WorldWideScience

Sample records for premixed laminar steady-state

  1. Transport Algorithms for Premixed, Laminar Steady State Flames

    Science.gov (United States)

    1981-03-01

    II i/) 11 * • Orwell O ii 1- UJ •— >D ■C => O U. 1- >- •—i O O 1 1 UJ UJ a. t— 1 1 UJ UJ 3 o 5 » •—< p UJ UJ o o u * o • t...2 AFRPL (DYSC) ATTN: D. George J.N. Levine Edwards AFB, CA 93523 2 National Bureau of Standards ATTN: J. Hastie T. Kashiwagi Washington, DC

  2. Turbulence in laminar premixed V-flames

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoqian(张孝谦); LEI; Yu(雷宇); WANG; Baorui(王宝瑞); WANG; Yue(王岳); WEI; Minggang(韦明罡)

    2003-01-01

    Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

  3. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  4. Numerical simulation of laminar premixed combustion in a porous burner

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pinghui; CHEN Yiliang; LIU Minghou; DING Min; ZHANG Genxuan

    2007-01-01

    Premixed combustion in porous media differs substantially from combustion in free space. The interphase heat transfer between a gas mixture and a porous medium becomes dominant in the premixed combustion process. In this paper, the premixed combustion of CH4/air mixture in a porous medium is numerically simulated with a laminar combustion model. Radiative heat transfer in solids and convective heat transfer between the gas and the solid is especially studied. A smaller detailed reaction mechanism is also used and the results can show good prediction for many combustion phenomena.

  5. Linear Stability Analysis of Laminar Premixed Fuel-Rich Double-Spray Flames

    Directory of Open Access Journals (Sweden)

    Noam Weinberg

    2014-03-01

    Full Text Available This paper considers the stability of a double-spray premixed flame formed when both fuel and oxidizer are initially present in the form of sprays of evaporating liquid droplets. To simplify the inherent complexity that characterizes the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed double-spray flames, and assumes a single-step global chemical reaction mechanism. Steady-state solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial liquid fuel and/or oxidizer loads are established. The stability analysis revealed an increased proneness to cellular instability induced by the presence of the two sprays, and for the fuel-rich case considered here the influence of the liquid oxidizer was found to be more pronounced than that of the liquid fuel. Similar effects were noted for the neutral pulsating stability boundaries. The impact of unequal latent heats of vaporization is also investigated and found to be in keeping with the destabilizing influence of heat loss due to droplet evaporation. It should be noted that as far as the authors are aware no experimental evidence is available for (at least validation of the predictions. However, they do concur in a general and reasonable fashion with independent experimental evidence in the literature of the behavior of single fuel spray laminar premixed flames.

  6. Finite amplitude wave interaction with premixed laminar flames

    Science.gov (United States)

    Aslani, Mohamad; Regele, Jonathan D.

    2014-11-01

    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  7. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  8. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  9. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  10. Effect of Inhibitors on Biogas Laminar Burning Velocity and Flammability Limits in Spark Ignited Premix Combustion

    Directory of Open Access Journals (Sweden)

    Willyanto Anggono

    2014-01-01

    Full Text Available Biogas is the natural byproduct of the decomposition of vegetation or animal manure, of which there are almost in exhaustable supplies in the world, and which does not contribute CO2 or other greenhouse gases to global warming or climate change. Biogas contains 66.4% flammable gas (CH4 and 33.6% inhibitors (CO2 and N2. This study focuses on the effects of inhibitors on biogas laminar burning velocity and flammability limits in spark ignited premix combustion. Spherically expanding laminar premixed flames, freely propagating from spark ignition sources in initially quiescent biogas–air mixtures, are continuously recorded by a high-speed digital camera. Initially, all the experiments in this paper were performed using inhibitorless biogas (biogas without inhibitors at room temperature, at reduced pressure (0.5 atm and at various equivalence ratios (ϕ from the lower flammable limit to the upper flammable limit. The results are compared with those from biogas (containing inhibitors flames at reduced pressure, inhibitorless biogas flames at atmospheric pressure (1 atm, and biogas flames at atmospheric pressure to emphasize the effect of inhibitors on biogas laminar burning velocity and flammability limits. Compared to an inhibitorless biogas-air mixtures, in the biogas-air mixtures, the presence of inhibitors cause a reduction in the laminar burning velocity and the flammable limits become narrower.

  11. Numerical Study on Laminar Burning Velocity and Flame Stability of Premixed Methane/Ethylene/Air Flames

    Institute of Scientific and Technical Information of China (English)

    陈珊珊; 蒋勇; 邱榕; 安江涛

    2012-01-01

    A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.

  12. Microstructure of premixed propane/air flame in the transition from laminar to turbulent combustion

    Institute of Scientific and Technical Information of China (English)

    CHEN XianFeng; SUN JinHua; LIU Yi; LIU XuanYa; CHEN SiNing; LU ShouXiang

    2007-01-01

    In order to explore the flame structure and propagation behavior of premixed propane/air in the transition from laminar to turbulent combustion, the high speed camera and Schlieren images methods were used to record the photograph of flame propagation process in a semi-vented pipe. Meanwhile, the super-thin thermocouple and ionization current probe methods were applied to detect the temperature distribution and reaction intensity of combustion reaction. The characteristics of propane/air flame propagation and microstructure were analyzed in detail by the experimental results coupled with chemical reaction thermodynamics. In the test, the particular tulip flame behavior and the formation process in the laminar-turbulent transition were disclosed clearly. From the Schlieren images and iron current results, one conclusion can be drawn that the small-scale turbulent combustion also appeared in laminar flame, which made little influence on the flame shape, but increased the flame thickness obviously.

  13. Flamelet mathematical models for non-premixed laminar combustion

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222 Terrassa, Barcelona (Spain); Coelho, P.J. [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2009-02-15

    Detailed numerical calculations based on the solution of the full transport equations have been compared with flamelet calculations in order to analyse the flamelet concept for laminar diffusion flames. The goal of this work is to study the interactive (Lagrangian Flamelet Model and Interactive Steady Flamelet Model), and non-interactive (Steady Flamelet Model and Enthalpy Defect Flamelet Model) flamelet models considering both differential diffusion and non-differential diffusion situations, and adiabatic and non-adiabatic conditions. Moreover, a new procedure has been employed to obtain enthalpy defects in the flamelet library, the application of which has been found to be encouraging. The effect of using in-situ, local or stoichiometric scalar dissipation rate conditions, and also the effect of using local or stoichiometric conditions to evaluate the flamelet-like time has been analysed. To improve slow species predictions using the non-interactive models, their transport equations are solved with the reaction terms calculated from the flamelet library, also considering local or stoichiometric conditions in the so-called Extended Flamelet Models. (author)

  14. Study of low-pressure premixed laminar n-heptane+ propane/oxygen/nitrogen flames

    Institute of Scientific and Technical Information of China (English)

    YU Wu; WEI LiXia; MA ZhiHao; HUANG ZuoHua; YUAN Tao; TIAN ZhenYu; LI YuYang

    2009-01-01

    Low-pressure premixed laminar n-heptane+propane/oxygen/nitrogen flames were investigated with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spectrometry. Three flames with different mass percentage of propane in the fuel blends of 0%, 10%, and 20% were studied. The combustion intermediates were identified by comparing the measured IEs with those values in literatures. Mole fraction profiles of the main species were compared among the three flames. The experimental results provide detailed data in understanding the combustion of n-heptane and n-heptane/propane blends in engine. They are also helpful in establishing and verifying the kinetic models.

  15. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, M., E-mail: mathieu.blanchard@ladhyx.polytechnique.fr [LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau (France); Schuller, T. [CNRS, UPR 288, Laboratoire d’Energétique Moléculaire et Macroscopique Combustion (EM2C), Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Centrale-Supélec, Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Sipp, D. [ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon (France); Schmid, P. J. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  16. Exploring Soot Particle Concentration and Emissivity by Transient Thermocouples Measurements in Laminar Partially Premixed Coflow Flames

    Directory of Open Access Journals (Sweden)

    Gianluigi De Falco

    2017-02-01

    Full Text Available Soot formation in combustion represents a complex phenomenon that strongly depends on several factors such as pressure, temperature, fuel chemical composition, and the extent of premixing. The effect of partial premixing on soot formation is of relevance also for real combustion devices and still needs to be fully understood. An improved version of the thermophoretic particle densitometry (TPD method has been used in this work with the aim to obtain both quantitative and qualitative information of soot particles generated in a set of laminar partially-premixed coflow flames characterized by different equivalence ratios. To this aim, the transient thermocouple temperature response has been analyzed to infer particle concentration and emissivity. A variety of thermal emissivity values have been measured for flame-formed carbonaceous particles, ranging from 0.4 to 0.5 for the early nucleated soot particles up to the value of 0.95, representing the typical value commonly attributed to mature soot particles, indicating that the correct determination of the thermal emissivity is necessary to accurately evaluate the particle volume fraction. This is particularly true at the early stage of the soot formation, when particle concentration measurement is indeed particularly challenging as in the central region of the diffusion flames. With increasing premixing, an initial increase of particles is detected both in the maximum radial soot volume fraction region and in the central region of the flame, while the further addition of primary air determines the particle volume fraction drop. Finally, a modeling analysis based on a sectional approach has been performed to corroborate the experimental findings.

  17. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  18. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    Science.gov (United States)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  19. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh

    2014-04-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  20. Rich methane premixed laminar flames doped by light unsaturated hydrocarbons - Part I : allene and propyne

    CERN Document Server

    Gueniche, Hadj-Ali; Dayma, Guillaume; Fournet, Ren{é}; Battin-Leclerc, Fr{é}d{é}rique

    2006-01-01

    The structure of three laminar premixed rich flames has been investigated: a pure methane flame and two methane flames doped by allene and propyne, respectively. The gases of the three flames contain 20.9% (molar) of methane and 33.4% of oxygen, corresponding to an equivalence ratio of 1.25 for the pure methane flame. In both doped flames, 2.49% of C3H4 was added, corresponding to a ratio C3H4/CH4 of 12% and an equivalence ratio of 1.55. The three flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz microprobe. Quantified species included carbon monoxide and dioxide, methane, oxygen, hydrogen, ethane, ethylene, acetylene, propyne, allene, propene, propane, 1,2-butadiene, 1,3-butadiene, 1-butene, isobutene, 1-butyne, vinylacetylene, and benzene. The temperature was measured using a PtRh (6%)-PtRh (30%) thermocou...

  1. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F

    2009-12-18

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  2. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2015-04-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  3. SOOT PARTICLES ANALYSIS IN LAMINAR PREMIXED PROPANE/OXYGEN (C3H8/O2) FLAMES USING PUBLISHED MEASUREMENT DATA

    Institute of Scientific and Technical Information of China (English)

    Jinling Li; Suyuan Yu

    2003-01-01

    A laminar premixed Propane/Air flame with a fuel equivalence ratio of 2.1 was employed for analysis of soot particles. Zeroth-order Iognormal distributions (ZOLD) were used in the analysis of experimental distribution phenomena at different residence times during soot formation in the flame. Rayleigh's theory and Mie's scattering theory were combined with agglomerate analysis using scattering and extinction data to determine the following soot characteristics: agglomerate parameters, volumetric fractions, mass flow rates and surface growth rate. Soot density measurements were carried out to determine density variations at different stages of growth. The measured results show that metric fraction and mass flow rate indicate that the surface growth rate of soot particles exceeds the oxidation rates in the flame studied. The data obtained in this work would be used to study soot oxidation rate under flaming condition.

  4. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  5. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  6. Laminar partially premixed flame stability - application to domestic burner; Stabilite de flammes laminaires partiellement premelangees. Application aux bruleurs domestiques

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, C.

    2006-05-15

    Phenomena responsible of partially premixed laminar flame stabilisation are investigated on a rich premixed burner configuration. The structure and aerodynamic of the flame generated by a cooking model burner are characterized by Planar Laser Induced Fluorescence of OH radical and Particle Image Velocimetry. The flame behaviour is studied from a stable reference case toward blow-out by varying the flow inlet conditions, the burner geometry and its thermal properties. The flame can be considered as two neighbour and independent reactive zones, each consisting of a double edge flame. The upper double flame stabilisation is similar to the one of a Bunsen burner with a flame-holder attached base and a flame tip stabilized in the flow according to the ratio of the flow velocity and flame speed of the rich pre-mixture. The bottom double flame is stabilized at the crossing point of the stoichiometric flame speed. The flame is finally blown out when there is no more crossing point. (author)

  7. Mathematical Theory of Laminar Combustion. 7. Cylindrical and Spherical Premixed Flames

    Science.gov (United States)

    1980-03-01

    We first turn to the limits D + 0, ’, which had already been considered by Fendell (1969). Frozen combustion is described by the same formulas as for...found by Fendell (1972). Otherwise the above analysis has not been published before. Steady-state responses are showm in Fig. 2. They differ from those...spherico-symmnetric nonopropellant decomposition in inert and reactive environments, Combust. Sci. Tech. 1, 131-1145. Fendell , F.E:, 1972, Asymptotic

  8. Laminar premixed methane/air flame extinction characteristics influenced by co-flow water mists

    Institute of Scientific and Technical Information of China (English)

    LIU XuanYa; LU ShouXiang; ZHU YingChun; LIU Yi

    2008-01-01

    Based on the tubular burner, the burning velocities, flame stretch and inhibition rules influenced by co-flow water mists were studied using a high-speed schlieren system. Moreover, the variation rules of the flame critical extinction in our burner equipment were also obtained by analyzing the process and mechanism of flame extinction and inhibition. It is shown that the flame stretch is related to the fuel concentration, co-flow fluxes and water mist diameters. For droplets with a larger diameter, the smaller the co-flow fluxes, the more obvious the flame stretch. When the water mist loading rate is rather smaller, for fuel-rich premixed flame with Le>1, the flame with larger burning rate tends to backfire more easily. Under the same water mist conditions, for fuel-lean premixed flame with Le<1, the smaller the gas concentration, the easier the flame is extinct.

  9. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2010-02-15

    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  10. The influence of CO2 in biogas flammability limit and laminar burning velocity in spark ignited premix combustion at various pressures

    Science.gov (United States)

    Anggono, W.; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, S.; Hamidi, N.; Hayakawa, A.

    2016-03-01

    Biogas is an alternative energy source that is sustainable and renewable containing more than 50% CH4 and its biggest impurity or inhibitor is CO2. Demands for replacing fossil fuels require an improved fundamental understanding of its combustion processes. Flammability limits and laminar burning velocities are important characteristics in these processes. Thus, this research focused on the effects of CO2 on biogas flammability limits and laminar burning velocities in spark ignited premixed combustion. Biogas was burned in a spark ignited spherical combustion bomb. Spherically expanding laminar premixed flames, freely propagating from spark ignition in initial, were continuously recorded by a high-speed digital camera. The combustion bomb was filled with biogas-air mixtures at various pressures, CO2 levels and equivalence ratios (ϕ) at ambient temperature. The results were also compared to those of the previous study into inhibitorless biogas (methane) at various pressures and equivalence ratios (ϕ). Either the flammable areas become narrower with increased percentages of carbon dioxide or the pressure become lower. In biogas with 50% CO2 content, there was no biogas flame propagation for any equivalence ratio at reduced pressure (0.5 atm). The results show that the laminar burning velocity at the same equivalence ratio declined in respect with the increased level of CO2. The laminar burning velocities were higher at the same equivalence ratio by reducing the initial pressure.

  11. An experimental investigation of the interaction between a Karman vortex street and a premixed laminar flame

    Science.gov (United States)

    Namer, I.

    1980-12-01

    The interaction of a premixed C2H4-air flame with a Karman vortex street was studied. Laser Doppler anemometry was used for velocity measurements and Rayleigh scattering was used to measure total gas density. A reference hot wire was used to enable phase-locked ensemble averaging to be performed on the data. The velocity measurements for vortex shedding cylinder Reynolds numbers indicated that the vortex street and, hence, the flow field upstream of the flame is deflected by the flame. This is due to the pressure drop across the flame which is necessary to accelerate the flow behind the flame. The vortices were not observed behind the flame. The combination of dilation and increased dissipation consumed the vortices. Density statistics obtained from Rayleigh scattering measurements were compared with predictions by the Bray-Moss-Libby (B-M-L) model which neglects intermediate states. Density fluctuations were overpredicted by the B-M-L model by a small amount.

  12. An experimental study of premixed laminar methane/oxygen/argon flames doped with hydrogen at low pressure with synchrotron photoionization

    Institute of Scientific and Technical Information of China (English)

    WANG JinHua; HU ErJiang; HUANG ZuoHua; MA ZhiHao; TIAN ZhenYu; WANG Jing; LI YuYang

    2008-01-01

    Laminar premixed stoichiometric methane/hydrogen/oxygen/argon flames were investigated with tun-able synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spec-trometry techniques. The methane/hydrogen fuel blends with hydrogen volumetric fraction of 0, 20%, 40%, 60% and 80% were studied. All observed flame species, including stable intermediates and radi-cals in the flames, were detected by measuring photoionization mass spectra and photoionization effi-ciency (PIE) spectra. Mole fraction profiles of major species and intermediates were derived by scan-ning burner at some selected photon energies near ionization thresholds. The influence of hydrogen addition on mole fraction of major species and intermediates was analyzed. The results show that the major species mole fraction of CO, CO2 and CH4 decreases with the increase of hydrogen fraction. The mole fraction of intermediates measured in this experiment decreases remarkably with the increase of hydrogen fraction. This would be due to the increase of H and OH radicals by hydrogen addition and the high diffusivity and activity of H radical promoting the chemical reaction. In addition, the increase of H/C ratio with the increase of hydrogen fraction also leads to the decrease of the mole fraction of car-bon-related intermediates and contributes to the decrease of unburned and incomplete combustion products.

  13. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  14. Einstein's steady-state cosmology

    Science.gov (United States)

    O'Raifeartaigh, Cormac

    2014-09-01

    Last year, a team of Irish scientists discovered an unpublished manuscript by Einstein in which he attempted to construct a "steady-state" model of the universe. Cormac O'Raifeartaigh describes the excitement of finding this previously unknown work.

  15. A study on measurement of NO concentrations in laminar premixed CH{sub 4}/O{sub 2}/N{sub 2} flames by LIF

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyung Hee University Graduate School, Seoul (Korea); Jin, S.H.; Kim, G.S. [Korea Institute of Industrial Technology, Chonan (Korea); Park, K.S. [Kyung Hee University, Seoul (Korea)

    2000-11-01

    In this study, quantitative nitric oxide concentration distributions are investigated in the post-flame zone of laminar premixed CH{sub 4}/O{sub 2}/N{sub 2} flames by laser-induced fluorescence (LIF). The measurements are taken in flames for different equivalence ratios varying from 0.8 {approx} 1.4, and flow rate is fixed as 5 slpm. The No A-X (0,0) vibrational band around 226 nm is excited using a XeCl excimer-pumped dye laser. Selecting an appropriate NO transition minimizes interferences from Rayleigh scattering and O{sub 2} fluorescence. NO concentration is rised when equivalence ratios increase at different vertical distances form nozzle tip. In any case, the maximum NO concentration reaches the maximum in reaction zone. (author). 11 refs., 9 figs., 1 tab.

  16. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process.......This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches...

  17. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.

    2016-11-11

    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  18. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    2011-01-01

    This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches i...

  19. Measurement of laminar burning velocities and analysis of flame stabilities for hydrogen-air-diluent premixed mixtures

    Institute of Scientific and Technical Information of China (English)

    HU ErJiang; HUANG ZuoHua; HE JiaJia; JIN Chun; MIAO HaiYan; WANG XiBin

    2009-01-01

    The laminar burning velocities and Markstein lengths of the hydrogen-air-diluent mixtures were meas-ured at different equivalence ratios (0.4-1.5), different diluents (N2, CO2 and 15%CO2+85%N2) and di-lution ratios (0, 0.05, 0.10 and 0.15) by using the outwardly expanding flame. The influences of flame stretch rate on the flame propagation characteristics were analyzed. The results show that both the laminar burning velocities and the Markstein lengths of the hydrogen-air-diluent mixtures decrease with the increase of dilution ratio. The decrease in Markstein lengths means that adding diluents into the hydrogen-air mixtures will decrease the diffusional-thermal instability of the flame front. For a specified dilution ratio, the laminar burning velocities give their maximum values at an equivalence ratio of 1.8. The Markstein lengths increase with the increase of the equivalence ratio monotonously regardless of the diluents. The study shows that CO2 as the diluent has a greater impact on the laminar flame speed and the flame front stability than N2 as the diluent.

  20. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  1. Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect

    KAUST Repository

    Kim, Minkuk

    2012-03-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally by applying AC electric fields at low frequency below 60. Hz together with DC in the single electrode configuration. The blowoff velocity has been measured for varying AC voltage and frequency. A transition frequency between low and high frequency regimes has been identified near 40-50. Hz, where AC electric fields have minimal effect on flame stabilization. In the low frequency regime, the blowoff velocity decreased linearly with AC voltage such that the flames became less stable. This was consistent with the DC result, implying the influence of the ionic wind effect. The variation of blowoff velocity with AC frequency showed a non-monotonic behavior in that the velocity decreased and then increased, exhibiting minimum blowoff velocity near 6-8. Hz. Based on the molecular kinetic theory, the developing degree of ionic wind was derived. By considering the ionic wind effects arising from both positive and negative ions in a flame zone, the bi-ionic wind effect successfully explained the non-monotonic behavior of blowoff velocity with AC frequency in the low frequency regime. © 2011 The Combustion Institute.

  2. Non-Markovianity assisted Steady State Entanglement

    CERN Document Server

    Huelga, Susana F; Plenio, Martin B

    2011-01-01

    We analyze the dependence of steady state entanglement in a dimer system with a coherent exchange interaction and subject to local dephasing on the degree of Markovianity of the system-environment interaction. We demonstrate that non-Markovianity of the system-environment interaction is an essential resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations results in separable steady states. This result illustrates possible mechanisms leading to long lived entanglement in purely decohering local environments. A feasible experimental demonstration of this non-Markovianity assisted steady state entanglement using a system of trapped ions is presented.

  3. 甲醇抑制层流预混火焰中碳烟生成的机理%Suppression of Soot in Laminar Premixed Flames with Methanol

    Institute of Scientific and Technical Information of China (English)

    倪培永; 王忠; 王向丽; 袁银男

    2011-01-01

    Using the method of moment, a computational study is performed on the chemical mechanism of the formation of soot particles in laminar premixed methanol/ethylene/air flames. The model involves particle inception, coagulation, condensation and heterogeneous surface growth and oxidation. This mechanism involves 101 species and 543 reactions. The simulations of volume fraction and average diameter of the soot particles and mole fraction of intermediate species import for soot formation were conducted for methanol of different mole fractions. Sensitivity analysis on formation/consumption of acetylene and benzene was made. The oxygen atom transfer path in methanol molecules in the process of fuel combustion was also disclosed. The results show that methanol can effectively reduce soot, polycyclic aromatic hydrocarbons which are the precursor of soot, and the precursors of polycyclic aromatic hydrocarbons such as acetylene and propargyl. The oxygen atoms in methanol molecules transfer among methanoyl, formaldehyde, hydroxide radical, formyl, carbon monoxide and carbon dioxide.%利用矩方法研究了层流甲醇/乙烯预混火焰中碳烟颗粒形成的化学反应动力学机理.模型考虑了颗粒的成核、颗粒间的凝结与聚合、气态组分在颗粒表面的生长与氧化过程.整个机理涉及101种组分和543个基元反应.计算了不同甲醇摩尔分数时碳烟粒子体积分数、粒子直径及重要中间组分的摩尔分数,对乙炔和苯的生成/消耗进行了敏感性分析,揭示了甲醇燃烧过程中氧原子的迁移路径.计算结果表明,甲醇能有效地减少碳烟及其前驱体多环芳香烃、多环芳香烃前驱体物质(如乙炔、炔丙基等)的生成量.燃烧过程甲醇中氧原子在甲醇基、甲醛、羟基、甲醛基、一氧化碳和二氧化碳等物质中迁移.

  4. Non-Markovianity-assisted steady state entanglement.

    Science.gov (United States)

    Huelga, Susana F; Rivas, Ángel; Plenio, Martin B

    2012-04-20

    We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.

  5. A steady state theory for processive cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil;

    2013-01-01

    . This has significant kinetic implications, for example the maximal specific rate (Vmax/E0) for processive cellulases is much lower than the catalytic rate constant (kcat). We discuss how relationships based on this theory may be used in both comparative and mechanistic analyses of cellulases....... remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady......-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis–Menten equation. The main difference is a ‘kinetic processivity...

  6. Multiple steady state phenomenon in martensitic transformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the basic facts that the martensitic transformation is a physical phenomenon which occurs in non-equilibrium conditions and there exists the feedback mechanism in the martensitic transformation, the dynamical processes of the isothermal and athermal martensitic transformations were analyzed by using nonlinear theory and a bifurcation theory model was established. It is shown that a multiple steady state phenomenon can take place as austenite is cooled, and the transitions of the steady state temperature between the branches of stable steady states can be considered the transformation from austenite to martensite. This model can estimate the starting temperature of the martensitic transformation and explain some experimental features of the martensitic transformation such as the effects of cooling rate, fluctuation and austenitic grain size on the martensitic transformation.

  7. Arbitrary Steady-State Solutions with the K-epsilon Model

    Science.gov (United States)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  8. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  9. Steady State Analysis of Towed Marine Cables

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; HUANG Guo-liang; DENG De-heng

    2008-01-01

    Efficient numerical schemes were presented for the steady state solutions of towed marine cables. For most of towed systems, the steady state problem can be resolved into two-point boundary-value problem, or initial value problem in some special cases where the initial values are available directly. A new technique was proposed and attempted to solve the two-point boundary-value problem rather than the conventional shooting method due to its algorithm complexity and low efficiency. First, the boundary conditions are transformed into a set of nonlinear governing equations about the initial values, then bisection method is employed to solve these nonlinear equations with the aid of 4th order Runge-Kutta method. In common sense, non-uniform (sheared) current is assumed, which varies in magnitude and direction with depth. The schemes are validated through the DE Zoysa's example, then several numerical examples are also presented to illustrate the numerical schemes.

  10. On Steady-State Tropical Cyclones

    Science.gov (United States)

    2014-01-01

    circulation (Ooyama, 1969; Shapiro and Willoughby , 1982). Above the frictional boundary layer, this steady-state circulation must be along absolute angular...u′ sin λ〉 on the right-hand side of this equation. ‖According to axisymmetric balance dynamics (Ooyama, 1969; Shapiro and Willoughby , 1982), the...such as the diabatic heating rate and frictional and eddy processes (Shapiro and Willoughby , 1982; Shapiro and Montgomery, 1993; Vigh and Schubert, 2009

  11. On Typicality in Nonequilibrium Steady States

    Science.gov (United States)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-08-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  12. On circulating power of steady state tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1996-03-01

    Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)

  13. Energy repartition in the nonequilibrium steady state

    Science.gov (United States)

    Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu

    2017-01-01

    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.

  14. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  15. Frozen steady states in active systems

    CERN Document Server

    Schaller, Volker; Hammerich, Benjamin; Frey, Erwin; Bausch, Andreas R

    2011-01-01

    Even simple active systems can show a plethora of intriguing phenomena and often we find complexity were we would have expected simplicity. One striking example is the occurrence of a quiescent or absorbing state with frozen fluctuations that at first sight seems to be impossible for active matter driven by the incessant input of energy. While such states were reported for externally driven systems through macroscopic shear or agitation, the investigation of frozen active states in inherently active systems like cytoskeletal suspensions or active gels is still at large. Using high density motility assay experiments, we demonstrate that frozen steady states can arise in active systems if active transport is coupled to growth processes. The experiments are complemented by agent-based simulations which identify the coupling between self-organization, growth and mechanical properties to be responsible for the pattern formation process.

  16. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete sys...... be taken into account in a future version of the model. More experimental data have to be gathered to implement eventual missing phenomena and validate the model for all input parameters....... systems. A steady state two-dimensional model is formulated and implemented aiming to obtain good accuracy and short computational times. Comparison with experimental data from the literature shows that the model reproduces the physical behavior of desiccant wheels. Mass diffusion in the desiccant should......Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  17. Fluctuations When Driving Between Nonequilibrium Steady States

    CERN Document Server

    Riechers, P M

    2016-01-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balance dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify constraints on excess thermodynamic quantities that ride above the NESS housekeeping background. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. Altogether, these point to universal thermodynamic laws that are immediately app...

  18. Steady-state and non-steady state operation of counter-current chromatography devices.

    Science.gov (United States)

    Kostanyan, Artak E; Ignatova, Svetlana N; Sutherland, Ian A; Hewitson, Peter; Zakhodjaeva, Yulya A; Erastov, Andrey A

    2013-11-01

    Different variants of separation processes based on steady-state (continuous sample loading) and non-steady state (batch) operating modes of CCC columns have been analyzed and compared. The analysis is carried out on the basis of the modified equilibrium cell model, which takes into account both mechanisms of band broadening - interphase mass transfer and axial mixing. A full theoretical treatment of the intermittent counter-current chromatography with short sample loading time is performed. Analytical expressions are presented allowing the simulation of the intermittent counter-current chromatography separations for various experimental conditions. Chromatographic and extraction separations have been compared and advantages and disadvantages of the two methods have been evaluated. Further technical development of the CCC machines to implement counter-current extraction separations is considered.

  19. Steady-state creep in the mantle

    Directory of Open Access Journals (Sweden)

    G. RANALLI

    1977-06-01

    Full Text Available SUMMARY - The creep equations for steady-state flow of olivine at high
    pressure and temperature are compared in an attempt to elucidate the rheological
    behaviour of the mantle. Results are presented in terms of applied deformation
    maps and curves of effective viscosity v depth.
    In the upper mantle, the transition stress between dislocation and diffusion
    creep is between 10 to 102 bar (as orders of magnitude for grain sizes from
    0.01 to 1 cm. The asthenosphere under continents is deeper, and has higher
    viscosity, than under oceans. Predominance of one creep mechanism above the
    others depends on grain size, strain rate, and volume fraction of melt; the
    rheological response can be different for different geodynamic processes.
    In the lower mantle, on the other hand, dislocation creep is predominant
    at all realistic grain sizes and strain rates. If the effective viscosity has to be only
    slightly higher than in the upper mantle, as some interpretations of glacioisostatic
    rebound suggest, then the activation volume cannot be larger than
    11 cm3 mole^1.

  20. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  1. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  2. Fluctuations When Driving Between Nonequilibrium Steady States

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2017-08-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.

  3. Constrained optimal steady-state control for isolated traffic intersections

    Institute of Scientific and Technical Information of China (English)

    Jack HADDAD; David MAHALEL; Ilya IOSLOVICH; Per-Olof GUTMAN

    2014-01-01

    The steady-state or cyclic control problem for a simplified isolated traffic intersection is considered. The optimization problem for the green-red switching sequence is formulated with the help of a discrete-event max-plus model. Two steady-state control problems are formulated: optimal steady-state with green duration constraints, and optimal steady-state control with lost time. In the case when the criterion is a strictly increasing, linear function of the queue lengths, the steady-state control problems can be solved analytically. The structure of constrained optimal steady-state traffic control is revealed, and the effect of the lost time on the optimal solution is illustrated.

  4. Experimental Study on Combustion Characteristics of Premixed Laminar Flame for Simulated Biogas%模拟沼气预混层流燃烧特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    吴怡; 暴秀超; 黄海波

    2012-01-01

    The combustion characteristics of premixed laminar flame for simulated biogas are studied in a constant volume combus-tion bomb by using high - speed schlieren photography. The components of simulated biogas contain methane and CO2, the methane content is from 70% to 75% , CO2 content is from 25% to 30% . The burning speed and combustion pressure of simulated biogas with different components are compared with pure methane. Experimental results show that the burning speed of biogas decreases compared with pure methane because CO2 restrains flame from spreading, and the combustion process extends with the increase of CO2 propor-tion.%在定容燃烧弹上采用高速纹影系统对模拟沼气预混层流火焰的燃烧特性进行研究.模拟沼气为甲烷含量70% ~ 75%和二氧化碳含量25%~ 30%的混合气.对不同成分的模拟沼气和纯甲烷的燃烧速度及燃烧压力进行了对比分析.研究结果表明,沼气中较高含量的二氧化碳对燃烧有强烈的抑制作用,使沼气的燃烧速度与纯甲烷相比有所下降,并且随着成分中二氧化碳含量的增加,整个燃烧过程延长.

  5. An axisymmetric steady state vortex ring model

    CERN Document Server

    Wang, Ruo-Qian

    2016-01-01

    Based on the solution of Atanasiu et al. (2004), a theoretical model for axisymmetric vortex flows is derived in the present study by solving the vorticity transport equation for an inviscid, incompressible fluid in cylindrical coordinates. The model can describe a variety of axisymmetric flows with particular boundary conditions at a moderately high Reynolds number. This paper shows one example: a high Reynolds number laminar vortex ring. The model can represent a family of vortex rings by specifying the modulus function using a Rayleigh distribution function. The characteristics of this vortex ring family are illustrated by numerical methods. For verification, the model results compare well with the recent direct numerical simulations (DNS) in terms of the vorticity distribution and streamline patterns, cross-sectional areas of the vortex core and bubble, and radial vorticity distribution through the vortex center. Most importantly, the asymmetry and elliptical outline of the vorticity profile are well capt...

  6. Particle Velocity Fluctuations in Steady State Sedimentation: Stratification Controlled Correlations

    CERN Document Server

    Segrè, P N

    2007-01-01

    The structure and dynamics of steady state sedimentation of semi-concentrated ($\\phi=0.10$) monodisperse spheres are studied in liquid fluidized beds. Laser turbidity and particle imaging methods are used to measure the particle velocity fluctuations and the steady state concentration profiles. Using a wide range of particle and system sizes, we find that the measured gradients $\

  7. Coexistence Steady States in a Predator-Prey Model

    CERN Document Server

    Walker, Christoph

    2010-01-01

    An age-structured predator-prey system with diffusion and Holling-Tanner-type nonlinearities is considered. Regarding the intensity of the fertility of the predator as bifurcation parameter, we prove that a branch of positive coexistence steady states bifurcates from the marginal steady state with no prey. A similar result is obtained when the fertility of the prey varies.

  8. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  9. Steady State of Pedestrian Flow in Bottleneck Experiments

    CERN Document Server

    Liao, Weichen; Seyfried, Armin; Chraibi, Mohcine; Drzycimski, Kevin; Zheng, Xiaoping; Zhao, Ying

    2015-01-01

    Experiments with pedestrians could depend strongly on initial conditions. Comparisons of the results of such experiments require to distinguish carefully between transient state and steady state. In this work, a feasible algorithm - Cumulative Sum Control Chart - is proposed and improved to automatically detect steady states from density and speed time series of bottleneck experiments. The threshold of the detection parameter in the algorithm is calibrated using an autoregressive model. Comparing the detected steady states with previous manually selected ones, the modified algorithm gives more reproducible results. For the applications, three groups of bottleneck experiments are analysed and the steady states are detected. The study about pedestrian flow shows that the difference between the flows in all states and in steady state mainly depends on the ratio of pedestrian number to bottleneck width. When the ratio is higher than a critical value (approximately 115 persons/m), the flow in all states is almost ...

  10. Steady states and stability in metabolic networks without regulation.

    Science.gov (United States)

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological

  11. 甲醇对正庚烷层流预混火焰影响的实验研究%Experimental Study of the Effect of Methanol on the n-Heptane Premixed Laminar Flame

    Institute of Scientific and Technical Information of China (English)

    许汉君; 姚春德; 徐广兰; 阳向兰; 杨玖重; 王占东

    2011-01-01

    利用低压层流预混火焰结合同步辐射真空紫外光电离技术和分子束取样质谱技术,探测到并计算了甲醇摩尔掺混比为0%、11%、28%和50%的甲醇/正庚烷/氧气/氩气火焰中62种燃烧中间产物和最终产物的摩尔分数.结果发现,甲醇的加入对正庚烷的消耗速率和大分子裂解没有影响,其主要作用表现在对C1和C2小分子摩尔分数的影响.甲醇的氧化速率比正庚烷快,故用甲醇替换一部分正庚烷后,整体氧化速率加快.甲醇的加入对甲基、乙炔、乙基、乙烷、乙烯酮有抑制作用,对甲醛和乙醛有促进作用.研究结果为今后机理验证模拟提供了实验依据.%An experimental study of the low pressure premixed laminar methanol/n-heptane/oxygen/argon flame with the methanol mole fraction blend ratio of 0%, 11%, 28%, 50% was performed with the tunable synchrotron vacuum ultra-violet (VUV) photoionization and molecular-beam sampling mass spectrometry. 62 kinds of combustion intermediates and final products were detected as well as their mole fractions. The results show that the consumption rate of n-heptane and the dissociation of large molecular are not impacted by the methanol addition, the effect of methanol behaviors at the small C1 and C2 moleculars. The oxidation rate of methanol is larger than that of n-heptane, so with the methanol addition increase, the overall reaction rate increases. At the same time the equivalent concentrations of methyl, acetylene, ethyl, ethane and ketene decrease with the increase of methanol but formaldehyde and acetaldehyde increase. The experiment provides the valuable data for the validation of mechanism in the future.

  12. Steady-state decoupling and design of linear multivariable systems

    Science.gov (United States)

    Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.

  13. Enhancement of the steady-state magnetization in TROSY experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riek, Roland [Institut fuer Molekularbiologie und Biophysik Eidgenoessische Technische Hochschule Hoenggerberg (Switzerland)], E-mail: rr@mol.biol.ethz.ch

    2001-10-15

    Under the condition that the longitudinal relaxation time of spin I is shorter than the longitudinal relaxation time of spin S the steady-state magnetization in [S,I]-TROSY-type experiments can be enhanced by intermediate storage of a part of the steady-state magnetization of spin I on spin S with a pulse sequence element during the relaxation delay. It is demonstrated with samples ranging in size from the 1 kDa cyclosporin to the 110 kDa {sup 15}N,{sup 2}H-labeled dihydroneopterin Aldolase that intermediate storage of steady-state magnetization in a [{sup 15}N,{sup 1}H]-TROSY experiment yields a signal gain of 10-25%. The method proposed here for intermediate storage of steady-state magnetization can be implemented in any [{sup 15}N,{sup 1}H]-TROSY-type experiments.

  14. Steady state and time resolved spectroscopy of photoswitchable systems

    NARCIS (Netherlands)

    Hou, Lili

    2013-01-01

    Steady state en time resolved spectroscopie zijn twee fundamentele methodes voor het bestuderen van fotochemische processen. In dit proefschrift zijn drie zelf-opgezette spectroscopische systemen beschreven, waarmee samen met andere spectroscopische methoden verscheidende met licht schakelbare syste

  15. Analytic description of adaptive network topologies in a steady state.

    Science.gov (United States)

    Wieland, Stefan; Nunes, Ana

    2015-06-01

    In many complex systems, states and interaction structure coevolve towards a dynamic equilibrium. For the adaptive contact process, we obtain approximate expressions for the degree distributions that characterize the interaction network in such active steady states. These distributions are shown to agree quantitatively with simulations except when rewiring is much faster than state update and used to predict and to explain general properties of steady-state topologies. The method generalizes easily to other coevolutionary dynamics.

  16. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  17. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  18. Multiple steady states in coupled flow tank reactors

    Science.gov (United States)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  19. Geomorphic and Thermal Steady State Regimes: Reality or Wishful Thinking?

    Science.gov (United States)

    Lock, J.; Furlong, K.

    2003-04-01

    In many tectonic geomorphic studies, it is assumed that rates of uplift within an orogen are matched by rates of exhumation producing a steady-state orogen. However, the tools used to determine exhumation are thermally driven (e.g. Fission Track, U-Th/He) and exhumation can substantially perturb the crustal thermal regime. Since knowing the thermal regime is key to determining exhumation from thermochronology, problems arise. In order to interpret a rate of exhumation we make the assumption that an area is in thermal 'steady state', which in young active orogens unlikely exists. Taiwan, the Southern Alps, Fiordland, and Nanga Parbat are relatively young mountain belts that have begun to uplift or have experienced increased rates of uplift during the past 5-10 Ma. As there is a time lag between the onset of uplift and achieving geomorphic steady state and again between reaching geomorphic steady state and thermal steady state, these orogens may be too young to have achieved this final stage. Additionally, young orogens may not have experienced a constant rate of uplift and denudation in the time over which the thermochronometers average. Certainly, in the case of the Southern Alps, present uplift rates can not have existed since uplift begun. Therefore, an apparent age is recording a transient thermal state. Even in a case where geomorphic steady state exists i.e. exhumation balances uplift, it is unlikely that a thermal steady state has been reached. This precludes the simple interpretation of exhumation rates often made. When multiple thermochronometers are used, inconsistencies can arise. For example, an increase in the rate of uplift is often observed when comparing the rates of exhumation using different thermochronometers. Our modeling shows that in some cases this phenomena is actually eliminated by considering the transient nature of the thermal regime following the onset of uplift and exhumation of an active orogen. To accurately determine exhumation rate

  20. Soil residence time: A window into landscape morphologic steady state

    Science.gov (United States)

    Almond, P. C.; Roering, J. J.

    2005-12-01

    For a landscape in true morphologic steady state the erosion rate and the average residence time of the debris mantle regolith (including the soils) are everywhere equal. Where other factors influencing soil properties such as climate, organisms and parent material are relatively invariant the degree of weathering and extent of pedological development in the debris mantle regolith should be spatially invariant. The corollary to this argument, commonly exploited in soil-geomorphic analysis, is that variation in debris mantle regolith development in a landscape reflects inheritance of older geomorphic surfaces and hence departure from steady state, at least over some time and space scale. The Oregon Coast Range (OCR) experiences a constant rate of rock uplift and has escaped the effects of Pleistocene glacial and periglacial processes. Furthermore, rock uplift and denudation rates have been shown to be approximately in balance, and consequently the OCR is promoted as being a good candidate for a (flux) steady state landscape. This is, however, not a sufficient condition for morphologic steady state, which is often assumed in numerical landscape simulations. The rock underlying the OCR is relatively homogeneous turbidites of the Tyee formation, and climatic and vegetation factors are relatively uniform over large areas. The degree of weathering and pedological development of the regolith on hillslopes should therefore dominantly reflect variation in regolith residence time, such that significant variation implies non-morphologic-steady state conditions. Indeed, spatial variation in soil/regolith age indicates the extent of departure from morphologic steady state. We have observed ubiquitous but localised deep, highly weathered regoliths and soils on ridge tops in the OCR. The extent, depth, geometry and elevational distribution of these deep regolith patches combined with relative measures of their age derived from total element and meteoric 10Be inventory will enable

  1. Chaos in an imperfectly premixed model combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kabiraj, Lipika, E-mail: lipika.kabiraj@tu-berlin.de; Saurabh, Aditya; Paschereit, Christian O. [Hermann Föttinger Institut, Technische Universität Berlin (Germany); Karimi, Nader [School of Engineering, University of Glasgow (United Kingdom); Sailor, Anna [University of Wisconsin-Madison, Madison 53706 (United States); Mastorakos, Epaminondas; Dowling, Ann P. [Department of Engineering, University of Cambridge (United Kingdom)

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  2. Stable MIMO Constrained Predictive Control with Steady state Objective Optimization

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is pre sented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that .the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.

  3. Structural simplification of chemical reaction networks in partial steady states.

    Science.gov (United States)

    Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa

    2016-11-01

    We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology.

  4. Quantum quasi-steady states in current transport

    Science.gov (United States)

    D'Agosta, Roberto; Zwolak, Michael; di Ventra, Massimiliano

    2007-03-01

    We investigate quasi-steady state solutions to transport in quantum systems by finding states which at some time minimize the change in density throughout all space and have a given current density flowing from one part of the system to another [1]. Contrary to classical dynamics, in a quantum mechanical system there are many states with a given energy and particle number which satisfy this minimization criterion. Taking as an example spinless fermions on a one-dimensional lattice, we explicitly show the phase space of a class of quasi-steady states. We also discuss the possibility of coherent and incoherent mixing of these steady state solutions leading to a new type of noise in quantum transport. [1] M. Di Ventra and T.N. Todorov J. Phys. Cond. Matt. 16, 8025 (2004).

  5. Steady state decoupling and design of linear multivariable systems

    Science.gov (United States)

    Huang, J. Y.; Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of linear multivariable systems is developed. The criterion consists of n(n-1) inequalities with the type numbers of the compensator transfer functions as the unknowns. These unknowns can be chosen to satisfy the inequalities and hence achieve a steady state decoupling scheme. It turns out that pure integrators in the loops play an important role. An extended root locus design method is then developed to take care of the stability and transient response. The overall procedure is applied to the compensation design for STOL C-8A aircraft in the approach mode.

  6. Adaptive steady-state stabilization for nonlinear dynamical systems

    Science.gov (United States)

    Braun, David J.

    2008-07-01

    By means of LaSalle’s invariance principle, we propose an adaptive controller with the aim of stabilizing an unstable steady state for a wide class of nonlinear dynamical systems. The control technique does not require analytical knowledge of the system dynamics and operates without any explicit knowledge of the desired steady-state position. The control input is achieved using only system states with no computer analysis of the dynamics. The proposed strategy is tested on Lorentz, van der Pol, and pendulum equations.

  7. Electric machines steady state, transients, and design with Matlab

    CERN Document Server

    Boldea, Ion

    2009-01-01

    Part I: Steady StateIntroductionElectric Energy and Electric MachinesBasic Types of Transformers and Electric MachinesLosses and EfficiencyPhysical Limitations and RatingsNameplate RatingsMethods of AnalysisState of the Art and Perspective Electric TransformersAC Coil with Magnetic Core and Transformer Principles Magnetic Materials in EMs and Their LossesElectric Conductors and Their Skin EffectsComponents of Single- and 3-Phase TransformersFlux Linkages and Inductances of Single-Phase TransformersCircuit Equations of Single-Phase Transformers With Core LossesSteady State and Equivalent Circui

  8. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states

    Science.gov (United States)

    Rotskoff, Grant M.

    2017-03-01

    We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.

  9. Emergence of advance waves in a steady-state universe

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, R.H.

    1979-10-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.

  10. Vesicle Dynamics in a Confined Poiseuille Flow: From Steady-State to Chaos

    CERN Document Server

    Aouane, Othmane; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-01-01

    Red blood cells (RBCs) are the major component of blood and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: i) the degree of confinement of vesicles within the channel, and ii) the flow strength. Rich and complex dynamics for vesicles are revealed ranging from steady-state shapes (in the form of parachute and slipper) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement, flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  11. Plasticity, Fracture and Friction in Steady-State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1997-01-01

    A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...

  12. The Enlisted Steady State-Simulation (ESS-SIM) Tool

    Science.gov (United States)

    2014-07-01

    1 Model design ...current inven- tories. A simulation of the transition from a current inventory toward the steady state is required for such an understanding. Model design ...described by paygrade (e.g., the Navy needs 100 E-5 OS personnel). • Longevity (length of service): Many personnel policies address longevity (e.g., Zone A

  13. The concave river long profile: a morphodynamic steady state?

    Science.gov (United States)

    Blom, A.

    2011-12-01

    By definition, a morphodynamic steady state is governed by a spatially constant sediment transport rate. As the sediment transport rate is a function of shear stress associated with skin friction, the morphodynamic steady state has been considered to be governed by a spatially constant bed slope. For this reason, the typical concave river long profile has been considered to be a quasi-steady state. The river's steady state has been considered to be one with a spatially constant bed slope, with tributaries inducing a stepwise decrease in bed slope in streamwise direction. Yet, for the sediment transport rate to be spatially constant, it rather is the product of water surface slope and water depth associated with skin friction that needs to be constant. This implies that physical mechanisms that induce streamwise variation in the sediment transport rate can be compensated by a streamwise variation in bed slope so as to guarantee a spatially constant sediment transport rate. Following the river course, such physical mechanisms can be bedrock exposure, partial transport, and a spatially lagging bedform growth. At locations where tributaries increase the water discharge, the above mechanisms cause the river bed profile to be upward concave over a significant reach. At bifucations or at locations where river widening prevails, the river bed profile is upward convex.

  14. ONLINE MONITORING STEADY STATE STABILITY LIMIT PADA SISTEM INTERKONEKSI SULSELRABAR

    OpenAIRE

    2015-01-01

    Pada beberapa dekade terakhir, fenomena black-out (pemadaman total)akibat voltage collapse mengalami peningkatan.Hal ini disebabkan oleh peningkatan konsumen pemakai listrik yang tidak sebanding dengan peningkatan pembangkit dan pengembangan jaringan transmisi. Berdasarkan kenyataan dilapangan, ketidakstabilan steady state sangat berhubungan dengan rendahnya ketersediaan daya aktif/reaktif, level tegangan yang rendah, dan besarnya perubahan tegangan untuk perubahan beban atau daya pembangkit....

  15. Principle of Entropy Maximization for Nonequilibrium Steady States

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2002-01-01

    The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...

  16. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  17. Steady state nutrition by transpiration controlled nutrient supply

    NARCIS (Netherlands)

    Braakhekke, W.G.; Labe, D.A.

    1990-01-01

    Programmed nutrient addition with a constant relative addition rate has been advocated as a suitable research technique for inducing steady state nutrition in exponentially growing plants. Transpiration controlled nutrient supply is proposed as an alternative technique for plants with a short or no

  18. Analysis of slow transitions between nonequilibrium steady states

    Science.gov (United States)

    Mandal, Dibyendu; Jarzynski, Christopher

    2016-06-01

    Transitions between nonequilibrium steady states obey a generalized Clausius inequality, which becomes an equality in the quasistatic limit. For slow but finite transitions, we show that the behavior of the system is described by a response matrix whose elements are given by a far-from-equilibrium Green-Kubo formula, involving the decay of correlations evaluated in the nonequilibrium steady state. This result leads to a fluctuation-dissipation relation between the mean and variance of the nonadiabatic entropy production, Δ {{s}\\text{na}} . Furthermore, our results extend—to nonequilibrium steady states—the thermodynamic metric structure introduced by Sivak and Crooks for analyzing minimal-dissipation protocols for transitions between equilibrium states.

  19. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  20. Hydrodynamics of stratified epithelium: steady state and linearized dynamics

    CERN Document Server

    Yeh, Wei-Ting

    2015-01-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue is assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description for tissue dynamics at long-wavelength, long-time limit is developed, and the analysis reveals important insight for the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface could enhance small perturbations. This destabilizing mechanism is general for continuous self-renewal multi-layered tissues, it could be related to the origin of certain tissue morphology and developing pattern.

  1. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  2. Nonequilibrium Steady States of a Stochastic Model System.

    Science.gov (United States)

    Zhang, Qiwei

    We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.

  3. Task-specific stability of multifinger steady-state action.

    Science.gov (United States)

    Reschechtko, Sasha; Zatsiorsky, Vladimir M; Latash, Mark L

    2015-01-01

    The authors explored task-specific stability during accurate multifinger force production tasks with different numbers of instructed fingers. Subjects performed steady-state isometric force production tasks and were instructed not to interfere voluntarily with transient lifting-and-lowering perturbations applied to the index finger. The main results were (a) intertrial variance in the space of finger modes at steady states was larger within the subspace that had no effect on the total force (the uncontrolled manifold [UCM]); (b) perturbations caused large deviations of finger modes within the UCM (motor equivalence); and (c) deviations caused by the perturbation showed larger variance within the UCM. No significant effects of the number of task fingers were noted in any of the 3 indicators. The results are discussed within the frameworks of the UCM and referent configuration hypotheses. The authors conclude, in particular, that all the tasks were effectively 4-finger tasks with different involvement of task and nontask fingers.

  4. Non-equilibrium steady states in supramolecular polymerization

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  5. Approach to steady-state transport in nanoscale conductors.

    Science.gov (United States)

    Bushong, Neil; Sai, Na; Di Ventra, Massimiliano

    2005-12-01

    We show, using a tight-binding model and time-dependent density-functional theory, that a quasi-steady-state current can be established dynamically in a finite nanoscale junction without any inelastic effects. This is simply due to the geometrical constriction experienced by the electron wave packets as they propagate through the junction. We also show that in this closed nonequilibrium system two local electron occupation functions can be defined on each side of the nanojunction which approach Fermi distributions with increasing number of atoms in the electrodes. The resultant conductance and current-voltage characteristics at quasi-steady state are in agreement with those calculated within the static scattering approach.

  6. Steady-state Physics, Effective Temperature Dynamics in Holography

    CERN Document Server

    Kundu, Arnab

    2013-01-01

    Using the gauge-gravity duality, we argue that for a certain class of out-of-equilibrium steady-state systems in contact with a heat bath at a given temperature, the macroscopic physics can be captured by an effective thermodynamic description. The steady-state is obtained by applying a constant electric field that results in a stationary current flow. Within holography, we consider generic probe systems where an open string equivalence principle and an open string metric govern the effective thermodynamics. This description comes equipped with an effective temperature, which is larger than the bath temperature, and a corresponding effective entropy. For conformal or scale-invariant theories, certain scaling behaviours follow immediately. In general, in the large electric field limit, this effective temperature is also observed to obey certain generic relations with various physical parameters in the system.

  7. Multiplying steady-state culture in multi-reactor system.

    Science.gov (United States)

    Erm, Sten; Adamberg, Kaarel; Vilu, Raivo

    2014-11-01

    Cultivation of microorganisms in batch experiments is fast and economical but the conditions therein change constantly, rendering quantitative data interpretation difficult. By using chemostat with controlled environmental conditions the physiological state of microorganisms is fixed; however, the unavoidable stabilization phase makes continuous methods resource consuming. Material can be spared by using micro scale devices, which however have limited analysis and process control capabilities. Described herein are a method and a system combining the high throughput of batch with the controlled environment of continuous cultivations. Microorganisms were prepared in one bioreactor followed by culture distribution into a network of bioreactors and continuation of independent steady state experiments therein. Accelerostat cultivation with statistical analysis of growth parameters demonstrated non-compromised physiological state following distribution, thus the method effectively multiplied steady state culture of microorganisms. The theoretical efficiency of the system was evaluated in inhibitory compound analysis using repeated chemostat to chemostat transfers.

  8. Extending Molecular Theory to Steady-State Diffusing Systems

    Energy Technology Data Exchange (ETDEWEB)

    FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.

    1999-10-22

    Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.

  9. Visual steady state in relation to age and cognitive function

    DEFF Research Database (Denmark)

    Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris

    2017-01-01

    examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power......, global cognition, executive function, memory, and education (p

  10. Anthropic-principle arguments against steady-state cosmological theories

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, F.J. (Tulane Univ., New Orleans, LA (USA))

    1982-04-01

    Steady-state theories are very difficult to rule out on observational grounds, particularly if they are adjusted to contain a three-degree isotropic thermal-background radiation. However, anthropic-principle arguments can be used to rule out virtually any cosmological theory which has the universe stationary in the large. For example, anthropic considerations show that the perfect cosmological principle is self-contradictory.

  11. Steady state magnetic field configurations for the earth's magnetotail

    Science.gov (United States)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  12. Oscillations and multiple steady states in active membrane transport models.

    Science.gov (United States)

    Vieira, F M; Bisch, P M

    1994-01-01

    The dynamic behavior of some non-linear extensions of the six-state alternating access model for active membrane transport is investigated. We use stoichio-metric network analysis to study the stability of steady states. The bifurcation analysis has been done through standard numerical methods. For the usual six-state model we have proved that there is only one steady state, which is globally asymptotically stable. When we added an autocatalytic step we found self-oscillations. For the competition between a monomer cycle and a dimer cycle, with steps of dimer formation, we have also found self-oscillations. We have also studied models involving the formation of a complex with other molecules. The addition of two steps for formation of a complex of the monomer with another molecule does not alter either the number or the stability of steady states of the basic six-state model. The model which combines the formation of a complex with an autocatalytic step shows both self-oscillations and multiple steady states. The results lead us to conclude that oscillations could be produced by active membrane transport systems if the transport cycle contains a sufficiently large number of steps (six in the present case) and is coupled to at least one autocatalytic reaction,. Oscillations are also predicted when the monomer cycle is coupled to a dimer cycle. In fact, the autocatalytic reaction can be seen as a simplification of the model involving competition between monomer and dimer cycles, which seems to be a more realistic description of biological systems. A self-regulation mechanism of the pumps, related to the multiple stationary states, is expected only for a combined effect of autocatalysis and formation of complexes with other molecules. Within the six-state model this model also leads to oscillation.

  13. Optimal operation of Petlyuk distillation: Steady-state behavior

    OpenAIRE

    Ivar J. Halvorsen; Sigurd Skogestad

    2001-01-01

    The "Petlyuk" or "dividing-wall" or "fully thermally coupled" distillation column is an interesting alternative to the conventional cascaded binary columns for separation of multi-component mixtures. However, the industrial use has been limited, and difficulties in operation have been reported as one reason. With three product compositions controlled, the system has two degrees of freedom left for on-line optimization. We show that the steady-state optimal solution surface is quite narrow, an...

  14. Approach to steady state transport in nanoscale conductors

    OpenAIRE

    2005-01-01

    We show, using a tight-binding model and time-dependent density-functional theory, that a quasi-steady state current can be established dynamically in a finite nanoscale junction without any inelastic effects. This is simply due to the geometrical constriction experienced by the electron wavepackets as they propagate through the junction. We also show that in this closed non-equilibrium system two local electron occupation functions can be defined on each side of the nanojunction which approa...

  15. The Approach to Steady State Using Homogeneous and Cartesian Coordinates

    Directory of Open Access Journals (Sweden)

    D. F. Gochberg

    2013-01-01

    Full Text Available Repeating an arbitrary sequence of RF pulses and magnetic field gradients will eventually lead to a steady-state condition in any magnetic resonance system. While numerical methods can quantify this trajectory, analytic analysis provides significantly more insight and a means for faster calculation. Recently, an analytic analysis using homogeneous coordinates was published. The current work further develops this line of thought and compares the relative merits of using a homogeneous or a Cartesian coordinate system.

  16. Steady state equivalence among autocatalytic peroxidase-oxidase reactions

    Science.gov (United States)

    Méndez-González, José; Femat, Ricardo

    2016-12-01

    Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

  17. Multiple Color Stimulus Induced Steady State Visual Evoked Potentials

    Science.gov (United States)

    2007-11-02

    evoked potentials, multiple color, FFT, bispectrum I. INTRODUCTION Visual evoked potential ( VEP ) is the electrical response of...brain under visual stimulation, which can be recorded from the scalp over the visual cortex of the brain. A distinction is made between transient VEP ...and steady-state VEP (SSVEP) based on the stimulation frequencies. The former arises when the stimulation frequencies are less than 2 Hz. However

  18. Steady state nutrition by transpiration controlled nutrient supply

    OpenAIRE

    Braakhekke, W.G.; Labe, D. A.

    1990-01-01

    Programmed nutrient addition with a constant relative addition rate has been advocated as a suitable research technique for inducing steady state nutrition in exponentially growing plants. Transpiration controlled nutrient supply is proposed as an alternative technique for plants with a short or no exponential growth phase. A two-weeks experiment with transpiration controlled nitrogen supply to Pennisetum americanum was carried out to evaluate this method. After an adaptation phase a constant...

  19. Steady-state solution methods for open quantum optical systems

    OpenAIRE

    Nation, P. D.

    2015-01-01

    We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that...

  20. Evaluation of a steady-state test of foam stability

    Science.gov (United States)

    Hutzler, Stefan; Lösch, Dörte; Carey, Enda; Weaire, Denis; Hloucha, Matthias; Stubenrauch, Cosima

    2011-02-01

    We have evaluated a steady-state test of foam stability, based on the steady-state height of a foam produced by a constant velocity of gas flow. This test is mentioned in the book by Bikerman [Foams, Springer, Berlin, 1973] and an elementary theory was developed for it by Verbist et al. [J. Phys. Condens. Matter 8 (1996) p. 3715]. For the study, we used an aqueous solution of the cationic surfactant dodecyl trimethylammonium bromide, C12TAB, at a concentration of two times the critical micelle concentration (2 cmc). During foam generation, bubbles collapse at the top of the column which, in turn, eventually counterbalances the rate of bubble production at the bottom. The resulting balance can be described mathematically by an appropriate solution of the foam drainage equation under specified boundary conditions. Our experimental findings are in agreement with the theoretical predictions of a diverging foam height at a critical gas velocity and a finite foam height in the limit of zero velocity. We identify a critical liquid fraction below which a foam is unstable as an important parameter for characterizing foam stability. Furthermore, we deduce an effective viscosity of the liquid which flows through the foam. Currently unexplained are two experimental observations, namely sudden changes of the steady-state foam height in experiments that run over several hours and a reduction in foam height once an overflow of the foam from the containing vessel has occurred.

  1. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.

  2. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-01

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  3. Basin stability measure of different steady states in coupled oscillators.

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-05

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  4. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-01-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis. PMID:28378760

  5. Nonequilibrium Steady State Thermodynamics and Fluctuations for Stochastic Systems

    Science.gov (United States)

    Taniguchi, Tooru; Cohen, E. G. D.

    2008-02-01

    We use the work done on and the heat removed from a system to maintain it in a nonequilibrium steady state for a thermodynamic-like description of such a system as well as of its fluctuations. Based on an extended Onsager-Machlup theory for nonequilibrium steady states we indicate two ambiguities, not present in an equilibrium state, in defining such work and heat: one due to a non-uniqueness of time-reversal procedures and another due to multiple possibilities to separate heat into work and an energy difference in nonequilibrium steady states. As a consequence, for such systems, the work and heat satisfy multiple versions of the first and second laws of thermodynamics as well as of their fluctuation theorems. Unique laws and relations appear only to be obtainable for concretely defined systems, using physical arguments to choose the relevant physical quantities. This is illustrated on a number of systems, including a Brownian particle in an electric field, a driven torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.

  6. Ideal MHD Stability of ITER Steady State Scenarios with ITBs

    Energy Technology Data Exchange (ETDEWEB)

    F.M. Poli, C.E. Kessel, S. Jardin, J. Manickam, M. Chance, J. Chen

    2011-07-27

    One of ITER goals is to demonstrate feasibility of continuous operations using non-inductive current drive. Two main candidates have been identified for advanced operations: the long duration, high neutron fluency hybrid scenario and the steady state scenario, both operating at a plasma current lower than the reference ELMy scenario [1][2] to minimize the required current drive. The steady state scenario targets plasmas with current 7-10 MA in the flat-top, 50% of which will be provided by the self-generated, pressure-driven bootstrap current. It has been estimated that, in order to obtain a fusion gain Q > 5 at a current of 9 MA, it should be ΒN > 2.5 and H > 1.5 [3]. This implies the presence of an Internal Transport Barrier (ITB). This work discusses how the stability of steady state scenarios with ITBs is affected by the external heating sources and by perturbations of the equilibrium profiles.

  7. Transient and steady-state currents in epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Guillermin, Christophe [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Rain, Pascal [Laboratoire d' Electrostatique et de Materiaux Dielectriques (LEMD), CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Rowe, Stephen W [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)

    2006-02-07

    Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T{sub g} = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm{sup -1} with a sample thickness of 0.5 mm. Above T{sub g}, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T{sub g}, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm{sup -1} have been measured.

  8. Steady states of continuous-time open quantum walks

    Science.gov (United States)

    Liu, Chaobin; Balu, Radhakrishnan

    2017-07-01

    Continuous-time open quantum walks (CTOQW) are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs. We show that a CTOQW always converges to a steady state regardless of the initial state when a graph is connected. When the graph is both connected and regular, it is shown that the steady state is the maximally mixed state. As shown by the examples in this article, the steady states of CTOQW can be very unusual and complicated even though the underlying graphs are simple. The examples demonstrate that the structure of a graph can affect quantum coherence in CTOQW through a long-time run. Precisely, the quantum coherence persists throughout the evolution of the CTOQW when the underlying topology is certain irregular graphs (such as a path or a star as shown in the examples). In contrast, the quantum coherence will eventually vanish from the open quantum system when the underlying topology is a regular graph (such as a cycle).

  9. Cavitation modeling for steady-state CFD simulations

    Science.gov (United States)

    Hanimann, L.; Mangani, L.; Casartelli, E.; Widmer, M.

    2016-11-01

    Cavitation in hydraulic turbomachines is an important phenomenon to be considered for performance predictions. Correct analysis of the cavitation onset and its effect on the flow field while diminishing the pressure level need therefore to be investigated. Even if cavitation often appears as an unsteady phenomenon, the capability to compute it in a steady state formulation for the design and assessment phase in the product development process is very useful for the engineer. In the present paper the development and corresponding application of a steady state CFD solver is presented, based on the open source toolbox OpenFOAM®. In the first part a review of different cavitation models is presented. Adopting the mixture-type cavitation approach, various models are investigated and developed in a steady state CFD RANS solver. Particular attention is given to the coupling between cavitation and turbulence models as well as on the underlying numerical procedure, especially the integration in the pressure- correction step of pressure-based solvers, which plays an important role in the stability of the procedure. The performance of the proposed model is initially assessed on simple cases available in the open literature. In a second step results for different applications are presented, ranging from airfoils to pumps.

  10. SBWR Model for Steady-State and Transient Analysis

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2008-01-01

    Full Text Available This paper presents a model of a simplified boiling water reactor (SBWR to analyze the steady-state and transient behavior. The SBWR model is based on approximations of lumped and distributed parameters to consider neutronics and natural circulation processes. The main components of the model are vessel dome, downcomer, lower plenum, core (channel and fuel, upper plenum, pressure, and level controls. Further consideration of the model is the natural circulation path in the internal circuit of the reactor, which governs the safety performance of the SBWR. To demonstrate the applicability of the model, the predictions were compared with plant data, manufacturer_s predictions, and RELAP5 under steady-state and transient conditions of a typical BWR. In steady-state conditions, the profiles of the main variables of the SBWR core such as superficial velocity, void fraction, temperatures, and convective heat transfer coefficient are presented and analyzed. The transient behavior of SBWR was analyzed during the closure of all main steam line isolation valves (MSIVs. Our results in this transient show that the cooling system due to natural circulation in the SBWR is around 70% of the rated core flow. According to the results shown here, one of the main conclusions of this work is that the simplified model could be very helpful in the licensing process.

  11. Steady-state and pre-steady-state kinetic analysis of Mycobacterium smegmatis cysteine ligase (MshC).

    Science.gov (United States)

    Fan, Fan; Luxenburger, Andreas; Painter, Gavin F; Blanchard, John S

    2007-10-09

    Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-d-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-MshD. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady-state and pre-steady-state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady-state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady-state kinetic parameters were determined to be kcat equal to 3.15 s-1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analogue, 5'-O-[N-(l-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and noncompetitive inhibition versus cysteine, with an inhibition constant of approximately 306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid-quench techniques, giving rates of approximately 9.4 and approximately 5.2 s-1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC.

  12. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Science.gov (United States)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  13. Relaxation versus adiabatic quantum steady-state preparation

    Science.gov (United States)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  14. Steady-State Plasmas in KT5D Magnetized Torus

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenhua; LIU Wandong; WAN Baonian; ZHAO Yanping; LI Jiangang; YAN Longwen; YANG Qingwei; DING Xuantong; XU Min; YU Yi; WANG Zhijiang; LU Ronghua; WEN Yizhi; YU Changxuan; MA Jinxiu; WAN Shude

    2007-01-01

    Steady-state plasma generated by electron cyclotron resonance (ECR) wave in the KT5D magnetized torus was studied using a fast high-resolution camera and Langmuir probes. It was found that both the discharge patterns taken by the camera and the plasma parameters measured by the probes were very sensitive to the working gas pressure and the magnetic configuration of the torus both without and with vertical fields. There existed fast vertical motion of the plasma. Tentative discussion is presented about the observed phenomena such as the bright resonance layer at a high gas pressure and the wave absorption mechanism at a low pressure. Further explanations should be found.

  15. Steady State Stokes Flow Interpolation for Fluid Control

    DEFF Research Database (Denmark)

    Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert

    2012-01-01

    Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...... — suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures...... the rotational components and is suitable for controlling liquid animations where tangential motion is pronounced, such as in a breaking wave...

  16. Quantum-classical correspondence in steady states of nonadiabatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Mikiya; Yamashita, Koichi [Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); CREST, JST, Tokyo 113-8656 (Japan)

    2015-12-31

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.

  17. Full steady-state operation in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.; Litaudon, X.; Moreau, D.; Arslanbekov, R.; Hoang, G.T.; Peysson, Y.

    1996-06-01

    In order to produce fully non-inductive, Lower Hybrid (LH) driven discharges in a systematic and reproducible manner, new operation modes have been studied on the superconducting TORE SUPRA tokamak. It is shown that this operation mode allows to reach full steady-state within a characteristic time of a few seconds. The underlying physics is described and a detailed analysis of the experiments is made. It is shown, in particular, that this operation scenario generates stable stationary plasmas with improved confinement, so that the so-called `LHEP` regime can be extrapolated to continuous operation. (K.A.). 19 refs.

  18. Full steady state LH scenarios in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1995-12-31

    Lower Hybrid discharge have been realised in Tore Supra using feed-back control of the primary circuit voltage such that the loop voltage was maintained exactly to zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new constant flux scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is a good agreement with theoretical expectations. A complete analysis of this scenario is presented. (authors). 8 refs., 3 figs.

  19. Steady-state models of glucose-perturbed Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Wright, B.E.; Reimers, J.M.

    1988-10-15

    Young sorocarps of Dictyostelium discoideum were incubated in the presence of 50 mM (/sup 14/C)glucose, and nine metabolites were isolated over a period of 60 min to determine their specific radioactivity. The program TFLUX was used to construct models consisting of 17 metabolite pools and 40 reactions (excluding external pools). Net glucose uptake was 10% or less in the two experiments chosen for extensive analysis, and a single steady-state model was adequate to describe the data in both cases. Despite differences in metabolite levels, flux, and labeling kinetics, the models of glucose-perturbed metabolism confirm earlier conclusions regarding metabolic compartments.

  20. Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability

    Science.gov (United States)

    Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.

    2000-01-01

    NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.

  1. Steady-state grain growth in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Galinari, C.M.; Lameiras, F.S. [CDTN/CNEN, Belo Horizonte (Brazil)

    1998-06-05

    The authors have observed steady-state grain growth in sintered UO{sub 2} pellets of nuclear purity at 2,003 K under H{sub 2}. The behavior of the grain size distribution at different instants is consistent with the grain growth model proposed by one of the authors. The total number of grains was estimated using the Saltykov`s method, and the evolution is in accordance with the model proposed by Rhines and Craig. The parabolic growth law was observed for the mean intercept length with n = 0.4.

  2. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    Science.gov (United States)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  3. Optimising performance in steady state for a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh

    2012-01-01

    Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...... is shown to predominantly be influenced by the suction pressure. Employing appropriate performance function leads to conclusions on the choice of set-point for the suction pressure that are contrary to the existing practice. Analysis of the resulting data leads to a simple method for finding optimal...

  4. Dendritic cell-development in steady-state and inflammation

    OpenAIRE

    Schmid, Michael Alexander

    2010-01-01

    Dendritic cells (DC), the major antigen-presenting cells, continuously need to be regenerated from bone marrow (BM) hematopoietic stem and progenitor cells (HSPC). What intermediate progenitors exist on the way to DC generation and what external factors act on these in steady-state and during inflammation, has not been addressed in detail. Flt3L is a non-redundant cytokine in DC development and the generation of DCs was shown to proceed along both Flt3+ common lymphoid and common myeloid prog...

  5. Multiple nonequilibrium steady states for one-dimensional heat flow.

    Science.gov (United States)

    Zhang, F; Isbister, D J; Evans, D J

    2001-08-01

    A nonequilibrium molecular dynamics model of heat flow in one-dimensional lattices is shown to have multiple steady states for any fixed heat field strength f(e) ranging from zero to a certain positive value. We demonstrate that, depending on the initial conditions, there are at least two possibilities for the system's evolution: (i) formation of a stable traveling wave (soliton), and (ii) chaotic motion throughout the entire simulation. The percentage of the soliton-generating trajectories is zero for small field strength f(e), but increases sharply to unity over a critical region of the parameter f(e).

  6. Typical pure nonequilibrium steady states and irreversibility for quantum transport

    Science.gov (United States)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  7. A Novel Wireless TCP and its Steady State Throughput Model

    Institute of Scientific and Technical Information of China (English)

    YAO Ling; JI Hong; YUE Guang-xin

    2004-01-01

    Unlike wired networks, random packet loss due to bit errors may cause significant performance degradation of Transmission Control Protocol (TCP). We propose and study a novel end-to-end congestion control mechanism called TCP-LD (Loss Detection) that is simple and effective for dealing with random packet loss. We also give its steady state throughput model. Both the ns2 and numerical simulation results show that our scheme can achieve significant throughput improvements without adversely affecting other concurrent TCP connections, including other concurrent Reno connections both in wired and wireless environment.

  8. Non-steady-state aerosol filtration in nanostructured fibrous media.

    Science.gov (United States)

    Przekop, Rafal; Gradoń, Leon

    2011-06-28

    The filtration of aerosol particles using composites of nano- and microsized fibrous structures is a promising method for the effective separation of nanoparticles from gases. A multi-scale physical system describing the flow pattern and particle deposition at a non-steady-state condition requires an advanced method of modelling. The combination of lattice Boltzmann and Brownian dynamics was used for analysis of the particle deposition pattern in a fibrous system. The dendritic structures of deposits for neutral and charged fibres and particles are present. The efficiency of deposition, deposit morphology, porosity and fractal dimension were calculated for a selected operational condition of the process.

  9. Nonequilibrium steady-state circulation and heat dissipation functional.

    Science.gov (United States)

    Qian, H

    2001-08-01

    A nonequilibrium steady-state (NESS), different from an equilibrium, is sustained by circular balance rather than detailed balance. The circular fluxes are driven by energy input and heat dissipation, accompanied by a positive entropy production. Based on a Master equation formalism for NESS, we show the circulation is intimately related to the recently studied Gallavotti-Cohen symmetry of heat dissipation functional, which in turn suggests a Boltzmann's formulalike relation between rate constants and energy in NESS. Expanding this unifying view on NESS to diffusion is discussed.

  10. Stabilizing unstable steady states using multiple delay feedback control.

    Science.gov (United States)

    Ahlborn, Alexander; Parlitz, Ulrich

    2004-12-31

    Feedback control with different and independent delay times is introduced and shown to be an efficient method for stabilizing fixed points (equilibria) of dynamical systems. In comparison to other delay based chaos control methods multiple delay feedback control is superior for controlling steady states and works also for relatively large delay times (sometimes unavoidable in experiments due to system dead times). To demonstrate this approach for stabilizing unstable fixed points we present numerical simulations of Chua's circuit and a successful experimental application for stabilizing a chaotic frequency doubled Nd-doped yttrium aluminum garnet laser.

  11. Steady-state flow properties of amorphous materials

    Science.gov (United States)

    Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark

    2015-03-01

    Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.

  12. Transient and steady-state selection in the striatal microcircuit.

    Science.gov (United States)

    Tomkins, Adam; Vasilaki, Eleni; Beste, Christian; Gurney, Kevin; Humphries, Mark D

    2013-01-01

    Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  13. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins

    2014-01-01

    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  14. Steady states of the parametric rotator and pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, Antonio O, E-mail: abouzas@fis.mda.cinvestav.m [Departamento de Fisica Aplicada, CINVESTAV-IPN, Carretera Antigua a Progreso Km. 6, Apdo Postal 73 ' Cordemex' , Merida 97310, Yucatan (Mexico)

    2010-11-15

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the damped, nonlinear equation of motion of the parametric rotator and pendulum perturbatively for small parametric excitation and damping, although our perturbative approach can be extended to other regimes as well. Our treatment involves only ordinary second-order differential equations with constant coefficients, and provides numerically accurate perturbative solutions in terms of elementary functions. Some of the steady-state rotation and oscillation modes studied here have not been discussed in the previous literature. Other well-known ones, such as parametric resonance and the inverted pendulum, are extended to elliptic parametric excitation tilted with respect to gravity. The results presented here should be accessible to advanced undergraduates, and of interest to graduate students and specialists in the field of nonlinear mechanics.

  15. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    Avinash A. Deshpande; N. Kumar

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo–Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr–van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  16. Steady States and Universal Conductance in a Quenched Luttinger Model

    Science.gov (United States)

    Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per

    2016-05-01

    We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to &infty}; , after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'} . Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)} , has a universal value equal to the conductance quantum {e^2/h} for the spinless case.

  17. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    Science.gov (United States)

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-07

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis.

  18. Steady-State ALPS for Real-Valued Problems

    Science.gov (United States)

    Hornby, Gregory S.

    2009-01-01

    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.

  19. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Science.gov (United States)

    Deshpande, Avinash A.; Kumar, N.

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  20. Steady States and Universal Conductance in a Quenched Luttinger Model

    Science.gov (United States)

    Langmann, Edwin; Lebowitz, Joel L.; Mastropietro, Vieri; Moosavi, Per

    2017-01-01

    We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger model prepared in a domain wall initial state, i.e., a state with different densities on its left and right sides. Such an initial state is modeled as the ground state of a translation invariant Luttinger Hamiltonian {H_{λ}} with short range non-local interaction and different chemical potentials to the left and right of the origin. The system evolves for time t > 0 via a Hamiltonian {H_{λ'}} which differs from {H_{λ}} by the strength of the interaction. Asymptotically in time, as {t to ∞}, after taking the thermodynamic limit, the system approaches a translation invariant steady state. This final steady state carries a current I and has an effective chemical potential difference {μ+ - μ-} between right- (+) and left- (-) moving fermions obtained from the two-point correlation function. Both I and {μ+ - μ-} depend on {λ} and {λ'}. Only for the case {λ = λ' = 0} does {μ+ - μ-} equal the difference in the initial left and right chemical potentials. Nevertheless, the Landauer conductance for the final state, {G = I/(μ+ - μ-)}, has a universal value equal to the conductance quantum {e^2/h} for the spinless case.

  1. Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states

    Science.gov (United States)

    Ferraro, N. M.; Jardin, S. C.

    2009-11-01

    M3D- C1 is an implicit, high-order finite element code for the solution of the time-dependent nonlinear two-fluid magnetohydrodynamic equations [S.C. Jardin, J. Breslau, N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comp. Phys. 226 (2) (2007) 2146-2174]. This code has now been extended to allow computations in toroidal geometry. Improvements to the spatial integration and time-stepping algorithms are discussed. Steady-states of a resistive two-fluid model, self-consistently including flows, anisotropic viscosity (including gyroviscosity) and heat flux, are calculated for diverted plasmas in geometries typical of the National Spherical Torus Experiment (NSTX) [M. Ono et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (3Y) (2000) 557-561]. These states are found by time-integrating the dynamical equations until the steady-state is reached, and are therefore stationary or statistically steady on both magnetohydrodynamic and transport time-scales. Resistively driven cross-surface flows are found to be in close agreement with Pfirsch-Schlüter theory. Poloidally varying toroidal flows are in agreement with comparable calculations [A.Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Phys. Plasmas 14]. New effects on core toroidal rotation due to gyroviscosity and a local particle source are observed.

  2. Nonequilibrium many-body steady states via Keldysh formalism

    Science.gov (United States)

    Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2016-01-01

    Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.

  3. Tracking Control for an Overactuated Hypersonic Air-Breathing Vehicle with Steady State Constraints (PREPRINT)

    Science.gov (United States)

    2005-12-01

    choice of a steady state control is completely independent from the choice of a stabilizing control law. This separation is key for the methods we will...develop for steady state optimization in later sections. Combining the steady state with the stabilizing control , we can express the control law as u...for stabilizing control and optimization methods for steady state control, both unconstrained and constrained, we were able to produce promising results

  4. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    Science.gov (United States)

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  5. Steady States in SIRS Epidemical Model of Mobile Individuals

    Science.gov (United States)

    Zhang, Duan-Ming; He, Min-Hua; Yu, Xiao-Ling; Pan, Gui-Jun; Sun, Hong-Zhang; Su, Xiang-Ying; Sun, Fan; Yin, Yan-Ping; Li, Rui; Liu, Dan

    2006-01-01

    We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady states of epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δc and pc below which infectious disease dies out. For the population density δ far above δc, it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.

  6. Relativistic Hydrodynamics and Non-Equilibrium Steady States

    CERN Document Server

    Spillane, Michael

    2015-01-01

    We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under con- sideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.

  7. Steady-State Density Functional Theory for Finite Bias Conductances.

    Science.gov (United States)

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  8. NASA Lewis Steady-State Heat Pipe Code Architecture

    Science.gov (United States)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  9. Steady State Rheological Characteristic of Semisolid Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Isothermal compressive experiments at different temperatures, strain rates and holding time for semisolid AZ91D, Zr modified AZ91D and MB15 alloy with higher solid volume fraction were carried out by using Gleeble-15000 simulator and the true stress-strain curves were given directly. The relationship of apparent viscosity vs temperature, shear rate and holding time of the three kinds of semi-solid magnesium alloys, as well as isothermal steady state rheological characteristic and mechanical behavior were studied. The results show that the three magnesium alloys had the characteristic of shear-thinning. The rheological characteristic of the semi-solid MB15 is different from that of semi-solid AZ91D. The semi-solid MB15 has higher apparent viscosity and deformation resistance.

  10. Quantally fed steady-state domain distributions in Stochastic Inflation

    CERN Document Server

    Bellini, M; Deza, R R; Bellini, Mauricio; Sisterna, Pablo D.; Deza, Roberto R.

    2000-01-01

    Within the framework of stochastic inflationary cosmology we derive esteady-state distributions P_c(V) of domains in comoving coordinates, under the assumption of slow-rolling and for two specific choices of the coarse-grained inflaton potential $V(\\Phi)$. We model the process as a Starobinsky-like equation in V-space plus a time-independent source term P_w(V) which carries (phenomenologically) quantum-mechanical information drawn from either of two known solutions of the Wheeler-De Witt equation: Hartle-Hawking's and Vilenkin's wave functions. The presence of the source term leads to the existence of nontrivial steady-state distributions P^w_c(V). The relative efficiencies of both mechanisms at different scales are compared for the proposed potentials.

  11. Factorised steady states and condensation transitions in nonequilibrium systems

    Indian Academy of Sciences (India)

    M R Evans

    2005-06-01

    Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium stationary state of this model factorises and this property allows a detailed analysis of several `condensation' transitions wherein a finite fraction of the constituent particles condenses onto a single lattice site. I will then consider a more general class of mass transport models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The property of factorisation again allows an analysis of the condensation transitions which may occur.

  12. Locating CVBEM collocation points for steady state heat transfer problems

    Science.gov (United States)

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  13. Manifest and Subtle Cyclic Behavior in Nonequilibrium Steady States

    CERN Document Server

    Zia, R K P; Mandal, Dibyendu; Fox-Kemper, Baylor

    2016-01-01

    Many interesting phenomena in nature are described by stochastic processes with irreversible dynamics. To model these phenomena, we focus on a master equation or a Fokker-Planck equation with rates which violate detailed balance. When the system settles in a stationary state, it will be a nonequilibrium steady state (NESS), with time independent probability distribution as well as persistent probability current loops. The observable consequences of the latter are explored. In particular, cyclic behavior of some form must be present: some are prominent and manifest, while others are more obscure and subtle. We present a theoretical framework to analyze such properties, introducing the notion of "probability angular momentum" and its distribution. Using several examples, we illustrate the manifest and subtle categories and how best to distinguish between them. These techniques can be applied to reveal the NESS nature of a wide range of systems in a large variety of areas. We illustrate with one application: var...

  14. Dust remobilization in fusion plasmas under steady state conditions

    Science.gov (United States)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  15. Entanglement structure of non-equilibrium steady states

    CERN Document Server

    Mahajan, Raghu; Mumford, Sam; Tubman, Norm; Swingle, Brian

    2016-01-01

    We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based on the structure of entanglement in the NESS. With reasonable physical assumptions, we show that a NESS close to local equilibrium is lightly entangled and can be represented via a computationally efficient tensor network. We further argue that the NESS may be found by dynamically evolving the system within a manifold of appropriate low entanglement states. A physically realistic law of dynamical evolution is Markovian open system dynamics, or the Lindblad equation. We explore this approach in a well-studied free fermion model where comparisons with the literature are possible. We study both electrical and thermal currents with and without disorder, and compute entropic quantities such as mutual information and conditional mutual information. We conclude with a di...

  16. Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States

    KAUST Repository

    Komatsu, Teruhisa S.

    2010-01-01

    We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.

  17. Steady-State Chemotactic Response in E. coli

    CERN Document Server

    Kafri, Yariv

    2007-01-01

    The bacterium E. coli maneuvers itself to regions with high chemoattractant concentrations by performing two stereotypical moves: `runs', in which it moves in near straight lines, and `tumbles', in which it does not advance but changes direction randomly. The duration of each move is stochastic and depends upon the chemoattractant concentration experienced in the recent past. We relate this stochastic behavior to the steady-state density of a bacterium population, and we derive the latter as a function of chemoattractant concentration. In contrast to earlier treatments, here we account for the effects of temporal correlations and variable tumbling durations. A range of behaviors obtains, that depends subtly upon several aspects of the system - memory, correlation, and tumbling stochasticity in particular.

  18. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wáng, Yì

    2012-03-14

    A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optimal operation of Petlyuk distillation: Steady-state behavior

    Directory of Open Access Journals (Sweden)

    Ivar J. Halvorsen

    2001-07-01

    Full Text Available The "Petlyuk" or "dividing-wall" or "fully thermally coupled" distillation column is an interesting alternative to the conventional cascaded binary columns for separation of multi-component mixtures. However, the industrial use has been limited, and difficulties in operation have been reported as one reason. With three product compositions controlled, the system has two degrees of freedom left for on-line optimization. We show that the steady-state optimal solution surface is quite narrow, and depends strongly on disturbances and design parameters. Thus it seems difficult to achieve the potential energy savings compared to conventional approaches without a good control strategy. We discuss candidate variables which may be used as feedback variables in order to keep the column operation close to optimal in a "self-optimizing" control scheme.

  20. Full steady state LH scenarios in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vilbert, F.; Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Moreau, D.; Peysson, Y. [Association EURATOM-CEA sur la fusion, Departement de Recherches sur la Fusion Controlee, Centre d`detudes de Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    1996-02-01

    Lower hybrid discharges have been realised in Tore Supra using feed-back control of the primary circuit voltage (V{sub oh}) such that the loop voltage was maintained exactly zero near the plasma surface. This new scenario allows the plasma current to float and quickly reach an equilibrium value determined by the current drive efficiency and Lower Hybrid power. Recent experimental results show that, with the new {open_quote}{open_quote}constant flux{close_quote}{close_quote} scenario the coupled plasma and primary currents reach a steady state in less than 10 s which is in good agreement with theoretical expectations. A complete analysis of this scenario is presented. {copyright} {ital 1996 American Institute of Physics.}

  1. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  2. Progress Toward Steady-State Operation on Tore Supra

    Institute of Scientific and Technical Information of China (English)

    J. Jacquinot; G. T. Hoang; the Tore Supra Team

    2004-01-01

    Important technological and physics issues related to steady-state operation required for next step are being examined on Tore Supra, after a major upgrade of internal components in order to increase the heat extraction capability to 25 MW for 1000 s. Here, we show first experimental results, where all the plasma facing components were actively cooled during pulses exceeding four minutes, with reactor-relevant heat load. New physics was observed in non-inductively driven plasmas, including a stationary peaked radial profile of the plasma density generated by an anomalous inward pinch; and a regime characterized by sinusoidal oscillations of central electron temperature, governed by non-linear coupling between heat transport and plasma current analogous to a predator-prey mechanism.

  3. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone......The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  4. Modelling of pulsed and steady-state DEMO scenarios

    Science.gov (United States)

    Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.

    2015-07-01

    Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.

  5. Thermodynamics and phase coexistence in nonequilibrium steady states

    Science.gov (United States)

    Dickman, Ronald

    2016-09-01

    I review recent work focussing on whether thermodynamics can be extended to nonequilibrium steady states (NESS), in particular, the possibility of consistent definitions of temperature T and chemical potential μ for NESS. The testing-grounds are simple lattice models with stochastic dynamics. Each model includes a drive that maintains the system far from equilibrium, provoking particle and/or energy flows; for zero drive the system relaxes to equilibrium. Analysis and numerical simulation show that for spatially uniform NESS, consistent definitions of T and μ are possible via coexistence with an appropriate reservoir, if (and in general only if) a particular kind of rate (that proposed by Sasa and Tasaki) is used for exchanges of particles and energy between systems. The program fails, however, for nonuniform systems. The functions T and μ describing isolated phases cannot be used to predict the properties of coexisting phases in a single, phase-separated system.

  6. Steady-state negative Wigner functions of nonlinear nanomechanical oscillators

    CERN Document Server

    Rips, Simon; Wilson-Rae, Ignacio; Hartmann, Michael J

    2011-01-01

    We propose a scheme to prepare nanomechanical oscillators in non-classical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser driven resonances of an optical cavity. By lowering the resonant frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables preparation of the nanomechanical oscillator in a single phonon Fock state. Our scheme can for example be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity.

  7. Computational complexity of nonequilibrium steady states of quantum spin chains

    Science.gov (United States)

    Marzolino, Ugo; Prosen, Tomaž

    2016-03-01

    We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.

  8. Petri nets for steady state analysis of metabolic systems.

    Science.gov (United States)

    Voss, Klaus; Heiner, Monika; Koch, Ina

    2011-01-01

    Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.

  9. Steady state analysis of metabolic pathways using Petri nets.

    Science.gov (United States)

    Voss, Klaus; Heiner, Monika; Koch, Ina

    2003-01-01

    Computer assisted analysis and simulation of biochemical pathways can improve the understanding of the structure and the dynamics of cell processes considerably. The construction and quantitative analysis of kinetic models is often impeded by the lack of reliable data. However, as the topological structure of biochemical systems can be regarded to remain constant in time, a qualitative analysis of a pathway model was shown to be quite promising as it can render a lot of useful knowledge, e. g., about its structural invariants. The topic of this paper are pathways whose substances have reached a dynamic concentration equilibrium (steady state). It is argued that appreciated tools from biochemistry and also low-level Petri nets can yield only part of the desired results, whereas executable high-level net models lead to a number of valuable additional insights by combining symbolic analysis and simulation.

  10. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  11. Steady-state solution methods for open quantum optical systems

    CERN Document Server

    Nation, P D

    2015-01-01

    We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that can give reduced memory and runtime requirements in situations where other iterative methods are limited due to poor bandwidth and profile reduction. The relevant methods are demonstrated on several prototypical quantum optical systems where it is found that iterative methods based on iLU factorization using reverse Cuthill-Mckee ordering tend to outperform other solution techniques in terms of both memory consumption and runtime as the size of the underlying Hilbert space increases. For eigenvalue solving, Krylov iterat...

  12. Steady-State Axisymmetric MHD Solutions with Various Boundary Conditions

    CERN Document Server

    Wang, Lile

    2014-01-01

    Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars (AXPs), magnetars, isolated neutron stars etc.], and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method (FDM) and finite-element method (FEM) schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso (2001), finding that their separable semi-analytic nonlinear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. The multiplicity of nonlinear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as ...

  13. Dissipative production of a maximally entangled steady state

    CERN Document Server

    Lin, Y; Reiter, F; Tan, T R; Bowler, R; S\\orensen, A S; Leibfried, D; Wineland, D J

    2013-01-01

    Entangled states are a key resource in fundamental quantum physics, quantum cryp-tography, and quantum computation [1].To date, controlled unitary interactions applied to a quantum system, so-called "quantum gates", have been the most widely used method to deterministically create entanglement [2]. These processes require high-fidelity state preparation as well as minimizing the decoherence that inevitably arises from coupling between the system and the environment and imperfect control of the system parameters. Here, on the contrary, we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion qubits independent of their initial state. While previous works along this line involved the application of sequences of multiple time-dependent gates [3] or generated entanglement of atomic ensembles dissipatively but relied on a measurement record for steady-state entanglement [4], we implement the process in a continuous time-indepen...

  14. Steady-state, cavity-less, multimode superradiance

    CERN Document Server

    Greenberg, Joel A

    2012-01-01

    The study of collective light-matter interactions, where the dynamics of an individual scatterer depend on the state of the entire multi-scatterer system, has recently received much attention in the areas of fundamental research and photonic technologies. Cold atomic vapors represent an exciting system for studying such effects because light-based manipulation of internal and center-of-mass atomic states lead to reduced instability thresholds and new phonomena. Previous investigations required single-mode cavities to realize strong light mediated atom-atom interactions, though, which limits the observable phenomena. Here we demonstrate steady-state, mirrorless superradiance in a cold vapor pumped by weak optical fields. Beyond a critical pumping strength, the vapor spontaneously transforms into a spatially self-organized state: a density grating forms. Scattering of the pump beams off this grating generates new optical fields that act back on the vapor to enhance the atomic organization. This system has appli...

  15. Extending the definition of entropy to nonequilibrium steady states.

    Science.gov (United States)

    Ruelle, David P

    2003-03-18

    We study the nonequilibrium statistical mechanics of a finite classical system subjected to nongradient forces xi and maintained at fixed kinetic energy (Hoover-Evans isokinetic thermostat). We assume that the microscopic dynamics is sufficiently chaotic (Gallavotti-Cohen chaotic hypothesis) and that there is a natural nonequilibrium steady-state rho(xi). When xi is replaced by xi + deltaxi, one can compute the change deltarho of rho(xi) (linear response) and define an entropy change deltaS based on energy considerations. When xi is varied around a loop, the total change of S need not vanish: Outside of equilibrium the entropy has curvature. However, at equilibrium (i.e., if xi is a gradient) we show that the curvature is zero, and that the entropy S(xi + deltaxi) near equilibrium is well defined to second order in deltaxi.

  16. Avoiding Rebound through a Steady-State Economy

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen

    2008-01-01

    is considered to be limited primarily by productive capacity with little concern for ecological costs and limits. In such a development aiming at unlimited growth it would from a long term environmental perspective be close to irrelevant to reach for more efficient use of energy at the end-users, since it would...... only buy some time. From this perspective, the environmental problem with the rebound effect is not the higher energy efficiency, which pushes towards lower flows of resources through the economy, but rather the conventional economy which rebounds the savings, because of its quest for higher flows....... In this chapter, I shall take the rebound debate further by discussing the possible role of energy efficiency in a sustainable economy that is based on the notion of ‘sufficiency’. The assumption is that globally we need to achieve a ‘steady-state economy’. Considering the urgent need for better material...

  17. Laguna Verde BWRs operational experience: steady-state fuel performance

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G. F.; Bravo S, J. M. [Global Nuclear Fuel - Americas, 3901 Castle Hayne Road, Wilmington, 28401 North Carolina (United States); Casillas, J. L., E-mail: gabriel.cuevas-vivas@gnf.co [General Electric Hitachi Nuclear Energy, 1989 Little Orchard St. Romm 239, San Jose, 95125 California (United States)

    2010-10-15

    The two BWR at Laguna Verde nuclear power station are finishing 21 and 15 years of continuous successful operation as of 2010. During Unit 1 and 2 commercial operations only Ge/GNF fuel designs have been employed; fuel lattice designs 8 x 8 and 10 x 10 were used at the reactor, with an original licensed thermal power (OLTP: 1931 MWt) and the reactor's first power up-rates of 5%. GNF fuel will be also used for the second EPU to reach 120% of OLTP in the near future. Thermal and gamma traversing in-core probes (Tip) are used for power monitoring purposes along with the Ge (now GNF-A) core monitoring system, 3-dimensional Monicore{sup TM}. GNF-A has also participated by preparing the core management plan that is regularly fine-tuned in collaboration with Comision Federal de Electricidad (CFE owner of the Laguna Verde reactors). For determination of thermal margins and eigenvalue prediction, GNF-A employs the NRC-licensed steady-state core simulator PANAC11. Tip comparisons are routinely used to adapt power distributions for a better thermal margin calculation. Over the years, several challenges have appeared in the near and long term fuel management planning such as increasing cycle length, optimization of the thermal margins, rated power increase, etc. Each challenge has been successfully overcome via operational strategy, code improvements and better fuel designs. This paper summarizes Laguna Verde Unit 1 and 2 steady-state performance from initial commercial operation, with a discussion of the nuclear and thermal-hydraulic design features, as well as of the operational strategies that set and interesting benchmark for future fuel applications, code development and operation of the BWRs. (Author)

  18. A mathematical model of pan evaporation under steady state conditions

    Science.gov (United States)

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  19. Interpolation of steady-state concentration data by inverse modeling.

    Science.gov (United States)

    Schwede, Ronnie L; Cirpka, Olaf A

    2010-01-01

    In most groundwater applications, measurements of concentration are limited in number and sparsely distributed within the domain of interest. Therefore, interpolation techniques are needed to obtain most likely values of concentration at locations where no measurements are available. For further processing, for example, in environmental risk analysis, interpolated values should be given with uncertainty bounds, so that a geostatistical framework is preferable. Linear interpolation of steady-state concentration measurements is problematic because the dependence of concentration on the primary uncertain material property, the hydraulic conductivity field, is highly nonlinear, suggesting that the statistical interrelationship between concentration values at different points is also nonlinear. We suggest interpolating steady-state concentration measurements by conditioning an ensemble of the underlying log-conductivity field on the available hydrological data in a conditional Monte Carlo approach. Flow and transport simulations for each conditional conductivity field must meet the measurements within their given uncertainty. The ensemble of transport simulations based on the conditional log-conductivity fields yields conditional statistical distributions of concentration at points between observation points. This method implicitly meets physical bounds of concentration values and non-Gaussianity of their statistical distributions and obeys the nonlinearity of the underlying processes. We validate our method by artificial test cases and compare the results to kriging estimates assuming different conditional statistical distributions of concentration. Assuming a beta distribution in kriging leads to estimates of concentration with zero probability of concentrations below zero or above the maximal possible value; however, the concentrations are not forced to meet the advection-dispersion equation.

  20. Steady-state spectroscopy of new biological probes

    Science.gov (United States)

    Abou-Zied, Osama K.

    2007-02-01

    The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.

  1. Chemostat-cultivated Escherichia coli at high dilution rate: multiple steady states and drift.

    Science.gov (United States)

    Majewski, R A; Domach, M M

    1990-06-20

    The representation of metabolic network reaction kinetics in a scaled, polynomial form can allow for the prediction of multiple steady states. The polynomial formalism is used to study chemostat-cultured Escherichia coli which has been observed to exhibit two multiple steady states under ammonium ion-limited growth conditions: a high cell density-low ammonium ion concentration steady state and a low cell density-high ammonium ion concentration steady state. Additionally, the low-cell-density steady state has been observed to drift to the high-cell-density steady state. Inspection of the steady-state rate expressions for the ammonium ion transport/assimilation network (in polynomial form) suggests that at low ammonium ion concentrations, two steady states are possible. One corresponds to heavy use of the glutamine synthetase-glutamate synthase (GLNS-GS) branch and the second to heavy use of the glutamate dehydrogenase (GDH) branch. Realization of the predicted intracellular steady states is also found to be dependent on the parameters of the transport process. Moreover, the two steady states differ in where their energy intensity lies. To explain the drift, GLNS, which is inducible under low ammonium ion concentrations, is suggested to be a "memory element." A chemostat-based model is developed to illustrate that perturbations in dilution rate can lead to drift between the two steady states provided that the disturbance in dilution rate is sufficiently large and/or long in duration.

  2. Steady state, continuity, and the curious behavior of steep channels in layered rocks

    Science.gov (United States)

    Covington, M. D.; Perne, M.; Thaler, E.; Myre, J. M.

    2016-12-01

    Considerations of landscape steady state have substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. Topographic steady state, where topography is fixed in time, is a particularly important tool in the interpretation of landscape features, such as bedrock channel profiles, within a context of uplift patterns and rock strength. However, topographic steady state cannot strictly be attained in a landscape with layered rocks with non-vertical contacts. We show that an assumption of channel continuity, where channel retreat rates in the direction parallel to a contact are equal above and below the contact, provides a more general description of steady state landscapes in layered rocks, and that topographic steady state is a special case of the steady state derived from continuity. We demonstrate that modeled landscapes approach continuity steady state using 1D simulations and full landscape evolution models. Contrary to common conceptions, continuity predicts that channels will be steeper in weaker rocks in the case of subhorizontal rock layers when the stream power erosion exponent n<1. For subhorizontal layered rocks with different erodibilities, continuity also predicts larger slope contrasts than would be predicted by topographic steady state. Continuity steady state is a type of flux steady state, where uplift is balanced on average by erosion. The differences between topographic steady state and continuity steady state are most pronuced for steep channels in subhorizontal layered rocks. Consequently, cratonic and plateau settings are most likely to produce the effects predicted by continuity steady state. These settings remain relatively underexplored within the bedrock channel literature. Though examples illustrated here utilze the stream power erosion law, continuity steady state provides a general mathematical tool that can be used to explore the development of landscapes in layered rocks using any

  3. Mantle Sulfur Cycle: A Case for Non-Steady State ?

    Science.gov (United States)

    Cartigny, Pierre; Labidi, Jabrane

    2016-04-01

    Data published over the last 5 years show that the early inference that mantle is isotopically homogeneous is no more valid. Instead, new generation data on lavas range over a significant 34S/32S variability of up to 5‰ with δ 34S values often correlated to Sr- and Nd-isotope compositions. This new set of data also reveals the Earth's mantle to have a sub-chondritic 34S/32S ratio, by about ˜ 1‰. We will present at the conference our published and unpublished data on samples characterizing the different mantle components (i.e. EM1, EM2, HIMU and LOMU). All illustrate 34S-enrichments compared to MORB with Δ 33S and Δ 36S values indistinguishable from CDT or chondrites at the 0.03‰ level. These data are consistent with the recycling of subducted components carrying sulfur with Δ 33S and Δ 36S-values close to zero. Archean rocks commonly display Δ 33S and Δ 36S values deviating from zero by 1 to 10 ‰. The lack of variations for Δ 33S and Δ 36S values in present day lava argue against the sampling of any subducted protolith of Archean age in their mantle source. Instead, our data are consistent with the occurrence of Proterozoic subducted sulfur in the source of the EM1, EM2, LOMU and HIMU endmember at the St-Helena island. This is in agreement with the age of those components early derived through the use of the Pb isotope systematic. Currently, the negative δ 34S-values of the depleted mantle seem to be associated with mostly positive values of enriched components. This would be inconsistent with the concept a steady state of sulfur. Assuming that the overall observations of recycled sulfur are not biased, the origin of such a non-steady state remains unclear. It could be related to the relatively compatible behavior of sulfur during partial melting, as the residue of present-day melting can be shown to always contain significant amounts of sulfide (50{%} of what is observed in a fertile source). This typical behavior likely prevents an efficient

  4. The Budyko functions under non-steady-state conditions

    Science.gov (United States)

    Moussa, Roger; Lhomme, Jean-Paul

    2016-12-01

    The Budyko functions relate the evaporation ratio E / P (E is evaporation and P precipitation) to the aridity index Φ = Ep / P (Ep is potential evaporation) and are valid on long timescales under steady-state conditions. A new physically based formulation (noted as Moussa-Lhomme, ML) is proposed to extend the Budyko framework under non-steady-state conditions taking into account the change in terrestrial water storage ΔS. The variation in storage amount ΔS is taken as negative when withdrawn from the area at stake and used for evaporation and positive otherwise, when removed from the precipitation and stored in the area. The ML formulation introduces a dimensionless parameter HE = -ΔS / Ep and can be applied with any Budyko function. It represents a generic framework, easy to use at various time steps (year, season or month), with the only data required being Ep, P and ΔS. For the particular case where the Fu-Zhang equation is used, the ML formulation with ΔS ≤ 0 is similar to the analytical solution of Greve et al. (2016) in the standard Budyko space (Ep / P, E / P), a simple relationship existing between their respective parameters. The ML formulation is extended to the space [Ep / (P - ΔS), E / (P - ΔS)] and compared to the formulations of Chen et al. (2013) and Du et al. (2016). The ML (or Greve et al., 2016) feasible domain has a similar upper limit to that of Chen et al. (2013) and Du et al. (2016), but its lower boundary is different. Moreover, the domain of variation of Ep / (P - ΔS) differs: for ΔS ≤ 0, it is bounded by an upper limit 1 / HE in the ML formulation, while it is only bounded by a lower limit in Chen et al.'s (2013) and Du et al.'s (2016) formulations. The ML formulation can also be conducted using the dimensionless parameter HP = -ΔS / P instead of HE, which yields another form of the equations.

  5. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells.

  6. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  7. Quasi-steady state aerodynamics of the cheetah tail

    Science.gov (United States)

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  8. The Path of Carbon in Photosynthesis XX. The Steady State

    Science.gov (United States)

    Calvin, M.; Massini, Peter

    1952-09-01

    The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.

  9. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  10. Stable Gene Regulatory Network Modeling From Steady-State Data

    Directory of Open Access Journals (Sweden)

    Joy Edward Larvie

    2016-04-01

    Full Text Available Gene regulatory networks represent an abstract mapping of gene regulations in living cells. They aim to capture dependencies among molecular entities such as transcription factors, proteins and metabolites. In most applications, the regulatory network structure is unknown, and has to be reverse engineered from experimental data consisting of expression levels of the genes usually measured as messenger RNA concentrations in microarray experiments. Steady-state gene expression data are obtained from measurements of the variations in expression activity following the application of small perturbations to equilibrium states in genetic perturbation experiments. In this paper, the least absolute shrinkage and selection operator-vector autoregressive (LASSO-VAR originally proposed for the analysis of economic time series data is adapted to include a stability constraint for the recovery of a sparse and stable regulatory network that describes data obtained from noisy perturbation experiments. The approach is applied to real experimental data obtained for the SOS pathway in Escherichia coli and the cell cycle pathway for yeast Saccharomyces cerevisiae. Significant features of this method are the ability to recover networks without inputting prior knowledge of the network topology, and the ability to be efficiently applied to large scale networks due to the convex nature of the method.

  11. Regulation of steady-state neutrophil homeostasis by macrophages

    Science.gov (United States)

    Gordy, Claire; Pua, Heather; Sempowski, Gregory D.

    2011-01-01

    The timely clearance of apoptotic neutrophils from inflammation sites is an important function of macrophages; however, the role of macrophages in maintaining neutrophil homeostasis under steady-state conditions is less well understood. By conditionally deleting the antiapoptotic gene cellular FLICE-like inhibitory protein (C-FLIP) in myeloid cells, we have generated a novel mouse model deficient in marginal zone and bone marrow stromal macrophages. These mice develop severe neutrophilia, splenomegaly, extramedullary hematopoiesis, decreased body weight, and increased production of granulocyte colony-stimulating factor (G-CSF) and IL-1β, but not IL-17. c-FLIPf/f LysM-Cre mice exhibit delayed clearance of circulating neutrophils, suggesting that failure of macrophages to efficiently clear apoptotic neutrophils causes production of cytokines that drive excess granulopoiesis. Further, blocking G-CSF but not IL-1R signaling in vivo rescues this neutrophilia, suggesting that a G-CSF–dependent, IL-1β–independent pathway plays a role in promoting neutrophil production in mice with defective clearance of apoptotic cells. PMID:20980680

  12. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  13. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  14. Steady-state and dynamic network modes for perceptual expectation.

    Science.gov (United States)

    Choi, Uk-Su; Sung, Yul-Wan; Ogawa, Seiji

    2017-01-12

    Perceptual expectation can attenuate repetition suppression, the stimulus-induced neuronal response generated by repeated stimulation, suggesting that repetition suppression is a top-down modulatory phenomenon. However, it is still unclear which high-level brain areas are involved and how they interact with low-level brain areas. Further, the temporal range over which perceptual expectation can effectively attenuate repetition suppression effects remains unclear. To elucidate the details of this top-down modulatory process, we used two short and long inter-stimulus intervals for a perceptual expectation paradigm of paired stimulation. We found that top-down modulation enhanced the response to the unexpected stimulus when repetition suppression was weak and that the effect disappeared at 1,000 ms prior to stimulus exposure. The high-level areas involved in this process included the left inferior frontal gyrus (IFG_L) and left parietal lobule (IPL_L). We also found two systems providing modulatory input to the right fusiform face area (FFA_R): one from IFG_L and the other from IPL_L. Most importantly, we identified two states of networks through which perceptual expectation modulates sensory responses: one is a dynamic state and the other is a steady state. Our results provide the first functional magnetic resonance imaging (fMRI) evidence of temporally nested networks in brain processing.

  15. Glaucoma affects steady state VEP contrast thresholds before psychophysics.

    Science.gov (United States)

    Vaegan; Rahman, Anmar M A; Sanderson, Gordon F

    2008-07-01

    Frequency doubling technology (FDT) is a recent psychophysical test for glaucoma. It measures the contrast threshold to low spatial frequency, high temporal frequency sinusoidal luminance profile bars. We wanted to confirm, with stricter controls, Vaegan and Hollow's report that contrast thresholds of steady state visual evoked potentials (ssVEPs) to a stimulus resembling the central field of the FDT test was more sensitive to glaucoma than the subjective threshold to the same stimulus and to start to optimize the technique. A double masked trial using 57 eyes of 42 subjects. Both thresholds were estimated by modified binary search. In psychophysical testing, subjects were given a two alternative forced choice task. In ssVEP testing a significant signal in any one of eight channels was deemed to be a detection. In some subjects electrode positions were compared, both eyes were tested, tests were repeated to estimate reliability, stimulus frequencies were varied or full contrast functions were obtained. Thresholds and percent abnormal increased as a function of glaucoma severity for ssVEPs but not for psychophysics. Both threshold measures were reliable. Interocular correlations were low. SsVEP amplitude against contrast functions had similar thresholds to those found by modified binary search. The data was too irregular for individual thresholds to be estimated from a fitted exponential. Amplitudes were greatest at 7 to 10 Hz, psychophysical thresholds at 18.29 Hz, when formal controls were used, as they had in a less controlled previous study at 7.14 Hz.

  16. ADI type preconditioners for the steady state inhomogeneous Vlasov equation

    CERN Document Server

    Gasteiger, Markus; Ostermann, Alexander; Tskhakaya, David

    2016-01-01

    The purpose of the current work is to find numerical solutions of the steady state inhomogeneous Vlasov equation. This problem has a wide range of applications in the kinetic simulation of non-thermal plasmas. However, the direct application of either time stepping schemes or iterative methods (such as Krylov based methods like GMRES or relexation schemes) is computationally expensive. In the former case the slowest timescale in the system forces us to perform a long time integration while in the latter case a large number of iterations is required. In this paper we propose a preconditioner based on an ADI type splitting method. This preconditioner is then combined with both GMRES and Richardson iteration. The resulting numerical schemes scale almost ideally (i.e. the computational effort is proportional to the number of grid points). Numerical simulations conducted show that this can result in a speedup of close to two orders of magnitude (even for intermediate grid sizes) with respect to the not preconditio...

  17. Interaction-induced mode switching in steady-state microlasers.

    Science.gov (United States)

    Ge, Li; Liu, David; Cerjan, Alexander; Rotter, Stefan; Cao, Hui; Johnson, Steven G; Türeci, Hakan E; Stone, A Douglas

    2016-01-11

    We demonstrate that due to strong modal interactions through cross-gain saturation, the onset of a new lasing mode can switch off an existing mode via a negative power slope. In this process of interaction-induced mode switching (IMS) the two involved modes maintain their identities, i.e. they do not change their spatial field patterns or lasing frequencies. For a fixed pump profile, a simple analytic criterion for the occurrence of IMS is given in terms of their self- and cross-interaction coefficients and non-interacting thresholds, which is verified for the example of a two-dimensional microdisk laser. When the spatial pump profile is varied as the pump power is increased, IMS can be induced even when it would not occur with a fixed pump profile, as we show for two coupled laser cavities. Our findings apply to steady-state lasing and are hence different from dynamical mode switching or hopping. IMS may have potential applications in robust and flexible all-optical switching.

  18. Full steady-state operation in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.; Litaudon, X.; Moreau, D.; Arslanbekov, R.; Hoang, G.T.; Peysson, Y. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1996-12-01

    In order to produce fully non-inductive, lower hybrid (LH) driven discharges in a systematic and reproducible manner, new operation modes have been studied on the superconducting Tore Supra tokamak. To cope with some uncertainties in the LH current drive efficiency (e.g. profile dependences), the plasma current is not imposed a priori, but evolves freely until the equilibrium (which depends on the LH power level) is reached. The voltage applied on the primary circuit no longer controls the plasma current. In an `open loop` scenario in which this voltage is present and constant, the timescale required to attain the equilibrium is the longest characteristic time of the coupled plasma-poloidal field coils system ({approx} 60 s). In order to obtain a stationary state faster, a new feedback scheme has been implemented in which the primary circuit voltage is controlled in such a way that the flux consumption vanishes. It is shown that this operation mode allows full steady-state to be reached within a characteristic time of a few seconds. The underlying physics is described and a detailed analysis of the experiments is made. It is shown, in particular, that this operation scenario generates stable stationary plasmas with improved confinement, so that the so-called `LHEP` regime can be extrapolated to continuous operation. (Author).

  19. Grand canonical steady-state simulation of nucleation

    CERN Document Server

    Horsch, Martin

    2009-01-01

    Grand canonical molecular dynamics (GCMD) is applied to the nucleation process in a metastable phase near the spinodal, where nucleation occurs almost instantaneously and is limited to a very short time interval. With a variant of Maxwell's demon, proposed by McDonald [Am. J. Phys. 31: 31 (1963)], all nuclei exceeding a specified size are removed. In such a steady-state simulation, the nucleation process is sampled over an arbitrary timespan and all properties of the metastable state, including the nucleation rate, can be obtained with an increased precision. As an example, a series of GCMD simulations with McDonald's demon is carried out for homogeneous vapor to liquid nucleation of the truncated-shifted Lennard-Jones (tsLJ) fluid, covering the entire relevant temperature range. The results are in agreement with direct non-equilibrium MD simulation in the canonical ensemble. It is confirmed for supersaturated vapors of the tsLJ fluid that the classical nucleation theory underpredicts the nucleation rate by t...

  20. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    Science.gov (United States)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  1. Steady State Response Analysis of a Tubular Piezoelectric Print Head.

    Science.gov (United States)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2016-01-12

    In recent years, inkjet technology has played an important role in industrial materials printing and various sensors fabrication, but the mechanisms of the inkjet print head should be researched more elaborately. The steady state deformation analysis of a tubular piezoelectric print head, which can be classified as a plane strain problem because the radii of the tubes are considerably smaller than the lengths, is discussed in this paper. The geometric structure and the boundary conditions are all axisymmetric, so a one-dimensional mathematical model is constructed. By solving the model, the deformation field and stress field, as well as the electric potential distribution of the piezoelectric tube and glass tube, are obtained. The results show that the deformations are on the nanometer scale, the hoop stress is larger than the radial stress on the whole, and the potential is not linearly distributed along the radial direction. An experiment is designed to validate these computations. A discussion of the effect of the tubes' thicknesses on the system deformation status is provided.

  2. Development of the ITER Advanced Steady State and Hybrid Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel, D. Campbell, T. Casper, Y. Gribov, and J. Snipes

    2010-09-24

    Full discharge simulations are performed to examine the plasma current rampup, flattop and rampdown phases self-consistently with the poloidal field (PF) coils and their limitations, plasma transport evolution, and heating/current drive (H/CD) sources. Steady state scenarios are found that obtain 100% non-inductive current with Ip = 7.3-10.0 MA, βN ~ 2.5 for H98 = 1.6, Q’s range from 3 to 6, n/nGr = 0.75-1.0, and NB, IC, EC, and LH source have been examined. The scenarios remain within CS/PF coil limits by advancing the pre-magnetization by 40 Wb. Hybrid scenarios have been identified with 35-40% non-inductive current for Ip = 12.5 MA, H98 ~ 1.25, with q(0) reaching 1 at or after the end of rampup. The equilibrium operating space for the hybrid shows a large range of scenarios can be accommodated, and access 925-1300 s flattop burn durations.

  3. A theory of nonequilibrium steady states in quantum chaotic systems

    Science.gov (United States)

    Wang, Pei

    2017-09-01

    Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.

  4. Steady-state evolution of debris disks around A stars

    CERN Document Server

    Wyatt, M C; Su, K Y L; Rieke, G H; Greaves, J S; Beichman, C A; Bryden, G

    2007-01-01

    In this paper a simple analytical model for the steady-state evolution of debris disks due to collisions is confronted with Spitzer observations of main sequence A stars. All stars are assumed to have planetesimal belts with a distribution of initial masses and radii. In the model disk mass is constant until the largest planetesimals reach collisional equilibrium whereupon the mass falls off oc 1/t. We find that the detection statistics and trends seen at both 24 and 70um can be fitted well by the model. While there is no need to invoke stochastic evolution or delayed stirring to explain the statistics, a moderate rate of stochastic events is not ruled out. Potentially anomalous systems are identified by a high dust luminosity compared with the maximum permissible in the model (HD3003, HD38678, HD115892, HD172555). Their planetesimals may have unusual properties (high strength or low eccentricity) or this dust could be transient. While transient phenomena are also favored for a few systems in the literature, ...

  5. Classical quasi-steady state reduction-A mathematical characterization

    Science.gov (United States)

    Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva

    2017-04-01

    We discuss parameter dependent polynomial ordinary differential equations that model chemical reaction networks. By classical quasi-steady state (QSS) reduction we understand the following familiar (heuristically motivated) mathematical procedure: Set the rate of change for certain (a priori chosen) variables equal to zero and use the resulting algebraic equations to obtain a system of smaller dimension for the remaining variables. This procedure will generally be valid only for certain parameter ranges. We start by showing that the reduction is accurate if and only if the corresponding parameter is what we call a QSS parameter value, and that the reduction is approximately accurate if and only if the corresponding parameter is close to a QSS parameter value. The QSS parameter values can be characterized by polynomial equations and inequations, hence parameter ranges for which QSS reduction is valid are accessible in an algorithmic manner. A defining characteristic of a QSS parameter value is that the algebraic variety defined by the QSS relations is invariant for the differential equation. A closer investigation of the associated systems shows the existence of further invariant sets; here singular perturbations enter the picture in a natural manner. We compare QSS reduction and singular perturbation reduction, and show that, while they do not agree in general, they do, up to lowest order in a small parameter, for a quite large and relevant class of examples. This observation, in turn, allows the computation of QSS reductions even in cases where an explicit resolution of the polynomial equations is not possible.

  6. Visual steady state in relation to age and cognitive function

    Science.gov (United States)

    Dyhr Thomsen, Mia; Wiegand, Iris; Horwitz, Henrik; Klemp, Marc; Nikolic, Miki; Rask, Lene; Lauritzen, Martin; Benedek, Krisztina

    2017-01-01

    Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit) with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV) with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01). Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05). In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01). Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age. PMID:28245274

  7. Non-steady state population kinetics of intravenous phenytoin.

    Science.gov (United States)

    Frame, B; Beal, S L

    1998-08-01

    This observational study explored the effects of demographics, sickness, and polypharmacy on the non-steady state population pharmacokinetics of intravenous phenytoin. One hundred fifteen patients were studied. Models were developed using the NONMEM program with hybrid first-order conditional estimation. A Michaelis-Menten model with delayed induction was preferred over a Michaelis-Menten model without induction, a Michaelis-Menten model with immediate induction, or a linear model with delayed induction. When the data were fit to a Michaelis-Menten model with delayed induction, the volume of distribution (Vd) was found to depend on weight and serum albumin. The Vd was estimated to be 0.95 l/kg, assuming an albumin level of 3 g/dl. The Michaelis-Menten constant (km) was estimated to be 7.9 mg/l. The baseline maximum metabolic rate was 580 mg/day for a 70-kg patient. The average time to onset of induction was 59.5 hours. If a fever developed after induction began, it increased the extent of induction. This model was evaluated retrospectively in 26 additional patients, yielding a mean prediction error of -0.4 mg/l (-3.0-2.2 mg/l) and a mean absolute prediction error of 4.7 mg/l (3.2-6.2 mg/l) based on two-level feedback. Given the large interindividual variances in maximum metabolic rate, phenytoin levels should be measured frequently.

  8. Dynamic steady-state of periodically-driven quantum systems

    CERN Document Server

    Yudin, V I; Basalaev, M Yu; Kovalenko, D

    2015-01-01

    Using the density matrix formalism, we prove an existence theorem of the periodic steady-state for an arbitrary periodically-driven system. This state has the same period as the modulated external influence, and it is realized as an asymptotic solution ($t$$\\to$$+\\infty$) due to relaxation processes. The presented derivation simultaneously contains a simple computational algorithm non-using both Floquet and Fourier theories, i.e. our method automatically guarantees a full account of all frequency components. The description is accompanied by the examples demonstrating a simplicity and high efficiency of our method. In particular, for three-level $\\Lambda$-system we calculate the lineshape and field-induced shift of the dark resonance formed by the field with periodically modulated phase. For two-level atom we obtain the analytical expressions for signal of the direct frequency comb spectroscopy with rectangular light pulses. In this case it was shown the radical dependence of the spectroscopy lineshape on pul...

  9. Models of steady state cooling flows in elliptical galaxies

    Science.gov (United States)

    Vedder, Peter W.; Trester, Jeffrey J.; Canizares, Claude R.

    1988-01-01

    A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount.

  10. Multiple repetition time balanced steady-state free precession imaging.

    Science.gov (United States)

    Cukur, Tolga; Nishimura, Dwight G

    2009-07-01

    Although balanced steady-state free precession (bSSFP) imaging yields high signal-to-noise ratio (SNR) efficiency, the bright lipid signal is often undesirable. The bSSFP spectrum can be shaped to suppress the fat signal with scan-efficient alternating repetition time (ATR) bSSFP. However, the level of suppression is limited, and the pass-band is narrow due to its nonuniform shape. A multiple repetition time (TR) bSSFP scheme is proposed that creates a broad stop-band with a scan efficiency comparable with ATR-SSFP. Furthermore, the pass-band signal uniformity is improved, resulting in fewer shading/banding artifacts. When data acquisition occurs in more than a single TR within the multiple-TR period, the echoes can be combined to significantly improve the level of suppression. The signal characteristics of the proposed technique were compared with bSSFP and ATR-SSFP. The multiple-TR method generates identical contrast to bSSFP, and achieves up to an order of magnitude higher stop-band suppression than ATR-SSFP. In vivo studies at 1.5 T and 3 T demonstrate the superior fat-suppression performance of multiple-TR bSSFP.

  11. Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity

    Directory of Open Access Journals (Sweden)

    Pedro Figueiredo, Rafael Nazario, Marisa Sousa, Jailton Gregório Pelarigo, João Paulo Vilas-Boas, Ricardo Fernandes

    2014-09-01

    Full Text Available The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS. Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA, allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%: stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation. However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity.

  12. The inductive, steady-state sustainment of stable spheromaks

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  13. Steady state relativistic stellar dynamics around a massive black hole

    CERN Document Server

    Bar-Or, Ben

    2015-01-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the "loss-cone", which take them directly into the MBH, or close enough to interact strongly with it. The resulting phenomena: tidal heating and tidal disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, are of interest as they can produce observable signatures and thereby reveal the existence of the MBH, affect its mass and spin evolution, probe strong gravity, and provide information on stars and gas near the MBH. The continuous loss of stars and the processes that resupply them shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss-cone of a non-spinning MBH in steady-state analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclos...

  14. Ising game: Nonequilibrium steady states of resource-allocation systems

    Science.gov (United States)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  15. The Path of Carbon in Photosynthesis. XX. The Steady State

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.; Massini, Peter

    1952-09-01

    The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.

  16. Instability and Existence of Spatial Nonhomogenuos Steady State of the Classical Contiunuum Heisenberg Spain Chin

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The Landau-Lifshitz equation of the ferromagnetic spin chain with Gilbert damping term is considered.which is described by δS/δt=S×ΔS-λS×(S×ΔS),All spatial nonhomogenuos steady-state solutions.which are the form S=R1 cos(lr)+ R2 sin(lr)Al∈R,wherer |R1|=|R2|=1 and R1⊥R2,are proposed,Moreover the instability of the spatial nonhomogenuos steady-state solutions Sl(r)(l≠0) is investigated.Every perturbation of the spatial nonhomogenuos steady-state tends to a spatial homogeneous steady-state as t→∞.Thus the hetercolinic orbits,which connect the spatial nonhomogenuos steady-state and the spatial homogeneous steady-state,are exist.Filially numerical experiments are provided.

  17. Qualitative Analysis on a Reaction-Diffusion Prey Predator Model and the Corresponding Steady-States

    Institute of Scientific and Technical Information of China (English)

    Qunyi BIE; Rui PENG

    2009-01-01

    The authors study a diffusive prey-predator model subject to the homogeneous Neumann boundary condition and give some qualitative descriptions of solutions to this reaction-diffusion system and its corresponding steady-state problem.The local and global stability of the positive constant steady-state are discussed,and then some results for nonexistence of positive non-constant steady-states are derived.

  18. Steady-state probability density function in wave turbulence under large volume limit

    Institute of Scientific and Technical Information of China (English)

    Yeontaek Choia; Sang Gyu Job

    2011-01-01

    We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown that in this limit all the steady-state two- or higher-mode PDFs are the product of one-mode PDFs. The flux of this steady-state solution turns out to be zero for any finite mode PDF.

  19. NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL

    Institute of Scientific and Technical Information of China (English)

    CHEN WENYAN; WANG MINGXIN

    2004-01-01

    In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower bounds) of positive steady-states,and then study the non-existence, the global existence and bifurcation of non-constant positive steady-states as some parameters are varied. Finally the asymptotic behavior of such solutions as d3 →∞ is discussed.

  20. Hopf and steady state bifurcation analysis in a ratio-dependent predator-prey model

    Science.gov (United States)

    Zhang, Lai; Liu, Jia; Banerjee, Malay

    2017-03-01

    In this paper, we perform spatiotemporal bifurcation analysis in a ratio-dependent predator-prey model and derive explicit conditions for the existence of non-constant steady states that emerge through steady state bifurcation from related constant steady states. These explicit conditions are numerically verified in details and further compared to those conditions ensuring Turing instability. We find that (1) Turing domain is identical to the parametric domain where there exists only steady state bifurcation, which implies that Turing patterns are stable non-constant steady states, but the opposite is not necessarily true; (2) In non-Turing domain, steady state bifurcation and Hopf bifurcation act in concert to determine the emergent spatial patterns, that is, non-constant steady state emerges through steady state bifurcation but it may be unstable if the destabilising effect of Hopf bifurcation counteracts the stabilising effect of diffusion, leading to non-stationary spatial patterns; (3) Coupling diffusion into an ODE model can significantly enrich population dynamics by inducing alternative non-constant steady states (four different states are observed, two stable and two unstable), in particular when diffusion interacts with different types of bifurcation; (4) Diffusion can promote species coexistence by saving species which otherwise goes to extinction in the absence of diffusion.

  1. A new perspective on steady-state cosmology: from Einstein to Hoyle

    CERN Document Server

    O'Raifeartaigh, Cormac

    2015-01-01

    We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein's steady-state cosmology with that of Hoyle, Bondi and Gold and consider the reasons Einstein abandoned his model. The relevance of steady-state models for today's cosmology is briefly reviewed.

  2. On the number of steady states in a multiple futile cycle.

    Science.gov (United States)

    Wang, Liming; Sontag, Eduardo D

    2008-07-01

    The multisite phosphorylation-dephosphorylation cycle is a motif repeatedly used in cell signaling. This motif itself can generate a variety of dynamic behaviors like bistability and ultrasensitivity without direct positive feedbacks. In this paper, we study the number of positive steady states of a general multisite phosphorylation-dephosphorylation cycle, and how the number of positive steady states varies by changing the biological parameters. We show analytically that (1) for some parameter ranges, there are at least n + 1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n - 1 steady states (in particular, this implies that for n = 2, including single levels of MAPK cascades, there are at most three steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n + 1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state.

  3. Simulation and Analysis on Multiple Steady States of an Industrial Acetic Acid Dehydration System

    Institute of Scientific and Technical Information of China (English)

    李绍军; 黄定伟

    2011-01-01

    In this work, an industrial acetic acid dehydration system via heterogeneous azeotropic distillation is simulated by Aspen Plus software. Residue curves are used to analyze the distillating behavior, and appropriate operating region of the system is determined. Based on steady states simulation, a sensitivity analysis is carried out to detect the output multiple steady states in the system. Different solution branches are observered when the flow rates of the feed stream and the organic reflux stream are selected as manipulated variables. The performance of the column under different steady states is different. A method is oroposed to achieve the desired steady state.

  4. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  5. Impact of aquifer desaturation on steady-state river seepage

    Science.gov (United States)

    Morel-Seytoux, Hubert J.; Miracapillo, Cinzia; Mehl, Steffen

    2016-02-01

    Flow exchange between surface and ground water is of great importance be it for beneficial allocation and use of the water resources or for the proper exercise of water rights. That exchange can take place under a saturated or unsaturated flow regime. Which regimes occur depend on conditions in the vicinity of the interactive area. Withdrawals partially sustained by seepage may not bring about desaturation but greater amounts eventually will. The problem considered in this paper deals only with the steady-state case. It is meant as a first step toward a simple, yet accurate and physically based treatment of the transient situation. The primary purpose of the article is to provide simple criteria for determination of the initiation of desaturation in an aquifer originally in saturated hydraulic connection with a river or a recharge area. The extent of the unsaturated zone in the aquifer will increase with increasing withdrawals while at the same time the seepage rate from the river increases. However the seepage increase will stop once infiltration takes place strictly by gravity in the aquifer and is no longer opposed by the capillary rise from the water table below the riverbed. Following desaturation simple criteria are derived and simple analytical formulae provided to estimate the river seepage based on the position of the water table mound below the clogging layer and at some distance away from the river bank. They fully account for the unsaturated flow phenomena, including the existence of a drainage entry pressure. Two secondary objectives were to verify that (1) the assumption of uniform vertical flow through a clogging layer and that (2) the approximation of the water table mound below the seepage area as a flat surface were both reasonably legitimate. This approach will be especially advantageous for the implementation of the methodology in large-scale applications of integrated hydrologic models used for management.

  6. Auditory steady-state responses for estimating moderate hearing loss.

    Science.gov (United States)

    Swanepoel, DeWet; Erasmus, Hettie

    2007-07-01

    The auditory steady-state response (ASSR) has gained popularity as an alternative technique for objective audiometry but its use in less severe degrees of hearing loss has been questioned. The aim of this study was to investigate the usefulness of the ASSR in estimating moderate degrees of hearing loss. Seven subjects (12 ears) with moderate sensorineural hearing loss between 15 and 18 years of age were enrolled in the study. Forty-eight behavioural and ASSR thresholds were obtained across the frequencies of 0.5, 1, 2, and 4 kHz. ASSR thresholds were determined using a dichotic multiple frequency recording technique. Mean threshold differences varied between 2 and 8 dB (+/-7-10 dB SD) across frequencies. The highest difference and variability was recorded at 0.5 kHz. The frequencies 1-4 kHz also revealed significantly better correlations (0.74-0.88) compared to 0.5 kHz (0.31). Comparing correlation coefficients for behavioural thresholds less than 60 and 60 dB and higher revealed a significant difference. Eighty-six percent of ASSR thresholds corresponded within 5 dB of moderate to severe behavioural thresholds compared to only 29% for mild to moderate thresholds in this study. The results confirm that the ASSR can reliably estimate behavioural thresholds of 60 dB and higher, but due to increased variability, caution is recommended when estimating behavioural thresholds of less than 60 dB, especially at 0.5 kHz.

  7. Nonequilibrium steady states in a model for prebiotic evolution

    Science.gov (United States)

    Wynveen, A.; Fedorov, I.; Halley, J. W.

    2014-02-01

    Some statistical features of steady states of a Kauffman-like model for prebiotic evolution are reported from computational studies. We postulate that the interesting "lifelike" states will be characterized by a nonequilibrium distribution of species and a time variable species self-correlation function. Selecting only such states from the population of final states produced by the model yields the probability of the appearance of such states as a function of a parameter p of the model. p is defined as the probability that a possible reaction in the the artificial chemistry actually appears in the network of chemical reactions. Small p corresponds to sparse networks utilizing a small fraction of the available reactions. We find that the probability of the appearance of such lifelike states exhibits a maximum as a function of p: at large p, most final states are in chemical equilibrium and hence are excluded by our criterion. At very small p, the sparseness of the network makes the probability of formation of any nontrivial dynamic final state low, yielding a low probability of production of lifelike states in this limit as well. We also report results on the diversity of the lifelike states (as defined here) that are produced. Repeated starts of the model evolution with different random number seeds in a given reaction network lead to final lifelike states which have a greater than random likelihood of resembling one another. Thus a form of "convergence" is observed. On the other hand, in different reaction networks with the same p, lifelike final states are statistically uncorrelated. In summary, the main results are (1) there is an optimal p or "sparseness" for production of lifelike states in our model—neither very dense nor very sparse networks are optimal—and (2) for a given p or sparseness, the resulting lifelike states can be extremely different. We discuss some possible implications for studies of the origin of life.

  8. Steady state growth of E. Coli in low ammonium environment

    Science.gov (United States)

    Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry

    2011-03-01

    Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.

  9. Human auditory steady state responses to binaural and monaural beats.

    Science.gov (United States)

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  10. Oxygen consumption dynamics in steady-state tumour models.

    Science.gov (United States)

    Grimes, David Robert; Fletcher, Alexander G; Partridge, Mike

    2014-09-01

    Oxygen levels in cancerous tissue can have a significant effect on treatment response: hypoxic tissue is both more radioresistant and more chemoresistant than well-oxygenated tissue. While recent advances in medical imaging have facilitated real-time observation of macroscopic oxygenation, the underlying physics limits the resolution to the millimetre domain, whereas oxygen tension varies over a micrometre scale. If the distribution of oxygen in the tumour micro-environment can be accurately estimated, then the effect of potential dose escalation to these hypoxic regions could be better modelled, allowing more realistic simulation of biologically adaptive treatments. Reaction-diffusion models are commonly used for modelling oxygen dynamics, with a variety of functional forms assumed for the dependence of oxygen consumption rate (OCR) on cellular status and local oxygen availability. In this work, we examine reaction-diffusion models of oxygen consumption in spherically and cylindrically symmetric geometries. We consider two different descriptions of oxygen consumption: one in which the rate of consumption is constant and one in which it varies with oxygen tension in a hyperbolic manner. In each case, we derive analytic approximations to the steady-state oxygen distribution, which are shown to closely match the numerical solutions of the equations and accurately predict the extent to which oxygen can diffuse. The derived expressions relate the limit to which oxygen can diffuse into a tissue to the OCR of that tissue. We also demonstrate that differences between these functional forms are likely to be negligible within the range of literature estimates of the hyperbolic oxygen constant, suggesting that the constant consumption rate approximation suffices for modelling oxygen dynamics for most values of OCR. These approximations also allow the rapid identification of situations where hyperbolic consumption forms can result in significant differences from constant

  11. Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12

    DEFF Research Database (Denmark)

    Verelst, David Robert; Hansen, Morten Hartvig; Pirrung, Georg

    This reports presents comparison of the steady state HAWC2 [1] [2] [3] simulation results and the HAWCStab2 computations of the DTU10MW reference turbine [4] [5]. It serves as a simple validation for the HAWCStab2 [6] [7] [8] steady state computations....

  12. Distance to achieve steady state walking speed in frail elderly persons

    NARCIS (Netherlands)

    Lindemann, U.; Najafi, B.; Zijlstra, W.; Hauer, K.; Muche, R.; Becker, C.; Aminian, K.

    2008-01-01

    This study aims to determine the length of the gait initiation phase before achieving steady state walking in frail older people. Based on body fixed sensors, habitual walking was analysed in 116 community-dwelling older persons (mean age 83.1 years, 84% women). The start of steady state walking was

  13. 40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment

    Science.gov (United States)

    2010-07-01

    .... Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... Short Test Equipment (I) Steady-State Test Exhaust Analysis System (a) Sampling system—(1) General requirements. The sampling system for steady-state short tests shall, at a minimum, consist of a tailpipe...

  14. A steady-state analytical slope stability model for complex hillslopes

    NARCIS (Netherlands)

    Talebi, A.; Troch, P.A.; Uijlenhoet, R.

    2008-01-01

    This paper presents a steady-state analytical hillslope stability model to study the role of topography on rain-induced shallow landslides. We combine a bivariate continuous function of the topographic surface, a steady-state hydrological model of hillslope saturated storage, and the infinite slope

  15. Steady-state properties of a finite system driven by a chemical-potential gradient

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Mouritsen, Ole G.

    1990-01-01

    A two-dimensional lattice-gas model with repulsive interactions periodically infinite in one dimension and finite in the other is driven into a mass-transporting steady state by asymmetric chemical potentials applied at the open edges. By computer-simulation techniques the steady-state current...

  16. A steady-state analytical slope stability model for complex hillslopes

    NARCIS (Netherlands)

    Talebi, A.; Troch, P.A.; Uijlenhoet, R.

    2008-01-01

    This paper presents a steady-state analytical hillslope stability model to study the role of topography on rain-induced shallow landslides. We combine a bivariate continuous function of the topographic surface, a steady-state hydrological model of hillslope saturated storage, and the infinite slope

  17. Highly enhanced steady-state optomechanical entanglement via cross-Kerr nonlinearity

    CERN Document Server

    Chakraborty, Subhadeep

    2016-01-01

    We study steady-state optomechanical entanglement in presence of an additional cross-Kerr coupling between the optical and mechanical mode. We find that a significant enhancement of the steady-state entanglement can be achieved at a considerably lower driving power, which is also extremely robust with respect to system parameters and environmental temperature.

  18. Steady State Solution for the Weakly Damped Forced Korteweg—de Vries Equation

    Institute of Scientific and Technical Information of China (English)

    BolingGUO; GuoguangLIN

    1998-01-01

    The existence and uniqueness of steady state solution for the weakly damped forced KdV equation with a periodic boundary value problems are proved.It is obtained that the every solution of the weakly damped forced KdV equations converges to the steady state soluton as time t→∞。

  19. Stream-power incision model in non-steady-state mountain ranges: An empirical approach

    Institute of Scientific and Technical Information of China (English)

    CHEN Yen-Chieh; SUNG Quocheng; CHEN Chao-Nan

    2006-01-01

    Stream-power incision model has always been applied to detecting the steady-state situation of ranges. Oblique arc-continent collision occurring during the period of Penglai Orogeny caused the Taiwan mountain belt to develop landscape of three evolution stages, namely stages of pre-steady-state (growing ranges in southern Taiwan), steady-state (ranges in central Taiwan) and post-steady-state (decaying ranges in northern Taiwan). In the analysis on streams of the Taiwan mountain belt made by exploring the relationship between the slope of bedrock channel (S) and the catchment area (A), the topographic features of the ranges at these three stages are acquired. The S-A plot of the steady-state ranges is in a linear form, revealing that the riverbed height of bedrock channel does not change over time (dz/dt =0). The slope and intercept of the straight line S-A are related to evolution time of steady-state topography and tectonic uplift rate respectively. The S-A plots of the southern and northern ranges of Taiwan mountain belt appear to be in convex and concave forms respectively, implying that the riverbed height of bedrock channel at the two ranges rises (dz/dt>0)and falls (dz/dt<0) over time respectively. Their tangent intercept can still reflect the tectonic uplift rate.This study develops an empirical stream-power eresion model of pre-steady-state and post-steady-state topography.

  20. Development of synchronous generator saturation model from steady-state operating data

    Energy Technology Data Exchange (ETDEWEB)

    Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)

    2010-11-15

    A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)

  1. On the use of steady-state signal equations for 2D TrueFISP imaging.

    Science.gov (United States)

    Coolen, Bram F; Heijman, Edwin; Nicolay, Klaas; Strijkers, Gustav J

    2009-07-01

    To explain the signal behavior in 2D-TrueFISP imaging, a slice excitation profile should be considered that describes a variation of effective flip angles and magnetization phases after excitation. These parameters can be incorporated into steady-state equations to predict the final signal within a pixel. The use of steady-state equations assumes that excitation occurs instantaneously, although in reality this is a nonlinear process. In addition, often the flip angle variation within the slice excitation profile is solely considered when using steady-state equations, while TrueFISP is especially known for its sensitivity to phase variations. The purpose of this study was therefore to evaluate the precision of steady-state equations in calculating signal intensities in 2D TrueFISP imaging. To that end, steady-state slice profiles and corresponding signal intensities were calculated as function of flip angle, RF phase advance and pulse shape. More complex Bloch simulations were considered as a gold standard, which described every excitation within the sequence until steady state was reached. They were used to analyze two different methods based on steady-state equations. In addition, measurements on phantoms were done with corresponding imaging parameters. Although the Bloch simulations described the steady-state slice profile formation better than methods based on steady-state equations, the latter performed well in predicting the steady-state signal resulting from it. In certain cases the phase variation within the slice excitation profile did not even have to be taken into account.

  2. Inerting characteristics of entrained atomized water on premixed methane-air flame

    Institute of Scientific and Technical Information of China (English)

    Cai Feng; Wang Ping; Zhou Jiebo; Li Chao

    2015-01-01

    A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experi-mentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that:for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 mL/(m2 min);for the premixed methane–air gas with a concentration of 9%, the mini-mum inerting atomized water flux is 32.9 mL/(m2 min);for the premixed methane–air gas with a concen-tration of 11%, the minimum inerting atomized water flux is 44.6 mL/(m2 min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.

  3. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil;

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...

  4. Simulation of Multi-Steady States in Low Temperature Gas Discharge

    Institute of Scientific and Technical Information of China (English)

    李弘; 胡希伟

    2004-01-01

    This article presents hydrodynamics simulation of multi-steady states and mode transition by DC-beam-injected gas discharge, and provides a model approach to hysteresis and distinct forms of multi-steady states. The critical transition conditions of the three discharge modes (temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to be dependent on the gas pressure and the filament temperature. Various forms of the multi-steady states in gas discharge can be uniformly explained by the displacement of the mutant positions. The simulation results are in a good agreement with those of the experiments.

  5. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System

    OpenAIRE

    Roder, Hans M.; Perkins, Richard A.; Laesecke, Arno; Nieto de Castro, Carlos A.

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relat...

  6. Estimating time to steady state using the effective rate of drug accumulation.

    Science.gov (United States)

    Panebianco, Deborah L; Maes, Andrea

    2011-01-01

    Unless all of a drug is eliminated during each dosing interval, the plasma concentrations within a dosing interval will increase until the time course of change in plasma concentrations becomes invariant from one dosing interval to the next, resulting in steady state. A simple method for estimating drug concentration time to steady state based on multiple dose area under the plasma concentration-time curve and effective rate of drug accumulation is presented. Several point estimates and confidence intervals for time to 90% of steady state are compared, and a recommendation is made on how to summarize and present the results. Copyright © 2009 John Wiley & Sons, Ltd.

  7. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells.

    Science.gov (United States)

    Guardia, M J; Gambhir, A; Europa, A F; Ramkrishna, D; Hu, W S

    2000-01-01

    Hybridoma cells utilize a pair of complementary and partially substitutable substrates, glucose and glutamine, for growth. It has been shown that cellular metabolism shifts under different culture conditions. When those cultures at different metabolic states are switched to a continuous mode, they reach different steady states under the same operating conditions. A cybernetic model was constructed to describe the complementary and partial substitutable nature of substrate utilization. The model successfully predicted the metabolic shift and multiple steady-state behavior. The results are consistent with the experimental observation that the history of the culture affects the resulting steady state.

  8. Turbulent combustion modelling of a confined premixed jet flame including heat loss effects using tabulated chemistry

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.

    2015-01-01

    The present work addresses the coupling of a flamelet database, to a low-Mach approximation of the Navier–Stokes equations using scalar controlling variables. The model is characterized by the chemistry tabulation based on laminar premixed flamelets in combination with an optimal choice of the react

  9. Transient combustion modeling of an oscillating lean premixed methane/air flam

    NARCIS (Netherlands)

    Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar

    2009-01-01

    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions

  10. Analytical Results of Steady-State Populations in Multiphoton Electromagnetically Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    YANGXiao-Xue; LUOJin-Ming

    2004-01-01

    We present the explicit analytical expressions of the steady-state probability amplitudes and populations of atom levels in N-photon electromagnetically induced transparency for an arbitrary positive integer N.

  11. Potential multiple steady-states in the long-term carbon cycle

    CERN Document Server

    Tennenbaum, Stephen; Schwartzman, David

    2013-01-01

    Modelers of the long term carbon cycle in Earth history have previously assumed there is only one stable climatic steady state. Here we investigate the possibility of multiple steady states. We find them in Abiotic World, lacking any biotic influence, resulting from possible variations in planetary albedo in different temperature, atmospheric carbon dioxide level regimes, with the same weathering forcing balancing a volcanic source to the atmosphere, ocean pool. In Plant World modeling relevant to the Phanerozoic, we include the additional effects of biotic enhancement of weathering on land, organic carbon burial, oxidation of reduced organic carbon in terrestrial sediments and the variation of biotic productivity with temperature, finding a second stable steady state appearing between twenty and fifty degrees C. The very warm early Triassic climate may be the prime candidate for an upper temperature steady state. Given our results, the anthropogenic driven rise of atmospheric carbon dioxide could potentially...

  12. Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model

    Science.gov (United States)

    Lou, Yuan; Tao, Youshan; Winkler, Michael

    2017-05-01

    In this paper we study the Shigesada-Kawasaki-Teramoto model for two competing species with triangular cross-diffusion. We determine explicit parameter ranges within which the model exclusively possesses constant steady state solutions.

  13. Analytical solutions for transient and steady state beam loading in arbitrary traveling wave accelerating structures

    CERN Document Server

    Lunin, Andrei; Grudiev, Alexej

    2011-01-01

    Analytical solutions are derived for transient and steady state gradient distributions in the travelling wave accelerating structures with arbitrary variation of parameters over the structure length. The results of both the unloaded and beam loaded cases are presented.

  14. Steady State Condition in the Measurement of VO2and VCO2by Indirect Calorimetry.

    Science.gov (United States)

    Cadena, M; Sacristan, E; Infante, O; Escalante, B; Rodriguez, F

    2005-01-01

    Resting Metabolic Rate (RMR) is computed using VO2and VCO2short time 15-minute window measurement with Indirect Calorimetry (IC) instruments designed with mixing chamber. Steady state condition using a 10% variation coefficient criteria is the main objective to achieve metabolic long time prediction reliability. This study address how susceptible is the steady state VO2, VCO2measurement condition to the clino-orthostatic physiological maneuver. 30 young healthy subjects were analyzed. Only 18 passed the 10% variation coefficient inclusive criteria. They were exposed to 10 minutes clino-stage and 10 minutes orthostage. The hypothesis tests show not statistical significance (p< 0.1) in the average and variance analysis. It is concluded that the steady state is not influenced by the patient position IC test, probably because IC mixing chamber instruments are insensitive to detect a mayor physiological dynamics changes that can modify the steady state definition.

  15. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    Science.gov (United States)

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  16. A twin study of the trough plasma steady-state concentration of metformin

    DEFF Research Database (Denmark)

    Stage, Tore B; Damkier, Per; Pedersen, Rasmus S;

    2015-01-01

    OBJECTIVE: The aim of this study was to determine the intrapair similarity in trough steady-state plasma concentrations of metformin in monozygotic and dizygotic twin pairs. METHODS: We included 16 twin pairs (eight monozygotic and eight dizygotic twin pairs) for this study after contacting 524...... twin pairs. They were dosed with metformin to steady state (1 g twice daily) for 6 days and on day 7, the trough concentration of metformin was determined 12 h after the last dose. RESULTS: There was no strong intrapair similarity in trough steady-state plasma concentrations of metformin in either...... dizygotic or monozygotic twin pairs. CONCLUSION: The trough steady-state plasma concentration of metformin does not appear to be tightly genetically regulated. The interpretation of this finding is limited by the small sample size....

  17. Exacting predictions by cybernetic model confirmed experimentally: steady state multiplicity in the chemostat.

    Science.gov (United States)

    Kim, Jin Il; Song, Hyun-Seob; Sunkara, Sunil R; Lali, Arvind; Ramkrishna, Doraiswami

    2012-01-01

    We demonstrate strong experimental support for the cybernetic model based on maximizing carbon uptake rate in describing the microorganism's regulatory behavior by verifying exacting predictions of steady state multiplicity in a chemostat. Experiments with a feed mixture of glucose and pyruvate show multiple steady state behavior as predicted by the cybernetic model. When multiplicity occurs at a dilution (growth) rate, it results in hysteretic behavior following switches in dilution rate from above and below. This phenomenon is caused by transient paths leading to different steady states through dynamic maximization of the carbon uptake rate. Thus steady state multiplicity is a manifestation of the nonlinearity arising from cybernetic mechanisms rather than of the nonlinear kinetics. The predicted metabolic multiplicity would extend to intracellular states such as enzyme levels and fluxes to be verified in future experiments.

  18. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, H.-S. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Wolf, R. C. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Andreeva, T. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Cardella, A [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Erckmann, V. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Gantenbein, G [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Hathiramani, D [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Kasparek, W [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Klinger, T. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Koenig, R [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Kornejew, P [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Laqua, H P [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Lechte, C [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Michel, G [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Peacock, A. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Sunn Pedersen, T [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Thumm, M [Karlsruhe Institute for Technology, IHM, EURATOM Association, Karlsruhe, Germany; Turkin, Yu. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Wegener, Lutz [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Werner, A. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Zhang, D [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Beidler, C. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Bozhenkov, S. [EURATOM-Association, Max Planck Institute of Plasma Physics, Greifswald, Germany; Brown, T. [Princeton Plasma Physics Laboratory (PPPL); Geiger, J. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Harris, Jeffrey H [ORNL; Heitzenroeder, P. [Princeton Plasma Physics Laboratory (PPPL); Lumsdaine, Arnold [ORNL; Maassberg, H. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Marushchenko, N B [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Neilson, G. H. [Princeton Plasma Physics Laboratory (PPPL); Otte, M [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Rummel, Thomas [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Spong, Donald A [ORNL; Tretter, Jorg [Max Planck Institute for Plasma Physics, Garching, Germany

    2013-01-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.

  19. Steady state of active systems is characterized by unique effective temperature

    CERN Document Server

    Nandi, Saroj Kumar

    2016-01-01

    Understanding the properties of active matter systems, consisting of particles capable of taking up and dissipating energy and thus driven out of equilibrium, is important as it provides the possibility of a unified framework to analyze a diverse class of biological systems. Analysis of a large number of such systems shows an extension of equilibrium-like ideas are, sometimes, capable of capturing the steady state properties and a thermodynamic formulation of the problem might be possible. Investigating the detailed steady state properties and how the systems depart from equilibrium is important for such a formulation. Here we address the question through the framework of mode-coupling theory for dense active systems. We obtain a generic nonequilirbium theory for such systems and then taking the steady state limit of the theory we show that the system is characterized by a unique effective temperature, unlike other driven systems like a glass under shear. We discuss the differences of the steady states of an ...

  20. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    Science.gov (United States)

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats" NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo." The pattern evok...

  1. A closed-loop control scheme for steering steady states of glycolysis and glycogenolysis pathway.

    Science.gov (United States)

    Panja, Surajit; Patra, Sourav; Mukherjee, Anirban; Basu, Madhumita; Sengupta, Sanghamitra; Dutta, Pranab K

    2013-01-01

    Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.

  2. Non - linear laminar flow of fluid into an open bottom well

    Directory of Open Access Journals (Sweden)

    S. K. JAIN

    1982-06-01

    Full Text Available In steady state condition, non - linear laminar flow of fluid into an open
    bottom well just penetrating the semi-infinite porous aquifer is considered. The
    influence of non-linear laminar flow on discharge and its dependance on related
    physical quantities is examined. It is found that an open bottom well actually
    behaves like a hemispherical well, which is an obvious practical phenomenon.

  3. Optimization of steady-state ¹³C-labeling experiments for metabolic flux analysis.

    Science.gov (United States)

    Kruger, Nicholas J; Masakapalli, Shyam K; Ratcliffe, R George

    2014-01-01

    While steady-state (13)C metabolic flux analysis is a powerful method for deducing multiple fluxes in the central metabolic network of heterotrophic and mixotrophic plant tissues, it is also time-consuming and technically challenging. Key steps in the design and interpretation of steady-state (13)C labeling experiments are illustrated with a generic protocol based on applications to plant cell suspension cultures.

  4. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization.

    Science.gov (United States)

    Zheng, Zhenzhen; Chou, Ching-Shan; Yi, Tau-Mu; Nie, Qing

    2011-10-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together

  5. Non equilibrium steady states: fluctuations and large deviations of the density and of the current

    OpenAIRE

    Derrida, B.

    2007-01-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow to calculate the fluctuations and large deviations of the density and of the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (fo...

  6. Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator

    CERN Document Server

    Asjad, Muhammad; 10.1103/PhysRevA.84.033606

    2011-01-01

    We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.

  7. Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder

    Science.gov (United States)

    2017-03-09

    UNCLASSIFIED UNCLASSIFIED AD-E403 855 Technical Report ARMET-TR-16045 TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A ...any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN...August 2014 4. TITLE AND SUBTITLE TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A SPINNING CONDUCTING CYLINDER 5a. CONTRACT NUMBER 5b

  8. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  9. Steady-state existence of passive vector fields under the Kraichnan model.

    Science.gov (United States)

    Arponen, Heikki

    2010-03-01

    The steady-state existence problem for Kraichnan advected passive vector models is considered for isotropic and anisotropic initial values in arbitrary dimension. The models include the magnetohydrodynamic (MHD) equations, linear pressure model, and linearized Navier-Stokes (LNS) equations. In addition to reproducing the previously known results for the MHD model, we obtain the values of the Kraichnan model roughness parameter xi for which the LNS steady state exists.

  10. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells.

    Science.gov (United States)

    Europa, A F; Gambhir, A; Fu, P C; Hu, W S

    2000-01-01

    Mammalian cells have the ability to proliferate under different nutrient environments by utilizing different combinations of the nutrients, especially glucose and the amino acids. Under the conditions often used in in vitro cultivation, the cells consume glucose and amino acids in great excess of what is needed for making up biomass and products. They also produce large amounts of metabolites with lactate, ammonia, and some non-essential amino acids such as alanine as the most dominant ones. By controlling glucose and glutamine at low levels, cellular metabolism can be altered and can result in reduced glucose and glutamine consumption as well as in reduced metabolite formation. Using a fed-batch reactor to manipulate glucose at a low level (as compared to a typical batch culture), cell metabolism was altered to a state with substantially reduced lactate production. The culture was then switched to a continuous mode and allowed to reach a steady-state. At this steady-state, the concentrations of cells and antibody were substantially higher than a control culture that was initiated from a batch culture without first altering cellular metabolism. The lactate and other metabolite concentrations were also substantially reduced as compared to the control culture. This newly observed steady-state was achieved at the same dilution rate and feed medium as the control culture. The paths leading to the two steady-states, however, were different. These results demonstrate steady-state multiplicity. At this new steady-state, not only was glucose metabolism altered, but the metabolism of amino acids was altered as well. The amino acid metabolism in the new steady-state was more balanced, and the excretion of non-essential amino acids and ammonia was substantially lower. This approach of reaching a more desirable steady-state with higher concentrations of cells and product opens a new avenue for high-density- and high-productivity-cell culture.

  11. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  12. Advanced Control Scenario of High-Performance Steady-State Operation for JT-60 Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    H. Tamai; Y. Kamada; A. Sakasai; S. Ishida; G. Kurita; M. Matsukawa; K. Urata; S. Sakurai; K. Tsuchiya; A. Morioka; Y. M. Miura; K. Kizu

    2004-01-01

    Plasma control on high-βN steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-βN exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected.

  13. Steady state effects in a two-pulse diffusion-weighted sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S. [Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Sydney (Australia); Stilbs, Peter [Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden)

    2015-04-21

    In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state.

  14. Steady State Analysis of Convex Combination of Affine Projection Adaptive Filters

    Directory of Open Access Journals (Sweden)

    S. Radhika

    2015-05-01

    Full Text Available The aim of the study is to propose an adaptive algorithm using convex combinational approach to have both fast convergence and less steady state error simultaneously. For this purpose, we have used two affine projection adaptive filters with complementary nature (both in step size and projection order as the component filters. The first component filter has high projection order and large step size which makes it to have fast convergence at the cost of more steady state error. The second component filter has slow convergence and less steady state error due to the selection of small step size and projection order. Both are combined using convex combiner so as to have best final output with fast convergence and less steady state error. Each of the component filters are updated using their own error signals and stochastic gradient approach is used to update the convex combiner so as to have minimum overall error. By using energy conservation argument, analytical treatment of the combination stage is made in stationary environment. It is found that during initial stage the proposed scheme converges to the fast filter which has good convergence later it converges to either of the two (whichever has less steady state error and towards the end, the final output converges to slow filter which is superior in lesser steady state error. Experimental results proved that the proposed algorithm has adopted the best features of the component filters.

  15. On multiple alternating steady states induced by periodic spin phase perturbation waveforms.

    Science.gov (United States)

    Buračas, Giedrius T; Jung, Youngkyoo; Lee, Jongho; Buxton, Richard B; Wong, Eric C; Liu, Thomas T

    2012-05-01

    Direct measurement of neural currents by means of MRI can potentially open a high temporal resolution (10-100 ms) window applicable for monitoring dynamics of neuronal activity without loss of the high spatial resolution afforded by MRI. Previously, we have shown that the alternating balanced steady state imaging affords high sensitivity to weak periodic currents owing to its amplification of periodic spin phase perturbations. This technique, however, requires precise synchronization of such perturbations to the radiofrequency pulses. Herein, we extend alternating balanced steady state imaging to multiple balanced alternating steady states for estimation of neural current waveforms. Simulations and phantom experiments show that the off-resonance profile of the multiple alternating steady state signal carries information about the frequency content of driving waveforms. In addition, the method is less sensitive than alternating balanced steady state to precise waveform timing relative to radiofrequency pulses. Thus, multiple alternating steady state technique is potentially applicable to MR imaging of the waveforms of periodic neuronal activity.

  16. Experimental investigations of multiple steady states in aerobic continuous cultivations of Saccharomyces cerevisiae.

    Science.gov (United States)

    Lei, Frede; Olsson, Lisbeth; Jørgensen, Sten Bay

    2003-06-30

    The steady-state behavior of a glucose-limited, aerobic, continuous cultivation of Saccharomyces cerevisiae CEN.PK113-7D was investigated around the critical dilution rate. Oxido-reductive steady states were obtained at dilution rates up to 0.09 h(-1) lower than the critical dilution rate by operating the bioreactor as a productostat, where the dilution rate was controlled on the basis of an ethanol measurement. Thus, the experimental investigations revealed that multiple steady states exist in a region of dilution rates below the critical dilution rate. The existence of multiple steady states was attributed to two distinct physiological effects occurring when growth changed from oxidative to oxido-reductive: (i) a decrease in the efficiency of ATP production and utilization (at ethanol concentrations below 3 g/L) and (ii) repression of the oxidative metabolism (at higher ethanol concentrations). The first effect was best observed at low ethanol concentrations, where multiple steady states were observed even when no repression of the oxidative metabolism was evident, i.e., the oxidative capacity was constant. However, at higher ethanol concentrations repression of the oxidative metabolism was observed (the oxidative capacity decreased), and this resulted in a broader range of dilution rates where multiple steady states could be found.

  17. Positive Steady States of a Prey-predator Model with Diffusion and Non-monotone Conversion Rate

    Institute of Scientific and Technical Information of China (English)

    Rui PENG; Ming Xin WANG; Wen Yan CHEN

    2007-01-01

    In this paper,we study the positive steady states of a prey-predator model with di .usion throughout and a non-monotone conversion rate under the homogeneous Dirichlet boundary condition. We obtain some results of the existence and non-existence of positive steady states.The stability and uniqueness of positive steady states are also discussed.

  18. Illustrating the Steady-State Condition and the Single-Molecule Kinetic Method with the NMDA Receptor

    Science.gov (United States)

    Kosman, Daniel J.

    2009-01-01

    The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…

  19. Steady state, erosional continuity, and the topography of landscapes developed in layered rocks

    Science.gov (United States)

    Perne, Matija; Covington, Matthew D.; Thaler, Evan A.; Myre, Joseph M.

    2017-01-01

    The concept of topographic steady state has substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. In topographic steady state, erosion rates are equal everywhere, and steepness adjusts to enable equal erosion rates in rocks of different strengths. This conceptual model makes an implicit assumption of vertical contacts between different rock types. Here we hypothesize that landscapes in layered rocks will be driven toward a state of erosional continuity, where retreat rates on either side of a contact are equal in a direction parallel to the contact rather than in the vertical direction. For vertical contacts, erosional continuity is the same as topographic steady state, whereas for horizontal contacts it is equivalent to equal rates of horizontal retreat on either side of a rock contact. Using analytical solutions and numerical simulations, we show that erosional continuity predicts the form of flux steady-state landscapes that develop in simulations with horizontally layered rocks. For stream power erosion, the nature of continuity steady state depends on the exponent, n, in the erosion model. For n = 1, the landscape cannot maintain continuity. For cases where n ≠ 1, continuity is maintained, and steepness is a function of erodibility that is predicted by the theory. The landscape in continuity steady state can be quite different from that predicted by topographic steady state. For n < 1 continuity predicts that channels incising subhorizontal layers will be steeper in the weaker rock layers. For subhorizontal layered rocks with different erodibilities, continuity also predicts larger slope contrasts than in topographic steady state. Therefore, the relationship between steepness and erodibility within a sequence of layered rocks is a function of contact dip. For the subhorizontal limit, the history of layers exposed at base level also influences the steepness-erodibility relationship. If uplift rate

  20. Quasi-steady state conditions in heterogeneous aquifers during pumping tests

    Science.gov (United States)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau

    2017-08-01

    Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the

  1. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei

    2012-01-01

    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  2. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    Science.gov (United States)

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate

  3. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    Science.gov (United States)

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for

  4. Characteristics of premixed, laminar CO/N2O flames

    NARCIS (Netherlands)

    Kalff, P.J.; Alkemade, C.T.J.

    1972-01-01

    Several properties are studied of fuel-rich (CO:N2O = 1.5:1) and stoichiometrie (CO:N2O = 1:1) carbon monoxide/nitrous oxide flames with varying water content up to 10%. Flame temperatures, ranging from 2680 to 2860°K. are measured with the line-reversal method, and compared with calculated adiabati

  5. Experimental study and modeling of CH{sub 4}/O{sub 2}/Ar and C{sub 2}H{sub 6}/O{sub 2}/Ar pre-mixing laminar flames; Etude experimentale et modelisation de flammes laminaires de premelange CH{sub 4}/O{sub 2}/Ar et C{sub 2}H{sub 6}/O{sub 2}/Ar

    Energy Technology Data Exchange (ETDEWEB)

    Crunelle, B.; Desgroux, P.; Pauwels, J.F. [Lille-1 Univ., 59 - Villeneuve-d`Ascq (France). Laboratoire de Cinetique et Chimie de la Combustion URA-CNRS

    1996-12-31

    New studies are always needed to better determine the physico-chemical processes involved in the combustion of natural gas. The understanding of the reaction mechanisms that lead to the formation of nitrogen oxides or volatile organic compounds requires to identify the inner mechanisms which take place during combustion and in particular the mechanisms of formation of intermediate products. The aim of this study is to analyze the thermal degradation of methane and ethane in low pressure pre-mixed stabilized laminar flames condition, because both of these compounds represent the major part of natural gas composition. The main chemical reaction ways identified in the studied flames and responsible for combustion have been identified after a comparison between experimental results and the computerized simulation performed using an a-priori postulated chemical mechanism. This study stresses on the transfer reaction schemes between the different C1, C2 and C3 oxidation ways which play an important role in the formation of intermediate hydrocarbons. (J.S.) 13 refs.

  6. Comparison between a steady-state and a transient flow model and related radionuclide concentration predictions

    Science.gov (United States)

    Gedeon, M.; Mallants, D.

    2012-04-01

    Radionuclide concentration predictions in aquifers play an important role in estimating impact of planned surface disposal of radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF), who also coordinates and leads the corresponding research. Long-term concentration predictions are based on a steady-state flow solution obtained by a cascade of multi-scale models from the catchment to the detailed (site) scale performed in MODFLOW. To test the concept and accuracy of the groundwater flow solution and conservativeness of the concentration predictions obtained therewith, a transient model, considered more realistic, was set up in a sub-domain of the intermediate scale steady-state model. Besides the modelling domain reduction, the transient model was and exact copy of the steady-state model, having the infiltration as the only time-varying parameter. The transient model was run for a twenty-year period, whereas the results were compared to the steady-state results based on infiltration value and observations averaged over the same period. The comparison of the steady-state and transient flow solutions includes the analyses of the goodness of fit, the parameter sensitivities, relative importance of the individual observations and one-percent sensitivity maps. The steady-state and transient flow solutions were subsequently translated into a site-scale transport model, used to predict the radionuclide concentrations in a hypothetical well in the aquifers. The translation of the flow solutions between the models of distinct scales was performed using the Local grid refinement method available in MODFLOW. In the site-scale models, MT3DMS transport simulations were performed to obtain respective concentration predictions in a hypothetical well, situated at 70 meters from the disposal tumuli. The equilibrium concentrations based on a constant source flux achieved using a steady-state solution were then

  7. Epoxide hydrolase-catalyzed enantioselective conversion of trans-stilbene oxide: Insights into the reaction mechanism from steady-state and pre-steady-state enzyme kinetics.

    Science.gov (United States)

    Archelas, Alain; Zhao, Wei; Faure, Bruno; Iacazio, Gilles; Kotik, Michael

    2016-02-01

    A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in k(cat) and K(M) values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/K(S)) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate.

  8. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    Science.gov (United States)

    Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.

    2015-01-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271

  9. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity.

    Science.gov (United States)

    Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P

    2015-12-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.

  10. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    Science.gov (United States)

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.

  11. Analytical solution of steady-state equations for chemical reaction networks with bilinear rate laws.

    Science.gov (United States)

    Halász, Adám M; Lai, Hong-Jian; McCabe Pryor, Meghan; Radhakrishnan, Krishnan; Edwards, Jeremy S

    2013-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady-state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here, we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher-dimensional space. We show that the linearized version of the steady-state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1.

  12. Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation

    Directory of Open Access Journals (Sweden)

    Denis J. Evans

    2013-04-01

    Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.

  13. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole

    2015-01-01

    PURPOSE: The aim of the study was to determine the steady-state pharmacokinetics of metformin in healthy volunteers with different numbers of reduced-function alleles in the organic cation transporter 1 gene (OCT1). METHODS: The study was conducted as part of a randomized cross-over trial. Thirty......-four healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9 with two reduced-function alleles) were included. In one of the study periods, they were titrated to steady-state with 1 g metformin twice daily. RESULTS: Neither AUC(0-12), C(max) nor Cl(renal) were...... volunteers, we found no impact of different OCT1 genotypes on metformin steady-state pharmacokinetics....

  14. Steady-state evaporator models of Solar Sea Power Plants. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Hetyei, S. A.; Neuman, C. P.

    1976-08-01

    Previously, a methodology was developed for modeling the dynamic and steady-state behavior of Solar Sea Power Plants (SSPP). Here, the pertinent physical laws of heat transfer and mass balance are applied to develop a lumped parameter, steady-state model for tube-and-shell evaporators incorporating falling films. This model is analyzed to investigate the assumption of constant heat transfer coefficients in modeling the steady-state behavior of smooth-tube evaporators operated in the turbulent flow regime. It is concluded that, for all practical purposes, the local heat transfer coefficient on the working fluid side of the evaporator tube is constant for both fixed and +-10% changes in the inlet working fluid flow rate. The overall objective is to develop simulation models of a complete SSPP as tools of design and optimization.

  15. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    Energy Technology Data Exchange (ETDEWEB)

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  16. Discrimination of steady state and transient state of dither extremum seeking control via sinusoidal detection

    Science.gov (United States)

    Mu, Baojie; Li, Yaoyu; Seem, John E.

    2016-08-01

    A major class of extremum seeking control (ESC) is based on the use of periodic dither perturbation of plant input for extracting the gradient information. Presence of the dither input into the steady state operation is undesirable in practice due to the possible excessive wear of actuators. It is thus beneficial to stop the dithering action after the ESC reaches its steady state. In this paper, we propose a method for automatically discriminating between the steady state and the transient state modes of extremum seeking control process using the sinusoidal detection techniques. Some design guidelines are proposed for the parameter selection of the relevant sinusoidal detection scheme. The proposed scheme is validated with simulation study on dynamic virtual plant of two building HVAC systems.

  17. Paracetamol decreases steady-state exposure to lamotrigine by induction of glucuronidation in healthy subjects

    DEFF Research Database (Denmark)

    Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen

    2016-01-01

    AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...

  18. Breakdown of the resistor-network model for steady-state hopping conduction

    Energy Technology Data Exchange (ETDEWEB)

    Emin, D. [Sandia National Labs., Albuquerque, NM (United States); Kuper, C.G. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Physics

    1996-05-01

    General master equations are used to study steady-state hopping transport in a disordered solid. We express a site`s occupancy in terms of its quasi-electrochemical potential (QECP); currents flow between sites whose QECP`s differ. Coupled nonlinear circuit equations for the QECP`s result from the steady-state condition and the boundary condition that the total QECP drop is the applied emf. When the site-to-site QECP differences are much smaller than the thermal energy, K{sub B}t, the effect of current flow on site occupancies is ignorable. These equations then reduce to those of a resistance network. However, the resistor-network model fails: (a) at low temperatures, (b) with increasing disorder, and (c) with increasing emf. We therefore study hopping conduction beyond this approximation. Exact examples show the importance of current-induced charge redistribution in non-ohmic steady-state flow.

  19. Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance.

    Science.gov (United States)

    Fernández, Adolfo A; Cabal, Carlos A; Lores, Manuel A; Losada, Jorge; Pérez, Enrique R

    2009-01-01

    The delay time of the Hb S polymerization process was investigated in 63 patients with sickle cell disease during steady state and 10 during painful crisis starting from spin-spin proton magnetic resonance (PMR) time behavior measured at 36 degrees C and during spontaneous deoxygenation. We found a significant decrease of delay time as a result of the crisis (36 +/- 10%) and two well-differentiated ranges of values for each state: 273-354 min for steady state and 166-229 min for crisis with an uncertainty region of 15%. It is possible to use PMR as an objective and quantitative method in order to differentiate both clinical conditions of the sickle cell patient, but a more clear differentiation can be established comparing the delay time (td) value of one patient during crisis with his own td value during steady state.

  20. Characterising Steady-State Topologies of SIS Dynamics on Adaptive Networks

    CERN Document Server

    Wieland, Stefan; Parisi, Andrea; Nunes, Ana

    2012-01-01

    Disease awareness in epidemiology can be modelled with adaptive contact networks, where the interplay of disease dynamics and network alteration often adds new phases to the standard models (Gross et al. 2006, Shaw et al. 2008) and, in stochastic simulations, lets network topology settle down to a steady state that can be static (in the frozen phase) or dynamic (in the endemic phase). We show for the SIS model that, in the endemic phase, this steady state does not depend on the initial network topology, only on the disease and rewiring parameters and on the link density of the network, which is conserved. We give an analytic description of the structure of this co-evolving network of infection through its steady-state degree distribution.

  1. Nonlinear dynamics theory on the steady state interface pattern during solidification of a dilute binary alloy

    Institute of Scientific and Technical Information of China (English)

    王自东; 胡汉起

    1997-01-01

    The nonlinear dynamics equations of the time dependence of the perturbation amplitude of the solid/ liquid interface during unidirectional solidification of a dilute binary alloy are established. The solutions to these equations are obtained, and the condition of the initial steady state growth of the cellular and dendritic structure after the planar solid/liquid interface bifurcates (mGc> G) with the increase of the growth rate is given. The condition of the steady state growth of fine cellular and dendritic structure in the beginning after the coarse dendrites bifurcate ( mGc<Γw2 + G) under the rapid solidification is obtained. The relationship of the steady state cell and dendrite tip radius, the perturbation amplitude and wavelength at the solid/liquid interface is presented.

  2. Influence of Micro-Grid in Steady State Performance of Primary Distribution System

    Directory of Open Access Journals (Sweden)

    K. Buayai

    2013-06-01

    Full Text Available Steady state analysis of primary distribution system is an integral part of Micro Grid (MG planning, design and operation of distribution system. In order to maximize performance and ensure secured operation of distribution system with MG, it is important to perform various analytical studies, both in static and dynamic domains. Static studies are the first step and static performance can be established by looking at a number of stead state aspects such as total power losses, voltage profile, feeder current and load ability of the system. This study presents such first step static analytical studies based on distribution load flow to see various steady state performances of primary distribution system due to the integration of MG. A 33-bus test distribution system has been used to present steady state performances. Results clearly show some useful contribution of MG in improving distribution system performance.

  3. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    Science.gov (United States)

    Su, Yan; Peter Guengerich, F

    2016-06-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc.

  4. Open Markov processes: A compositional perspective on non-equilibrium steady states in biology

    CERN Document Server

    Pollard, Blake S

    2016-01-01

    In recent work, Baez, Fong and the author introduced a framework for describing Markov processes equipped with a detailed balanced equilibrium as open systems of a certain type. These `open Markov processes' serve as the building blocks for more complicated processes. In this paper, we describe the potential application of this framework in the modeling of biological systems as open systems maintained away from equilibrium. We show that non-equilibrium steady states emerge in open systems of this type, even when the rates of the underlying process are such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' In some circumstances, the dissipation is approximately equal to the rate of change of relative entropy plus a correction term. On the other hand, Prigogine's principle of minimum entropy production generally fails for non-equilibrium steady states. We use a simple model of membrane transport to illus...

  5. Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores

    Science.gov (United States)

    Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.

    2003-12-01

    Iron is an essential micronutrient for almost all known organisms. Bacteria, fungi, and graminaceous plants are capable of exuding siderophores as part of an iron acquisition strategy. The production of these strong iron chelating ligands is induced by iron limited conditions. Grasses under iron stress, for example, exude phytosiderophores into the rhizosphere in a special diurnal rhythm (Roemheld and Marschner 1986). A few hours after sunrise the exudation starts, culminates around noon and is shut down again until about 4 hours after noon. The phytosiderophores diffuse into the rhizosphere (Marschner et al. 1986) and are passively back transported to the plants by advective flow induced by high transpiration around noon. Despite a fairly short residence time of the phytosiderophores in the rhizosphere, it is a very effective strategy for iron acquisition. To investigate the effect of such pulse inputs of siderophores on iron acquisition, we studied the dissolution mechanism of goethite (alpha-FeOOH), a mineral phase common in soils, under non-steady state conditions. In consideration of the chemical complexity of the rhizosphere, we also investigated the effect of other organic ligands commonly found in the rhizosphere (e. g. oxalate) on the dissolution kinetics. The dissolution experiments were conducted in batch reactors with a constant goethite solids concentration of 2.5 g/l, an ionic strength of 0.01 M, a pH of 6 and 100 microM oxalate. To induce non-steady state conditions, 3 mM phytosiderophores were added to a batch after the goethite-oxalate suspension reacted for a certain time period. Before the siderophore was added to the goethite-oxalate suspension, no dissolution of iron was observed. But, with the addition of the siderophore, a high rate was observed for the iron mobilization under these non-steady state conditions that subsequently was followed by a slow steady state dissolution rate. The results of these non-steady state experiments are very

  6. Steady-State Density Functional Theory for Non-equilibrium Quantum Systems

    Science.gov (United States)

    Shuanglong, Liu

    Recently, electron transport properties of molecular junctions under finite bias voltages have attracted a lot of attention because of the potential application of molecular electronic devices. When a molecular junction is under zero bias voltage at zero temperature, it is in equilibrium ground state and all its properties can be solved by ground-state density functional theory (GS-DFT) where ground-state electron density determines everything. Under finite bias voltage, the molecular junction is in non-equilibrium steady state. According to Hershfield's non-equilibrium statistics, a system in non-equilibrium steady state corresponds to an effective equilibrium system. This correspondence provides the basis for the steady-state density functional theory (SS-DFT) which will be developed in this thesis. (Abstract shortened by UMI.).

  7. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Bincheng, E-mail: bcli@ioe.ac.cn [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.

  8. Premixed Combustion of Coconut Oil on Perforated Burner

    OpenAIRE

    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi

    2013-01-01

    Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ) varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL) is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ ...

  9. Transient and steady-state velocity of domain walls for a complete range of drive fields

    Science.gov (United States)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by a computer solution of the torque equation and those obtained with the assumption of a very large anisotropy field.

  10. Realization of minute-long steady-state H-mode discharges on EAST

    Science.gov (United States)

    Xianzu, GONG; Baonian, WAN; Jiangang, LI; Jinping, QIAN; Erzhong, LI; Fukun, LIU; Yanping, ZHAO; Mao, WANG; Handong, XU; A, M. GAROFALO; Annika, EKEDAH; Siye, DING; Juan, HUANG; Ling, ZHANG; Qing, ZANG; Haiqing, LIU; Long, ZENG; Shiyao, LIN; Biao, SHEN; Bin, ZHANG; Linming, SHAO; Bingjia, XIAO; Jiansheng, HU; Chundong, HU; Liqun, HU; Liang, WANG; Youwen, SUN; Guosheng, XU; Yunfeng, LIANG; Nong, XIANG; EAST Team

    2017-03-01

    In the 2016 EAST experimental campaign, a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive, through an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management, and effective coupling of multiple RF heating and current drive sources at high injected power. The plasma current (I p ∼ 0.45 MA) was fully-noninductively driven (V loop technology studies on EAST, and will benefit the physics basis for steady state operation of ITER and CFETR.

  11. Characterization of polyester films used in capacitors. 1: Transient and steady-state conductivity

    Science.gov (United States)

    Thielen, A.; Niezette, J.; Feyder, G.; Vanderschueren, J.

    1994-10-01

    Charging and discharging currents flowing through polyethylene terephthalate (PET) ultrathin films (1.5 - 12 micrometers) were measured by the use of a two-electrode configuration involving opposite lateral contacts. A study of the influence of electrification time, applied electric field, film thickness, nature of electrodes, and water content was carried out on both transient and steady-state conduction. The transient behavior can be interpreted in terms of dipolar orientation and relaxation processes while steady-state conductivity can be mainly accounted for in terms of Schottky emission. A comparison between PET and polyethylene naphthalate films is also reported.

  12. Interval finite difference method for steady-state temperature field prediction with interval parameters

    Science.gov (United States)

    Wang, Chong; Qiu, Zhi-Ping

    2014-04-01

    A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters. [Figure not available: see fulltext.

  13. Steady-State Numerical Modeling of Size Effects in Wire Drawing

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    Wire drawing processes at micron scale receive increased interest as micro wires are increasingly required in micro electrical components. At the micron scale, size effects become important and have to be taken into consideration. The goal is to optimize the semi-cone angle of the tool in terms...... of drawing force. The present study employs a steady-state modelling technique that omits the transient regime, thus creating a basis for comprehensive parameter studies. The steady-state procedure is based on the streamline integration method presented by Dean and Hutchinson [1]. This approach allows...

  14. UNIVERSAL THEORY OF STEADY-STATE ONE-DIMENSIONAL PHOTOREFRACTIVE SOLITONS

    Institute of Scientific and Technical Information of China (English)

    刘劲松

    2001-01-01

    A universal theory of steady-state one-dimensional photorefractive spatial solitons is developed which applies to the steady-state one-dimensional photorefractive solitons under various realizations, including the screening solitons in a biased photorefractive medium, the photovoltaic solitons in open- and closed-circuit photovoltaic-photorefractive media and the screening-photovoltaic solitons in biased photovoltaic-photorefractive media. Previous theories advanced individually elsewhere for these solitons can be obtained by simplifying the universal theory under the appropriate conditions.

  15. Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging.

    Science.gov (United States)

    Kulkarni, Makarand; Kulkami, Makarand

    2011-04-01

    High spatial resolution is one of the major problems in neuroimaging, particularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve pathologies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples. © 2011 The Author. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  16. Non-equilibrium steady states: fluctuations and large deviations of the density and of the current

    Science.gov (United States)

    Derrida, Bernard

    2007-07-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow us to calculate the fluctuations and large deviations of the density and the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example, non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.

  17. A quaternionic map for the steady states of the Heisenberg spin-chain

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)

    2014-01-17

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  18. Existence and stabilizability of steady-state for semilinear pulse-width sampler controlled system

    Directory of Open Access Journals (Sweden)

    JinRong Wang

    2011-01-01

    Full Text Available In this paper, we study the steady-state of a semilinear pulse-width sampler controlled system on infinite dimensional spaces. Firstly, by virtue of Schauder's fixed point theorem, the existence of periodic solutions is given. Secondly, utilizing a generalized Gronwall inequality given by us and the Banach fixed point theorem, the existence and stabilizability of a steady-state for the semilinear control system with pulse-width sampler is also obtained. At last, an example is given for demonstration.

  19. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  20. EFFICIENT STEADY-STATE ANALYSIS METHOD FOR CLOSED-LOOP PWM SWITCHING CONVERTERS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Since the early70s,many s mall-signal fre-quency-domain modeling technique have been de-veloped to study the dynamic perfor mances and sta-bilities ofPWMs witching converters around thestatic operating point.However,the accuracy of thederived models relies on accurate deter mination ofthe steady state operating point,and usually manyperfor mances of circuits are given based on steady-state,so it is very essential to analyze the steadystate of circuits.Analysis methods for steadystate ofnonlinear circuits ca...

  1. S3C: EBT Steady-State Shooting code description and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Downum, W.B.

    1983-09-01

    The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code.

  2. Tetrahexahedral Pt Nanoparticles: Comparing the Oxygen Reduction Reaction under Transient vs Steady-State Conditions

    DEFF Research Database (Denmark)

    Deng, Yu-Jia; Wiberg, Gustav Karl Henrik; Zana, Alessandro

    2017-01-01

    -state conditions. As a benchmark, the ORR activity is compared with those of polycrystalline Pt and a commercial Pt/C catalyst. The results show that, under transient conditions, the catalytic performance of the THH Pt NPs and Pt/C are approximately the same and about 2 times lower than that of polycrystalline Pt....... However, under steady-state conditions the THH Pt NPs perform considerably better than Pt/C. Under steady-state conditions THH Pt NPs are even slightly more active than polycrystalline Pt...

  3. Steady-State Kinetic Analysis of DNA Polymerase Single-Nucleotide Incorporation Products

    Science.gov (United States)

    O'Flaherty, Derek K.

    2014-01-01

    This unit describes the experimental procedures for the steady-state kinetic analysis of DNA synthesis across DNA nucleotides (native or modified) by DNA polymerases. In vitro primer extension experiments with a single nucleoside triphosphate species followed by denaturing polyacrylamide gel electrophoresis of the extended products is described. Data analysis procedures and fitting to steady-state kinetic models is presented to highlight the kinetic differences involved in the bypass of damaged versus undamaged DNA. Moreover, explanations concerning problems encountered in these experiments are addressed. This approach provides useful quantitative parameters for the processing of damaged DNA by DNA polymerases. PMID:25501593

  4. Steady-state creep of complexly reinforced shallow metal-composite shells

    Science.gov (United States)

    Yankovskii, A. P.

    2010-05-01

    The problem of deformation of shallow shells of variable thickness reinforced with fibers of constant cross section, whose all phases operate under the conditions of steady-state creep, is formulated. The system of resolving equations and the corresponding boundary conditions are analyzed, and the procedure for solving this problem is developed. A way of approximate solution of such problems in the case of transient creep is indicated. The particular calculations performed show that the compliance of thin-walled structures, under the conditions of steady-state creep, greatly depends on the structure of reinforcement.

  5. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    NARCIS (Netherlands)

    Mokhov, A.V.; Levinsky, H.B.

    1999-01-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser- induced fluorescence (LIF) and coherent anti-Stokes Raman scattering: (CARS), respe

  6. Design of a steady-state detector for fault detection and diagnosis of a residential air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsung [Geothermal Energy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Yoon, Seok Ho; Domanski, Piotr A.; Vance Payne, W. [HVAC and R Equipment Performance Group, National Institute of Standards and Technology, 100 Bureau Drive, MS 8631, Gaithersburg, MD 20899 (United States)

    2008-08-15

    This paper presents a general methodology for developing a steady-state detector for a vapor compression system based on a moving window and using standard deviations of seven measurements selected as features. The feature thresholds and optimized moving window size were based upon steady-state no-fault tests and startup transient tests. The study showed that evaporator superheat and condenser subcooling were sufficient for determining the onset of steady-state during the startup transient. However, they misidentified steady-state during indoor temperature change tests where evaporator saturation temperature and air temperature change across the evaporator were needed for proper steady-state identification. Hence, the paper recommends including all fault detection and diagnosis (FDD) features in the steady-state detector to ensure the robustness of the detector because different features may play key roles with different transients. (author)

  7. Addition of multimodal therapy to standard management of steady state sickle cell disease.

    Science.gov (United States)

    Okpala, Iheanyi; Ezenwosu, Osita; Ikefuna, Anthony; Duru, Augustine; Chukwu, Barth; Madu, Anazoeze; Nwagha, Theresa; Ocheni, Sunday; Ibegbulam, Obike; Emodi, Ifeoma; Anike, Uche; Nonyelu, Charles; Anigbo, Chukwudi; Agu, Kingsley; Ajuba, Ifeoma; Chukwura, Awele; Ugwu, Ogechukwu; Ololo, Uche

    2013-01-01

    Most people on folic acid to boost erythropoiesis and prophylactic antimicrobials, the standard management of steady state sickle cell disease (SCD), have unacceptable numbers of crises. The objective of this study was to evaluate the effects of adding multimodal therapy with potassium thiocyanate and omega-3 fatty acids to the standard management of steady state SCD. Pre- and post-treatment numbers of crises and other disease indices were compared in 16 HbSS individuals on folic acid and paludrine after 12 months of adding eicosapentaenoic acid 15 mg/kg/day, docosahexaenoic acid 10 mg/kg/day, and potassium thiocyanate 1-2 mL/day, each milliliter of which contained 250 mg of thiocyanate and 100 micrograms of iodine to prevent hypothyroidism: a possible side-effect due to competitive inhibition of the transport of iodide into the thyroid gland by thiocyanate. Median number of crises reduced from 3/yr to 1/yr (P < 0.0001). There was no evidence of impaired thyroid function. Plasma level of tri-iodothyronine improved (P < 0.0001). Steady state full blood count and bilirubin level did not change significantly. The findings suggest that addition of potassium thiocyanate and eicosapentaenoic and docosahexaenoic acids to standard management of steady state SCD reduces the number of crises. This observation needs to be evaluated in larger studies.

  8. Steady-State Response of Periodically Supported Structures to a Moving Load

    NARCIS (Netherlands)

    Metrikine, A.V.; Wolfert, A.F.M.; Vrouwenvelder, A.C.W.M.

    1999-01-01

    Steady-state vibrations of periodically supported structures under a moving load are analytically investigated. The following three structures are considered: an overhead power line for a train, a long suspended bridge and a railway track. The study is based on the application of so-called 'periodic

  9. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    Science.gov (United States)

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  10. Variational Principle for Non-Equilibrium Steady States of the XX Model

    CERN Document Server

    Matsui, T

    2003-01-01

    We show that non-equilibrium steady states of the one dimensional exactly solved XY model can be characterized by the variational principle of free energy of a long range interaction and that they cannot be a KMS state for any C$^*$-dynamical system.

  11. Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment

    DEFF Research Database (Denmark)

    Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.

    2016-01-01

    decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain...

  12. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2000-04-27

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  13. Abnormal Attention in Autism Shown by Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Belmonte, Matthew

    2000-01-01

    Eight males with autism were required to shift attention between rapidly flashed targets alternating between left and right visual hemifields. When targets were separated by less than 700 ms, steady-state brain electrical response in both hemispheres was augmented and background EEG decreased for rightward shifts as compared with leftward shifts.…

  14. Radioactivity computation of steady-state and pulsed fusion reactors operation

    Energy Technology Data Exchange (ETDEWEB)

    Attaya, H.

    1994-06-01

    Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices.

  15. A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends

    DEFF Research Database (Denmark)

    Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann

    2008-01-01

    The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar m...

  16. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems...

  17. Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Boccaccini, Dino; Persson, Åsa Helen;

    2016-01-01

    The effective steady-state creep response of porous metals is studied by numerical homogenization and analytical modeling in this paper. The numerical homogenization is based on finite element models of three-dimensional microstructures directly reconstructed from tomographic images. The effects ...... model, and closely matched by the Gibson-Ashby compression and the Ramakrishnan-Arunchalam creep models. [All rights reserved Elsevier]....

  18. A comparison of steady-state ARIES and pulsed PULSAR tokamak power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, C.G.

    1994-07-01

    The multi-institutional ARIES study has completed a series of three steady-state and two pulsed cost-optimized conceptual designs of commercial tokamak fusion power plants that vary the level of assumed advances in technology and physics. The cost benefits of various design options are compared quantitatively. Possible means to improve the economic competitiveness of fusion are suggested.

  19. Pharmacokinetic Steady-States Highlight Interesting Target-Mediated Disposition Properties.

    Science.gov (United States)

    Gabrielsson, Johan; Peletier, Lambertus A

    2017-05-01

    In this paper, we derive explicit expressions for the concentrations of ligand L, target R and ligand-target complex RL at steady state for the classical model describing target-mediated drug disposition, in the presence of a constant-rate infusion of ligand. We demonstrate that graphing the steady-state values of ligand, target and ligand-target complex, we obtain striking and often singular patterns, which yield a great deal of insight and understanding about the underlying processes. Deriving explicit expressions for the dependence of L, R and RL on the infusion rate, and displaying graphs of the relations between L, R and RL, we give qualitative and quantitive information for the experimentalist about the processes involved. Understanding target turnover is pivotal for optimising these processes when target-mediated drug disposition (TMDD) prevails. By a combination of mathematical analysis and simulations, we also show that the evolution of the three concentration profiles towards their respective steady-states can be quite complex, especially for lower infusion rates. We also show how parameter estimates obtained from iv bolus studies can be used to derive steady-state concentrations of ligand, target and complex. The latter may serve as a template for future experimental designs.

  20. Single-dose and steady-state pharmacokinetics of diltiazem administered in two different tablet formulations

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Bonde, J; Rasmussen, S N

    1992-01-01

    Single-dose and steady state pharmacokinetics of diltiazem administered in two different oral formulations were assessed with particular reference to rate and extent of absorption. Following single dose administration a significant difference in tmax was observed (2.9 +/- 1.9 and 6.8 +/- 2.6 hr r...

  1. Steady-state responses of axially accelerating viscoelastic beams: Approximate analysis and numerical confirmation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nonlinear parametric vibration of axially accelerating viscoelastic beams is inves-tigated via an approximate analytical method with numerical confirmations. Based on nonlinear models of a finite-small-stretching slender beam moving at a speed with a periodic fluctuation, a solvability condition is established via the method of multiple scales for subharmonic resonance. Therefore, the amplitudes of steady-state periodic responses and their existence conditions are derived. The amplitudes of stable steady-state responses increase with the amplitude of the axial speed fluctuation, and decrease with the viscosity coefficient and the nonlinear coefficient. The minimum of the detuning parameter which causes the existence of a stable steady-state periodic response decreases with the amplitude of the axial speed fluctuation, and increases with the viscosity coefficient. Nu-merical solutions are sought via the finite difference scheme for a nonlinear par-tial-differential equation and a nonlinear integro-partial-differential equation. The calculation results qualitatively confirm the effects of the related parameters pre-dicted by the approximate analysis on the amplitude and the existence condition of the stable steady-state periodic responses. Quantitative comparisons demonstrate that the approximate analysis results have rather high precision.

  2. Hydrodynamic analysis of propellers under steady state operation; Analise hidrodinamica de propulsores em regime permanente

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Carlos Antonio Levi da; Troyman, Antonio Carlos Ramos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Programa de Engenharia Oceanica

    1995-07-01

    Surface panel method has been applied to the propeller analysis. For the propeller modeling, the boss and blades surfaces have been discretized in quadrilateral panels with dipoles and sources constant distributions. The surface of the blade wakes have been represented by panels with dipole constant distributions. This discussion focused only the propeller under steady state operation.

  3. Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.

  4. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2005-10-27

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  5. Calculation of the rate of coagulation of hydrophobic colloids in the non-steady state

    NARCIS (Netherlands)

    Roebersen, G.J.; Wiersema, P.H.

    1974-01-01

    In accurate coagulation measurements, the observed coagulation rate should be extrapolated to time zero to find the rate of formation of doublets from singlet particles. In the theoretical calculation of coagulation rates, generally a steady state is assumed. At the onset of coagulation, however, a

  6. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A*

    Science.gov (United States)

    Cruys-Bagger, Nicolaj; Elmerdahl, Jens; Praestgaard, Eigil; Tatsumi, Hirosuke; Spodsberg, Nikolaj; Borch, Kim; Westh, Peter

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme complex, processive hydrolysis, and dissociation, respectively. These kinetic parameters elucidate limiting factors in the cellulolytic process. We concluded, for example, that Cel7A cleaves about four glycosidic bonds/s during processive hydrolysis. However, the results suggest that stalling the processive movement and low off-rates result in a specific activity at pseudo-steady state that is 10–25-fold lower. It follows that the dissociation of the enzyme-substrate complex (half-time of ∼30 s) is rate-limiting for the investigated system. We suggest that this approach can be useful in attempts to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems. PMID:22493488

  7. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in steady state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun; Wang, Chenglong [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); An, Hongzhen [Nuclear and Radiation Safety Center, Ministry of Environmental Protection of the People' s Republic of China, Beijing 100082 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2014-02-15

    Highlights: • Developed a three dimensional coupled code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under steady state condition. • Analyzed the influence of inlet temperature and inlet velocity to thermal-hydraulics characteristics of the reactor. - Abstract: MSR (molten salt reactor) uses liquid molten salt as the coolant and fuel solvent, making it the only liquid reactor among the six generation IV reactor types. As a liquid reactor the physical properties of the reactor are significantly influenced by the fuel salt flow therefore conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code and applied it to investigate the thermal-hydraulic characteristics of the core in steady state condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The temperature distribution, neutron fluxes and delayed neutron precursors distribution of the core in steady state conditions was studied, and the result analyzed when inlet temperature and velocity were changed. From simulation it was found that the inlet temperature has little influence to neutron distribution however inlet velocity affects the delayed neutron distribution in steady state condition. The results provide some valuable information in design and research of this kind of reactor.

  8. Steady-State Crack Growth in Rate-Sensitive Single Crystals

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The characteristics of the active plastic zone surrounding a crack growingin a single crystal (FCC, BCC, and HCP) at constant velocity is investigated for ModeI loading under plane strain assumptions. The framework builds upon a steady-state relation bringing the desired solution out in a frame...

  9. Steady-state testing of an advanced solar-assisted heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.

    1982-06-01

    A prototype water-to-air solar assisted heat pump (SAHP) has been tested under steady state conditions. The results of the tests indicate that the nominal goal for the hardware portion of the contract was achieved and surpassed. The tests show some areas of potential improvement, which are discussed.

  10. Steady-State PMU Compliance Test under C37.118.1a-2014

    DEFF Research Database (Denmark)

    Ghiga, Radu; Wu, Qiuwei; Martin, Kenneth E.;

    2016-01-01

    This paper presents a flexible testing method and the steady-state compliance of PMUs under the C37.118.1a amendment. The work is focused on the changes made to the standard for the harmonic rejection and out-of-band interference tests for which the ROCOF Error limits have been suspended. The pap...

  11. Thin Film Equations with Soluble Surfactant and Gravity: Modeling and Stability of Steady States

    CERN Document Server

    Escher, Joachim; Laurençot, Philippe; Walker, Christoph

    2010-01-01

    A thin film on a horizontal solid substrate and coated with a soluble surfactant is considered. The governing degenerate parabolic equations for the film height and the surfactant concentrations on the surface and in the bulk are derived using a lubrication approximation when gravity is taken into account. It is shown that the steady states are asymptotically stable.

  12. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    Science.gov (United States)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  13. Steady-state properties of a totally asymmetric exclusion process with particles of arbitrary size

    Science.gov (United States)

    Lakatos, Greg; Chou, Tom

    2003-03-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean field approximations and Monte Carlo simulations. TASEP's featuring particles of arbitrary size are relevant for modeling systems such as mRNA translation, vesicle locomotion along microtubules, and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low density, high density, an maximal current phases similar to those of the standard (d=1) TASEP. A simple mean field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean field approach to find apparently exact expressions for the steady state currents, boundary densities, and phase diagrams of the d>= 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean field results.

  14. Out-of-equilibrium energy flow and steady state configurations in AdS/CFT

    CERN Document Server

    Megias, Eugenio

    2015-01-01

    We study out-of-equilibrium energy flow in a strongly coupled system by using the AdS/CFT correspondence. In particular, we describe the appearance of a steady state connecting two asymptotic equilibrium systems. We obtain results within the linear response regime.

  15. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  16. Thermal shock behaviour of blisters on W surface during combined steady-state/pulsed plasma loading

    Science.gov (United States)

    Jia, Y. Z.; Liu, W.; Xu, B.; Luo, G.-N.; Li, C.; Qu, S. L.; Morgan, T. W.; De Temmerman, G.

    2015-09-01

    The thermal shock behaviour of blister-covered W surfaces during combined steady-state/pulsed plasma loading was studied by scanning electron microscopy and electron backscatter diffraction. The W samples were first exposed to steady-state D plasma to induce blisters on the surface, and then the blistered surfaces were exposed to steady-state/pulsed plasma. Growth and cracking of blisters were observed after the exposure to the steady-state/pulsed plasma, while no obvious damage occurred on the surface area not covered with blisters. The results confirm that blisters induced by D plasma might represent weak spots on the W surface when exposed to transient heat load of ELMs. The cracks on blisters were different from the cracks due to the transient heat loads reported before, and they were assumed to be caused by stress and strain due to the gas expansion inside the blisters during the plasma pulses. Moreover, most of cracks were found to appear on the blisters formed on grains with surface orientation near [1 1 1].

  17. Experimental study of vaporization effect on steady state and dynamic behavior of catalytic pellets

    NARCIS (Netherlands)

    Kulikov, A.V.; Kuzin, N.A.; Shigarov, A.B.; Kirillov, V.A.; Westerterp, K.R.; Kronberg, Alexandre E.

    2001-01-01

    The impact of the combined evaporation of the liquid phase and reaction on single catalyst pellet performance has been studied experimentally. The exothermic, catalyzed hydrogenation of α-methylstyrene (AMS) to cumene has been employed as a model reaction. Steady state and dynamic experiments have

  18. Computing Bifurcation Diagrams of Steady State KuramotoSivashinsky Equation by Difference Method

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Utilizing difference formulae, we obtained the discrete systems of steady state Kuramoto-Sivashinsky (K-S) equation. Applied Newton's method and continuation technology to the systems, the bifurcated solutions are derived, and the bifurcation diagrams are constructed. All the results are successful and satisfactory.

  19. The total quasi-steady-state approximation for fully competitive enzyme reactions

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A.M.; Bersani, E.

    2007-01-01

    The validity of the Michaelis-Menten-Briggs-Haldane approximation for single enzyme reactions has recently been improved by the formalism of the total quasi-steady-state approximation. This approach is here extended to fully competitive systems, and a criterion for its validity is provided. We show...

  20. Formulation of Non-steady-state Dust Formation Process in Astrophysical Environments

    CERN Document Server

    Nozawa, Takaya

    2013-01-01

    The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO3 grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f_{con}, and average radius a_{ave} of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule tau_{coll} is much smaller than the timescale tau_{sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lo...

  1. Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2012-04-01

    Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.

  2. Experimental study of vaporization effect on steady state and dynamic behavior of catalytic pellets

    NARCIS (Netherlands)

    Kulikov, A.V.; Kuzin, N.A.; Shigarov, A.B.; Kirillov, V.A.; Kronberg, A.E.; Westerterp, K.R.

    2001-01-01

    The impact of the combined evaporation of the liquid phase and reaction on single catalyst pellet performance has been studied experimentally. The exothermic, catalyzed hydrogenation of α-methylstyrene (AMS) to cumene has been employed as a model reaction. Steady state and dynamic experiments have b

  3. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    Science.gov (United States)

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  4. Calculation of the rate of coagulation of hydrophobic colloids in the non-steady state

    NARCIS (Netherlands)

    Roebersen, G.J.; Wiersema, P.H.

    1974-01-01

    In accurate coagulation measurements, the observed coagulation rate should be extrapolated to time zero to find the rate of formation of doublets from singlet particles. In the theoretical calculation of coagulation rates, generally a steady state is assumed. At the onset of coagulation, however, a

  5. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  6. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins

    Science.gov (United States)

    Ingersoll, Christine M.; Strollo, Christen M.

    2007-01-01

    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  7. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... following duty cycles apply for variable-speed engines with maximum engine power below 19 kW: (1) The... variable-speed engines with maximum engine power at or above 19 kW: (1) The following duty cycle applies... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed...

  8. Incorporation of wind generation to the Mexican power grid: Steady state analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, J.H.; Guardado, J.L.; Cisneros, F. [Inst. Tecnologico de Morelia (Mexico); Cadenas, R.; Lopez, S. [Comision Federal de Electricidad, Morelia (Mexico)

    1997-09-01

    This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.

  9. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    Science.gov (United States)

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  10. Steady-state diffusion regime in solid-phase micro extraction kinetics

    NARCIS (Netherlands)

    Benhabib, K.; Laak, ter T.L.; Leeuwen, van H.P.

    2008-01-01

    The temporal evolution of diffusion-controlled analyte accumulation in solid-phase microextraction (SPME) is critically discussed in terms of the various aspects of steady-state diffusion in the two phases under conditions of fast exchange of the analyte at the solid phase film/water interface. For

  11. Multiple steady states detection in a packed-bed reactive distillation column using bifurcation analysis

    DEFF Research Database (Denmark)

    Ramzan, Naveed; Faheem, Muhammad; Gani, Rafiqul

    2010-01-01

    A packed reactive distillation column producing ethyl tert-butyl ether from tert-butyl alcohol and ethanol was simulated for detection of multiple steady states using Aspen Plus®. A rate-based approach was used to make the simulation model more realistic. A base-case was first developed and fine...

  12. Analysis of Plasticity, Fracture and Friction in Steady State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1996-01-01

    A closed form solution to the problem of steady state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...

  13. Intracellular CHO cell metabolite profiling reveals steady-state dependent metabolic fingerprints in perfusion culture.

    Science.gov (United States)

    Karst, Daniel J; Steinhoff, Robert; Kopp, Marie R G; Serra, Elisa; Soos, Miroslav; Zenobi, Renato; Morbidelli, Massimo

    2016-12-20

    Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, Nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 10(6) cells/mL over 26 days of culture. On the other hand the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60 and 40 × 10(6) cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar and lipid precursors explained most of the variance between the different cell density set points. This article is protected by copyright. All rights reserved.

  14. STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Or, Ben; Alexander, Tal [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)

    2016-04-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.

  15. Formulation of Non-steady-state Dust Formation Process in Astrophysical Environments

    Science.gov (United States)

    Nozawa, Takaya; Kozasa, Takashi

    2013-10-01

    The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO3 grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f con, ∞, and average radius a ave, ∞ of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule τcoll is much smaller than the timescale τsat with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f con, ∞ and a larger a ave, ∞. Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Λ ≡ τsat/τcoll >~ 30 during the formation of dust, and find that f con, ∞ and a ave, ∞ are uniquely determined by Λon at the onset time t on of dust formation. The approximation formulae for f con, ∞ and a ave, ∞ as a function of Λon could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars.

  16. A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157.

    Science.gov (United States)

    Preugschat, Frank; Carter, Luke H; Boros, Eric E; Porter, David J T; Stewart, Eugene L; Shewchuk, Lisa M

    2014-12-15

    hCD157 catalyzes the hydrolysis of nicotinamide riboside (NR) and nicotinic acid riboside (NAR). The release of nicotinamide or nicotinic acid from NR or NAR was confirmed by spectrophotometric, HPLC and NMR analyses. hCD157 is inactivated by a mechanism-based inhibitor, 2'-deoxy-2'-fluoro-nicotinamide arabinoside (fNR). Modification of the enzyme during the catalytic cycle by NR, NAR, or fNR increased the intrinsic protein fluorescence by approximately 50%. Pre-steady state and steady state data were used to derive a minimal kinetic scheme for the hydrolysis of NR. After initial complex formation a reversible step (360 and 30s(-1)) is followed by a slow irreversible step (0.1s(-1)) that defined the rate limiting step, or kcat. The calculated KMapp value for NR in the hydrolytic reaction is 6nM. The values of the kinetic constants suggest that one biological function of cell-surface hCD157 is to bind and slowly hydrolyze NR, possibly converting it to a ligand-activated receptor. Differences in substrate preference between hCD157 and hCD38 were rationalized through a comparison of the crystal structures of the two proteins. This comparison identified several residues in hCD157 (F108 and F173) that can potentially hinder the binding of dinucleotide substrates (NAD+).

  17. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    Science.gov (United States)

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  18. Premixed Combustion of Kapok (ceiba pentandra) seed oil on Perforated Burner

    OpenAIRE

    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi

    2014-01-01

    Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra) seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ) varie...

  19. Steady-state and loss-of-pumping accident analyses of the Savannah River new production reactor representative design

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, R.J.; Maloney, K.J.

    1990-10-01

    This document contains the steady-state and loss-of-pumping accident analysis of the representative design for the Savannah River heavy water new production reactor. A description of the reactor system and computer input model, the results of the steady-state analysis, and the results of four loss-of-pumping accident calculations are presented. 5 refs., 37 figs., 4 tabs.

  20. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs)

    DEFF Research Database (Denmark)

    Griskova-Bulanova, Inga; Ruksenas, Osvaldas; Dapsys, Kastytis;

    2011-01-01

    To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level.......To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level....

  1. Action-at-a-distance electrodynamics in quasi-steady-state cosmology

    Indian Academy of Sciences (India)

    Kaustubh Sudhir Deshpande

    2014-09-01

    Action-at-a-distance electrodynamics – alternative approach to field theory – can be extended to cosmological models using conformal symmetry. An advantage of this is that, the origin of arrow of time in electromagnetism can be attributed to the cosmological structure. Different cosmological models can be investigated, based on Wheeler–Feynman absorber theory, and only those models can be considered viable for our Universe which have net full retarded electromagnetic interactions, i.e., forward direction of time. This work evaluates the quasi-steady-state model and demonstrates that it admits full retarded and not advanced solution. Thus, quasi-steady-state cosmology (QSSC) satisfies this necessary condition for a correct cosmological model, based on action-at-a-distance formulation.

  2. Numerical formulation of composition segregation at curved solid-liquid interface during steady state solidification process

    Science.gov (United States)

    Wang, Jai-Ching

    1994-01-01

    The lateral solute segregation that results from a curved solid-liquid interface shape during steady state unidirectional solidification of a binary alloy system has been studied both analytically and numerically by Coriell, Bosivert, Rehm, and Sekerka. The system under their study is a two dimensional rectangular system. However, most real growth systems are cylindrical systems. Thus, in a previous study, we have followed Coriell etc. formalism and obtained analytical results for lateral solute segregation for an azimuthal symmetric cylindrical binary melt system during steady state solidification process. The solid-liquid interface shape is expressed as a series combination of Bessel functions. In this study a computer program has been developed to simulate the lateral solute segregation.

  3. On the interpretation of recharge estimates from steady-state model calibrations.

    Science.gov (United States)

    Anderson, William P; Evans, David G

    2007-01-01

    Ground water recharge is often estimated through the calibration of ground water flow models. We examine the nature of calibration errors by considering some simple mathematical and numerical calculations. From these calculations, we conclude that calibrating a steady-state ground water flow model to water level extremes yields estimates of recharge that have the same value as the time-varying recharge at the time the water levels are measured. These recharge values, however, are a subdued version of the actual transient recharge signal. In addition, calibrating a steady-state ground water flow model to data collected during periods of rising water levels will produce recharge values that underestimate the actual transient recharge. Similarly, calibrating during periods of falling water levels will overestimate the actual transient recharge. We also demonstrate that average water levels can be used to estimate the actual average recharge rate provided that water level data have been collected for a sufficient amount of time.

  4. Steady-state and laser flash photolysis studies of 1-aziridinyl-1,2-dibenzoylalkenes

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R.; Kumar, C.V.; Das, P.K.; George, M.V.

    1985-11-01

    Results of a photochemical study based on product analysis and 337.1-nm laser flash photolysis are reported for several cis- and trans-1,2-dibenzoylethylenes bearing aziridinyl groups at the 1-position. Products isolated from steady-state photolysis suggest facile ring expansions yielding pyrrolines as well as extrusion of alkenes from the aziridine moieties forming nitrene fragments, which subsequently undergo ring closure to give isoxazoles. Laser flash photolysis studies show transient absorption changes, explainable in terms of cis-trans photoisomerization and formation of azomethine ylides. The latter are also observed upon steady-state irradiation of these aziridinyl-1,2-dibenzoylethylenes in an EPA glass at 77 K. 46 references, 4 figures.

  5. Steady-state EB cap size fluctuations are determined by stochastic microtubule growth and maturation.

    Science.gov (United States)

    Rickman, Jamie; Duellberg, Christian; Cade, Nicholas I; Griffin, Lewis D; Surrey, Thomas

    2017-03-28

    Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steady-state growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth.

  6. Steady state speed distribution analysis for a combined cellular automaton traffic model

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Feng; Chen Gui-Sheng; Liu Jin

    2008-01-01

    Cellular Automaton (CA) baaed traffic flow models have been extensively studied due to their effectiveness and simplicity in recent years. This paper develops a discrete time Markov chain (DTMC) analytical framework for a Nagel-Schreckenberg and Fukui-Ishibashi combined CA model (W2H traffic flow model) from microscopic point of view to capture the macroscopic steady state speed distributions. The inter-vehicle spacing Markov chain and the steady state speed Markov chain are proved to be irreducible and ergodie. The theoretical speed probability distributions depending on the traffic density and stochastic delay probability are in good accordance with numerical simulations. The derived fundamental diagram of the average speed from theoretical speed distributions is equivalent to the results in the previous work.

  7. Delayed feedback control of unstable steady states in fractional-order chaotic systems

    CERN Document Server

    Gjurchinovski, Aleksandar; Urumov, Viktor

    2010-01-01

    We study the possibility to stabilize unstable steady states in chaotic fractional-order dynamical systems by the time-delayed feedback method with both constant and time-varying delays. By performing a linear stability analysis in the constant delay case, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parametrizad by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. It is shown numerically that delayed feedback control with a variable time-delay significantly enlarges the stability region of the steady states in comparison to the classical time-delayed feedback scheme with a constant delay.

  8. Mass transfer mathematical model for one-side plate steady-state ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    QIU Yun-ren; ZHANG Qi-xiu

    2005-01-01

    A mass transfer mathematical model was developed based on one-side plate steady-state ultrafiltration (UF), and the numerical solution was obtained by Crank-Nicolson finite difference method. The effects of the feed concentration, channel length, axial velocity, and diffusion coefficient on the concentration at membrane surface and the concentration profiles were investigated. Furthermore, the operation parameters and the parameters of membrane module were all transformed into dimensionless ones, and the parameter rejection was included in the mass transfer model, therefore, it can be used to calculate the steady-state ultrafiltration with different rejections. The model was used for the calculation of the ultrafiltration of metal-cutting oil emulsion. The results show that the concentration polarization can be reduced by increasing the axial velocity to some extent, but the reduction of concentration polarization is very small when the resistance of ultrafiltration is very great.

  9. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  10. Steady-State Fully Noninductive Current Driven by Electron Cyclotron Waves in a Magnetically Confined Plasma

    Science.gov (United States)

    Sauter, O.; Henderson, M. A.; Hofmann, F.; Goodman, T.; Alberti, S.; Angioni, C.; Appert, K.; Behn, R.; Blanchard, P.; Bosshard, P.; Chavan, R.; Coda, S.; Duval, B. P.; Fasel, D.; Favre, A.; Furno, I.; Gorgerat, P.; Hogge, J.-P.; Isoz, P.-F.; Joye, B.; Lavanchy, P.; Lister, J. B.; Llobet, X.; Magnin, J.-C.; Mandrin, P.; Manini, A.; Marlétaz, B.; Marmillod, P.; Martin, Y.; Mayor, J.-M.; Martynov, A. A.; Mlynar, J.; Moret, J.-M.; Nieswand, C.; Nikkola, P.; Paris, P.; Perez, A.; Pietrzyk, Z. A.; Pitts, R. A.; Pochelon, A.; Pochon, G.; Refke, A.; Reimerdes, H.; Rommers, J.; Scavino, E.; Tonetti, G.; Tran, M. Q.; Troyon, F.; Weisen, H.

    2000-04-01

    A steady-state, fully noninductive plasma current has been sustained for the first time in a tokamak using electron cyclotron current drive only. In this discharge, 123 kA of current have been sustained for the entire gyrotron pulse duration of 2 s. Careful distribution across the plasma minor radius of the power deposited from three 0.5-MW gyrotrons was essential for reaching steady-state conditions. With central current drive, up to 153 kA of current have been fully replaced transiently for 100 ms. The noninductive scenario is confirmed by the ability to recharge the Ohmic transformer. The dependence of the current drive efficiency on the minor radius is also demonstrated.

  11. Rheological behavior of semi-solid 7075 aluminum alloy at steady state

    Directory of Open Access Journals (Sweden)

    Li Yageng

    2014-03-01

    Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.

  12. Steady-state properties of a totally asymmetric exclusion process with periodic structure

    Science.gov (United States)

    Lakatos, Greg; Chou, Tom; Kolomeisky, Anatoly

    2005-01-01

    We study the steady-state behavior of totally asymmetric simple exclusion processes (TASEPs) that contain periodically varying movement rates. In this model, particles move to the right at one of two rates: p2 if the particle occupies one of a periodically arranged set of lattice sites; p1 otherwise. Approximate mean field approaches are used to study the steady-state currents and bulk densities of this model. These mean field methods are found to provide results in good agreement with data derived from Monte Carlo simulations. Finally, the condition for particle-hole symmetry in the TASEP with periodically varying movement rates is specified, and the changes in the locations of the boundary-limited to maximal-current transition lines due to symmetry violation are investigated.

  13. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    CERN Document Server

    Jin, Xiao

    2016-01-01

    Nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but much less investigated under non-isothermal conditions. However, once the heat exchange between subsystems is rather slow, the isothermal assumption of the whole system meets great challenge, which is indeed the case inside many kinds of living organisms. Here we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics, in the master-equation models, to the situation in which the temperatures of subsystems can be far from uniform. We first obtain a new thermodynamic relation between the chemical reaction rates and thermodynamic potentials under such a non-isothermal circumstances, which immediately implies simply applying the isothermal transition-state rate formula for each chemical reaction in terms of only the reactants' temperature, is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction-rate formulas which not only obey the new ...

  14. Wavelet Based Analytical Expressions to Steady State Biofilm Model Arising in Biochemical Engineering.

    Science.gov (United States)

    Padma, S; Hariharan, G

    2016-06-01

    In this paper, we have developed an efficient wavelet based approximation method to biofilm model under steady state arising in enzyme kinetics. Chebyshev wavelet based approximation method is successfully introduced in solving nonlinear steady state biofilm reaction model. To the best of our knowledge, until now there is no rigorous wavelet based solution has been addressed for the proposed model. Analytical solutions for substrate concentration have been derived for all values of the parameters δ and SL. The power of the manageable method is confirmed. Some numerical examples are presented to demonstrate the validity and applicability of the wavelet method. Moreover the use of Chebyshev wavelets is found to be simple, efficient, flexible, convenient, small computation costs and computationally attractive.

  15. Structural Evaluation of a PGSFR Steam Generator for a Steady State Condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Gyu; Kim, Jong-Bum; Kim, Hoe-Woong; Koo, Gyeong-Hoi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, design loads for design condition and normal operating steady state condition were classified and the structural analyses for each design loads were carried out. And, structural integrities under each service level were evaluated according to ASME design code. The structural analyses of a steam generator are carried out and its structural integrity under the given service levels is evaluated per ASME Code rule. The design loads according to design condition and normal operating steady condition are classified and stresses calculated from stress analyses are linearized and summarized in their stress components. As a result, the SG structure satisfies with design criteria for both service levels. Though the steam header is designed as a thick hemisphere, its design margin is not so high in spite of just steady state condition. Thus, additional evaluation by considering various operating events will be followed.

  16. Quantum transport in networks and photosynthetic complexes at the steady state.

    Directory of Open Access Journals (Sweden)

    Daniel Manzano

    Full Text Available Recently, several works have analysed the efficiency of photosynthetic complexes in a transient scenario and how that efficiency is affected by environmental noise. Here, following a quantum master equation approach, we study the energy and excitation transport in fully connected networks both in general and in the particular case of the Fenna-Matthew-Olson complex. The analysis is carried out for the steady state of the system where the excitation energy is constantly "flowing" through the system. Steady state transport scenarios are particularly relevant if the evolution of the quantum system is not conditioned on the arrival of individual excitations. By adding dephasing to the system, we analyse the possibility of noise-enhancement of the quantum transport.

  17. Quantum transport in networks and photosynthetic complexes at the steady state.

    Science.gov (United States)

    Manzano, Daniel

    2013-01-01

    Recently, several works have analysed the efficiency of photosynthetic complexes in a transient scenario and how that efficiency is affected by environmental noise. Here, following a quantum master equation approach, we study the energy and excitation transport in fully connected networks both in general and in the particular case of the Fenna-Matthew-Olson complex. The analysis is carried out for the steady state of the system where the excitation energy is constantly "flowing" through the system. Steady state transport scenarios are particularly relevant if the evolution of the quantum system is not conditioned on the arrival of individual excitations. By adding dephasing to the system, we analyse the possibility of noise-enhancement of the quantum transport.

  18. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone

    Science.gov (United States)

    Reynolds, Catriona A.; Menke, Hannah; Andrew, Matthew; Blunt, Martin J.; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term “dynamic connectivity,” using fast pore-scale X-ray imaging. We image the flow of N2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  19. A Computational Approach to Steady State Correspondence of Regular and Generalized Mass Action Systems.

    Science.gov (United States)

    Johnston, Matthew D

    2015-06-01

    It has been recently observed that the dynamical properties of mass action systems arising from many models of biochemical reaction networks can be characterized by considering the corresponding properties of a related generalized mass action system. The correspondence process known as network translation in particular has been shown to be useful in characterizing a system's steady states. In this paper, we further develop the theory of network translation with particular focus on a subclass of translations known as improper translations. For these translations, we derive conditions on the network topology of the translated network which are sufficient to guarantee the original and translated systems share the same steady states. We then present a mixed-integer linear programming algorithm capable of determining whether a mass action system can be corresponded to a generalized system through the process of network translation.

  20. Nonequilibrium density-matrix description of steady-state quantum transport.

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Hänggi, Peter

    2012-01-01

    With this work we investigate the stationary nonequilibrium density matrix of current carrying nonequilibrium steady states of in-between quantum systems that are connected to reservoirs. We describe the analytical procedure to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians. Our procedure is detailed for both electronic transport described by the tight-binding Hamiltonian and for phonon transport described by harmonic Hamiltonians. For the special case of weak system-reservoir couplings, a more detailed description of the steady-state density matrix is obtained. Several paradigm transport setups for interelectrode electron transport and low-dimensional phonon heat flux are elucidated.

  1. A steady-state solver and stability calculator for nonlinear internal wave flows

    Science.gov (United States)

    Viner, Kevin C.; Epifanio, Craig C.; Doyle, James D.

    2013-10-01

    A steady solver and stability calculator is presented for the problem of nonlinear internal gravity waves forced by topography. Steady-state solutions are obtained using Newton's method, as applied to a finite-difference discretization in terrain-following coordinates. The iteration is initialized using a boundary-inflation scheme, in which the nonlinearity of the flow is gradually increased over the first few Newton steps. The resulting method is shown to be robust over the full range of nonhydrostatic and rotating parameter space. Examples are given for both nonhydrostatic and rotating flows, as well as flows with realistic upstream shear and static stability profiles. With a modest extension, the solver also allows for a linear stability analysis of the steady-state wave fields. Unstable modes are computed using a shifted-inverse method, combined with a parameter-space search over a set of realistic target values. An example is given showing resonant instability in a nonhydrostatic mountain wave.

  2. STEADY-STATE RESPONSES AND THEIR STABILITY OF NONLINEAR VIBRATION OF AN AXIALLY ACCELERATING STRING

    Institute of Scientific and Technical Information of China (English)

    吴俊; 陈立群

    2004-01-01

    The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear partial-differential equation that governs the transverse vibration of the string was derived by use of the Hamilton principle. The method of multiple scales was applied directly to the equation. The solvability condition of eliminating the secular terms was established. Closed form solutions for the amplitude and the existence conditions of nontrivial steady-state response of the two-to-one parametric resonance were obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation were presented. The Liapunov linearized stability theory was employed to derive the instability conditions of the trivial solution and the nontrivial solutions for the two-to-one parametric resonance. Some numerical examples highlighting influences of the related parameters on the instability conditions were presented.

  3. Non-steady-state operation of polymer/TiO2 photovoltaic devices

    Science.gov (United States)

    Kirov, Kiril R.; Burlakov, Victor M.; Xie, Zhibin; Henry, Bernard M.; Carey, Michelle J.; Grovenor, Christopher R. M.; Burn, Paul L.; Assender, Hazel E.; Briggs, G. Andrew D.

    2004-11-01

    We present data on the initial period of operation of Gilch-route MEH-PPV/TiO2 composite solar cells (CSCs) which show that during this period the CSCs operate in a non-steady state regime. The behavior is complex and may include a gradual rise of the open circuit voltage (Voc) and of the short-circuit current density (Jsc) with time, a passage through a maximum of either or both parameters, and even a sign reversal. The mechanisms most probably contributing to the transient processes are: i) diffusion driven redistribution of charges resulting in the build up of a quasi steady state charge density profile across the device; ii) photo-doping resulting in a relatively slow increase of the average charge carrier concentration and consequently of the conductivity of the device. The latter is responsible for a strong decrease in Voc, and is evidenced by the significant increase in dark current after device illumination.

  4. An Enhancement of the Replacement Steady State Genetic Algorithm for Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Reyadh Naoum

    2014-06-01

    Full Text Available In these days, Internet and computer systems face many intrusions, thus for this purpose we need to build a detection or prevention security system. Intrusion Detection System (IDS is a system used to detect attacks, Steady State Genetic Algorithm (SSGA is applied to support IDS by supplying the rule pool with additional data, these data can be used in testing phase to detect the attacks. The main goal of this research is to enhance Replacement steady state genetic algorithm to detect intrusions. This enhancement has been achieved by comparing replacement methods. This research proved that the Triple Tournament Replacement is better than Binary Tournament Replacement to increase Detection Rate and there are no effects on False Positive Rate. In this research represent the results of DR equal 100% for three types of attack (DoS, Probe and R2T, and 53% for U2R.

  5. Particle-based simulations of steady-state mass transport at high P\\'eclet numbers

    CERN Document Server

    Müller, Thomas; Rajah, Luke; Cohen, Samuel I A; Yates, Emma V; Vendruscolo, Michele; Dobson, Chrisopher M; Knowles, Tuomas P J

    2015-01-01

    Conventional approaches for simulating steady-state distributions of particles under diffusive and advective transport at high P\\'eclet numbers involve solving the diffusion and advection equations in at least two dimensions. Here, we present an alternative computational strategy by combining a particle-based rather than a field-based approach with the initialisation of particles in proportion to their flux. This method allows accurate prediction of the steady state and is applicable even at high P\\'eclet numbers where traditional particle-based Monte-Carlo methods starting from randomly initialised particle distributions fail. We demonstrate that generating a flux of particles according to a predetermined density and velocity distribution at a single fixed time and initial location allows for accurate simulation of mass transport under flow. Specifically, upon initialisation in proportion to their flux, these particles are propagated individually and detected by summing up their Monte-Carlo trajectories in p...

  6. Iterative solutions to the steady-state density matrix for optomechanical systems

    Science.gov (United States)

    Nation, P. D.; Johansson, J. R.; Blencowe, M. P.; Rimberg, A. J.

    2015-01-01

    We present a sparse matrix permutation from graph theory that gives stable incomplete lower-upper preconditioners necessary for iterative solutions to the steady-state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse and is the only method found to be stable at large Hilbert space dimensions. This allows for steady-state solutions to otherwise intractable quantum optomechanical systems.

  7. Iterative solutions to the steady state density matrix for optomechanical systems

    CERN Document Server

    Nation, P D; Blencowe, M P; Rimberg, A J

    2014-01-01

    We present a sparse matrix permutation from graph theory that gives stable incomplete Lower-Upper (LU) preconditioners necessary for iterative solutions to the steady state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse, and is the only method found to be stable at large Hilbert space dimensions. This allows for steady state solutions to otherwise intractable quantum optomechanical systems.

  8. Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning

    CERN Document Server

    Premnath, Kannan N; Banerjee, Sanjoy

    2008-01-01

    Several applications exist in which lattice Boltzmann methods (LBM) are used to compute stationary states of fluid motions, particularly those driven or modulated by external forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain steady state convergence, particularly at low Mach numbers due to the disparity in characteristic speeds of propagation of different quantities. In this paper, we present a preconditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate steady state convergence to flows driven by external forces. The use of multiple relaxation times in the GLBE allows enhancement of the numerical stability. Particular focus is given in preconditioning external forces, which can be spatially and temporally dependent. In particular, correct forms of moment-projections of source/forcing terms are derived such that they recover preconditioned Navier-Stokes equations with non-uniform external forces. As an illustration, we solve an extende...

  9. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  10. Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    C. Bhagat

    2014-12-01

    Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.

  11. Steady state and time-resolved autofluorescence studies of human colonic tissues

    Institute of Scientific and Technical Information of China (English)

    Buhong Li; Zhenxi Zhang; Shusen Xie

    2006-01-01

    Steady state and time-resolved autofluorescence spectroscopies are employed to study the autofluorescence characteristics of human colonic tissues in vitro. The excitation wavelength varies from 260 to 540 nm, and the corresponding fluorescence emission spectra are acquired from 280 to 800 nm. Significant difference in fluorescence intensity of excitation-emission matrices (EEMs) is observed between normal and tumor colonic tissues. Compared with normal colonic tissue, low nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), and high amino acids and protoporphyrin Ⅸ (PpⅨ) fluorescences characterize high-grade malignant tissue. Moreover, the autofluorescence lifetimes of normal and carcinomatous colonic tissues at 635 nm under 397-nm excitation are about 4.32±0.12 and 18.45±0.05 ns, respectively. The high accumulation of endogenous PpⅨ in colonic cancers is demonstrated in both steady state and time-resolved autofluorescence spectroscopies.

  12. Dynamics of the current filament formation and its steady-state characteristics in chalcogenide based PCM

    Science.gov (United States)

    Bogoslovskiy, Nikita; Tsendin, Konstantin

    2017-03-01

    In the phase-change memory (PCM) crystallization occurs in the high-current filament which forms during switching to the conductive state. In the present paper we conduct a numerical modeling of the current filament formation dynamics in thin chalcogenide films using an electronic-thermal model based on negative-U centers tunnel ionization and Joule heating. The key role of inhomogeneities in the filament formation process is shown. Steady-state filament parameters were obtained from the analysis of the stationary heat conduction equation. The filament formation dynamics and the steady-state filament radius and temperature could be controlled by material parameters and contact resistance. Consequently it is possible to control the size of the region wherein crystallization occurs. A good agreement with numerous experimental data leads to the conclusion that thermal effects play a significant role in CGS conduction and high-current filament formation while switching.

  13. How should we understand non-equilibrium many-body steady states?

    Science.gov (United States)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  14. Comparison of Steady-State SVC Models in Load Flow Calculations

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte

    2008-01-01

    This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...

  15. Steady state or non-steady state? Identifying driving mechanisms of oxygen isotope signatures of leaf transpiration in functionally distinct plant species

    Science.gov (United States)

    Dubbert, Maren; Kübert, Angelika; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    Isotope techniques are widely applied in ecosystem studies. For example, isoflux models are used to separate soil evaporation from transpiration in ecosystems. These models often assume that plant transpiration occurs at isotopic steady state, i.e. that the transpired water shows the same isotopic signature as the source water. Yet, several studies found that transpiration did not occur at isotopic steady state, under both controlled and field conditions. Here we focused on identifying the internal and external factors which drive the isotopic signature of leaf transpiration. Using cavity ring-down spectroscopy (CRDS), the effect of both environmental variables and leaf physiological traits on δ18OT was investigated under controlled conditions. Six plant species with distinct leaf physiological traits were exposed to step changes in relative air humidity (RH), their response in δ18OT and gas exchange parameters and their leaf physiological traits were assessed. Moreover, two functionally distinct plant types (tree, i.e. Quercus suber, and grassland) of a semi-arid Mediterranean oak-woodland where observed under natural conditions throughout an entire growth period in the field. The species differed substantially in their leaf physiological traits and their turn-over times of leaf water. They could be grouped in species with fast (240 min.) turn-over times, mostly due to differences in stomatal conductance, leaf water content or a combination of both. Changes in RH caused an immediate response in δ18OT, which were similarly strong in all species, while leaf physiological traits affected the subsequent response in δ18OT. The turn-over time of leaf water determined the speed of return to the isotopic steady or a stable δ18OT value (Dubbert & Kübert et al., in prep.). Under natural conditions, changes in environmental conditions over the diurnal cycle had a huge impact on the diurnal development of δ18OT in both observed plant functional types. However, in

  16. Restitution slope is principally determined by steady-state action potential duration.

    Science.gov (United States)

    Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James

    2017-06-01

    The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on

  17. Coexistence of steady state for a diffusive prey-predator model with harvesting

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available In this article, we study a diffusive prey-predator model with modified Leslie-Gower term and Michaelis-Menten type prey harvesting, subject to homogeneous Dirichlet boundary conditions. Treating the prey harvesting parameter as a bifurcation parameter, we obtain the existence, bifurcation and stability of coexistence steady state solutions. We use the method of upper and lower solutions, degree theory in cones, and bifurcation theory. The conclusions show the importance of prey harvesting in the model.

  18. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  19. General theory of Onsager symmetries for perturbations of equilibrium and nonequilibrium steady states

    Science.gov (United States)

    Krommes, John A.; Hu, Genze

    1993-11-01

    The theory of Onsager symmetry is reconsidered from the point of view of its application to nonequilibrium, possibly turbulent steady states. A dynamical formalism based on correlation and response functions is used; understanding of its relationship to more conventional approaches based on entropy production enables one to resolve various confusions about the proper use of the theory, even near thermal equilibrium. Previous claims that ``kinematic'' flows must be excluded from considerations of Onsager symmetry are refuted by showing that suitably defined reversible and irreversible parts of the Onsager matrix separately obey the appropriate symmetry; fluctuating hydrodynamics serves as an example. It is shown that Onsager symmetries are preserved under arbitrary covariant changes of variables; the Weinhold metric is used as a fundamental tensor. Covariance is used to render moot the controversy over the proper choice of fluxes and forces in neoclassical plasma transport theory. The fundamental distinction between the fully contravariant Onsager matrix Lij and its mixed representation Lij is emphasized and used to explain why some previous workers have failed to find Onsager symmetry around turbulent steady states. The generalized Onsager theorem of Dufty and Rubí [Phys. Rev. A 36, 222 (1987)] is reviewed. An explicitly soluble Langevin problem is shown to violate Onsager's original symmetry but to obey the generalized theorem. The physical content of the generalized Onsager symmetry is discussed from the point of view of Nosé-Hoover dynamics. A set of extended Graham-Haken potential conditions are derived for Fokker-Planck models and shown to be consistent with the generalized Onsager relations. Finally, for quite general, possibly turbulent steady states it is argued that realizable Markovian statistical closures with underlying Langevin representations must also obey the generalized theorem. In the special case in which all state variables have even parity

  20. Isolated sixth cranial nerve aplasia visualized with Fast Imaging Employing Steady-State Acquisition (FIESTA) MRI.

    Science.gov (United States)

    Pilyugina, Svetlana A; Fischbein, Nancy J; Liao, Y Joyce; McCulley, Timothy J

    2007-06-01

    An otherwise healthy 12-month-old girl presented for evaluation of reduced abduction of the left eye detected at 6 months of age. The remainder of the examination was unremarkable. A special MRI sequence-fast imaging employing steady-state acquisition (FIESTA)-visualized the right but not the left sixth nerve cisternal segment. This is the first reported use of the MRI FIESTA sequence to diagnose aplasia of the sixth cranial nerve.

  1. The effectiveness of the auditory steady state response in diagnosing hearing loss in infants

    Directory of Open Access Journals (Sweden)

    Dunay Schmulian

    2002-04-01

    Full Text Available This paper aims to provide a review of the emerging Auditory Steady State Response in light of existing procedures for diagnosis of hearing loss in infants. Opsomming Hierdie artikel poog om ‘n oorsig te verskaf van die opkomende Ouditief Standhoudende Respons teenoor huidige prosedures wat gebruik word om gehoorverlies in babas en jong kinders te diagnoseer. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  2. Maximum efficiency of steady-state heat engines at arbitrary power.

    Science.gov (United States)

    Ryabov, Artem; Holubec, Viktor

    2016-05-01

    We discuss the efficiency of a heat engine operating in a nonequilibrium steady state maintained by two heat reservoirs. Within the general framework of linear irreversible thermodynamics we derive a universal upper bound on the efficiency of the engine operating at arbitrary fixed power. Furthermore, we show that a slight decrease of the power below its maximal value can lead to a significant gain in efficiency. The presented analysis yields the exact expression for this gain and the corresponding upper bound.

  3. Non-steady-state transport of superthermal electrons in the plasmasphere

    Science.gov (United States)

    Khazanov, George V.; Liemohn, Michael W.; Gombosi, Tamas I.; Nagy, Andrew F.

    1993-01-01

    Numerical solutions to the time-dependent kinetic equation, which describes the transport of superthermal electrons in the splasmasphere between the two conjugate ionospheres, are presented. The model calculates the distribution function as a function of time, field-aligned distance, energy, and pitch-angle. The processes of refilling, depleting, and establishing steady-state conditions of superthermal electrons in the plasmasphere are discussed.

  4. Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems.

    Science.gov (United States)

    Agarwalla, Bijay Kumar; Li, Baowen; Wang, Jian-Sheng

    2012-05-01

    We study the statistics of heat transferred in a given time interval t_{M}, through a finite harmonic chain, called the center, which is connected to two heat baths, the left (L) and the right (R), that are maintained at two temperatures. The center atoms are driven by external time-dependent forces. We calculate the cumulant generating function (CGF) for the heat transferred out of the left lead, Q_{L}, based on the two-time quantum measurement concept and using the nonequilibrium Green's function method. The CGF can be concisely expressed in terms of Green's functions of the center and an argument-shifted self-energy of the lead. The expression of the CGF is valid in both transient and steady-state regimes. We consider three initial conditions for the density operator and show numerically, for a one-atom junction, how their transient behaviors differ from each other but, finally, approach the same steady state, independent of the initial distributions. We also derive the CGF for the joint probability distribution P(Q_{L},Q_{R}), and discuss the correlations between Q_{L} and Q_{R}. We calculate the CGF for total entropy production in the reservoirs. In the steady state we explicitly show that the CGFs obey steady-state fluctuation theorems. We obtain classical results by taking ℏ→0. We also apply our method to the counting of the electron number and electron energy, for which the associated self-energy is obtained from the usual lead self-energy by multiplying a phase and shifting the contour time, respectively.

  5. A comparison between a steady state and a pulsed fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zollino, G., E-mail: giuseppe.zollino@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione Corso Stati Uniti 4, 35127 Padova (Italy); Casini, G.; Pierobon, D.; Antoni, V.; Bolzonella, T.; Piovan, R. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione Corso Stati Uniti 4, 35127 Padova (Italy)

    2011-10-15

    In the paper the first results of a simplified code (FRESCO) for the evaluation of capital cost and cost of electricity of a D-T Tokamak fusion power plant are reported. For the scope of this paper, only the main assumptions and features of the code are described and its validation against the figures of the European PPCS plant models are presented. The code is here applied to compare the costs of a steady state and a pulsed fusion power plant.

  6. Bifurcating steady-state solutions of the dissipative quasi-geostrophic equation in Lagrangian formulation

    Science.gov (United States)

    Chen, Zhi-Min

    2016-10-01

    It is shown that the non-homogeneous dissipative quasi-geostrophic equation ∂θ∂t+uṡ∇θ+κ(-Δ)αθ=sin⁡x2,   u=(-∂x2, ∂x1)(-Δ)-β/2θ with α =0 and β >1 losses stability at a critical value {κc}>0 and this instability gives rise to a circle of steady-state solutions.

  7. Crank inertial load has little effect on steady-state pedaling coordination.

    Science.gov (United States)

    Fregly, B J; Zajac, F E; Dairaghi, C A

    1996-12-01

    Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated or decelerated. During steady-state pedaling, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almost always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study test the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e., constant speed across cycles) and smoothly (i.e., constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e., cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady-state

  8. Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation

    OpenAIRE

    Go, Young-Mi; Duong, Duc M.; Peng, Junmin; Jones, Dean P

    2011-01-01

    The cysteine (Cys) proteome serves critical roles in protein structure, function and regulation, and includes key targets in oxidative mechanisms of disease. Thioredoxins maintain Cys residues in thiol forms, and previous research shows that the redox potential of thioredoxin in mitochondria and nuclei is more reduced than cytoplasm, suggesting that proteins in these compartments may have different steady-state oxidation. This study measured fractional oxidation of 641 peptidyl Cys residues f...

  9. Non-equilibrium steady states in the Klein-Gordon theory

    Science.gov (United States)

    Doyon, Benjamin; Lucas, Andrew; Schalm, Koenraad; Bhaseen, M. J.

    2015-03-01

    We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension d following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures {{T}L} and {{T}R}, are connected along a d-1-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures {{T}L} and {{T}R} for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.

  10. Phase Structures of Microemulsions Determined by the Steady-State Fluorescence Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The steady-state fluorescence method has been tentatively used to determine the phase structures of microemulsion systems consisting of cetyltrimethylammonium bromide (CTAB), n-butanol (n-C4H9OH), octane (n-C5H18), and water. The excimer/monomer intensity ratio (Ie/Im) of pyrene has demonstrated that the various structures in the microemulsion phase region can be distinguished. The results are consistent with electrical conductivity data already reported.

  11. A Generalized Approach for the Steady-State Analysis of Dual-Bridge Resonant Converters

    OpenAIRE

    Gao-Yuan Hu; Xiaodong Li; Bo-Yue Luan

    2014-01-01

    In this paper, a dual-bridge DC/DC resonant converter with a generalized series and parallel resonant tank is analyzed. A general approach based on Fundamental Harmonic Approximation is used to find the universal steady-state solutions. The analysis results for particular resonant tank configurations are exemplified with several typical resonant tank configurations respectively. The corresponded soft-switching conditions are discussed too. To illustrate the usefulness of the generalized appro...

  12. Steady-state vortex-line density in turbulent He II counterflow

    Science.gov (United States)

    Ostermeier, R. M.; Cromar, M. W.; Donnelly, R. J.; Kittel, P.

    1978-01-01

    We have measured the steady-state vortex-line density in turbulent counterflow using a second-sound-burst technique as a local probe. Contrary to the Vinen theory and previous assumptions, we find substantial line-density inhomogeneity and strong departures from the predicted heat-current dependence. Anomalous behavior of the line density at higher heat currents provides evidence for a new secondary flow state.

  13. Overview of EAST experiments on the development of high-performance steady-state scenario

    Science.gov (United States)

    Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2  >  1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5  ×  1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n  =  1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.

  14. A study for multiple steady states of biochemical reactions under substrate and product inhibition.

    Science.gov (United States)

    Chien

    2000-08-01

    This paper combines Sturm's method with the tangent analysis method to solve a biochemical reaction involving multiplicity. This method can easily derive the necessary conditions for multiplicity. In addition, we find a starting bifurcation point for multiplicity which cannot be obtained by the tangent method alone. Moreover, a start-up strategy is suggested to obtain a high conversion and unique steady state in four selected kinetic models of biochemical reactions, with inhibition.

  15. Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics.

    Science.gov (United States)

    Chacón, L; Simakov, Andrei N; Zocco, A

    2007-12-07

    We formulate a rigorous nonlinear analytical model that describes the dynamics of the diffusion (reconnection) region in driven systems in the context of electron magnetohydrodynamics (EMHD). A steady-state analysis yields allowed geometric configurations and associated reconnection rates. In addition to the well-known open X-point geometry, elongated configurations are found possible. The model predictions have been validated numerically with two-dimensional EMHD nonlinear simulations, and are in excellent agreement with previously published work.

  16. Estimating equations for biomarker based exposure estimation under non-steady-state conditions.

    Science.gov (United States)

    Bartell, Scott M; Johnson, Wesley O

    2011-06-13

    Unrealistic steady-state assumptions are often used to estimate toxicant exposure rates from biomarkers. A biomarker may instead be modeled as a weighted sum of historical time-varying exposures. Estimating equations are derived for a zero-inflated gamma distribution for daily exposures with a known exposure frequency. Simulation studies suggest that the estimating equations can provide accurate estimates of exposure magnitude at any reasonable sample size, and reasonable estimates of the exposure variance at larger sample sizes.

  17. Steady state Ab-initio Theory of Lasers with Injected Signals

    CERN Document Server

    Cerjan, Alexander

    2013-01-01

    We present an ab-initio treatment of steady-state lasing with injected signals that treats both multimode lasing and spatial hole burning, and describes the transition to injection locking or partial locking in the multimode case. The theory shows that spatial hole burning causes a shift in the frequency of free-running laser modes away from the injection frequency, in contrast to standard approaches.

  18. Improved steady-state stability of power grids with a communication infrastructure

    OpenAIRE

    Gajduk, Andrej; Todorovski, Mirko; Kocarev, Ljupco

    2014-01-01

    Efficient control of power systems is becoming increasingly difficult as they gain in complexity and size. We propose an automatic control strategy that regulates the mechanical power output of the generators in a power grid based on information obtained via a communication infrastructure. An algorithm that optimizes steady-state stability of a power grid by iteratively adding communication links is presented. The proposed control scheme is successfully applied to the IEEE New England and IEE...

  19. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    Science.gov (United States)

    Tromberg, Bruce J.; Berger, Andrew J.; Cerussi, Albert E.; Bevilacqua, Frederic; Jakubowski, Dorota

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  20. Steady state signatures in the time domain for nonintrusive appliance identification

    Directory of Open Access Journals (Sweden)

    Y. Jimenez

    2015-11-01

    Full Text Available Smart Grid paradigm promotes advanced load monitoring applications to support demand side management and energy savings. Recently, considerable attention has been paid to Non-Intrusive Load Monitoring to estimate the individual operation and power consumption of the residential appliances, from single point electrical measurements. This approach takes advantage of signal processing in order to reduce the hardware effort associated to systems with multiple dedicated sensors. Discriminative characteristics of the appliances, namely load signatures, could be extracted from the transient or steady state electrical signals. In this paper the effect of impact factors that can affect the steady state load signatures under realistic conditions are investigated: the voltage supply distortion, the network impedance and the sampling frequency of the metering equipment. For this purpose, electrical measurements of several residential appliances were acquired and processed to obtain some indices in the time domain. Results include the comparison of distinct scenarios, and the evaluation of the suitability and discrimination capacity of the steady state information.

  1. Ion-selective supported liquid membranes placed under steady-state diffusion control.

    Science.gov (United States)

    Tompa, Károly; Birbaum, Karin; Malon, Adam; Vigassy, Tamás; Bakker, Eric; Pretsch, Ernö

    2005-12-01

    Supported liquid membranes are used here to establish steady-state concentration profiles across ion-selective membranes rapidly and reproducibly. This opens up new avenues in the area of nonequilibrium potentiometry, where reproducible accumulation and depletion processes at ion-selective membranes may be used to gain valuable analytical information about the sample. Until today, drifting signals originating from a slowly developing concentration profile across the ion-selective membrane made such approaches impractical in zero current potentiometry. Here, calcium- and silver-selective membranes were placed between two identical aqueous electrolyte solutions, and the open circuit potential was monitored upon changing the composition of one solution. Steady state was reached in approximately 1 min with 25-microm porous polypropylene membranes filled with bis(2-ethylhexyl) sebacate doped with ionophore and lipophilic ion exchanger. Ion transport across the membrane resulted on the basis of nonsymmetric ion-exchange processes at both membrane sides. The steady-state potential was calculated as the sum of the two membrane phase boundary potentials, and good correspondence to experiment was observed. Concentration polarizations in the contacting aqueous phases were confirmed with stirring experiments. It was found that interferences (barium in the case of calcium electrodes and potassium with silver electrodes) induce a larger potential change than expected with the Nicolsky equation because they influence the level of polarization of the primary ion (calcium or silver) that remains potential determining.

  2. Formulation, computation and improvement of steady state security margins in power systems. Part I: Theoretical framework

    Energy Technology Data Exchange (ETDEWEB)

    Echavarren, F.M.; Lobato, E.; Rouco, L.; Gomez, T. [School of Engineering of Universidad Pontificia Comillas, C/Alberto Aguilera, 23, 28015 Madrid (Spain)

    2011-02-15

    A steady state security margin for a particular operational point can be defined as the distance from this initial point to the secure operational limits of the system. Four of the most used steady state security margins are the power flow feasibility margin, the contingency feasibility margin, the load margin to voltage collapse, and the total transfer capability between system areas. A comprehensive literature survey has shown that these security margins have been studied separately. This fact has suggested to the authors the possibility of researching a common analysis framework valid for all of them. This is the first part of a two-part paper. In part I, a novel mathematical formulation valid to address the study of any steady state security margin is proposed. The developed general approach is presented in three steps: (a) formulation, (b) computation, and (c) improvement of security margins. In part II, the performance of the proposed approach when used to compute and improve the aforementioned steady security margins is illustrated through its application to the Spanish power system. Results denote that this approach can be a useful tool to solve a variety of practical situations in modern real power systems. (author)

  3. Steady-state and dynamic models for particle engulfment during solidification

    Science.gov (United States)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  4. Revised Model of the Steady-state Solar Wind Halo Electron Velocity Distribution Function

    Science.gov (United States)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.; moon, Y.-J.

    2016-08-01

    A recent study discussed the steady-state model for solar wind electrons during quiet time conditions. The electrons emanating from the Sun are treated in a composite three-population model—the low-energy Maxwellian core with an energy range of tens of eV, the intermediate ˜102-103 eV energy-range (“halo”) electrons, and the high ˜103-105 eV energy-range (“super-halo”) electrons. In the model, the intermediate energy halo electrons are assumed to be in resonance with transverse EM fluctuations in the whistler frequency range (˜102 Hz), while the high-energy super-halo electrons are presumed to be in steady-state wave-particle resonance with higher-frequency electrostatic fluctuations in the Langmuir frequency range (˜105 Hz). A comparison with STEREO and WIND spacecraft data was also made. However, ignoring the influence of Langmuir fluctuations on the halo population turns out to be an unjustifiable assumption. The present paper rectifies the previous approach by including both Langmuir and whistler fluctuations in the construction of the steady-state velocity distribution function for the halo population, and demonstrates that the role of whistler-range fluctuation is minimal unless the fluctuation intensity is arbitrarily raised. This implies that the Langmuir-range fluctuations, known as the quasi thermal noise, are important for both halo and super-halo electron velocity distribution.

  5. NEW METHODS FOR TUNING OF MECHANICAL SYSTEMS DURING OPERATION IN STEADY STATE

    Directory of Open Access Journals (Sweden)

    Jaroslav HOMIŠIN

    2014-12-01

    Full Text Available The main purpose of this paper is to inform the technical community about new tuning methods of torsional oscillating mechanical systems (TOMS during operation in a steady state by means of application of pneumatic flexible shaft couplings. It is possible to change the torsional stiffness of pneumatic couplings by means of a change of gaseous medium pressure either out of operation or during operation. There are two possibilities how to tune the torsional oscillating mechanical systems: - tuning of torsion oscillating mechanical systems out of operation, what fulfils condition of given system tuning, - tuning of torsion oscillating mechanical systems during operation in a steady state, what fulfils condition of given system continual tuning. The basic principle of TOMS tuning during operation in the steady state consists in an adjustment of basic dynamical properties of pneumatic coupling according to the system dynamics. This adjustment can be made by means of a regulation system working in regulation circuit arrangement with a feedback. In this way it is possible to change dynamical properties of pneumatic coupling continuously with regard to dynamic of mechanical system, so that it can be eliminated dangerous torsional oscillation of given system in the working mode.

  6. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    Directory of Open Access Journals (Sweden)

    Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari

    2015-12-01

    Full Text Available High intensity interval training (HIIT has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly. Steady-state (n = 19 exercised (cycle ergometer 20 minutes at 90% of ventilatory threshold (VT. Tabata (n = 21 completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15 completed 13 sets of 30s (20 min @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05 increases in VO2max (+19, +18 and +18% and PPO (+17, +24 and +14% for each training group, as well as significant increases in peak (+8, + 9 and +5% & mean (+4, +7 and +6% power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05 than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05 across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults.

  7. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    Science.gov (United States)

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  8. Improvement of Convergence to Steady State Solutions of Euler Equations with Weighted Compact Nonlinear Schemes

    Institute of Scientific and Technical Information of China (English)

    Shu-hai ZHANG; Xiao-gang DENG; Mei-liang MAO; Chi-Wang SHU

    2013-01-01

    The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X.and Zhang H.(2000),J.Comput.Phys.165,22-44 and Zhang S.,Jiang S.and Shu C.-W.(2008),J.Comput.Phys.227,7294-7321] is studied through numerical tests.Like most other shock capturing schemes,WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level.In this paper,the techniques studied in [Zhang S.and Shu.C.-W.(2007),J.Sci.Comput.31,273-305 and Zhang S.,Jiang S and Shu.C.-W.(2011),J.Sci.Comput.47,216-238],to improve the convergence to steady state solutions for WENO schemes,are generalized to the WCNS.Detailed numerical studies in one and two dimensional cases are performed.Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS.The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.

  9. Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Shoichi [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2001-04-01

    Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)

  10. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Science.gov (United States)

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  11. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    Science.gov (United States)

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-04-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ˜110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  12. Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system

    Science.gov (United States)

    Lombardo, Fernando C.; Mazzitelli, Francisco D.; López, Adrián E. Rubio; Turiaci, Gustavo J.

    2016-07-01

    In this work we analyze the validity of Lifshitz's theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz's framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long-time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths' contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions' contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.

  13. Steady-state visual-evoked response to upright and inverted geometrical faces: a magnetoencephalography study.

    Science.gov (United States)

    Tsuruhara, Aki; Inui, Koji; Kakigi, Ryusuke

    2014-03-01

    The face is one of the most important visual stimuli in human life, and inverted faces are known to elicit different brain responses than upright faces. This study analyzed steady-state visual-evoked magnetic fields (SSVEFs) in eleven healthy participants when they viewed upright and inverted geometrical faces presented at 6Hz. Steady-state visual-evoked responses are useful measurements and have the advantages of robustness and a high signal-to-noise ratio. Spectrum analysis revealed clear responses to both upright and inverted faces at the fundamental stimulation frequency (6 Hz) and harmonics, i.e. SSVEFs. No significant difference was observed in the SSVEF amplitude at 6 Hz between upright and inverted faces, which was different from the transient visual-evoked response, N170. On the other hand, SSVEFs were delayed with the inverted face in the right temporal area, which was similar to N170 and the results of previous steady-state visual-evoked potentials studies. These results suggest that different mechanisms underlie the larger amplitude and delayed latency observed with face inversion, though further studies are needed to fully elucidate these mechanisms. Our study revealed that SSVEFs, which have practical advantages for measurements, could provide novel findings in human face processing.

  14. Phase-field study of three-dimensional steady-state growth shapes in directional solidification.

    Science.gov (United States)

    Gurevich, Sebastian; Karma, Alain; Plapp, Mathis; Trivedi, Rohit

    2010-01-01

    We use a quantitative phase-field approach to study directional solidification in various three-dimensional geometries for realistic parameters of a transparent binary alloy. The geometries are designed to study the steady-state growth of spatially extended hexagonal arrays, linear arrays in thin samples, and axisymmetric shapes constrained in a tube. As a basis to address issues of dynamical pattern selection, the phase-field simulations are specifically geared to identify ranges of primary spacings for the formation of the classically observed "fingers" (deep cells) with blunt tips and "needles" with parabolic tips. Three distinct growth regimes are identified that include a low-velocity regime with only fingers forming, a second intermediate-velocity regime characterized by coexistence of fingers and needles that exist on separate branches of steady-state growth solutions for small and large spacings, respectively, and a third high-velocity regime where those two branches merge into a single one. Along the latter, the growth shape changes continuously from fingerlike to needlelike with increasing spacing. These regimes are strongly influenced by crystalline anisotropy with the third regime extending to lower velocity for larger anisotropy. Remarkably, however, steady-state shapes and tip undercoolings are only weakly dependent on the growth geometry. Those results are used to test existing theories of directional finger growth as well as to interpret the hysteretic nature of the cell-to-dendrite transition.

  15. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Directory of Open Access Journals (Sweden)

    Zhongfan Zhu

    Full Text Available The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  16. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  17. THE APPARENT VISCOSITY OF SEMI-SOLID AZ91D ALLOY AT STEADY STATE

    Institute of Scientific and Technical Information of China (English)

    Z.S. Zhen; W.M. Mao; S.J. Yan; A.M. Zhao; C.L. CuI; X.Y. Zhong

    2002-01-01

    The Rheological behavior of semi-solid AZ91D at steady state is studied using a Couettetype viscometer in the present paper. The results show that the apparent viscosity ofsemi-solid AZ91D at the steady state increases with the solid fraction increasing, andgoes up sharply when the solid fraction reaches a certain value, which is called criticalfraction. In addition, the apparent viscosity of semi-solid AZ91D at the steady statetakes on a distinct downtrend with the shearing rate increasing, which indicates astrong shear thinning property. In addition, the critical solid fraction becomes higherunder larger shearing rate, owing to the more globular shape of the solid particles.Based on the present experiment results, an empirical equation is built as that, relatingthe steady state apparent viscosity of semi-solid AZ91D with the solid fraction fs andshearing rate γ at the same time: ηapp=10. 74exp(6.95fs)γ-0.86.

  18. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    Science.gov (United States)

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  19. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Science.gov (United States)

    Jin, Jiasen; Biella, Alberto; Viyuela, Oscar; Mazza, Leonardo; Keeling, Jonathan; Fazio, Rosario; Rossini, Davide

    2016-07-01

    We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free) energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1 /2 on a lattice interacting through an X Y Z Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  20. The technology and science of steady-state operation in magnetically confined plasmas

    Science.gov (United States)

    Bécoulet, A.; Hoang, G. T.

    2008-12-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  1. Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions.

    Science.gov (United States)

    Dubbert, Maren; Cuntz, Matthias; Piayda, Arndt; Werner, Christiane

    2014-09-01

    The oxygen isotope signature of water is a powerful tracer of water movement from plants to the global scale. However, little is known about the short-term variability of oxygen isotopes leaving the ecosystem via transpiration, as high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes in order to evaluate the short-term variability of the isotopic composition of transpiration (δE ) and to investigate the role of isotopic non-steady-state transpiration under natural conditions in cork-oak trees (Quercus suber) during distinct Mediterranean seasons. The measured δ(18) O of transpiration (δE ) deviated from isotopic steady state throughout most of the day even when leaf water at the evaporating sites was near isotopic steady state. High agreement was found between estimated and modeled δE values assuming non-steady-state enrichment of leaf water. Isoforcing, that is, the influence of the transpirational δ(18) O flux on atmospheric values, deviated from steady-state calculations but daily means were similar between steady state and non-steady state. However, strong daytime isoforcing on the atmosphere implies that short-term variations in δE are likely to have consequences for large-scale applications, for example, partitioning of ecosystem fluxes or satellite-based applications.

  2. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  3. Steady state behavior in a model for droplet growth, sliding and coalescence: the final stage of dropwise condensation

    Science.gov (United States)

    Meakin, Paul

    1992-05-01

    The final (steady state) stage of dropwise condensation has been explored using a simple model for droplet deposition and coalescence with the rapid sliding of droplets that exceed a critical size S∗. In this steady state regime the mean droplet size and the total mass density both decrease algebraically with increasing distance from the upper edge of the inclined substrate (apart from pronounced oscillations at very shot distances). The droplet number density on the other hand, varies at most logarithmically with this distance. The steady state droplet size distribution can be represented quite well by a stretched exponential form.

  4. General Unified Integral Controller with Zero Steady-State Error for Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    the steady-state error suppression with no need of additional complex control algorithms such as the synchronous reference frame transformation. Five alternative implementation methods are comparatively evaluated from the viewpoint of the steady-state and dynamic responses. Further, the theoretical analysis......Current regulation is crucial for operating single-phase grid-connected inverters. The challenge of the current controller is how to fast and precisely tracks the current with zero steady-state error. This paper proposes a novel feedback mechanism for the conventional PI controller. It allows...

  5. Thermodynamic Limit of a Nonequilibrium Steady-State: Maxwell-Type Construction for a Bistable Biochemical System

    CERN Document Server

    Ge, Hao

    2009-01-01

    We show that the thermodynamic limit of a bistable phosphorylation-dephosphorylation cycle has a selection rule for the "more stable" macroscopic steady state. The analysis is akin to the Maxwell construction. Based on the chemical master equation approach, it is shown that, except at a critical point, bistability disappears in the stochastic model when fluctuation is sufficiently low but unneglectable. Onsager's Gaussian fluctuation theory applies to the unique macroscopic steady state. With initial state in the basin of attraction of the "less stable" steady state, the deterministic dynamics obtained by the Law of Mass Action is a metastable phenomenon. Stability and robustness in cell biology are stochastic concepts.

  6. Sleep disturbances and health-related quality of life in adults with steady-state bronchiectasis.

    Directory of Open Access Journals (Sweden)

    Yonghua Gao

    Full Text Available Sleep disturbances are common in patients with chronic lung diseases, but little is known about the prevalence in patients with bronchiectasis. A cross sectional study was conducted to investigate the prevalence and determinants associated with sleep disturbances, and the correlation between sleep disturbances and quality of life (QoL in adults with steady-state bronchiectasis.One hundred and forty-four bronchiectasis patients and eighty healthy subjects were enrolled. Sleep disturbances, daytime sleepiness, and QoL were measured by utilizing the Pittsburgh Sleep Quality Index (PSQI, Epworth Sleepiness Scale (ESS and St. George Respiratory Questionnaire (SGRQ, respectively. Demographic, clinical indices, radiology, spirometry, bacteriology, anxiety and depression were also assessed.Adults with steady-state bronchiectasis had a higher prevalence of sleep disturbances (PSQI>5 (57% vs. 29%, P<0.001, but not daytime sleepiness (ESS≥10 (32% vs. 30%, P = 0.76, compared with healthy subjects. In the multivariate model, determinants associated with sleep disturbances in bronchiectasis patients included depression (OR, 10.09; 95% CI, 3.46-29.37; P<0.001, nocturnal cough (OR, 1.89; 95% CI, 1.13-3.18; P = 0.016, aging (OR, 1.04; 95% CI, 1.01-1.07; P = 0.009 and increased 24-hour sputum volume (OR, 2.01; 95% CI, 1.22-3.33; P = 0.006. Patients with sleep disturbances had more significantly impaired QoL affecting all domains than those without. Only 6.2% of patients reported using a sleep medication at least weekly.In adults with steady-state bronchiectasis, sleep disturbances are more common than in healthy subjects and are related to poorer QoL. Determinants associated with sleep disturbances include depression, aging, nighttime cough and increased sputum volume. Assessment and intervention of sleep disturbances are warranted and may improve QoL.

  7. Formulation, computation and improvement of steady state security margins in power systems. Part II: Results

    Energy Technology Data Exchange (ETDEWEB)

    Echavarren, F.M.; Lobato, E.; Rouco, L.; Gomez, T. [School of Engineering of Universidad Pontificia Comillas, C/Alberto Aguilera, 23, 28015 Madrid (Spain)

    2011-02-15

    A steady state security margin for a particular operating point can be defined as the distance from this initial point to the secure operating limits of the system. Four of the most used steady state security margins are the power flow feasibility margin, the contingency feasibility margin, the load margin to voltage collapse, and the total transfer capability between system areas. This is the second part of a two part paper. Part I has proposed a novel framework of a general model able to formulate, compute and improve any steady state security margin. In Part II the performance of the general model is validated by solving a variety of practical situations in modern real power systems. Actual examples of the Spanish power system will be used for this purpose. The same computation and improvement algorithms outlined in Part I have been applied for the four security margins considered in the study, outlining the convenience of defining a general framework valid for the four of them. The general model is used here in Part II to compute and improve: (a) the power flow feasibility margin (assessing the influence of the reactive power generation limits in the Spanish power system), (b) the contingency feasibility margin (assessing the influence of transmission and generation capacity in maintaining a correct voltage profile), (c) the load margin to voltage collapse (assessing the location and quantity of loads that must be shed in order to be far away from voltage collapse) and (d) the total transfer capability (assessing the export import pattern of electric power between different areas of the Spanish system). (author)

  8. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  9. Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index

    Science.gov (United States)

    Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; Li, Hongyi; Leung, L. Ruby

    2014-12-01

    Estimation of soil organic carbon (SOC) stock using models typically requires long term spin-up of the carbon-nitrogen (CN) models, which has become a bottleneck for global modeling. We report a new numerical approach to estimate global SOC stock that can alleviate long spin-up. The approach uses satellite-based canopy leaf area index (LAI) and takes advantage of a reaction-based biogeochemical module—Next Generation BioGeoChemical Module (NGBGC) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as in CLM4CN, it can be easily configured to run prognostic or steady state simulations. The new approach was applied at point and global scales and compared with SOC derived from spin-up by running NGBGC in the prognostic mode, and SOC from the Harmonized World Soil Database (HWSD). The steady state solution is comparable to the spin-up value when the satellite LAI is close to that from the spin-up solution, and largely captured the global variability of the HWSD SOC across the different dominant plant functional types (PFTs). The correlation between the simulated and HWSD SOC was, however, weak at both point and global scales, suggesting the needs for improving the biogeochemical processes described in CLM4 and updating HWSD. Besides SOC, the steady state solution also includes all other state variables simulated by a spin-up run, which makes the tested approach a promising tool to efficiently estimate global SOC distribution and evaluate and compare multiple aspects simulated by different CN mechanisms in the model.

  10. High-power and steady-state operation of ICRF heating in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.; Kasahara, H.; Seki, R.; Kamio, S.; Kumazawa, R.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ii, T.; Makino, R.; Nagaoka, K.; Nomura, G. [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Shinya, T. [The University of Tokyo, Kashiwa 2777-8561 (Japan)

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAIT antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.

  11. Steady-state responses of a belt-drive dynamical system under dual excitations

    Science.gov (United States)

    Ding, Hu

    2016-02-01

    The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the firing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Furthermore, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numerical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pulley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foundation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.

  12. Microchemostat array with small-volume fraction replenishment for steady-state microbial culture.

    Science.gov (United States)

    Park, Jaewon; Wu, Jianzhang; Polymenis, Michael; Han, Arum

    2013-11-07

    A chemostat is a bioreactor in which microorganisms can be cultured at steady-state by controlling the rate of culture medium inflow and waste outflow, thus maintaining media composition over time. Even though many microbial studies could greatly benefit from studying microbes in steady-state conditions, high instrument cost, complexity, and large reagent consumption hamper the routine use of chemostats. Microfluidic-based chemostats (i.e. microchemostats) can operate with significantly smaller reagent consumption while providing accurate chemostatic conditions at orders of magnitude lower cost compared to conventional chemostats. Also, microchemostats have the potential to significantly increase the throughput by integrating arrays of microchemostats. We present a microchemostat array with a unique two-depth culture chamber design that enables small-volume fraction replenishment of culture medium as low as 1% per replenishment cycle in a 250 nl volume. A system having an array of 8 microchemostats on a 40 × 60 mm(2) footprint could be automatically operated in parallel by a single controller unit as a demonstration for potential high throughput microbial studies. The model organism, Saccharomyces cerevisiae, successfully reached a stable steady-state of different cell densities as a demonstration of the chemostatic functionality by programming the dilution rates. Chemostatic functionality of the system was further confirmed by quantifying the budding index as a function of dilution rate, a strong indicator of growth-dependent cell division. In addition, the small-volume fraction replenishment feature minimized the cell density fluctuation during the culture. The developed system provides a robust, low-cost, and higher throughput solution to furthering studies in microbial physiology.

  13. Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search

    KAUST Repository

    Newby, Jay M.

    2010-02-19

    We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. © 2010 Society for Mathematical Biology.

  14. Seeing the talker’s face supports executive processing of speech in steady state noise

    Directory of Open Access Journals (Sweden)

    Sushmit eMishra

    2013-11-01

    Full Text Available Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT, Mishra et al., 2013 along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity. Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.

  15. Steady-state pharmacokinetics of zidovudine in Chinese HIV-infected patients

    Institute of Scientific and Technical Information of China (English)

    LIU Li-feng; WANG Lu; FU Qiang; ZHU Zhu; XIE Jing; HAN Yang; LIU Zheng-yin; YE Min; LI Tai-sheng

    2012-01-01

    Background The pharmacokinetics of zidovudine (AZT) are possibly influenced by weight,age,sex,liver and renal functions,severity of disease,and ethnicity.Currently,little information is available on the steady-state pharmacokinetics of AZT in Chinese HIV-infected patients.The current study aimed to characterize the steady-state pharmacokinetics of AZT in a Chinese set-up.Methods Eleven Chinese HIV-infected patients were involved in the steady-state pharmacokinetic study.In total,300 mg of AZT,as a part of combination therapy,was given to patients,and serial blood samples were collected for 12 hours.The samples were measured by a high-performance liquid chromatography (HPLC) assay,and the results were analyzed by both the non-compartment model and the one-compartment model.Results The Cmax of AZT in Chinese patients was higher than that in non-Asian patients.The half-life of AZT,analyzed by the non-compartment model (P=0.02),in male patients ((1.02±0.22) hours) was shorter than that of AZT in female patients ((1.55±0.29) hours).The AZT clearance,analyzed by the one-compartment model (P=0.045),in male patients ((262.60±28.13) L/h) was higher than that in female patients ((195.85±60.51 ) L/h).Conclusion The present study provides valuable information for the clinical practice of AZT-based highly active antiretroviral therapy in a Chinese set-up.

  16. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.

  17. Modeling of the blood rheology in steady-state shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Apostolidis, Alex J.; Beris, Antony N., E-mail: beris@udel.edu [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-05-15

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.

  18. New Methods for Processing and Quantifying VO2 Kinetics to Steady State: VO2 Onset Kinetics

    Directory of Open Access Journals (Sweden)

    Craig R. McNulty

    2017-09-01

    Full Text Available Current methods of oxygen uptake (VO2 kinetics data handling may be too simplistic for the complex physiology involved in the underlying physiological processes. Therefore, the aim of this study was to quantify the VO2 kinetics to steady state across the full range of sub-ventilatory threshold work rates, with a particular focus on the VO2 onset kinetics. Ten healthy, moderately trained males participated in five bouts of cycling. Each bout involved 10 min at a percentage of the subject's ventilation threshold (30, 45, 60, 75, 90% from unloaded cycling. The VO2 kinetics was quantified using the conventional mono-exponential time constant (tau, τ, as well as the new methods for VO2 onset kinetics. Compared to linear modeling, non-linear modeling caused a deterioration of goodness of fit (main effect, p < 0.001 across all exercise intensities. Remainder kinetics were also improved using a modified application of the mono-exponential model (main effect, p < 0.001. Interestingly, the slope from the linear regression of the onset kinetics data is similar across all subjects and absolute exercise intensities, and thereby independent of subject fitness and τ. This could indicate that there are no functional limitations between subjects during this onset phase, with limitations occurring for the latter transition to steady state. Finally, the continuing use of mono-exponential modeling could mask important underlying physiology of more instantaneous VO2 responses to steady state. Consequently, further research should be conducted on this new approach to VO2 onset kinetics.

  19. A steady-state kinetic analysis of the prolyl-4-hydroxylase mechanism.

    Science.gov (United States)

    Soskel, N T; Kuby, S A

    1981-01-01

    Published kinetic data by Kivirikko, et al. on the prolyl-4-hydroxylase reaction have been re-evaluated using the overall steady-state velocity equation in the forward and reverse directions for an ordered ter ter kinetic mechanism. Qualitatively, the published data for prolyl-4-hydroxylase appear to fit the predicted patterns for this kinetic mechanism. More kinetic data are needed to confirm these results and to quantitate the kinetic parameters but, tentatively, the order of substrate addition would appear to be alpha-ketoglutarate, oxygen, and peptide; and the order of product release would be hydroxylated peptide (or collagen), carbon dioxide, and succinate.

  20. Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution

    Indian Academy of Sciences (India)

    Hasan Çallioğlu

    2011-02-01

    An analytical thermoelasticity solution for a disc made of functionally graded materials (FGMs) is presented. Infinitesimal deformation theory of elasticity and power law distribution for functional gradation are used in the solution procedure. Some relative results for the stress and displacement components along the radius are presented due to internal pressure, external pressure, centrifugal force and steady state temperature. From the results, it is found that the grading indexes play an important role in determining the thermomechanical responses of FG disc and in optimal design of these structures.