 Mn25 with size of about 5-50 μm,which has not been detected in AZ91 alloy prepared by other casting processes.The tests demonstrate that the as-cast mechanical properties are higher than those of sand gravity casting because of chilling and cushioning effect of foam pattern during the mould filling.The solution kinetics and the aging processes at different temperatures were also investigated by hardness and electrical resistivity measurements.The kinetics of aging are faster at the high temperature due to enhanced diffusion of atoms in the matrix,so the hardness peak at 380 ℃ occurs after 10 h;while at the lower aging temperature(150 ℃),the peak is not reached in the time(24 h) considered.

  10. Experimental investigation on fuel properties of biodiesel prepared from cottonseed oil

    Science.gov (United States)

    Payl, Ashish Naha; Mashud, Mohammad

    2017-06-01

    In recent time's world's energy demands are satisfied by coal, natural gas as well as petroleum though the prices of these are escalating. If this continues, global recession is unavoidable and diminution of world reserve accelerates undoubtedly. Recently, Biodiesel is found to be more sustainable, non-toxic and energy efficient alternative which is also biodegradable. The use of biofuels in compression ignition engines is now a contemplation attention in place of petrochemicals. In view of this, cottonseed oil is quite a favorable candidate as an alternative fuel. The present study covers the various aspects of biodiesels fuel prepared from cottonseed oil. In this work Biodiesel was prepared from cottonseed oil through transesterification process with methanol, using sodium hydroxide as catalyst. The fuel properties of cottonseed oil methyl esters, kinematic viscosity, flash point, density, calorific value, boiling point etc. were evaluated and discussed in the light of Conventional Diesel Fuel. The properties of biodiesel produced from cotton seed oil are quite close to that of diesel except from flash point. And so the methyl esters of cottonseed oil can be used in existing diesel engines without any modifications.

  11. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: preparation, rheological, textural, mucoadhesive and release properties.

    Science.gov (United States)

    Karavana, Sinem Yaprak; Güneri, Pelin; Ertan, Gökhan

    2009-01-01

    This study developed and examined the characterization of Benzidamine hydrochloride (BNZ) bioadhesive gels as platforms for oral ulcer treatments. Bioadhesive gels were prepared with four different hydroxypropylmethylcellulose (HPMC) types (E5, E15, E50 and K100M) with different ratios. Each formulation was characterized in terms of drug release, rheological, mechanical properties and adhesion to a buccal bovine mucosa. Drug release was significantly decreased as the concentration and individual viscosity of each polymeric component increased due to improved viscosity of the gel formulations. The amount of drug released for the formulations ranged from 0.76 +/- 0.07 and 1.14 +/- 0.01 (mg/cm2 +/- SD). Formulations exhibited pseudoplastic flow and all formulations, increasing the concentration of HPMC content significantly raised storage modulus (G'), loss modulus (G''), dynamic viscosity (eta') at 37 degrees C. Increasing concentration of each polymeric component also significantly improved the hardness, compressibility, adhesiveness, cohesiveness and mucoadhesion but decreased the elasticity of the gel formulations. All formulations showed non-Fickian diffusion due to the relaxation and swelling of the polymers with water. In conclusion, the formulations studied showed a wide range of mechanical and drug diffusion characteristics. On the basis of the obtained data, the bioadhesive gel formulation which was prepared with 2.5% HPMC K 100M was determined as the most appropriate formulation for buccal application in means of possessing suitable mechanical properties, exhibiting high cohesion and bioadhesion.

  12. Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes.

    Science.gov (United States)

    Maestrelli, Francesca; Capasso, Gaetano; González-Rodríguez, Maria L; Rabasco, Antonio M; Ghelardini, Carla; Mura, Paola

    2009-01-01

    This study aimed to investigate the influence of the preparation conditions on the performance of an ethosomal formulation for topical delivery of the local anesthetic agent, benzocaine (BZC). Ethosomes were prepared with different techniques, such as thin-layer evaporation, freezing and thawing, reverse-phase evaporation, extrusion and sonication, obtaining, respectively, multilayer vesicles (MLVs), frozen and thawed MLV (FATMLV), large unilamellar vesicles (LUVs), and small unilamellar vesicles (SUVs). The obtained vesicles were characterized for morphology, size, zeta potential, and entrapment efficiency (EE%), and their stability was monitored during storage at 4 degrees C. In vitro permeation properties from gels incorporating drug ethosomal dispersions were evaluated in vitro by using artificial lipophilic membranes, while their anesthetic effect was determined in vivo on rabbits. The results suggested that the vesicle preparation method plays an important role in affecting the properties and effectiveness of ethosomal formulations. MLVs and LUVs exhibited higher drug EE% and better stability than FATMLV and SUV vesicles. The In vitro drug permeation rate was directly related to the vesicle EE% and varied in the order MLV>LUV approximately FATMLV>SUV. The therapeutic efficacy of BZC ethosomal formulations was significantly improved with respect to the corresponding BZC solution. The best results, in terms of enhanced intensity of anesthetic effect, were given by formulations containing MLVs and LUVs, and the order of effectiveness was MLV approximately LUV>FATMLV approximately SUV, rather similar to that found in permeation studies. On the contrary, unexpectedly, the effectiveness order in increasing the duration of drug action was SUV> or =MLV>LUV approximately FATMLV. The highest efficacy of SUVs was probably due to the more intimate contact with the epithelium due to their greatest surface area, which allowed the longest extension of drug therapeutic

  13. Physical properties and caffeine release from creams prepared with different oils

    Directory of Open Access Journals (Sweden)

    Wojciechowska Katarzyna

    2014-12-01

    Full Text Available Caffeine is a methylxanthine typically found in the Coffee Arabica L plant. Generally, caffeine is well-known as a orally administered mild stimulant of the central nervous system. However, for cosmetic purpose, caffeine is an active compound ingredient, at 7% concentration, in several anticellulite products. The efficiency of this mode of delivery is not fully understood. Hence, the aim of the study was to ascertain the effectiveness of particular carriers to release this ingredient. In so doing, we prepared six creams based upon different oils (Sesame oil, Rice oil, Walnut oil, Coconut oil, Sweet almond oil and Jojoba oil, containing 5% of caffeine, and compared the release of the substance from the obtained preparations. Initially, all of the creams were subjected to a variety of physical tests, among these being for slippage and spreadability. Furthermore, their rheological properties were evaluated. Subsequently, the creams were tested for caffeine release. In the slippage and spreadability tests, the coconut oil-based cream was revealed as having the best parameters. However, the rheological tests showed that all of the preparations had the pseudoplastic character of flowing according to the Ostwald de Waele power law model. The power low index (n for all the preparations was from 0.2467-0.3179 at 20°C and 0.2821-0.3754 at 32°C. At 20°C, the Sesame oil-, Walnut oil-, Sweet almond oil- and Jojoba oil-based creams were thixotropic, but at 32°C, thixotropy appeared only in the Walnut oil-based creams.

  14. Preparation and property of UV-curable polyurethane acrylate film filled with cationic surfactant treated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinghong; Cai, Xia; Shen, Fenglei, E-mail: shenfenglei@suda.edu.cn

    2016-08-30

    Highlights: • The non-covalent modification of graphene maintains the intrinsic structure of graphene compared with the covalent functionalization of graphene. • The initial degradation temperature of nanocomposite film increases by 57 °C which is much higher than that of PUA nanocomposite previously reported. • The nanocomposite film exhibits improved dielectric property and electrical conductivity. • The outstanding performance of CTAB-G/PUA films will open up enormous opportunities for applications in various regions such as high temperature or electrical field. - Abstract: The preparation of nanocomposite films composed of UV-curable polyurethane acrylate (PUA) and modified graphene were demonstrated in this paper. Cetyl trimethyl ammonium bromide modified graphene (CTAB-G) was prepared via intercalation of cationic surfactant and subsequently incorporated into PUA by UV curing technology. Fourier transform infrared spectra, wide-angle X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the structure and morphology of CTAB-G, as well as CTAB-G/PUA nanocomposite films. The results revealed that the CTAB-G sheets were layer-by-layer structure and dispersed uniformly in PUA matrix. Thermal gravimetric analysis showed that the thermal stabilities of UV-curable PUA nanocomposite films in this work were much higher than that of PUA nanocomposites previously reported. Dynamic mechanical analysis indicated that the dynamic mechanical properties of nanocomposite films were greatly enhanced in the presence of modified graphene sheets. In addition, the CTAB-G/PUA nanocomposite films exhibited improved dielectric properties and electrical conductivities compared with the pure PUA.

  15. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  16. Reinforcement of natural rubber latex with silica modified by cerium oxide:preparation and properties

    Institute of Scientific and Technical Information of China (English)

    张福全; 廖禄生; 王永周; 汪月琼; 黄红海; 李普旺; 彭政; 曾日中

    2016-01-01

    Variable masses of nano cerium oxide (CeO2) were added into nano silica (SiO2) to prepare the well-dispersed SiO2-CeO2 suspension (SiO2-CeO2), cetyltrimethyl ammonium bromide (CTAB) was used to adjust the compatibility of SiO2-CeO2 with rubber matrix, then SiO2-CeO2 modified by CTAB and curing formulas were mixed with fresh natural rubber (NR) latex to prepare NR/SiO2-CeO2 nanocomposites that contained 0–10 parts of CeO2 by a new emulsion compounding method. The morphologies, cure characteristics, mechanical properties and thermal-oxidative stability of NR/SiO2-CeO2 nanocomposites were investigated. The re-sults revealed that the presence of CeO2 in NR/SiO2-CeO2nanocomposites was favorable for enhancing the interaction between NR matrix and fillers, helped to get smaller SiO2-CeO2 particles with narrower particle size distribution, further improved the crosslink densities and mechanical properties of NR/SiO2-CeO2 nanocomposites vulcanizates. Meanwhile, the addition of CeO2 increased the active energy at least 4.66%, obviously improved the thermal-oxidative aging-inhibiting properties of NR/SiO2-CeO2 nanocomposites. Additionally, nanocomposites containing CeO2 promotedTg shift to high temperature direction, causing the nanocomposites featured higher tanδ at 0 ºC and lower tanδ at 60 ºC and exhibited comparable wet grip and lower rolling resistance when NR/SiO2-CeO2nano-composites were used in tire tread compound.

  17. Ultra high strain properties of lanthanum substituted PZT electro-ceramics prepared via mechanical activation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajeet, E-mail: jkajeet@yahoo.co.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Bhanu Prasad, V.V., E-mail: bhanu@dmrl.drdo.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); James Raju, K.C., E-mail: kcjrsp@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); James, A.R., E-mail: james@dmrl.drdo.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2014-06-25

    Highlights: • PLZT comparable with PMN–PT and their hot-pressed counterparts synthesized. • HEM applied for ceramic preparation at reduced sintering temperature. • Strain value (0.27%) comparable to previous reported values for PLZT 8/60/40. • The electric field induced (strain) hysteresis loss was also found to be very less. - Abstract: Substitution of lanthanum at the A sites of perovskite lead zirconate titanate ceramics shows an improvement in the structural and electrical properties. (Pb{sub 0.92}La{sub 0.08})(Zr{sub 0.60}Ti{sub 0.40})O{sub 3} (PLZT 8/60/40) was prepared using high energy mechano-chemical milling. The effect of milling on the microstructure and electrical properties of PLZT 8/60/40 has been studied. X-ray diffraction shows the phase formation after milling itself. TEM was used to measure the particle size. The SEM image of the sintered pellet shows a dense microstructure and the average grain size was found to be <1.5 μm. Electrical properties of the ceramics were characterized. Piezoelectric charge coefficient (d{sub 33}) was found to be 561 pC/N. Resonance studies were performed on poled ceramics and the electromechanical coupling factor was calculated by the resonance method. The PLZT 8/60/40 composition showed a well saturated and uniform P–E hysteresis loop with remanent polarization (P{sub r}) of 33.29 μC/cm{sup 2} and a coercive field (E{sub c}) of 10.57 kV/cm. Electric field induced strain (S–E loop) shows a value of ∼0.27% with minimum loss.

  18. Comparison of hydrogen storage properties of Mg-Ni from different preparation methods

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar, A., E-mail: ar143@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Aminorroaya, S. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Guo, Z.P. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, NSW 2522 (Australia); Cho, Y. [CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Liu, H.K. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Dahle, A. [CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia)

    2011-05-16

    Research highlights: {yields} Three samples of Mg-Ni samples were prepared by casting and ball-milling with CNT. {yields} XRD, SEM, DSC and hydrogenation (by Sievert's method) have been investigated. {yields} Hydrogenation behaviours indicated that ball-milled samples have better kinetics. {yields} 'Ball-milled cast' had a double catalytic role in hydrogen dissociation and diffusion. - Abstract: In this work, a systematic study on the fabrication of Mg-Ni hydrogen storage materials is presented. Mg-6 wt% Ni base alloys were fabricated by a melting and casting process, and then ball milled by planetary ball milling. As a comparison, a sample of Mg + 6 wt% Ni was also prepared by ball milling pure elemental powders. X-ray diffraction patterns of the cast and ball-milled (BM)-cast samples show the existence of both Mg and Mg{sub 2}Ni phases, while in the BM-powder sample there are some peaks corresponding to Ni particles. Hydrogen sorption properties of the samples were measured at 200 deg. C and 250 deg. C. The thermodynamic behaviour of hydrogenated samples was also investigated by differential scanning calorimetry. The ball-milled samples show enhanced hydrogen sorption properties in comparison with the cast samples, and ball-milling after casting results in superior hydrogen absorption/desorption properties in comparison with the ball-milled powder. Our discussion demonstrates that by ball-milling after casting, the Ni particles can penetrate into the deeper layers of magnesium particles and show a combination of the catalytic roles in terms of both hydrogen dissociation and hydrogen pumping to the interface between the catalyst and the Mg.

  19. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA(2mob) Operon in Foodborne Strains of Bacillus subtilis.

    Science.gov (United States)

    Krawczyk, Antonina O; de Jong, Anne; Omony, Jimmy; Holsappel, Siger; Wells-Bennik, Marjon H J; Kuipers, Oscar P; Eijlander, Robyn T

    2017-04-01

    Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA(2mob) operon carried on the Tn1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA(2mob) required higher HA temperatures for efficient germination than spores lacking spoVA(2mob) The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K(+) (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers.IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases

  20. The germinal center antibody response in health and disease.

    Science.gov (United States)

    DeFranco, Anthony L

    2016-01-01

    The germinal center response is the delayed but sustained phase of the antibody response that is responsible for producing high-affinity antibodies of the IgG, IgA and/or IgE isotypes. B cells in the germinal center undergo re-iterative cycles of somatic hypermutation of immunoglobulin gene variable regions, clonal expansion, and Darwinian selection for cells expressing higher-affinity antibody variants. Alternatively, selected B cells can terminally differentiate into long-lived plasma cells or into a broad diversity of mutated memory B cells; the former secrete the improved antibodies to fight an infection and to provide continuing protection from re-infection, whereas the latter may jumpstart immune responses to subsequent infections with related but distinct infecting agents. Our understanding of the molecules involved in the germinal center reaction has been informed by studies of human immunodeficiency patients with selective defects in the production of antibodies. Recent studies have begun to reveal how innate immune recognition via Toll-like receptors can enhance the magnitude and selective properties of the germinal center, leading to more effective control of infection by a subset of viruses. Just as early insights into the nature of the germinal center found application in the development of the highly successful conjugate vaccines, more recent insights may find application in the current efforts to develop new generations of vaccines, including vaccines that can induce broadly protective neutralizing antibodies against influenza virus or HIV-1.

  1. Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers.

    Science.gov (United States)

    Cian, Raúl E; Salgado, Pablo R; Drago, Silvina R; González, Rolando J; Mauri, Adriana N

    2014-03-01

    The aim of this work was to study the physicochemical and antioxidant properties of phycobiliproteins-phycocolloids-based films, obtained from mixtures of two aqueous fractions extracted from Porphyra columbina red seaweed, one enriched in phycocolloids (PcF) and the other in phycobiliproteins (PF). Films with different ratios of PF:PcF (0, 25, 50, 75, 100% [w/w]) and without plasticizer addition were prepared by casting. PcF films had excellent mechanical properties (tensile strength ∼50MPa, elongation at break ∼3% and an elastic modulus ∼17.5MPa). The addition of PF to formulations exerted a plasticizing effect on the PcF matrix, which was manifested in moisture content, water solubility and mechanical properties of the resulting films but not in its water vapour permeability. The antioxidant capacity (TEAC) of the PcF films was significantly increased by the addition of PF and a direct relationship between TEAC and the total phenolic compounds (r(2)=0.9998) and R-phycoerythrin (r(2)=0.9942) was observed.

  2. Preparation and photochromic properties of NiAl-NO3-LDHs/LDPE composite

    Institute of Scientific and Technical Information of China (English)

    CHO Kyuhaeng; LIN YanJun; David G. EVANS; LI DianQing

    2007-01-01

    Nanoscale NiAl-NO3-LDHs with good crystallinity have been synthesized by a method, Separate Nucleation and Aging Steps (SNAS). An NiAl-NO3-LDHs/LDPE composite was prepared by blending NiAl-NO3-LDHs and LDPE in a heated double-roller mixer. The color of this composite changed from olive green to steel gray under UV irradiation. After heating at 80℃ for 2 h, the color returned to olive green. The effect of varying the amount of added NiAl-NO3-LDHs and UV exposure time on the photochromic properties of the composite has been investigated. The results showed that the photochromic phenomenon becomes more apparent with increasing amount of NiAl-NO3-LDHs. When the amount reaches 5%, the composite exhibits good photochromic properties and reproducibility. The color change rate of the composite reaches a maximum when the irradiation time exceeds 20 min. The addition of LDPE improves the photochromic cyclability of NiAl-NO3-LDHs significantly. The addition of nanoscale NiAl-NO3-LDHs also improves the mechanical properties of LDPE to some extent.

  3. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property.

    Science.gov (United States)

    Zhang, Erlin; Li, Fangbing; Wang, Hongying; Liu, Jie; Wang, Chunmin; Li, Muqin; Yang, Ke

    2013-10-01

    Copper element was added in pure titanium by a powder metallurgy to produce a new antibacterial titanium-copper alloy (Ti-Cu alloy). This paper reported the very early stage results, emphasizing on the preparation, mechanical property and antibacterial activity. The phase constitution was analyzed by XRD and the microstructure was observed under SEM equipped with EDS. The hardness, the compressive strength and the corrosion resistance of Ti-Cu alloy were tested in comparison with cp-Ti. The antibacterial property of the Ti-Cu alloy was assessed by two methods: agar diffusion assay and plate-count method, in which Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used. XRD and SEM results showed that Ti2Cu phase and Cu-rich phase were synthesized in the Ti-Cu sintered alloy, which significantly increases the hardness and the compressive strength compared with cp-Ti and slightly improves the corrosion resistance. No antibacterial activity was detected by the agar diffusion assay on the Ti-Cu alloy, but the plate-count results indicated that the Ti-Cu alloy exhibited strong antibacterial property against both bacteria even after three polishing treatments, which demonstrates strongly that the whole alloy is of antibacterial activity. The antibacterial mechanism was thought to be in associated with the Cu ion released from the Ti-Cu alloy. © 2013.

  4. PREPARATION AND MECHANICAL PROPERTIES OF T-ZnOw/PS COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Jing Shi; Zheng-bao He; Hong-wei Bai

    2009-01-01

    The main subject of this work is about the preparation of T-ZnOw/PS composites through different methods and the evaluation of mechanical properties of the composites.Different surface modification methods of T-ZnOw whiskers,the so called wet-type modification and dry-type modification,and different molding processing methods of T-ZnOw/PS composites,namely compression molding and injection molding,have been employed.Two different coupling agents,titanate coupling agent (NDZ105) and silane coupling agent (KH560),have been used to treat T-ZnOw.Both the interface structure between T-ZnOw whiskers and PS and the distribution of integrated T-ZnOw whiskers in composites have been studied by SEM.The mechanical properties of T-ZnOw/PS composites obtained through the above different methods have been studied comparatively.Although the tensile strength of the composites decreases slightly,the impact strength and tensile modulus increase with increasing the content of T-ZnOw in the composites.Both coupling agents and molding methods have great influence on the mechanical properties of the composites.The study of the impact-fractured surface shows that craze formation in PS matrix during the impact process is the main reason for the improvement of the composite toughness.

  5. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  6. Preparation, Structural and Dielectric Properties of Solution Grown Polyvinyl Alcohol(PVA) Film

    Science.gov (United States)

    Nangia, Rakhi; Shukla, Neeraj K.; Sharma, Ambika

    2017-08-01

    Flexible dielectrics with high permittivity have been investigated extensively due to their applications in electronic industry. In this work, structural and electrical characteristics of polymer based film have been analysed. Poly vinyl alcohol (PVA) film was prepared by solution casting method. X-ray diffraction (XRD) characterization technique is used to investigate the structural properties. The semi-crystalline nature has been determined by the analysis of the obtained XRD pattern. Electrical properties of the synthesized film have been analysed from the C-V and I-V curves obtained at various frequencies and temperatures. Low conductivity values confirm the insulating behaviour of the film. However, it is found that conductivity increases with temperature. Also, the dielectric permittivity is found to be higher at lower frequencies and higher temperatures, that proves PVA to be an excellent dielectric material which can be used in interface electronics. Dielectric behaviour of the film has been explained based on dipole orientations to slow and fast varying electric field. However further engineering can be done to modulate the structural, electrical properties of the film.

  7. Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship.

    Science.gov (United States)

    Bittmann, Birgit; Haupert, Frank; Schlarb, Alois Karl

    2011-01-01

    By the insertion of nanoparticles into a polymer matrix a considerable improvement of mechanical properties can be achieved. Therefore, a homogeneous distribution of fillers within the matrix is required. In the present paper the dispersion of TiO(2)-nanoparticles in a DGEBA (diglycidyl ether of bisphenol A) epoxy resin by means of an ultrasonic horn was studied. The systematic examination of process parameters of a previous study was completed in order to determine the optimum processing window leading to a good dispersion result without degrading the molecular structure of the epoxy resin. Therefore, particle sizes were examined using a dynamic light scattering device, and the effect of the ultrasonic treatment on the resin was surveyed by FT-IR spectroscopy (Fourier transform infrared spectroscopy). Furthermore, the mechanical performance of the nanocomposites was examined for various contents of TiO(2)-nanoparticles to show that the materials prepared by ultrasonic dispersion show an improved property's profile. In order to understand the reinforcing mechanisms of nanoparticles in the polymer matrix providing improved mechanical properties, scanning electron microscope (SEM) pictures of the fracture surfaces of the samples were carried out, which revealed that nanocomposites show a significantly rougher surface than the neat epoxy resin. This indicates a change in the fracture mechanisms.

  8. Preparation and properties of environmental-friendly coatings based on carboxymethyl cellulose nitrate ester & modified alkyd.

    Science.gov (United States)

    Duan, Hongtao; Shao, Ziqiang; Zhao, Ming; Zhou, Zhenwen

    2016-02-10

    Amphipathic coating basic film-forming material carboxymethyl cellulose nitrate ester (CMCN) was synthesized and characterizations of CMCN with different ratio of functional groups were studied. Ratios of functional groups on each repeating units of CMCN have great importance in the decision of CMCN properties using as an amphipathic coating basic film-forming material and ratios of functional groups were the most concerned of the study. Ratios of functional groups on each repeating units of CMCN were measured by elemental analyzer and calculated. Series of experiments were conducted using different ratios of functional groups of CMCN. Thermal properties of CMCN were measured by FT-IR and TG. Densities of CMCN powders were measured. Aqueous coatings based on CMCN/alkyd (after chemical modified by coconut oil) were prepared and morphology & rheology of CMCN hydrophilic dispersions were measured using an Anton-Paar-Strasse 20A-8054 Graz analyzer. Contact angles between films based on CMCN and deionized water were recorded. Other properties of films were measured. CMCN with the etherification of carboxymethyl groups at 0.35-0.40, nitrate ester groups at 1.96-2.19 and hydroxyl groups at 0.46-0.64 per d-glucose was considered as the best film forming material.

  9. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, Yong [Precision Machinery Research Institute of Shanghai Space Flight Academy, Shanghai 201600 (China); Jiang, Jian-tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, Yuan-xun [Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China)

    2015-12-01

    Flaky FeSi alloy particles with different aspect ratio were produced via ball-milling and a subsequent annealing. The microstructure and the morphology of the particles were examined by XRD and SEM. The dc resistivity, the static magnetization properties and electromagnetic properties were measured. Particles with high aspect ratio were found possess high permittivity and permeability. On the other hand, the variation of grain size and defects density was found influence the permittivity and permeability. High specific area was believed contribute to the intense dielectric loss and the high shape magnetic anisotropy lead to high permeability in the target band. Increased electromagnetic parameters compel the absorption peak’s shift to lower frequency. Coating using flaky FeSi particles milled for 12 h as fillers presented a reflection loss of −10 dB at 2 GHz and a matching thickness of 1.88 mm. The flaky FeSi alloy particles prepared through ball-milling and annealing can be promising candidates for EMA application at 1–4 GHz band. - Highlights: • Large quantity of flakey FeSi particles were produced through a simple way. • Coatings with as-milled FeSi particles exhibit excellent EMA performance in L-S band. • Shape and size of particles can be controlled via adjusting the ball-milling time. • Shape/size along with the microstructure influence the electromagnetic properties. • Shape/size contribute more to the excellent EMA performance compared to microstructure.

  10. Preparation and investigation of structural, magnetic and microwave absorption properties of cerium doped barium hexaferrite

    Directory of Open Access Journals (Sweden)

    P Kameli

    2015-01-01

    Full Text Available In this study the structure, magnetic and microwave absorption properties of cerium (Ce doped barium hexaferrite with general formulae BaCexFe12-xO19 (x=0.0, 0.05, 0.1, 0.15, 0.2 have been investigated. These samples have been prepared by sol- gel method. Influence of replacing Fe+3 ion by rare- earth Ce+3 ion on the structural, magnetic and microwave absorption properties have been investigated by X- ray diffraction (XRD, Fourier transform infrared (FT-IR, Vibrating sample magnetometer (VSM and vector network analyzer (VNA. X-ray diffraction analysis indicated that the samples are of single phase with space group p63/mmc. The magnetic properties of samples indicated that with the Ce doping the saturation magnetization show no regular behavior. Moreover, coercivity (Hc first decreased and reached to the minimum value for x=0.1 sample and then increased with Ce content increasing. Also, measurement of electromagnetic wave absorption in X and Ku frequency bands indicated that the maximum of reflection loss obtained for x=0.15 sample. Moreover, result indicated that absorption peak shifted toward a lower frequency when thickness was increased.

  11. Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Bhati, Surendra; Mahur, J. S.; Choubey, O. N. [Barkatullah Univ., Bhopal (India); Dixit, Mahur Savita [Maulana Azad National Institute of Technology, Bhopla (India)

    2013-02-15

    In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of CO{sub 2} as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and 925 .deg. C), activation time (15, 30, 45 and 60 minutes) and CO{sub 2} flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and CCl{sub 4} onto ACF was investigated and both were found to correlate with surface area.

  12. Preparation and properties of the fast-curing γ-ray-shielding materials based on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Minxuan; Tang, Xiao Bin; Chai, Hao; Zhang, Yun; Chen, Tuo; Chen, Da [Dept. of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China)

    2016-12-15

    In this study, fast-curing shielding materials were prepared with a two-component polyurethane matrix and a filler material of PbO through a one-step, laboratory-scale method. With an increase in the filler content, viscosity increased. However, the two components showed a small difference. Curing time decreased as the filler content increased. The minimum tack-free time of 27 s was obtained at a filler content of 70 wt%. Tensile strength and compressive strength initially increased and then decreased as the filler content increased. Even when the filler content reached 60 wt%, mechanical properties were still greater than those of the matrix. Cohesional strength decreased as the filler content increased. However, cohesional strength was still greater than 100 kPa at a filler content of 60 wt%. The γ-ray-shielding properties increased with the increase in the filler content, and composite thickness could be increased to improve the shielding performance when the energy of γ-rays was high. When the filler content was 60 wt%, the composite showed excellent comprehensive properties.

  13. Studies of magnetic properties of permalloy (Fe-30%Ni) prepared by SLM technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Baicheng, E-mail: baicheng.zhang@utbm.fr [LERMPS, Universite de Technologie de Belfort-Montbeliard, Site de Sevenans, Belfort Cedex 90010 (France); Fenineche, Nour-Eddine; Zhu Lin; Liao Hanlin; Coddet, Christian [LERMPS, Universite de Technologie de Belfort-Montbeliard, Site de Sevenans, Belfort Cedex 90010 (France)

    2012-02-15

    In the present study, a high permeability induction Fe-30%Ni alloy cubic bulk was prepared by the selective laser melting process. In order to reveal the microstructure effect on soft magnetic properties, the microstructure and magnetic properties of the Fe-30%Ni alloy were carefully investigated by scanning electron microscopy, X-ray diffraction and hysteresis measurements. The bcc-Fe (Ni) phase formation is identified by X-ray diffraction. Meanwhile, it was found that low bcc lattice parameter and high grain size could be obtained when high laser scanning velocity and low laser power were used. Moreover, the lowest value of coercivity is 88 A/m, and the highest value of saturation magnetization is 565 Am{sup 2}/kg, which can be obtained at a low laser scanning velocity of 0.4 m/s and high laser power input at 110 W. - Highlights: > Proper Fe-30%Ni alloy (permalloy) using selective laser melting technology. > Microstructure of Fe-30%Ni alloy exhibits fine cellular structure of approximately 100 nm. > Magnetic properties can be controlled by laser parameter. > Lowest coercivity is 88 A/m and highest saturation magnetization is 565 Am{sup 2}/kg.

  14. Ethylene, seed germination, and epinasty.

    Science.gov (United States)

    Stewart, E R; Freebairn, H T

    1969-07-01

    Ethylene activity in lettuce seed (Lactuca satina) germination and tomato (Lycopersicon esculentum) petiole epinasty has been characterized by using heat to inhibit ethylene synthesis. This procedure enabled a separation of the production of ethylene from the effect of ethylene. Ethylene was required in tomato petioles to produce the epinastic response and auxin was found to be active in producing epinasty through a stimulation of ethylene synthesis with the resulting ethylene being responsible for the epinasty. In the same manner, it was shown that gibberellic acid stimulated ethylene synthesis in lettuce seeds. The ethylene produced then in turn stimulated the seeds to germinate. It was hypothesized that ethylene was the intermediate which caused epinasty or seed germination. Auxin and gibberellin primarily induced their response by stimulating ethylene production.

  15. Effects of the preparation processes on structural, electronic, and optical properties of LaHoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Siaï, Amira, E-mail: amira_siai@hotmail.fr [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, B.P.73 Soliman 8027, Technopole Borj Cedria (Tunisia); Horchani-Naifer, Karima [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, B.P.73 Soliman 8027, Technopole Borj Cedria (Tunisia); Haro-González, Patricia [Fluorescence Imaging Group, Department of physical material C-IV, Madrid Autonoma University, C/Francisco Tomas y Valiente 7, E-28049 Madrid (Spain); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, B.P.73 Soliman 8027, Technopole Borj Cedria (Tunisia)

    2016-04-15

    Highlights: • The preparation of LaHoO{sub 3} by combustion and hydrothermal techniques was performed. • The crystal structure and characterization of the synthesized oxides were carried out. • The lattice distortions have effects on Raman, luminescence and optical band gap. • Electronic properties and band structure have been carried out by DFT method. • Sample prepared by hydrothermal process gives higher emission intensities. - ABSTRACT: Lanthanum holmium oxide (LaHoO{sub 3}) was synthesized using combustion and hydrothermal processes in order to compare the effects of preparation method on structural, electronic, and optical properties. For this purpose, the as-prepared samples were characterized with infrared spectroscopy, Raman scattering, X-ray diffraction, and scanning electronic microscopy. The Rietveld refinements structure of as-prepared samples show that lattice distortions and volume expansion were obtained for LaHoO{sub 3} synthesized with hydrothermal method compared to combustion process. The luminescence properties were investigated upon 488 and 750 nm laser excitations. The emission curves show the presence of characteristic Ho{sup 3+} transitions with a higher emission intensity for a sample prepared by hydrothermal method than the one obtained by combustion process. The structures properties effects on the band structure and the density of states were realized via generalized gradient approximation functional with Hubbard correction. The lattice distortions were found to have effects on Raman, luminescence and optical band gap.

  16. Thermoelectric Properties of CexCo4Sb12 Prepared by MA-SPS

    Institute of Scientific and Technical Information of China (English)

    刘科高; 张久兴; 路清梅; 刘丹敏; 张隆; 周美玲

    2004-01-01

    Starting with elementary powders, thermoelectric materials CexCo4Sb12 were prepared by mechanical alloying and spark plasma sintering (MA-SPS). XRD analyses reveal that the expected major phase, named skutterudite was formed in MA process and was kept after SPS. The thermoelectric properties of MA-SPS samples including resistivity, Seebeck coefficient, power factor, thermal conductivity and the dimensionless figure of merit (ZT) were studied by varying Ce content and temperature. Depending on Ce levels, both P and N types of thermoelectric semiconductors were obtained. MA-SPS sintered Ce1.0Co4Sb12 exhibits the highest ZT in the range of 100~500 ℃ and the maximum ZT is found at x=1.0 and 400 ℃.

  17. Properties and microstructures of 7075/SiCp composites prepared by spray deposition

    Institute of Scientific and Technical Information of China (English)

    袁武华; 陈振华; 徐海洋; 张福全; 傅定发

    2003-01-01

    The 7075/SiCp composites were prepared by spray deposition, extrusion and heat treatment technologies. The microstructures of the deposit, the extruded and heat-treated bars were analyzed. And the mechanical properties and wearing resistance were tested and compared with other aluminum alloys. The results show that the spray deposited preform presents fine microstructure and uniformly distributed SiC particles. Compared with the matrix alloy, the yield strength, modulus and wearing resistance of the peak-aged composites are improved markedly with 50% reduction of elongation. It indicates that the addition of SiC particles greatly contributes to the refining of microstructure and the altering of fracture and wearing mechanisms.

  18. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L.

    Science.gov (United States)

    Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Henriques, Mariana; Silva, Sónia; Ferreira, Isabel C F R

    2015-03-01

    The therapeutic benefits of medicinal plants are well known. Nevertheless, essential oils have been the main focus of antioxidant and antimicrobial studies, remaining scarce the reports with hydrophilic extracts. Thus, the antioxidant and antifungal activities of aqueous (prepared by infusion and decoction) and methanol/water (80:20, v/v) extracts of sage (Salvia officinalis L.) were evaluated and characterised in terms of phenolic compounds. Decoction and methanol/water extract gave the most pronounced antioxidant and antifungal properties, being positively related with their phenolic composition. The highest concentration of phenolic compounds was observed in the decoction, followed by methanol/water extract and infusion. Fungicidal and/or fungi static effects proved to be dependent on the extracts concentration. Overall, the incorporation of sage decoction in the daily diet or its use as a complement for antifungal therapies, could provide considerable benefits, also being an alternative to sage essential oils that can display some toxic effects.

  19. Preparation and Properties of Ag-TiO2 Thin Films on Glass Substrates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ag-TiO2 thin films were prepared on glasses.The morphology and structure of Ag-TiO2 films were investigated by XRD, SEM and FT-IR.The photocatalytic and hydrophilic properties of Ag-TiO2 thin films were also evaluated by examining photocatalytic degradation dichlorophos under sunlight illumination and the change of contact angle respectively.The research results show that the Ag-TiO2 thin film is mainly composed of 20-100nm Ag and TiO2 particles.The Ag-TiO2 thin films possess a super-hydrophilic ability and higher photocatalytic activity than that of pure TiO2 thin film.

  20. Preparation and Easy-Cleaning Property of Rare Earth Composite Ceramic

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Rare earth and far-infrared mineral composite materials were added to ceramic glazes to prepare easy-cleaning ceramic. The morphology of easy-cleaning ceramic was observed by SEM. The influence of easy-cleaning ceramic on water surface tension and contact angles of water were investigated. Through calculation of ceramic surface free energy and observation of oil drop on ceramic surface in water, the easy-cleaning mechanism of rare earth composite ceramic was studied. It is found that the rare earth composite ceramic can make water surface tension decrease. The surface free energy and the polar component of rare earth composite ceramic are increased. The rare earth composite ceramics have the easy-cleaning property.

  1. Study on the preparation of straw activated carbon and its phenol adsorption properties

    Science.gov (United States)

    Chen, Liping

    2017-01-01

    Using sunflower straw as raw materials to manufacture straw activated carbon-modified by phosphoric acidand adsorption isotherm of phenol on straw activated carbon was studied in a batch reactor. The physical properties of the prepared straw activated carbons were characterized by scanning electron microscopy. The effect of various parameters, adsorbent dose, pH and temperature, were studied on optimum conditions. The results have shown that the absorbent was efficient, the removal ratio of phenol up to 99.36% with an adsorbent dosage of 16 g·L-1, a pH of 6.0-8.0, at 25 °C. The experimental adsorption data fitted reasonably well to the Langmuir isotherm, the maximum adsorption capacity was 109.89 mg/g. The process of adsorption is a exothermic process.

  2. Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Shijoon; Park, Misun; Kim, Daehwan; Kang, Jinkyu [Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of)

    2013-05-15

    Solution-based deposition of CuIn{sub x}Ga{sub 1-x}Se{sub 2} (CIGSe) thin films is well known non-vacuum process for the fabrication of CIGSe solar cells. However, due to the usage of organic chemicals in the preparation of CIG precursor solutions, the crystallization of the polycrystalline CIGSe and the performance of CIGSe thin film solar cells were significantly affected by the carbon residues from the organic chemicals. In this work, we have tried to eliminate the carbon residues in the CIG precursor thin films efficiently by using soft-annealing process. By adjusting soft-annealing temperature, it is possible to control the amount of carbon residues in CIG precursor thin films. The reduction of the carbon residues in CIG precursors by high temperature soft-annealing improves the grain size and morphology of polycrystalline CIGSe thin films, which are also closely related with the electrical properties of CIGSe thin film solar cells.

  3. Preparation of conductive silk fabric with antibacterial properties by electroless silver plating

    Science.gov (United States)

    Yu, Dan; Kang, Gengen; Tian, Weicheng; Lin, Lu; Wang, Wei

    2015-12-01

    To obtain an efficient approach to metalize silk fabric, a novel method was explored and silver-plated silk was prepared. In this study, tris (2-carboxyethyl) phosphine (TCEP) was utilized as a reducing agent to generate thiol groups on the silk surface. These thiol groups react with silver ions to form metal complexes, which were used as catalytic seeds and successfully initiated electroless silver plating. A variety of methods, including Raman, XRD, TG, SEM and EDS were used to characterize the intermediates and final products. The results showed that a uniform and smooth metal layer could be obtained when compared with that without TCEP pretreatment. The silver-plated silk fabric exhibited good electrical conductivity and high anti-bacterial properties. These attractive features enable this conductive silk fabric to be a good candidate as a biomedical material.

  4. Thermoelectric properties of polythiophene/MWNT composites prepared by ball-milling

    Science.gov (United States)

    Wang, Dagang; Wang, Lei; Wang, Wenxin; Bai, Xiaojun; Li, Junqin

    2012-04-01

    Polythiophene /multi-wall carbon nanotubes (MWNT) composites were prepared by ball-mailing. The morphology and internal structure of the composites were evaluated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD). Their thermoelectric properties, i.e., the electrical conductivity, the Seebeck coefficient and the thermal conductivity, were investigated in detail. The remarkably increased electrical conductivity, the slightly increased Seebeck coefficient and the relatively insensitive thermal conductivity with increasing MWNT content led to an obvious enhancement in the thermoelectric figure of merit. The results showed that the MWNT were uniformly dispersed in the polymer matrix, and that increasing the electrical conductivity is the key factor for enhancing the thermoelectric figure of merit. This study suggested a simple way to improve the thermoelectric performances of conducting polymers.

  5. Preparation and physical properties of enhanced radiation induced crosslinking of ethylene-vinyl alcohol copolymer (EVOH)

    Energy Technology Data Exchange (ETDEWEB)

    Deng Pengyang [Changchun Institute of Applied chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China) and Graduate School of Chinese Academy of Science, 19 Yuquan Street, Beijing 100039 (China)]. E-mail: dpyang@ciac.jl.cn; Liu Meihua [Changchun Institute of Applied chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China); Department of Materials Science and Engineering, Jilin University, 142 Renmin Street, Changchun, Jilin 130025 (China); Zhang Wanxi [Department of Materials Science and Engineering, Jilin University, 142 Renmin Street, Changchun, Jilin 130025 (China); Sun Jiazhen [Changchun Institute of Applied chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun, Jilin 130022 (China)

    2007-05-15

    Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.

  6. Preparation and properties of superfine Mg(OH)2 flame retardant

    Institute of Scientific and Technical Information of China (English)

    XU Hui; DENG Xin-rong

    2006-01-01

    Preparation of superfine magnesium hydroxide with the bittern and ammonia was studied. The properties of the products were analyzed by laser granularity, X-ray diffraction, scanning electron microscope, the limiting oxygen index and the wetting angle measurements. The results show that the mean particle size of the magnesium hydroxide is about 230 nm with a platelet shape and the specific surface area is about 48 m2/g when the temperature is 55 ℃, and the ammonia and bittern are instilled simultaneously during the reaction process. After the modification, the limiting oxygen index and physical chemistry performance of the magnesium hydroxide were examined. The results show that the contact angle of magnesium hydroxide is 132.5° and the limiting oxygen index is 31.5 %, indicating that the modified magnesium hydroxide is an effective flame retardant and can be applied as flame retardant additives of the macromolecule compounds such as plastic, synthetic rubber and synthetic fibre.

  7. The chitosan prepared from crab tendon I: the characterization and the mechanical properties.

    Science.gov (United States)

    Yamaguchi, Isamu; Itoh, Soichiro; Suzuki, Masumi; Sakane, Masataka; Osaka, Akiyoshi; Tanaka, Junzo

    2003-05-01

    Crystalline chitosan was prepared from crab tendon consisting mainly of chitin, including various proteins and calcium phosphates. The crab tendon has high mechanical properties due to its aligned molecular structure. Crab tendon components, i.e. proteins and calcium phosphates, were removed by deacetyl treatment using 50wt% NaOH aqueous solution at 100 degrees C, and a subsequent ethanol treatment. As judged from microscopic observations using an optical polarizer, the treated chitosan remained intact regarding its aligned molecular structure, and had a high tensile strength of 67.9+/-11.4MPa. The tensile strength was further enhanced to 235+/-30MPa by a thermal treatment at 120 degrees C, corresponding to the formation of the intermolecular hydrogen bonds.

  8. Preparation and properties of low-cost graphene counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Wu, Qishuang; Shen, Yue; Wang, Qiandi; Gu, Feng; Cao, Meng; Wang, Linjun

    2013-12-01

    With the advantages of excellent electrical properties, high catalytic activity and low-cost preparation, Graphene is one of the most expected carbon materials to replace the expensive Pt as counter electrodes for dye-sensitized solar cells (DSSCs). In this paper, graphene counter electrodes were obtained by simple doctor-blade coating method on fluorine tin oxides (FTOs). The samples were investigated by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM). Then the low-cost graphene electrodes were applied in typical sandwich-type DSSCs with TiO2 or ZnO as photoanodes, and their photoelectric conversion efficiency (η) were about 4.34% and 2.28%, respectively, which were a little lower than those of Pt electrodes but much higher than those of graphite electrodes. This law was consistent with the test results of electrochemical impedance spectroscopy (EIS). Low-cost graphene electrodes can be applied in DSSCs by process optimization.

  9. Sputtering Preparation and Magneto-optical Properties of GdTbFeCo Thin Films

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhixin; YU Weijun

    2012-01-01

    Amorphous GdTbFeCo magnetic thin films were successfully prepared on glass substrates by RF magnetron sputtering system from a mosaic target.The influences of sputtering parameters on the magnetooptical properties GdTbFeCo thin film were investigated by the variable control method.And the influence mechanism was analyzed in detail.After the sputtering parameters were optimized,it was found that when the distance between target and substrate was 72 mm,the thin film thickness was 120 nm,and the sputtering power,sputtering pressure and sputtering time was 75 W,0.5 Pa and 613 s,respectively,the coercivity with perpendicular anisotropy could be as high as 6735 Oe,and the squareness ratio of the hysteresis loop was almost equal to 1.

  10. Magnetic properties of FeCoC thin films prepared by various sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Edon, V; Dubourg, S [CEA, DAM, LE RIPAULT, F-37260 Monts (France); Vernieres, J; Bobo, J-F, E-mail: sebastien.dubourg@cea.fr [LNMH-CEMES-CNRS-ONERA, F-31055 Toulouse (France)

    2011-07-06

    In order to grow nanocrystallized soft magnetic thin films, FeCoC alloys were first deposited by reactive sputtering in Ar/C{sub 2}H{sub 2} plasma. This deposition process rendered it possible to incorporate a carbon content between 0 and 30 at.% into the FeCo samples. The films were then compared to FeCoC samples obtained from a Fe{sub 65}Co{sub 35}/C composite target, with an adjustable amount of C slots. Layers with soft magnetic properties were achieved when increasing the C{sub 2}H{sub 2} rate during the reactive deposition, whereas films deposited by sputtering of FeCo and C on the same target demonstrated a very high coercivity. Permeability spectra measurements (and published elsewhere) demonstrated that FeCoC prepared with acetylene is a very promising material for high-frequency magnetic devices.

  11. Upconversion properties of Y2O3:Er films prepared by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    QIAO Yanmin; GUO Hai

    2009-01-01

    Y2O3:Er3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er3+ flints were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er3+ f'rims might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (2H11/2→4I15/2, 4S3/2→4I15/2) and red (4F9/2→4I15/2) upconversion emissions. The upconversion mechanisms were stud-led in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er3+ was also investigated.

  12. Mechanical Properties of TC4 Matrix Composites Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    WANG Lin

    2017-06-01

    Full Text Available In order to improve the penetration performance of TC4, the direct laser deposition technology was used to prepare TC4 composite material. TA15+30% TiC powder, TA15+20%Cr3C2 powder and TA15+15%B4C powder were used as deposited materials for TC4 matrix. The micromorphology, change of hardness of the deposited coating and mechanical properties of the three composites were studied. The experimental results demonstrate that the TC4 matrix with the three kinds of materials can form a complete metallurgical bonding, and the strength of TC4-(TA15+TiC, TC4-(TA15+Cr3C2 and TC4-(TA15+B4C are higher than that of TC4 matrix materials, while the plasticity is slightly worse.

  13. Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route

    Directory of Open Access Journals (Sweden)

    Sana Riyaz

    2016-09-01

    Full Text Available This paper demonstrates the synthesis of CuS nanoparticles using sol–gel route in the presence of distilled water at 100 °C for 3 h. X-ray diffraction (XRD, energy dispersive X-ray spectrum (EDS, and scanning electron microscope (SEM techniques were employed to study the microstructural properties of the prepared sample. Crystallite size was determined by Debye–Scherrer formula and was found to be 17.73 nm. The EDS spectrum shows a clear peak of Cu and S elements. SEM images show the morphology of the CuS nanostructures. Optical analyses were done by UV–visible and Fourier Transform Infra-Red Spectroscopy (FTIR techniques. The band gap was calculated by Tauc relation and came out to be 2.89 eV.

  14. Preparation and Characterization of Chitosan/Agar Blended Films: Part 2. Thermal, Mechanical, and Surface Properties

    Directory of Open Access Journals (Sweden)

    Esam A. Elhefian

    2012-01-01

    Full Text Available Chitosan/agar (CS/AG films were prepared by blending different proportions of chitosan and agar (considering chitosan as the major component in solution forms. The thermal stability of the blended films was studied using thermal gravimetric analysis (TGA. It was revealed that chitosan and agar form a compatible blend. Studying the mechanical properties of the films showed a decrease in the tensile strength and elongation at break with increasing agar content. Blending of agar with chitosan at all proportions was found to form hydrogel films with enhanced swelling compared to the pure chitosan one. Static water contact angle measurements confirmed the increasing affinity of the blended films towards water suggesting that blending of agar with chitosan improves the wettability of the obtained films.

  15. Titanium carbonitride thick coating prepared by plasma spray synthesis and its tribological properties

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin; HE JiNing; YAN DianRan; XIAO LiSong; DONG YanChun; XUE DingChuan; MENG DeLiang

    2007-01-01

    TiCN coating,owing to its superior wear-resistance,has been frequently applied in many fields. TiCN thick coating was first prepared by reactive plasma spraying. The phase composition,microstructure and tribological properties of the TiCN coating were investigated in this research. Experimental results show that the microstructure of the TiCN coating was quite dense,and there was also a little amount of titanium oxides within the coating. By XPS analysis,Ti-C and Ti-N bonds were detected in the coating. The TiCN coating exhibited superior wear-resistance. The failure mechanism was attributed to the adhesive wear,the grinding of TiCN hard-grain,as well as the coating failure by oxidation. There were more Fe,Cr,O,etc. in the failure zone,suggesting that the corrosion propagated gradually from surface to interior.

  16. Preparation,characterization and properties studies of quinine-imprinted polymer in the aqueous phase

    Institute of Scientific and Technical Information of China (English)

    He Jianfeng; Liu Lan; Yang Guilan; Deng Qinying

    2006-01-01

    The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA)as functional monomer.The polymers were characterized by IR spectra,thermal-weight analysis,scanning electron microscope and laser particle size analysis.The properties of imprinted polymers were investigated in different organic phases and aqueous media.In the organic media,results suggested that polar interactions(hydrogen bonding,ionic interactions)between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition;whereas in the aqueous medium,a considerable recognition effect was also obtained where the ionic(electrostatic)interaction and hydrophobic interaction play an important role.The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine.

  17. Preparation of TiO2/Ti mesh photoelectrode and properties

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An innovative photoelectrode, TiO2/Ti mesh electrode, was prepared by anodisation. In anodisation, 0.5 mol/L H2SO4 was sued as electrolytic solution, the current had been constantly 1A from the beginning of the oxidation until reaching a designed voltage. Results showed that the photocatalytic activity of electrode was better when the designed voltage was 160V. The morphology and the crystalline texture of the TiO2 film on mesh electrode were examined by scanning electronic microscopy and Raman spectroscopy respectively. The examination results indicated that the structure and properties of the film depended on anodisation rate, and the anatase was the dominant component under the controlled experimental conditions. Degradation of Rhodamine B in photocatalytic (PC) and photoelectrocatalytic (PEC) reaction was investigated.

  18. Preparation and Property of Bisphenol A Bis(diphenyl phosphate) Oligomer

    Institute of Scientific and Technical Information of China (English)

    LI Bing-hai; OU Yu-xiang; XIN Fei

    2007-01-01

    Bisphenol A bis(diphenyl phosphate) oligomer(BDP) is prepared successfully from the reactants consisting of phosphorus oxychloride (POCl3), bisphenol A and phenol with a Friedel-Crafts catalyst. The resultant products were examined with thermo-gravimetric analysis (TGA) and high performance liquid chromatography(HPLC). Thermogravimetry data shows that BDP decomposes at 375℃ when 5% weight lost. Experiments results show that catalyst is preferably AlCl3 and the amount of it is preferably 1% relative to bisphenol A by mole. POCl3/bisphenol A mole ratio is preferably about 5∶1 to 6∶1. Experiments unclosed that a seal apparatus is very important to the properties of product.

  19. Preparation and Mechanical Properties of Chitosan-graft Maleic Anhydride Reinforced with Montmorillonite

    Science.gov (United States)

    Fajrin, A.; Sari, L. A.; Rahmawati, N.; Saputra, O. A.; Suryanti, V.

    2017-02-01

    The research aims to develop biodegradable composites as bio-based plastics from chitosan. The composites were prepared via solution casting method by introducing the maleic anhydride (MAH) as grafting agent and montmorillonite (MMt) as reinforcement. The grafting process of chitosan was conducted by varying concentrations of MAH which were 10, 20, and 30% w/w. It was observed that the chitosan-graft-maleic anhydride (Cs-g-MAH) containing 10% w/w of MAH increased its tensile strength by 70%. Reinforcement material was added to the Cs-g-MAH by varying MMt concentrations, e.g. 3, 6, 9 and 12% w/w. It was noted that the presence of 9% w/w of MMt in the Cs-g-MAH gave the best mechanical properties of the Cs-g-MAH/MMt composite.

  20. Preparation and property characterization of PAA/Fe3O4 nanocomposite

    Institute of Scientific and Technical Information of China (English)

    WEI Shanshan; ZHANG Yi; XU Jiarui

    2007-01-01

    PAA/Fe3O4 nanocomposites were prepared by mixing nano-Fe3O4 and polyacrylic acid(PAA)ethanol solution and then evaporating the solvent.The materials were characterized by transmission electron microscope(TEM),Fourier transform infrared spectroscope(FTIR),thermogravimetry analysis (TGA),dynamic ultra-micro hardness tester (DUMHT)and superconducting quantum interference device (SQUID)magnetometer.Results showed that PAA coordinated with nano-Fe3O4 to form a cross-linking structure.The presence of nano-Fe3O4 enhanced the thermal stability of the nanocomposite.The elasticity and hardness of the nanocomposite increased,and the indentation depth reduced with the increase of Fe3O4 content in the composites.The nanocomposites showed superparamagnetic properties at 300K.

  1. Morphological and thermal properties of PLA/OMMT nanocomposites prepared via vane extruder

    Science.gov (United States)

    Luo, Y.; Liu, H. Y.; Zhang, G. Z.; Qu, J. P.

    2017-06-01

    Polylactide/Organo-Montmorillonite (PLA/OMMT) Nanocomposites were prepared by melting extrusion using a novel vane extruder (VE), which can induce global elongational flow. In the study, the influence of different concentrations of the OMMT on the morphological and thermal properties were investigated. The morphology and structure of the nanocomposites were evaluated using Fourier Transform Infrared Spectroscopy (FTIR), the X-ray diffraction (XRD) and transmission electron microscopy (TEM) respectively, whereas the thermal behaviors and thermal stabilities were characterized using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) respectively. The results illustrate that PLA/OMMT nanocomposites displayed clear intercalation and/or exfoliation structures. Interestingly, increasing the clay content did not lead to the agglomeration of OMMT layers. Moreover, the presence of nanoclay decreased the enthalpy of crystallization of PLA/OMMT composites. Also, the melting temperatures of the nanocomposites were reduced by the addition of nanoclay.

  2. Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    Directory of Open Access Journals (Sweden)

    Jianxin Zou

    2012-01-01

    Full Text Available In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.

  3. Study on Preparation and Property of Poly-Aminosilicone-Rare Earth Composite

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming(张明); Qiu Guanming(邱关明); Chen Haiyan(陈海燕); Zhou Lanxiang(周兰香); Inoue Shinich; Okamoto Hiroshi

    2003-01-01

    The poly-aminosilicone-rare earth composite was prepared by poly-aminosilicone cross-linked with rare earth and active silanol. The thermal stability of the composites was studied by thermogravimetric analysis (TG). Force condition of the composites in electric field was analyzed and relative polarizability was derived. It is found that the composites containing different rare earth ions have different relative polarizability. The experiment results reveal that organosilicon materials with different electrical performance can be obtained by this way. Meanwhile, the absorption and flourescene spectrum of composites were also investigated. Compared to rare earth chloride, the spectrum properties of the composite are changed obviously. The possible reasons for these phenomena were discussed.

  4. Rheological properties of magnetorheological fluid prepared by gelatin-carbonyl iron composite particles

    Institute of Scientific and Technical Information of China (English)

    PAN Hua-jin; HUANG Hong-jun; ZHANG Ling-zhen; QI Jian-ying; CAO Shao-kun

    2005-01-01

    Gelatin-carbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 3-10 μm. The specific saturation magnetization σs is 130.9 A·m2/kg, coercivity Hc is 0.823 A/m, and residual magnetism r is 4.98 Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid(MRF) with composite particle reaches 70 kPa at 0.5 T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.

  5. Effect of preparation conditions on the electrochemical properties of spherical Ni (OH)2

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Spherical nickel hydroxide is used as the active material of the positive electrode in alkaline recharged batteries,it determines the most important properties of the battery. Spherical nickel hydroxide made in China meets less than half of total demand of the Chinese batteries industry.Most of the spherical nickel hydroxide used for high performance MH/Ni batteries is imported because the Chinese one cannot reach the requirements of "fine crystal grain, high density and highactivity". In this thesis, the spherical nickel hydroxide with fine crystal grain high-density and high-activity was prepared with complexation-precipitation method. The effects of the preparation conditions on the electrochemical activity of the products were investigated by means of orthogonal test, comprehensive range analysis on all the used factors. And theirs levels showed that the optimum process parameters of preparation the fine crystal grain high-density and high- activity spherical nickel hydroxide is specified as reaction temperature 60℃, pH value 11.0, stronger stirring intensity, the mole ratio of ammonia and nickel 0.3,desiccation temperature 100℃. Furthermore,the relative influence degree of those technology factors is stirring intensity> pH value> reaction temperature>desiccation temperature>mole ratio of ammonia and nickel. The spherical nickel hydroxide made at those optimum process parameters is characterized as with high bulk density(1.78g/cm3), larger specific surface(11.9 m2/g), higher discharged specific capacity (281 mAh/g), and fine crystal grain (15.8 nm). The full width of half maximum intensity(FWHM) of XRD patterns of samples in (101) lines can reach as high as 0. 983. All of these merits make it completely meet the requirements of spherical nickel hydroxide used for high performance MH/Ni batteries.

  6. Preparation and mechanical properties of silicon oxycarbide fibers from electrospinning/sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofei [School of Materials Sciences and Engineering, Tianjin University, 300072 Tianjin (China); Gong, Cairong, E-mail: gcr@tju.edu.cn [School of Materials Sciences and Engineering, Tianjin University, 300072 Tianjin (China); Fan, Guoliang [School of Materials Sciences and Engineering, Tianjin University, 300072 Tianjin (China)

    2011-12-15

    Graphical abstract: Ceramic fibers, silicon oxycarbide (SiOC) fibers were demonstrated and showed higher mechanical properties from electrospinning/sol-gel process at 1000 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer SiOC fibers with low cost are promising to substitute the non-oxide fibers. Black-Right-Pointing-Pointer Successful preparation of SiOC fibers by electrospinning/sol-gel process. Black-Right-Pointing-Pointer Confirmation of the designed product using material characterization methods. Black-Right-Pointing-Pointer The SiOC fibers prepared at 1000 Degree-Sign C possess higher strength (967 MPa). -- Abstract: Silicon oxycarbide (SiOC) fibers were produced through the electrospinning of the solution containing vinyltrimethoxysilane and tetraethoxysilane in the course of sol-gel reaction with pyrolysis to ceramic. The effect of the amount of spinning agent Polyvinylpyrrolidone (PVP) on the dope spinnability was investigated. At a mass ratio of PVP/alkoxides = 0.05, the spinning sol exhibited an optimal spinnable time of 50 min and generated a large quantity of fibers. Electrospun fibers were characterized by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis-differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM results revealed that the SiOC fibers had a smooth surface and dense cross-section, free of residue pores and cracks. The XPS results gave high content of SiC (13.99%) in SiOC fibers. The SiOC fibers prepared at 1000 Degree-Sign C had a high tensile strength of 967 MPa and Young's modulus of 58 GPa.

  7. Preparation and Properties of Nanoparticles of Calcium Phosphates With Various Ca/P Ratios.

    Science.gov (United States)

    Sun, Limin; Chow, Laurence C; Frukhtbeyn, Stanislav A; Bonevich, John E

    2010-01-01

    This study aimed at preparing and studying the properties of nanoparticles of calcium phosphate (nCaP) with Ca/P ratios ranging from 1.0 to 1.67 using a spray-drying technique. Micro-structural analyses suggested that the nCaPs with Ca/P ratios of 1.67 to 1.33 were nano-sized amorphous calcium phosphate (ACP) containing varying amounts of acid phosphate and carbonate. The nCaP with Ca/P ratio of 1 contained only nano-sized low crystalline dicalcium phosphate (DCP). BET measurements of the nCaPs showed specific surface areas of (12 ± 2 to 50 ± 1) m(2)/g, corresponding to estimated equivalent spherical diameters of (38 to 172) nm. However, dynamic light scattering measurements revealed much larger particles of (380 ± 49 to 768 ± 111) nm, owing to agglomeration of the smaller primary nano particles as revealed by Scanning Electron Microscopy (SEM). Thermodynamic solubility measurements showed that the nCaPs with Ca/P ratio of 1.33 - 1.67 all have similar solubility behavior. The materials were more soluble than the crystalline hydroxyapatite (HA) at pH greater than about 4.7, and more soluble than β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP) and DCP at pH above 5.5. Their solubility approached that of α-tricalcium phosphate (α-TCP) at about pH 7. These nCaPs, which cannot be readily prepared by other currently available methods for nanoparticle preparation, have potential biomedical applications.

  8. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    Science.gov (United States)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  9. Preparation and photoelectric property of TiO{sub 2} nanoparticles with controllable phase junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongmei [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tan, Xin [School of Science, Tibet University, Lhasa 850000, Tibet (China); Yu, Tao, E-mail: yutao@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin University-National Institute for Materials Science (TU-NIMS) Joint Research Center, Tianjin University, Tianjin 300072 (China)

    2014-12-01

    Graphical abstract: - Highlights: • A series of bicrystalline TiO{sub 2} nanoparticles with different ratio of controllable phase junctions between anatase and rutile were synthesized successfully using ionic liquid-assisted method by hydrolysis of TiCl{sub 4}. • The spatial separation capacity of photogenerated charge carriers and photocatalytic activities of the samples with different ratio of controllable phase junctions were evaluated systemically. • The best photocatalytic activity for MO degradation can reach above 99% at the sample with 27.4% rutile which also has the best photoelectric property compared with other samples. - Abstract: To explore the effect of phase composition on the photoelectric property of anatase–rutile mixed crystal nanoparticles, a series of TiO{sub 2} nanoparticles with phase junctions controlling were synthetized by hydrolysis of TiCl{sub 4} in hydrochloric acid, an ionic liquid-assisted method was used during this process. Crystalline size and the ratio of anatase to rutile of as-prepared samples were calculated by the XRD. The surface area was measured by nitrogen sorption measurements using the BET method. The micro-structure of phase junctions was characterized by TEM. Optical transmittance properties of TiO{sub 2} with controllable phase junctions were examined via ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS). The particles were manufactured into films using the doctor-blade technique on FTO glasses. To test photocurrent density, and spatial separation capacity of electron–holes pairs, photo-electro method was employed. The photocatalytic activities of the resulting samples were examined in the degradation of methyl orange (MO) under artificial solar light irradiation. Mechanisms of separation and transfer of photogenerated charge and the effect of phase composition on photoelectric property of anatase–rutile nanoparticles were discussed.

  10. Electrical and optical properties of CZTS thin films prepared by SILAR method

    Directory of Open Access Journals (Sweden)

    J. Henry

    2016-03-01

    Full Text Available In the present work, Cu2ZnSnS4 (CZTS thin film was deposited onto the glass substrate by simple and economic SILAR method and its structural, morphological, optical and electrical properties were analyzed. X-ray diffraction (XRD analysis confirms the formation of CZTS with kesterite structure and the average crystallite size is found to be 142 nm. Scanning electron microscope (SEM image shows that the film has homogeneous, agglomerated surface without any cracks. The prepared CZTS film shows good optical absorption (104 cm−1 in the visible region and the optical band gap energy is found to be quite close to the optimum value of about 1.54 eV for solar cell application. The refractive index of the prepared film is found to be 2.85. The electrical resistivity of the film is found to be ∼10−2 Ω cm at room temperature.

  11. Preparation and drug releasing property of magnetic chitosan-5-fluorouracil nano-particles

    Institute of Scientific and Technical Information of China (English)

    WANG Dong-sheng; LI Jian-guo; LI He-ping; TANG Fa-qing

    2009-01-01

    In order to synthesize the targeting drug carrier system, magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil (5-Fu) as model drug, Fe_3O_4 nano-particles as kernel, chitosan as enveloping material and glutaraldehyde as cross linking agent through ultrasonic technique. The morphology of the magnetic chitosan-5-Fu nano-particles was observed with a transmission electron microscope(TEM). The results showed that magnetic chitosan-5-Fu nano-particles were prepared in spherical structure with a size range of 50-60 nm. The delivering capacity and drug releasing properties of magnetic chitosan-5-Fu nano-particles were investigated by UV-vis spectrum analysis. The results showed that the loading capacity was 13.4% and the cumulative release percentage in the phosphate buffer (pH=7.2) solutions was 68% in 30 h. These data indicate that the wrapped drug of magnetic chitosan-5-Fu nano-particles was slowly-released. The magnetic response of magnetic chitosan-5-Fu nano-particles was studied by UV-vis spectrometer to detect the changes of solution absorbance. Without external magnetic field, the nano-particle deposition rate was slow. When being subjected to 8 mT magnetic field, the particle sedimentation rate was increased rapidly. The results showed that magnetic chitosan-5-Fu nano-particles have a magnetic stability and strong targeting characteristics.

  12. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-06-15

    This study was aimed to develop biopolymer based antimicrobial films for active food packaging and to reduce environmental pollution caused by accumulation of synthetic packaging. The ZnO NPs were incorporated as antimicrobials into different biopolymers such as agar, carrageenan and CMC. Solvent casting method was performed to prepare active nanocomposite films. Methods such as FE-SEM, FT-IR and XRD were used to characterize resulting films. Physical, mechanical, thermal and antimicrobial properties were also examined. Remarkable surface morphological differences were observed between control and nanocomposite films. The crystallinity of ZnO was confirmed by XRD analysis. The addition of ZnO NPs increased color, UV barrier, moisture content, hydrophobicity, elongation and thermal stability of the films, while decreased WVP, tensile strength and elastic modulus. ZnO NPs impregnated films inhibited growth of L. monocytogenes and E. coli. So these newly prepared nanocomposite films can be used as active packaging film to extend shelf-life of food.

  13. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  14. nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties

    Science.gov (United States)

    Avcı, Ahmet; Eskizeybek, Volkan; Gülce, Handan; Haspulat, Bircan; Şahin, Ömer Sinan

    2014-09-01

    A rutile TiO2 (α-TiO2) and hexagonal wurtzite ZnO nanocomposite was directly and synchronously synthesized via arc discharge method submerged in de-ionized water. In correlation with the detailed characterization of the morphology, and crystalline structure of the prepared ZnO-TiO2 nanocomposites, the UV-visible and photoluminescence properties were studied. X-ray diffraction and transmission electron microscopy investigations revealed the co-existence of α-TiO2 and hexagonal wurtzite ZnO phases with the ZnO and α-TiO2 nanoparticles are in nanorod and nanospheres morphologies, respectively. The diameters of the synthesized nanocomposite particles are in the range of 5-70 nm. Interestingly, the as-prepared ZnO-TiO2 nanocomposite shows better photocatalytic activity for photodegradation of the methylene blue dye than both of pure ZnO and TiO2 nanocatalyts. This work would explore feasible routes to synthesize efficient metal or/and metal oxide nanocomposites for degrading organic pollutants, gas sensing or other related applications.

  15. High-pressing preparation of rock glasses and their elastic properties

    Institute of Scientific and Technical Information of China (English)

    JIANG Xi; ZHOU Wenge; XIE Hongsen; LIU Yonggang; FAN Dawei; WAN Fang

    2008-01-01

    Melt glasses for seven types of rock ranging from acid to basic were prepared under 1.0 GPa on a multi-anvil pressure apparatus, YJ-3000 ton press. Densities and elastic properties of the melt glasses were compared with those described in previous studies. It was found that the glasses melted under 1.0 GPa were consistent in density with both naturally-occurring glassy rocks and artificially prepared glasses melted at ambient pressure. The densities of glasses are negatively correlated with the SiO2 contents and positively correlated with the (MgO+FeO) contents. The compressive velocity (Vp) of glass tends to increase with decreasing SiO2 contents and increasing (MgO+FeO) contents. The shear velocity (Vs) of glass tends to increase slightly with increasing SiO2 contents, which has little connection with the (MgO+FeO) contents. It was calculated from densities and velocities that the elastic moduli of glasses are negatively correlated with the SiO2 contents and positively correlated with the (MgO+FeO) contents.

  16. Preparation and properties of metal-PVA composite hydrophilic ultrafiltration membranes

    Institute of Scientific and Technical Information of China (English)

    邱运仁; 张启修

    2003-01-01

    Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as the coating solution concentration, sequence and times of coating, and heat-treatment on the properties of the composite membranes were studied. The results show that the hole diameter of the composite membrane decreases with the increase of the concentration of PVA, the hole diameter of composite membrane is different when the sequence of coating is different. When the higher concentration of PVA solution is used to coat the metallic membrane for the first time and the other smaller one for the second time, the hole diameter of the composite membrane is relatively small, compared with that of the composite membrane made by the smaller concentration of PVA solution for the first time and the other higher one for the second time. The holes of the composite membrane contract and the stability of the membrane is improved by heat treatment. When metal-PVA composite hydrophilic membranes are used to treat the oil/water emulsion with the concentration of 1 000 mg@ L -1, the retention is from 80% to 90%, and the permeate flux is from 15 L @ m-2 @ h-1 to 40 L @ m-2 @ h-1 at pressure of 0.2 to 0.3 MPa.

  17. Flow properties of ice cream mix prepared from palm oil: anhydrous milk fat blends.

    Science.gov (United States)

    Rosnani, A I Wan; Aini, I Nor; Yazid, A M M; Dzulkifly, M H

    2007-05-15

    Ice cream mixes containing 33.4% total solids including 10% fat, 11.1% milk solid-non fat (MSNF), 12% sugar, 0.35% commercial blend of emulsifier/ stabiliser and water were produced. The blending of PO with AMF were conducted at three different ratios 30: 70, 50: 50 and 70: 30, respectively. The experimental ice cream mixes were compared with a control ice cream mix prepared from AMF. The flow properties were measured after ageing at 0, 1, 1.5, 2 and 24 h and determined using a controlled stress rheometer (Haake RS 100). The Power Law and Casson equation was employed to estimate the yield stress of an ice cream mixes. The regression coefficients (r) was represented well by the Casson model (r > 0.99) for all the samples, indicating goodness of fit. The profiles of the consistency coefficients (K(c)) were quite similar for all experimental samples, which could be attributed to the fact that all the samples exhibited similar viscoelastic behaviour. The flow behaviour index (n) of an ice cream mix prepared from PO and their blends with AMF were less then 1.0 (range 0.04-0.08) indicating that they were psuedoplastic fluid. The eta(o) at shear rate 20(-1) indicated higher degree of viscosity in AMF.

  18. PREPARATION, CHARACTERIZATION AND ADHESIVE PROPERTIES OF DI-AND TRI-HYDROXY BENZOYL CHITOSAN NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Mohamad Taghi Taghizadeh; Ali Bahadori

    2013-01-01

    Modified chitosans with 3,4-di-hydroxy benzoyl groups (CS-DHBA) and 3,4,5-tri-hydroxy benzoyl groups (CSTHBA) were synthesized and their nanoparticles were prepared via ionic crosslinking by tripolyphosphate (TPP).The chemical structure and degree of substitution (DS) of di-and tri-hydroxy benzoyl chitosans are determined by FTIR and 1HNMR spectroscopy.The morphology of particles,size distribution and zeta potential of nanoparticles were studied using transmission electron microscopy (TEM) and dynamic light scattering (DLS),respectively.The mean diameters of particles of CS-DHBA and CS-THBA nanoparticles were 144 nm and 112 nm,respectively.It was found that the particles size decreased slightly with decreasing the degree of substitution and increasing degree of deacetylation (DD),due to increasing of ionic crosslinking of ammonium ions and polyanions of tripolyphosphate.The TEM photographs of CS-DHBA show that these particles are spherical in shape,but the particles of CS-THBA show some aggregation.In addition,the solubility and the mechanical properties of the prepared modified chitosans and their nanoparticles were evaluated for bio-adhesive and biomedical application.The results of solubility tests indicated that,the CS-DHBA and CS-THBA have higher solubility at pH > 7 comparing to CS.Also the CS-DHBA,CS-THBA and their nanoparticles showed a significant adhesive capacity and enhanced tensile strength and tensile modulus.

  19. Coagulant properties of Moringa oleifera protein preparations: application to humic acid removal.

    Science.gov (United States)

    Santos, Andréa F S; Paiva, Patrícia M G; Teixeira, José A C; Brito, António G; Coelho, Luana C B B; Nogueira, Regina

    2012-01-01

    This work aimed to characterize the coagulant properties of protein preparations from Moringa oleifera seeds in the removal of humic acids from water. Three distinct preparations were assayed, namely extract (seeds homogenized with 0.15 M NaCl), fraction (extract precipitated with 60% w/v ammonium sulphate) and cMoL (protein purified with guar gel column chromatography). The extract showed the highest coagulant activity in a protein concentration between 1 mg/L and 180 mg/L at pH 7.0. The zeta potential of the extract (-10 mV to -15 mV) was less negative than that of the humic acid (-41 mV to -42 mV) in a pH range between 5.0 and 8.0; thus, the mechanism that might be involved in this coagulation activity is adsorption and neutralization of charges. Reduction of total organic carbon (TOC) and dissolved organic carbon (DOC) was observed in water samples containing 9 mg/L carbon as humic acid when treated with 1 mg/L of the extract. A decrease in colour and in the aromatic content of the treated water was also observed. These results suggested that the extract from M. oleifera seeds in a low concentration (1 mg/L) can be an interesting natural alternative for removing humic acid from water in developing countries. The extract dose determined in the present study does not impart odour or colour to the treated water.

  20. Infant food from quality protein maize and chickpea: optimization for preparing and nutritional properties.

    Science.gov (United States)

    Alarcón-Valdez, C; Milán-Carrillo, J; Cárdenas-Valenzuela, O G; Mora-Escobedo, R; Bello-Pérez, L A; Reyes-Moreno, C

    2005-06-01

    The present study had two objectives: to determine the best combination of nixtamalized maize flour (NMF) from quality protein maize and extruded chickpea flour (ECF) for producing an infant food, and to evaluate the nutritional properties of the optimized NMF/ECF mixture and the infant food. Response surface methodology (RSM) was applied to determine the best combination of NMF/ECF; the experimental design (Lattice simplex) generated 11 assays. Mixtures from each assay were evaluated for true protein and available lysine. Each one of 11 mixtures was used for preparing 11 infant foods that were sensory evaluated for acceptability. A common optimum value for the three response variables was obtained utilizing the desirability method. The best combination of NMF/ECF for producing an infant food was NMF = 26.7%/ECF = 73.3%; this optimized mixture had a global desirability of 0.87; it contained 19.72% dry matter (DM) proteins, 6.10% (DM) lipids, 71.45% (DM) carbohydrates, and 2.83% (DM) minerals; its essential amino acids profile covered the amino acids requirements for children 10-12 years old. The infant food prepared from optimized mixture had an in vitro protein digestibility of 87.9%, and a calculated protein efficiency ratio of 1.86. Infant food could be used to support the growth of infants in developing countries.