WorldWideScience

Sample records for prepacked microwave popcorn

  1. Survivability of Salmonella cells in popcorn after microwave oven and conventional cooking.

    Science.gov (United States)

    Anaya, I; Aguirrezabal, A; Ventura, M; Comellas, L; Agut, M

    2008-01-01

    The survivability of Salmonella cells in popcorn preparation was determined for two distinct cooking methods. The first method used a standard microwave oven. The second method used conventional cooking in a pan. Prior to thermal processing in independent experiments, 12 suspensions in a range between 1x10(3) and 8x10(6) colony-forming units (CFU) per gram of Salmonella cells were inoculated in both raw microwave popcorn and conventional corn kernels. The influence of the initial concentration of Salmonella cells in the raw products and the lethal effects on Salmonella by thermal treatments for cooking were studied. Survival of Salmonella cells was determined in the thermally processed material by pre-enrichment and enrichment in selective medium, in accordance with the legislation for expanded cereals and cereals in flakes. Viable experimental contaminants were recovered from the conventionally cooked popcorn with initial inoculation concentrations of 9x10(4)cells/g or greater. Salmonella cell viability was significantly reduced after microwave oven treatment, with recoveries only from initial concentrations of 2x10(6)cells/g or superior.

  2. Increased respiratory disease mortality at a microwave popcorn production facility with worker risk of bronchiolitis obliterans.

    Directory of Open Access Journals (Sweden)

    Cara N Halldin

    Full Text Available BACKGROUND: Bronchiolitis obliterans, an irreversible lung disease, was first associated with inhalation of butter flavorings (diacetyl in workers at a microwave popcorn company. Excess rates of lung-function abnormalities were related to cumulative diacetyl exposure. Because information on potential excess mortality would support development of permissible exposure limits for diacetyl, we investigated respiratory-associated mortality during 2000-2011 among current and former workers at this company who had exposure to flavorings and participated in cross-sectional surveys conducted between 2000-2003. METHODS: We ascertained workers' vital status through a Social Security Administration search. Causes of death were abstracted from death certificates. Because bronchiolitis obliterans is not coded in the International Classification of Disease 10(th revision (ICD-10, we identified respiratory mortality decedents with ICD-10 codes J40-J44 which encompass bronchitis (J40, simple and mucopurulent chronic bronchitis (J41, unspecified chronic bronchitis (J42, emphysema (J43, and other chronic obstructive pulmonary disease (COPD (J44. We calculated expected number of deaths and standardized mortality ratios (SMRs with 95% confidence intervals (CI to determine if workers exposed to diacetyl experienced greater respiratory mortality than expected. RESULTS: We identified 15 deaths among 511 workers. Based on U.S. population estimates, 17.39 deaths were expected among these workers (SMR = 0.86; CI:0.48-1.42. Causes of death were available for 14 decedents. Four deaths among production and flavor mixing workers were documented to have a multiple cause of 'other COPD' (J44, while 0.98 'other COPD'-associated deaths were expected (SMR = 4.10; CI:1.12-10.49. Three of the 4 'other COPD'-associated deaths occurred among former workers and workers employed before the company implemented interventions reducing diacetyl exposure in 2001. CONCLUSION: Workers

  3. Baryonic Popcorn

    CERN Document Server

    Kaplunovsky, Vadim; Sonnenschein, Jacob

    2012-01-01

    In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2...

  4. Structural isomers of polyfluorinated di- and tri-alkylated phosphate ester surfactants present in industrial blends and in microwave popcorn bags.

    Science.gov (United States)

    Trier, Xenia; Nielsen, Nikoline Juul; Christensen, Jan H

    2011-09-01

    In this study, we provide strategies for detecting and quantifying the structural isomers of polyfluorinated di- and tri-alkyl surfactants (PFAS) by mass spectrometry (MS). We specifically investigate polyfluorinated dialkylated phosphate ester surfactants (x:2/y:2 diPAPS, (F(CF(2))( x )CH(2)CH(2)O-P(O)(O)(-)-OCH(2)CH(2)(CF(2))( y )F)) and their thioether analogues (x:2/y:2 S-diPAPS, F(CF(2))( x )CH(2)CH(2)SCH(2)-C[CH(2)O)(2)P(O)(O)(-)]-CH(2)SCH(2)CH(2)(CF(2))( y )F), which are used for industrial applications, such as oil- and water-repellent coatings on paper and board. DiPAPS have been found in human blood and are metabolised to the persistent perfluoroalkyl carboxylic acids (PFCA) in rats. A microwave popcorn bag extract was analysed by ultrahigh-pressure liquid chromatography coupled to a negative electrospray ionisation-quadrupole time-of-flight MS. The extract contained S-diPAPS, diPAPS and trialkylated (triPAPS) impurities. TriPAPS were also present in industrial and synthetic diPAPS standards, and were verified with an 8:2/8:2/8:2 triPAPS standard. The eight elemental compositions (m/z's) of diPAPS in the extract represent 19 precursor ion structures, and the six S-diPAPS m/z's represent at least 13 structures. The diPAPS had [M-H](-) precursor ions of m/z 789, 889,…1,489 and the S-diPAPS of m/z 921, 1,021,…1,421, corresponding to fluorinated chains from C(6-18). Each m/z appeared as one to three chromatographic peaks of structural isomers, where, e.g. m/z 1,189 was present as 10:2/10:2, 8:2/12:2 and 6:2/14:2 diPAPS. The isomers formed different products ions, thus only half of the m/z 1,189 diPAPS concentration was measured with one precursor ion > product ion transition. In general, knowledge about structural isomers of poly-alkylated PFAS is needed for the estimation of types and amounts of perfluorinated degradation products, such as PFCA from diPAPS.

  5. What Makes Popcorn Pop

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The smell of popcorn popping is one that arouses the senses of both young and old and makes the(A)m water for a tasty handful.It is one of the beloved snacks of all time,but where did it come from and how does it pop?

  6. Effect of the combinations of eatable gums on the eating quality of microwave-reheat popcorn chicken%食用胶复配对微波复热鸡米花品质的影响

    Institute of Scientific and Technical Information of China (English)

    于彩凤; 孔保华; 张宏伟; 李沛军; 赵钜阳; 刘世欣

    2012-01-01

    针对微波复热鸡米花的加工工艺,在预实验基础上选用黄原胶、卡拉胶以及魔芋胶以不同比例复配,研究其对最终产品品质的影响。微波复热后以鸡米花的脆性作为主要评定指标,同时对制品进行物理性质分析及感官评价,筛选出微波复热后品质最优的胶体复配比例。结果表明,向浸蘸溶液中添加三种食用胶中的任意一种或任意两种食用胶复配添加时,均可以显著改善微波复热后鸡米花的脆性(P〈0.05)。而三种食用胶等比例复配对微波复热鸡米花品质则没有明显改善作用。卡拉胶1.00%的添加量会对产品风味产生不良影响。其中O.50%黄原胶和0.50%卡拉胶复配时,微波复热后鸡米花的脆性显著提高,外壳水分和油分含量显著降低(P〈0.05),感官质量也较高。这表明向浸蘸溶液中添加0.50%黄原胶和0.50%卡拉胶复配食用胶可以很大程度上改善微波复热鸡米花的食用品质。%The processing factors of microwave-reheat popcorn chicken were examined in order to improve the quality of the finished products.Based on the preliminary tests,xanthan gum, carrageenan and konjac gum were chosen as additives into the dipping solution of popcorn chicken. The effect of different combinations of edible gums on the physical properties, especially crispiness, and sensory quality were then evaluated. The results showed that the samples with any one or two of these eatable gums had a significant improvement on crispness (p 〈0.05),as compared to the control sample; while xanthan gum, carrageenan and konjac gum had none significant effect on crispness values. However, an undesirable taste was detected when the amount of carrageenan added to 1.00%.The sensory evaluation showed the combation of 0.50% xanthan gum and 0.50% carrageenan had the highest acceptation, in addition, crust of microwave-reheat popcorn chicken had the best

  7. How Much Popcorn Will Our Classroom Hold?

    Science.gov (United States)

    Rommel-Esham, Katie

    2007-01-01

    "How much popcorn will our classroom hold?" This intriguing question sparked a terrific integrated science and math exploration that the author conducted with fifth-and sixth-grade students. In the process of finding the classroom's volume, students developed science-process skills (e.g., developing a plan, measurement, collecting and interpreting…

  8. 75 FR 67609 - Popcorn Promotion, Research, and Consumer Information Order; Reapportionment

    Science.gov (United States)

    2010-11-03

    ... Agricultural Marketing Service 7 CFR Part 1215 Popcorn Promotion, Research, and Consumer Information Order... Popcorn Promotion, Research and Consumer Information Order (Order) to reduce the Popcorn Board (Board..., fewer popcorn processors in the industry. In accordance with the Popcorn Promotion, Research...

  9. Mechanical and thermal properties of prepacked aggregate concrete incorporating palm oil fuel ash

    Indian Academy of Sciences (India)

    HOSSEIN MOHAMMADHOSSEINI; A S M ABDUL AWAL; ABDUL RAHMAN MOHD SAM

    2016-10-01

    Prepacked aggregate concrete (PAC) is a special type of concrete which is made by placing coarse aggregate in a formwork and injecting a grout either by pump or under the gravity force to fill the voids. Use of pozzolanic materials in conventional concrete has become increasingly extensive, and this trend is expected to continue in PAC as well. Palm oil fuel ash (POFA) is one of these pozzolanic ash, which has been recognized as a good pozzolanic material. This paper presents the experimental results of the performance behaviour of POFA in developing physical and mechanical properties of prepacked aggregate concrete. Four concrete mixes namely,prepacked concrete with 100% OPC as a control, and PAC with 10, 20 and 30% POFA were cast, and thetemperature growth due to heat of hydration and heat transfer in all the mixtures was recorded. It has been found that POFA significantly reduces the temperature rise in prepacked aggregate concrete and delay the transfer of heat to the concrete body. The compressive and tensile strengths, however, increased with replacement up to20% POFA. The results obtained and the observation made in this study suggest that the replacement of OPC by POFA is beneficial, particularly for prepacked mass concrete where thermal cracking due to extreme heat rise is of great concern.

  10. Recurrent selection in inbred popcorn families

    Directory of Open Access Journals (Sweden)

    Daros Máskio

    2004-01-01

    Full Text Available Although much appreciated in Brazil, commercial popcorn is currently cropped on a fairly small scale. A number of problems need to be solved to increase production, notably the obtaintion of seeds with good agronomic traits and good culinary characteristics. With the objective of developing superior genotypes in popcorn, a second cycle of intrapopulation recurrent selection based on inbred S1 families was carried out. From the first cycle of selection over the UNB-2U population, 222 S1 families were obtained, which were then divided into six sets and evaluated in a randomized complete block design with two replications within the sets. Experiments were carried out in two Brazilian localities. The analysis of variance revealed environmental effects for all evaluated traits, except popping and stand, showing that, for most traits, these environments affected genotype behavior in different ways. In addition, the set as source of variation was significant for most of the evaluated traits, indicating that dividing the families into sets was an efficient strategy. Genotype-by-environment interaction was detected for most traits, except popping expansion and stand. Differences among genotypes were also detected (1% F-test, making viable the proposition of using the genetic variability in the popcorn population as a basis for future recurrent selection cycles. Superior families were selected using the Smith and Hazel classic index, with predicted genetic gains of 17.8% for popping expansion and 26.95% for yield.

  11. Continuïteit van ondernemingen en pre-pack - hoe een idee een Europese richtlijn mist

    NARCIS (Netherlands)

    Beltzer, R.M.

    2015-01-01

    Zoals bij elk nieuw fenomeen geldt ook voor de pre-pack dat juridische onduidelijkheden bestaan. Een voor de praktijk belangrijke vraag is of er redenen zijn aan te nemen dat een voortzetting van de onderneming door middel van een zogenoemde pre-pack een overgang van onderneming zou kunnen implicere

  12. 7 CFR 457.126 - Popcorn cop isurance povisions.

    Science.gov (United States)

    2010-01-01

    ...) Any production from yellow or white dent corn will be counted as popcorn on a weight basis and any... unless production from the replanted acreage can be delivered under the terms of the popcorn processor contract, or the processor agrees in writing that it will accept the production from the replanted...

  13. Computer-Presented Video Prompting for Teaching Microwave Oven Use to Three Adults with Developmental Disabilities

    Science.gov (United States)

    Sigafoos, Jeff; O'Reilly, Mark; Cannella, Helen; Upadhyaya, Megha; Edrisinha, Chaturi; Lancioni, Giulio E.; Hundley, Anna; Andrews, Alonzo; Garver, Carolyn; Young, David

    2005-01-01

    We evaluated the use of a video prompting procedure for teaching three adults with developmental disabilities to make popcorn using a microwave oven. Training, using a 10-step task analysis, was conducted in the kitchen of the participant's vocational training program. During baseline, participants were instructed to make popcorn, but were given…

  14. Computer-Presented Video Prompting for Teaching Microwave Oven Use to Three Adults with Developmental Disabilities

    Science.gov (United States)

    Sigafoos, Jeff; O'Reilly, Mark; Cannella, Helen; Upadhyaya, Megha; Edrisinha, Chaturi; Lancioni, Giulio E.; Hundley, Anna; Andrews, Alonzo; Garver, Carolyn; Young, David

    2005-01-01

    We evaluated the use of a video prompting procedure for teaching three adults with developmental disabilities to make popcorn using a microwave oven. Training, using a 10-step task analysis, was conducted in the kitchen of the participant's vocational training program. During baseline, participants were instructed to make popcorn, but were given…

  15. Prediction of popcorn hybrid and composite means

    Directory of Open Access Journals (Sweden)

    Ramon Macedo Rangel

    2007-01-01

    Full Text Available The objectives of this study were to evaluate the combining ability of 10 popcorn populations in a circulantdiallel; to test the viability of superior hybrids; and to identify genetic composites for intrapopulation breeding. In fourcontrasting environments, 30 treatments were evaluated for grain yield (GY, plant height (PLH and popping expansion(PE, in a random block design with four replications. Results indicated that the evaluation of treatments in a larger groupof environments favors the expression of variability in genotypes. The additive effects for PE and the dominance effects forGY and PLH were highest. GY and PE of the combinations UNB2U-C1 x Angela and Braskalb x Angela were outstanding.The predicted mean PE and GY were highest for hybrid UNB2U-C1 x Angela and the composite formed by these parents(26.54 mL g-1 and 1,446.09 kg ha-1 respectively.

  16. Critical factors in microwave expansion of starchy snacks

    NARCIS (Netherlands)

    Sman, van der R.G.M.; Bows, J.R.

    2017-01-01

    Popping of starchy pellets in a domestic microwave oven has proven difficult compared to pellets expanded in frying oil, and even to microwave expanded popcorn. These pellets encounter problems like uneven popping, burning and the absence of an audible cue for the end of popping. The lack of a

  17. 75 FR 31730 - Popcorn Promotion, Research, and Consumer Information Order; Reapportionment

    Science.gov (United States)

    2010-06-04

    ... Agricultural Marketing Service 7 CFR Part 1215 Popcorn Promotion, Research, and Consumer Information Order... the Popcorn Promotion, Research and Consumer Information Order (Order) which is authorized by the Popcorn Promotion, Research and Consumer Information Act (Act), the number of members on the Board may...

  18. Effects of endogamy on microsporogenesis in popcorn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Piffer Tomasi Baldez da Silva

    2007-01-01

    Full Text Available Inbred lines are necessary for the development of popcorn hybrids. Genes for several traits, among them thoserelated to the meiotic process, approach homozygosis during inbreeding. The purpose of this paper was to evaluate themeiotic stability of popcorn endogamic lines developed from a triple hybrid in contribution to hybrid breeding programs. Theoriginal population (S0 and seven annual self-pollinated generations (S1 to S7 were analyzed. Cytological results werestatistically analyzed by linear regression. The frequency of total and terminal chiasmata decreased with endogamy. Meioticabnormalities also increased with endogamy although their number was not high. Since the frequency of abnormalities waslow and did not affect drastically the meiotic product, inbred lines from the hybrid under analysis may have a high potentialfor the establishment of new popcorn hybrids.

  19. STS-97 Mission Specialist Noriega during pre-pack and fit check

    Science.gov (United States)

    2000-01-01

    STS-97 Mission Specialist Carlos Noriega gets help with his boots from suit technician Shelly Grick-Agrella during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  20. STS-97 Pilot Bloomfield during pre-pack and fit check

    Science.gov (United States)

    2000-01-01

    STS-97 Pilot Michael Bloomfield gets help with his boots from suit technician Steve Clendenin during pre-pack and fit check. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  1. FORMULATION AND NUTRITIONAL QUALITY OF INFANT FORMULA PRODUCED FROM GERMINATED POPCORN, BAMBARA GROUNDNUT AND AFRICAN LOCUST BEAN FLOUR

    OpenAIRE

    Oluwole Steve Ijarotimi; Oluremi Olufunke Keshinro

    2012-01-01

    The aim of this present study was to produce and evaluate the nutritional quality of complementary foods from popcorn, African locust bean and Bambara groundnut. The popcorn, bambara groundnut and African locust beans were obtained locally in Akure, Nigeria. The seeds were germinated, oven dried, milled and sieved into flours. The flours were mixed as follows: GPA (70% popcorn, 30% African locust bean), GPB (70% popcorn, 30% bambara groundnut) and GPAB (70% popcorn, 20% bambara groundnut, 10%...

  2. Assessing the average sodium content of prepacked foods with nutrition declarations: the importance of sales data.

    Science.gov (United States)

    Korošec, Živa; Pravst, Igor

    2014-09-04

    Processed foods are recognized as a major contributor to high dietary sodium intake, associated with increased risk of cardiovascular disease. Different public health actions are being introduced to reduce sodium content in processed foods and sodium intake in general. A gradual reduction of sodium content in processed foods was proposed in Slovenia, but monitoring sodium content in the food supply is essential to evaluate the progress. Our primary objective was to test a new approach for assessing the sales-weighted average sodium content of prepacked foods on the market. We show that a combination of 12-month food sales data provided by food retailers covering the majority of the national market and a comprehensive food composition database compiled using food labelling data represent a robust and cost-effective approach to assessing the sales-weighted average sodium content of prepacked foods. Food categories with the highest sodium content were processed meats (particularly dry cured meat), ready meals (especially frozen pizza) and cheese. The reported results show that in most investigated food categories, market leaders in the Slovenian market have lower sodium contents than the category average. The proposed method represents an excellent tool for monitoring sodium content in the food supply.

  3. Assessing the Average Sodium Content of Prepacked Foods with Nutrition Declarations: The Importance of Sales Data

    Directory of Open Access Journals (Sweden)

    Živa Korošec

    2014-09-01

    Full Text Available Processed foods are recognized as a major contributor to high dietary sodium intake, associated with increased risk of cardiovascular disease. Different public health actions are being introduced to reduce sodium content in processed foods and sodium intake in general. A gradual reduction of sodium content in processed foods was proposed in Slovenia, but monitoring sodium content in the food supply is essential to evaluate the progress. Our primary objective was to test a new approach for assessing the sales-weighted average sodium content of prepacked foods on the market. We show that a combination of 12-month food sales data provided by food retailers covering the majority of the national market and a comprehensive food composition database compiled using food labelling data represent a robust and cost-effective approach to assessing the sales-weighted average sodium content of prepacked foods. Food categories with the highest sodium content were processed meats (particularly dry cured meat, ready meals (especially frozen pizza and cheese. The reported results show that in most investigated food categories, market leaders in the Slovenian market have lower sodium contents than the category average. The proposed method represents an excellent tool for monitoring sodium content in the food supply.

  4. Trend analysis of performance parameters of pre-packed columns for protein chromatography over a time span of ten years.

    Science.gov (United States)

    Scharl, Theresa; Jungreuthmayer, Christian; Dürauer, Astrid; Schweiger, Susanne; Schröder, Tim; Jungbauer, Alois

    2016-09-23

    Pre-packed small scale chromatography columns are increasingly used for process development, for determination of design space in bioprocess development, and for post-licence process verifications. The packing quality of 30,000 pre-packed columns delivered to customers over a period 10 years has been analyzed by advanced statistical tools. First, the data were extracted and checked for inconsistencies, and then were tabulated and made ready for statistical processing using the programming language Perl (https://www.perl.org/) and the statistical computing environment R (https://www.r-project.org/). Reduced HETP and asymmetry were plotted over time to obtain a trend of packing quality over 10 years. The obtained data were used as a visualized coefficient of variation analysis (VCVA), a process that has often been applied in other industries such as semiconductor manufacturing. A typical fluctuation of reduced HETP was seen. A Tsunami effect in manufacturing, the effect of propagation of manufacturing deviations leading to out-of-specification products, was not observed with these pre-packed columns. Principal component analysis (PCA) showed that all packing materials cluster. Our data analysis showed that the current commercially available chromatography media used for biopharmaceutical manufacturing can be reproducibly and uniformly packed in polymer-based chromatography columns, which are designed for ready-to-use purposes. Although the number of packed columns has quadrupled over one decade the packing quality has remained stable.

  5. Search for Popcorn Mesons in Events with Two Charmed Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  6. Numerical taxonomy of psychrotrophic lactic acid bacteria from prepacked meat and meat products.

    Science.gov (United States)

    Borch, E; Molin, G

    1988-01-01

    Ninety-four strains of lactic acid bacteria isolated from refrigerated, prepacked meat and meat products were together with 59 reference strains of Brochothrix, Lactobacillus, Leuconostoc, Pediococcus and Streptococcus phenotypically classified, using 96 unit characters. Data were examined using Simple Matching (SSM) or Jaccard coefficient (SJ), and unweighted pair group algorithm with arithmetic averages. Twenty-three clusters with two or more members were defined at the 84% SSM-similarity level which corresponded to the SJ-similarity level of 61%. Based on SSM, most field strains were included in nine clusters, and with three unsignificant exceptions these contained no reference strains. The field clusters were designated Carnobacterium piscicola (cluster 1; 5% of field isolates), Carnobacterium divergens (cluster 2; 9% of field isolates), Leuconostoc (cluster 9; 18% of field isolates) and Lactobacillus (cluster 4, 10, 11, 12, 13 and 14; together 60% of field isolates). The Lactobacillus clusters had many features in common with cluster II of Shaw & Harding (1984). Phenotypical characteristics of major clusters are given. The SSM and SJ based classifications basically coincided for the field strains; the exception was cluster 4 which now were split in two parts. Fourteen clusters were made up of mainly reference strains (SSM). Most of them included more than one type strain on species level; exceptions were Brochothrix thermosphacta (cluster 3), Lactobacillus salivarius (cluster 17) and Leuconostoc mesenteroides (cluster 18). Several rearrangements were seen amongst the clusters of the reference strains when SJ, instead of SSM, was used for clustering.

  7. Testes de capacidade de expansão em programas de melhoramento de milho pipoca Popping expansion tests in popcorn breeding programs

    Directory of Open Access Journals (Sweden)

    Frederico de Pina Matta

    2001-12-01

    systems for popping expansion determination in breeding programs. The first was a hot air popcorn pumper and the second was a microwave oven. For the first one an experiment was installed in a completely randomized design, with three treatments and nine levels of kernel weight, and five replications. For the second one, aiming to define an alternative packaging, an experiment was installed also in a completely randomized design, following a factorial scheme, with three replications, involving two times and five packagings. Another experiment was achieved to verify the microwave oven quality for volume expansion determination with a little kernel quantity and the best time to be used. The hot air popcorn pumper is an efficient system, in which 10 g of kernel can be used to evaluate plants and up to 90 g of kernel can be used to evaluate families in the experiments. The microwave oven is equivalent to the hot air popcorn pumper. Kraft paper bags can be used in the microwave oven. For plant evaluation 10 g of kernel with 140 seconds are recommended. To evaluate progenies 30 g to 90 g of kernel with 220 seconds can be used.

  8. Foodborne Bacterial Pathogens in Retail Prepacked Ready-to-Eat Mixed Ingredient Salads.

    Science.gov (United States)

    Söderqvist, Karin; Thisted Lambertz, Susanne; Vågsholm, Ivar; Boqvist, Sofia

    2016-06-01

    Prepacked ready-to-eat mixed ingredient salads (RTE salads) are readily available whole meals that include a variety of ingredients such as raw vegetables, cooked meat, and pasta. As part of a trend toward healthy convenience foods, RTE salads have become an increasingly popular product among consumers. However, data on the incidence of foodborne pathogens in RTE salads are scarce. In this study, the microbiological safety of 141 RTE salads containing chicken, ham, or smoked salmon was investigated. Salad samples were collected at retail and analyzed using standard methods for Listeria monocytogenes, Shiga toxin-producing Escherichia coli (STEC), pathogenic Yersinia enterocolitica, Salmonella, and Campylobacter spp.L. monocytogenes was isolated from two (1.4%) of the RTE salad samples. Seven (5.0%) of the samples were positive for the ail gene (present in all human pathogenic Y. enterocolitica isolates) and three (2.1%) of the samples were positive for the Shiga toxin genes stx1 and/or stx2. However, no strains of pathogenic Y.enterocolitica or STEC were isolated. Thus, pathogens were found or suspected in almost 1 of 10 RTE salads investigated, and pathogenic bacteria probably are present in various RTE salads from retail premises in Sweden. Because RTE salads are intended to be consumed without heat treatment, control of the ingredients and production hygiene is essential to maintain consumer safety. The recommended maximum storage temperature for RTE salads varies among countries but can be up to 8°C (e.g., in Sweden). Even during a short shelf life (3 to 5 days), storage at 8°C can enable growth of psychrotrophs such as L. monocytogenes and Y. enterocolitica. The maximum storage temperature should therefore be reduced.

  9. Potential of popcorn germplasm as a source of resistance to ear rot

    Directory of Open Access Journals (Sweden)

    Railan do Nascimento Ferreira Kurosawa

    Full Text Available ABSTRACT Because of its multi-purpose nature, popcorn has sparked the interest of the World Trade Organization as regards fungal contamination by mycotoxins. However, no investigations have been conducted on popcorn for resistance of genotypes to ear rot. The aim of this study was to evaluate the potential of popcorn genotypes as to resistance to ear rot and rotten kernels, as an initial step for the implementation of a breeding program with the popcorn crop in Northern Rio de Janeiro State, Brazil. Thirty-seven accessions from different ecogeographic regions of Latin America were evaluated in 2 cultivation periods, in a randomized block design with 4 replications. We evaluated the incidence of rotten ears, incidence of rotten ears caused by Fusarium spp., severity of ears with Fusarium spp. rot, and incidence of rotten kernels. The results were subjected to analysis of variance, and means were compared by the Scott-Knott clustering test (p < 0.05. A significant effect was observed for all evaluated variables, characterizing them as efficient in the discrimination of genotypic variability for reaction to fungal injuries in popcorn. The gene pool of the tropical and temperate Germplasm Collection evaluated here has the potential to generate superior segregants and provide hybrid combinations with alleles of resistance to diseases affecting ears and stored kernels. Based on the different variables and times, the experiment was conducted, and genotypes L65, L80, and IAC 125 showed the highest levels of resistance.

  10. Effect of rapid set binder on early strength and permeability of HES latex modified road repair pre-packed concrete

    Science.gov (United States)

    Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.

    2015-12-01

    The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.

  11. Popcorn is more satiating than potato chips in normal-weight adults

    Directory of Open Access Journals (Sweden)

    Nguyen Von

    2012-09-01

    Full Text Available Abstract Background Strategies that may increase compliance to reduced energy intakes are needed to reduce the health burden of obesity. Conflicting evidence exists regarding the effects of snacking on satiety and energy intake. Methods This study compared short-term satiety from two common snack foods, low fat popcorn or potato chips. Using a counterbalanced within-subject design, 35 normal weight non-smoking participants (17 men, 18 women ages 20–50 years (mean age 33 ± 11, BMI 23 ± 2 kg/m2 consumed four conditions each: 200 mL of water (control, one cup (4 g, 15 kcal popcorn, 6 cups (27 g, 100 kcal popcorn, and one cup (28 g, 150 kcal potato chips, each with 200 mL water. Participants rated their hunger, satisfaction, prospective consumption, and thirst on 100 mm visual analogue scales 30 minutes after commencement of snack consumption. In addition, post-snack energy intake from an ad libitum meal (amount served less amount remaining was measured, and the test food and meal combined energy intake and energy compensation were calculated. Results Participants expressed less hunger, more satisfaction, and lower estimates of prospective food consumption after six cups of popcorn compared to all other treatments (P  0.05. Conclusion Popcorn exerted a stronger effect on short-term satiety than did potato chips as measured by subjective ratings and energy intake at a subsequent meal. This, combined with its relatively low calorie load, suggests that whole grain popcorn is a prudent choice for those wanting to reduce feelings of hunger while managing energy intake and ultimately, body weight.

  12. Population structure and genetic diversity of Brazilian popcorn germplasm inferred by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Tereza Aparecida da Silva

    2015-05-01

    Conclusions: The analysis allowed to identify microsatellite loci with high levels of heterozygosity (UMC1549 and UMC1072. These loci can be indicated as promising for detecting polymorphisms in popcorn accessions and in the monitoring of genetic improvement programs. Moreover, allowed to identify heterozygous accessions (BOZM 260, this accession showed allelic variation at all analyzed microsatellite loci and can be recommended for crosses with plants that have desirable agronomic characteristics, with a view to the broadening of the genetic base of popcorn accessions and developing new cultivars.

  13. POPCORN Functions in the Auxin Pathway to Regulate Embryonic Body Plan and Meristem Organization in Arabidopsis

    NARCIS (Netherlands)

    Xiang, D.Q.; Yang, H.; Venglat, P.; Cao, Y.G.; Wen, R.; Ren, M.Z.; Stone, S.; Wang, E.; Wang, H.; Xiao, W.; Weijers, D.; Berleth, T.; Laux, T.; Selvaraj, G.; Datla, R.

    2011-01-01

    The shoot and root apical meristems (SAM and RAM) formed during embryogenesis are crucial for postembryonic plant development. We report the identification of POPCORN (PCN), a gene required for embryo development and meristem organization in Arabidopsis thaliana. Map-based cloning revealed that PCN

  14. Microbial survey of ready-to-eat salad ingredients sold at retail reveals the occurrence and the persistence of Listeria monocytogenes Sequence Types 2 and 87 in pre-packed smoked salmon.

    Science.gov (United States)

    Chau, Man Ling; Aung, Kyaw Thu; Hapuarachchi, Hapuarachchige Chanditha; Lee, Pei Sze Valarie; Lim, Pei Ying; Kang, Joanne Su Lin; Ng, Youming; Yap, Hooi Ming; Yuk, Hyun-Gyun; Gutiérrez, Ramona Alikiiteaga; Ng, Lee Ching

    2017-02-28

    As the preparation of salads involves extensive handling and the use of uncooked ingredients, they are particularly vulnerable to microbial contamination. This study aimed to determine the microbial safety and quality of pre-packed salads and salad bar ingredients sold in Singapore, so as to identify public health risks that could arise from consuming salads and to determine areas for improvement in the management of food safety. The most frequently encountered organism in pre-packed salad samples was B. cereus, particularly in pasta salads (33.3%, 10/30). The most commonly detected organism in salad bar ingredients was L. monocytogenes, in particular seafood ingredients (44.1%, 15/34), largely due to contaminated smoked salmon. Further investigation showed that 21.6% (37/171) of the pre-packed smoked salmon sold in supermarkets contained L. monocytogenes. Significantly higher prevalence of L. monocytogenes and higher Standard Plate Count were detected in smoked salmon at salad bars compared to pre-packed smoked salmon in supermarkets, which suggested multiplication of the organism as the products move down the supply chain. Further molecular analysis revealed that L. monocytogenes Sequence Type (ST) 2 and ST87 were present in a particular brand of pre-packed salmon products over a 4-year period, implying a potential persistent contamination problem at the manufacturing level. Our findings highlighted a need to improve manufacturing and retail hygiene processes as well as to educate vulnerable populations to avoid consuming food prone to L. monocytogenes contamination.

  15. Protein quality, hematological properties and nutritional status of albino rats fed complementary foods with fermented popcorn, African locust bean, and bambara groundnut flour blends

    OpenAIRE

    Ijarotimi, Oluwole Steve; Keshinro, Oluremi Olufunke

    2012-01-01

    The objective of this study was to determine protein quality and hematological properties of infant diets formulated from local food materials. The food materials were obtained locally, fermented, and milled into flour. The flours were mixed as 70% popcorn and 30% African locust bean (FPA), 70% popcorn and 30% bambara groundnut (FPB), and 70% popcorn, 20% bambara groundnut, and 10% African locust bean (FPAB). Proximate analysis, protein quality, hematological properties, and anthropometric me...

  16. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    CERN Document Server

    Elliot-Ripley, Matthew

    2016-01-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai-Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai-Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai-Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond.

  17. Analysis of general and specific combining abilities of popcorn populations, including selfed parents

    Directory of Open Access Journals (Sweden)

    José Marcelo Soriano Viana

    2003-12-01

    Full Text Available Estimation of general and specific combining ability effects in a diallel analysis of cross-pollinating populations, including the selfed parents, is presented in this work. The restrictions considered satisfy the parametric values of the GCA and SCA effects. The method is extended to self-pollinating populations (suitable for other species, without the selfed parents. The analysis of changes in population means due to inbreeding (sensitivity to inbreeding also permits to assess the predominant direction of dominance deviations and the relative genetic variability in each parent population. The methodology was used to select popcorn populations for intra- and inter-population breeding programs and for hybrid production, developed at the Federal University of Viçosa, MG, Brazil. Two yellow pearl grain popcorn populations were selected.

  18. Interchanges in popcorn (Zea mays L. involving the nucleolus organizer chromosome

    Directory of Open Access Journals (Sweden)

    Maria Suely Pagliarini

    2006-01-01

    Full Text Available The analysis of microsporogenesis in endogamous plants of popcorn (S5 to S7 showed several and distinctinterchanges which involve the nucleolus organizer (chromosome 6. The detection of cells with interchanges was facilitatedby the presence of two nucleoli of different sizes in contrast to normal ones with a single big nucleolus. Interchange points donot always seem to be at the same place. Whereas in several situations the interchange point clearly involved more than twochromosome pairs, a simple terminal translocation seemed to occur in others. During diplotene, a cross-shaped configurationconnected with the nucleoli was observed in some meiocytes. Some heteromorphic bivalents were found during diakinesis,after which meiosis progressed normally to the end and gave rise to apparently normal tetrads with one normal nucleolus ineach microspore. Tests of pollen viability in fixed pollen grains showed 100% stainability in normal and in affected plants.This is the first report on chromosome interchanges in popcorn.

  19. Bulbous epiphysis and popcorn calcification as related to growth plate differentiation in osteogenesis imperfecta

    Science.gov (United States)

    Brizola, Evelise; McCarthy, Edward; Shapiro, Jay Robert

    2015-01-01

    Summary Background Osteogenesis Imperfecta (OI) is an heritable systemic disorder of connective tissue due to different sequence variants in genes affecting both the synthesis of type I collagen and osteoblast function. Dominant and recessive inheritance is recognized. Approximately 90% of the OI cases are due to mutations in COL1A1/A2 genes. We clinically and radiologically describes an adult male with type III osteogenesis imperfecta who presents a rare bone dysplasia termed bulbous epiphyseal deformity in association with popcorn calcifications. Popcorn calcifications may occur with bulbous epiphyseal deformity or independently. Methods Molecular analysis was performed for COL1A1, COL1A2, LEPRE1 and WNT1 genes. Results An uncommon COL1A1 mutation was identified. Clinical and radiological exams confirmed a distinctive bulbous epiphyseal deformity with popcorn calcifications in distal femurs. We have identified four additional OI patients reported in current literature, whose X-rays show bulbous epiphyseal deformity related to mutations in CR-TAP, LEPRE1 and WNT1 genes. Conclusion The mutation identified here had been previously described twice in OI patients and no previous correlation with bulbous epiphyseal deformity was described. The occurrence of this bone dysplasia focuses attention on alterations in normal growth plate differentiation and the subsequent effect on endochondral bone formation in OI. PMID:26604951

  20. FORMULATION AND NUTRITIONAL QUALITY OF INFANT FORMULA PRODUCED FROM GERMINATED POPCORN, BAMBARA GROUNDNUT AND AFRICAN LOCUST BEAN FLOUR

    Directory of Open Access Journals (Sweden)

    Oluwole Steve Ijarotimi

    2012-06-01

    Full Text Available The aim of this present study was to produce and evaluate the nutritional quality of complementary foods from popcorn, African locust bean and Bambara groundnut. The popcorn, bambara groundnut and African locust beans were obtained locally in Akure, Nigeria. The seeds were germinated, oven dried, milled and sieved into flours. The flours were mixed as follows: GPA (70% popcorn, 30% African locust bean, GPB (70% popcorn, 30% bambara groundnut and GPAB (70% popcorn, 20% bambara groundnut, 10% African locust bean. The chemical composition, functional properties, sensory attributes and nutritional qualities of the food samples were determined using standard methods. The protein content of the food samples range between 23.85±1.54 – 28.84±1.02 g/100g, energy values, 434.47±2.04 - 444.11±2.47 and appreciable amount of minerals. The total essential amino acid (TEAA composition range from 27.63 to 31.09 g/100g. The calculated biological value range from 29.84 to 42.01 % . The oxalate, tannin, phytate and trypsin concentration of the food samples were reduced; while the choking property of the popcorn-based diets was eliminated with respect to the survival of experimental animals. The calculated molar ratios for [Ca][Phytate]/[Zn], phytate:calcium and phytate:iron were less than the critical values For sensory attribute, the GPB was rated highest in terms of overall acceptability over the GPA and GPAB, but rated less when compared with ogi and cerelac. It could be concluded that GPB had a better nutritional quality based on the overall ranking using protein, energy, Ca/P ratio, TEAA, biological value and sensory attributes indices.

  1. Diallel analysis of popcorn lines and hybrids for baby corn production

    Directory of Open Access Journals (Sweden)

    Lucas Rafael de Souza Camacho

    2015-03-01

    Full Text Available The aim of this study was to evaluate the combining ability of popcorn lines and hybrids with favorable traits for baby corn production, using lines extracted from the major genotypes of the Brazilian germplasm. From nine popcorn lines, derived from the genotypes Zélia, CMS 42, CMS 43, UEM M2, Zaeli and IAC 112, 36 single-cross hybrids were obtained without reciprocals. In partial diallel crosses, 25 single-cross hybrids were obtained, derived from crosses of five lines of the Zaeli (group I with five lines from IAC 112 (group II. We recommend using lines derived from Zaeli and CMS 42 in hybrid breeding programs for higher ear yields. The lines P9.5.1 and P9.5.5 (group I and P8.3 and P8.5 (group II can be recommended for recombination within each group and for the formation of two synthetic populations for recurrent selection, in order to increase ear yield.

  2. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  3. History of northern corn leaf blight disease in the seventh cycle of recurrent selection of an UENF-14 popcorn population

    Directory of Open Access Journals (Sweden)

    Rodrigo Moreira Ribeiro

    2016-09-01

    Full Text Available To investigate the genetic resistance to northern corn leaf blight (Exserohilum turcicum disease in the UENF-14 popcorn population and the inclusion of this trait in the analysis, two hundred ten popcorn half-sib families were evaluated using an incomplete block design with treatments arranged in replicates "Sets". Regarding the Families within "Set" (F/S source of variation, enough genetic variability was found for northern corn leaf blight disease resistance to be explored in the next cycles of the UENF popcorn breeding program. The open-pollinated UENF-14 variety has a source of resistance to this disease in its genetic basis, given that it originated from crossing with an American cultivar with yellow grains that is resistant to disease. These results strengthen the possibility of selecting resistant families across the cycles, so it is concluded that the selection was effective at maintaining the balance in the occurrence of the disease in the study population and that the source of resistance is not lost with advancing cycles. The addition of the foliar disease variable in the analysis is of the utmost importance for the improvement of popcorn as it makes it possible to aggregate genes for resistance to this disease along with agronomic traits of interest.

  4. Microwave Ovens

    Science.gov (United States)

    ... ovens heat food using microwaves, a form of electromagnetic radiation similar to radio waves. Microwaves have three characteristics ... that their microwave oven products meet the strict radiation safety standard ... if your microwave oven has damage to its door hinges, latches, or seals, or ...

  5. POPEYE: A production rule-based model of multitask supervisory control (POPCORN)

    Science.gov (United States)

    Townsend, James T.; Kadlec, Helena; Kantowitz, Barry H.

    1988-01-01

    Recent studies of relationships between subjective ratings of mental workload, performance, and human operator and task characteristics have indicated that these relationships are quite complex. In order to study the various relationships and place subjective mental workload within a theoretical framework, we developed a production system model for the performance component of the complex supervisory task called POPCORN. The production system model is represented by a hierarchial structure of goals and subgoals, and the information flow is controlled by a set of condition-action rules. The implementation of this production system, called POPEYE, generates computer simulated data under different task difficulty conditions which are comparable to those of human operators performing the task. This model is the performance aspect of an overall dynamic psychological model which we are developing to examine and quantify relationships between performance and psychological aspects in a complex environment.

  6. Genetic divergence in popcorn genotypes using microsatellites in bulk genomic DNA

    Directory of Open Access Journals (Sweden)

    Tereza Aparecida da Silva

    2009-01-01

    Full Text Available The genetic diversity of 25 popcorn genotypes was estimated based on DNA bulks from 78 plants of eachvariety. The procedure involved 23 microsatellite loci distributed on 9 maize chromosomes. Clustering analysis according tothe Tocher method and the hierarchical clustering procedures (nearest neighbor, furthest neighbor and Unweighted Pair-Group Method Using Arithmetic Averages - UPGMA were performed. The cophenetic correlation coefficients indicated theUPGMA method as adequate to distinguish the varieties. The clusters suggested by the molecular analysis generally groupedgenotypes with the same genealogy together. The genetic dissimilarity of the varieties Argentina, Chile, PA-091 and PR-023was higher than of the others. Therefore, higher heterozygosity is expected in progenies from crosses with the other genotypes.

  7. CNS cavernous haemangioma: 'popcorn' in the brain and spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, A.N. [Department of Neuroradiology, National Neuroscience Institute (Singapore); Department of Diagnostic Imaging, National University Hospital (Singapore); Mohan, S. [Department of Neuroradiology, National Neuroscience Institute (Singapore); Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia (United States); Lim, C.C.T., E-mail: Tchoyoson_lim@nni.com.sg [Department of Neuroradiology, National Neuroscience Institute (Singapore); Department of Neurology, Duke NUS Graduate Medical School (Singapore)

    2012-04-15

    Cavernous haemangiomas (CH) are relatively uncommon non-shunting vascular malformations of the central nervous system and can present with seizures or with neurological deficits due to haemorrhage. Radiologists can often suggest the diagnosis of CH based on characteristic magnetic resonance imaging (MRI) features, thus avoiding further invasive procedures such as digital subtraction angiography or surgical biopsy. Although typical MRI appearance combined with the presence of multiple focal low signal lesions on T2*-weighted images or the presence of one or more developmental venous anomaly within the brain can improve the diagnostic confidence, serial imaging studies are often required if a solitary CH presents at a time when the imaging appearances had not yet matured to the typical 'popcorn' appearance.

  8. QTL consistency for agronomic traits across three generations and potential applications in popcorn

    Institute of Scientific and Technical Information of China (English)

    DONG Yong-bin; ZHANG Zhong-wei; SHI Qing-ling; WANG Qi-lei; ZHOU Qiang; DENG Fei; MA Zhi-yan; QIAO Da-he; LI Yu-ling

    2015-01-01

    Favorable agronomic traits are important to improve productivity of popcorn. In this study, a recombinant inbred line (RIL) population consisting of 258 lines was evaluated to identify quantitative trait loci (QTLs) for nine agronomic traits (plant height, ear height, top height (plant height subtracted ear height), top height/plant height, number of leaves above the top ear, leaf area, stalk diameter, number of tassel branches and the length of tassel) under three environments. Meta-anal-ysis was conducted then to integrate QTLs identiifed across three generations (RIL, F2:3 and BC2F2) developed from the same crosses. In total, 179 QTLs and 36 meta-QTLs (mQTL) were identiifed. The percentage of phenotypic variation (R2) explained by any single QTL varied from 3.86 to 28.4%, and 24 QTLs with contributions over 15%. Nine common QTLs located in the same or similar chromosome regions were detected across three generations. Five meta-QTLs were identiifed including QTLs in three independent studies. Seven important mQTLs were composed of 11–26 QTLs for 4–7 traits, respectively. Only 11 mQTLs were commonly identiifed in the same or similar chromosome regions across agronomic traits, popping characteristics (popping fold, popping volume and popping rate) and grain yield components (ear weight per plant, grain weight per plant, 100-grain weight, ear length, kernel number per row, ear diameter, row number per ear and kernel ratio) by meta-QTL analysis. In conclusion, we identiifed a list of QTLs, some of which with much higher contributions to agronomic traits should be valuable for further study in improving both popping characteristics and grain yield components in popcorn.

  9. Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance

    Directory of Open Access Journals (Sweden)

    Leandro Teodoski Spolaor

    2016-03-01

    Full Text Available ABSTRACT The use of plant growth-promoting bacteria is a promising alternative with low environmental impact to increase the efficiency of use of chemical fertilizers, ensuring high yield with better cost-effective ratio. In maize crops, several studies have demonstrated an increased yield when Azospirillum-based inoculants are used. In the case of popcorn, there are no available studies related to use of inoculation and its response on yield parameters. Thus, the aim of this study was to evaluate the field performance of popcorn when inoculated with the commercial product Masterfix L (A. brasilense Ab-V5 and A. brasilense Ab-V6 and the non-commercial inoculant UEL (A. brasilense Ab-V5 + Rhizobium sp. 53GRM1 associated with nitrogen fertilization. The trials were conducted in Londrina and Maringá, Paraná State, Brazil, in a randomized block design with four replications, in a split plot design with the inoculation treatments located in the plots (uninoculated, Masterfix L, and UEL and the different N rates located in the subplots where ammonium sulphate was applied in the topdressing at the V6 stage (0, 50, 100, and 150 kg∙ha–1. The variance analysis showed significant effects (p < 0.05 of inoculation (Londrina environment and N rates (both environments only for grain yield. There was no inoculation effect in the grain yield when inoculants were applied together with N-fertilization at topdressing. In the absence of N-fertilization at topdressing, the inoculants Masterfix L. and UEL promoted higher grain yield as compared to the uninoculated plants, with resulting increases of 13.21 and 26.61% in yield, respectively.

  10. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  11. SURVEY OF DEOXYNIVALENOL, DIACETOXYSCIRPENOL, AND T2 TOXIN IN POPCORN HYBRIDS PLANTED IN THE STATE OF SÃO PAULO AND IN POPCORN COMMERCIALIZED IN THE CITY OF CAMPINAS, SP

    Directory of Open Access Journals (Sweden)

    OLIVEIRA Adriana de Queiroz

    2001-01-01

    Full Text Available The incidence of the trichothecenes deoxynivalenol (DON, diacetoxyscirpenol (DAS, and T2 toxin (T2 in popcorn was investigated in 90 samples, belonging to 2 commercial and 28 experimental hybrids planted at experimental stations of the Agronomic Institute of Campinas at the locations of Campinas, Mococa, and Capão Bonito, and in 15 samples of popcorn, 9 branded and 6 unbranded, acquired from commercial outlets in the city of Campinas, SP. The samples were analyzed by gas chromatography with flame ionization detector combined with an alumina:carbon cleanup column. The detection limits were 30ng/g for DON, 50ng/g for DAS, and 40ng/g for T2. Five samples were contaminated with DON, four of them commercial and one from an experimental cultivar. The level of contamination in the commercial samples ranged from 30 to 40ng/g. The sample from the experimental cultivar contained 770ng/g DON. DAS and T2 were not detected in any of the popcorn samples analyzed.

  12. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-10-01

    Full Text Available We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement. The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.

  13. Microwave Photonics

    OpenAIRE

    Seeds, A.J.; Liu, C. P.; T. Ismail; Fice, M. J.; Pozzi, F; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  14. Effect of recurrent selection on the variability of the UENF-14 popcorn population

    Directory of Open Access Journals (Sweden)

    Rodrigo Moreira Ribeiro

    2016-07-01

    Full Text Available This study aimed to evaluate the effect of recurrent selection on the genetic variability of UENF-14 population after six selections. Two hundred and ten half-sib families were evaluated in two environments in the state of Rio de Janeiro, using incomplete randomized blocks design with treatments arranged in replication within “Sets”. There was significant effect for Families within the “Set” (F/S, proving that there is enough genetic variability to be exploited in the popcorn breeding program of UENF. The significance for the source of variation Environment (E shows that the environments were distinct enough to promote differences between the evaluated characteristics. It was found that for both characteristics of greatest interest, GY and PE, the magnitude of the additive variance remains with close values in advanced cycles of UENF-14 population, indicating that variability remains, with no evidence of decreases in advanced cycles. This is concluded by the longevity of UENF breeding program.

  15. POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis.

    Science.gov (United States)

    Xiang, Daoquan; Yang, Hui; Venglat, Prakash; Cao, Yongguo; Wen, Rui; Ren, Maozhi; Stone, Sandra; Wang, Edwin; Wang, Hong; Xiao, Wei; Weijers, Dolf; Berleth, Thomas; Laux, Thomas; Selvaraj, Gopalan; Datla, Raju

    2011-12-01

    The shoot and root apical meristems (SAM and RAM) formed during embryogenesis are crucial for postembryonic plant development. We report the identification of POPCORN (PCN), a gene required for embryo development and meristem organization in Arabidopsis thaliana. Map-based cloning revealed that PCN encodes a WD-40 protein expressed both during embryo development and postembryonically in the SAM and RAM. The two pcn alleles identified in this study are temperature sensitive, showing defective embryo development when grown at 22°C that is rescued when grown at 29°C. In pcn mutants, meristem-specific expression of WUSCHEL (WUS), CLAVATA3, and WUSCHEL-RELATED HOMEOBOX5 is not maintained; SHOOTMERISTEMLESS, BODENLOS (BDL) and MONOPTEROS (MP) are misexpressed. Several findings link PCN to auxin signaling and meristem function: ectopic expression of DR5(rev):green fluorescent protein (GFP), pBDL:BDL-GFP, and pMP:MP-β-glucuronidase in the meristem; altered polarity and expression of pPIN1:PIN1-GFP in the apical domain of the developing embryo; and resistance to auxin in the pcn mutants. The bdl mutation rescued embryo lethality of pcn, suggesting that improper auxin response is involved in pcn defects. Furthermore, WUS, PINFORMED1, PINOID, and TOPLESS are dosage sensitive in pcn, suggesting functional interaction. Together, our results suggest that PCN functions in the auxin pathway, integrating auxin signaling in the organization and maintenance of the SAM and RAM.

  16. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture.

    Science.gov (United States)

    Liang, Ting; Chen, Chunlin; Li, Xing; Zhang, Jian

    2016-08-16

    Porous carbon materials have drawn tremendous attention due to its applications in energy storage, gas/water purification, catalyst support, and other important fields. However, producing high-performance carbons via a facile and efficient route is still a big challenge. Here we report the synthesis of microporous carbon materials by employing a steam-explosion method with subsequent potassium activation and carbonization of the obtained popcorn. The obtained carbon features a large specific surface area, high porosity, and doped nitrogen atoms. Using as an electrode material in supercapacitor, it displays a high specific capacitance of 245 F g(-1) at 0.5 A g(-1) and a remarkable stability of 97.8% retention after 5000 cycles at 5 A g(-1). The product also exhibits a high CO2 adsorption capacity of 4.60 mmol g(-1) under 1066 mbar and 25 °C. Both areal specific capacitance and specific CO2 uptake are directly proportional to the surface nitrogen content. This approach could thus enlighten the batch production of porous nitrogen-doped carbons for a wide range of energy and environmental applications.

  17. Packed with Salmonella--investigation of an international outbreak of Salmonella Senftenberg infection linked to contamination of prepacked basil in 2007.

    Science.gov (United States)

    Pezzoli, Lorenzo; Elson, Richard; Little, Christine L; Yip, Hopi; Fisher, Ian; Yishai, Ruth; Anis, Emilia; Valinsky, Lea; Biggerstaff, Matthew; Patel, Nehal; Mather, Henry; Brown, Derek J; Coia, John E; van Pelt, Wilfrid; Nielsen, Eva M; Ethelberg, Steen; de Pinna, Elizabeth; Hampton, Michael D; Peters, Tansy; Threlfall, John

    2008-10-01

    Salmonella Senftenberg is uncommon in the United Kingdom. In January-June 2007, the Health Protection Agency reported on 55 primary human cases of Salmonella Senftenberg in England and Wales. In May 2007, fresh basil sold in the United Kingdom was found to be contaminated with Salmonella Senftenberg. We launched an investigation to elucidate the cause of this outbreak. Isolates were examined using plasmid profiling and pulsed-field gel electrophoresis, and the outbreak strain (SSFTXB.0014) was identified. We enquired via Enter-net whether other countries had isolated the outbreak strain, analyzed samples of fresh herbs from U.K. retailers, and interviewed patients on food history. Thirty-two patient-cases were referred to this outbreak in England and Wales. Onsets of illness occurred between 5 March and 6 June 2007. Fifty-six percent of patient-cases were females and 90% adults (>20 years old); three were admitted to hospital as a result of Salmonella infection. Scotland, Denmark, the Netherlands, and the United States reported on 19 cases of Salmonella Senftenberg infection presenting with the outbreak strain since January 2007. Eight samples of prepacked fresh basil imported from Israel tested positive with the same strain. A minority of patients could recall the consumption of basil before illness, and some reported consumption of products where basil was a likely ingredient. Environmental investigations in Israel did not identify the contamination source. Microbiological evidence suggested an association between contamination of fresh basil and the cases of Salmonella Senftenberg infection, leading to withdrawal of basil from all potentially affected batches from the U.K. market.

  18. Consumers' Exposure to Nutrition and Health Claims on Pre-Packed Foods: Use of Sales Weighting for Assessing the Food Supply in Slovenia.

    Science.gov (United States)

    Pravst, Igor; Kušar, Anita

    2015-11-12

    Insights into the use of health-related information on foods are important for planning studies about the effects of such information on the consumer's understanding, purchasing, and consumption of foods, and also support further food policy decisions. We tested the use of sales data for weighting consumers' exposure to health-related labeling information in the Slovenian food supply. Food labeling data were collected from 6342 pre-packed foods available in four different food stores in Slovenia. Consumers' exposure was calculated as the percentage of available food products with particular food information in the food category. In addition, 12-month sales data were used to calculate sales weighted exposure as a percentage of sold food products with certain food information in the food category. The consumer's in-store and sales-weighted exposure to nutrition claims was 37% and 45%, respectively. Exposure to health claims was much lower (13%, 11% when sales-weighted). Health claims were mainly found in the form of general non-specific claims or function claims, while children's development and reduction of disease risk claims were present on only 0.1% and 0.2% of the investigated foods, respectively. Sales data were found very useful for establishing a reliable estimation of consumers' exposure to information provided on food labels. The high penetration of health-related information on food labels indicates that careful regulation of this area is appropriate. Further studies should focus on assessing the nutritional quality of foods labeled with nutrition and health claims, and understanding the importance of such labeling techniques for consumers' food preferences and choices.

  19. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  20. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    Directory of Open Access Journals (Sweden)

    Yongbin Dong

    Full Text Available The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  1. Reproductive endocrine patterns and volatile urinary compounds of Arctictis binturong: discovering why bearcats smell like popcorn

    Science.gov (United States)

    Greene, Lydia K.; Wallen, Timothy W.; Moresco, Anneke; Goodwin, Thomas E.; Drea, Christine M.

    2016-06-01

    Members of the order Carnivora rely on urinary scent signaling, particularly for communicating about reproductive parameters. Here, we describe reproductive endocrine patterns in relation to urinary olfactory cues in a vulnerable and relatively unknown viverrid—the binturong ( Arctictis binturong). Female binturongs are larger than and dominate males, and both sexes engage in glandular and urinary scent marking. Using a large ( n = 33), captive population, we collected serum samples to measure circulating sex steroids via enzyme immunoassay and urine samples to assay volatile chemicals via gas chromatography-mass spectrometry. Male binturongs had expectedly greater androgen concentrations than did females but, more unusually, had equal estrogen concentrations, which may be linked to male deference. Males also expressed a significantly richer array of volatile chemical compounds than did females. A subset of these volatile chemicals resisted decay at ambient temperatures, potentially indicating their importance as long-lasting semiochemicals. Among these compounds was 2-acetyl-1-pyrroline (2-AP), which is typically produced at high temperatures by the Maillard reaction and is likely to be responsible for the binturong's characteristic popcorn aroma. 2-AP, the only compound expressed by all of the subjects, was found in greater abundance in males than females and was significantly and positively related to circulating androstenedione concentrations in both sexes. This unusual compound may have a more significant role in mammalian semiochemistry than previously appreciated. Based on these novel data, we suggest that hormonal action and potentially complex chemical reactions mediate communication of the binturong's signature scent and convey information about sex and reproductive state.

  2. Microbiological analysis of pre-packed sweet basil (Ocimum basilicum) and coriander (Coriandrum sativum) leaves for the presence of Salmonella spp. and Shiga toxin-producing E. coli.

    Science.gov (United States)

    Delbeke, Stefanie; Ceuppens, Siele; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-09-02

    Enteric pathogens, such as Salmonella spp. and pathogenic Escherichia coli, have been detected and associated with food borne outbreaks from (imported) fresh leafy herbs. Screening on imported herbs from South East Asian countries has been described. However, limited information on prevalence of these pathogens is available from other sourcing regions. Therefore, fresh pre-packed basil and coriander leaves from a Belgian trading company were investigated for the presence of Salmonella spp., Shiga toxin-producing E. coli (STEC), generic E. coli and coliforms. In total 592 samples were collected originating from Belgium, Israel and Cyprus during 2013-2014. Multiplex PCR followed by further culture confirmation was used for the detection of Salmonella spp. and STEC, whereas the Petrifilm Select E. coli and VRBL-agar were used, respectively, for the enumeration of E. coli and coliforms. Salmonella was detected in 10 out of 592 samples (25g) (1.7%; 5 from basil and 5 from coriander), of which two samples were sourced from Israel and eight from Cyprus. The presence of STEC was suspected in 11 out of 592 samples (25g) (1.9%; 3 basil and 8 coriander), due to the detection of stx and eae genes, of which one sample originated from Belgium, four from Israel and six from Cyprus. No STEC was isolated by culture techniques, but in three samples a serotype (O26, O103 or O111) with its most likely associated eae-variant (β or θ) was detected by PCR. Generic E. coli was enumerated in 108 out of 592 samples, whereby 55, 32 and 13 samples respectively between 10-100, 100-1000 and 1000-10,000cfu/g and 8 samples exceeding 10,000cfu/g. Coliforms were enumerated in all herb samples at variable levels ranging from 1.6 to 7.5logcfu/g. Further statistics indicate that the E. coli class (categorized by level) was significantly correlated with the presence of Salmonella (pE. coli class is a better indicator for the presence of enteric pathogens than coliforms on fresh herbs, but the

  3. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  4. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  5. Microwave generator

    Science.gov (United States)

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  6. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  7. Correlações entre caracteres quantitativos em milho pipoca Correlation among quantitative traits in popcorn maize

    Directory of Open Access Journals (Sweden)

    Valéria Carpentieri-Pípolo

    2002-12-01

    Full Text Available Em um programa de melhoramento, o conhecimento da grandeza das associações entre caracteres de interesse, é de fundamental importância na obtenção de populações melhoradas. O presente trabalho teve como objetivo determinar as correlações genotípicas, fenotípicas e ambientais entre caracteres quantitativos em milho pipoca. Foram avaliados nove genótipos de milho pipoca dispostos no campo em delineamento em blocos casualizados com oito repetições. Os genótipos UEL ZP, UEL SI e UEL PAP revelaram maiores capacidades de expansão (27,50; 27,15 e 24,40 respectivamente e número de grãos por volume (244,75; 248,50 e 248,75 respectivamente. A capacidade de expansão revelou correlação fenotípica positiva com o tamanho da pipoca e com o número de grãos por volume, e correlação negativa com massa de grãos por planta. Os caracteres massa de grãos por planta e peso total da espiga revelaram correlações fenotípicas e genotípicas positivas entre si, o que possibilita a utilização de um ou outro na seleção, optando-se pelo que melhor convier aos propósitos do programa de melhoramento.Knowledge of the size of the association among traits of interest is of fundamental importance in a breeding program to allow genetic progress. The genotypic, phenotypic and environment correlation were studied among quantitative traits of popcorn maize. Nine popcorn maize genotypes were assessed. A randomized complete block design with eight replications was used. The UEL ZP, UEL SI and UEL PAP. genotypes which had greatest expansion capacity (27.50; 27.15 and 24.20, respectively, also had the greatest values for the number of grains per volume (244.75; 248.50 and 248.75, respectively. The expansion capacity correlated positively with the popcorn size and with number of grains per volume and negatively with plant yield. The traits plant yield, and total ear weight showed positive phenotypic and genotypic correlation that permits the choice of

  8. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  9. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  10. Gold Nano Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells

    Science.gov (United States)

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-01-01

    Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867

  11. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.

    Science.gov (United States)

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-09-01

    Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.

  12. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  13. Structural isomers of polyfluorinated di- and tri-alkylated phosphate ester surfactants present in industrial blends and in microwave popcorn bags

    DEFF Research Database (Denmark)

    Trier, Xenia; Juul Nielsen, Nikoline; Christensen, Jan H.

    2011-01-01

    Introduction In this study, we provide strategies for detecting and quantifying the structural isomers of polyfluorinated di- and tri-alkyl surfactants (PFAS) by mass spectrometry (MS). We specifically investigate polyfluorinated dialkylated phosphate ester surfactants (x:2/y:2 diPAPS, (F(CF2) x CH...

  14. Improvement of a popcorn population using selection indexes from a fourth cycle of recurrent selection program carried out in two different environments.

    Science.gov (United States)

    Amaral Júnior, A T; Freitas Júnior, S P; Rangel, R M; Pena, G F; Ribeiro, R M; Morais, R C; Schuelter, A R

    2010-03-02

    We estimated genetic gains for popcorn varieties using selection indexes in a fourth cycle of intrapopulation recurrent selection developed in the campus of the Universidade Estadual do Norte Fluminense. Two hundred full-sib families were obtained from the popcorn population UNB-2U of the third recurrent selection cycle. The progenies were evaluated in a randomized block design with two replications at sites in two different environments: the Colégio Estadual Agrícola Antônio Sarlo, in Campos dos Goytacazes, and the Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO-RIO), in Itaocara, both in the State of Rio de Janeiro. There were significant differences between families within sets in all traits, indicating genetic variability that could be exploited in future cycles. Thirty full-sib families were selected to continue the program. The selection indexes used to predict the gains were those of Mulamba and Mock, Smith and Hazel. The best results were obtained with the Mulamba and Mock index, which allowed the prediction of negative gains for the traits number of diseased ears and ears attacked by pests, number of broken plants and lodging, as well as ears with poor husk cover. It also provided higher gains for popping expansion and grain yield than with the other indexes, giving values of 10.55 and 8.50%, respectively, based on tentatively assigned random weights.

  15. Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol

    Science.gov (United States)

    Chen, Xi; Liu, Yutang; Xia, Xinnian; Wang, Longlu

    2017-06-01

    In this paper, novel popcorn balls-like ZnFe2O4-ZrO2 composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe2O4-ZrO2 photocatalyst (mass ratio of ZnFe2O4/ZrO2 = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe2O4 and ZrO2. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  16. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  17. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  18. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  19. Microwave Radiometer (MWR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  20. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  1. Color sensing under microwaves

    Science.gov (United States)

    Choudhury, Debesh

    2013-09-01

    Inspired by recent results of artificial color due to Caulfield, we carry out intuitive experimental investigations on color sensing under microwave illumination. Experiemnts have been carried out using a Gunn diode as the microwave source and a microwave diode as a detector. More precise experimental studies have also been carried out utilizing a vector network analyzer. Preliminary results of the experiments validate the feasibility of sensing and discriminating otherwise visual colors under microwave illumination. Caulfield's presumption possibly paves the way for artificial color perception using microwaves.

  2. High brightness microwave lamp

    Science.gov (United States)

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  3. Protein quality, hematological properties and nutritional status of albino rats fed complementary foods with fermented popcorn, African locust bean, and bambara groundnut flour blends.

    Science.gov (United States)

    Ijarotimi, Oluwole Steve; Keshinro, Oluremi Olufunke

    2012-10-01

    The objective of this study was to determine protein quality and hematological properties of infant diets formulated from local food materials. The food materials were obtained locally, fermented, and milled into flour. The flours were mixed as 70% popcorn and 30% African locust bean (FPA), 70% popcorn and 30% bambara groundnut (FPB), and 70% popcorn, 20% bambara groundnut, and 10% African locust bean (FPAB). Proximate analysis, protein quality, hematological properties, and anthropometric measurements of the animals fed with the formulations were investigated. The protein contents of the formulated diets were significantly higher than that of Cerelac (a commercial preparation) (15.75 ± 0.01 g/100 g) and ogi (traditional complementary food) (6.52 ± 0.31 g/100 g). The energy value of FPAB (464.94 ± 1.22 kcal) was higher than those of FPA (441.41 ± 3.05 kcal) and FPB (441.48 ± 3.05 kcal). The biological value (BV) of FPAB (60.20%) was the highest followed by FPB (44.24%) and FPA (41.15%); however, BV of the diets was higher than that of ogi (10.03%) but lower than that of Cerelac (70.43%). Net protein utilization (NPU) of the formulations was 41.16-60.20%, whereas true protein digestibility was 41.05-60.05%. Metabolizable energy (232.98 kcal) and digestible energy (83.69 kcal) of FPAB were the highest, whereas that of FPA had the lowest values. The protein digestibility values corrected for amino acid score of the diets (0.22-0.44) were lower than that of Cerelac (0.52), but higher than that of ogi (0.21). The growth patterns and hematological properties (packed cell volume, red blood cells, hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, and mean corpuscular volume) of the formulated diets were higher than those of ogi, but lower than those of Cerelac. In conclusion, we established that the FPAB food sample was rated best in terms of protein quality over the other formulated diets. Therefore, a FPAB blend may be used as a

  4. Depressão por endogamia em populações de milho-pipoca Inbreeding depression in popcorn populations

    Directory of Open Access Journals (Sweden)

    Gustavo André Simon

    2004-01-01

    Full Text Available Oito populações de milho-pipoca (CMS-42, CMS-43, Zélia, RS-20, Catedral, Zaeli, UEM-J1 e UEM-M2 foram avaliadas com o objetivo de obter estimativas de depressão por endogamia, componentes genéticos de média e comparar essas estimativas por grupos de populações. O delineamento experimental utilizado foi o de blocos ao acaso em esquema de parcelas subdivididas, cujos tratamentos primários foram os níveis de endogamia (S1 e S0 e os tratamentos secundários, as populações, com três repetições, em dois anos agrícolas (1998/99 e 1999/00. Foram avaliadas várias características, com ênfase no rendimento de grãos (RG e na capacidade de expansão (CE. O método de GARDNER (1965 foi empregado para obter as estimativas dos componentes genéticos de médias. Observaram-se menores valores de depressão por endogamia e predominância de efeitos gênicos aditivos para CE em relação ao RG. A depressão endogâmica para rendimento de grãos foi maior no grupo dos compostos em relação às populações não melhoradas e à população melhorada. A probabilidade de sucesso na obtenção de linhagens vigorosas e de alta capacidade de expansão é baixa para todas as populações.Eight popcorn populations (CMS-42, CMS-43, Zelia, RS-20, Catedral, Zaeli, UEM-J1 and UEM-M2 were evaluated aiming at obtaintion of estimates of inbreeding depression and average genetic components and to compare these estimates to each genetic group. Each trial was carried out with plots in randomized complete block design with three replications in split-plot experiment, in which the plots were the inbreeding levels (S1 and S0 and in the sub-plots the populations in two years (1998/99 and 1999/00. The characteristics grain yield and popping expansion were evaluated. The GARDNER methodology (1965 was used for obtaining the estimates of average genetic components. It was observed lower values of inbreeding depression and predominance of additive effects for popping

  5. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  6. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  7. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  8. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  9. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  10. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  11. Artificial color perception using microwaves

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving colors using microwaves.

  12. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  13. The Cosmic Microwave Background

    OpenAIRE

    Silk, Joseph

    2002-01-01

    This set of lectures provides an overview of the basic theory and phenomenology of the cosmic microwave background. Topics include a brief historical review; the physics of temperature and polarization fluctuations; acoustic oscillations of the primordial plasma; the space of inflationary cosmological models; current and potential constraints on these models from the microwave background; and constraints on inflation.

  14. Microwave Enhanced Reactive Distillation

    NARCIS (Netherlands)

    Altman, E.

    2011-01-01

    The application of electromagnetic irradiation in form of microwaves (MW) has gathered the attention of the scientific community in recent years. MW used as an alternative energy source for chemical syntheses (microwave chemistry) can provide clear advantages over conventional heating methods in ter

  15. The microwave absorption of ceramic-cup microwave ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300~500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.

  16. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  17. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  18. Artificial color perception using microwaves

    OpenAIRE

    Choudhury, Debesh; Caulfield, H. John

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving...

  19. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  20. Integrated microwave photonics

    CERN Document Server

    Marpaung, David; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

  1. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  2. The Microwave Hall Effect

    OpenAIRE

    2015-01-01

    This paper describes a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band (8 - 12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field applied perpendicular to ...

  3. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  4. Microwave Service Towers

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Universal Licensing System (ULS) licensed by the Wireless Telecommunications Bureau (WTB). It consists of Microwave Transmitters (see...

  5. Microwave Radiometer Profiler

    Data.gov (United States)

    Oak Ridge National Laboratory — The microwave radiometer profiler (MWRP) provides vertical profiles of temperature, humidity, and cloud liquid water content as a function of height or pressure at...

  6. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  7. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  8. Microwave Radiometer - high frequency

    Data.gov (United States)

    Oak Ridge National Laboratory — The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two...

  9. Microwave workshop for Windows

    Directory of Open Access Journals (Sweden)

    Colin White

    1995-12-01

    Full Text Available A suite of three programs has been developed to support the teaching of microwave theory and design. A secondary function of the package is to support microwave engineers by providing a library of utilities to assist their design function. All three programs were written in Visual Basic and are aimed at supporting both tutor-directed and student-centred learning methodologies. The development team consisted of three final-year degree students.

  10. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  11. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  12. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  13. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  14. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  15. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  16. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  17. Capacidade combinatória em milho-pipoca por meio de dialelo circulante Combining ability in popcorn by circulant diallel

    Directory of Open Access Journals (Sweden)

    Silvério de Paiva Freitas Júnior

    2006-11-01

    Full Text Available O objetivo deste trabalho foi gerar informações sobre a capacidade combinatória de dez genitores de milho-pipoca, em cruzamentos no esquema de dialelo circulante em dois ambientes, para futura utilização em programa de melhoramento. Os híbridos, genitores e testemunhas foram avaliados quanto à altura de plantas (AP, produção de grãos (PG e capacidade de expansão (CE, em delineamento em blocos ao acaso, com quatro repetições. A análise conjunta do dialelo revelou reduzido comportamento diferencial dos genótipos, com predominância dos efeitos aditivos apenas para CE. Os genitores UNB2U-C1, BRS Angela, UNB2U-C2 e Viçosa-UFV foram os indicados para melhoramento intrapopulacional, ao passo que os híbridos de interesse para seleção interpopulacional foram PR-Ervália x BRS Angela e UNB2U-C1 x BRS Angela.The objective of this work was to obtain combining ability information about ten genitors of popcorn, in a circulant diallel crossing in two environments, for using in future breeding programs. The hybrids, genitors and controls were evaluated for plant height (PH, grain yield (GY and popping expansion (PE, in a randomized complete block design with four replications. The joint analysis of circulant diallel showed reduced differences on the performance of the genotypes. The additive effects were more important than non-additive effects only for the CE. Genitors UNB2U-C1, BRS Angela, UNB2U-C2 and Viçosa-UFV were indicated for the intrapopulation breeding, while superior hybrids for the interpopulation breeding were PR-Ervália x BRS Angela and UNB2U-C1 x BRS Angela.

  18. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...

  19. Microwave Frequency Polarizers

    Science.gov (United States)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  20. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  1. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  2. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  3. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  4. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  5. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  6. Microwave Radiation Hazards

    Directory of Open Access Journals (Sweden)

    G. Subrahmanian

    1973-07-01

    Full Text Available Excessive exposure to microwave radiation could lead to biological damage. The criteria for maximum permissible exposure limits derived from experiments by several countries are discussed. Recommendations made for safety of operating personnel based on a recent protection survey are also presented.

  7. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  8. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  9. Invisible to Microwaves

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Scientists can't yet make an invisibility cloak like the one that Harry Potter uses.But,for the first time,they've constructed a simple cloaking(1)d__that makes itself and something placed inside it invisible to microwaves.

  10. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  11. Microwave Processing of Materials

    Science.gov (United States)

    1994-01-01

    Pennsylvania: Materials Research Society. Wagner, C., and W. Schottky. 1930. Zeitschrift fuer Physikalische Chemie. BL11:163. Walkiewicz, J. W., A. E. Clark...Science and Engineering. 66:468--469. Bloch, F. 1928. Zeitschrift fuer Physik. 52:555. Boch, P., N. Lequeux and P. Piluso. 1992. Reaction Sintering...Frankel, J. 1926. Zeitschrift fuer Physik. 35:652. Fukushima, H., T. Yamaka, and M. Matsui. 1990. Microwave Heating of Ceramics and its Application to

  12. SUNIST Microwave Power System

    Institute of Scientific and Technical Information of China (English)

    Feng Songlin; Yang Xuanzong; Feng Chunhua; Wang Long; Rao Jun; Feng Kecheng

    2005-01-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device.The 2.45 GHz/100 kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  13. Microwave Multicomponent Synthesis

    Directory of Open Access Journals (Sweden)

    Helmut M. Hügel

    2009-12-01

    Full Text Available In the manner that very important research is often performed by multidisciplinary research teams, the applications of multicomponent reactions involving the combination of multiple starting materials with different functional groups leading to the higher efficiency and environmentally friendly construction of multifunctional/complex target molecules is growing in importance. This review will explore the advances and advantages in microwave multicomponent synthesis (MMS that have been achieved over the last five years.

  14. Microwave sterilization method and apparatus

    OpenAIRE

    V. N. Vasilenko; Minuhin, V. V.; Podorozhnyak, A. A.; Trubaev, S. I.

    1995-01-01

    Experience of industrially developed countries in utilization of microwave radiation has been analyzed. Apparatus for realization of microwave method of sterilization has been designed. A number of experiments for the estimation of bactericidal, sporacidal, and virusidal properties of microwave radiation action has been carried out in 3 to 13 cm wavelength band. B. Lycheniform shtumm G., B. Subtilis ATTC 6633, E. Coli ATTC 25922 and bacterial virus FX 174 were used as test microbes. Effect of...

  15. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  16. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  17. Numerical modeling of microwave heating

    Directory of Open Access Journals (Sweden)

    Shukla A.K.

    2010-01-01

    Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.

  18. AVALIAÇÃO DE ALGUNS ASPECTOS QUALITATIVOS E QUANTITATIVOS DE CULTIVARES DE MILHO PIPOCA (Zea mays L. QUALITATIVE AND QUANTITATIVE EVALUATION OF POPCORN (Zea mays CULTIVARS

    Directory of Open Access Journals (Sweden)

    Cleso Antônio Patto Pacheco

    2007-09-01

    ;">This study was carried out at Escola de Agronomia of’ Universidade Federal de Goiás in the  1992/93 agricultural year with the purpose of evaluating popcorn cultivars for Goiânia-GO region. The essay had 19 treatments on a randomized complete design block with 4 repetitions. The following cultivars were used as part of the Popcorn National Essay coordinated by CNPMS/EMBRAPA: H-16, CMS 42 C-I, CMS 42 C-II, CMS 43 C-I, CMS 43 C-II, UNB-2, PIRAPOCA EPAMIG, ZÉLIA-0l, SAM (STA. CECÍLIA, ROGO POP 1, ROGO POP 2, ROGO POP 3, MF 1001, MF 1002, GO 100-P, COLORADO POP 1, COLORADO POP 2, RS-20 and BR-440. It was evaluated plant height and first ear insertion height, sick plants percentage, ear index, final stand, grain/ha yield and popping expansion capacity index (E.C.. The H-16 cultivar presented the highest grain yield (2,928 kg/ha but low E.C. (11.9. The triple hybrid ZÉLIA-0l had good performance with 22.1 E.C. and l,770 kg/ha. This yield was 12% higher than the pattern cultivar SAM (STA. CECÍLIA with 1,492 kg/ha and 15.5 P.E. It was found high positive correlation among yield and female flowering date, ear index and plant and ears height. Popping expansion capacity did not present any correlation among P.E. and another studied characters.

    KEY-WORDS: Zea mays; pop-corn.

  19. The Microwave SQUID Multiplexer

    Science.gov (United States)

    Mates, John Arthur Benson

    2011-12-01

    This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the

  20. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual community of RadTown USA ! ... learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens use electromagnetic waves that ...

  1. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: Microwave Asher A tool using microwave oxygen plasma to remove organics on the surfaces Specifications / Capabilities: Frequency: 2.45 GHz...

  2. The European Microwave Week 2008 and its Microwave Conferences

    NARCIS (Netherlands)

    Hoogeboom, P.; Van Vliet, F.

    2009-01-01

    Under the auspices of the European Microwave Association (EuMA) the 11th annual European Microwave Week was organized in the Amsterdam RAI Congress Centre, The Netherlands, 27-31 October 2008. This major event consisted this year of five conferences, an exhibition, and various side events. The 38th

  3. Microwave Sterilization in School Microbiology.

    Science.gov (United States)

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  4. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue, fl

  5. More Experiments with Microwave Ovens

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  6. More Experiments with Microwave Ovens

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  7. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue,

  8. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  9. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation......State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...

  10. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  11. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU; TaJung

    2001-01-01

    The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.  ……

  12. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU TaJung

    2001-01-01

    @@ The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.

  13. Controle de plantas daninhas na cultura do milho-pipoca com herbicidas aplicados em pós-emergência Weed control in popcorn maize using post emergence herbicide

    Directory of Open Access Journals (Sweden)

    A. Jakelaitis

    2005-09-01

    Full Text Available Objetivou-se avaliar a eficiência de controle de plantas daninhas, a tolerância e a produção de milho-pipoca UFVM2 aos herbicidas atrazine (1.500 g ha-1, foramsulfuron + iodosulfuron methyl sodium + atrazine (15+1+1.500 e 30+2+1.500 g ha-1, foramsulfuron + iodosulfuron methyl sodium (15+1, 30+2, 45+3 e 60+4 g ha-1, nicosulfuron + atrazine (8+1.500 e 16+1.500 g ha-1 e nicosulfuron (16 g ha-1. A aplicação dos herbicidas foi realizada aos 25 dias após a emergência da cultura. As plantas daninhas predominantes na área foram Brachiaria plantaginea, Brachiaria decumbens e Ipomoea spp. Os herbicidas foramsulfuron + iodosulfuron methyl sodium, em todas as doses testadas, proporcionaram maiores índices de toxidez à cultura, aos 7, 14 e 28 dias após a aplicação dos tratamentos (DAA. Todas as combinações de herbicidas proporcionaram controle acima de 90% para B. plantaginea e B. decumbens, aos 28 DAA. O nicosulfuron aplicado isoladamente proporcionou controle de apenas 80% e o atrazine não controlou essas espécies daninhas. Para Ipomoea spp., nenhum tratamento herbicida proporcionou controle equivalente ao da testemunha capinada. A competição das plantas daninhas resultou em menores teores de clorofila total, N, P e K no tecido foliar das plantas de milho-pipoca e menor rendimento de grãos. Para o cultivar UFVM2, as sulfoniluréias isoladas ou associadas ao atrazine não afetaram o estado nutricional da cultura, o rendimento e a capacidade de expansão dos grãos de milho-pipoca.The efficiency of different herbicide combinations for weed control and tolerance and yield of UFVM2 popcorn maize were evaluated. The herbicide treatments and respective doses were: atrazine (1.500 g ha-1; foramsulfuron + iodosulfuron methyl sodium + atrazine (15+1+1.500 and 30+2+1.500 g ha-1; foramsulfuron + iodosulfuron methyl sodium (15+1, 30+2, 45+3, and 60+4 g ha-1; nicosulfuron + atrazine (8+1.500 and 16+1.500 g ha-1 and nicosulfuron (16 g ha-1. The

  14. Microwave systems design

    CERN Document Server

    Awang, Zaiki

    2014-01-01

    The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher.  The content is roughly classified into two – the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which were compiled from actual uni...

  15. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  16. The Liverpool Microwave Palaeointensity System

    Science.gov (United States)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  17. Microwave radiometry and applications

    Science.gov (United States)

    Polívka, Jiří

    1995-09-01

    The radiometry in general is a method of detecting the radiation of matter. All material bodies and substances radiate energy in the form of electromagnetic waves according to Planck s Law. The frequency spectrum of such thermal radiation is determined, beyond the properties of a blackbody, by the emissivity of surfaces and by the temperature of a particular body. Also, its reflectivity and dispersion take part. Investigating the intensity of radiation and its spectral distribution, one may determine the temperature and characterize the radiating body as well as the ambient medium, all independently of distance. With the above possibilities, the radiometry represents a base of scientific method called remote sensing. Utilizing various models, temperature of distant bodies and images of observed scenes can be determined from the spatial distribution of radiation. In this method, two parameters are of paramount importance: the temperature resolution, which flows out from the detected energy, and the spatial resolution (or, angular resolution), which depends upon antenna size with respect to wavelength. An instrument usable to conduct radiometric observations thus consists of two basic elements: a detector or radiometer, which determines the temperature resolution, and an antenna which determines the angular or spatial resolution. For example, a photographic camera consists of an objective lens (antenna) and of a sensitive element (a film or a CCD). In remote sensing, different lenses and reflectors and different sensors are employed, both adjusted to a particular spectrum region in which certain important features of observed bodies and scenes are present: frequently, UV and IR bands are used. The microwave radiometry utilizes various types of antennas and detectors and provides some advantages in observing various scenes: the temperature resolution is recently being given in milikelvins, while the range extends from zero to millions of Kelvins. Microwaves also offer

  18. Microwave Radiometry in Remote Sensing

    DEFF Research Database (Denmark)

    Gudmandsen, Preben

    1982-01-01

    Microwave radiometry has shown its capabilities of observing and monitoring large-scale geophysical observables from space. Examples are sea surface temperature and surface wind over the ocean, sea ice extent, concentration and category and snow cover extent and water content. At low microwave...... frequencies the atmosphere is virtually transparent even with clouds which make microwave radiometry very valuable in regions with frequent cloud cover such as the temperate and arctic zones. At high frequencies, however, atmospheric absorption will degrade measurements of earth surfaces but this phenomenon...

  19. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  20. Microwave Plasma Synthesis of Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Joseph; Lik; Hang; Chau

    2007-01-01

    1 Results and Discussion Nanopowders were synthesized by using microwave plasma synthesis technique.The microwave plasma was operated in atmospheric pressure at a frequency of 2.45 GHz.The reaction temperature is directly related to the power of the microwave generator that can be controlled by adjusting the actual operating current.Firstly,ionization and dissociation of precursor species will be occurred in the plasma,nucleus can then be formed by the collision of these molecules,followed by the growth...

  1. Microwave Magnetoelectric Devices

    Directory of Open Access Journals (Sweden)

    A. S. Tatarenko

    2012-01-01

    Full Text Available Tunable microwave magnetoelectric devices based on layered ferrite-ferroelectric structures are described. The theory and experiment for attenuator, band-pass filter and phase shifter are presented. Tunability of the ME devices characteristics can be executed by application of an electric field. This electric tuning is relatively fast and is not power-consuming. The attenuator insertion losses vary from 26 dB to 2 dB at frequency 7251 MHz. The tuning range of 25 MHz of band-pass filter at frequency 7360 MHz was obtained. A maximum phase shift of 30–40 degree at the frequency region 6–9 GHz was obtained.

  2. Cryogenic coaxial microwave filters

    CERN Document Server

    Tancredi, G; Meeson, P J

    2014-01-01

    At millikelvin temperatures the careful filtering of electromagnetic radiation, especially in the microwave regime, is critical for controlling the electromagnetic environment for experiments in fields such as solid-state quantum information processing and quantum metrology. We present a design for a filter consisting of small diameter dissipative coaxial cables that is straightforward to construct and provides a quantitatively predictable attenuation spectrum. We describe the fabrication process and demonstrate that the performance of the filters is in good agreement with theoretical modelling. We further perform an indicative test of the performance of the filters by making current-voltage measurements of small, underdamped Josephson Junctions at 15 mK and we present the results.

  3. Cosmic microwave background theory.

    Science.gov (United States)

    Bond, J R

    1998-01-06

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

  4. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  5. Develop Prototype Microwave Interferometry Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Converse, M. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-15

    A prototype microwave interferometer was created at NSTec to characterize moving conductive fronts in upcoming experiments. The interferometer is capable of operation in the ~26-40 GHz band, and interrogating fronts with more than 1 W of power.

  6. Ordered mesoporous silica: microwave synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fantini, M.C.A. [IF-USP, CP 66318, 05315-970, Sao Paulo, SP (Brazil)]. E-mail: mfantini@if.usp.br; Matos, J.R. [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Silva, L.C. Cides da [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Mercuri, L.P. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Chiereci, G.O. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Celer, E.B. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States); Jaroniec, M. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States)

    2004-09-25

    Ordered mesoporous silicas, FDU-1, synthesized by using triblock copolymer, EO{sub 39}BO{sub 47}EO{sub 39}, as template were hydrothermally treated in a microwave oven at 373 K for different periods of time. The structural and morphological properties of these silicas were investigated by X-ray diffraction and nitrogen adsorption and compared with those for the FDU-1 samples prepared by conventional hydrothermal treatment at 373 K. All samples were calcined at 813 K in N{sub 2} and air. This procedure succeeded in producing ordered cage-like mesoporous structures even after 15 min of the microwave treatment. The best sample was obtained after 60 min of the microwave treatment, which is reflected by narrow pore size distribution, uniform pore size entrances and thick mesopore walls. Longer time of the microwave treatment increased nonuniformity of the pore entrance sizes as evidenced by changes in the hysteresis loops of nitrogen adsorption isotherms.

  7. Microwave transistor oscillator frequency tripling

    OpenAIRE

    B. A. Kotserzhynskyi

    2010-01-01

    The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  8. Microwave transistor oscillator frequency tripling

    Directory of Open Access Journals (Sweden)

    B. A. Kotserzhynskyi

    2010-01-01

    Full Text Available The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  9. Microwave Ferrites for Cryogenic Applications

    OpenAIRE

    G. Dionne

    1997-01-01

    Recent advances in microwave ferrite device technology have seen the introduction of superconductivity that virtually eliminates insertion losses due to electrical conduction in microstrip circuits. The conventional ferrimagnetic spinel and garnet compositions, however, are not generally optimized for temperatures in the vicinity of 77 K and may require chemical redesign in order to realize the full potential of these devices. For microwave transmission, absorption losses may be reduced by a ...

  10. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  11. Microwave Drying of Moist Coals

    Science.gov (United States)

    Salomatov, Vl. V.; Karelin, V. A.; Sladkov, S. O.; Salomatov, Vas. V.

    2017-03-01

    Physical principles and examples of practical implementation of drying large bodies of coal by microwave radiation are considered. It is shown that energy consumption in microwave drying of brown coals decreases to 1.5-1.8 (kW·h)/ kg as compared with traditional types of drying, for which the expenditures of energy amount to 3.0 (kW·h)/kg. In using microwave drying, the technological time of drying decreases to 4 h, whereas the time of convective drying, with other things being equal, comes to 8-20 h. Parallel with microwave radiation drying, grinding of a fuel takes place, as well as entrainment of such toxic and ecologically harmful elements as mercury, chlorine, phosphorus, sulfur, and nitrogen. An analysis of the prospects of using a microwave energy for drying coal fuel has shown that microwave radiation makes it possible to considerably economize in energy, increase explosional safety, improve the ecological situation, and reduce the metal content and overall dimensions of the equipment.

  12. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  13. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  14. Microwave Sterilization and Depyrogenation System

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  15. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  16. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    Science.gov (United States)

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  17. Near-field scanning microwave microscopy of microwave devices

    Science.gov (United States)

    Vlahacos, C. P.; Steinhauer, David E.; Dutta, S.; Anlage, S. M.; Wellstood, F. C.; Newman, H.

    1997-03-01

    We have developed a scanning microwave microscope which can presently image features with a spatial resolution of 10-100 μm in the frequency range 5-15 GHz.(C. P. Vlahacos, et al.), Appl. Phys. Lett. 69, 3272 (1996).^,(S. M. Anlage, et al.), IEEE. Trans. Appl. Supercond. (1997). The microscope consists of a resonant section of a coaxial cable which is terminated with a small-diameter open-ended coaxial probe. Images are made by scanning the sample under the probe while recording the induced near-field microwave voltage as a function of sample position. We will present images for several microwave devices, including an X-band microstrip planar ferrite circulator and a high-temperature superconducting microstrip YBa_2Cu_3O_7-δ resonator, and compare them to the calculated field profiles.

  18. Evaluation of Top-Cross Popcorn Hybrids Using Mixed Linear Model Methodology Evaluación de Híbridos Top-Cross de Maíz-Roseta Usando Modelos Lineales Mixtos

    Directory of Open Access Journals (Sweden)

    Emmanuel Arnhold

    2009-03-01

    Full Text Available The market for popcorn (Zea mays L. has been continuously growing in Brazil fact has required the development of cultivars adapted to local environmental conditions. For this reason, the analytical objectives of this study were to evaluate top-cross popcorn hybrids in relation to popping expansion and grain yield in three different eco-geographic regions of Brazil, in order to estimate variance components using Restricted Maximum Likelihood (REML and predict breeding values using Best Linear Unbiased Prediction (BLUP. Genetic evaluation considered a linear model with heterogeneous residual (environmental variances. The Restricted Likelihood Ratio Test (RLRT evidenced significant differences (p Evaluación de híbridos top-cross de maíz-roseta usando modelos lineales mixtos. El mercado del maíz-roseta (Zea mays L. está en continuo crecimiento en Brasil, lo cual ha demandado el desarrollo de cultivares adaptados a las condiciones locales. Por ello, los objetivos del presente trabajo fueron evaluar híbridos top-cross de maíz-roseta en función de la capacidad de expansión y el rendimiento de los granos, en diferentes regiones eco-geográficas de Brasil; estimar componentes de varianza usando Máxima Verosimilitud Restringida (REML y predecir los valores genotípicos a través de la Mejor Predicción Linear Insesgada (BLUP. La evaluación genética consideró un modelo lineal con una estructura de varianza residual (ambiental heterogénea. La prueba de la razón de verosimilitud (restringida evidenció diferencias significativas (p < 0,01 para el efecto genotípico. La producción de granos mostró ser una característica de heredabilidad media (h² = 0,26-0,39. En la capacidad de expansión se evidenció un mayor control genético aditivo (h² = 0,58-0,85. Las correlaciones genéticas y de Spearman entre las características fueron negativas, indicando que la selección basada en el rendimiento de granos tendría un efecto negativo sobre la

  19. Predição de ganho genético com diferentes índices de seleção no milho pipoca CMS-43 Prediction of genetic gain with different selection indexes in popcorn CMS-43

    Directory of Open Access Journals (Sweden)

    Maria José Granate

    2002-07-01

    Full Text Available O melhoramento simultâneo da capacidade de expansão e da produtividade no milho pipoca são dificultados por causa da correlação negativa entre as duas características, mas o uso de índices de seleção permite contornar essa dificuldade. Em 1997/1998 foram avaliadas 166 famílias de meios-irmãos do composto de milho pipoca (Zea mays L. CMS-43, na Embrapa-Centro Nacional de Pesquisa de Milho e Sorgo, em Sete Lagoas, MG, no delineamento em blocos casualizados. Os índices de seleção empregados para predizer os ganhos por seleção foram os de Smith e Hazel, Pesek & Baker, Elston e de Williams. O índice de seleção de Smith e Hazel permitiu a predição de ganhos superiores em maior número de caracteres; com o índice de seleção de Williams não se verificou nenhum dado significativo. O uso de índices de seleção é adequado porque permite a predição de ganhos simultâneos nas duas principais características.Simultaneous breeding for expansion volume and grain yield in popcorn (Zea mays L. is difficult because of negative correlation between these traits. The use of selection indexes allows to overcome this difficulty. In 1997/1998, at Embrapa-Centro Nacional de Pesquisa de Milho e Sorgo, in Sete Lagoas, MG, Brazil,166 half-sib families from CMS-43 popcorn were evaluated, using random blocks design. The selection indexes used were Smith and Hazel, Pesek & Baker, Elston and Williams. The selection index of Smith and Hazel allowed larger predicted gains in more traits, and on the contrary, the prediction using the selection index of Williams was insignificant. The use of selection indexes allows simultaneous prediction of gains in the two main traits.

  20. Microwave Radiometer for Aviation Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SBIR Phase I Project proposes a new passive microwave airborne sensor for in flight icing hazard detection, Microwave Radiometer for Aviation Safety. A feasibility...

  1. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...

  2. Student Microwave Experiments Involving the Doppler Effect.

    Science.gov (United States)

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  3. DMSP SSM/I- Microwave Imager

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/I is a seven-channel, four frequency, linearly-polarized, passive microwave radiometric system which measures atmospheric, ocean and terrain microwave...

  4. Mapping Microwave Fields With Thermal Paper

    Science.gov (United States)

    Watkins, John L.

    1992-01-01

    Simple, inexpensive technique used to map direction and intensity of electric field in microwave resonant cavity. Technique extension of using thermal paper to map intensities (only) of microwave fields.

  5. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  6. Microwave Semiconductor Equipment Produced in Poland,

    Science.gov (United States)

    1984-01-20

    lQal signal source in other devices. Microwave Transistors As a result of work in the field of microwave transistors , the technology for pnp ...is now commonly carried out on transistors and microwave subsystems. The results of the labors of the DM section connected with the new devices and...level of employment Illustration 2. Microwave diodes and semiconductor transistors presently produced in the ITE (DM section) The Construction and

  7. On Interactions of Microwave with Lightwave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper addresses interactions of lightwave with microwave, and is divided into two parts. In part one, the background and the main topics of the research filed are introduced. In part two, some research activities at Shanghai University are reviewed.These include optical control of microwave devices, photoinduced electromagnetic radiation, lightwave interaction with superconductors, microwave control of lightwave, and the microwave approach to highly irregular fiber optics.

  8. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  9. Advances In Microwave Metamaterials

    Science.gov (United States)

    Wigle, James A.

    2011-12-01

    Metamaterials are a new area of research showing significant promise for an entirely new set of materials, and material properties. Only recently has three-fourths of the entire electromagnetic material space been made available for discoveries, research, and applications. This thesis is a culmination of microwave metamaterial research that has transpired over numerous years at the University of Colorado. New work is presented; some is complete while other work has yet to be finished. Given the significant work efforts, and potential for new and interesting results, I have included some of my partial work to be completed in the future. This thesis begins with background theory to assist readers in fully understanding the mechanisms that drove my research and results obtained. I illustrate the design and manufacture of a metamaterial that can operate within quadrants I and II of the electromagnetic material space (epsilon r > 0 and mur > 0 or epsilonr 0, respectively). Another metamaterial design is presented for operation within quadrant III of the electromagnetic material space (epsilonr thesis also presents two related, but different, novel tests intended to be used to definitively illustrate the negative angle of refraction for indices of refraction less than zero. It will be shown how these tests can be used to determine most bulk electromagnetic material properties of the material under test, for both right handed and left handed materials, such as epsilonr, mur, deltaloss, and n. The work concluding this thesis is an attempt to derive modified Fresnel Coefficients, for which I actually believe to be incorrect. Though, in transposing I have corrected a few mistakes, and now I can no longer find the conundrum. I have included this work to illuminate the need for modified Fresnel coefficients for cases of negative indices of refraction, identifying all disparate cases requiring a new set of equations, as well as to assist others in their efforts through

  10. Microwave Activation of Drug Release

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór

    Due to current limitations in control of pharmaceutical drug release in the body along with increasing medicine use, methods of externally-controlled drug release are of high interest. In this thesis, the use of microwaves is proposed as a technique with the purpose of externally activating...... setup, called the microwave activation system has been developed and tested on a body phantom that emulates the human torso. The system presented in this thesis, operates unobtrusively, i.e. without physically interfering with the target (patient). The torso phantom is a simple dual-layered cylindrical...... the phantom is of interest for disclosing essential information about the limitations of the concept, the phantom and the system. For these purposes, a twofold operation of the microwave activation system was performed, which are reciprocal of each other. In the first operation phase, named mapping...

  11. High power ferrite microwave switch

    Science.gov (United States)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  12. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  13. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  14. Microwave heat treating of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  15. Microwave Hydrothermal Synthesis PZT of Nanometer Crystal

    Institute of Scientific and Technical Information of China (English)

    Hongxing LIU; Hong DENG; Yan LI; Yanrong LI

    2004-01-01

    It was focused on the applications and developments of microwave hydrothermal synthesis piezoelectric ceramic powder. The microwave hydrothermal vessel was designed and manufactured. The microwave hydrothermal synthesis system was established and the PZT piezoelectric ceramic powder was synthesized. XRD and TEM have been used to characterize the products in detail. The diameter of the PZT powder particle is from 40 to 60 nm.

  16. Microwave torch. Physics and applications.

    Science.gov (United States)

    Gritsinin, Sergei; Knyazev, Vitalii; Kossyi, Igor

    2004-09-01

    New construction of a coaxial microwave torch (CMT) has been developed, tested and investigated. CMT provides a means for plasma stream production virtually in all gases and gaseous mixture flow at atmospheric pressure. A broad spectrum of diagnostics has been applied including microwave and laser interferometry, optical active and absorptive spectroscopy, laser holographic interferometry, microwave radiation detection, high-speed photography, etc. The time evolution of the torch operating in the pulsed mode is considered. It has been revealed that the evolution is different in noble and molecular gases. The characteristic feature of torches in noble gases is a dense core with plasma density no less than 1016 cm-3. Plasma bunches with density of 1014-1015 cm-3 successively propagate downstream from this core, which are seen as glow bursts. In molecular gases, the core is absent and the torch is formed by propagating plasma bunches. By optical diagnostics application temperature of neutral component of microwave torch has been determined. With high efficiency energy of microwave radiation comes into gas heating. Gas temperature is maximal near the nozzle (4,5 - 5,0 kK) and falls down in axial direction (to 2,5 - 3,0 kK). Torch is thermally-non-equilibrium plasma formation capable of significant change of working and surrounding gaseous state. Peculiarities of discharge development and maintenance are under discussion as well as possibilities to use microwave torch as a spaceborne plasma source, combustion ignitor, mean for nanoparticles production, different plasmachemical applications etc. Contact information: Mailing address: Prof. I.A.Kossyi General Physics Institute, 119991, Vavilov Street 38 Moscow, Russia Tel.: 7(095)135-41-65; Fax: 7(095)135-80-11 E-mail: kossyi@fpl.gpi.ru

  17. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  18. Passive microwave soil moisture research

    Science.gov (United States)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  19. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    V Subramanian

    2008-04-01

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.

  20. Cosmic Microwave Background Mapping

    Science.gov (United States)

    Verkhodanov, O. V.; Doroshkevich, A. G.

    2012-03-01

    The last decade of research in cosmology was connected with the ambitious experiments including space and ground base observations. Among the most impressive results of these investigations are the measurements of the cosmic microwave background (CMB) radiation like WMAP* and Planck. Exactly from the CMB studies, we have started the epoch of the precision cosmology when generally the values of cosmological parameters have been known and present research is devoted to improvement of the precision. These achievements are connected with both the creation of the new facilities in millimeter and submillimeter astronomy (e.g., satellites, receivers, antennas, computers) and development of the methods for the CMB data analysis. Actually, the process of data analysis contains several technical stages including 1. Registration of time-ordered data (TOD) 2. Pixelization of the CMB data - map preparation 3. Component separation 4. Map statistics analysis 5. Map - spherical harmonics transformation 6. C(l)-spectrum calculation and spectrum statistics analysis 7. Cosmological parameters estimation Starting from the cosmic background explorer (COBE) experiment using the so-called Quadrilateralized Sky Cube Projection (see [1-3]), the problem of the whole sky CMB pixelization has attracted great interest and many such schemes were developed. Let us note however that accurate pixelization of the CMB data on the sphere is very important but not the final step of analysis. Usually, the next step implies the determination of the coefficients of the spherical harmonic decomposition of the CMB signal for both anisotropy and polarization. This means that some of the pixelization schemes provide a very accurate map but are inconvenient for further decomposition. This also means that the choice of suitable pixelization schemes depends upon the general goals of the investigation. In this review, we consider several of the most popular sky map pixelization schemes and link them with the

  1. Modeling microwave/electron-cloud interaction

    CERN Document Server

    Mattes, M; Zimmermann, F

    2013-01-01

    Starting from the separate codes BI-RME and ECLOUD or PyECLOUD, we are developing a novel joint simulation tool, which models the combined effect of a charged particle beam and of microwaves on an electron cloud. Possible applications include the degradation of microwave transmission in tele-communication satellites by electron clouds; the microwave-transmission tecchniques being used in particle accelerators for the purpose of electroncloud diagnostics; the microwave emission by the electron cloud itself in the presence of a magnetic field; and the possible suppression of electron-cloud formation in an accelerator by injecting microwaves of suitable amplitude and frequency. A few early simulation results are presented.

  2. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  3. Recent Advancements in Microwave Imaging Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  4. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    S Das; A K Mukhopadhyay; S Datta; D Basu

    2008-12-01

    Microwave processing has been emerging as an innovative sintering method for many traditional ceramics, advanced ceramics, specialty ceramics and ceramic composites as well as polymer and polymer composites. Development of functionally gradient materials, joining, melting, fibre drawing, reaction synthesis of ceramics, synthesis of ceramic powder, phosphor materials, whiskers, microtubes and nanotubes, sintering of zinc oxide varistors, glazing of coating surface and coating development have been performed using microwave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, an attempt has been made to study the heating behaviour of materials in the electric and magnetic fields at microwave frequencies. The research is now focused on the use of microwave processing for industrial applications.

  5. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    S Das; A K Mukhopadhyay; S Datta; D Basu

    2009-02-01

    Microwave processing has been emerging as an innovative sintering method for many traditional ceramics, advanced ceramics, specialty ceramics and ceramic composites as well as polymer and polymer composites. Development of functionally gradient materials: joining; melting; fibre drawing; reaction synthesis of ceramics; synthesis of ceramic powder, phosphor materials, whiskers, microtubes and nanotubes; sintering of zinc oxide varistors; glazing of coating surface and coating development have been performed using microwave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, attempt has been made to study the heating behaviour of materials in the electric and magnetic fields at microwave frequencies. The research is now focused on the use of microwave processing for industrial applications.

  6. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  7. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    1995-01-01

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at relati

  8. Microwave Oven Repair. Teacher Edition.

    Science.gov (United States)

    Smreker, Eugene

    This competency-based curriculum guide for teachers addresses the skills a technician will need to service microwave ovens and to provide customer relations to help retain the customer's confidence in the product and trust in the service company that performs the repair. The guide begins with a task analysis, listing 20 cognitive tasks and 5…

  9. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  10. Microwave Treatment for Cardiac Arrhythmias

    Science.gov (United States)

    Hernandez-Moya, Sonia

    2009-01-01

    NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency.

  11. Wireless Power Transmission Using Microwaves

    Directory of Open Access Journals (Sweden)

    Nikhil B. Dhake

    2012-04-01

    Full Text Available In this paper, we present the concept of wireless power transmission to cut the clutter or lead to clean sources of electricity. It will eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. The plan is transmitting power as microwaves from one place to another in order to reduce the use of clumsy wires

  12. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  13. Effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover using combination of steam explosion and microwave irradiation (SE-MI) pretreatment.

    Science.gov (United States)

    Pang, Feng; Xue, Shulin; Yu, Shengshuan; Zhang, Chao; Li, Bing; Kang, Yong

    2012-08-01

    The effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover were investigated based on a new process named combination of steam explosion and microwave irradiation (SE-MI) pretreatment. Results showed that with microwave power and microwave irradiation time increasing, glucose and xylose that released into hydrolyzate, as well as enzymatic hydrolysis yields and sugar yields of glucose and xylose were all slightly increased after SE-MI pretreatment. The maximum sugar yield was 72.1 g per 100 g glucose and xylose in feedstock, achieved at 540 W microwave power and 5 min microwave irradiation time. XRD analysis showed that the crystallinity of biomass was 15.6-19.9% lower for SE-MI pretreatment with microwave effect than that without microwave effect. However, low microwave power and short microwave irradiation time were favorable for SE-MI pretreatment considering energy consumption.

  14. Seleção de pré-cultivares de milho-pipoca baseado em índices não-paramétricos Selecting pre-cultivars of popcorn maize based on nonparametric indices

    Directory of Open Access Journals (Sweden)

    Cássio Vittorazzi

    2013-06-01

    Full Text Available O presente trabalho teve como objetivo fazer uma seleção prévia de pré-cultivares de milho-pipoca para o registro no MAPA, com base em diferentes caracteres, utilizando o índice de Garcia e o de soma de classificação, priorizando-se o rendimento de grãos e capacidade de expansão. Foram avaliados 16 genótipos de milho-pipoca, sendo oito variedades de polinização aberta (BRS Angela, UFVM2 - Barão de Viçosa, Viçosa, Beija-Flor, SAM, UNB2U-C3, UNB2U-C4 e UNB2U-C5 e oito híbridos (Zelia, Jade, IAC 112, P1 x P3, P1 x P7, P2 x P4, P2 x P9 e P3 x P7, em cinco ambientes. O delineamento experimental adotado foi blocos ao acaso, com três repetições, tendo sido avaliadas as características altura de planta, estande, tombamento, capacidade de expansão e rendimento de grãos. Os efeitos dos genótipos e ambientes foram significativos para todas as características, enquanto que suas interações o foram apenas para tombamento e rendimento de grãos. Os índices de Garcia e da soma de classificação foram positivamente correlacionados na classificação dos genótipos, ambos permitindo indicar as pré-cultivares UNB2U-C5 e P1 x P7 como as de melhor desempenho para regiões Norte e Noroeste do Estado do Rio de Janeiro.The present study aimed to select pre-cultivars of popcorn maize for registration in MAPA based on different characteristics, using the Garcia and total-classification indices, giving priority to grain yield and expansion capacity. Sixteen genotypes of popcorn maize: eight open-pollinated varieties (BRS Angela, UFVM2 - Barão de Viçosa, Viçosa, Beija-Flor, SAM, UNB2U-C3, UNB2U-C4 and UNB2U-C5 and eight hybrids (Zelia, Jade, IAC 112, P1 x P3, P1 x P7, P2 x P4, P2 x P9 and P3 x P7 were evaluated in five environments. The experimental design was of randomized blocks with three replications, where the characteristics of plant height, growth, droop, expansion capacity and grain yield were evaluated. The effects of genotype and

  15. Desempenho esempenho agronômico de novos híbridos de milho-pipoca no Noroeste do Estado do Paraná, Brasil = Agronomic performance of new popcorn hybrids in Northwestern Paraná state, Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Augusto Vieira

    2009-01-01

    Full Text Available Em milho, variações de desempenho agronômico são comuns em ambientesdistintos, havendo resposta ainda mais diferenciada em híbridos simples. Este trabalho teve como objetivo avaliar o desempenho de novos híbridos simples de milho-pipoca, desenvolvidos pelo Programa de Melhoramento da Universidade Estadual de Maringá, no noroeste do Paraná. Para isso, avaliaram-se as características agronômicas de rendimento de grãos, capacidade de expansão, altura de planta, altura de espiga, resistência à ferrugem polissora (Puccinia polysora, à helmintosporiose (Exserohilum turcicum e à mancha branca(Phaeosphaeria maydis/Pantoea ananas. O experimento foi conduzido em blocos completos, com tratamentos ao acaso com três repetições, em Maringá-PR, na safra 2006/2007. Os tratamentos foram 27 híbridos de linhagens S5 e as cultivares BRS Angela, IAC 112 e Jade. Constataram-se diferenças significativas (p ≤ 0,05 entre os híbridos para todas as características avaliadas. O híbrido proveniente da combinação das linhagens C e K expressou os melhores índices de rendimento de grãos e capacidade de expansão e foi susceptível à ferrugem polissora. Os híbridos provenientes das linhagens L, H e Kdestacaram-se com relação à resistência à ferrugem polissora, enquanto os híbridos da linhagem G foram mais resistentes à helmintosporiose, e os das linhagens M e G, à mancha branca.In maize, variations on agronomic performance in distinctenvironments are common and more evident for one-way hybrids. The objective of this work was to evaluate the performance of new one-way popcorn hybrids developed by the Breeding Program of the State University of Maringá, in northwestern Paraná. The characteristics evaluated were: grain yield, popping expansion, plant height, ear height and the intensity of Southern rust (Puccinia polysora, Northern leaf blight (Exserohilum turcicum, and phaeosphaeria leaf spot (Phaeosphaeria maydis/Pantoea ananas. The

  16. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  17. Handbook of microwave integrated circuits

    Science.gov (United States)

    Hoffmann, Reinmut K.

    The design and operation of ICs for use in the 0.5-20-GHz range are described in an introductory and reference work for industrial engineers. Chapters are devoted to an overview of microwave IC (MIC) technology, general stripline characteristics, microwave transmission line (MTL) parameters for microstrips with isotropic dielectric substrates, higher-order modes on a microstrip, the effects of metallic enclosure on MTL transmission parameters, losses in microstrips, the measurement of MTL parameters, and MTLs on anisotropic dielectric substrates. Consideration is given to coupled microstrips on dielectric substrates, microstrip discontinuities, radiation from microstrip circuits, MTL variations, coplanar MTLs, slotlines, and spurious modes in MTL circuits. Diagrams, drawings, graphs, and a glossary of symbols are provided.

  18. Detecting itinerant single microwave photons

    Science.gov (United States)

    Sathyamoorthy, Sankar Raman; Stace, Thomas M.; Johansson, Göran

    2016-08-01

    Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations.

  19. Microwave Imaging under Oblique Illumination

    Directory of Open Access Journals (Sweden)

    Qingyang Meng

    2016-07-01

    Full Text Available Microwave imaging based on inverse scattering problem has been attracting many interests in the microwave society. Among some major technical challenges, the ill-posed, multi-dimensional inversion algorithm and the complicated measurement setup are critical ones that prevent it from practical applications. In this paper, we experimentally investigate the performance of the subspace-based optimization method (SOM for two-dimensional objects when it was applied to a setup designed for oblique incidence. Analytical, simulation, and experimental results show that, for 2D objects, neglecting the cross-polarization scattering will not cause a notable loss of information. Our method can be potentially used in practical imaging applications for 2D-like objects, such as human limbs.

  20. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  1. Microwave chemistry for inorganic nanomaterials synthesis.

    Science.gov (United States)

    Bilecka, Idalia; Niederberger, Markus

    2010-08-01

    This Feature Article gives an overview of microwave-assisted liquid phase routes to inorganic nanomaterials. Whereas microwave chemistry is a well-established technique in organic synthesis, its use in inorganic nanomaterials' synthesis is still at the beginning and far away from having reached its full potential. However, the rapidly growing number of publications in this field suggests that microwave chemistry will play an outstanding role in the broad field of Nanoscience and Nanotechnology. This article is not meant to give an exhaustive overview of all nanomaterials synthesized by the microwave technique, but to discuss the new opportunities that arise as a result of the unique features of microwave chemistry. Principles, advantages and limitations of microwave chemistry are introduced, its application in the synthesis of different classes of functional nanomaterials is discussed, and finally expected benefits for nanomaterials' synthesis are elaborated.

  2. Modelling Microwave Devices Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Andrius Katkevičius

    2012-04-01

    Full Text Available Artificial neural networks (ANN have recently gained attention as fast and flexible equipment for modelling and designing microwave devices. The paper reviews the opportunities to use them for undertaking the tasks on the analysis and synthesis. The article focuses on what tasks might be solved using neural networks, what challenges might rise when using artificial neural networks for carrying out tasks on microwave devices and discusses problem-solving techniques for microwave devices with intermittent characteristics.Article in Lithuanian

  3. Harmonic distortion in microwave photonic filters.

    Science.gov (United States)

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  4. Electrodeless microwave source of UV radiation

    Science.gov (United States)

    Barkhudarov, E. M.; Kozlov, Yu. N.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, I. M.; Khomichenko, A. A.

    2012-06-01

    The parameters of an electrodeless microwave low-pressure discharge in an Ar + Hg vapor mixture are studied, the design of a UV radiation source for water disinfection is suggested, and its main characteristics are presented. The domestic microwave oven ( f = 2.45 GHz; N = kW) is used as a microwave radiation source. The maximal UV power at wavelength λ = 254 nm amounts to 120-130 W.

  5. Microwave Absorption in Electron Cyclotron Resonance Plasma

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-Hai; HU Xi-Wei; WU Qin-Chong; YU Guo-Yang

    2000-01-01

    The microwave power absorption in electron cyclotron resonance plasma reactor was investigated with a twodimensional hybrid-code. Simulation results indicated that there are two typical power deposition profiles over the entire parameter region: (1) microwave power deposition peaks on the axis and decreases in radial direction,(2) microwave power deposition has its maximum at some radial position, i.e., a hollow distribution. The spatial distribution of electron temperature resembles always to the microwave power absorption profile. The dependence of plasma parameter on the gas pressure is discussed also.

  6. Use of microwave in diagnostic pathology

    Directory of Open Access Journals (Sweden)

    Basavaradhya Sahukar Shruthi

    2013-01-01

    Microwaves a form of electromagnetic wave-induced heat, when applied in histotechnology, reproducibly yields histolologic material of similar or superior quality to that provided by conventional processing methods, making it more popular in the recent years. A laboratory microwave offers features like maximum output of 2000-3000 watts, an in-built source of adjustable temperature probe, facility for ventilation of hazardous fumes, but is expensive. Considering the usefulness of microwave in histotechnology, i.e., reducing the time required for the diagnosis, replacing the conventional equipments of laboratories by microwave-guided ones is a remarkable and an acceptable change.

  7. Advanced Microwave Electrothermal Thruster (AMET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) and the University of Alabama at Huntsville (UAH) propose to develop the Advanced Microwave Electrothermal Thruster...

  8. Imaging of microwave fields using ultracold atoms

    CERN Document Server

    Boehi, Pascal; Haensch, Theodor W; Treutlein, Philipp; 10.1063/1.3470591

    2010-01-01

    We report a technique that uses clouds of ultracold atoms as sensitive, tunable, and non-invasive probes for microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field. Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and it is possible to reconstruct the distribution of microwave magnetic field amplitudes and phases. While we demonstrate 2d imaging, an extension to 3d imaging is straightforward. We use the method to determine the microwave near-field distribution around a coplanar waveguide integrated on an atom chip.

  9. Compact superconducting coplanar microwave beam splitters

    Energy Technology Data Exchange (ETDEWEB)

    Baust, Alexander; Haeberlein, Max; Goetz, Jan; Hoffmann, Elisabeth; Menzel, Edwin P.; Schwarz, Manuel J.; Wulschner, Friedrich; Zhong, Ling; Deppe, Frank; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TUM, Garching (Germany); Kalb, Norbert; Losinger, Thomas [Physik-Department, TUM, Garching (Germany)

    2012-07-01

    The recent evolution of circuit quantum electrodynamics systems making use of standing-wave microwave modes towards setups for propagating quantum microwaves has triggered the need for low-loss superconducting microwave beam splitters. Such a device should have ports compatible with the coplanar geometry relevant for circuit QED and, at the same time, be compact allowing for scalability. This combination presents fundamental and technological challenges. In this work, we present the fabrication and characterization of various compact superconducting coplanar microwave beam splitters. In addition, we discuss efforts towards a tunable beam splitter.

  10. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  11. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  12. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...

  13. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  14. The Annular Microwave Dryer Design and Study on Honeysuckle

    Directory of Open Access Journals (Sweden)

    Geng Yuefeng

    2014-03-01

    Full Text Available In order to dry fresh honeysuckle, microwave drying process were studied on fresh honeysuckle; and microwave drying apparatus on fresh honeysuckle is designed according to the drying process. The designed microwave dryer contains microwave generator, microwave dryer, dehumidifying systems, control system, transmission systems, microwave leakage inhibited mechanism and other components. The drying experiment is carried by the designed dryer, from the setting-to-work test, the design was success.

  15. Circuit realization microwave antennas-oscillator on strip antennas

    OpenAIRE

    Golynskyy, V. D.; Prudyus, I. N.

    2009-01-01

    Showing special feature of development circuitries microwave transistors antennasoscillator on strip dielectric-resonator-antennas. Showing circuitries and technical characteristics of developed microwave antennasoscillator on strip.

  16. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckstrom, D.J.; Williams, M.S. [SRI International, Menlo Park, CA (United States)

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  17. Behaviors of young children around microwave ovens.

    Science.gov (United States)

    Robinson, Marla R; O'Connor, Annemarie; Wallace, Lindsay; Connell, Kristen; Tucker, Katherine; Strickland, Joseph; Taylor, Jennifer; Quinlan, Kyran P; Gottlieb, Lawrence J

    2011-11-01

    Scald burn injuries are the leading cause of burn-related emergency room visits and hospitalizations for young children. A portion of these injuries occur when children are removing items from microwave ovens. This study assessed the ability of typically developing children aged 15 months to 5 years to operate, open, and remove the contents from a microwave oven. The Denver Developmental Screening Test II was administered to confirm typical development of the 40 subjects recruited. All children recruited and enrolled in this study showed no developmental delays in any domain in the Denver Developmental Screening Test II. Children were observed for the ability to open both a push and pull microwave oven door, to start the microwave oven, and to remove a cup from the microwave oven. All children aged 4 years were able to open the microwaves, turn on the microwave, and remove the contents. Of the children aged 3 years, 87.5% were able to perform all study tasks. For children aged 2 years, 90% were able to open both microwaves, turn on the microwave, and remove the contents. In this study, children as young as 17 months could start a microwave oven, open the door, and remove the contents putting them at significant risk for scald burn injury. Prevention efforts to improve supervision and caregiver education have not lead to a significant reduction in scald injuries in young children. A redesign of microwave ovens might prevent young children from being able to open them thereby reducing risk of scald injury by this mechanism.

  18. Subnanosecond microwave-assisted magnetization switching in a circularly polarized microwave magnetic field

    Science.gov (United States)

    Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2017-06-01

    We study microwave-assisted magnetization switching (MAS) of a perpendicularly magnetized nanomagnet with a diameter of 50 nm in a circularly polarized microwave magnetic field. The MAS effect appears when the rotation direction of the microwave field matches that of the ferromagnetic resonance excitation, and a large switching field decrease from 7.1 kOe to 1.5 kOe is demonstrated. In comparison with a linearly polarized microwave magnetic field, the circularly polarized microwave field induces the same MAS effect at half the microwave field amplitude, thereby showing its efficiency. We also examine MAS in the subnanosecond region and show that the magnetization switching can be induced by a microwave field with the duration of 0.2 ns.

  19. Anisotropy of Wood in the Microwave Region

    Science.gov (United States)

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  20. Microwave oxidation treatment of sewage sludge.

    Science.gov (United States)

    Lo, Kwang V; Srinivasan, Asha; Liao, Ping H; Bailey, Sam

    2015-01-01

    Microwave-oxidation treatment of sewage sludge using various oxidants was studied. Two treatment schemes with a combination of hydrogen peroxide and ozone were examined: hydrogen peroxide and ozone were introduced into the sludge simultaneously, followed by microwave heating. The other involved the ozonation first, and then the resulting solution was subjected to microwave and hydrogen peroxide treatment. The set with ozonation followed by hydrogen peroxide plus microwave heating yielded higher soluble materials than those of the set with hydrogen peroxide plus ozone first and then microwave treatment. No settling was observed for all treatments in the batch operation, except ozone/microwave plus hydrogen peroxide set at 120°C. The pilot-scale continuous-flow 915 MHz microwave study has demonstrated that microwave-oxidation process is feasible for real-time industrial application. It would help in providing key data for the design of a full-scale system for treating sewage sludge and the formulation of operational protocols.

  1. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  2. Microwave-assisted synthesis of photochromic fulgides

    Indian Academy of Sciences (India)

    Sivasankaran Nithyanandan; Chinnusamy Saravanan; Sengodan Senthil; Palaninathan Kannan

    2010-03-01

    The oxazole and indole based heterocyclic photochromic fulgides were synthesized from their corresponding fulgenic acid derivatives by clay catalysed microwave irradiation methodology. Improved yields of fulgides were observed by the microwave irradiation method as compared other chemical methods employed so far. The proportions of clay (montmorillonite KSF) and isopropenyl acetate play a key role in increasing the yields of fulgides.

  3. Microwave Pretreatment For Hydrolysis Of Cellulose

    Science.gov (United States)

    Cullingford, Hatice S.; George, Clifford E.; Lightsey, George R.

    1993-01-01

    Microwave pretreatment enhances enzymatic hydrolysis of cellulosic wastes into soluble saccharides used as feedstocks for foods, fuels, and other products. Low consumption of energy, high yield, and low risk of proposed hydrolysis process incorporating microwave pretreatment makes process viable alternative to composting.

  4. Organic Synthesis Using Microwaves and Supported Reagents

    Science.gov (United States)

    In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...

  5. Method of sintering materials with microwave radiation

    Science.gov (United States)

    Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  6. Embedded solution for a microwave moisture meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter is based on the free-space transmission measurement technique and uses low-intensity microwaves to measure the attenuation and p...

  7. The Temperature of the Cosmic Microwave Background

    CERN Document Server

    Fixsen, D J

    2009-01-01

    The FIRAS data are independently recalibrated using the WMAP data to obtain a CMB temperature of 2.7260 +/- 0.0013. Measurements of the temperature of the cosmic microwave background are reviewed. The determination from the measurements from the literature is cosmic microwave background temperature of 2.72548 +/- 0.00057 K.

  8. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  9. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  10. Technology Progress Report for Microwave Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    JIANG Jingshan; DONG Xiaolong; LIU Heguang

    2004-01-01

    In this presentation, technological progress for China's microwave remote sensing is introduced. New developments of the microwave remote sensing instruments for China's lunar exploration satellite (Chang'E-1), meteorological satellite FY-3 and ocean dynamic measurement satellite (HY-2) are reported.

  11. Organic Synthesis Using Microwaves and Supported Reagents

    Science.gov (United States)

    In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...

  12. Microwave Oscillator Would Have Reduced Phase Noise

    Science.gov (United States)

    Dick, G. John; Saunders, Jon

    1991-01-01

    Microwave oscillators of proposed new type incorporate suppressed-carrier/negative-feedback feature to reduce phase noise near their carrier frequencies. Concept results in phase noise less than achievable by cryogenically stabilized microwave components or by room-temperature oscillators stabilized by quartz crystals. Implemented in three different versions.

  13. Microwave thermolysis of sweat glands.

    Science.gov (United States)

    Johnson, Jessi E; O'Shaughnessy, Kathryn F; Kim, Steve

    2012-01-01

    Hyperhidrosis is a condition that affects a large percentage of the population and has a significant impact on peoples' lives. This report presents a technical overview of a new noninvasive, microwave-based device for creating thermolysis of sweat glands. The fundamental principles of operation of the device are presented, as well as the design and optimization of the device to target the region where the sweat glands reside. An applicator was designed that consists of an array of four waveguide antennas, a cooling system, and a vacuum acquisition system. Initially, the performance of the antenna array was optimized via computer simulation such that microwave absorption was maximized near the dermal/hypodermal interface. Subsequently, hardware was implemented and utilized in pre-clinical testing on a porcine model to optimize the thermal performance and analyze the ability of the system to create thermally affected zones of varying size yet centered on the target region. Computer simulation results demonstrated absorption profiles at a frequency of 5.8 GHz that had low amounts of absorption at the epidermis and maximal absorption at the dermal/hypodermal interface. The targeted zone was shown to be largely independent of skin thickness. Gross pathological and histological response from pre-clinical testing demonstrated the ability to generate thermally affected zones in the desired target region while providing protection to the upper skin layers. The results demonstrate that microwave technology is well suited for targeting sweat glands while allowing for protection of both the upper skin layers and the structures beneath the subcutaneous fat. Promising initial results from simulation and pre-clinical testing demonstrate the potential of the device as a noninvasive solution for sweat gland thermolysis. Copyright © 2011 Wiley Periodicals, Inc.

  14. Simulations of the Microwave Sky

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; /KIPAC, Menlo Park; Bode, Paul; /Princeton U., Astrophys. Sci. Dept.; Das, Sudeep; /Princeton U., Astrophys. Sci. Dept. /Princeton U.; Hernandez-Monteagudo, Carlos; /Garching, Max Planck Inst.; Huffenberger, Kevin; /Miami U.; Lin, Yen-Ting; /Tokyo U., IPMU; Ostriker, Jeremiah P.; /Princeton U., Astrophys. Sci. Dept.; Trac, Hy; /Harvard-Smithsonian Ctr. Astrophys.

    2009-12-16

    We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands and utilized the easily accessible HEALPix map format to make these simulations applicable to other current and near future microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster and group populations, the primordial microwave background is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zel'dovich (SZ) signals from galaxy clusters, groups, and the intergalactic medium has been included, and the gas prescription to model the SZ signals has been refined to match the most recent X-ray observations. The cosmology adopted in these simulations is also consistent with the WMAP 5-year parameter measurements. From these simulations we find a slope for the Y{sub 200} - M{sub 200} relation that is only slightly steeper than self-similar, with an intrinsic scatter in the relation of {approx} 14%. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14}M{sub {circle_dot}} and z < 1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14}M{sub {circle_dot}} and z < 0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux

  15. The Microwave Temperature Profiler (PERF)

    Science.gov (United States)

    Lim, Boon; Mahoney, Michael; Haggerty, Julie; Denning, Richard

    2013-01-01

    The JPL developed Microwave Temperature Profiler (MTP) has recently participated in GloPac, HIPPO (I to V) and TORERO, and the ongoing ATTREX campaigns. The MTP is now capable of supporting the NASA Global Hawk and a new canister version supports the NCAR G-V. The primary product from the MTP is remote measurements of the atmospheric temperature at, above and below the flight path, providing for the vertical state of the atmosphere. The NCAR-MTP has demonstrated unprecedented instrument performance and calibration with plus or minus 0.2 degrees Kelvin flight level temperature error. Derived products include curtain plots, isentropes, lapse rate, cold point height and tropopause height.

  16. Second-generation treatment: microwave.

    Science.gov (United States)

    Sambrook, Alison; Cooper, Kevin G

    2007-12-01

    Microwave endometrial ablation is an effective treatment for heavy menstrual loss that achieves high satisfaction rates, is acceptable to patients, and is recommended by the National Institute of Clinical Excellence. It has been evaluated extensively in randomized trials against first- and second-generation endometrial ablative techniques. Its simplicity of use and short treatment time make it suitable for outpatient treatments, whilst it can also treat larger and irregular cavities. This article reviews the available clinical research and scientific basis of this endometrial ablation technique.

  17. Spin-Torque Microwave Detectors

    Science.gov (United States)

    2012-02-06

    to the square root of the input microwave power: min/RFSNR P P . The minimum detectable power 2min = /JN MNP P P in this regime is limited by the...magnetic noise MNP (which increases with the increase of the input signal frequency). The minimum detectable power minP (corresponding to =1SNR ) in the...high-frequency case is smaller than MNP and lies in the region of the linear dependence of SNR on RFP (solid red line in Fig. 2). The situation is

  18. Microwave spectrum of 1-bromobutane

    Science.gov (United States)

    Kim, Jihyun; Jang, Heesu; Ka, Soohyun; Obenchain, Daniel A.; Peebles, Rebecca A.; Peebles, Sean A.; Oh, Jung Jin

    2016-10-01

    The rotational spectrum of 1-bromobutane has been measured in the range of 8-18 GHz using a 480 MHz bandwidth chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer. 1-bromobutane has five conformers; aa, ag, ga, gg, gg‧. Spectra for the 79Br isotopic species and 81Br isotopic species were observed and assigned for the three lowest energy conformers, aa, ga, and gg. Consequentially, the rotational constants, nuclear quadrupole coupling constants, and centrifugal distortion constants were determined and the dipole moment of the aa conformer with 79Br was measured. All the experimental data are in good agreement with the ab initio calculations.

  19. Design of microwave active devices

    CERN Document Server

    Gautier , Jean-Luc

    2014-01-01

    This book presents methods for the design of the main microwave active devices. The first chapter focuses on amplifiers working in the linear mode. The authors present the problems surrounding narrowband and wideband impedance matching, stability, polarization and the noise factor, as well as specific topologies such as the distributed amplifier and the differential amplifier. Chapter 2 concerns the power amplifier operation. Specific aspects on efficiency, impedance matching and class of operation are presented, as well as the main methods of linearization and efficiency improvement. Freq

  20. Microwave sensor for ice detection

    Science.gov (United States)

    Arndt, G. D.; Chu, A.; Stolarczyk, L. G.; Stolarczyk, G. L.

    1994-01-01

    A microwave technique has been developed for detecting ice build-up on the wing surfaces of commercial airliners and highway bridges. A microstrip patch antenna serves as the sensor, with changes in the resonant frequency and impedance being dependent upon the overlying layers of ice, water and glycol mixtures. The antenna sensor is conformably mounted on the wing. The depth and dielectric constants of the layers are measured by comparing the complex resonant admittance with a calibrated standard. An initial breadboard unit has been built and tested. Additional development is now underway. Another commercial application is in the robotics field of remote sensing of coal seam thickness.

  1. Stochastic model in microwave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Mugnai, D., E-mail: d.mugnai@ifac.cnr.it [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2011-11-28

    Further experimental results of delay time in microwave propagation are reported in the presence of a lossy medium (wood). The measurements show that the presence of a lossy medium makes the propagation slightly superluminal. The results are interpreted on the basis of a stochastic (or path integral) model, showing how this model is able to describe each kind of physical system in which multi-path trajectories are present. -- Highlights: ► We present new experimental results on electromagnetic “anomalous” propagation. ► We apply a path integral theoretical model to wave propagation. ► Stochastic processes and multi-path trajectories in propagation are considered.

  2. Safranin O staining using a microwave oven.

    Science.gov (United States)

    Kahveci, Z; Minbay, F Z; Cavusoglu, L

    2000-11-01

    We investigated the effects of microwave irradiation on a safranin O staining method for paraffin sections of formalin fixed rabbit larynx. The control sections were stained according to the conventional method, and the experimental sections were stained in microwave oven for 10 sec at 360 W in Weigert's iron hematoxylin, and for 30 sec at 360 W in fast green and 0.1% safranin O staining solutions. Light microscopic examination of the sections revealed that the microwave heating did not adversely affect the staining properties of cartilage tissue compared to the conventional staining method. Small differences such as darker staining of the matrix and shrinkage of the cytoplasm was observed in some microwave treated sections. The present study revealed that microwave application can be used safely for the safranin O method with the advantage of reduced staining time.

  3. Understanding the microwave annealing of silicon

    Directory of Open Access Journals (Sweden)

    Chaochao Fu

    2017-03-01

    Full Text Available Though microwave annealing appears to be very appealing due to its unique features, lacking an in-depth understanding and accurate model hinder its application in semiconductor processing. In this paper, the physics-based model and accurate calculation for the microwave annealing of silicon are presented. Both thermal effects, including ohmic conduction loss and dielectric polarization loss, and non-thermal effects are thoroughly analyzed. We designed unique experiments to verify the mechanism and extract relevant parameters. We also explicitly illustrate the dynamic interaction processes of the microwave annealing of silicon. This work provides an in-depth understanding that can expedite the application of microwave annealing in semiconductor processing and open the door to implementing microwave annealing for future research and applications.

  4. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  5. Acceleration of Organic Reactions Using Microwave

    Institute of Scientific and Technical Information of China (English)

    Lu Ta-Jung

    2004-01-01

    The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted direct amide formation from carboxylic acid and amine, the hydrolysis of biopolymers, and nucleophilic aromatic substitution reaction. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.

  6. Microwave chirality discrimination in enantiomeric liquids

    Science.gov (United States)

    Hollander, E.; Kamenetskii, E. O.; Shavit, R.

    2017-07-01

    Chirality discrimination is of fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode oscillations in quasi-2D yttrium-iron-garnet disks provide potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to deepen our understanding of microwave-biosystem interactions. It can also be important for an analysis and design of microwave chiral metamaterials.

  7. Microwave torrefaction of rice straw and Pennisetum.

    Science.gov (United States)

    Huang, Y F; Chen, W R; Chiueh, P T; Kuan, W H; Lo, S L

    2012-11-01

    Microwave torrefaction of rice straw and pennisetum was researched in this article. Higher microwave power levels contributed to higher heating rate and reaction temperature, and thus produced the torrefied biomass with higher heating value and lower H/C and O/C ratios. Kinetic parameters were determined with good coefficients of determination, so the microwave torrefaction of biomass might be very close to first-order reaction. Only 150W microwave power levels and 10min processing time were needed to meet about 70% mass yield and 80% energy yield for torrefied biomass. The energy density of torrefied biomass was about 14% higher than that of raw biomass. The byproducts (liquid and gas) possessed about 30% mass and 20% energy of raw biomass, and they can be seen as energy sources for heat or electricity. Microwave torrefaction of biomass could be a competitive technology to employ the least energy and to retain the most bioenergy.

  8. Q value analysis of microwave photonic filters

    Institute of Scientific and Technical Information of China (English)

    Lina ZHOU; Xinliang ZHANG; Enming XU

    2009-01-01

    This paper first presents the fundamental principles of the microwave photonic filters.As an example to explain how to implement a microwave photonic filter, a specific finite impulse response (FIR) filter is illustrated.Next, the Q value of the microwave photonic filters is analyzed theoretically, and methods around how to gain high Q value are discussed.Then,divided into FIR filter, first-order infinite impulse response (IIR) filter, and multi-order IIR filter, several novel microwave photonic filters with high Q value are listed and compared.The technical difficulties to get high Q value in first-order IIR filter and multi-order IIR filter are analyzed concretely.Finally, in order to gain higher Q value, a multi-order IIR microwave photonic filter that easily extends its order is presented and discussed.

  9. Microwave Treatment of Prostate Cancer and Hyperplasia

    Science.gov (United States)

    Arndt, G. Dickey; Ngo, Phong; Carl, J. R.; Raffoul, George

    2005-01-01

    Microwave ablation in the form of microwave energy applied to a heart muscle by a coaxial catheter inserted in a vein in the groin area can be used to heat and kill diseased heart cells. A microwave catheter has been developed to provide deep myocardial ablation to treat ventricular tachycardia by restoring appropriate electrical activity within the heart and eliminating irregular heartbeats. The resulting microwave catheter design, which is now being developed for commercial use in treating ventricular tachycardia, can be modified to treat prostate cancer and benign prostatic hyperplasia (BPH). Inasmuch as the occurrence of BPH is increasing currently 350,000 operations per year are performed in the United States alone to treat this condition this microwave catheter has significant commercial potential.

  10. Coupling output of multichannel high power microwaves

    Science.gov (United States)

    Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie

    2010-12-01

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  11. Quantum teleportation of propagating quantum microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Di Candia, R.; Felicetti, S.; Sanz, M. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Fedorov, K.G.; Menzel, E.P. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Zhong, L.; Deppe, F.; Gross, R. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, A. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Solano, E. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain)

    2015-12-15

    Propagating quantum microwaves have been proposed and successfully implemented to generate entanglement, thereby establishing a promising platform for the realisation of a quantum communication channel. However, the implementation of quantum teleportation with photons in the microwave regime is still absent. At the same time, recent developments in the field show that this key protocol could be feasible with current technology, which would pave the way to boost the field of microwave quantum communication. Here, we discuss the feasibility of a possible implementation of microwave quantum teleportation in a realistic scenario with losses. Furthermore, we propose how to implement quantum repeaters in the microwave regime without using photodetection, a key prerequisite to achieve long distance entanglement distribution. (orig.)

  12. Microwave Spectroscopy of 2-PENTANONE

    Science.gov (United States)

    Andresen, Maike; Nguyen, Ha Vinh Lam; Kleiner, Isabelle; Stahl, Wolfgang

    2017-06-01

    Methyl propyl ketone (MPK) or 2-Pentanone is known to be an alarm pheroromone released by the mandibular glands of the bees. It is a highly volatile compound. This molecule was studied by a combination of quantum chemical calculations and microwave spectroscopy in order to get informations about the lowest energy conformers and their structures.The rotational spectrum of 2-pentanone was measured using the molecular beam Fourier transform microwave spectrometer in Aachen operating between 2 and 26.5 GHz. Ab initio calculations determine 4 conformers but only two of them are observed in our jet-beam conditions.The lowest conformer has a C_{1} structure and its spectrum shows internal rotation splittings arising from two methyl groups. The internal splittings of 305 transitions for this conformer were analyzed using the XIAM code It led to the determination of the values for the barrier heights hindering the internal rotation of two methyl groups of 239 cm^{-1} and 980 cm^{-1} respectively. The next energy conformer has a C_{s} structure and the analysis of the internal splittings of 134 transitions using the XIAM code and the BELGI code led to the determination of internal rotation barrier height of 186 cm^{-1}. Comparisons of quantum chemistry and experimental results will be discussed. H. Hartwig, H. Dreizler, Z. Naturforsch. 51a, 923 (1996). J. T. Hougen, I. Kleiner and M. Godefroid, J. Mol. Spectrosc., 163, 559-586 (1994).

  13. Technical aspects of microwave thermotherapy.

    Science.gov (United States)

    Vrba, J; Lapes, M; Oppl, L

    1999-05-01

    We describe our new technical results dealing with microwave thermotherapy (hyperthermia) in cancer treatment, see Refs. [S.B. Field, C. Franconi (Eds.), Physics and technology of hyperthermia, NATO Seminar Proceedings, Urbino, Italy, 1986; J. Hand, J.R. James (Eds.), Physical Techniques in Clinical Hyperthermia, Wiley, New York, 1986; J. Vrba, M. Lapes, Microwave Applicators for Medical Purposes, CTU Press, 1996, in Czech; J. Vrba, C. Franconi, M. Lapes, Theoretical limits for the penetration depth of the intracavitary applicators, International Journal of Hyperthermia, 12:6 (1996) 737-742; C. Franconi, J. Vrba, F. Montecchia, 27 MHz hybrid evanescent-mode applicators with flexible heating field for deep and safe subcutaneous hyperthermia, International Journal of Hyperthermia, 9:5 (1993) 655-674.]. Our research interest is to develop applicators for deep local heating and for intracavitary cancer and/or prostate treatment as well. Further, a system for 3D SAR distribution measurements in water phantom is explained. Basic evaluation of clinical results is given.

  14. Radiation-hardened microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.

    1990-01-01

    In order to develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe RF multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced MSTS configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high band-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures. 3 refs., 4 figs.

  15. Componentes genéticos de médias e depressão por endogamia em populações de milho-pipoca Average genetic components and inbreeding depression in popcorn populations

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Scapim

    2006-02-01

    Full Text Available Dez populações de milho-pipoca (PR 038, PR 079, RR 046, SC 016, PR 017, BRS Angela, SC 002, PR 009, PR 023 e SE 013 foram avaliadas com os objetivos de obter estimativas de depressão por endogamia e componentes genéticos de média. O delineamento experimental utilizado foi o de blocos ao acaso em esquema de parcelas subdivididas, nos quais os tratamentos primários foram os níveis de endogamia (S1 e S0 e os tratamentos secundários as populações, com três repetições. O ensaio foi conduzido nas cidades de Maringá e Iguatemi-PR, no ano agrícola de 2001/2002. Foram avaliadas as características altura de plantas, altura de espigas, rendimento de grãos e capacidade de expansão. Foram observados menores valores de depressão por endogamia e predominância de efeitos gênicos aditivos para capacidade de expansão em relação ao rendimento de grãos. As populações BRS ANGELA e SC 002 apresentaram maior probabilidade de sucesso na obtenção de linhagens com boa capacidade de expansão.Ten popcorn populations (PR 038, PR 079, RR 046, SC 016, PR 017, BRS Angela, SC 002, PR 009, PR 023 and SE 013 were evaluated to estimate inbreeding depression and average genetic components. The experiment was a split plot in a randomized complete block design with three replications. The plots were the inbreeding levels (S1 and S0 and the sub-plots were the populations in two locations (Maringá and Iguatemi-PR during the 2001/2002 grown season. Plant and ear height, grain yield and popping expansion were evaluated. It was observed lower values of inbreeding depression and predominance of additive effects for popping expansion in relation to yield. The sucess of getting high popping expansion inbred lines is higher with BRS ANGELA and SC 002 populations.

  16. Correlações entre caracteres agronômicos em dois ciclos de seleção recorrente em milho-pipoca Correlations among agronomic traits in two recurrent selection cycles in popcorn

    Directory of Open Access Journals (Sweden)

    Máskio Daros

    2004-10-01

    Full Text Available Com o propósito de monitorar o comportamento de blocos gênicos em diferentes gerações de seleção recorrente em milho pipoca, quantificaram-se as correlações fenotípica, genotípica e de ambiente entre caracteres agronômicos, em dois ciclos de seleção recorrente. O primeiro ciclo foi formado por famílias de irmãos completos e o segundo ciclo por famílias S1. Embora não significativa, em ambos os ciclos, houve correlação genotípica negativa entre capacidade de expansão e rendimento de grãos. Para o segundo ciclo, as maiores magnitudes de correlação genotípica positiva ocorreram entre rendimento de grãos, número de espigas sadias e estande, indicando a possibilidade de sucesso na seleção de uma ou outra, com base no rendimento de grãos. Embora não significativa e em baixa magnitude, houve acréscimo da correlação genotípica entre rendimento de grãos e capacidade de expansão do primeiro para o segundo ciclo, denotando aumento na concentração de alelos favoráveis na população.This work was carried out to estimate environment, genotypic and phenotypic correlations among traits in two intrapopulational recurrent selection cycles in popcorn. The first cycle was composed by full sib families and the second cycle by S1 families. Seventy-five families of full sib and two hundred and twenty two families S1 were evaluated in randomized complete block design with two replicates in two environments. Although not statistically significant, genotypic correlation between grain yield and popping expansion was negative in both selection cycles. For the second cycle of recurrent selection, the highest positive estimates of genotypic correlations were found between: grain yield and number of ears and grain yield and stand, indicating the perspective of the success for selection based on grain yield. Although in less magnitude there was an increase in genotypic correlation between the grain yield and popping expansion from the

  17. Microwave peak absorption frequency of liquid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microwave-assisted extraction is a new effective method which has practical ap-plications in many fields. Microwave heating is one of its physical mechanisms,and it also has the characteristic of selectivity. When the applied microwave fre-quency equals a certain absorption frequency of the material (or specific compo-nent),the material will intensively absorb microwave energy. This is also known as resonant absorption,and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work,dynamic hy-drogen bond energy was included in molecular activation energy; with the liquid cell model,the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and re-laxation time,the expression of microwave peak absorption frequency as a func-tion of the material physical structure,rotational inertia and electrical dipole mo-ment of molecules was established. These theoretical formulas were applied to water and benzene,and the calculated results agree fairly well with the experi-mental data. This work can not only deepen the study of the interaction between microwave and material,but also provide a possible guide for the experiment of microwave-assisted extraction.

  18. Microwave peak absorption frequency of liquid

    Institute of Scientific and Technical Information of China (English)

    HAN GuangZe; CHEN MingDong

    2008-01-01

    Microwave-assisted extraction is a new effective method which has practical ap-plications in many fields. Microwave heating is one of its physical mechanisms, and it also has the characteristic of selectivity. When the applied microwave fre-quency equals a certain absorption frequency of the material (or specific compo-nent), the material will intensively absorb microwave energy. This is also known as resonant absorption, and the frequency is called the peak absorption frequency which depends on the physical structure of the material. In this work, dynamic hy-drogen bond energy was included in molecular activation energy; with the liquid cell model, the expression of interaction energy between dipolar molecules was derived. The rotational relaxation time was gotten from the Eyring viscosity formula. Then based on the relationship between dielectric dissipation coefficient and re-laxation time, the expression of microwave peak absorption frequency as a func-tion of the material physical structure, rotational inertia and electrical dipole mo-ment of molecules was established. These theoretical formulas were applied to water and benzene, and the calculated results agree fairly well with the experi-mental data. This work can not only deepen the study of the interaction between microwave and material, but also provide a possible guide for the experiment of microwave-assisted extraction.

  19. Accelerated staining technique using kitchen microwave oven.

    Science.gov (United States)

    Mukunda, Archana; Narayan, T V; Shreedhar, Balasundhari; Shashidhara, R; Mohanty, Leeky; Shenoy, Sadhana

    2015-01-01

    Histopathological diagnosis of specimens is greatly dependent on good sample preparation and staining. Both of these processes is governed by diffusion of fluids and dyes in and out of the tissue, which is the key to staining. Diffusion of fluids can be accelerated by the application of heat that reduces the time of staining from hours to the minute. We modified an inexpensive model of kitchen microwave oven for staining. This study is an attempt to compare the reliability of this modified technique against the tested technique of routine staining so as to establish the kitchen microwave oven as a valuable diagnostic tool. Sixty different tissue blocks were used to prepare 20 pairs of slides for 4 different stains namely hematoxylin and eosin, Van Gieson's, 0.1% toluidine blue and periodic acid-Schiff. From each tissue block, two bits of tissues were mounted on two different slides. One slide was stained routinely, and the other stained inside a microwave. A pathologist evaluated the stained slides and the results so obtained were analyzed statistically. Microwave staining considerably cut down the staining time from hours to seconds. Microwave staining showed no loss of cellular and nuclear details, uniform-staining characteristics and was of excellent quality. The cellular details, nuclear details and staining characteristics of microwave stained tissues were better than or equal to the routine stained tissue. The overall quality of microwave-stained sections was found to be better than the routine stained tissue in majority of cases.

  20. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  1. Microwave combustion and sintering without isostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber.

  2. Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy.

    Science.gov (United States)

    Shi, Haitang; Liu, Tianlong; Fu, Changhui; Li, Linlin; Tan, Longfei; Wang, Jingzhuo; Ren, Xiangling; Ren, Jun; Wang, Jianxin; Meng, Xianwei

    2015-03-01

    This work develops a kind of sodium alginate (SA) microcapsules as microwave susceptible agents for in vivo tumor microwave thermal therapy for the first time. Due to the excellent microwave susceptible properties and low bio-toxicity, excellent therapy efficiency can be achieved with the tumor inhibiting ratio of 97.85% after one-time microwave thermal therapy with ultralow power (1.8 W, 450 MHz). Meanwhile, the mechanism of high microwave heating efficiency was confirmed via computer-simulated model in theory, demonstrating that the spatial confinement efficiency of microcapsule walls endows the inside ions with high microwave susceptible properties. This strategy offers tremendous potential applications in clinical tumor treatment with the benefits of safety, reliability, effectiveness and minimally invasiveness.

  3. Intermittent Microwave Drying of Wheat (Triticum aestivum L.) Seeds

    OpenAIRE

    Yan Li; Tao Zhang; Chenglai Wu; Chunqing Zhang

    2014-01-01

    The purpose of present study was to characterize the intermittent microwave drying of wheat seeds. Results revealed that microwave on time percentage (MOTP) and initial moisture content were the main parameters which influenced the intermittent microwave drying rate and the germination capacity of dried seeds. Best intermittent microwave drying (power: 800 W; seed sample weight: 100 g, microwave on time in each cycle: 32 s) without significantly decreasing the germination rate was...

  4. Microwave Plasma Hydrogen Recovery System

    Science.gov (United States)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  5. Microwave Enhanced Cotunneling in SET Transistors

    DEFF Research Database (Denmark)

    Manscher, Martin; Savolainen, M.; Mygind, Jesper

    2003-01-01

    Cotunneling in single electron tunneling (SET) devices is an error process which may severely limit their electronic and metrologic applications. Here is presented an experimental investigation of the theory for adiabatic enhancement of cotunneling by coherent microwaves. Cotunneling in SET...... transistors has been measured as function of temperature, gate voltage, frequency, and applied microwave power. At low temperatures and applied power levels, including also sequential tunneling, the results can be made consistent with theory using the unknown damping in the microwave line as the only free...

  6. Microwave meta-atom enhanced spintronic rectification

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Peng; Xi, Fuchun; Qian, Qinbai; Xu, Jie [State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Fudan University, Shanghai 200433 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); An, Zhenghua, E-mail: anzhenghua@fudan.edu.cn [State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)

    2015-04-06

    An artificial meta-atom (MA), or alternatively, a plasmonic antenna, has been demonstrated to significantly enhance the microwave spin rectifying photovoltage by more than two orders in magnitude (∼280) in the ferromagnetic resonance regime. The large enhancement is attributed to the unique structure of the MA which magnifies both microwave electric (∼5) and magnetic (∼56) fields in the same near-field spatial region. Our work develops the interdisciplinary direction with artificial and natural magnetism and may find promising applications in high-frequency or opto-spintronic devices and wireless microwave energy harvesting.

  7. One-step microwave foaming and curing

    Science.gov (United States)

    Gagliani, J.; Lee, R.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1981-01-01

    Process that combines microwave foaming and curing of polyimide precursors in single step produces fire-resistant foam slabs of much larger volume than has previously been possible. By adding selected conductive fillers to powder precursors and by using high-power microwave oven, foam slabs with dimensions in excess of 61 by 61 by 7.6 cm are made. Typical foaming and curing and curing time is 35 minutes in microwave oven with additional 1 to 2 hour postcure in conventional oven.

  8. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    A K Mukhopadhyay; M Ray Chaudhuri; A Seal; S K Dalui; M Banerjee; K K Phani

    2001-04-01

    The mechanical characterization of microwave sintered zinc oxide disks is reported. The microwave sintering was done with a specially designed applicator placed in a domestic microwave oven operating at a frequency of 2.45 GHz to a maximum power output of 800 Watt. These samples with a wide variation of density and hence, of open pore volume percentage, were characterized in terms of its elastic modulus determination by ultrasonic time of flight measurement using a 15 MHz transducer. In addition, the load dependence of the microhardness was examined for the range of loads 0.1–20 N. Finally, the fracture toughness data (IC) was obtained using the indentation technique.

  9. Microwave line of sight link engineering

    CERN Document Server

    Angueira, Pablo

    2012-01-01

    A comprehensive guide to the design, implementation, and operation of line of sight microwave link systems The microwave Line of Sight (LOS) transport network of any cellular operator requires at least as much planning effort as the cellular infrastructure itself. The knowledge behind this design has been kept private by most companies and has not been easy to find. Microwave Line of Sight Link Engineering solves this dilemma. It provides the latest revisions to ITU reports and recommendations, which are not only key to successful design but have changed dramatically in

  10. Microwave emission from dry and wet snow

    Science.gov (United States)

    Chang, T. C.; Gloersen, P.

    1975-01-01

    A microscopic model was developed to study the microwave emission from snow. In this model, the individual snow particles are considered to be the scattering centers. Mie scattering theory for spherical particles is then used to compute the volume scattering and extinction coefficients of the closely packed scattering spheres, which are assumed not to interact coherently. The results of the computations show significant volume scattering effects in the microwave region which result in low observed emissivities from cold, dry snow. In the case of wet snow, the microwave emissivities are increased considerably, in agreement with earlier experimental observations in which the brightness temperatures have increased significantly at the onset of melting.

  11. Microwave Combustion and Sintering Without Isostatic Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Monroe, N.D.H.

    1998-10-20

    This investigation involves a study of the influence of key processing parameters on the heating of materials using microwave energy. Selective and localized heating characteristics of microwaves will be utilized in the sintering of ceramics without hydrostatic pressure. In addition, combustion synthesis will be studied for the production of powders, carbides, and nitrides by combining two or more solids or a solid and a gas to form new materials. The insight gained from the interaction of microwaves with various materials will be utilized in the mobilization and subsequent redeposition of uranium.

  12. Synthesis of Novolacs under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Xia Chun; Li Yuancai; Zhang Yanfu

    2006-01-01

    Novolacs were successfully synthesized using oxalic acid as the catalyst in a self-designed device based on a domestic microwave oven. The fundamental characteristics of the synthesis of novolacs under microwave irradiation (MI) were investigated, and the properties of the resins polymerized and dehydrated under microwave irradiation and conventional heating (CH) were analyzed comparatively. The results show that MI reduced the polymerization and dehydration time greatly; and that the resins polymerized and dehydrated under MI presented longer flow distances (i. e. , higher flowability) and shorter cure time than those obtained under CH.

  13. RF and microwave coupled-line circuits

    CERN Document Server

    Mongia, R K; Bhartia, P; Hong, J; Gupta, K C

    2007-01-01

    This extensively revised edition of the 1999 Artech House classic, RF and Microwave Coupled-Line Circuits, offers you a thoroughly up-to-date understanding of coupled line fundamentals, explaining their applications in designing microwave and millimeter-wave components used in today's communications, microwave, and radar systems. The Second Edition includes a wealth of new material, particularly relating to applications. You find brand new discussions on a novel simple design technique for multilayer coupled circuits, high pass filters using coupled lines, software packages used for filter des

  14. Microstructure and of Mechanics Microwave Boriding

    Institute of Scientific and Technical Information of China (English)

    YE Weiping; HUANG Zilin; ZHANG Qiaoxin; ZHANG Qinyi

    2008-01-01

    Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied.The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding layer. Compared with conventional boriding,if the treatment temperature and time remain constantly,the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller.The diffusion activation energy of T8 steel is 2.6× 105 J/mol between the temperature of 750 ℃and 900 ℃ in microwave field,which is in the same order ofconventional boriding.

  15. Microwave Semiconductor Research - Materials, Devices, Circuits.

    Science.gov (United States)

    1981-12-01

    34, M.S. Thesis, Cornell University, Ithaca, NY, May 1978. 2. Richard A. Hackborn, "An Automatic Network Analyzer System", Microwave Journal, Vol. 11, No. 5...Circuit Determination of Gunn Diodes", IEEE Trans. on Microwave Thy. and Tech., Vol. MTT-18, No. 11, pp. 784-790, Nov. 1970. 6. J. W. Bandler , "Precision...34, IEEE Trans. on Microwave Thy. and Tech., Vol. MTT-22, No. 7, pp. 709-718, July 1974. 9. Paul T. Greiling, Richard W. Lanton, "Determination of

  16. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    The microwave radiometer system measures, within its bandwidth, the naturally emitted radiation – the brightness temperature – of substances within its antenna’s field of view. Thus a radiometer is really a sensitive and calibrated microwave receiver. The radiometer can be a basic total power...... aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  17. Microwave sensors for nondestructive testing of materials

    Science.gov (United States)

    Lasri, Tuami; Glay, David; Mamouni, Ahmed; Leroy, Yves

    1999-10-01

    Much of today's applications in nondestructive testing by microwaves use an automatic network analyzer. As a result, there is a need for systems to reduce the cost of this kind of techniques. Fortunately, now we can benefit from the cost reduction of the microwave components, induced by the considerable development of the communication market, around 2 and 10 GHz. So, it seems reasonable to think that microwaves will take advantage of this new situation to assert themselves in this application field. In this context we conceive and develop original equipment competitive in term of price and reliability.

  18. Atmospheric Pressure Microwave Assisted Heterogeneous Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2007-07-01

    Full Text Available The purpose of the study was to investigate microwave selective heatingphenomena and their impact on heterogeneous chemical reactions. We also present a toolwhich will help microwave chemists to answer to such questions as “My reaction yields90% after 7 days at reflux; is it possible to obtain the same yield after a few minutes undermicrowaves?” and to have an approximation of their reactions when conducted undermicrowaves with different heterogeneous procedures. This model predicting reactionkinetics and yields under microwave heating is based on the Arrhenius equation, inagreement with experimental data and procedures.

  19. Microwave filters and circuits contributions from Japan

    CERN Document Server

    Matsumoto, Akio

    1970-01-01

    Microwave Filters and Circuits: Contributions from Japan covers ideas and novel circuits used to design microwave filter that have been developed in Japan, as well as network theory into the field of microwave transmission networks. The book discusses the general properties and synthesis of transmission-line networks; transmission-line filters on the image-parameter basis; and experimental results on a class of transmission-line filter constructed only with commensurate TEM lossless transmission lines. The text describes lines constants, approximation problems in transmission-line networks, as

  20. Perturbing microwave beams by plasma density fluctuations

    Directory of Open Access Journals (Sweden)

    Köhn Alf

    2017-01-01

    Full Text Available The propagation of microwaves across a turbulent plasma density layer is investigated with full-wave simulations. To properly represent a fusion edge-plasma, drift-wave turbulence is considered based on the Hasegawa-Wakatani model. Scattering and broadening of a microwave beam whose amplitude distribution is of Gaussian shape is studied in detail as a function of certain turbulence properties. Parameters leading to the strongest deterioration of the microwave beam are identified and implications for existing experiments are given.

  1. Chiral-field microwave antennas (Chiral microwave near fields for far-field radiation)

    CERN Document Server

    Kamenetskii, E O; Shavit, R

    2015-01-01

    In a single-element structure we obtain a radiation pattern with a squint due to chiral microwave near fields originated from a magnetostatic-mode ferrite disk. At the magnetostatic resonances, one has strong subwavelength localization of energy of microwave radiation. Magnetostatic oscillations in a thin ferrite disk are characterized by unique topological properties: the Poynting-vector vortices and the field helicity. The chiral-topology near fields allow obtaining unique phase structure distribution for far-field microwave radiation.

  2. Texture induced microwave background anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Borrill, Julian; Copeland, Edmund J.; Liddle, Andrew R.; Stebbins, Albert; Veeraraghavan, Shoba

    1994-03-01

    We use numerical simulations to calculate the cosmic microwave background anisotropy induced by the evolution of a global texture field, with special emphasis on individual textures. Both spherically symmetric and general configurations are analyzed, and in the latter case we consider field configurations which exhibit unwinding events and also ones which do not. We compare the results given by evolving the field numerically under both the expanded core (XCORE) and non-linear sigma model (NLSM) approximations with the analytic predictions of the NLSM exact solution for a spherically symmetric self-similar (SSSS) unwinding. We find that the random unwinding configuration spots' typical peak height is 60-75\\% and angular size typically only 10% of those of the SSSS unwinding, and that random configurations without an unwinding event nonetheless may generate indistinguishable hot and cold spots. A brief comparison is made with other work.

  3. Polarization of Cosmic Microwave Background

    CERN Document Server

    Buzzelli, Alessandro; de Gasperis, Giancarlo; Vittorio, Nicola

    2016-01-01

    In this work we present an extension of the ROMA map-making code for data analysis of Cosmic Microwave Background polarization, with particular attention given to the inflationary polarization B-modes. The new algorithm takes into account a possible cross-correlated noise component among the different detectors of a CMB experiment. We tested the code on the observational data of the BOOMERanG (2003) experiment and we show that we are provided with a better estimate of the power spectra, in particular the error bars of the BB spectrum are smaller up to 20% for low multipoles. We point out the general validity of the new method. A possible future application is the LSPE balloon experiment, devoted to the observation of polarization at large angular scales.

  4. Airborne microwave radiometric imaging system

    Science.gov (United States)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  5. Microwave Emission from Aligned Dust

    CERN Document Server

    Lazarian, A

    2003-01-01

    Polarized microwave emission from dust is an important foreground that may contaminate polarized CMB studies unless carefully accounted for. We discuss potential difficulties associated with this foreground, namely, the existence of different grain populations with very different emission/polarization properties and variations of the polarization yield with grain temperature. In particular, we discuss observational evidence in favor of rotational emission from tiny PAH particles with dipole moments, i.e. ``spinning dust'', and also consider magneto-dipole emission from strongly magnetized grains. We argue that in terms of polarization, the magneto-dipole emission may dominate even if its contribution to total emissivity is subdominant. Addressing polarized emission at frequencies larger than approsimately 100 GHz, we discuss the complications arising from the existence of dust components with different temperatures and possibly different alignment properties.

  6. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  7. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... and equations for multiport network analysis and characterization are provided. A thru-only de-embedding technique for accurate on-wafer characterization is introduced. The second part of the book corresponds to the analysis and design of ultra-wideband low-noise amplifiers (LNA). The LNA is the most critical...... as sufficient gain in a wide frequency range of operation, which is very difficult to achieve. Most circuits demonstrated are not stable across the frequency band, which makes these amplifiers prone to self-oscillations and therefore limit their applicability. The trade-off between noise figure, gain, linearity...

  8. Modulated microwave microscopy and probes used therewith

    Science.gov (United States)

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  9. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2016-12-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  10. Continuous, real time microwave plasma element sensor

    Science.gov (United States)

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  11. Global Warming and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available In the work, the importance of assigning the microwave background to the Earth is ad- dressed while emphasizing the consequences for global climate change. Climate mod- els can only produce meaningful forecasts when they consider the real magnitude of all radiative processes. The oceans and continents both contribute to terrestrial emis- sions. However, the extent of oceanic radiation, particularly in the microwave region, raises concerns. This is not only since the globe is covered with water, but because the oceans themselves are likely to be weaker emitters than currently believed. Should the microwave background truly be generated by the oceans of the Earth, our planet would be a much less efficient emitter of radiation in this region of the electromagnetic spectrum. Furthermore, the oceans would appear unable to increase their emissions in the microwave in response to temperature elevation, as predicted by Stefan’s law. The results are significant relative to the modeling of global warming.

  12. Microwave Enhancement in Coronal Holes: Statistical Properties

    Indian Academy of Sciences (India)

    Ν. Gopalswamy; Κ. Shibasaki; Μ. Salem

    2000-09-01

    We report on the statistical properties of the microwave enhancement (brightness temperature, area, fine structure, life time and magnetic field strength) in coronal holes observed over a period of several solar rotations.

  13. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  14. Microwave Thermal Rockets—A Progress Report

    Science.gov (United States)

    Parkin, Kevin

    2008-04-01

    This paper reviews progress in microwave thermal rocket research since the concept was set forth in this forum 4 years ago. Since then, a microwave thermal thruster has been demonstrated in the laboratory for the first time, albeit at small scale. A numerical model has been developed that captures the behavior of this configuration and can be used to design future experiments, and system point designs have affirmed that a specific impulse of greater than 700 seconds and thrust to weight ratio of greater than 70 is quite possible. In future work, it remains to fully explore the wider design space and relative merits of microwave thermal rockets, delineating the operating regime in which microwave thermal rockets are superior to alternative approaches.

  15. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  16. On-Chip Microwave Quantum Hall Circulator

    Science.gov (United States)

    Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.

    2017-01-01

    Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  17. Bonding PMMA microfluidics using commercial microwave ovens

    Science.gov (United States)

    Toossi, A.; Moghadas, H.; Daneshmand, M.; Sameoto, D.

    2015-08-01

    In this paper, a novel low-cost, rapid substrate-bonding technique is successfully applied to polymethyl methacrylate (PMMA) microfluidics bonding for the first time. This technique uses a thin intermediate metallic microwave susceptor layer at the interface of the bonding site (microchannels) which produces localized heating required for bonding during microwave irradiation. The metallic susceptor pattern is designed using a multiphysics simulation model developed in ANSYS Multiphysics software (high-frequency structural simulation (HFSS) coupled with ANSYS-Thermal). In our experiments, the required microwave energy for bonding is delivered using a relatively inexpensive, widely accessible commercial microwave oven. Using this technique, simple PMMA microfluidics prototypes are successfully bonded and sealed in less than 35 seconds with a minimum measured bond strength of 1.375 MPa.

  18. Thermal Impedance of Rectangular Microwave Oven Linings

    Institute of Scientific and Technical Information of China (English)

    SHIShang-zhao; XUFu-qiu; 等

    1996-01-01

    Amodel was preseted for calcultaing the thermal impedance of the insulation and refractory linings of rectangular microwave ovens,of which the oven cavity's dimensions are relatively small,while the linings re relatively thick.

  19. Microwave Hanle effect in Rydberg atoms

    Science.gov (United States)

    Ryabtsev, Igor I.; Tretyakov, Denis B.

    2001-09-01

    A microwave analog of the interference Hanle effect has been studied in sodium Rydberg atoms. Spontaneous emission of the microwave transition 37P3/2-->37S1/2 at 70.166 GHz was replaced by an induced transition from a pulsed microwave source. A dependence of population of the 37S1/2 state on the magnetic field was recorded in various conditions. Good agreement with the theoretical calculations has been found. The widths and shapes of observed resonances were defined by the spectral widths of the pulsed microwave radiation and parameters of laser excitation of the initial 37P3/2 state. The quantum beats of magnetic sublevels appeared in the signals when the polarization of exciting laser emission was orthogonal to the magnetic field, and the interference occurred in the scheme of transitions similar to the Mach-Zehnder optical interferometer.

  20. Improvement electrical characteristics of the microwave oven

    Directory of Open Access Journals (Sweden)

    I. N. Grebenkov

    2007-06-01

    Full Text Available The research of band-off emitting of magnetron generator of microwave oven was carried out. Applying of cutoff waveguide abled to satisfy the requirements of manufacturer and norms of EMC.

  1. Kinetics of microwave drying of apples

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2012-01-01

    Full Text Available The influence of main technological parameters was studied as a result of research of microwave drying of apples and the analysis of kinetic regularity of the process was performed.

  2. A reversible optical to microwave quantum interface

    CERN Document Server

    Barzanjeh, Sh; Milburn, G J; Tombesi, P; Vitali, D

    2011-01-01

    Quantum technology, like many mature classical technologies, will ultimately integrate distinct modules to achieve a function that transcends the capability of any one of them. We describe a reversible quantum interface between an optical and a microwave photon using a hybrid device based on the common interaction of microwave and optical fields with a nano-mechanical resonator in a superconducting circuit, which is one of the major challenges in the field. The scheme provides a path for generating a traveling microwave field strongly entangled with an optical mode, thus bridging the gap between quantum optical and solid state implementations of quantum information. This is an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal (idler) and as such enables a continuous variable teleportation protocol.

  3. Continuous Microwave Excitation of Excimer Lamps.

    Science.gov (United States)

    Hassal, Scott Bradley

    1991-01-01

    For decades, microwaves have been used to create gas discharges for many applications. This thesis deals with the use of microwaves to excite gas discharges for incoherent optical sources, with particular emphasis on excimer systems. In addition, microwave excitation of a gas laser is considered. A novel apparatus was designed and built to couple 2.45-GHz microwave radiation into a gas discharge. The microwave resonator is the essential part of this equipment, and a detailed discussion of its design and performance is given. The resonator is characterized both theoretically and experimentally in order to determine the coupling efficiency and peak electric-field strength. Specialized theory is developed in order to evaluate many parameters of a microwave-excited discharge. The phenomenon of skin effect is investigated quantitatively and expressions for the plasma frequency and electron density are developed in terms of collision frequency and observable parameters (e.g., skin depth). Expressions for peak electric-field strength, ionization coefficient and collisionless electron energy are also developed. The results of an extensive investigation of continuous-wave microwave-excited excimer fluorescence are reported. Rare-gas halide, homonuclear halogen and heteronuclear halogen systems are examined and the corresponding ultraviolet spectra are presented. Truly continuous excimer emission has been achieved (for the first time) on several transitions. For systems of particular interest (e.g. XeCl and KrCl), the effects of total pressures and gas composition on fluorescence output are investigated, and the appropriate spectra are presented. Finally, the potential operation of microwave-excited carbon dioxide and argon-ion gas lasers is investigated, and upper limits are deduced for the small-signal gain under various conditions.

  4. Continuous microwave regeneration apparatus for absorption media

    Science.gov (United States)

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  5. Coaxial microwave electrothermal thruster performance in hydrogen

    Science.gov (United States)

    Richardson, W.; Asmussen, J.; Hawley, M.

    1994-01-01

    The microwave electro thermal thruster (MET) is an electric propulsion concept that offers the promise of high performance combined with a long lifetime. A unique feature of this electric propulsion concept is its ability to create a microwave plasma discharge separated or floating away from any electrodes or enclosing walls. This allows propellant temperatures that are higher than those in resistojets and reduces electrode and wall erosion. It has been demonstrated that microwave energy is coupled into discharges very efficiently at high input power levels. As a result of these advantages, the MET concept has been identified as a future high power electric propulsion possibility. Recently, two additional improvements have been made to the coaxial MET. The first was concerned with improving the microwave matching. Previous experiments were conducted with 10-30 percent reflected power when incident power was in excess of 600 W(exp 6). Power was reflected back to the generator because the impedance of the MET did not match the 50 ohm impedance of the microwave circuit. To solve this problem, a double stub tuning system has been inserted between the MET and the microwave power supply. The addition of the double stub tuners reduces the reflected power below 1 percent. The other improvement has prepared the coaxial MET for hydrogen experiments. To operate with hydrogen, the vacuum window which separates the coaxial line from the discharge chamber has been changed from teflon to boron nitride. All the microwave energy delivered to the plasma discharge passes through this vacuum window. This material change had caused problems in the past because of the increased microwave reflection coefficients associated with the electrical properties of boron nitride. However, by making the boron nitride window electrically one-half of a wavelength long, power reflection in the window has been eliminated. This technical note summarizes the experimental performance of the improved

  6. Progress towards microwave spectroscopy of trapped antihydrogen

    CERN Document Server

    Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision comparisons of hyperfine intervals in atomic hydrogen and antihydrogen are expected to yield experimental tests of the CPT theorem. The CERN-based ALPHA collaboration has initiated a program of study focused on microwave spectroscopy of trapped ground-state antihydrogen atoms. This paper outlines some of the proposed experiments, and summarizes measurements that characterize microwave fields that have been injected into the ALPHA apparatus.

  7. Adjustable Fiber Optic Microwave Transversal Filters

    Science.gov (United States)

    Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah

    1994-01-01

    Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.

  8. Microwaves photonic links components and circuits

    CERN Document Server

    Rumelhard, Christian; Billabert, Anne-Laure

    2013-01-01

    This book presents the electrical models for the different elements of a photonic microwave link like lasers, external modulators, optical fibers, photodiodes and phototransistors. The future trends of these components are also introduced: lasers to VCSEL, external modulators to electro-absorption modulators, glass optical fibers to plastic optical fibers, photodiodes to UTC photodiodes or phototransistors. It also describes an original methodology to evaluate the performance of a microwave photonic link, based on the developed elcetrical models, that can be easily incorporated in

  9. Causality, randomness, and the microwave background

    OpenAIRE

    Albrecht, Andreas; COULSON, David; FERREIRA, Pedro; Magueijo, Joao

    1995-01-01

    Fluctuations in the cosmic microwave background (CMB) temperature are being studied with ever increasing precision. Two competing types of theories might describe the origins of these fluctuations: ``inflation'' and ``defects''. Here we show how the differences between these two scenarios can give rise to striking signatures in the microwave fluctuations on small scales, assuming a standard recombination history. These should enable high resolution measurements of CMB anisotropies to distingu...

  10. Synthesis of Coronene Using Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Bing YANG; Ying LI; Ming Gui XIE

    2003-01-01

    Using microwave irradiation, perylene was obtained from 3,4,9,10-perylenetetracar- boxylic dianhydride with copper powder in boiling quinoline. With the same method, 1,12- benzoperylene was synthesized from 1, 12-benzoperylene-1', 2'-dicarboxylic anhydride, and coronene was prepared from coronene-1, 2- dicarboxylic anhydride with good yield. Through Dields-Alder reaction, 1, 12-benzoperylene-1', 2'-dicarboxylic anhydride and coronene-1,2- dicarboxylic anhydride were also prepared using microwave irradiation.

  11. Theory and design of microwave filters

    CERN Document Server

    Hunter, Ian

    2000-01-01

    This is a thorough, graduate-level text which provides a single source for filter design including basic circuit theory, network synthesis and the design of a variety of microwave filter structures. The aim is to present design theories followed by specific examples with numerical simulations of the designs, with pictures of real devices wherever possible. The book is aimed at designers, engineers and researchers working in microwave electronics who need to design or specify filters.

  12. Microwave spectrum compatibility in planetary research

    Science.gov (United States)

    Siegmeth, A. J.

    1976-01-01

    The paper presents an overview of solar system exploration, basic functions of the Deep Space Network (DSN), deep space microwave links, space research compatibility problems, and DSN's interference susceptibility. To maintain the operational integrity of competing radio systems using the microwave spectrum, the technology must extend to make possible the shared use of the spectral ranges without the ill effects of interferences. Suggestions are given which are only examples of many possible techniques that can eliminate or reduce interferences.

  13. The Discovery of Anomalous Microwave Emission

    OpenAIRE

    Leitch, Erik M.; Readhead, A. C. R.

    2013-01-01

    We discuss the first detection of anomalous microwave emission, in the Owens Valley RING5M experiment, and its interpretation in the context of the ground-based cosmic microwave background (CMB) experiments of the early 1990s. The RING5M experiment was one of the first attempts to constrain the anisotropy power on sub-horizon scales, by observing a set of -size fields around the North Celestial Pole (NCP). Fields were selected close to the NCP to allow continuous integrati...

  14. Amplitude-Equalized Microwave C-Section

    CERN Document Server

    Gupta, Shulabh

    2016-01-01

    An active microwave C-section is proposed which provides a flat magnitude transmission in a wide frequency band along with a frequency-dependent group delay response considering practical dissipation losses. The key lies in integrating a constant gain amplifier inside a microwave C-section, which perfectly compensates the distributed conductor and dielectric losses of the coupler, while preserving the intrinsic dispersion of the C-section. The operation of the proposed device is confirmed using numerical analysis.

  15. Microwave detection of air showers with MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d& #x27; Orfeuil, B. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); and others

    2012-01-11

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20{sup Degree-Sign } Multiplication-Sign 10{sup Degree-Sign} region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  16. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Science.gov (United States)

    Sudiana, I. Nyoman; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Ngkoimani, La Ode; Usman, Ida; Aripin, H.

    2016-03-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a `non-thermal effect` which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  17. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  18. Microwave Triggered Laser Ionization of Air

    Science.gov (United States)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  19. Combination microwave ovens: an innovative design strategy.

    Science.gov (United States)

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  20. MICROWAVE REMOTE SENSING IN SOIL QUALITY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    S. K. Saha

    2012-08-01

    Full Text Available Information of spatial and temporal variations of soil quality (soil properties is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers in recent past showed the potential utility of hyperspectral remote sensing technique for spatial estimation of soil properties. However, limited research studies have been carried out showing the potential of microwave remote sensing data for spatial estimation of various soil properties except soil moisture. This paper reviews the status of microwave remote sensing techniques (active and passive for spatial assessment of soil quality parameters such as soil salinity, soil erosion, soil physical properties (soil texture & hydraulic properties; drainage condition; and soil surface roughness. Past and recent research studies showed that both active and passive microwave remote sensing techniques have great potentials for assessment of these soil qualities (soil properties. However, more research studies on use of multi-frequency and full polarimetric microwave remote sensing data and modelling of interaction of multi-frequency and full polarimetric microwave remote sensing data with soil are very much needed for operational use of satellite microwave remote sensing data in soil quality assessment.

  1. Sparse microwave imaging: Principles and applications

    Institute of Scientific and Technical Information of China (English)

    ZHANG BingChen; HONG Wen; WU YiRong

    2012-01-01

    This paper provides principles and applications of the sparse microwave imaging theory and technology.Synthetic aperture radar (SAR) is an important method of modern remote sensing.During decades microwave imaging technology has achieved remarkable progress in the system performance of microwave imaging technology,and at the same time encountered increasing complexity in system implementation.The sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theory,new system and new methodology of microwave imaging.Based on classical SAR imaging model and fundamental theories of sparse signal processing,we can derive the model of sparse microwave imaging,which is a sparse measurement and recovery problem and can be solved with various algorithms.There exist several fundamental points that must be considered in the efforts of applying sparse signal processing to radar imaging,including sparse representation,measurement matrix construction,unambiguity reconstruction and performance evaluation.Based on these considerations,the sparse signal processing could be successfully applied to radar imaging,and achieve benefits in several aspects,including improvement of image quality,reduction of data amount for sparse scene and enhancement of system performance.The sparse signal processing has also been applied in several specific radar imaging applications.

  2. Tunable permeability of magnetic wires at microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Panina, L.V., E-mail: lpanina@plymouth.ac.uk [National University of Science and Technology, MISiS, Moscow (Russian Federation); Institute for Design Problems in Microelectronics, RAN, Moscow (Russian Federation); Makhnovskiy, D.P. [School of Computing and Mathematics, University of Plymouth (United Kingdom); Morchenko, A.T.; Kostishin, V.G. [National University of Science and Technology, MISiS, Moscow (Russian Federation)

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires. - Highlights: • Applications of magnetic microwires for functional composites and distributed sensor networks are proposed. • Diluted composites with magnetic microwires can demonstrate tunable left-handed properties. • Large microwave permeability combined with a specific magnetic structure lead to a large and sensitive microwave magnetoimpedance. • Microwave magnetoimpedance highly sensitive to temperature is demonstrated.

  3. Bidirectional conversion between microwave and light via ferromagnetic magnons

    CERN Document Server

    Hisatomi, Ryusuke; Tabuchi, Yutaka; Ishikawa, Toyofumi; Noguchi, Atsushi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2016-01-01

    Coherent conversion of microwave and optical photons in the single-quantum level can significantly expand our ability to process signals in various fields. Efficient up-conversion of a feeble signal in the microwave domain to the optical domain will lead to quantum-noise-limited microwave amplifiers. Coherent exchange between optical photons and microwave photons will also be a stepping stone to realize long-distance quantum communication. Here we demonstrate bidirectional and coherent conversion between microwave and light using collective spin excitations in a ferromagnet. The converter consists of two harmonic oscillator modes, a microwave cavity mode and a magnetostatic mode called Kittel mode, where microwave photons and magnons in the respective modes are strongly coupled and hybridized. An itinerant microwave field and a travelling optical field can be coupled through the hybrid system, where the microwave field is coupled to the hybrid system through the cavity mode, while the optical field addresses ...

  4. Fast Drying of Agriculture Commodities by Using Microwave

    Science.gov (United States)

    Ode Ngkoimani, La; Megawati; Purwana Saputra, Gde; Cahyono, Edi; Aripin, Haji; Gde Suastika, Komang; Nyoman Sudiana, I.

    2017-05-01

    Some progress has been made and reported previously due to investigate microwave effects to materials. The microwave applications for material processing by using wide range microwave frequencies such as in sintering, chemical reaction, and drying have been performed. Microwave drying is based on a unique volumetric heating mode with electromagnetic radiation at 2,450 MHz. However, the quest for a what a true microwave effect is still plagued with difficulties. This paper provides a experimental and theoretical analysis of drying materials using microwave. For drying experiments, in this investigation, we were using a domestic microwave oven which operated at three power levels for drying chamber. The samples are agriculture commodity collected from local farmers. The experimental results show that microwave accelerate drying in most materials. The experimental data were analyzed by using an available model constructed from fundamental physics by other scholars. The model has been applied to more understanding the behavior of the microwave drying material.

  5. MIKON 94. International Microwave Conference. Invited papers, volume 3

    Science.gov (United States)

    Dufrene, Roman

    The following topics are discussed: (1) New trends and ideas in the fields of microwave technology; (2) Development of dual-reflector feed for the arecibo radio telescope, an overview; (3) Advanced microwave technology in modern communication satellites; (4) Differential methods of signal selection in microwave polarimetry; (5) Anticollision car radar in the mm-wave range with pseudo-noise code modulation and digital angle evaluation; (6) Industrial microwave sensors; Theory and applications of polarimetry in radar; (7) Basic theory of radar polarimetry-an engineering approach; (8) Microwave research in agriculture; (9) Wave approach to CAD noise analysis, modeling and measurement of microwave networks; (10) Advances in technology of microwave submicrometer devices and integrated circuits; (11) Recent advances in power amplifier design methodologies; (12) Chiral media: theory and applications for microwaves; (13) State and trends in time domain electromagnetic modelling using the TLM method; and (14) Microwave remote sensing of road surface during winter time.

  6. Popcorn Venus: Women, Movies & the American Dream.

    Science.gov (United States)

    Rosen, Marjorie

    The history of the film industry is in many ways a reflection of the thwarted emergence in society of feminism and full equal civil rights for women. Commercial films have traditionally relied upon the charm and sexual allure of actresses to assure economic success at the box office. Victorian mores heavily influenced the way women were treated in…

  7. Heterotic parametrization for economically important traits in popcorn = Parametrização heterótica para características de importância econômica em milho pipoca

    Directory of Open Access Journals (Sweden)

    2009-07-01

    Full Text Available Six popcorn varieties were crossed in a diallel mating scheme to obtain 15 F1 hybrids, with the purpose of analyzing the estimates of heterotic parametrization for agronomically important traits. The genitors and hybrids were evaluated in randomized block design with three replications in Viçosa and Visconde do Rio Branco, in Minas Gerais State, Brazil, in three growing seasons. Six traits were evaluated, including grain yield and popping expansion. There were highly significant effects for treatments, varieties and mean heterosis for plant and ear heights, and for the others traits the significance extended to all sources of variation. Amarela and Viçosa revealed superiority for grain yield in relation to performance per se, while Rosa Claro expressed the highest effect of varietal heterosis. The best combinations for grain yield were Roxa x Viçosa, Amarela x Rosa Claro, Rosa Claro x Beija-Flor and Branca x Beija-Flor. For popping expansion, there were positive and negative values for specific heterosis in all growing seasons evaluated, ratifying the influence of bidirectional dominance on this trait. Simultaneous genetic gains for grain yield and popping expansion may be obtained by using Viçosa in intrapopulational programs, while Amarela and Rosa Claro are recommended for using in interpopulational breeding.Seis variedades de milho pipoca foram cruzadas em esquema dialélico para obtenção de 15 híbridos F1, visando à análise das estimativas da parametrização heterótica para características de interesse agronômico. Os genitores e os híbridos foram avaliados em delineamento em blocos ao acaso, com três repetições, em Viçosa e Visconde do Rio Branco, Estado de Minas Gerais, Brasil, em três épocas de plantio. Foram avaliadas seis características, incluindo rendimento de grãos e capacidade de expansão. Houve efeitos altamente significativos para tratamentos, variedades e heterose média para altura de plantas e de espigas

  8. Heterotic parameterizations of crosses between tropical and temperate lines of popcorn = Parametrizações heteróticas de cruzamentos entre linhagens tropicais e temperadas de milho pipoca.

    Directory of Open Access Journals (Sweden)

    Vanessa Quitete Ribeiro da Silva

    2011-04-01

    Full Text Available We examined the heterotic parameterizations of diallel crosses among10 popcorn inbred lines in two different environments (municipalities of Campos dos Goytacazes and Itaocara, Rio de Janeiro State and originating from tropical, temperate and subtropical germoplasm. Traits, including grain yield (GY, plant height (PH, ear height (EH, days to silking (FL and popping expansion (PE, were measured. The inbred lines and the hybrids were evaluated in a randomized complete block design with three replications. The sources of genotypic variation, inbred lines and heterosis had significant effects on all traits. When the sources of heterotic variation were compared separately, estimated mean heterosis was found to be significant for all traits. When inbred lines and specific heterosis was investigated, only popping expansion was not significantly different, demonstrating that heterotic effects are favorable for developing superior hybrids. A direct relation between .i and i V. was made clear, especially for traits that were slightly influenced by the effects of dominance. Additivity was determined to have the best effect for improving popping expansion. The hybrid combinationshad positive estimates of heterosis for the GY but not for PE. The hybrids P1 x P3 and P2 x P4 had the best responses for the GY and PE. The superiority of the combination P1 x P3 shows that the addition of genomes with different edaphoclimatic adaptations is an important factor in obtaining superior hybrids.O presente trabalho teve com objetivo averiguar as parametrizacoes heteroticas de cruzamentos dialelicos entre dez linhagens de milho pipoca oriundas de genotipos tropicais, temperados e semi-temperados, em dois ambientes (municipios de Campos dos Goytacazes e Itaocara, Estado do Rio de Janeiro, em relacao as caracteristicas rendimento de graos; altura media de planta e da insercao da primeira espiga; numero medio de dias para florescimento e capacidade expansao. As linhagens e

  9. Non-self-sustained microwave discharge and the concept of a microwave air jet engine

    Energy Technology Data Exchange (ETDEWEB)

    Batanov, G M; Gritsinin, S I; Kossyi, I A [General Physics Institute of Russian Academy of Sciences, 119991, Vavilov Street 38, Moscow (Russian Federation)

    2002-10-21

    A new type of microwave discharge - near-surface non-self-sustained discharge (NSND) - has been realized and investigated. A physical model of this discharge is presented. For the first time NSND application for microwave air jet engines has been proposed. Measurements under laboratory conditions modelling the microwave air jet engine operation shows the qualitative agreement between the model of NSND and actual processes near the target irradiated by a powerful microwave beam. Characteristic dependences of recoil momentum of target on the background pressure and microwave pulse duration obtained in experiments are presented. Measured cost of thrust produced by the NSND is no more than 3.0 kW N{sup -1}, which is close to the predicted values.

  10. Industrial scale microwave processing of tomato juice using a novel continuous microwave system.

    Science.gov (United States)

    Stratakos, Alexandros Ch; Delgado-Pando, Gonzalo; Linton, Mark; Patterson, Margaret F; Koidis, Anastasios

    2016-01-01

    This study evaluated the effect of an industrial scale continuous flow microwave volumetric heating system in comparison to conventional commercial scale pasteurisation for the processing of tomato juice in terms of physicochemical properties, microbial characteristics and antioxidant capacity. The effect against oxidative stress in Caco-2 cells, after in vitro digestion was also investigated. Physicochemical and colour characteristics of juices were very similar between technologies and during storage. Both conventional and microwave pasteurisation inactivated microorganisms and kept them in low levels throughout storage. ABTS[Symbol: see text](+) values, but not ORAC, were higher for the microwave pasteurised juice at day 0 however no significant differences between juices were observed during storage. Juice processed with the microwave system showed an increased cytoprotective effect against H2O2 induced oxidation in Caco-2 cells. Organoleptic analysis revealed that the two tomato juices were very similar. The continuous microwave volumetric heating system appears to be a viable alternative to conventional pasteurisation.

  11. 液相色谱-串联质谱法分析爆米花桶水浸泡液中的荧光增白剂%Analysis of Fluorescent Substance Migration of Popcorn Cup by Liquid Chromatography-tandem Mass Spectrometry Method

    Institute of Scientific and Technical Information of China (English)

    刘峻; 李军; 李建中; 秦紫明

    2013-01-01

    使用液相色谱-串联质谱(LC-MS)的方法测试了市面的爆米花桶中荧光增白剂的种类和含量,实验选用VBL、APC、SPP、APH 4种荧光增白剂作为目标化合物,在信噪比为10(S/N=10)的条件下,4种荧光增白剂的检出限均小于10 ng/mL,相对标准偏差(RSD) <10%.实验初步表明,本次上海地区含荧光增白剂的爆米花桶中添加的荧光增白剂均为APC,可迁移量从0.653 mg/kg到23.166 mg/kg不等.该方法可以有效分离荧光增白剂,并对其进行定性定量判定.%This experiment use liquid chromatography-tandem mass spectrometry (LC-MS) to test the type and content of the fluorescent substance in the popcorn cups in the market. VBL, APC, SPP, APH four fluorescent brighteners were identified as the target compound. 10 times of the signal-to-noise ratio was used to confirm the detection limit, and all fluorescent brighteners' limits were less than 10 ng /mL, the method precision (RSD) was < 10%. It proved that the fluorescent substances added in the examined popcorn cups were APC. The migration amounts ranged from 0.653 mg/kg to 23.166 mg/kg. The method can effectively separate the fluorescent substance and further be defined qualitatively and quantitatively.

  12. Orthodontic instrument sterilization with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Arif Yezdani

    2015-01-01

    Full Text Available Objective: This study was designed to evaluate the efficiency of microwave sterilization of orthodontic instruments and molar bands immersed in plain distilled water with and without oral rinse, and to ascertain the minimum time of exposure required to sterilize. Materials and Methods: The orthodontic instruments (hinged and nonhinged, molar bands and mouth mirrors used in the patient′s mouth were selected for the study. The instruments were divided into two groups - Group I with oral rinse-set A (0.01% chlorhexidine gluconate and set B (0.025% betadine and Group II (included sets C and D without oral rinse. The instruments of set A, B and C were microwaved at 2,450 MHz, 800 W for 5 min, whereas, set D was microwaved for 10 min at the same above mentioned specifications. The efficacy of sterilization was assessed by stab inoculation of the instruments onto trypticase soya agar plates. The plates were checked for bacterial growth following incubation at 37°C for 24 h. For sterility control, Geobacillus stearothermophilus (MTCC 1518 was included. Results: No growth was observed in the plates that were inoculated with the microwaved orthodontic instruments of sets A, B and D, whereas scanty bacterial growth was observed in the plates inoculated with the microwaved set C instruments. Conclusion: Effective sterilization was achieved when the orthodontic instruments and molar bands were immersed in distilled water without oral rinse and microwaved for 10 min as also for those that were immersed in distilled water with oral rinse and microwaved for 5 min.

  13. Accelerated staining technique using kitchen microwave oven

    Directory of Open Access Journals (Sweden)

    Archana Mukunda

    2015-01-01

    Full Text Available Introduction: Histopathological diagnosis of specimens is greatly dependent on good sample preparation and staining. Both of these processes is governed by diffusion of fluids and dyes in and out of the tissue, which is the key to staining. Diffusion of fluids can be accelerated by the application of heat that reduces the time of staining from hours to the minute. We modified an inexpensive model of kitchen microwave oven for staining. This study is an attempt to compare the reliability of this modified technique against the tested technique of routine staining so as to establish the kitchen microwave oven as a valuable diagnostic tool. Materials and Methods: Sixty different tissue blocks were used to prepare 20 pairs of slides for 4 different stains namely hematoxylin and eosin, Van Gieson′s, 0.1% toluidine blue and periodic acid-Schiff. From each tissue block, two bits of tissues were mounted on two different slides. One slide was stained routinely, and the other stained inside a microwave. A pathologist evaluated the stained slides and the results so obtained were analyzed statistically. Results: Microwave staining considerably cut down the staining time from hours to seconds. Microwave staining showed no loss of cellular and nuclear details, uniform-staining characteristics and was of excellent quality. Interpretation and Conclusion: The cellular details, nuclear details and staining characteristics of microwave stained tissues were better than or equal to the routine stained tissue. The overall quality of microwave-stained sections was found to be better than the routine stained tissue in majority of cases.

  14. Microwave diagnostics of atmospheric plasmas

    Science.gov (United States)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  15. Magnetometer Based on Optoelectronic Microwave Oscillator

    Science.gov (United States)

    Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey

    2005-01-01

    proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The

  16. Microwave Assisted Synthesis of Biorelevant Benzazoles.

    Science.gov (United States)

    Seth, Kapileswar; Purohit, Priyank; Chakraborti, Asit K

    2016-10-25

    The benzazole scaffolds are present in various therapeutic agents and have been recognized as the essential pharmacophore for diverse biological activities. These have generated interest and necessity to develop efficient synthetic methods of these privileged classes of compounds to generate new therapeutic leads for various diseases. The biological activities of the benzazoles and efforts towards their synthesis have been summarized in a few review articles. In view of these, the aim of this review is to provide an account of the developments that have taken place in the synthesis of biorelevant benzazoles under microwave irradiation as the application of microwave heating has long been recognized as a green chemistry tool for speedy generation of synthetic targets. Attention has been focused to those literature reports wherein the use of microwave irradiation is the key step in the formation of the heterocyclic ring system or in functionalization of the benzazole ring system to generate the essential pharmacophoric feature. The convenient and economic way to synthesize these privileged class of heterocycles through the use of microwave irradiation that would be beneficial for the drug discovery scientist to synthesize biologically active benzazoles and provide access to wide range of reactions for the synthesis of benzazoles constitute the theme of this review. Examples have been drawn wherein the use of microwave heating offers distinct advantage in terms of improved product yields and reduction of reaction time as compared to those observed for the synthesis under conventional heating.

  17. Microwave multiplex readout for superconducting sensors

    Science.gov (United States)

    Ferri, E.; Becker, D.; Bennett, D.; Faverzani, M.; Fowler, J.; Gard, J.; Giachero, A.; Hays-Wehle, J.; Hilton, G.; Maino, M.; Mates, J.; Puiu, A.; Nucciotti, A.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2016-07-01

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the 163Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of 163Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  18. A comparative study on microwave and routine tissue processing

    Directory of Open Access Journals (Sweden)

    T Mahesh Babu

    2011-01-01

    Conclusions: The individual scores by different observers regarding the various parameters included in the study were statistically insignificant, the overall quality of microwave-processed and microwave-stained slides appeared slightly better than conventionally processed and stained slides.

  19. Microwave Powered Gravitationally Independent Medical Grade Water Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative microwave system is proposed for the continuous production of medical grade water. This system will utilize direct absorption of microwave radiation to...

  20. Microwave assisted organic modification and surface functionalization of Phyllosilicates

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-11-01

    Full Text Available Organically modified phyllosilicates (montmorillonite and palygorskite) using Arquad 2HT-75 surfactant were effectively synthesized utilizing a microwave irradiation technique. The microwave method was successfully used also for the surface...

  1. MICROWAVE SYSTEM FOR RESEARCH BIOLOGICAL EFFECTS ON LABORATORY ANIMALS

    OpenAIRE

    Kopylov, Alexei; Kruglik, Olga; Khlebopros, Rem

    2014-01-01

    This research is concerned with development of the microwave system for research the radiophysical microwave radiation effects on laboratory animals. The frequency was 1 GHz. The results obtained demonstrate the metabolic changes in mice under the electromagnetic field influence.

  2. Effect of Microwave Processing on Aluminate Cement Clinkering

    Institute of Scientific and Technical Information of China (English)

    DONG Jianmiao; LONG Shizong

    2005-01-01

    When raw materials were preheated to 1000-1300 ℃ by electricity and microwave was inputted for 1 min 5 s-4 mins, then alunminate clinkers were obtained. The f-CaO contents,XRD patterns and lithofacies analysis show that the microwave processing accelerates the clinkering reaction,and Fe2O3 is contributed to the aluminate cement clinkering. The appearance of liquid phase in process of microwave heating increases the microwave absorbability of materials greatly.

  3. Microwave Assisted Synthesis and Characterization of Perovskite Oxides

    OpenAIRE

    Prado-Gonjal, Jesus; Schmidt, Rainer; Moran, Emilio

    2014-01-01

    The use of microwave irradiation is a promising alternative heat source for the synthesis of inorganic materials such as perovskite oxides. The method offers massive energy and time savings as compared to the traditional ceramic method. In this work we review the basic principles of the microwave heating mechanism based on interactions between dipoles in the material and the electromagnetic microwave. Furthermore, we comment on and classify all different sub-types of microwave synthesis such ...

  4. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    OpenAIRE

    Shoucheng Ding

    2013-01-01

    In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to...

  5. Cosmic Microwave Background Data Analysis

    Science.gov (United States)

    Paykari, Paniez; Starck, Jean-Luc Starck

    2012-03-01

    About 400,000 years after the Big Bang the temperature of the Universe fell to about a few thousand degrees. As a result, the previously free electrons and protons combined and the Universe became neutral. This released a radiation which we now observe as the cosmic microwave background (CMB). The tiny fluctuations* in the temperature and polarization of the CMB carry a wealth of cosmological information. These so-called temperature anisotropies were predicted as the imprints of the initial density perturbations which gave rise to the present large-scale structures such as galaxies and clusters of galaxies. This relation between the present-day Universe and its initial conditions has made the CMB radiation one of the most preferred tools to understand the history of the Universe. The CMB radiation was discovered by radio astronomers Arno Penzias and Robert Wilson in 1965 [72] and earned them the 1978 Nobel Prize. This discovery was in support of the Big Bang theory and ruled out the only other available theory at that time - the steady-state theory. The crucial observations of the CMB radiation were made by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite [86]- orbited in 1989-1996. COBE made the most accurate measurements of the CMB frequency spectrum and confirmed it as being a black-body to within experimental limits. This made the CMB spectrum the most precisely measured black-body spectrum in nature. The CMB has a thermal black-body spectrum at a temperature of 2.725 K: the spectrum peaks in the microwave range frequency of 160.2 GHz, corresponding to a 1.9mmwavelength. The results of COBE inspired a series of ground- and balloon-based experiments, which measured CMB anisotropies on smaller scales over the next decade. During the 1990s, the first acoustic peak of the CMB power spectrum (see Figure 5.1) was measured with increasing sensitivity and by 2000 the BOOMERanG experiment [26] reported

  6. Microwave Plasma Production of Metal Nanopowders

    Directory of Open Access Journals (Sweden)

    Joseph Lik Hang Chau

    2014-06-01

    Full Text Available Metal and metal alloy nanopowders were prepared by using the microwave plasma synthesis method. The microwave plasma was operated in atmospheric pressure at a frequency of 2.45 GHz. The precursor decomposed thermally in the plasma reaction region and the products were then condensed in the heat exchanger, were separated from the gas by the powder filter, and then finally collected in the powder collector. The effect of various processing parameters such as plasma gas, carrier gas, cooling gas, precursor raw materials and feeding rate were studied in this work. Cu, Mo, W, Mo-Ni and Fe-Co nanopowders were successfully prepared by using the microwave plasma synthesis method. The processing conditions can be tuned to manipulate the particle size of the nanopowders.

  7. Tunable permeability of magnetic wires at microwaves

    Science.gov (United States)

    Panina, L. V.; Makhnovskiy, D. P.; Morchenko, A. T.; Kostishin, V. G.

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires.

  8. Microwave plasma torch for processing hydrocarbon gases

    Directory of Open Access Journals (Sweden)

    Alex G. Zherlitsyn

    2016-03-01

    Full Text Available We designed and developed an ultrahigh-frequency (microwave plasma torch with a combined (nitrogen, methane plasma-forming environment, and microwave output of up to 2 kW, continuously. We demonstrate the possibility of using it in order to process natural and associated petroleum (APG gas into valuable products (hydrogen and carbon nanomaterial CNM with up to 70% efficiency. Based on the developed microwave plasma torch, we developed an apparatus capable of converting hydrocarbon feedstock at a capacity of 50 g/h yielding CNM and hydrogen of up to 70 vol. %. In its mobile small-tonnage version, this technology can be used on gas-condensate fields.

  9. Recoil Effects in Microwave Ramsey Spectroscopy

    CERN Document Server

    Wolf, P; Wolf, Peter; Borde, Christian J.

    2004-01-01

    We present a theory of recoil effects in two zone Ramsey spectroscopy, particularly adapted to microwave frequency standards using laser cooled atoms. We describe the atoms by a statistical distribution of Gaussian wave packets which enables us to derive and quantify effects that are related to the coherence properties of the atomic source and that have not been considered previously. We show that, depending on the experimental conditions, the expected recoil frequency shift can be partially cancelled by these effects which can be significant at microwave wavelengths whilst negligible at optical ones. We derive analytical expressions for the observed interference signal in the weak field approximation, and numerical results for realistic caesium fountain parameters. In the near future Cs and Rb fountain clocks are expected to reach uncertainties which are of the same order of magnitude (10^{-16}) as first estimates of the recoil shift at microwave frequencies. We show, however, that the partial cancellation p...

  10. Propagation of Microwaves Thought Atmospheric Environment

    Directory of Open Access Journals (Sweden)

    Miroslav Kocifaj

    2004-01-01

    Full Text Available Wireless microwave systems tend to have high availability figures, but at the expense of the ability to operate at higher data rates. A quality of free space communication depends on atmospheric conditions. It is shown that microwave attenuation reacts sensitively on changes of changes of hydrometeor size distribution. However, a signal transmission is also significantly affected by both, refractive index and shape of hydrometeors. Non-spherical particles attenuate radiation at frequencies higher than about 200 GHz more effectively than volume equivalent spheres. On the other hand, the non-spherical ice phase hydrometeors form weakly attenuating media at v < 150 GHz. The quality of microwave signal transmission thought icy cloud is therefore much better as when the communication path is realized through rainy atmosphere (the particle sizes are assumed to be the same in both cases.

  11. Nonparametric Inference for the Cosmic Microwave Background

    CERN Document Server

    Genovese, C R; Nichol, R C; Arjunwadkar, M; Wasserman, L; Genovese, Christopher R.; Miller, Christopher J.; Nichol, Robert C.; Arjunwadkar, Mihir; Wasserman, Larry

    2004-01-01

    The Cosmic Microwave Background (CMB), which permeates the entire Universe, is the radiation left over from just 380,000 years after the Big Bang. On very large scales, the CMB radiation field is smooth and isotropic, but the existence of structure in the Universe - stars, galaxies, clusters of galaxies - suggests that the field should fluctuate on smaller scales. Recent observations, from the Cosmic Microwave Background Explorer to the Wilkinson Microwave Anisotropy Project, have strikingly confirmed this prediction. CMB fluctuations provide clues to the Universe's structure and composition shortly after the Big Bang that are critical for testing cosmological models. For example, CMB data can be used to determine what portion of the Universe is composed of ordinary matter versus the mysterious dark matter and dark energy. To this end, cosmologists usually summarize the fluctuations by the power spectrum, which gives the variance as a function of angular frequency. The spectrum's shape, and in particular the ...

  12. Open Ended Microwave Oven for Packaging

    CERN Document Server

    Sinclair, K I; Desmulliez, M Y P; Goussetis, G; Bailey, C; Parrott, K; Sangster, A J

    2008-01-01

    A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a de icated Yee sche...

  13. Microwave-Assisted Transesterification of Macroalgae

    Directory of Open Access Journals (Sweden)

    Angel Sanchez

    2012-03-01

    Full Text Available Nowadays microwave radiation is being researched to produce biodiesel from different raw materials due to the many advantages that this technology presents compared to traditional transesterification, such as shorter reaction times and less amount of heat energy to obtain biodiesel. The aim of this research was to explore the possibility of carrying out the microwave-assisted transesterification of macroalgae and compare the results with the traditional transesterification. For that reason, some experiences were conducted using sunflower oil and macroalgae as raw material. Based on the obtained results, the best conditions for microwave-assisted transesterification reaction were macroalgae to methanol ratio of 1:15 (wt/vol, sodium hydroxide concentration of 2 wt % and reaction time of 3 min.

  14. Topology optimization of microwave waveguide filters

    DEFF Research Database (Denmark)

    Aage, Niels; Johansen, Villads Egede

    2017-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimizat......We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap...... little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering....

  15. Magnetostrictive thin films for microwave spintronics.

    Science.gov (United States)

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  16. Results from the Wilkinson Microwave Anisotropy Probe

    CERN Document Server

    Komatsu, Eiichiro

    2014-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat $\\Lambda$ cold dark matter ($\\Lambda$CDM) cosmological model (six) parameter volume by a factor of >68,000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino backgrou...

  17. Methods for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  18. ENERGY POTENTIAL OF SOLID STATE CW-MICROWAVE TRANCEIVERS

    Directory of Open Access Journals (Sweden)

    A. G. Gorelik

    2015-01-01

    Full Text Available The main parameters and block diagrams of CW-microwave transceivers are considered. The advisability of leading in conception of energy potential is founded. Qualitative assessment of three ways of CW-microwave transceivers composing is done. The some features for application of CW-microwave transceivers are discussed.

  19. Microwave Oven Experiments with Metals and Light Sources

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    "Don't put metal objects in the microwave" is common safety advice. But why? Here we describe demonstration experiments involving placing household metallic objects in a microwave oven. These allow a better understanding of the interaction of microwaves with materials. Light bulbs and discharge lamps can also be used in instructive demonstrations.

  20. Inhalation trauma due to overheating in a microwave oven.

    OpenAIRE

    Zanen, A L; Rietveld, A. P.

    1993-01-01

    The microwave oven is a kitchen appliance that has become increasingly popular in recent years. In some instances the temperature in the microwave oven can become exceedingly high. A case is discussed of a patient with respiratory distress after inhalation of gas from an overheated microwave oven.

  1. Apparatus for microwave heat treatment of manufactured components

    Science.gov (United States)

    Babcock & Wilcox Technical Services Y-12, LLC

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  2. Microwave assisted flow synthesis: Coupling of electromagnetic and hydrodynamic phenomena

    NARCIS (Netherlands)

    Patil, N.G.; Benaskar, F.; Meuldijk, J.; Hulshof, L.A.; Hessel, V.; Schouten, J.C.; Esveld, D.C.; Rebrov, E.V.

    2014-01-01

    This article describes the results of a modeling study performed to understand the microwave heating process in continuous-flow reactors. It demonstrates the influence of liquid velocity profiles on temperature and microwave energy dissipation in a microwave integrated milli reactor-heat exchanger.

  3. Microwave Oven Experiments with Metals and Light Sources

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    "Don't put metal objects in the microwave" is common safety advice. But why? Here we describe demonstration experiments involving placing household metallic objects in a microwave oven. These allow a better understanding of the interaction of microwaves with materials. Light bulbs and discharge lamps can also be used in instructive demonstrations.

  4. Inhalation trauma due to overheating in a microwave oven.

    OpenAIRE

    Zanen, A L; Rietveld, A. P.

    1993-01-01

    The microwave oven is a kitchen appliance that has become increasingly popular in recent years. In some instances the temperature in the microwave oven can become exceedingly high. A case is discussed of a patient with respiratory distress after inhalation of gas from an overheated microwave oven.

  5. Application of Microwave Irradiation to Rapid Organic Inclusion Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Microwave irradiation has been used in chemical laboratories for moisture analysis and wet asking procedures of biological and geological materials for a number of years [1]. More recently the microwave irradiation also widely used for rapid organic synthesis [2]. However, there have not yet been any reports concerning the ultilisatioin of microwave ovens in the routine organic inclusion complex regularly in chemical research.

  6. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  7. Microwave assisted template synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    K J Sreeram; M Nidhin; B U Nair

    2008-12-01

    Easier, less time consuming, green processes, which yield silver nanoparticles of uniform size, shape and morphology are of interest. Various methods for synthesis, such as conventional temperature assisted process, controlled reaction at elevated temperatures, and microwave assisted process have been evaluated for the kind of silver nanoparticles synthesized. Starch has been employed as a template and reducing agent. Electron microscopy, photon correlation spectroscopy and surface plasmon resonance have been employed to characterize the silver nanoparticles synthesized. Compared to conventional methods, microwave assisted synthesis was faster and provided particles with an average particle size of 12 nm. Further, the starch functions as template, preventing the aggregation of silver nanoparticles.

  8. The use of ferrites at microwave frequencies

    CERN Document Server

    Thourel, Léo

    1964-01-01

    The Use of Ferrites at Microwave Frequencies describes the applications of ferrites at microwave frequencies and the apparatus involved. Topics covered range from the properties of ferrites to gyromagnetic and non-reciprocal effects, ferrite isolators, circulators, and modulators. The use of ferrites in variable frequency filter cavities is also discussed. Mathematical explanations are reduced to the strict minimum and only the results of calculations are indicated. This book consists of seven chapters and opens with a review of the theory of magnetism, touching on subjects such as the BOHR m

  9. Microwave properties of vanadium borate glasses

    Indian Academy of Sciences (India)

    R H Amnerkar; C S Adgaonkar; S S Yawale; S P Yawale

    2002-10-01

    A.c. conductivity, dielectric constant and loss, and variation with temperature (302–373 K) for four different compositions of V2O5–B2O3 glasses were reported at 9.586 GHz microwave frequency. The quality factor () and attenuation factor () being the important parameters in the microwave range of applications were also studied. The change in the dielectric constant and loss was observed with composition of V2O5. The maximum loss was found to be at 15V2O5 mol%. The peak was observed in loss with temperature.

  10. Lumped elements for RF and microwave circuits

    CERN Document Server

    Bahl, Inder

    2003-01-01

    Due to the unprecedented growth in wireless applications over the past decade, development of low-cost solutions for RF and microwave communication systems has become of great importance. This practical new book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The books offers you an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Support

  11. Topology optimization of microwave waveguide filters

    CERN Document Server

    Aage, Niels

    2016-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering.

  12. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  13. Swarm Optimization Methods in Microwave Imaging

    Directory of Open Access Journals (Sweden)

    Andrea Randazzo

    2012-01-01

    Full Text Available Swarm intelligence denotes a class of new stochastic algorithms inspired by the collective social behavior of natural entities (e.g., birds, ants, etc.. Such approaches have been proven to be quite effective in several applicative fields, ranging from intelligent routing to image processing. In the last years, they have also been successfully applied in electromagnetics, especially for antenna synthesis, component design, and microwave imaging. In this paper, the application of swarm optimization methods to microwave imaging is discussed, and some recent imaging approaches based on such methods are critically reviewed.

  14. Microwave components for cellular portable radiotelephone

    Science.gov (United States)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  15. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  16. Estimating Soil Moisture from Satellite Microwave Observations

    Science.gov (United States)

    Owe, M.; VandeGriend, A. A.; deJeu, R.; deVries, J.; Seyhan, E.

    1998-01-01

    Cooperative research in microwave remote sensing between the Hydrological Sciences Branch of the NASA Goddard Space Flight Center and the Earth Sciences Faculty of the Vrije Universiteit Amsterdam began with the Botswana Water and Energy Balance Experiment and has continued through a series of highly successful International Research Programs. The collaboration between these two research institutions has resulted in significant scientific achievements, most notably in the area of satellite-based microwave remote sensing of soil moisture. The Botswana Program was the first joint research initiative between these two institutions, and provided a unique data base which included historical data sets of Scanning Multifrequency Microwave Radiometer (SN4NM) data, climate information, and extensive soil moisture measurements over several large experimental sites in southeast Botswana. These data were the basis for the development of new approaches in physically-based inverse modelling of soil moisture from satellite microwave observations. Among the results from this study were quantitative estimates of vegetation transmission properties at microwave frequencies. A single polarization modelling approach which used horizontally polarized microwave observations combined with monthly composites of Normalized Difference Vegetation Index was developed, and yielded good results. After more precise field experimentation with a ground-based radiometer system, a dual-polarization approach was subsequently developed. This new approach realized significant improvements in soil moisture estimation by satellite. Results from the Botswana study were subsequently applied to a desertification monitoring study for the country of Spain within the framework of the European Community science research programs EFEDA and RESMEDES. A dual frequency approach with only microwave data was used for this application. The Microwave Polarization Difference Index (MPDI) was calculated from 37 GHz data

  17. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States)] [and others

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  18. High Efficiency Microwave Power Amplifier (HEMPA) Design

    Science.gov (United States)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  19. Electromagnetic Theory for Microwaves and Optoelectronics

    CERN Document Server

    Zhang, Keqian

    2007-01-01

    This book is a first year graduate text on electromagnetic fields and waves. At the same time it serves as a useful reference for researchers and engineers in the areas of microwaves and optoelectronics. Following the presentation of the physical and mathematical foundations of electromagnetic theory, the book discusses the field analysis of electromagnetic waves confined in material boundaries, or so-called guided waves, electromagnetic waves in the dispersive media and anisotropic media, Gaussian beams and scalar diffraction theory. The theories and methods presented in the book are foundations of wireless engineering, microwave and millimeter wave techniques, optoelectronics and optical fiber communication.

  20. Microwave bessel beams generation using guided modes

    KAUST Repository

    Salem, Mohamed

    2011-06-01

    A novel method is devised for Bessel beams generation in the microwave regime. The beam is decomposed in terms of a number of guided transverse electric modes of a metallic waveguide. Modal expansion coefficients are computed from the modal power orthogonality relation. Excitation is achieved by means of a number of inserted coaxial loop antennas, whose currents are calculated from the excitation coefficients of the guided modes. The efficiency of the method is evaluated and its feasibility is discussed. Obtained results can be utilized to practically realize microwave Bessel beam launchers. © 2006 IEEE.

  1. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    John Jacob; M Abdul Khadar; Anil Lonappan; K T Mathew

    2008-11-01

    Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured nickel ferrite samples of three different average grain sizes and those of two sintered samples were studied. The parameters like dielectric constant, dielectric loss and heating coefficient of the nanoparticles samples are studied in the frequency range from 2.4 to 4 GHz. The values of these parameters are compared with those of sintered pellets of the same samples. All these parameters show size dependent variations.

  2. Microwave gas breakdown in elliptical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koufogiannis, I. D.; Sorolla, E., E-mail: eden.sorolla@epfl.ch; Mattes, M. [École Polytechnique Fédérale de Lausanne, Laboratoire d’Électromagnétisme et d' Acoustique (LEMA), Station 11, CH-1015 Lausanne (Switzerland)

    2014-01-15

    This paper analyzes the microwave gas discharge within elliptical waveguides excited by the fundamental mode. The Rayleigh-Ritz method has been applied to solve the continuity equation. The eigenvalue problem defined by the breakdown condition has been solved and the effective diffusion length of the elliptical waveguide has been calculated, what is used to find the corona threshold. This paper extends the microwave breakdown model developed for circular waveguides and shows the better corona withstanding capabilities of elliptical waveguides. The corona breakdown electric field threshold obtained with the variational method has been compared with the one calculated with the Finite Elements Method, showing excellent agreement.

  3. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  4. Efficient microwave-induced optical frequency conversion

    CERN Document Server

    Kosachiov, D V

    1999-01-01

    Frequency conversion process is studied in a medium of atoms with a $\\Lambda$ configuration of levels, where transition between two lower states is driven by a microwave field. In this system, conversion efficiency can be very high by virtue of the effect of electromagnetically induced transparency (EIT). Depending on intensity of the microwave field, two regimes of EIT are realized: ''dark-state'' EIT for the weak field, and Autler-Townes-type EIT for the strong one. We study both cases via analytical and numerical solution and find optimum conditions for the conversion.

  5. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  6. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  7. Microwave scattering and emission models for users

    CERN Document Server

    Fung, Adrian K

    2009-01-01

    Today, microwave remote sensing has evolved into a valuable and economical tool for a variety of applications. It is used in a wide range of areas, from geological sensing, geographical mapping, and weather monitoring, to GPS positioning, aircraft traffic, and mapping of oil pollution over the sea surface. This unique resource provides you with practical scattering and emission data models that represent the interaction between electromagnetic waves and a scene on the Earth surface in the microwave region. The book helps you understand and apply these models to your specific work in the field.

  8. Microwave Reflectometry for Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucato, E.

    1998-02-01

    This paper is about microwave reflectometry -- a radar technique for plasma density measurements using the reflection of electromagnetic waves by a plasma cutoff. Both the theoretical foundations of reflectometry and its practical application to the study of magnetically confined plasmas are reviewed in this paper. In particular, the role of short-scale density fluctuations is discussed at length, both as a unique diagnostic tool for turbulence studies in thermonuclear plasmas and for the deleterious effects that fluctuations may have on the measurement of the average plasma density with microwave reflectometry.

  9. Microwave Drying Effects On Dichromated Gelatin Holograms

    Science.gov (United States)

    Andrade, Ana A.; Rebordao, Jose M.

    1989-05-01

    Holograms recorded in dichromated gelatin can easily be destroyed when subjected to high temperatures. In this work, a new treatment of holographic dichromated gelatin layers that improves remarkably the hologram life time under adverse thermal conditions, is presented: exposing the developed hologram to microwave radiaton. Similar holograms were subjected to microwave radiation for variable timelengths and then subjected to heating. The resultant angular and spectral bandwidths were measured after different heating time intervals. Some preliminary results will be presented. The role of water in holograms made with dicromated gelatin will be discussed, in this new context.

  10. Microwave Diagnostics of Ultracold Neutral Plasma

    CERN Document Server

    Guo, Ronghua Lu Li

    2010-01-01

    We suggest an approach for using microwave radiation in diagnostics of ultracold neutral plasma. Microwave scattering from ultracold neutral plasma is calculated . Simple formulations are get and indicate that the dipole radiation power of ultracold neutral plasma does not depend on density profile $n_e(r)$ and $\\omega$ when $\\omega\\gg\\omega_{pe0}$, but on the total electron number $N_e$. This method provides the information of $N_e$ and from which we can get the three body recombination rate of the plasma, which is extremely important in the researches of ultracold neutral plasma.

  11. Microwave fast sintering of submicrometer alumina

    Directory of Open Access Journals (Sweden)

    Romualdo Rodrigues Menezes

    2010-09-01

    Full Text Available Commercially available alumina powder with high-purity submicrometer particle size and narrow particle size distribution was fully densified by a microwave hybrid fast firing technique. The alumina compacts were surrounded by susceptor material, which helped the heating of the samples, and sintered in a microwave oven at a frequency of 2.45 GHz and a power level of 1.8 kW. The sintered samples reached densities of 99% in sintering cycles of 30 to 40 minutes, a much shorter time than conventional sintering processes. The sintered samples showed uniform microstructures with powder particle size/average grain size rations higher than 1:2.

  12. Engineering topological materials in microwave cavity arrays

    CERN Document Server

    Anderson, Brandon M; Owens, Clai; Schuster, David I; Simon, Jonathan

    2016-01-01

    We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry breaking (non-reciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the $\\alpha=1/4$ Hofstadter model. Effective photon-photon interactions are included by coupling the cavities to superconducting qubits, and are sufficient to produce a $\

  13. Microwave gyroscope-novel rotation sensor

    CERN Document Server

    Karapetyan, G G

    2000-01-01

    High performance microwave gyroscope (MG) is theoretically developed for the first time to our knowledge. MG is based on Sagnac effect in microwave ring resonator (RR), where a specially taylored phase shifter (PS) on the basis of surface acoustic waves is inserted. Due to that beat frequency becomes proportional to square (or cubic) root upon rotation rate and therefore hugely increases. In the result MG has few order higher sensitivity and dynamic range than state-of-the-art laser gyros, so it can serve as an advanced rotation sensor in navigation and fundamental sciences.

  14. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  15. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy

    Directory of Open Access Journals (Sweden)

    Sunint Singh

    2013-01-01

    Full Text Available Background: Conventional heat cure poly methyl methacrylate (PMMA is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by

  16. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  17. Coherent resonant Ka-band photonic microwave receiver

    CERN Document Server

    Ilchenko, Vladimir S; Savchenkov, Anatoliy A; Seidel, David; Matsko, Andrey B; Maleki, Lute

    2008-01-01

    We propose theoretically and demonstrate experimentally a coherent microwave photonic receiver operating at 35 GHz carrier frequency. The device is based on a lithium niobate or lithium tantalate optical whispering gallery mode resonator coupled to a microwave strip line resonator. Microwave local oscillator is fed into the microwave resonator along with the microwave signal. We show that the sensitivity of this receiver significantly exceeds the sensitivity of the incoherent quadratic receiver based on the same technology. The coherent receiver can possess a dynamic range in excess of 100 dB in 5 MHz band if a low noise laser is utilized.

  18. Mechanism of Microwave Effects on Conductivity of Solution

    Institute of Scientific and Technical Information of China (English)

    Su Yongqing

    2006-01-01

    The relation between microwave conductivity and normal conductivity of solution is compared in this thesis. By building mathematical model and theoretical analyses, it indicates that the relationship of in situ conductivity of solution in microwave field and temperature is similar to that in non-microwave field. It can be expressed by quadratic equation but the values of both conductivities are different. Microwave field has effect on the mean path δ or hot vibrational frequency v of ions in solution. In microwave field, the mean energy barrier, which ions must surmount as they transit, is the function relation to temperature.

  19. Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2016-11-01

    Full Text Available Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.

  20. The influence of microwave irradiation on rocks for microwave-assisted underground excavation

    Directory of Open Access Journals (Sweden)

    Ferri Hassani

    2016-02-01

    Full Text Available Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of McGill University to make a real application of microwave-assisted mechanical rock breakage to full-face tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks (norite, granite, and basalt for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs (SEMs highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics® software generated temperature profiles that were in close agreement with experimental results.

  1. Microwave Spectroscopy of Superconductors with a Scanning Low Temperature Near-Field Microwave Microscope

    Science.gov (United States)

    Imtiaz, Atif; Anlage, Steven

    2001-03-01

    We have developed a new tool to study the microwave conductivity and other properties of superconductors: The Cryogenic scanning near-field microwave microscope integrated with STM feedback. This instrument allows localized spectroscopic measurements of these materials in a non-destructive way, at both low and high frequencies. We will discuss results that show it high spatial resolution on metal and superconducting films in the frequency range of 7-11 GHz and compare it to simultaneously-acquired topography of the surface using a scanning tunneling microscope. The high spatial resolution allows us to image the grains and grain boundaries in superconductors, while facilitating local spectroscopy. The instrument allows us to study the electronic properties from STM and the microwave spectroscopic properties of the materials from the microwave microscope simultaneously, and independently of each other. We will also discuss a model of the microscope, which gives a quantitative understanding of the frequency shift and Q, demonstrating that this microscope is qualitatively similar to our earlier version.^1 We shall present images of superconducting films in the critical state and discuss the possibility of imaging magnetic vortices at microwave frequencies. Reference: 1 [D.E.Steinhauer, C.P.vlahacos, S.K.Dutta, B.J.Feenstra, F.C.Wellstood, and Steven M.Anlage, "Quantitative Imaging of Sheet Resistance with a Scanning Near-Field Microwave Microscope," Appl. Phys. Lett. 72, 861 (1998)].

  2. Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids.

    Science.gov (United States)

    Hari Das, Rakha; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip

    2016-07-02

    Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids.

  3. Remote measurement of microwave distribution based on optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua; Chen, Qun, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn; Xing, Da, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, the microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.

  4. Microwave RF antennas and circuits nonlinearity applications in engineering

    CERN Document Server

    Aluf, Ofer

    2017-01-01

    This book describes a new concept for analyzing RF/microwave circuits, which includes RF/microwave antennas. The book is unique in its emphasis on practical and innovative microwave RF engineering applications. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual RF microwave circuits and antennas are innovative and can be broadly implemented in engineering applications. Given the dynamics of RF microwave circuits and antennas, they are suitable for use in a broad range of applications. The book presents analytical methods for microwave RF antennas and circuit analysis, concrete examples, and geometric examples. The analysis is developed systematically, starting with basic differential equations and their bifurcations, and subsequently moving on to fixed point analysis, limit cycles and their bifurcations. Engineering applications include microwave RF circuits and antennas in a variety of topological structures, RFID ICs and antennas, micros...

  5. Soybean drying characteristics in microwave rotary dryer with forced convection

    Institute of Scientific and Technical Information of China (English)

    Ruifang WANG; Zhanyong LI; Yanhua LI; Jingsheng YE

    2009-01-01

    A new hybrid drying technique by combining microwave and forced convection drying within a rotary drum, i.e., microwave rotary drying, was developed with the purpose to improve the uniformity of microwave drying. In a laboratory microwave rotary dryer, rewetted soybean was utilized as experimental material to study the effects of drum rotating speed, ventilation flow rate, and specific microwave power on the drying kinetics and cracking ratio of soybean. It was found that, with rotation, the cracking ratio can be lowered but without distinct improvement in the drying rate. Increasing ventilation flow rate and specific microwave power can improve the drying rate, but the cracking ratio also increases as a negative result. The cracking ratio lower than 10% can be attained for ventilation flow rate lower than 2.0 m3·h-1 or specific microwave energy lower than 0.4 kW·kg-1 in the present experiments.

  6. Carbothermic Reduction of Zinc Oxide Concentrate by Microwave

    Institute of Scientific and Technical Information of China (English)

    Ali Saidi; Kamran Azari

    2005-01-01

    Industrial application of microwave, as a heating source for material processing, was reviewed. The feasibility of carbothermic reduction of zinc oxide concentrate, as well as the effect of operating parameters was investigated,using a home style microwave oven at 2.45 GHz. Zinc oxide concentrate does not effectively absorb microwave energy, while any source of carbon, which is used as the reduction agent, absorbs microwave energy very well. In this respect coke breeze was found to be the best, and thus, coke was used both as the reducing agent and the absorbent of microwave energy. It was also found that any increase in the carbon content and size, increases the reduction rate. Increasing the microwave power and the size of the sample could also increase the reduction rate. Further investigation shows that when zinc oxide is exposed to the microwave for some time, the rate of the reduction by conventional method increases.

  7. Simple Optoelectronic Feedback in Microwave Oscillators

    Science.gov (United States)

    Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.

  8. A TRUST REGION METHOD FOR MICROWAVE TOMOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    Gong Xing

    2001-01-01

    A trust region method is proposed to solve the problem of microwave tomography,which is very difficult to be solved for its ill-posedness and nonlinearity. Compared with the Levenberg-Marquardt method, this method introduces more a priori knowledge and might obtain better results, though the two methods are equal in some cases.

  9. Microwave Radiometer Linearity Measured by Simple Means

    DEFF Research Database (Denmark)

    Skou, Niels

    2002-01-01

    Modern spaceborne radiometer systems feature an almost perfect on-board calibration, hence the primary calibration task to be carried out before launch is a check of radiometer linearity. This paper describes two ways of measuring linearity of microwave radiometers only requiring relatively simple...

  10. Microwave Technology--Applications in Chemical Synthesis

    Science.gov (United States)

    Microwave heating, being specific and instantaneous, is unique and has found a place for expeditious chemical syntheses. Specifically, the solvent-free reactions are convenient to perform and have advantages over the conventional heating protocols as summarized in the previous se...

  11. Physical Basis And Technology Of Microwave Radiometry

    Science.gov (United States)

    Mamouni, A.; N'Guven, D. D.; Robillard, M.; Chive, M.; Leroy, Y.

    1980-05-01

    Thermal noise detection in microwave frequency range can lead to a non invasive subcutaneous temperature measurement in the living tissues. Several clinical aoplications are mentioned (cancer detection, brain temperature measurements, ergonomics). First experiments, and computations on thermal models show a possible achievement of a new method concerning a thermal pattern recognition.

  12. Microwave Diffraction Techniques from Macroscopic Crystal Models

    Science.gov (United States)

    Murray, William Henry

    1974-01-01

    Discusses the construction of a diffractometer table and four microwave models which are built of styrofoam balls with implanted metallic reflecting spheres and designed to simulate the structures of carbon (graphite structure), sodium chloride, tin oxide, and palladium oxide. Included are samples of Bragg patterns and computer-analysis results.…

  13. Environmental assessment: South microwave communication facilities

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  14. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  15. Microwave attenuation with composite of copper microwires

    Energy Technology Data Exchange (ETDEWEB)

    Gorriti, A.G.; Marin, P. [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Cortina, D. [Micromag S.L., Las Rozas, Madrid 28230 (Spain); Hernando, A., E-mail: antonio.hernando@adif.e [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Micromag S.L., Las Rozas, Madrid 28230 (Spain)

    2010-05-15

    It is shown that copper microwires composite media attenuates microwave reflection of metallic surfaces. We show how the distance to the metallic surface, as well as the length and volume fraction of microwires, determine the frequency of maximum absorption and the return loss level. Furthermore, we were able to fit the experimental results with a theoretical model based on Maxwell-Garnett mixing formula.

  16. Pips and spots in the microwave sky

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, E.; Sanz, J.L.

    1989-04-15

    An analysis is presented of some local statistical properties in the microwave sky such as mean number of hotspots over the celestial sphere, mean size of a hotspot, mean number of pips at fixed declination and 95 per cent confidence interval for the threshold of the hottest spot or pip, associated with three different experiments. (author).

  17. Microwave electric field sensing with Rydberg atoms

    Science.gov (United States)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  18. Perfect imaging without negative refraction for microwaves

    CERN Document Server

    Ma, Yun Gui; Sahebdivan, Sahar; Tyc, Tomas; Leonhardt, Ulf

    2010-01-01

    We demonstrate perfect imaging in Maxwell's fish eye for microwaves. Our data show that the field of a line source is imaged with subwavelength resolution over superwavelength distances, provided the field is allowed to leave through passive outlets that play the role of a detector array in imaging.

  19. Asymmetric catalysis : ligand design and microwave acceleration

    OpenAIRE

    Bremberg, Ulf

    2000-01-01

    This thesis deals partly with the design and synthesis ofligands for use in asymmetric catalysis, and partly with theapplication of microwave heating on metal-based asymmetriccatalytic reactions. Enantiomerically pure pyridyl alcohols and bipyridylalcohols were synthesized from the chiral pool for future usein asymmetric catalysis. Lithiated pyridines were reacted withseveral chiral electrophiles, yielding diastereomeric mixturesthat could be separated without the use of resolutiontechniques....

  20. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  1. Farinon microwave end of life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Poe, R.C.

    1996-06-24

    This engineering report evaluates alternatives for the replacement of the Farinon microwave radio system. The system is beyond its expected life cycle and has decreasing maintainability. Principal applications supported by the Farinon system are two electrical utility monitor and control systems, the Integrated Transfer Trip System (ITTS), and the Supervisory Control and Data Acquisition (SCADA) system.

  2. Anomalies of the Cosmic Microwave Background

    DEFF Research Database (Denmark)

    Hansen, Martin Anders Kirstejn

    The Cosmic Microwave Background (CMB) is the faint afterglow of the extreme conditions that existed shortly after Big Bang. The temperature of the CMB radiation across the sky is extremely uniform, yet tiny anisotropies are present, and have with recent satellite missions been mapped to very high...

  3. A Tutorial on Microwave Photonic Filters

    Science.gov (United States)

    Capmany, José; Ortega, Beatriz; Pastor, Daniel

    2006-01-01

    Microwave photonic filters are photonic subsystems designed with the aim of carrying equivalent tasks to those of an ordinary microwave filter within a radio frequency (RF) system or link, bringing supplementary advantages inherent to photonics such as low loss, high bandwidth, immunity to electromagnetic interference (EMI), tunability, and reconfigurability. There is an increasing interest in this subject since, on one hand, emerging broadband wireless access networks and standards spanning from universal mobile telecommunications system (UMTS) to fixed access picocellular networks and including wireless local area network (WLAN), World Interoperability for Microwave Access, Inc. (WIMAX), local multipoint distribution service (LMDS), etc., require an increase in capacity by reducing the coverage area. An enabling technology to obtain this objective is based on radio-over-fiber (RoF) systems where signal processing is carried at a central office to where signals are carried from inexpensive remote antenna units (RAUs). On the other hand, microwave photonic filters can find applications in specialized fields such as radar and photonic beamsteering of phased-arrayed antennas, where dynamical reconfiguration is an added value. This paper provides a tutorial introduction of this subject to the reader not working directly in the field but interested in getting an overall introduction of the subject and also to the researcher wishing to get a comprehensive background before working on the subject.

  4. Carbon nanotubes for RF and microwaves

    OpenAIRE

    Burke, P. J.; Yu, Z; Rutherglen, C.

    2005-01-01

    In this invited overview paper we provide a brief up-to-date summary of the potential applications of carbon nanotubes for RF and microwave devices and systems. We focus in particular on the use of nanotubes as ultra-high speed interconnects in integrated circuits.

  5. Passive Polarimetric Microwave Signatures Observed Over Antarctica

    Science.gov (United States)

    WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...

  6. [Noncontact and noninvasive microwave biological measurements].

    Science.gov (United States)

    Misawa, T; Kutsumi, Y; Tada, H; Kim, S S; Nakai, T; Miyabo, S; Hamada, T; Arai, I; Suzuki, T

    1990-01-01

    Without contact probes, the signals of small human body surface movements were obtained with microwave Doppler sensors using a two-phase interferometric method. The signals were then compared with mechanocardiographic records routinely obtained by contact transducers. Furthermore, this system was applied to patients wearing clothes. The study subjects consisted of 20 cardiac patients and 10 normal controls. 1. The microwave signals obtained in the cervical and precordial regions were similar to those of the mechanocardiographic recordings, such as the carotid pulse and jugular venous pulse tracings and the apexcardiogram. There was a significant correlation between left ventricular ejection time (LVET) obtained by microwave Doppler sensors and that by the carotid pulse tracing (r = 0.95). 2. The signals of the microwave Doppler sensor were obtained from the patients wearing clothes. The heart beat components were distinguished from respiratory motion and patients' movements using band-pass filters. These results suggest that this method is capable of evaluating cardiac function noninvasively and thus has a distinct advantage in the field of non-contact measurements.

  7. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  8. Microwave Tissue Soldering for Immediate Wound Closure

    Science.gov (United States)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Byerly, Diane; Dusl, John; Sognier, Marguerite A.; Carl, James

    2011-01-01

    A novel approach for the immediate sealing of traumatic wounds is under development. A portable microwave generator and handheld antenna are used to seal wounds, binding the edges of the wound together using a biodegradable protein sealant or solder. This method could be used for repairing wounds in emergency settings by restoring the wound surface to its original strength within minutes. This technique could also be utilized for surgical purposes involving solid visceral organs (i.e., liver, spleen, and kidney) that currently do not respond well to ordinary surgical procedures. A miniaturized microwave generator and a handheld antenna are used to deliver microwave energy to the protein solder, which is applied to the wound. The antenna can be of several alternative designs optimized for placement either in contact with or in proximity to the protein solder covering the wound. In either case, optimization of the design includes the matching of impedances to maximize the energy delivered to the protein solder and wound at a chosen frequency. For certain applications, an antenna could be designed that would emit power only when it is in direct contact with the wound. The optimum frequency or frequencies for a specific application would depend on the required depth of penetration of the microwave energy. In fact, a computational simulation for each specific application could be performed, which would then match the characteristics of the antenna with the protein solder and tissue to best effect wound closure. An additional area of interest with potential benefit that remains to be validated is whether microwave energy can effectively kill bacteria in and around the wound. Thus, this may be an efficient method for simultaneously sterilizing and closing wounds.

  9. MICROWAVE PROPAGATION IN TOOTH AND DENTAL DEFECT

    Directory of Open Access Journals (Sweden)

    Maria Papezova

    2016-09-01

    Full Text Available INTRODUCTION:The most common method of conventional dental diagnosisinvolves X-rays, such as Radio Tomography (RT or Computer Tomography (CT. Such methods are used for diagnosing pores in dental material that can lead to premature failure of dental material. Diagnosis by X-ray provides an objective analysis. However, repeated radiation from X-rays can cause biological damage to human tissues. From this point of view, there is a significant need to progress to quantitative non-invasive and non-destructive testing (NDT methods to measure dental material and improve treatment options. This article focuses on applying microwave technology to characterize teeth and teeth replacements. Knowledge of microwave propagation in biomaterial with no defects, using a defined microwave frequency range, and subsequently comparing the result with defective material could provide a means of dental diagnosis without the risk of radiation for the patient, i.e. without X-ray. OBJECTIVES: The primary objective of this study was to examine microwave technology in the field of dental medical diagnosis as a new NDT method. METHODS: The basic concept of applying microwave technology to characterize teeth in dental diagnosis was examined using a basic algorithm designed in the MATLAB programming language. Tests used dielectric properties of tooth and tooth decay and propagated electromagnetic (EM waves to show different characteristics of chosen materials.RESULTS: The analyses of frequency dependent reflection and transmission coefficients of the chosen material, specificallyteeth, atfrequency range 0 GHz to 30 GHz, computed differences between healthy and defective dental material.CONCLUSION: Thus, this could be used in providing a dental diagnosis without exposing patients to radiation, i.e. without X-ray. The next stage will involve creating a complete model of a jaw with teeth, and designing a sensor for crack detection for comparisons using this basic algorithm.

  10. A microwave detection way by electromagnetic and elastic resonance: Breaking the bottleneck of spatial resolution in microwave imaging

    Science.gov (United States)

    Ji, Zhong; Lou, Cunguang; Shi, Yujiao; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2015-10-01

    The spatial resolution of microwave imaging depends on the geometrical size of the detector. The existing techniques mainly focus on optimizing the antenna design to achieve high detection sensitivity. However, since the optimal antenna size is closely related to the wavelength to be measured, and the miniaturization of the geometrical size is challenging, this limits the spatial resolution of microwave imaging. In this letter, a microwave detection technique based on the electromagnetic-elastic resonance effect is proposed. The piezoelectric materials can produce mechanical responses under microwave excitation, and the amplitude of the microwave can be detected by measuring these responses. In contrast to conventional microwave detection method, the proposed method has distinct advantages in terms of high sensitivity and wide spectral response. Most importantly, it overcomes the limitation of detector size, thus, significantly improving the detection resolution. Therefore, the proposed method has potential for microwave imaging in biomedical applications.

  11. 微波技术应用%Application of Microwave Processing

    Institute of Scientific and Technical Information of China (English)

    王盼盼

    2009-01-01

    As a new development technique microwave technology has applied widely in areas of food processing. This article summarized the principles and characteristics of microwave technology and applications of microwave processing technology in meat products, cereals, fruits and vegetables processing. Some problems existed in microwave applications were analyzed. The development trend of microwave processing technology in food industry was put forward.

  12. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.

    Science.gov (United States)

    Ma, Jianyi

    2016-10-11

    Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.

  13. Microwave Soil Moisture Retrieval Under Trees

    Science.gov (United States)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.

    2008-01-01

    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave

  14. Combined study of microwave-power-dependence and linear-polarization-dependence of the microwave-radiation-induced magnetoresistance oscillations

    Science.gov (United States)

    Ye, Tianyu; Liu, Han-Chun; Mani, Ramesh; Wegscheider, Werner; Georgia State University Collaboration; ETH Zurich Collaboration

    2014-03-01

    Microwave radiation induced magnetoresistance oscillations (MRIMOs) represent an interesting electrical property of the high mobility two dimensional electron gas (2DEG) at low temperatures in a perpendicular magnetic field and under microwave excitation. Some questions under discussion in this topic include: (a) whether MRIMOs' amplitudes grow linearly with the microwave power and (b) how the MRIMO amplitudes change with the rotation of the microwave polarization with respect to the sample. In this study, we utilize swept microwave power and continuously changed linear polarized microwave polarization angle as two variables in four-terminal low-frequency lock-in magnetoresistance measurements of the 2DEG samples. The results show that amplitude of MRIMOs varies non-linearly with the microwave power. Also, the microwave polarization dependence measurements show that MRIMOs depend sensitively on the polarization angle of the linearly polarized microwaves, while the oscillatory magnetoresistance follows a cosine square function of the polarization angle. We provide a simple model that conveys our understanding of our observations. Basic research at Georgia State University is supported by the DOE-BES, MSE Division under DE-SC0001762. Microwave work is supported by the ARO under W911NF-07-01-0158.

  15. Behavioral effects of microwave reinforcement schedules and variations in microwave intensity on albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Vitulli, W.F.; Lambert, J.K.; Brown, S.W.; Quinn, J.M.

    1987-12-01

    The objective of this exploratory investigation was to determine the interactive effects of fixed-ratio scheduling of microwave reinforcement in tandem with changes in microwave intensity. Nine albino rats were conditioned to regulate their thermal environment with microwave radiation while living in a Skinner (operant conditioning) Box in which the ambient temperature was about 27.13 degrees F at the beginning of the session. Each rat obtained a 6-sec. exposure of microwave radiation on a fixed-ratio schedule of MW reinforcement, the values of which varied from FR-1 to FR-30. Intensities of MW radiation were 62.5 W, 125 W, 250 W, and 437.5 W. Sessions lasted for 8 to 9 hr. over an approximate 13-mo. period. The effects of the intensity of microwave reinforcement varied as a function of the ratio value of the schedule used. Continuous reinforcement (FR-1) produced the lowest over-all rates, whereas FR-15, and FR-25 produced the highest over-all rates. Relatively higher thermal-behavior rates occurred under 62.5 W than under any of the other MW intensities for FR-1, FR-15, and FR-25, whereas FR-10 and FR-30 ratios produced intermediate rates of thermal responding which were constant for all values of MW intensity. These data are explained in terms of interactive effects between the local satiation or deprivation properties of the MW intensity and the ratio requirements of the schedule of MW reinforcement.

  16. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  17. Microwave View on Particle Acceleration in Flares

    CERN Document Server

    Fleishman, Gregory D

    2013-01-01

    The thermal-to-nonthermal partition was found to vary greatly from one flare to another resulting in a broad variety of cases from 'heating without acceleration' to 'acceleration without heating'. Recent analysis of microwave data of these differing cases suggests that a similar acceleration mechanism, forming a power-law nonthermal tail up to a few MeV or even higher, operates in all the cases. However, the level of this nonthermal spectrum compared to the original thermal distribution differs significantly from one case to another, implying a highly different thermal-to-nonthermal energy partition in various cases. This further requires a specific mechanism capable of extracting the charged particles from the thermal pool and supplying them to a bulk acceleration process to operate in flares \\textit{in addition} to the bulk acceleration process itself, which, in contrast, efficiently accelerates the seed particles, while cannot accelerate the thermal particles. Within this 'microwave' view on the flare ener...

  18. Water, Hydrogen Bonding and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available n this work, the properties of the water are briefly revisited. Though liquid water has a fleeting structure, it displays an astonishingly stable network of hydrogen bonds. Thus, even as a liquid, water possesses a local lattice with short range order. The presence of hydroxyl (O-H and hydrogen (H....OH2 bonds within water, indicate that it can simultaneously maintain two separate energy systems. These can be viewed as two very different temperatures. The analysis presented uses results from vibrational spec- troscopy, extracting the force constant for the hydrogen bonded dimer. By idealizing this species as a simple diatomic structure, it is shown that hydrogen bonds within wa- ter should be able to produce thermal spectra in the far infrared and microwave regions of the electromagnetic spectrum. This simple analysis reveals that the oceans have a physical mechanism at their disposal, which is capable of generating the microwave background.

  19. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  20. Topology of microwave background fluctuations - Theory

    Science.gov (United States)

    Gott, J. Richard, III; Park, Changbom; Bies, William E.; Bennett, David P.; Juszkiewicz, Roman

    1990-01-01

    Topological measures are used to characterize the microwave background temperature fluctuations produced by 'standard' scenarios (Gaussian) and by cosmic strings (non-Gaussian). Three topological quantities: total area of the excursion regions, total length, and total curvature (genus) of the isotemperature contours, are studied for simulated Gaussian microwave background anisotropy maps and then compared with those of the non-Gaussian anisotropy pattern produced by cosmic strings. In general, the temperature gradient field shows the non-Gaussian behavior of the string map more distinctively than the temperature field for all topology measures. The total contour length and the genus are found to be more sensitive to the existence of a stringy pattern than the usual temperature histogram. Situations when instrumental noise is superposed on the map, are considered to find the critical signal-to-noise ratio for which strings can be detected.

  1. Relativistic-microwave theory of ball lightning

    Science.gov (United States)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  2. Systematic distortion in cosmic microwave background maps

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To minimize instrumentally the induced systematic errors,cosmic microwave background(CMB)anisotropy experiments measure temperature differences across the sky using pairs of horn antennas, temperature map is recovered from temperature difference obtained in sky survey through a map-making procedure.To inspect and calibrate residual systematic errors in the recovered temperature maps is important as most previous studies of cosmology are based on these maps.By analyzing pixel-ring coupling and latitude dependence of CMB temperatures,we find notable systematic devia- tion from CMB Gaussianity in released Wilkinson Microwave Anisotropy Probe(WMAP)maps.The detected deviation cannot be explained by the best-fit LCDM cosmological model at a confidence level above 99%and cannot be ignored for a precision cosmology study.

  3. MICROWAVE COMBUSTION AND SINTERING WITHOUT ISOSTATIC PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    This project is devoted to the development of an innovative technique for the disposal of mixed waste utilizing microwave energy. Because most uranium and plutonium components as well as most fission products have dielectric properties that allow excellent microwave and high-frequency energy coupling, dielectric heating has the potential for application in many processes for treating hazardous wastes. This technology, whether used on its own or as hybrid in conjunction with a conventional process, has positive features, such as energy efficiency. increased throughput, volume reduction, and reduction of disposal and transportation cost, and provides a technique not feasible by conventional means. The hazardous waste will be converted into a dense, stable, and vitrified form so that it may qualify for eventual off-site disposal. If successful, this program will lead to major cost saving for the DOE system.

  4. Relativistic-microwave theory of ball lightning.

    Science.gov (United States)

    Wu, H-C

    2016-06-22

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  5. Active Microwave Metamaterials Incorporating Ideal Gain Devices

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2010-12-01

    Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.

  6. Recent Progresses of Microwave Marine Remote Sensing

    Science.gov (United States)

    Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui

    2016-08-01

    It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.

  7. Electrically tunable materials for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  8. Double-slit experiments with microwave billiards.

    Science.gov (United States)

    Bittner, S; Dietz, B; Miski-Oglu, M; Iriarte, P Oria; Richter, A; Schäfer, F

    2011-07-01

    Single and double-slit experiments are performed with two microwave billiards with the shapes of a rectangle and a quarter stadium, respectively. The classical dynamics of the former is regular, whereas that of the latter is chaotic. Microwaves can leave the billiards via slits in the boundary, forming interference patterns on a screen. The aim is to determine the effect of the billiard dynamics on their structure. For this the development of a method for the construction of a directed wave packet by means of an array of multiple antennas was crucial. The interference patterns show a sensitive dependence not only on the billiard dynamics but also on the initial position and direction of the wave packet.

  9. Application of Memristors in Microwave Passive Circuits

    Directory of Open Access Journals (Sweden)

    M.Potrebic

    2015-06-01

    Full Text Available The recent implementation of the fourth fundamental electric circuit element, the memristor, opened new vistas in many fields of engineering applications. In this paper, we explore several RF/microwave passive circuits that might benefit from the memristor salient characteristics. We consider a power divider, coupled resonator bandpass filters, and a low-reflection quasi-Gaussian lowpass filter with lossy elements. We utilize memristors as configurable linear resistors and we propose memristor-based bandpass filters that feature suppression of parasitic frequency pass bands and widening of the desired rejection band. The simulations are performed in the time domain, using LTspice, and the RF/microwave circuits under consideration are modeled by ideal elements available in LTspice.

  10. Influence of plasma turbulence on microwave propagation

    CERN Document Server

    Köhn, Alf; Leddy, Jarrod; Thomas, Matthew B; Vann, Roddy G L

    2016-01-01

    It is not fully understood how electromagnetic waves propagate through plasma fluctuations when the size of the fluctuations is comparable with the wavelength of the incident radiation. In this paper, the perturbing effect of a turbulent plasma density layer on a traversing microwave beam is simulated with full-wave simulations. The deterioration of the microwave beam is calculated as a function of the characteristic turbulence structure size, the turbulence amplitude, the depth of the interaction zone and the size of the waist of the incident beam. The maximum scattering is observed for a structure size on the order of half the vacuum wavelength. The scattering and beam broadening was found to increase linearly with the depth of the turbulence layer and quadratically with the fluctuation strength. Consequences for experiments and 3D effects are considered.

  11. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  12. Ultrathin microwave absorber based on metamaterial

    Science.gov (United States)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8-4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62-4.2 GHz; however, the absorption was slightly lower than 99% in 1.8-2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  13. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  14. Quartz tuning fork based microwave impedance microscopy

    Science.gov (United States)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  15. Use of microwave in processing of drug delivery systems.

    Science.gov (United States)

    Wong, T W

    2008-04-01

    Microwave has received a widespread application in pharmaceuticals and food processing, microbial sterilization, biomedical therapy, scientific and biomedical analysis, as well as, drug synthesis. This paper reviews the basis of application of microwave to prepare pharmaceutical dosage forms such as agglomerates, gel beads, microspheres, nanomatrix, solid dispersion, tablets and film coat. The microwave could induce drying, polymeric crosslinkages as well as drug-polymer interaction, and modify the structure of drug crystallites via its effects of heating and/or electromagnetic field on the dosage forms. The use of microwave opens a new approach to control the physicochemical properties and drug delivery profiles of pharmaceutical dosage forms without the need for excessive heat, lengthy process or toxic reactants. Alternatively, the microwave can be utilized to process excipients prior to their use in the formulation of drug delivery systems. The intended release characteristics of drugs in dosage forms can be met through modifying the physicochemical properties of excipients using the microwave.

  16. The influence of microwave radiation on transdermal delivery systems.

    Science.gov (United States)

    Moseley, H; Johnston, S; Allen, A

    1990-03-01

    It has been alleged that the exposure of a transdermal delivery system to leakage of microwave radiation from a domestic microwave oven can result in the user receiving a second-degree burn in the area of the patch. Several transdermal delivery systems were exposed to microwave radiation from an Electro Medical Supplies Microtron 200 microwave diathermy unit. Temperature rises of up to 2.2 degrees C were recorded at a maximum power density of 800 W/m2. These temperature rises were considered insignificant compared to that required to produce a burn. The exposure of transdermal delivery systems to a microwave diathermy field or lower level leakage radiation from a microwave oven is unlikely to cause direct thermal injury to the wearer.

  17. Inactivation of Clostridium difficile spores by microwave irradiation.

    Science.gov (United States)

    Ojha, Suvash Chandra; Chankhamhaengdecha, Surang; Singhakaew, Sombat; Ounjai, Puey; Janvilisri, Tavan

    2016-04-01

    Spores are a potent agent for Clostridium difficile transmission. Therefore, factors inhibiting spores have been of continued interest. In the present study, we investigated the influence of microwave irradiation in addition to conductive heating for C. difficile spore inactivation in aqueous suspension. The spores of 15 C. difficile isolates from different host origins were exposed to conductive heating and microwave irradiation. The complete inhibition of spore viability at 10(7) CFU/ml was encountered following microwave treatment at 800 W for 60 s, but was not observed in the conductive-heated spores at the same time-temperature exposure. The distinct patterns of ultrastructural alterations following microwave and conductive heat treatment were observed and the degree of damages by microwave was in the exposure time-dependent manner. Microwave would therefore be a simple and time-efficient tool to inactivate C. difficile spores, thus reducing the risk of C. difficile transmission.

  18. Quantum and wave dynamical chaos in superconducting microwave billiards

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, B., E-mail: dietz@ikp.tu-darmstadt.de; Richter, A., E-mail: richter@ikp.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany)

    2015-09-15

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  19. Magnetoelectric fields for microwave chirality discrimination in enantiomeric liquids

    CERN Document Server

    Hollander, E; Shavit, R

    2016-01-01

    Chirality discrimination is of a fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode (MDM) oscillations in quasi-2D yttrium-iron-garnet (YIG) disks, provide a potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to microwave biomedical diagnostics and pathogen detection and to deepening our understanding of microwave-biosystem interactions. It can be also important for an analysis and design of microwave c...

  20. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    Science.gov (United States)

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-03-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.

  1. Semi-automated microwave assisted solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  2. Microwave heating in solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg; Shelton, Anne Pernille Tofteng; Malik, Leila

    2012-01-01

    synthesis, precise microwave irradiation to heat the reaction mixture during coupling and N(a)-deprotection has become increasingly popular. It has often provided dramatic reductions in synthesis times, accompanied by an increase in the crude peptide purity. Microwave heating has been proven especially...... relevant for sequences which might form ß-sheet type structures and for sterically difficult couplings. The beneficial effect of microwave heating appears so far to be due to the precise nature of this type of heating, rather than a peptide-specific microwave effect. However, microwave heating...... in microwave heating for peptide synthesis, with a focus on systematic studies and general protocols, as well as important applications. The assembly of ß-peptides, peptoids and pseudopeptides are also evaluated in this critical review (254 references)....

  3. [Dimensional accuracy of microwave-cured denture base resin].

    Science.gov (United States)

    Uchida, K; Okamoto, F; Ogata, K; Sato, T

    1989-02-01

    Recently, microwave-cured denture base resin was developed, and the resin solved the problem of internal porosity which had been generated by curing the conventional denture base resins with microwave irradiation. In this study, the dimensional accuracy of microwave-cured denture base resin was compared with that of other denture base resins, such as pour-type resin, heat-cured resin and heat-shock resin. From the experiment, the following results were obtained. 1. Dimensional accuracy of microwave-cured denture base resin was better than that of heat-cured resin and heat-shock resin, and was similar to that of pour-type resin. 2. Dimensional accuracy of microwave-cured denture base resin by slow cooling method and rapid cooling method was almost the same. Those findings suggest that microwave-cured denture base resin is valuable in clinic.

  4. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  5. Rapid and Decentralized Human Waste Treatment by Microwave Radiation.

    Science.gov (United States)

    Nguyen, Tu Anh; Babel, Sandhya; Boonyarattanakalin, Siwarutt; Koottatep, Thammarat

    2016-09-07

    This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 minutes) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 minutes. Pathogen eradiation performances of six log units or more at a high range of microwave powers were achieved. Treatments with the same energy input of 1000 Wh, but at lower powers with prolonged exposure times, significantly enhanced moisture removal and volume reduction. Microwave radiation caused carbonization and resulted in a more stable end product. The energy content of the samples after microwave treatment at 1000 W and 75 minutes is 3517 ± 8.85 calories/g of dried sample, and the product can also be used as compost.

  6. Demonstration of microwave power transmission in space

    Science.gov (United States)

    Chang, K.; Patton, A. D.; Kennedy, M. O.; Little, F. E.; Pollock, M. A.; Hummer, K. A.; Mccleary, J. C.; Wei, B. S.; Brown, A. M.; Mcspadden, J.O.

    1991-01-01

    Three experiments are proposed to demonstrate the feasibility of converting dc power into microwave or millimeter-wave beam and transmitting it to users through free space. The generator could be located on earth or on a utility power satellite. The received power would be converted back into dc or ac power. The success of the experiments could lead to the commercial use of this technology.

  7. Josephson junction microwave modulators for qubit control

    Science.gov (United States)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  8. Microwave Magnetic Permeability of Fe304 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; YANG Yong; WEN Fu-Sheng; YI Hai-Bo; ZHOU Dong; LI Fa-Shen

    2009-01-01

    Well-dispersed Fe304 nanoparticles are synthesized via an oxidization method with NANO2 as oxidant. The microwave magnetic properties of the composites are studied with different volume fractions of Fe3O4 nanoparti-cles. It is found that a lower volume fraction corresponds to a higher magnetic resonance frequency. This could be ascribed to the enhancement of exchange interaction with a weakened dipolar interaction when the volume fraction decreases.

  9. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  10. Polarization control based interference microwave photonic filters

    Science.gov (United States)

    Madziar, Krzysztof; Galwas, Bogdan

    2016-12-01

    In this paper we present a concept of multi-line Microwave Photonic Filter (MPF) based on polarization beam splitting and polarization control in each line. Coefficients of investigated filter are determined by attenuation of its lines and that on the other hand can be manipulated by change of the polarization in the fiber. Presented results involve scattering parameters (S21) measurements of optical path over polarization control unit rotation, scattering parameters (S21) characteristics of investigated filter and transmission optimization capabilities.

  11. Quantum switches and nonlocal microwave fields

    Science.gov (United States)

    Davidovich, L.; Maali, A.; Brune, M.; Raimond, J. M.; Haroche, S.

    1993-10-01

    A scheme to realize an optical switch with quantum coherence between its ``open'' and ``closed'' states is presented. It involves a single atom in a superposition of circular Rydberg states crossing a high Q cavity. A combination of switches could be used to prepare a quantum superposition of coherent microwave field states located simultaneously in two cavities. Such nonclassical states and their decoherence due to cavity dissipation could be studied by performing atom correlation experiments.

  12. Microwave Study of Recycled ABS Resins

    Institute of Scientific and Technical Information of China (English)

    A; M; Hasna

    2002-01-01

    This article provides a review of the research unde rt aken in order to determine the suitability of utilizing microwave technology in the production of Recycled ABS Acrylonitrile Butadiene Styrene resin for mouldin gs. The experimental investigation determined the suitability of the existing re cycled ABS material, the mould material used with respect to performance and lon gevity, potential commercial plant and equipment, end mould compression. Introduction Frequency Characterization of ABS The first ...

  13. Effect of Microwaves on the Immune System.

    Science.gov (United States)

    1979-09-15

    the role of endotoxin , which might be released from the microwave Irradiated intestinal tract, and the role of hydrocortisone, as the animals are...wei ght of the exposed animal as wel l as the I- spatial ori entation of the animal toward the irradiation source. 3. Examination and definition of...problem , we utilized certain mutant strains of mice , genetica lly unable to respond to endotoxin (CBA/N, C3Hfhej ’), and were able to show

  14. Microwave Cure of Phenol-Formaldehyde Adhesive

    OpenAIRE

    高谷, 政広; 田平, 英敏; 岡本, 忠

    2006-01-01

    [Synopsis] Phenol-formaldehyde resin has been used as a versatile material for adhesives and coatings of a wide range of adherends because of its excellent performance in water- resistance, strength against abrasion, and so on. However, it has a drawback of slow rate of cure and relevant emission of formaldehyde gas after bonding. We studied the curing performance under irradiation of microwave for the purpose of looking for a way of accelerating the cure rate of phenol formaldehyde resin. Th...

  15. Dual-Antenna Microwave Reception Without Switching

    Science.gov (United States)

    Hartop, Robert W.

    1994-01-01

    Receiver remains connected to both antennas, transmitter switched to connect it to one or other. Combination of hybrid junction, circulators, and filter provides simultaneous reception paths from both antennas without significantly altering radiation patterns of antennas. Communication system considered for use in spacecraft and in which mechanical switch permitted on downlink but not on uplink. Applicable to terrestrial microwave communication stations subject to dual-antenna requirements.

  16. Microwave Photonics: current challenges towards widespread application.

    Science.gov (United States)

    Capmany, José; Li, Guifang; Lim, Christina; Yao, Jianping

    2013-09-23

    Microwave Photonics, a symbiotic field of research that brings together the worlds of optics and radio frequency is currently facing several challenges in its transition from a niche to a truly widespread technology essential to support the ever-increasing values for speed, bandwidth, processing capability and dynamic range that will be required in next generation hybrid access networks. We outline these challenges, which are the subject of the contributions to this focus issue.

  17. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Kamila Lewicka; Przemysław Siemion; Piotr Kurcok

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  18. Intracity Quantum Communication via Thermal Microwave Networks

    Directory of Open Access Journals (Sweden)

    Ze-Liang Xiang

    2017-03-01

    Full Text Available Communication over proven-secure quantum channels is potentially one of the most wide-ranging applications of currently developed quantum technologies. It is generally envisioned that in future quantum networks, separated nodes containing stationary solid-state or atomic qubits are connected via the exchange of optical photons over large distances. In this work, we explore an intriguing alternative for quantum communication via all-microwave networks. To make this possible, we describe a general protocol for sending quantum states through thermal channels, even when the number of thermal photons in the channel is much larger than 1. The protocol can be implemented with state-of-the-art superconducting circuits and enables the transfer of quantum states over distances of about 100 m via microwave transmission lines cooled to only T=4  K. This opens up new possibilities for quantum communication within and across buildings and, consequently, for the implementation of intracity quantum networks based on microwave technology only.

  19. Microwave Medical Treatment Apparatus and Method

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); George, W. Rflfoul (Inventor)

    2005-01-01

    Methods, simulations, and apparatus are provided that may be utilized for medical treatments which are especially suitable for treatment of benign prostatic hyperplasia (BPH). In a preferred embodiment, a plurality of separate microwave antennas are utilized to heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. By utilizing constructive and destructive interference of the microwave transmission, the energy can be deposited on the tissues to be necrosed while protecting other tissues such as the urethra. Saline injections to alter the conductivity of the tissues may also be used to further focus the energy deposits. A computer simulation is Provided that can be used to Predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of one or more catheters and the methods of applying microwave energy, a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  20. Microwave Assisted Healing of Thermally Mendable Composites

    Directory of Open Access Journals (Sweden)

    Edward D. Sosa

    2015-01-01

    Full Text Available Polymer matrix composites offer high specific strength; however, their potential weight savings have been limited by the concern of damage tolerance. If microcracking and similar incurred damage could be autonomously sealed, composite structures could be built thinner and lighter while still addressing damage tolerance, thus achieving the weight savings they promise. Various self-healing mechanisms have been proposed to this end. Herein, a method of thermally reversible polymerization is investigated. To date, thermally activated repair of composites have been accomplished typically through resistive heating, which has certain inherent complexities. An alternate heating method, via microwave exposure of carbon nanotubes incorporated throughout a thermal reversible polymer matrix, is demonstrated. Carbon nanotube-doped composites exhibit enhanced microwave absorption over an undoped control sample. Furthermore, it is shown that these composites can be heated locally by a focused microwave source. The particular composite formulation and layup studied could be uniformly heated to the targeted healing temperature of 100°C in as little as 20 seconds, followed by a healing time on the scale of minutes with total time depending upon the extent of damage.