WorldWideScience

Sample records for premixed flame front

  1. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  2. The Effect of Noise on the Propagating Speed of Pre-mixed Laminar Flame Fronts

    CERN Document Server

    Liu, Hongliang

    2016-01-01

    We study the effect of thermal noise on the propagation speed of a planar flame. We show that this out of equilibrium greatly amplifies the effect of thermal noise to yield macroscopic reductions in the flame speed over what is predicted by the noise-free model. Computations show that noise slows the flame significantly. The flame is modeled using Navier Stokes equations with appropriate diffusive transport terms and chemical kinetic mechanism of hydrogen/oxygen. Thermal noise is modeled within the continuum framework using a system of stochastic partial differential equations, with transport noise from fluctuating hydrodynamics and reaction noise from a poisson model. We use a full chemical kinetics model in order to get quantitatively meaningful results. We compute steady and dynamic flames using an operator split finite volume scheme. New characteristic boundary conditions avoid non-physical boundary layers at computational boundaries. New limiters prevent stochastic terms from introducing non-physical neg...

  3. Premixed flame propagation in vertical tubes

    Science.gov (United States)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  4. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  5. Turbulence in laminar premixed V-flames

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoqian(张孝谦); LEI; Yu(雷宇); WANG; Baorui(王宝瑞); WANG; Yue(王岳); WEI; Minggang(韦明罡)

    2003-01-01

    Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

  6. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  7. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    Energy Technology Data Exchange (ETDEWEB)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd, U-3139, Storrs, CT 06269 (United States); King, Galen B. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  8. Effect of vorticity flip-over on the premixed flame structure: First experimental observation of type I inflection flames

    CERN Document Server

    El-Rabii, Hazem

    2015-01-01

    Premixed flames propagating in horizontal tubes are observed to take on shape convex towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report first experimental realization of this regime. Our experiments on ethane and n-butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with the theoretically predicted.

  9. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  10. Subfilter Scale Combustion Modelling for Large Eddy Simulation of Turbulent Premixed Flames

    Science.gov (United States)

    Shahbazian, Nasim

    Large eddy simulation (LES) is a powerful computational tool for modelling turbulent combustion processes. However, for reactive flows, LES is still under significant development. In particular, for turbulent premixed flames, a considerable complication of LES is that the flame thickness is generally much smaller than the LES filter width such that the flame front and chemical reactions cannot be resolved on the grid. Accurate and robust subfilter-scale (SFS) models of the unresolved turbulence-chemistry interactions are therefore required and studies are needed to evaluate and improve them. In this thesis, a detailed comparison and evaluation of five different SFS models for turbulence- chemistry interactions in LES of premixed flames is presented. These approaches include both flamelet- and non-flamelet-based models, coupled with simple or tabulated chemistry. The mod- elling approaches considered herein are: algebraic- and transport-equation variants of the flame surface density (FSD) model, the presumed conditional moment (PCM) with flame prolongation of intrinsic low-dimensional manifold (FPI) tabulated chemistry, or PCM-FPI approach, evaluated with two different presumed probability density function (PDF) models; and conditional source-term estimation (CSE) approach. The predicted LES solutions are compared to the existing laboratory-scale experimental observation of Bunsen-type turbulent premixed methane-air flames, corresponding to lean and stoichiometric conditions lying from the upper limit of the flamelet regime to well within the thin reaction zones regime of the standard regimes diagram. Direct comparison of different SFS approaches allows investigation of stability and performance of the models, while the weaknesses and strengths of each approach are identified. Evaluation of algebraic and transported FSD models highlights the importance of non-equilibrium transport in turbulent premixed flames. The effect of the PDF type for the reaction progress

  11. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  12. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu

    2014-09-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.

  13. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  14. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  15. Premixed Flame Dynamics in Narrow 2D Channels

    CERN Document Server

    Ayoobi, Mohsen

    2015-01-01

    Premixed flames propagating within small channels show complex combustion phenomena that differ from flame propagation at conventional scales. Available experimental and numerical studies have documented stationary/non-stationary and/or asymmetric modes that depend on properties of the incoming reactant flow as well as channel geometry and wall temperatures. The present work seeks to illuminate mechanisms leading to symmetry-breaking and limit cycle behavior that are fundamental to these combustion modes. Specifically, four cases of lean premixed methane/air combustion -- two equivalence ratios (0.53 and 0.7) and two channel widths (2 and 5mm) -- are investigated in a 2D configuration with constant channel length and bulk inlet velocity, where numerical simulations are performed using detailed chemistry. External wall heating is simulated by imposing a linear temperature gradient as a boundary condition on both walls. In the 2mm-channel, both equivalence ratios produce flames that stabilize with symmetric fla...

  16. Autoignition and flame stabilisation processes in turbulent non-premixed hot coflow flames

    NARCIS (Netherlands)

    Oldenhof , E.

    2012-01-01

    This dissertation examines stabilisation processes in turbulent non-premixed jet flames, created by injecting gaseous fuel into a co-flowing stream of hot, low-oxygen combustion products. Being able to predict whether and how a flame achieves stable and reliable combustion is a matter of great pract

  17. Extinction conditions of a premixed flame in a channel

    Energy Technology Data Exchange (ETDEWEB)

    Alliche, Mounir [LMP2M, Universite de Medea, Quartier Ain Dheb, 26000 Medea (Algeria); M2P2, UMR CNRS 6181, Universite de Provence, Marseille (France); Haldenwang, Pierre [M2P2, UMR CNRS 6181, Universite de Provence, Marseille (France); Chikh, Salah [LTPMP, Faculte de Genie Mecanique and de Genie des Procedes, USTHB, Bab Ezzouar (Algeria)

    2010-06-15

    A local refinement method is used to numerically predict the propagation and extinction conditions of a premixed flame in a channel considering a thermodiffusive model. A local refinement method is employed because of the numerous length scales that characterize this phenomenon. The time integration is self adaptive and the solution is based on a multigrid method using a zonal mesh refinement in the flame reaction zone. The objective is to determine the conditions of extinction which are characterized by the flame structure and its properties. We are interested in the following properties: the curvature of the flame, its maximum temperature, its speed of propagation and the distance separating the flame from the wall. We analyze the influence of heat losses at the wall through the thermal conductivity of the wall and the nature of the fuel characterized by the Lewis number of the mixture. This investigation allows us to identify three propagation regimes according to heat losses at the wall and to the channel radius. The results show that there is an intermediate value of the radius for which the flame can bend and propagate provided that its curvature does not exceed a certain limit value. Indeed, small values of the radius will choke the flame and extinguish it. The extinction occurs if the flame curvature becomes too small. Furthermore, this study allows us to predict the limiting values of the heat loss coefficient at extinction as well as the critical value of the channel radius above which the premixed flame may propagate without extinction. A dead zone of length 2-4 times the flame thickness appears between the flame and the wall for a Lewis number (Le) between 0.8 and 2. For small values of Le, local extinctions are observed. (author)

  18. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  19. Flame front detection by active contour method from OH-PLIF images under microgravity

    Institute of Scientific and Technical Information of China (English)

    Yandong Tang; Yue Wang; Christian Eigenbrod

    2006-01-01

    @@ It is difficult and high-cost to detect flame fronts by laser-sheet diagnostics under microgravity (μg),thus image processing is critical to obtain valuable information from the raw data. In the present study,premixed V-flames were detected under μg by OH planar laser-induced fluorescence (PLIF) and an effective method based on active contour model (ACM) is presented for automatic detecting and tracking flame fronts in the PLIF images. ACM can effectively detect the flame front in the images with low contrast and noises. Compared with other methods of flame front detection, the advantage of this method is that the image smoothing and image enhancement are not necessary for the correct detection of flame fronts in raw PLIF images.

  20. Response mechanisms of attached premixed flames subjected to harmonic forcing

    Science.gov (United States)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  1. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  2. Jet flow and premixed jet flame control by plasma swirler

    Science.gov (United States)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang

    2017-04-01

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  3. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  4. Finite amplitude wave interaction with premixed laminar flames

    Science.gov (United States)

    Aslani, Mohamad; Regele, Jonathan D.

    2014-11-01

    The physics underlying combustion instability is an active area of research because of its detrimental impact in many combustion devices, such as turbines, jet engines, and liquid rocket engines. Pressure waves, ranging from acoustic waves to strong shocks, are potential sources of these disturbances. Literature on flame-disturbance interactions are primarily focused on either acoustics or strong shock wave interactions, with little information about the wide spectrum of behaviors that may exist between these two extremes. For example, the interaction between a flame and a finite amplitude compression wave is not well characterized. This phenomenon is difficult to study numerically due to the wide range of scales that need to be captured, requiring powerful and efficient numerical techniques. In this work, the interaction of a perturbed laminar premixed flame with a finite amplitude compression wave is investigated using the Parallel Adaptive Wavelet Collocation Method (PAWCM). This method optimally solves the fully compressible Navier-Stokes equations while capturing the essential scales. The results show that depending on the amplitude and duration of a finite amplitude disturbance, the interaction between these waves and premixed flames can produce a broad range of responses.

  5. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.

    2016-07-15

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  6. Numerical Study on Laminar Burning Velocity and Flame Stability of Premixed Methane/Ethylene/Air Flames

    Institute of Scientific and Technical Information of China (English)

    陈珊珊; 蒋勇; 邱榕; 安江涛

    2012-01-01

    A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.

  7. Effects of Radiative and Diffusive Transport Processes on Premixed Flames near Flammability Limits

    Science.gov (United States)

    Abbud-Madrid, Angel; Ronney, Paul D.

    1991-01-01

    A study of the mechanisms of flammability limits and the dynamics of flame extinguishment in premixed gas flames is described, a novel feature of which is the use of diluent gases having a wide range of radiative and diffusive transport properties. This feature enables an assessment of the importance of volumetric heat losses and Lewis number effects on these mechanisms. Additionally, effects of flame dynamics and flame front curvature are studied by employing spherically expanding flames obtained in a microgravity environment whereby natural convection is eliminated. New diagnostics include chamber pressure measurements and the first reported species concentration measurements in a microgravity combustion experiment. The limit mechanisms and extinguishment phenomena are found to be strongly influenced by the combined effects of radiant heat loss, Lewis number and flame curvature. Two new and as yet not well understood phenomena are reported: 'double flames' in rich H2-O2-CO2 mixtures and an 'inverse flammability region' in rich C3H8-O2-CO2 mixtures.

  8. A turbulent premixed flame on fractal-grid generated turbulence

    CERN Document Server

    Soulopoulos, Nikos; Beyrau, Frank; Hardalupas, Yannis; Taylor, A M K P; Vassilicos, J Christos

    2010-01-01

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent combustion experiment. In contrast to the power law decay of a standard turbulence grid, the downstream turbulence intensity of the fractal grid increases until it reaches a peak at some distance from the grid before it finally decays. The effective mesh size and the solidity are the same as those of a standard square mesh grid with which it is compared. It is found that, for the same flow rate and stoichiometry, the fractal generated turbulence enhances the burning rate and causes the flame to further increase its area. Using a flame fractal model, an attempt is made to highlight differences between the flames established at the two different turbulent fields.

  9. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  10. NUMERICAL SIMULATION OF A PREMIXED TURBULENT V-SHAPED FLAME

    Directory of Open Access Journals (Sweden)

    M I El Khazen

    2011-01-01

    Full Text Available In this paper we simulate a turbulent premixed V-shape flame stabilized on a hot wire. The device used is composed of a vertical combustion chamber where the methane-air mixture is convected upwards with a mean velocity of 4ms-1. The flow was simulated running Fluent 6.3, which numerically solved the stationary Favre-averaged mass balance; Navier-Stokes equations; combustion progress variable, and k-ε equations on a two-dimensional numerical mesh. We model gaseous mixture, ignoring Soret and Dufour effects and radiation heat transfer. The progress variable balance equation was closed using Eddy Break Up model. The results of our simulations allow us to analyze the influence of equivalence ratio and the turbulent intensity on the properties of the flame (velocity, fluctuation, progress variable and Thickness of flame.This work gives us an idea on the part which turbulence can play to decrease the risks of extinction and instabilities caused by the lean premixed combustion.

  11. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  12. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  13. Resolvent methods for steady premixed flame shapes governed by the Zhdanov-Trubnikov equation

    CERN Document Server

    Borot, Gaëtan; Joulin, Guy

    2012-01-01

    Using pole decompositions as starting points, the one parameter (-1 =< c < 1) nonlocal and nonlinear Zhdanov-Trubnikov (ZT) equation for the steady shapes of premixed gaseous flames is studied in the large-wrinkle limit. The singular integral equations for pole densities are closely related to those satisfied by the spectral density in the so-called O(n) matrix model, with n = -2(1 + c)/(1 - c). They can be solved via the introduction of complex resolvents and the use of complex analysis. We retrieve results obtained recently for -1 =< c =< 0, and we explain and cure their pathologies when they are continued naively to 0 < c < 1. Moreover, for any -1 =< c < 1, we derive closed-form expressions for the shapes of steady isolated flame crests, and then bicoalesced periodic fronts. These theoretical results fully agree with numerical resolutions. Open problems are evoked.

  14. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos

    2012-01-01

    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  15. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  16. Stabilization of a premixed methane-air flame with a high repetition nanosecond laser-induced plasma

    Science.gov (United States)

    Yu, Yang; Li, Xiaohui; An, Xiaokang; Yu, Xin; Fan, Rongwei; Chen, Deying; Sun, Rui

    2017-07-01

    Laser-induced plasma ignition has been applied in various combustion systems, however, work on flame stabilization with repetitive laser-induced plasma (LIP) is rather limited. In this paper, stabilization of a premixed methane-air flame with a high repetition nanosecond LIP is reported. The plasma energy coupling and the temporal evolution of the flame kernels generated by the LIPs are investigated with different laser repetition rates, i.e., 1 Hz, 100 Hz and 250 Hz, respectively. The plasma energy coupling is not affected in the air flow and in the premixed methane-air flow with the applied laser repetition rates. Continuous combustion flame stabilization has been achieved with LIPs of 100 Hz and 250 Hz, in terms of catch-up and merging of the consecutive flame kernels. The flame kernel formed by the last LIP does not affect the evolution of the newly formed flame kernel by the next LIP. The catch-up distance, defined as the distance from the LIP initiation site to the flame kernel catch-up position, is estimated for different laser repetition rates based on the temporal evolution of the flame kernels. A higher laser repetition rate will lead to a shorter catch-up distance which is beneficial for flame stabilization. The up limit for the laser repetition rate to realize effective flame stabilization is determined from the critical inter-pulse delay defined from the onset of the LIP to the return of the initially contraflow propagating lower front to the LIP initiation site. The up limit is 377 Hz under the flow conditions of this work (equivalence ratio of 1, flow speed of 2 m/s, and Reynolds number of 1316).

  17. Laminar premixed methane/air flame extinction characteristics influenced by co-flow water mists

    Institute of Scientific and Technical Information of China (English)

    LIU XuanYa; LU ShouXiang; ZHU YingChun; LIU Yi

    2008-01-01

    Based on the tubular burner, the burning velocities, flame stretch and inhibition rules influenced by co-flow water mists were studied using a high-speed schlieren system. Moreover, the variation rules of the flame critical extinction in our burner equipment were also obtained by analyzing the process and mechanism of flame extinction and inhibition. It is shown that the flame stretch is related to the fuel concentration, co-flow fluxes and water mist diameters. For droplets with a larger diameter, the smaller the co-flow fluxes, the more obvious the flame stretch. When the water mist loading rate is rather smaller, for fuel-rich premixed flame with Le>1, the flame with larger burning rate tends to backfire more easily. Under the same water mist conditions, for fuel-lean premixed flame with Le<1, the smaller the gas concentration, the easier the flame is extinct.

  18. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  19. Three dimensional dynamic mode decomposition of premixed turbulent jet flames

    Science.gov (United States)

    Grenga, Temistocle; Macart, Jonathan; Mueller, Michael

    2016-11-01

    Analysis of turbulent combustion DNS data largely focuses on statistical analyses. However, turbulent combustion is highly unsteady and dynamic. In this work, Dynamic Mode Decomposition (DMD) will be explored as a tool for dynamic analysis of turbulent combustion DNS data, specifically a series of low Mach number spatially-evolving turbulent planar premixed hydrogen/air jet flames. DMD decomposes data into coherent modes with corresponding growth rates and oscillatory frequencies. The method identifies structures unbiased by energy so is particularly well suited to exploring dynamic processes at scales smaller than the largest, energy-containing scales of the flow and that may not be co-located in space and time. The focus of this work will be on both the physical insights that can potentially be derived from DMD modes and the computational issues associated with applying DMD to large three-dimensional DNS datasets.

  20. An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames

    Science.gov (United States)

    Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin

    2015-11-01

    Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.

  1. Hydrogen-hydrocarbon turbulent non-premixed flame structure

    Energy Technology Data Exchange (ETDEWEB)

    Tabet, F. [ANSYS-Benelux, 4 Avenue Pasteur, B-1300 Wavre (Belgium); Sarh, B.; Goekalp, I. [Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), 1 C avenue de la recherche scientifique, Orleans 45071 Cedex 2 (France)

    2009-06-15

    In this study, the structure of turbulent non-premixed CH{sub 4}-H{sub 2}/air flames is analyzed with a special emphasis on mixing and air entrainment. The amount of H{sub 2} in the fuel mixture varies under constant volumetric fuel flow. Mixing is described by mixture fraction and its variance while air entrainment is characterized by the ratio of gas mass flow to fuel mass flow at the inlet section. The flow field and the chemistry are coupled by the flamelet assumption. Mixture fraction and its variance are transported by the computational fluid dynamics (CFD) code. The slow chemistry aspect of NO{sub x} is handled by solving an additional transport equation with a source term derived from flamelet library. The results obtained show an improvement of mixing with hydrogen addition leading to a strong consumption of CH{sub 4} and a high air entrainment into the centerline region. As a global effect of this, the composite fuels burn faster and thereby reduce the residence time which ultimately shortens the flame length and thickness. On the other hand, hydrogen is found to increase NO{sub x} level. (author)

  2. The flame anchoring mechanism and associated flow structure in bluff-body stabilized lean premixed flames

    Science.gov (United States)

    Michaels, Dan; Shanbhogue, Santosh; Ghoniem, Ahmed

    2015-11-01

    We present numerical analysis of a lean premixed flame anchoring on a heat conducting bluff-body. Different mixtures of CH4/H2/air are analyzed in order to systematically vary the burning velocity, adiabatic flame temperature and extinction strain rate. The study was motivated by our experimental measurements in a step combustor which showed that both the recirculation zone length and stability map under acoustically coupled conditions for different fuels and thermodynamic conditions collapse using the extinction strain rate. The model fully resolves unsteady two-dimensional flow with detailed chemistry and species transport, and without artificial flame anchoring boundary conditions. The model includes a low Mach number operator-split projection algorithm, coupled with a block-structured adaptive mesh refinement and an immersed boundary method for the solid body. Calculations reveal that the recirculation zone length correlates with the flame extinction strain rate, consistent with the experimental evidence. It is found that in the vicinity of the bluff body the flame is highly stretched and its leading edge location is controlled by the reactants combustion characteristics under high strain. Moreover, the flame surface location relative to the shear layer influences the vorticity thus impacting the velocity field and the recirculation zone. The study sheds light on the experimentally observed collapse of the combustor dynamics using the reactants extinction strain rate.

  3. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  4. Tabulated Combustion Model Development For Non-Premixed Flames

    Science.gov (United States)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  5. Inerting characteristics of entrained atomized water on premixed methane-air flame

    Institute of Scientific and Technical Information of China (English)

    Cai Feng; Wang Ping; Zhou Jiebo; Li Chao

    2015-01-01

    A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experi-mentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that:for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 mL/(m2 min);for the premixed methane–air gas with a concentration of 9%, the mini-mum inerting atomized water flux is 32.9 mL/(m2 min);for the premixed methane–air gas with a concen-tration of 11%, the minimum inerting atomized water flux is 44.6 mL/(m2 min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.

  6. Influence of rarefaction wave on premixed flame structure and propagation behavior

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianfeng; SUN Jinhua; LU Shouxiang; CHU Guanquan; YAO Liyin; LIU Yi

    2007-01-01

    To explore the influence of rarefaction wave on the structure and propagation behavior of the premixed propane/air flame in a rectangle combustion pipe, the techniques of high speed Schlieren photograph method, pressure measurement and so on are used to study the interaction processes between rarefaction wave and flame. Two cases of rarefaction wave-flame interaction were performed in the experiment. The experimental result shows that both the rarefaction waves can cause the flame transition from laminar to turbulent combustion quickly. The cowflow rarefaction wave decreases the flame speed, while the counterflow rarefaction wave leads the flame propagation speed to increasing on the whole, accompanied with sharp vibration.

  7. Front roughening of flames in discrete media

    Science.gov (United States)

    Lam, Fredric; Mi, XiaoCheng; Higgins, Andrew J.

    2017-07-01

    The morphology of flame fronts propagating in reactive systems composed of randomly positioned, pointlike sources is studied. The solution of the temperature field and the initiation of new sources is implemented using the superposition of the Green's function for the diffusion equation, eliminating the need to use finite-difference approximations. The heat released from triggered sources diffuses outward from each source, activating new sources and enabling a mechanism of flame propagation. Systems of 40 000 sources in a 200 ×200 two-dimensional domain were tracked using computer simulations, and statistical ensembles of 120 realizations of each system were averaged to determine the statistical properties of the flame fronts. The reactive system of sources is parameterized by two nondimensional values: the heat release time (normalized by interparticle diffusion time) and the ignition temperature (normalized by adiabatic flame temperature). These two parameters were systematically varied for different simulations to investigate their influence on front propagation. For sufficiently fast heat release and low ignition temperature, the front roughness [defined as the root mean square deviation of the ignition temperature contour from the average flame position] grew following a power-law dependence that was in excellent agreement with the Kardar-Parisi-Zhang (KPZ) universality class (β =1 /3 ). As the reaction time was increased, lower values of the roughening exponent were observed, and at a sufficiently great value of reaction time, reversion to a steady, constant-width thermal flame was observed that matched the solution from classical combustion theory. Deviation away from KPZ scaling was also observed as the ignition temperature was increased. The features of this system that permit it to exhibit both KPZ and non-KPZ scaling are discussed.

  8. A non-adiabatic flamelet progress–variable approach for LES of turbulent premixed flames

    NARCIS (Netherlands)

    Cecere, Donato; Giacomazzi, Eugenio; Picchia, Franca R.; Arcidiacono, Nunzio; Donato, Filippo; Verzicco, Roberto

    2011-01-01

    A progress variable/flame surface density/probability density function method has been employed for a Large Eddy Simulation of a CH4/Air turbulent premixed bluff body flame. In particular, both mean and variance of the progress variable are transported and subgrid spatially filtered gradient contrib

  9. Geometrical properties of turbulent premixed flames and other corrugated interfaces.

    Science.gov (United States)

    Thiesset, F; Maurice, G; Halter, F; Mazellier, N; Chauveau, C; Gökalp, I

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  10. Lean premixed flames for low NO{sub x} combustors

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.; Tseng, L.; Bryjak, J. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-10-01

    Gas turbines are being used throughout the world to generate electricity. Due to increasing fuel costs and environmental concerns, gas turbines must meet stringent performance requirements, demonstrating high thermal efficiencies and low pollutant emissions. In order for U.S. manufactured gas turbines to stay competitive, their NO{sub x} levels must be below 10 ppm and their thermal efficiencies should approach 60%. Current technology is being stretched to achieve these goals. The twin goals of high efficiency and low NO{sub x} emissions require extending the operating range of current gas turbines. Higher efficiency requires operation at higher pressures and temperatures. Lower NO{sub x} emissions requires lower flame temperatures. Lower flame temperatures can be achieved through partially to fully pre-mixed combustion. However, increased performance and lower emissions result in a set of competing goals. In order to achieve a successful compromise between high efficiency and low NO{sub x} emissions, advanced design tools must be developed. One key design tool is a computationally efficient, high pressure, turbulent flow, combustion model capable of predicting pollutant formation in an actual gas turbine. Its development is the goal of this program. Achieving this goal requires completion of three tasks. The first task is to develop a reduced chemical kinetics model describing N{sub O}x formation in natural gas-air systems. The second task is to develop a computationally efficient model that describes turbulence-chemistry interactions. The third task is to incorporate the reduced chemical kinetics and turbulence-chemistry interaction models into a commercially available flow solver and compare its predictions with experimental data obtained under carefully controlled conditions so that the accuracy of model predictions can be evaluated.

  11. Premixed flame chemistry of a gasoline primary reference fuel surrogate

    KAUST Repository

    Selim, Hatem

    2017-03-10

    Investigating the combustion chemistry of gasoline surrogate fuels promises to improve detailed reaction mechanisms used for simulating their combustion. In this work, the combustion chemistry of one of the simplest, but most frequently used gasoline surrogates – primary reference fuel 84 (PRF 84, 84 vol% iso-octane and 16 vol% n-heptane), has been examined in a stoichiometric premixed laminar flame. Time-of-flight mass spectrometry coupled with a vacuum ultraviolet (VUV) synchrotron light source for species photoionization was used. Reactants, major end-products, stable intermediates, free radicals, and isomeric species were detected and quantified. Numerical simulations were conducted using a detailed chemical kinetic model with the most recently available high temperature sub-mechanisms for iso-octane and heptane, built on the top of an updated pentane isomers model and AramcoMech 2.0 (C0C4) base chemistry. A detailed interpretation of the major differences between the mechanistic pathways of both fuel components is given. A comparison between the experimental and numerical results is depicted and rate of production and sensitivity analyses are shown for the species with considerable disagreement between the experimental and numerical findings.

  12. Recent Advances in Understanding of Thermal Expansion Effects in Premixed Turbulent Flames

    Science.gov (United States)

    Sabelnikov, Vladimir A.; Lipatnikov, Andrei N.

    2017-01-01

    When a premixed flame propagates in a turbulent flow, not only does turbulence affect the burning rate (e.g., by wrinkling the flame and increasing its surface area), but also the heat release in the flame perturbs the pressure field, and these pressure perturbations affect the turbulent flow and scalar transport. For instance, the latter effects manifest themselves in the so-called countergradient turbulent scalar flux, which has been documented in various flames and has challenged the combustion community for approximately 35 years. Over the past decade, substantial progress has been made in investigating (a) the influence of thermal expansion in a premixed flame on the turbulent flow and turbulent scalar transport within the flame brush, as well as (b) the feedback influence of countergradient scalar transport on the turbulent burning rate. The present article reviews recent developments in this field and outlines issues to be solved in future research.

  13. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata

    2014-01-01

    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  14. Inertial particles in a turbulent premixed Bunsen flame

    Energy Technology Data Exchange (ETDEWEB)

    Battista, F.; Picano, F.; Casciola, C.M. [Sapienza Univ., Rome (Italy). Dipt. di Meccanica e Aeronautica; Troiani, G. [ENEA C.R. Casaccia, Rome (Italy)

    2012-07-01

    Many fields of engineering and physics are characterized by reacting flows seeded with particles of different inertia and dimensions, e.g. solid-propellant rockets, reciprocating engines where carbon particles form due to combustion, vulcano eruptions. Particles are also used as velocity transducers in Particle Image Velocimetry (PIV) of turbulent flames. The effects of combustion on inertial particle dynamics is still poorly understood, despite its relevance for its effects on particle collisions and coalescence, phenomena which have a large influence in soot formation and growth. As a matter of fact, the flame front induces abrupt accelerations of the fluid in a very thin region which particles follow with different lags depending on their inertia. This phenomenon has a large impact on the particle spatial arrangement. The issuing clustering is here analyzed by a DNS of Bunsen turbulent flame coupled with particle Lagrangian tracking with the aim of evaluating the effect of inertia on particle spatial localization in combustion applications. The Eulerian algorith is based on Low-Mach number expansion of Navier-Stokes equations that allow arbitrary density variations neglecting acoustics waves. (orig.)

  15. Numerical simulation of pollutant emission and flame extinction in lean premixed systems

    Science.gov (United States)

    Eggenspieler, Gilles

    Premixed and partially-premixed combustion and pollutant emissions in full-scale gas turbines has been numerically investigated using a massively-parallel Large-Eddy Simulation Combustion Dynamics Model. Through the use of a flamelet library approach, it was observed that CO (Carbon Oxide) and NO (Nitric Oxide) emission can be predicted and match experimental results. The prediction of the CO emission trend is shown to be possible if the influence of the formation of UHC (Unburnt HydroCarbons) via flame extinction is taken into account. Simulations were repeated with two different combustion approach: the G-equation model and the Linear-Eddy Mixing (LEM) Model. Results are similar for these two set of numerical simulations. The LEM model was used to simulate flame extinction and flame lift-off in a dump combustion chamber. The LEM model is compared to the G-equation model and it was found that the LEM model is more versatile than the G-equation model with regard to accurate simulation of flame propagation in all turbulent premixed combustion regimes. With the addition of heat losses, flame extinction was observed for low equivalence ratio. Numerical simulation of flame propagation with transient inflow conditions were also carried out and demonstrated the ability of the LEM model to accurately simulate flame propagation in the case of a partially-premixed system. In all simulations where flame extinction and flame lift-off was simulated, release of unburnt fuel in the post-flame region through flame extinction was not observed.

  16. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  17. Modeling of complex physics & combustion dynamics in a combustor with a partially premixed turbulent flame

    OpenAIRE

    Shahi, Mina

    2014-01-01

    To avoid the formation of the high temperature stoichiometric regions in flames in a gas turbine combustor, and hence the formation of nitric oxides, an alternative concept of combustion technology was introduced by means of lean premixed combustion. However, the low emission of nitric oxides and carbon monoxide of the lean premixed combustion of natural gas comes at the cost of increased sensitivity to thermoacoustic instabilities. These are driven by the feedback loop between heat release, ...

  18. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  19. An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames

    Science.gov (United States)

    Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.

  20. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    Science.gov (United States)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  1. Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame

    Science.gov (United States)

    Lee, Chin Yik; Li, Larry Kin Bong; Juniper, Matthew P.; Cant, Robert Stewart

    2016-01-01

    Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier-Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various

  2. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem

    2016-07-23

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition effects on premixed flame chemistry is important. In this study, the combustion chemistry of low-pressure, burner-stabilized, premixed flames of two gasoline fuels was investigated under stoichiometric conditions. Flame speciation was conducted using vacuum-ultraviolet synchrotron photoionization time-of-flight molecular beam mass spectroscopy. Stable end-products, intermediate hydrocarbons, and free radicals were detected and quantified. In addition, several isomeric species in the reaction pool were distinguished and quantified with the help of the highly tunable synchrotron radiation. A comparison between the products of both flames is presented and the major differences are highlighted. Premixed flame numerical simulations were conducted using surrogate fuel kinetic models for each flame. Furthermore, a new approach was developed to elucidate the main discrepancies between experimental measurements and the numerical predictions by comparing quantities of interest. © 2016.

  3. Bluff-body stabilized flame dynamics of lean premixed syngas combustion

    Science.gov (United States)

    Im, Hong G.; Kim, Yu Jeong; Lee, Bok Jik; Kaust Team

    2015-11-01

    Recently, syngas combustion has been actively investigated for the potential application to integrated gasification combined cycle (IGCC) systems. While lean premixed combustion is attractive for both reduced emission and enhanced efficiency, flame instability becomes often an issue. Bluff-bodies have been adopted as effective flame holders for practical application of premixed flames. In the present study, high-fidelity direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized on a bluff-body, in particular at the near blow-off regime of the flame. A two-dimensional domain of 4 mm height and 20 mm length with a flame holder of a 1 mm-by-1 mm square geometry is used. For a syngas mixture with the equivalence ratio of 0.5 and the CO:H2 ratio of 1, several distinct flame modes are identified as the inflow velocity approaches to the blowoff limit. The sequences of extinction pathway and combustion characteristics are discussed.

  4. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.

    2014-04-23

    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.

  5. Microstructure of premixed propane/air flame in the transition from laminar to turbulent combustion

    Institute of Scientific and Technical Information of China (English)

    CHEN XianFeng; SUN JinHua; LIU Yi; LIU XuanYa; CHEN SiNing; LU ShouXiang

    2007-01-01

    In order to explore the flame structure and propagation behavior of premixed propane/air in the transition from laminar to turbulent combustion, the high speed camera and Schlieren images methods were used to record the photograph of flame propagation process in a semi-vented pipe. Meanwhile, the super-thin thermocouple and ionization current probe methods were applied to detect the temperature distribution and reaction intensity of combustion reaction. The characteristics of propane/air flame propagation and microstructure were analyzed in detail by the experimental results coupled with chemical reaction thermodynamics. In the test, the particular tulip flame behavior and the formation process in the laminar-turbulent transition were disclosed clearly. From the Schlieren images and iron current results, one conclusion can be drawn that the small-scale turbulent combustion also appeared in laminar flame, which made little influence on the flame shape, but increased the flame thickness obviously.

  6. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng

    2013-01-01

    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome......An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass...... predictions have shown satisfactory agreement with the experimental results. Basing on the rate-of-production analysis, the reaction pathways that feature the combustion of nitroethane were revealed, including the primary decomposition of C–N bond fission, the oxidation of C2 and C1 hydrocarbons...

  7. Influence of obstacle-produced turbulence on development of premixed flames

    Institute of Scientific and Technical Information of China (English)

    YU; Lixin(余立新); SUN; Wenchao(孙文超); WU; Chengkang(吴承康)

    2002-01-01

    An investigation into influence of obstructions on premixed flame propagation has been carried out in a semi-open tube.It is found that there exists flame acceleration and rising overpressure along the path of flame due to obstacles.According to the magnitude of flame speeds,the propagation of flame in the tube can be classified into three regimes:the quenching,the choking and the detonation regimes.In premixed flames near the flammability limits,the flame is observed first to accelerate and then to quench itself after propagating past a certain number of obstacles.In the choking regime,the maximum flame speeds are somewhat below the combustion product sound speeds,and insensitive to the blockage ratio.In the more sensitive mixtures,the transition to detonation (DDT) occurs when the equivalence ratio increases.The transition is not observed for the less sensitive mixtures.The dependence of overpressure on blockage ratio is not monotonous.Furthermore,a numerical study of flame acceleration and overpressure with the unsteady compressible flow model is performed,and the agreement between the simulation and measurements is good.``

  8. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    Science.gov (United States)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  9. Premixed CH4-Air Flame Structure Characteristic and Flow Behavior Induced by Obstacle in an Open Duct

    Directory of Open Access Journals (Sweden)

    DengKe Li

    2015-01-01

    Full Text Available To study the fuel gas combustion hazards, the methane/air flame structure and flow characteristic in an open duct influenced by a rectangular obstacle were explored by experiment and realizable k-∊ model (RKE. In the test, the high-speed schlieren photography technology and dynamic detection technology were applied to record the flame propagation behavior. Meanwhile, the interaction between flame front and flame flow field induced by the obstacle was disclosed. In addition, the laminar-turbulence transition was also taken into consideration. The RKE and eddy dissipation concept (EDC premixed combustion model were applied to obtain an insight into the phenomenon of flow change and wrinkle appearing, which potently explained the experimental observations. As a result, the obstacle blocked the laminar flame propagation velocity and increased pressure a little in an open duct. Some small-scale vortices began to appear near the obstacle, mainly due to Kelvin-Helmholtz instability (KHI, and gradually grew into large-scale vortices, which led to laminar-turbulent transition directly. The vortices thickened the reaction area and hastened the reaction rate; reversely, the higher reaction rate induced larger vortices. The RKE model result fitted the test data well and explained the wrinkle forming mechanism of two special vortices in the case.

  10. A simulation of a bluff-body stabilized turbulent premixed flame using LES-PDF

    Science.gov (United States)

    Kim, Jeonglae; Pope, Stephen

    2013-11-01

    A turbulent premixed flame stabilized by a triangular cylinder as a flame-holder is simulated. The computational condition matches the Volvo experiments (Sjunnesson et al. 1992). Propane is premixed at a fuel lean condition of ϕ = 0 . 65 . For this reactive simulation, LES-PDF formulation is used, similar to Yang et al. (2012). The evolution of Lagrangian particles is simulated by solving stochastic differential equations modeling transport of the composition PDF. Mixing is modeled by the modified IEM model (Viswanathan et al. 2011). Chemical reactions are calculated by ISAT and for the good load balancing, PURAN distribution of ISAT tables is applied (Hiremath et al. 2012). To calculate resolved density, the two-way coupling (Popov & Pope 2013) is applied, solving a transport equation of resolved specific volume to reduce statistical noise. A baseline calculation shows a good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. Chemical reaction does not significantly contribute to the overall computational cost, in contrast to non-premixed flame simulations (Hiremath et al. 2013), presumably due to the restricted manifold of the purely premixed flame in the composition space.

  11. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence- Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence- chemistry interaction in high-Reynolds-number 5a. CONTRACT NUMBER turbulent...flames. Mixture fraction is an important variable in understanding and modeling turbulent mixing and turbulence- chemistry interaction, two key

  12. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement ...

  13. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  14. Experimental Study of Pre-mixed Flames on a Multi-Hole Matrix Burner

    Directory of Open Access Journals (Sweden)

    Vasudevan Raghavan

    2012-05-01

    Full Text Available This paper deals with an experimental investigation of the flame characteristics of premixed Liquefied Petroleum Gas (LPG - air mixtures with different equivalence ratios on a multi-hole matrix burner. Lowest possible fuel-lean mixing conditions are envisaged. Results show that the flame pattern changes into four different types which are oscillatory flames in the middle region, flames with oscillations along the centerline, flames with very little oscillations and stable flames from all the holes. Species concentration measurements are performed with the help of  gas analyzer and the results show that the concentrations of carbon-monoxide and oxygen decreases, whereas that of carbon-dioxide and nitric oxide increases with increase in the volumetric flow rate of LPG and air mixture. In addition to this, temperature measurements are carried out using a K-type thermocouple over the burner surface at different heights. Temperature contours for each plane have been presented.

  15. Identifying combustion intermediates in premixed MTBE/gasoline/oxygen flame probed via synchrotron radiation

    Institute of Scientific and Technical Information of China (English)

    YAO Chunde; QI Fei; LI Jing; LI Qi; JI Qing; HUANG Chaoqun; WEI Lixia; WANG Jing; TIAN Zhenyu; LI Yuyang

    2007-01-01

    Molecular-beam sampling mass spectrometry (MBMS) combined with tunable synchrotron radiation photoionization technique offers obvious advantages for the study of flame chemistry over other techniques because of the precision measurement of the combustion intermediates and products in flame.In this paper,the results to identify combustion intermediates in low-pressure premixed gasoline/oxygen flame with the synchrotron radiation were reported.Based on the results obtained,the formation process of five products and the difference between gasoline/oxygen and MTBE/gasoline/oxygen flame were emphatically analyzed.The results achieved provide data basis for the analysis of intermediates and radicals in flame,and are helpful to establish the kinetic modeling of gasoline/oxygen and MTBE/gasoline/oxygen flames.

  16. An experimental investigation of the interaction between a Karman vortex street and a premixed laminar flame

    Science.gov (United States)

    Namer, I.

    1980-12-01

    The interaction of a premixed C2H4-air flame with a Karman vortex street was studied. Laser Doppler anemometry was used for velocity measurements and Rayleigh scattering was used to measure total gas density. A reference hot wire was used to enable phase-locked ensemble averaging to be performed on the data. The velocity measurements for vortex shedding cylinder Reynolds numbers indicated that the vortex street and, hence, the flow field upstream of the flame is deflected by the flame. This is due to the pressure drop across the flame which is necessary to accelerate the flow behind the flame. The vortices were not observed behind the flame. The combination of dilation and increased dissipation consumed the vortices. Density statistics obtained from Rayleigh scattering measurements were compared with predictions by the Bray-Moss-Libby (B-M-L) model which neglects intermediate states. Density fluctuations were overpredicted by the B-M-L model by a small amount.

  17. Identification of oxygenated ions in premixed flames of dimethyl ether and oxygen

    DEFF Research Database (Denmark)

    Frøsig Østergaard, L.; Egsgaard, H.; Hammerum, S.

    2003-01-01

    dimethyl ether, (CH3)(2)OH+. The flame-ion m/z 61 is a mixture of the trimethyloxonium ion, (CH3)(3)O+ and lesser amounts of protonated methyl formate and/or protonated ethyl methyl ether. The viability of an ionic mechanism to soot formation for dimethyl ether-oxygen flames is discussed on the background......The structure of characteristic flame-ions in premixed flames of dimethyl ether and oxygen was studied by ion-molecule reactions with ammonia and collision activation with argon. The results obtained show that the flame-ions m/z 45 and m/z 47 are the methoxymethyl cation, CH3OCH2+, and protonated...... of ions present in the dimethyl ether flames and the reactivity of the ions....

  18. Numerical simulation of nitrogen oxide formation in lean premixed turbulent H2/O2/N2 flames

    DEFF Research Database (Denmark)

    Day, Marc S.; Bell, John B.; Gao, Xinfeng

    2011-01-01

    Lean premixed hydrogen flames are thermodiffusively unstable and burn in cellular structures. Within these cellular structures the flame is locally enriched by preferential diffusion of hydrogen, leading to local hotspots that burn more intensely than an idealized flat steady flame at comparable...... examination of the reaction chemistry in these unsteady flames shows that at richer conditions the predominant path taken to convert nitrogen gas to nitric oxide is via NNH. For leaner flames a path through nitrous oxide becomes increasingly important....

  19. Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa

    KAUST Repository

    Bagdanavicius, Audrius

    2015-11-01

    Independent research at two centres using a burner and an explosion bomb has revealed important aspects of turbulent premixed flame structure. Measurements at pressures and temperatures up to 1.25MPa and 673K in the two rigs were aimed at quantifying the influences of flame stretch rate and strain rate Markstein number, Masr , on both turbulent burning velocity and flame surface density. That on burning velocity is expressed through the stretch rate factor, Io , or probability of burning, Pb 0.5. These depend on Masr , but they grow in importance as the Karlovitz stretch factor, K, increases, and are evaluated from the associated burning velocity data. Planar laser tomography was employed to identify contours of reaction progress variable in both rigs. These enabled both an appropriate flame front for the measurement of the turbulent burning velocity to be identified, and flame surface densities, with the associated factors, to be evaluated. In the explosion measurements, these parameters were derived also from the flame surface area, the derived Pb 0.5 factor and the measured turbulent burning velocities. In the burner measurement they were calculated directly from the flame surface density, which was derived from the flame contours.A new overall correlation is derived for the Pb 0.5 factor, in terms of Masr at different K and this is discussed in the light of previous theoretical studies. The wrinkled flame surface area normalised by the area associated with the turbulent burning velocity measurement, and the ratio of turbulent to laminar burning velocity, ut /ul , are also evaluated. The higher the value of Pb0.5, the more effective is an increased flame wrinkling in increasing ut /ul A correlation of the product of k and the laminar flame thickness with Karlovitz stretch factor and Markstein number is explored using the present data and those

  20. Study of low-pressure premixed laminar n-heptane+ propane/oxygen/nitrogen flames

    Institute of Scientific and Technical Information of China (English)

    YU Wu; WEI LiXia; MA ZhiHao; HUANG ZuoHua; YUAN Tao; TIAN ZhenYu; LI YuYang

    2009-01-01

    Low-pressure premixed laminar n-heptane+propane/oxygen/nitrogen flames were investigated with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spectrometry. Three flames with different mass percentage of propane in the fuel blends of 0%, 10%, and 20% were studied. The combustion intermediates were identified by comparing the measured IEs with those values in literatures. Mole fraction profiles of the main species were compared among the three flames. The experimental results provide detailed data in understanding the combustion of n-heptane and n-heptane/propane blends in engine. They are also helpful in establishing and verifying the kinetic models.

  1. An experimental and kinetic modeling study of premixed nitromethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Li, Yuyang; Yuan, Tao

    2011-01-01

    An experimental and modeling study is reported on three premixed nitromethane/oxygen/argon flames at low pressure (4.655kPa) with equivalence ratios (ϕ) of 1.0, 1.5 and 2.0. Flame species were identified with tunable synchrotron vacuum ultraviolet photoionization. The mole fraction profiles of more...... against experimental results of all three flames. The computed predictions showed satisfactory agreement with the experimental results. Based on a rate-of-production analysis, reaction pathway diagrams were obtained to describe the hydrocarbon oxidation process and nitrogenous species chemistry...

  2. Direct Numerical Simulation of a Cavity-Stabilized Ethylene/Air Premixed Flame

    Science.gov (United States)

    Chen, Jacqueline; Konduri, Aditya; Kolla, Hemanth; Rauch, Andreas; Chelliah, Harsha

    2016-11-01

    Cavity flame holders have been shown to be important for flame stabilization in scramjet combustors. In the present study the stabilization of a lean premixed ethylene/air flame in a rectangular cavity at thermo-chemical conditions relevant to scramjet combustors is simulated using a compressible reacting multi-block direct numerical simulation solver, S3D, incorporating a 22 species ethylene-air reduced chemical model. The fuel is premixed with air to an equivalence ratio of 0.4 and enters the computational domain at Mach numbers between 0.3 and 0.6. An auxiliary inert channel flow simulation is used to provide the turbulent velocity profile at the inlet for the reacting flow simulation. The detailed interaction between intense turbulence, nonequilibrium concentrations of radical species formed in the cavity and mixing with the premixed main stream under density variations due to heat release rate and compressibility effects is quantified. The mechanism for flame stabilization is quantified in terms of relevant non-dimensional parameters, and detailed analysis of the flame and turbulence structure will be presented. We acknowledge the sponsorship of the AFOSR-NSF Joint Effort on Turbulent Combustion Model Assumptions and the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  3. Linear Stability Analysis of Laminar Premixed Fuel-Rich Double-Spray Flames

    Directory of Open Access Journals (Sweden)

    Noam Weinberg

    2014-03-01

    Full Text Available This paper considers the stability of a double-spray premixed flame formed when both fuel and oxidizer are initially present in the form of sprays of evaporating liquid droplets. To simplify the inherent complexity that characterizes the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed double-spray flames, and assumes a single-step global chemical reaction mechanism. Steady-state solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial liquid fuel and/or oxidizer loads are established. The stability analysis revealed an increased proneness to cellular instability induced by the presence of the two sprays, and for the fuel-rich case considered here the influence of the liquid oxidizer was found to be more pronounced than that of the liquid fuel. Similar effects were noted for the neutral pulsating stability boundaries. The impact of unequal latent heats of vaporization is also investigated and found to be in keeping with the destabilizing influence of heat loss due to droplet evaporation. It should be noted that as far as the authors are aware no experimental evidence is available for (at least validation of the predictions. However, they do concur in a general and reasonable fashion with independent experimental evidence in the literature of the behavior of single fuel spray laminar premixed flames.

  4. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  5. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  6. Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames

    Science.gov (United States)

    Sitte, Michael Philip; Bach, Ellen; Kariuki, James; Bauer, Hans-Jörg; Mastorakos, Epaminondas

    2016-05-01

    The ignition characteristics of a premixed bluff-body burner under lean conditions were investigated experimentally and numerically with a physical model focusing on ignition probability. Visualisation of the flame with a 5 kHz OH* chemiluminescence camera confirmed that successful ignitions were those associated with the movement of the kernel upstream, consistent with previous work on non-premixed systems. Performing many separate ignition trials at the same spark position and flow conditions resulted in a quantification of the ignition probability Pign, which was found to decrease with increasing distance downstream of the bluff body and a decrease in equivalence ratio. Flows corresponding to flames close to the blow-off limit could not be ignited, although such flames were stable if reached from a richer already ignited condition. A detailed comparison with the local Karlovitz number and the mean velocity showed that regions of high Pign are associated with low Ka and negative bulk velocity (i.e. towards the bluff body), although a direct correlation was not possible. A modelling effort that takes convection and localised flame quenching into account by tracking stochastic virtual flame particles, previously validated for non-premixed and spray ignition, was used to estimate the ignition probability. The applicability of this approach to premixed flows was first evaluated by investigating the model's flame propagation mechanism in a uniform turbulence field, which showed that the model reproduces the bending behaviour of the ST-versus-u‧ curve. Then ignition simulations of the bluff-body burner were carried out. The ignition probability map was computed and it was found that the model reproduces all main trends found in the experimental study.

  7. Flame front propagation in a channel with porous walls

    Science.gov (United States)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  8. Dimensionality estimate of the manifold in chemical composition space for a turbulent premixed H2+air flame

    Energy Technology Data Exchange (ETDEWEB)

    Tonse, Shaheen R.; Brown, Nancy J.

    2003-02-26

    The dimensionality (D) of manifolds of active chemical composition space has been measured using three different approaches: the Hausdorff geometrical binning method, Principal Component Analysis, and the Grassberger-Procaccia cumulative distribution method. A series of artificial manifolds is also generated using a Monte Carlo approach to discern the advantages and limitations of the three methods. Dimensionality is quantified for different levels of turbulent intensity in a simulation of the interactions of a 2D premixed hydrogen flame with a localized region of turbulence superimposed over the cold region upstream of the flame front. The simulations are conducted using an adaptive mesh refinement code for low Mach number reacting flows. By treating the N{sub s} species and temperature of the local thermo-chemical state as a point in multi-dimensional chemical composition space, a snapshot of a flame region is mapped into chemical composition space to generate the manifold associated with the 2-D flame system. An increase in D was observed with increasing turbulent intensity for all three methods. Although each method provides useful information, the Grassberger-Procaccia method is subject to fewer artifacts than the other two thereby providing the most reliable quantification of D.

  9. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam

    2010-01-04

    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  10. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat

    2010-03-17

    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  11. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kurdyumov, Vadim N. [Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Pizza, Gianmarco [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland); Frouzakis, Christos E. [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Mantzaras, John [Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland)

    2009-11-15

    The effect of channel height, inflow velocity and wall temperature on the dynamics and stability of unity Lewis number premixed flames in channels with specified wall temperature is investigated with steady and transient numerical simulations using a two-dimensional thermo-diffusive model. The simplified model is capable of capturing many of the transitions and the combustion modes observed experimentally and in direct numerical simulations in micro- and meso-scale channels, and indicates that the thermal flame/wall interaction is the mechanism leading to the observed flame instabilities. Finally, an ad-hoc one-dimensional model based on the flame-sheet approximation is tested in its capacity to reproduce some of the flame dynamics of the two-dimensional thermo-diffusive model. (author)

  12. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2016-03-01

    The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1].

  13. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik

    2016-07-15

    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  14. Characteristics of premixed, laminar CO/N2O flames

    NARCIS (Netherlands)

    Kalff, P.J.; Alkemade, C.T.J.

    1972-01-01

    Several properties are studied of fuel-rich (CO:N2O = 1.5:1) and stoichiometrie (CO:N2O = 1:1) carbon monoxide/nitrous oxide flames with varying water content up to 10%. Flame temperatures, ranging from 2680 to 2860°K. are measured with the line-reversal method, and compared with calculated adiabati

  15. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie

    2016-07-17

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  16. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis

    2015-11-16

    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  17. Premixed double concentric jets flame with swirl flow

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Song, K.

    1987-01-01

    Swirl flow has been commonly used for stabilization of the high-intensity combustion process. The swirl flow is imparted to the secondary airflow by the swirl vane. Flame stability limits, flame shapes, the concentration of combustion gas, and the temperature distribution in the recirculation zone were measured, and high-speed schlieren photographs were taken. The results indicate that flame stability limits decrease with increasing swirl number in weak swirls because the mixture deteriorates due to the swirl in the recirculation zone. But an increase with increasing swirl number in strong swirls is seen in the mixing ratio, which is promoted by the swirl. For no swirl or weak swirls, a recirculation zone formed behind the burner rim affects the flame stability. When there is a strong swirl, a recirculation zone formed by the swirl affects the flame stability. 9 references.

  18. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  19. Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Poinsot, T.J.; Haworth, D.C.; Bruneaux, G. (CNRS, Toulouse (France). Inst. de Mecanique des Fluides de Toulouse General Motors Research, Warren, MI (United States) Inst. Francais du Petrole, Rueil Malmaison (France))

    1993-10-01

    The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a law-of-the-wall'' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame -- wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step. Preliminary tests of this model are presented for the case of a spark-ignited piston engine.

  20. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  1. DNS and modeling of the interaction between turbulent premixed flames and walls

    Science.gov (United States)

    Poinsot, T. J.; Haworth, D. C.

    1992-01-01

    The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.

  2. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  3. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2017-01-01

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  4. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2015-04-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  5. Exploring Soot Particle Concentration and Emissivity by Transient Thermocouples Measurements in Laminar Partially Premixed Coflow Flames

    Directory of Open Access Journals (Sweden)

    Gianluigi De Falco

    2017-02-01

    Full Text Available Soot formation in combustion represents a complex phenomenon that strongly depends on several factors such as pressure, temperature, fuel chemical composition, and the extent of premixing. The effect of partial premixing on soot formation is of relevance also for real combustion devices and still needs to be fully understood. An improved version of the thermophoretic particle densitometry (TPD method has been used in this work with the aim to obtain both quantitative and qualitative information of soot particles generated in a set of laminar partially-premixed coflow flames characterized by different equivalence ratios. To this aim, the transient thermocouple temperature response has been analyzed to infer particle concentration and emissivity. A variety of thermal emissivity values have been measured for flame-formed carbonaceous particles, ranging from 0.4 to 0.5 for the early nucleated soot particles up to the value of 0.95, representing the typical value commonly attributed to mature soot particles, indicating that the correct determination of the thermal emissivity is necessary to accurately evaluate the particle volume fraction. This is particularly true at the early stage of the soot formation, when particle concentration measurement is indeed particularly challenging as in the central region of the diffusion flames. With increasing premixing, an initial increase of particles is detected both in the maximum radial soot volume fraction region and in the central region of the flame, while the further addition of primary air determines the particle volume fraction drop. Finally, a modeling analysis based on a sectional approach has been performed to corroborate the experimental findings.

  6. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  7. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  8. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  9. DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation

    Science.gov (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2016-11-01

    A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.

  10. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    Science.gov (United States)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  11. Markstein Numbers of Negatively-Stretched Premixed Flames: Microgravity Measurements and Computations

    Science.gov (United States)

    Ibarreta, Alfonso F.; Driscoll, James F.; Feikema, Douglas A.; Salzman, Jack (Technical Monitor)

    2001-01-01

    The effect of flame stretch, composed of strain and curvature, plays a major role in the propagation of turbulent premixed flames. Although all forms of stretch (positive and negative) are present in turbulent conditions, little research has been focused on the stretch due to curvature. The present study quantifies the Markstein number (which characterizes the sensitivity of the flame propagation speed to the imposed stretch rate) for an inwardly-propagating flame (IPF). This flame is of interest because it is negatively stretched, and is subjected to curvature effects alone, without the competing effects of strain. In an extension of our previous work, microgravity experiments were run using a vortex-flame interaction to create a pocket of reactants surrounded by an IPF. Computations using the RUN-1DL code of Rogg were also performed in order to explain the measurements. It was found that the Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardly-propagating flame. Further insight was gained by running the computations for the simplified (hypothetical) cases of one step chemistry, unity Lewis number, and negligible heat release. Results provide additional evidence that the Markstein numbers associated with strain and curvature have different values.

  12. Research on Cellular Instabilities of Lean Premixed Syngas Flames under Various Hydrogen Fractions Using a Constant Volume Vessel

    Directory of Open Access Journals (Sweden)

    Hong-Meng Li

    2014-07-01

    Full Text Available An experimental study of the intrinsic instabilities of H2/CO lean (φ = 0.4 to φ = 1.0 premixed flames at different hydrogen fractions ranging from 0% to 100% at elevated pressure and room temperature was performed in a constant volume vessel using a Schlieren system. The unstretched laminar burning velocities were compared with data from the previous literature and simulated results. The results indicate that excellent agreements are obtained. The cellular instabilities of syngas-air flames were discussed and critical flame radii were measured. When hydrogen fractions are above 50%, the flame tends to be more stable as the equivalence ratio increases; however, the instability increases for flames of lower hydrogen fractions. For the premixed syngas flame with hydrogen fractions greater than 50%, the decline in cellular instabilities induced by the increase in equivalence ratio can be attributed to a reduction of diffusive-thermal instabilities rather than increased hydrodynamic instabilities. For premixed syngas flames with hydrogen fractions lower than 50%, as the equivalence ratio increases, the cellular instabilities become more evident because the enhanced hydrodynamic instabilities become the dominant effect. For premixed syngas flames, the enhancement of cellular instabilities induced by the increase in hydrogen fraction is the result of both increasing diffusive-thermal and hydrodynamic instabilities.

  13. The Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    2017-07-01

    Full Text Available Experimental studies have been performed to investigate the effects of hydrogen addition on the combustion characteristics of Chinese No.3 jet fuel (RP-3 kerosene/air premixed flames. Experiments were carried out in a constant volume chamber and the influences of the initial temperatures of 390 and 420 K, initial pressures of 0.1 and 0.3 MPa, equivalence ratios of 0.6–1.6 and hydrogen additions of 0.0–0.5 on the laminar burning velocities, and Markstein numbers of Hydrogen (H2/RP-3/air mixtures were investigated. The results show that the flame front surfaces of RP-3/air mixtures remain smooth throughout the entire flame propagation process at a temperature of 390 K, pressure of 0.3 MPa, equivalence ratio of 1.3 and without hydrogen addition, but when the hydrogen addition increases from 0.0 to 0.5 under the same conditions, flaws and protuberances occur at the flame surfaces. It was also found that with the increase of the equivalence ratio from 0.9 to 1.5, the laminar burning velocities of the mixtures increase at first and then decrease, and the highest laminar burning velocity was measured at an equivalence ratio of 1.2. Meanwhile, with the increase of hydrogen addition, laminar burning velocities of H2/RP-3/air mixtures increase. However, the Markstein numbers of H2/RP-3/air mixtures decrease with the increase of hydrogen addition, which means that the flames of H2/RP-3/air mixtures become unstable with the increase of hydrogen addition.

  14. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109 (United States)

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)

  15. Rich methane premixed laminar flames doped by light unsaturated hydrocarbons - Part I : allene and propyne

    CERN Document Server

    Gueniche, Hadj-Ali; Dayma, Guillaume; Fournet, Ren{é}; Battin-Leclerc, Fr{é}d{é}rique

    2006-01-01

    The structure of three laminar premixed rich flames has been investigated: a pure methane flame and two methane flames doped by allene and propyne, respectively. The gases of the three flames contain 20.9% (molar) of methane and 33.4% of oxygen, corresponding to an equivalence ratio of 1.25 for the pure methane flame. In both doped flames, 2.49% of C3H4 was added, corresponding to a ratio C3H4/CH4 of 12% and an equivalence ratio of 1.55. The three flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz microprobe. Quantified species included carbon monoxide and dioxide, methane, oxygen, hydrogen, ethane, ethylene, acetylene, propyne, allene, propene, propane, 1,2-butadiene, 1,3-butadiene, 1-butene, isobutene, 1-butyne, vinylacetylene, and benzene. The temperature was measured using a PtRh (6%)-PtRh (30%) thermocou...

  16. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  17. Pulsed Current-Voltage-Induced Perturbations of a Premixed Propane/Air Flame

    Directory of Open Access Journals (Sweden)

    Jacob. B. Schmidt

    2011-01-01

    Full Text Available The effect of millisecond wide sub-breakdown pulsed voltage-current induced flow perturbation has been measured in premixed laminar atmospheric pressure propane/air flame. The flame equivalence ratios were varied from 0.8 to 1.2 with the flow speeds near 1.1 meter/second. Spatio-temporal flame structure changes were observed through collection of CH (A-X and OH (A-X chemiluminescence and simultaneous spontaneous Raman scattering from N2. This optical collection scheme allows us to obtain a strong correlation between the measured gas temperature and the chemiluminescence intensity, verifying that chemiluminescence images provide accurate measurements of flame reaction zone structure modifications. The experimental results suggest that the flame perturbation is caused by ionic wind originating only from the radial positive space-charge distribution in/near the cathode fall. A net momentum transfer acts along the annular space discharge distribution in the reaction zone at or near the cathode fall which modifies the flow field near the cathodic burner head. This radially inward directed body force appears to enhance mixing similar to a swirl induced modification of the flame structure. The flame fluidic response exhibit a strong dependence on the voltage pulse width ≤10 millisecond.

  18. Asymptotic Analysis of Transport Properties and Burning Velocities for Premixed Hydrocarbon Flames

    Institute of Scientific and Technical Information of China (English)

    J.Y. Law; H.K. Ma

    2001-01-01

    Based on premixed flame, the theoretical model of transport properties with temperature variation was established inside a preheated zone. Lewis number of the deficient-to-stoichiometric hydrocarbon/air mixture has been theoretically predicted over a wide range of preheated temperature. These predictions are compared with the experimental data on transport properties that exist in the literature. The response of the burning velocity to flame stretch can be parameterized by the laminar flame speed and Markstein length. Therefore, if the laminar flame speed and Markstein number could be accurately simulated by using an analytic expression of characterized temperature, equivalence ratio, and Lewis number, the results are applicable to the prediction of methane,acetylene, ethylene, ethane, and propane flames. Expanding previous studies on the extinction ofpremixed flames under the influence of stretch and incomplete reaction, the results were further classified and rescaled. Finally, it could be inferred that parameter Pq, the rescaled extinction Karlovitz number could be used to explain the degree of flame quench.

  19. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan

    2017-05-01

    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  20. Correspondence Between Uncoupled Flame Macrostructures and Thermoacoustic Instability in Premixed Swirl-Stabilized Combustion

    KAUST Repository

    Taamallah, Soufien

    2014-06-16

    In this paper, we conduct an experimental investigation of a confined premixed swirl-stabilized dump combustor similar to those found in modern gas turbines. We operate the combustor with premixed methane-air in the lean range of equivalence ratio ϕ ∈ [0.5–0.75]. First, we observe different dynamic modes in the lean operating range, as the equivalence ratio is raised, confirming observations made previously in a similar combustor geometry but with a different fuel [1]. Next we examine the correspondence between dynamic mode transitions and changes in the mean flame configuration or macrostructure. We show that each dynamic mode is associated with a specific flame macrostructure. By modifying the combustor length without changing the underlying flow, the resonant frequencies of the geometry are altered allowing for decoupling the heat release fluctuations and the acoustic field, in a certain range of equivalence ratio. Mean flame configurations in the modified (short) combustor and for the same range of equivalence ratio are examined. It is found that not only the same sequence of flame configurations is observed in both combustors (long and short) but also that the set of equivalence ratio where transitions in the flame configuration occur is closely related to the onset of thermo-acoustic instabilities. For both combustor lengths, the flame structure changes at similar equivalence ratio whether thermo-acoustic coupling is allowed or not, suggesting that the flame configuration holds the key to understanding the onset of self-excited thermo-acoustic instability in this range. Finally, we focus on the flame configuration transition that was correlated with the onset of the first dynamically unstable mode ϕ ∈ [0.61–0.64]. Our analysis of this transition in the short, uncoupled combustor shows that it is associated with an intermittent appearance of a flame in the outer recirculation zone (ORZ). The spectral analysis of this “ORZ flame flickering”

  1. Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Bidabadi, Mehdi; Rahbari, Alireza [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2009-09-15

    This paper presents the effects of the temperature difference between gas and particle, different Lewis numbers, and heat loss from the walls in the structure of premixed flames propagation in a combustible system containing uniformly distributed volatile fuel particles in an oxidizing gas mixture. It is assumed that the fuel particles vaporize first to yield a gaseous fuel, which is oxidized in a gas phase. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large. The structure of the flame is composed of a preheat zone, reaction zone, and convection zone. The governing equations and required boundary conditions are applied in each zone, and an analytical method is used for solving these equations. The obtained results illustrate the effects of the above parameters on the variations of the dimensionless temperature, particle mass friction, flame temperature, and burning velocity for gas and particle

  2. Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames

    Science.gov (United States)

    Orain, Mikaël; Hardalupas, Yannis

    2010-05-01

    Local temporally-resolved measurements of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals were obtained in premixed counterflow flames operating with propane and prevaporised fuels (isooctane, ethanol and methanol), for different equivalence ratios and strain rates. The results quantified independently the effects of fuel type, strain rate and equivalence ratio on chemiluminescent emissions from flames. The ability of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals to indicate heat release rate depends strongly on fuel type. The intensity ratio OH ∗/CH ∗ has a monotonic decrease with equivalence ratio for all fuels and can be used to measure equivalence ratio of the reacting mixture. For propane and isooctane, the OH ∗/CH ∗ ratio remains independent of flame strain rate, whereas some dependence is observed for ethanol and methanol.

  3. Flame fronts in Supernovae Ia and their pulsational stability

    CERN Document Server

    Glazyrin, S I; Dolgov, A D

    2013-01-01

    The structure of the deflagration burning front in type Ia supernovae is considered. The parameters of the flame are obtained: its normal velocity and thickness. The results are in good agreement with previous work of different authors. After that the question of pulsational instability of the flame subject to plane perturbations is considered. The flame can be unstable if hydrodynamics can be ignored, e.g. in solid-body propellants. However, with account of hydrodynamics we find that the flame in type Ia supernovae is pulsationally stable with realistic parameters of reactions and thermal conduction.

  4. Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Peer -Timo; Weber, Gunther H.; Pascucci, Valerio; Day, Marc; Bell, John B.

    2010-03-01

    This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.

  5. Laminar partially premixed flame stability - application to domestic burner; Stabilite de flammes laminaires partiellement premelangees. Application aux bruleurs domestiques

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, C.

    2006-05-15

    Phenomena responsible of partially premixed laminar flame stabilisation are investigated on a rich premixed burner configuration. The structure and aerodynamic of the flame generated by a cooking model burner are characterized by Planar Laser Induced Fluorescence of OH radical and Particle Image Velocimetry. The flame behaviour is studied from a stable reference case toward blow-out by varying the flow inlet conditions, the burner geometry and its thermal properties. The flame can be considered as two neighbour and independent reactive zones, each consisting of a double edge flame. The upper double flame stabilisation is similar to the one of a Bunsen burner with a flame-holder attached base and a flame tip stabilized in the flow according to the ratio of the flow velocity and flame speed of the rich pre-mixture. The bottom double flame is stabilized at the crossing point of the stoichiometric flame speed. The flame is finally blown out when there is no more crossing point. (author)

  6. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas

    2014-06-14

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model\\'s capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  7. Hydrodynamic aspects of premixed flame stripes in two-dimensional stagnation-point flows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Sohrab, S.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering

    1995-06-01

    The behavior of cellular premixed flames of rich butane-air in the two-dimensional stagnation-point flow configuration has been investigated. It is found that the stretching of the cellular flame results in the alignment f the ridge (extinction) and the trough (combustion) zones of the individual cells such as to form a series of parallel flame stripes. The number of flame stripes as a function of the equivalence ratio for three different mean velocities at the nozzle have been determined. Through the introduction of a generalized form of the stream function periodic velocity fields are obtained as the exact solutions of the Euler equation for the nonreactive finite-jet two-dimensional stagnation flow. The predicted periodic velocity profiles are confirmed by the experimental observation of the streamlines in nonreactive flow made visible by laser-sheet lighting. The observed average size of the flame stripes is found to be in good agreement with the predicted value. Similar periodic velocity profiles are also obtained for the viscous flow within the laminar boundary layer by treatment of the unsteady vorticity equation first described by Taylor. The results support an earlier prediction by Williams that cellular flame structures that are affected mainly by diffusive-thermal phenomena may in fact be initiated by the hydrodynamic instability.

  8. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation

    Science.gov (United States)

    Creta, Francesco; Lamioni, Rachele; Lapenna, Pasquale Eduardo; Troiani, Guido

    2016-11-01

    In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker, the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness of the flame curvature probability density function is identified as an unambiguous morphological marker for the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.

  9. Direct numerical simulations of turbulent non-premixed methane-air flames modeled with reduced kinetics

    Science.gov (United States)

    Card, J. M.; Chen, J. H.; Day, M.; Mahalingam, S.

    1994-01-01

    Turbulent non-premixed stoichiometric methane-air flames modeled with reduced kinetics have been studied using the direct numerical simulation approach. The simulations include realistic chemical kinetics, and the molecular transport is modeled with constant Lewis numbers for individual species. The effect of turbulence on the internal flame structure and extinction characteristics of methane-air flames is evaluated. Consistent with earlier DNS with simple one-step chemistry, the flame is wrinkled and in some regions extinguished by the turbulence, while the turbulence is weakened in the vicinity of the flame due to a combination of dilatation and an increase in kinematic viscosity. Unlike previous results, reignition is observed in the present simulations. Lewis number effects are important in determining the local stoichiometry of the flame. The results presented in this work are preliminary but demonstrate the feasibility of incorporating reduced kinetics for the oxidation of methane with direct numerical simulations of homogeneous turbulence to evaluate the limitations of various levels of reduction in the kinetics and to address the formation of thermal and prompt NO(x).

  10. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    Science.gov (United States)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  11. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh

    2015-04-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred at a constant equivalence ratio and was independent of the jet velocity in propane/air mixtures. The observation of a local extinction phenomenon of the negatively stretched flame due to the flame curvature could not be consistently explained based on flame stretch or the Karlovitz number, since they varied appreciably with the jet velocity. The concept of the local Karlovitz number (KaL) was introduced, which is defined as the ratio of the characteristic reaction time in the normal direction for a stretched flame to the characteristic flow time in the tangential direction for the stretched flame. The local Karlovitz number maintained a constant value under tip opening conditions, irrespective of the jet velocity. Tip opening occurred at a reasonably constant local Karlovitz number of about ~1.72 when the nitrogen dilution level in propane and n-butane fuels was varied.

  12. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  13. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  14. Study and modeling of finite rate chemistry effects in turbulent non-premixed flames

    Science.gov (United States)

    Vervisch, Luc

    1993-01-01

    The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.

  15. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames

    KAUST Repository

    Park, Daegeun

    2014-04-23

    The effects of DC electric fields on non-premixed ethylene flames in a counterflow burner were studied experimentally with a focus on the reduction of soot particles. The experiment was conducted by connecting a high voltage terminal and a ground terminal to a lower (fuel) and upper (oxidizer) nozzle, respectively. We applied direct current (DC) potentials in a range of -5 kV < Vdc < 5 kV. Uniform electric fields were then generated in the gap between the two nozzles. The experimental conditions were selected to cover both soot formation (SF) and soot formation oxidation (SFO) flames. The flames subjected to the negative electric fields moved toward the fuel nozzle because of an ionic wind due to the Lorentz force acting on the positive ions in the flames. In addition, the yellow luminosity significantly decreased, indicating changes in the sooting characteristics. To analyze the sooting characteristics under the electric fields, planar laser induced incandescence (PLII) and fluorescence (PLIF) techniques were used to visualize the soot, polycyclic aromatic hydrocarbons (PAHs), and OH radicals. The sooting limits in terms of the fuel and oxygen mole fractions were measured. No substantial soot formation due to the effects of the DC electric fields for the tested range of voltages and reactant mole fractions could be identified. The detailed flame behaviors and sooting characteristics under the DC electric fields are discussed. Copyright © Taylor & Francis Group, LLC.

  16. Dynamics of flow-soot interaction in wrinkled non-premixed ethylene-air flames

    Science.gov (United States)

    Arias, Paul G.; Lecoustre, Vivien R.; Roy, Somesh; Luo, Zhaoyu; Haworth, Daniel C.; Lu, Tianfeng; Trouvé, Arnaud; Im, Hong G.

    2015-09-01

    A two-dimensional simulation of a non-premixed ethylene-air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments with interpolative closure, and a grey gas and soot radiation model using the discrete transfer method. Interaction of the sooting flame with a prescribed decaying random velocity field was investigated, with a primary interest in the effects of velocity fluctuations on the flame structure and the associated soot formation process for a fuel-strip configuration and a composition with mature soot growth. The temporally evolving simulation revealed a multi-layered soot formation process within the flame, at a level of detail not properly described by previous studies based on simplified soot models utilizing acetylene or naphthalene precursors for initial soot inception. The overall effect of the flame topology on the soot formation was found to be consistent with previous experimental studies, while a unique behaviour of localised strong oxidation was also noted. The imposed velocity fluctuations led to an increase of the scalar dissipation rate in the sooting zone, causing a net suppression in the soot production rate. Considering the complex structure of the soot formation layer, the effects of the imposed fluctuations vary depending on the individual soot reactions. For the conditions under study, the soot oxidation reaction was identified as the most sensitive to the fluctuations and was mainly responsible for the local suppression of the net soot production.

  17. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  18. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  19. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  20. 3D velocity measurements in a premixed flame by tomographic PIV

    Science.gov (United States)

    Tokarev, M. P.; Sharaborin, D. K.; Lobasov, A. S.; Chikishev, L. M.; Dulin, V. M.; Markovich, D. M.

    2015-06-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV.

  1. The effect of nitrogen on biogas flame propagation characteristic in premix combustion

    Science.gov (United States)

    Anggono, Willyanto; Suprianto, Fandi D.; Hartanto, Tan Ivan; Purnomo, Kenny; Wijaya, Tubagus P.

    2016-03-01

    Biogas is one of alternative energy and categorized as renewable energy. The main sources of biogas come from animal waste, garbage, and household waste that are organic waste. Primarily, over 50% of this energy contains methane (CH4). The other substances or inhibitors are nitrogen and carbon dioxide. Previously, carbon dioxide effect on biogas combustion is already experimented. The result shows that carbon dioxide reduces the flame propagation speed of biogas combustion. Then, nitrogen as an inhibitor obviously also brings some effects to the biogas combustion, flame propagation speed, and flame characteristics. Spark ignited cylinder is used for the premixed biogas combustion research. An acrylic glass is used as the material of this transparent cylinder chamber. The cylinder is filled with methane (CH4), oxygen (O2), and nitrogen (N2) with particular percentage. In this experiment, the nitrogen composition are set to 0%, 5%, 10%, 20%, 30%, 40%, and 50%. The result shows that the flame propagation speed is reduced in regard to the increased level of nitrogen. It can also be implied that nitrogen can decrease the biogas combustion rate.

  2. Direct numerical simulation of stationary lean premixed methane-air flames under intense turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Ramanan [ORNL; Hawkes, Evatt R [Sandia National Laboratories (SNL); Yoo, Chun S [Sandia National Laboratories (SNL); Chen, Jacqueline H [Sandia National Laboratories (SNL); Lu, Tianfeng [Princeton University; Law, Chung K [Princeton University

    2007-01-01

    Direct numerical simulation of a three-dimensional spatially- developing turbulent Bunsen flame has been performed at three different turbulence intensities. The simulations are performed using a reduced methane-air chemical mechanism which is specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration is used in which turbulent preheated methane-air mixture at 0.7 equivalence ratio issues through a central jet and is surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow are selected such that combustion occurs in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime. At the highest turbulence intensity the conditions correspond to the boundary between the TRZ regime and the broken reaction zones regime. The data from the three simulations is analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Statistical analysis of the data shows that the thermal preheat layer of the flame is thickened due to the action of turbulence, but the reaction zone is not significantly affected.

  3. Impact of chemical kinetic model reduction on premixed turbulent flame characteristics

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2016-11-01

    The use of detailed chemical kinetic models for direct numerical simulations (DNS) is prohibitively expensive. Current best practice for the development of reduced models is to match laminar burning parameters such as flame speed, thickness, and ignition delay time to predictions of the detailed chemical kinetic models. Prior studies using reduced models implicitly assumed that matching the homogeneous and laminar properties of the detailed model will result in similar behavior in a turbulent environment. However, this assumption has not been tested. Fillo et al. recently demonstrated experimentally that real jet fuels with similar chemistry and laminar burning parameters exhibit different turbulent flame speeds under the same flow conditions. This result raises questions about the validity of current best practices for the development of reduced chemical kinetic models for turbulent DNS. This study will investigate the validity of current best practices. Turbulent burning parameters, including flame speed, thickness, and stretch rate, will be compared for three skeletal mechanisms of the Princeton POSF 4658 mechanism, reduced using current best practice methods. DNS calculations of premixed, high-Karlovitz flames will be compared to determine if these methods are valid. This material is based upon work supported by the National Science Foundation under Grant No. 1314109-DGE.

  4. Effects of Non-Equilibrium Plasmas on Low-Pressure, Premixed Flames. Part 1: CH* Chemiluminescence, Temperature, and OH

    Science.gov (United States)

    2017-08-15

    chemistry. Qualitative imaging of CH* chemiluminescence indicates that during plasma discharge, the luminous flame zone is shifted upstream towards...The same research group also has observed an increase in premixed methane/air flame blow-off velocities by more than a factor of two by the...resolution and rotational line-specific features . Due to the large number of test cases (see Table 2) and the desire for spatially-resolved

  5. Extractive probe/TDLAS measurements of acetylene in atmospheric-pressure fuel-rich premixed methane/air flames

    Energy Technology Data Exchange (ETDEWEB)

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B. [Laboratory for High Temperature Gas Kinetics, University of Groningen (Netherlands)

    2005-11-01

    The profiles of C{sub 2}H{sub 2} mole fractions were measured in flat atmospheric-pressure rich-premixed methane/air flames using microprobe gas sampling followed by tunable diode laser absorption spectroscopy (TDLAS), and compared the results with predictions of one-dimensional flame calculations. Acetylene concentrations are also determined by spontaneous Raman scattering to quantify possible uncertainties due to chemical reactions on the probe surface or acceleration of the combustion products into the probe.

  6. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2012-03-01

    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly adiabatic conditions. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. Results show a bell-shaped flame stabilizing above the burner plate hole, with a U-shaped section anchored between neighboring holes. The base of the positively curved U-shaped section of the flame is positioned near the stagnation point, at a location where the flame displacement speed is equal to the flow speed. This location is determined by the combined effect of heat loss and flame stretch on the flame displacement speed. As the mass flow rate of the reactants is increased, the flame displacement speed at this location varies non-monotonically. As the inlet velocity is increased, the recirculation zone grows slowly, the flame moves downstream, and the heat loss to the burner decreases, strengthening the flame and increasing its displacement speed. As the inlet velocity is raised, the stagnation point moves downstream, and the flame length grows to accommodate the reactants mass flow. Concomitantly, the radius of curvature of the flame base decreases until it reaches an almost constant value, comparable to the flame thickness. While the heat loss decreases, the higher flame curvature dominates thereby reducing the displacement speed of the flame base. For a stable flame, the gradient of the flame base displacement speed normal to the flame is higher than the gradient of the flow speed along the same direction, leading to dynamic stability. As inlet velocity is raised further, the former decreases while the latter increases until the stability condition is violated, leading to blowoff. The flame speed during blow off is determined by the feedback between the

  7. Transition from pulled to pushed premixed turbulent flames due to countergradient transport

    Science.gov (United States)

    Sabelnikov, V. A.; Lipatnikov, A. N.

    2013-12-01

    The influence of countergradient transport on the speed of a statistically stationary, planar, 1D premixed flame that propagates in frozen turbulence is studied theoretically and numerically by considering the normalised magnitude NB of the countergradient flux to be an input parameter. Spectra of admissible flame speeds are analytically determined and explicit travelling wave solutions are found for two algebraic relations widely used to close the mean rate of product creation. A problem of selecting the physically relevant solution that is approached for sufficiently steep initial conditions is addressed. It is argued that, if NB is larger than an analytically determined critical number NcrB, then the type of the physically relevant solution is drastically changed. If NB pulled wave type, i.e. its speed is controlled by processes localised to the leading edge of the flame brush and can be determined within the framework of a linear analysis at the leading edge. If NB > NcrB, the physically relevant solution is of pushed wave type, i.e. its speed is controlled by processes in the entire flame brush. Analytical expressions for the speed of the physically relevant solution as a function of NB and the density ratio are obtained. For NB > NcrB, the mean flame brush thickness and the spatial profile of the Favre-averaged combustion progress variable are also determined analytically. These results are validated by numerical simulations. Both analytical expressions and numerical data indicate that (i) both turbulent flame speed and thickness are decreased when NB is increased and (ii) the direction of total scalar flux (i.e. the sum of countergradient and gradient contributions) is strongly affected not only by NB, but also by the shape of the dependence of the mean rate of product creation on the mean combustion progress variable.

  8. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor

    Science.gov (United States)

    Sampath, Ramgopal; Mathur, Manikandan; Chakravarthy, Satyanarayanan R.

    2016-12-01

    This paper quantitatively examines the occurrence of large-scale coherent structures in the flow field during combustion instability in comparison with the flow-combustion-acoustic system when it is stable. For this purpose, the features in the recirculation zone of the confined flow past a backward-facing step are studied in terms of Lagrangian coherent structures. The experiments are conducted at a Reynolds number of 18600 and an equivalence ratio of 0.9 of the premixed fuel-air mixture for two combustor lengths, the long duct corresponding to instability and the short one to the stable case. Simultaneous measurements of the velocity field using time-resolved particle image velocimetry and the C H* chemiluminescence of the flame along with pressure time traces are obtained. The extracted ridges of the finite-time Lyapunov exponent (FTLE) fields delineate dynamically distinct regions of the flow field. The presence of large-scale vortical structures and their modulation over different time instants are well captured by the FTLE ridges for the long combustor where high-amplitude acoustic oscillations are self-excited. In contrast, small-scale vortices signifying Kelvin-Helmholtz instability are observed in the short duct case. Saddle-type flow features are found to separate the distinct flow structures for both combustor lengths. The FTLE ridges are found to align with the flame boundaries in the upstream regions, whereas farther downstream, the alignment is weaker due to dilatation of the flow by the flame's heat release. Specifically, the FTLE ridges encompass the flame curl-up for both the combustor lengths, and thus act as the surrogate flame boundaries. The flame is found to propagate upstream from an earlier vortex roll-up to a newer one along the backward-time FTLE ridge connecting the two structures.

  9. Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame

    NARCIS (Netherlands)

    Kempf, A.M.; Geurts, B.J.; Oefelein, J.C.

    2011-01-01

    A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame, where the error is defined with respect to experimental data. The errorlandscape approach is extended to heterogeneous compressible turbulence, which is coupled to combustion

  10. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    NARCIS (Netherlands)

    Mokhov, A.V.; Levinsky, H.B.

    1999-01-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser- induced fluorescence (LIF) and coherent anti-Stokes Raman scattering: (CARS), respe

  11. Diode laser absorption measurement and analysis of HCN in atmospheric-pressure, fuel-rich premixed methane/air flames

    NARCIS (Netherlands)

    Gersen, Sander; Mokhov, A. V.; Levinsky, H. B.

    2008-01-01

    Measurements of HCN in flat, fuel-rich premixed methane/air flames at atmospheric pressure are reported. Quartz-microprobe sampling followed by wavelength modulation absorption spectroscopy with second harmonic detection was used to obtain an overall measurement uncertainty of better than 20% for

  12. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M.M. [Ain Shams University, Cairo (Egypt). Faculty of Education

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  13. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.

    2015-08-17

    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments with interpolative closure, and a grey gas and soot radiation model using the discrete transfer method. Interaction of the sooting flame with a prescribed decaying random velocity field was investigated, with a primary interest in the effects of velocity fluctuations on the flame structure and the associated soot formation process for a fuel-strip configuration and a composition with mature soot growth. The temporally evolving simulation revealed a multi-layered soot formation process within the flame, at a level of detail not properly described by previous studies based on simplified soot models utilizing acetylene or naphthalene precursors for initial soot inception. The overall effect of the flame topology on the soot formation was found to be consistent with previous experimental studies, while a unique behaviour of localised strong oxidation was also noted. The imposed velocity fluctuations led to an increase of the scalar dissipation rate in the sooting zone, causing a net suppression in the soot production rate. Considering the complex structure of the soot formation layer, the effects of the imposed fluctuations vary depending on the individual soot reactions. For the conditions under study, the soot oxidation reaction was identified as the most sensitive to the fluctuations and was mainly responsible for the local suppression of the net soot production. © 2015 Taylor & Francis

  14. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  15. Traveling circumferential unstable wave of cylindrical flame front

    Science.gov (United States)

    Trilis, A. V.; Vasiliev, A. A.; Sukhinin, S. V.

    2016-06-01

    The researches of stability of cylindrical front of deflagration combustion in an annular combustion chamber were made using phenomenological model. The flame front is described as discontinuity of gasdynamic parameters. It is considered that the combustion products are under chemical equilibrium. The combustible mixture and the combustion products are ideal gases. The velocity of deflagration combustion is determined using the Chapman-Jouget theory. It depends on the temperature of combustible mixture only. It is found that the combustible flame front is unstable for several types of small disturbances in the system Mechanics of instabilities are examined using both the numeric and analytical methods. The cases of evolution of the unstable waves rotating in circular channel are presented.

  16. Electron temperature measurement in a premixed flat flame using the double probe method

    Energy Technology Data Exchange (ETDEWEB)

    Wild, J.; Kudrna, P.; Tichy, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00 Praha 8 (Czech Republic); Nevrly, V.; Strizik, M.; Bitala, P.; Filipi, B. [VSB - Technical University of Ostrava, Faculty of Safety Engineering, Lumirova 13, 700 30 Ostrava-Vyskovice (Czech Republic); Zelinger, Z. [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Praha 8 (Czech Republic)

    2012-09-15

    The electron temperatures T{sub e} were measured using a double probe in a premixed methane flame produced by a calibration burner according to Hartung et al. The experiment was performed at atmospheric pressure. In contrast to other authors, we have managed to find typical nonlinearities corresponding to the retarding electron current region and to calculate electron temperatures using a suitable fit on the basis of the measured characteristics. A Pt-Rh thermocouple was used to measure temperatures T{sub h} corresponding to ''heavy'' species. Our results indicate that the flame plasma can be considered to be weakly non-isothermic - T{sub e} = (2400-4000) K, T{sub h} = (1400-1600) K. On the basis of measurement of the saturated ion current, the number density of the charged particles was estimated at (0.3-3.8) . 10{sup 17} m{sup -3}. The trends in T{sub e} and T{sub h} in dependence on the positions of the probes and thermocouple in the flame differ substantially; this fact has not yet been explained (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Investigation on Effect of Air Velocity in Turbulent Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Namazian Zafar

    2016-09-01

    Full Text Available In this study, the turbulent non-premixed methane-air flame is simulated to determine the effect of air velocity on the length of flame, temperature distribution and mole fraction of species. The computational fluid dynamics (CFD technique is used to perform this simulation. To solve the turbulence flow, k-ε model is used. In contrast to the previous works, in this study, in each one of simulations the properties of materials are taken variable and then the results are compared. The results show that at a certain flow rate of fuel, by increasing the air velocity, similar to when the properties are constant, the width of the flame becomes thinner and the maximum temperature is higher; the penetration of oxygen into the fuel as well as fuel consumption is also increased. It is noteworthy that most of the pollutants produced are NOx, which are strongly temperature dependent. The amount of these pollutants rises when the temperature is increased. As a solution, decreasing the air velocity can decrease the amount of these pollutants. Finally, comparing the result of this study and the other work, which considers constant properties, shows that the variable properties assumption leads to obtaining more exact solution but the trends of both results are similar.

  18. LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure

    Science.gov (United States)

    Wang, Qing; Wu, Hao; Ihme, Matthias

    2015-11-01

    The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.

  19. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  20. Cellular burning in lean premixed turbulent hydrogen-air flames: Coupling experimental and computational analysis at the laboratory scale

    Science.gov (United States)

    Day, M. S.; Bell, J. B.; Cheng, R. K.; Tachibana, S.; Beckner, V. E.; Lijewski, M. J.

    2009-07-01

    One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.

  1. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    Science.gov (United States)

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters.

  2. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  3. Lagrangian analysis of premixed turbulent combustion in hydrogen-air flames

    Science.gov (United States)

    Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Lagrangian analysis has long been a tool used to analyze non-reacting turbulent flows, and has recently gained attention in the reacting flow and combustion communities. The approach itself allows one to separate local molecular effects, such as those due to reactions or diffusion, from turbulent advective effects along fluid pathlines, or trajectories. Accurate calculation of these trajectories can, however, be rather difficult due to the chaotic nature of turbulent flows and the added complexity of reactions. In order to determine resolution requirements and verify the numerical algorithm, extensive tests are described in this talk for prescribed steady, unsteady, and chaotic flows, as well as for direct numerical simulations (DNS) of non-reacting homogeneous isotropic turbulence. The Lagrangian analysis is then applied to DNS of premixed hydrogen-air flames at two different turbulence intensities for both single- and multi-step chemical mechanisms. Non-monotonic temperature and fuel-mass fraction evolutions are found to exist along trajectories passing through the flame brush. Such non-monotonicity is shown to be due to molecular diffusion resulting from large spatial gradients created by turbulent advection. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  4. Modeling and numerical simulation of a pilot-stabilized turbulent premixed flame

    Energy Technology Data Exchange (ETDEWEB)

    Benarous, Abdallah [Hassiba Benbouali University, Chlef (Algeria); Abdelkrim, Liazid [National Polytechnic School, Oran (Algeria); Karmed, Djamel [Poitiers University, Chasseneuil Cedex (France)

    2013-08-15

    The present paper is devoted to the numerical modeling of turbulent reactive flows subjected to spatial variations of equivalence ratio. In such situations, the description of the local thermochemistry requires at least two variables. The mixture fraction and the fuel mass fraction are respectively chosen to describe the composition of the fresh mixture and the chemical reaction progress. In the present contribution, a generalization of the Libby-Williams (LW) approach to four delta probability density function (Pdf) is presented. Transport equations for the first and second-order (variance) of mean scalar quantities are numerically solved. Moreover, the so-called LW-P model solves an additional transport equation for the cross-correlation between the reactive and the passive scalars. The model is applied to the calculation of a turbulent lean-premixed flow of methane and air stabilized by a near-stoichiometric pilot-flame. Numerical results regarding flow dynamics and flame structure are compared with the experimental data of a laboratory-scale burner-chamber device.

  5. Temperature response of an acoustically forced turbulent lean premixed flame: A quantitative experimental determination

    KAUST Repository

    Chrystie, Robin

    2013-01-02

    Temperature measurements have been taken on an acoustically forced lean premixed turbulent bluff-body stabilized flame. The burner used in this study is a test-bed to investigate thermoacoustic instability in gas-turbine engines at the University of Cambridge. Numerous experiments have been performed on the burner, one of which used two-line OH planar laser induced fluorescence to measure temperature. Here, we employ vibrational coherent anti-Stokes Raman scattering (CARS) of nitrogen as an alternative to measure temperature, circumventing the limitations of the former method. The use of nitrogen CARS avoids the problem of probing regions of the flame with low OH concentrations that resulted in erroneous temperature. Such an application of CARS showed that the results from previous efforts were systematically biased up to 47% close to the bluff-body. We also critically review the limitations of CARS used in our experiments, pertaining to spatial resolution and associated biasing further downstream from the bluff-body. Using the more accurate results from this work, more up-to-date computational fluid dynamical (CFD) models of the burner can be validated, with the aim of improved understanding and prediction of thermoacoustic instability in gas turbines. © 2013 Copyright Taylor and Francis Group, LLC.

  6. Application of Dielectric-Barrier Discharge to the Stabilization of Lifted Non-Premixed Methane/Air Jet Flames

    Science.gov (United States)

    Liao, Ying-Hao; Zhao, Xiang-Hong

    2016-11-01

    Recent studies have shown that the application of non-thermal plasma is a promising way to enhance the flame stabilization and combustion efficiency. The present study experimentally investigates the effect of a dielectric-barrier discharge (DBD) on the stabilization of lifted non-premixed methane/air jet flames. The jet flame with co-annular DBD is produced by a co-flow burner and has a Reynolds number of Re = 2500, 5000, 7000, and 9000. The application of DBD is seen to have an impact on the flame lift-off height, and the degree of impact is subject to flow conditions (such as Reynolds number and co-flow velocity) and plasma power. In general, the enhancement of flame stabilization, indicated by the decrease in lift-off height, is most evident at low Reynolds number and co-flow velocity. For flames with a Reynolds number less than Re = 5000, flames are attached to the nozzle regardless of the co-flow velocity and plasma power; at Re = 5000, flames are often intermittently attached. The enhancement is not that significant at high Reynolds number and co-flow velocity at least for the plasma power employed in the current study. A slight increase in plasma power leads to enhanced flame stabilization.

  7. NEAR-BLOWOFF DYNAMICS OF BLUFF-BODY-STABILIZED PREMIXED HYDROGEN/AIR FLAMES IN A NARROW CHANNEL

    KAUST Repository

    Lee, Bok Jik

    2015-06-07

    The flame stability is known to be significantly enhanced when the flame is attached to a bluff-body. The main interest of this study is on the stability of the flame in a meso-scale channel, considering applications such as combustion-based micro power generators. We investigate the dynamics of lean premixed hydrogen/air flames stabilized behind a square box in a two-dimensional meso-scale channel with high-fidelity numerical simulations. Characteristics of both non-reacting flows and reacting flows over the bluff-body are studied for a range of the mean inflow velocity. The flame stability in reacting flows is investigated by ramping up the mean inflow velocity step by step. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blowoff limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to blowoff limit, the local extinction and recovery becomes highly transient and a failure of recovery leads blowoff and extinction of the flame kernel.

  8. Droplet and Supercritical Flame Dynamics in Propulsion

    Science.gov (United States)

    2010-03-26

    In order to study the stability of a lifted jet flame by nozzle-generated vortexes, we have developed a chemical explosive mode analysis ( CEMA ) to...runaway can consequently be distinguished. CEMA of the lifted flame shows the existence of two premixed flame fronts, which are difficult to detect

  9. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh

    2014-04-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  10. SOOT PARTICLES ANALYSIS IN LAMINAR PREMIXED PROPANE/OXYGEN (C3H8/O2) FLAMES USING PUBLISHED MEASUREMENT DATA

    Institute of Scientific and Technical Information of China (English)

    Jinling Li; Suyuan Yu

    2003-01-01

    A laminar premixed Propane/Air flame with a fuel equivalence ratio of 2.1 was employed for analysis of soot particles. Zeroth-order Iognormal distributions (ZOLD) were used in the analysis of experimental distribution phenomena at different residence times during soot formation in the flame. Rayleigh's theory and Mie's scattering theory were combined with agglomerate analysis using scattering and extinction data to determine the following soot characteristics: agglomerate parameters, volumetric fractions, mass flow rates and surface growth rate. Soot density measurements were carried out to determine density variations at different stages of growth. The measured results show that metric fraction and mass flow rate indicate that the surface growth rate of soot particles exceeds the oxidation rates in the flame studied. The data obtained in this work would be used to study soot oxidation rate under flaming condition.

  11. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  12. Premixed Turbulent Flames and Spectral Approach Flammes turbulentes de prémélange Approche spectrale

    Directory of Open Access Journals (Sweden)

    Mathieu J.

    2006-11-01

    Full Text Available Scientific and technical approach concerning the behaviour of flames developing in a turbulent medium are related in many recent papers. On the whole the problem is very complex!The chemical reaction develops inside a turbulent flow which requires a double scaling. Characteristic times and characteristic lengths have to be defined for both flame and the turbulent fields. With a view to enlarging these comparisons a spectral analyses of the turbulent field is proposed. It is widely supported by previous experimental data. The flame can be acted upon by an external turbulent fields. That supposes the flame to be thicker that the smallest turbulent structures in connection with the Kolmogorov scale. With increasing Reynolds numbers turbulent structures penetrate the flame front, they can disturb the preheat zone or event the chemical zone. The passage of a flame front regime to the case of a chemical reaction developing in a volume is thereby emphasized. As the reaction rate is decreasing, the domain affected by the reaction is increased chemical reactions generate a segregation process whereas the chemical species are mixed by the turbulent motion. In the premixed combustion engine a large range of operating points can be defined. The diagram usually used is that of Barrere Borghi. Several modeling methods should probably be developed according to the positions of the operating points in the diagram. Modeling methods are not presented herein. However the existence of typical structures in connection with the architecture of the combustion chamber could be examined in subsequent paper. The flame front can be subjected to distorting effects due to isolated rolling or to a sequence of vortices. Previously this last case has been touched upon. Using a spectral approach no discremination has to be made as for the sizes of these rollings: that could lead to new modeling methods if restricted shapes of vortices are accepted. By using a spectral method

  13. N2稀释对双旋流合成气非预混燃烧特性的影响%Effect of N2 Dilution on Flame Structures of a Double-Swirled Non-Premixed Syngas Flame

    Institute of Scientific and Technical Information of China (English)

    葛冰; 臧述升; 郭培卿; 田寅申

    2012-01-01

    Experiments have been performed to investigate the effect of N2 dilution on the flame structures of a double-swirled non-premixed syngas flames. Planar laser induced fluorescence (PLIF) of OH-radical measurement is adopted to identify main reaction zones and burnt gas regions. Together with temperature and emission measurement during exhaust section, some important characteristics of the syngas flame are overall investigated. Experimental result shows that syngas flame root near the burner exit demonstrates double flame front structure. The existence of N2 expands the flame opening angle and enlarges the main reaction zone, and it may lead to lower NO emission and higher CO emission in exhaust gas.%利用平面激光诱导荧光(PLIF)、高温细丝热电偶及红外气体分析仪对不同N2稀释量下的双旋流合成气非燃烧流场进行了实验研究。实验结果表明,随着N2稀释量的增加:双旋流合成气火焰的基本结构发生变化,火焰会出现典型的推举火焰特征;火焰锋面被拉伸,主要反应区域轴向长度和径向宽度增大,喷嘴出口附近火焰锋面由M型分布逐渐转变为W型分布,轴线上未反应区域不断扩大;火焰张角与穿透深度增大,火焰推举高度减小;燃烧排气温度略有减小,NO排放明显降低。

  14. Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion

    KAUST Repository

    Taamallah, Soufien

    2014-12-23

    Copyright © 2015 by ASME. In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure - or flame brush spatial distribution - and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane-air in the range of equivalence ratio (Φ) from the lean blowout limit to Φ = 0. 75. First, we observe the different dynamic modes in this lean range as Φ is raised. We also document the effect of Φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length - by downstream truncation - without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor - which occurs simultaneously with the onset of instability at the fundamental frequency - happens at similar Φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with Φ. The spectral

  15. Impact of Equivalence Ratio on the Macrostructure of Premixed Swirling CH 4 /Air and CH 4 /O 2 /CO 2 Flames

    KAUST Repository

    Watanabe, Hirotatsu

    2015-06-15

    Premixed CH4/O2/CO2 flames (oxy-flames) and CH4/air flames (air-flames) were experimentally studied in a swirl-stabilized combustor. For comparing oxy and air flames, the same equivalence ratio and adiabatic flame temperature were used. CO2 dilution was adjusted to attain the same adiabatic temperature for the oxy-flame and the corresponding air-flame while keeping the equivalence ratio and Reynolds number (=20,000) the same. For high equivalence ratios, we observed flames stabilized along the inner and outer shear layers of the swirling flow and sudden expansion, respectively, in both flames. However, one notable difference between the two flames appears as the equivalence ratio reaches 0.60. At this point, the outer shear layer flame disappears in the air-flame while it persists in the oxy-flame, despite the lower burning velocity of the oxy-flame. Prior PIV measurements (Ref. 9) showed that the strains along the outer shear layer are higher than along the inner shear layer. Therefore, the extinction strain rates in both flames were calculated using a counter-flow premixed twin flame configuration. Calculations at the equivalence ratio of 0.60 show that the extinction strain rate is higher in the oxy than in the air flame, which help explain why it persists on the outer shear layer with higher strain rate. It is likely that extinction strain rates contribute to the oxy-flame stabilization when air flame extinguish in the outer shear layer. However, the trend reverses at higher equivalence ratio, and the cross point of the extinction strain rate appears at equivalence ratio of 0.64.

  16. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES

    Science.gov (United States)

    Cicoria, David; Chan, C. K.

    2017-07-01

    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  17. PENETRATION OF A SHOCK WAVE IN A FLAME FRONT

    Directory of Open Access Journals (Sweden)

    Dan PANTAZOPOL

    2009-09-01

    Full Text Available The present paper deals with the interactions between a fully supersonic flame front, situated in a supersonic two-dimensional flow of an ideal homogeneous combustible gas mixture, and an incident shock wawe, which is penetrating in the space of the hot burnt gases. A possible configuration, which was named ,,simple penetration” is examined. For the anlysis of the interference phenomena, shock polar and shock-combustion polar are used. At the same time, the paper shows the possibility to produce similar but more complicated configurations, which may contain expansion fans and reflected shock waves.

  18. Direct drive ablation front stability: numerical predictions against flame front model

    Energy Technology Data Exchange (ETDEWEB)

    Masse, L. [Phd Student at IRPHE St Jerome, 13 - Marseille (France)]|[CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France); Hallo, L.; Tallot, C. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    We study the linear stability of flows resulting from constant heating of planar targets by a laser. In the coordinate system of the ablation front there is a flow from the cold to hot region, which is situated in a gravity field oriented from hot to cold region. Similar types of flow can be observed in combustion systems, which involve propagation of flame fronts. A spectral model which studies linear perturbation is directly taken from the combustion community. Here we present the results for state as well as perturbed flows. Growth rate determined from the models are compared to each other, and preliminary numerical results from FC12 simulations are shown. (authors)

  19. Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Coriton, Bruno; Smooke, Mitchell D.; Gomez, Alessandro [Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286 (United States)

    2010-11-15

    The extinction of premixed CH{sub 4}/O{sub 2}/N{sub 2} flames counterflowing against a jet of combustion products in chemical equilibrium was investigated numerically using detailed chemistry and transport mechanisms. Such a problem is of relevance to combustion systems with non-homogeneous air/fuel mixtures or recirculation of the burnt gases. Contrary to similar studies that were focused on heat loss/gain, depending on the degree of non-adiabaticity of the system, the emphasis here was on the yet unexplored role of the composition of counterflowing burnt gases in the extinction of lean-to-stoichiometric premixed flames. For a given temperature of the counterflowing products of combustion, it was found that the decrease of heat release with increase in strain rate could be either monotonic or non-monotonic, depending on the equivalence ratio {phi}{sub b} of the flame feeding the hot combustion product stream. Two distinct extinction modes were observed: an abrupt one, when the hot counterflowing stream consists of either inert gas or equilibrium products of a stoichiometric premixed flame, and a smooth extinction, when there is an excess of oxidizing species in the combustion product stream. In the latter case four burning regimes can be distinguished as the strain rate is progressively increased while the heat release decreases smoothly: an adiabatic propagating flame regime, a non-adiabatic propagating flame regime, the so-called partially-extinguished flame regime, in which the location of the peak of heat release crosses the stagnation plane, and a frozen flow regime. The flame structure was analyzed in detail in the different burning regimes. Abrupt extinction was attributed to the quenching of the oxidation layer with the entire H-OH-O radical pool being comparably reduced. Under conditions of smooth extinction, the behavior is different and the concentration of the H radical decreases the most with increasing strain rate, whereas OH and O remain

  20. Measurements of the laminar burning velocity of hydrogen-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Pareja, Jhon; Burbano, Hugo J. [Science and Technology of Gases and Rational Use of Energy Group, Faculty of Engineering, University of Antioquia, Calle 67 N 53, 108 Bloque 20, 447 Medellin (Colombia); Ogami, Yasuhiro [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2010-02-15

    Experimental and numerical studies on laminar burning velocities of hydrogen-air mixtures were performed at standard pressure and room temperature varying the equivalence ratio from 0.8 to 3.0. The flames were generated using a contoured slot-type nozzle burner (4 mm x 10 mm). Measurements of laminar burning velocity were conducted using particle tracking velocimetry (PTV) combined with Schlieren photography. This technique provides the information of instantaneous local burning velocities in the whole region of the flame front, and laminar burning velocities were determined using the mean value of local burning velocities in the region of non-stretch. Additionally, average laminar burning velocities were determined using the angle method and compared with the data obtained with the PTV method. Numerical calculations were also conducted using detailed reaction mechanisms and transport properties. The experimental results from the PTV method are in good agreement with the numerical results at every equivalence ratio of the range of study. Differences between the results obtained with the angle method and those with the PTV method are reasonably small when the effects of flame stretch and curvature are reduced by using a contoured slot-type nozzle. (author)

  1. Numerical study of turbulent premixed flames with second order closure in the frame of the B.M.L. approach

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, P.

    1996-05-01

    The modelling of turbulence - combustion interaction is considered in the case of flamelet turbulent premixed flames. In the flamelet regime, the combustion process is mainly controlled by the turbulence. Non-gradient and counter-gradient turbulent diffusion effects, leading to a strong generation of turbulence by the flame may appear in such situations. Two calculation configurations are considered: a turbulent flame stabilized by an obstacle and a turbulent flame stabilized by a backward-facing-step. The combustion - turbulence interaction modelling is realized with a BML flamelet model associated with the balance equations for all the turbulent fluxes. In the case of the flame stabilized by an obstacle, the non-gradient diffusion is found to be negligible. On the other hand, the properties of the isothermal and reactive flows are recovered with the Reynolds stress order modelling only. Concerning the flame stabilized by a backward-facing-step, the counter-gradient diffusion is largely dominant. So, we show that this phenomenon is well represented with the mass turbulent flux second order model only. (author) 100 refs.

  2. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Pitz, W J; Fournet, R; Glaude, P; Battin-Leclerc, F

    2009-12-18

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene, decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C{sub 4} + C{sub 2} species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C{sub 6}H{sub 4}CH{sub 3} radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C{sub 6}H{sub 4}CH{sub 3} radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics.

  3. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, M., E-mail: mathieu.blanchard@ladhyx.polytechnique.fr [LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau (France); Schuller, T. [CNRS, UPR 288, Laboratoire d’Energétique Moléculaire et Macroscopique Combustion (EM2C), Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Centrale-Supélec, Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Sipp, D. [ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon (France); Schmid, P. J. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  4. Effects of buoyancy on lean premixed v-flames, Part II. VelocityStatistics in Normal and Microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, R.K.; Bedat, B.; Yegian, D.T.

    1999-07-01

    The field effects of buoyancy on laminar and turbulent premixed v-flames have been studied by the use of laser Doppler velocimetry to measure the velocity statistics in +1g, -1g and {micro}g flames. The experimental conditions covered mean velocity, Uo, of 0.4 to 2 m/s, methane/air equivalence ratio, f, of 0.62 to 0.75. The Reynolds numbers, from 625 to 3130 and the Richardson number from 0.05 to 1.34. The results show that a change from favorable (+1g) to unfavorable (-1g) mean pressure gradient in the plume create stagnating flows in the far field whose influences on the mean and fluctuating velocities persist in the near field even at the highest Re we have investigated. The use of Richardson number < 0.1 as a criterion for momentum dominance is not sufficient to prescribe an upper limit for these buoyancy effects. In {micro}g, the flows within the plumes are non-accelerating and parallel. Therefore, velocity gradients and hence mean strain rates in the plumes of laboratory flames are direct consequences of buoyancy. Furthermore, the rms fluctuations in the plumes of {micro}g flames are lower and more isotropic than in the laboratory flames to show that the unstable plumes in laboratory flames also induce velocity fluctuations. The phenomena influenced by buoyancy i.e. degree of flame wrinkling, flow acceleration, flow distribution, and turbulence production, can be subtle due to their close coupling with other flame flow interaction processes. But they cannot be ignored in fundamental studies or else the conclusions and insights would be ambiguous and not very meaningful.

  5. Macroscopic flame structure in a premixed-spray burner. 1st Report. formation and disappearance processes of droplet clusters and two-stage flame structure; Yokongo funmu kaen no kyoshiteki nensho kyodo. 1. Yuteki cluster no keisei shoshitsu katei to niju kaen kozo

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, S.; Saito, H.; Akamatsu, F.; Katsuki, M. [Osaka University, Osaka (Japan)

    2000-08-25

    In an attempt to elucidate formation and disappearance processes of droplet clusters in spray flames, simultaneous measurements consisting of laser tomography and flame chemiluminescence detection are applied to a premixed-spay burner. The smart combination of measurements provides time-series data-set serving for better understanding of spray flames, which essentially contains inhomogeneity in space and time. It is revealed that referential flame propagation through a premixed-spray stream plays a significant role in creating droplet clusters and that droplet clusters formed in this manner evanesces from their outer boundaries. Those observation confirms that the premixed-spray flame comprises both premixed-mode flame in upstream region and diffusion-mode flame in downstream region, respectively, i.e, two-stage flame structure previously reported for spray flames stabilized in either counter or stagnation flows. (author)

  6. The i-V curve curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    CERN Document Server

    Han, Jie; Casey, Tiernan A; Bisetti, Fabrizio; Im, Hong G; Chen, Jyh-Yuan

    2016-01-01

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-V curve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agre...

  7. The response of a harmonically forced premixed flame stabilized on a heat-conducting bluff-body

    KAUST Repository

    Kedia, Kushal S.

    2015-01-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the unsteady response of a bluff-body stabilized laminar premixed flame to harmonic inlet velocity excitation. A time series analysis was performed to analyze the physical sequence of events at a fixed longitudinal forcing frequency of 100 Hz for cases with (1) two different equivalence ratios and (2) two different thermal properties of the stabilizing bluff-body. It was observed that conjugate heat exchange between the heat conducting bluff-body and the surrounding reacting flow has a crucial impact on the dynamic response. The flame area and anchoring location, the net conjugate heat transfer and the total heat release underwent significant oscillations. The latter was mean shifted and had multiple frequencies. The burning velocity varied significantly along the flame length and the recirculation zone underwent complex changes in its shape and size during an unsteady cycle. The lower equivalence ratio case exhibited vortex shedding after an initial symmetric response with periodic flame extinction and re-ignition along its surface, unlike the higher equivalence ratio case. The metal/ceramic bluff-body showed a net heat transfer directed from/to the bluff-body, to/from the reacting flow during an unsteady cycle, resulting in a significantly different flame response for the two otherwise equivalent cases.

  8. Localized microwave pulsed plasmas for ignition and flame front enhancement

    Science.gov (United States)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow

  9. The behavior of fuel-lean premixed flames in a standard flammability limit tube under controlled gravity conditions

    Science.gov (United States)

    Wherley, B. L.; Strehlow, R. A.

    1986-01-01

    Fuel-lean flames in methane-air mixtures from 4.90 to 6.20 volume percent fuel and propane-air mixtures from 1.90 to 3.00 volume percent fuel were studied in the vicinity of the limit for a variety of gravity conditions. The limits were determined and the behavior of the flames studied for one g upward, one g downward, and zero g propagation. Photographic records of all flammability tube firings were obtained. The structure and behavior of these flames were detailed including the variations of the curvature of the flame front, the skirt length, and the occurrence of cellular instabilities with varying gravity conditions. The effect of ignition was also discussed. A survey of flame speeds as a function of mixture strength was made over a range of lean mixture compositions for each of the fuels studied. The results were presented graphically with those obtained by other researchers. The flame speed for constant fractional gravity loadings were plotted as a function of gravity loadings from 0.0 up to 2.0 g's against flame speeds extracted from the transient gravity flame histories for corresponding gravity loadings. The effects of varying gravity conditions on the extinguishment process for upward and downward propagating flames were investigated.

  10. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame

    CERN Document Server

    Gueniche, Hadj-Ali; Fournet, René; Battin-Leclerc, Frédérique

    2006-01-01

    The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified species included carbon monoxide and dioxide, methane, oxygen, hydrogen, ethane, ethylene, acetylene, propyne, allene, propene, cyclopropane, 1,3-butadiene, butenes, 1-butyne, vinylacetylene, diacetylene, C5 compounds, benzene, and toluene. The temperature was measured thanks to a thermocouple in PtRh (6%)-PtRh (30%) settled inside the enclosure and ranged from 900 K close to the burner up to 2100 K.

  11. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  12. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS

    Science.gov (United States)

    Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng

    2016-01-01

    A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.

  13. Determination of the Burning Velocity Domain of a Statistically Stationary Turbulent Premixed Flame in Presence of Counter-Gradient Transport

    Directory of Open Access Journals (Sweden)

    V. A. Sabel'nikov

    2011-01-01

    Full Text Available The present study aims at providing a complete picture of the various propagation scenarios that a statistically stationary turbulent premixed flame may possibly undergo. By explicitly splitting the scalar turbulent flux between its gradient and counter-gradient contributions, the scalar governing equation is rewritten as an ordinary differential equation in the phase space. Then, an analysis of the characteristic equations in the vicinity of the reactants and products side is carried out. The domain of existence of the propagation velocity is then determined and positioned over the relevant Bray number range. It is shown in particular that when a counter-gradient transport at the cold leading edge of the flame is dominant, there still exists a possibility of observing a steady regime of propagation. This conclusion is compatible with recent experimental data and observations based on the analysis of direct numerical simulations.

  14. The effect of stratification on premixed swirl-flame flashback by using porous center-body injection

    Science.gov (United States)

    McCaslin, Andrew; Ranjan, Rakesh; Clemens, Noel

    2016-11-01

    Boundary layer flashback must be prevented in order to stably operate stationary gas turbines. One strategy to avoid flashback is to create equivalence-ratio stratification, such as by reducing the fuel/air ratio in the boundary layer below the flammability limit. Typically, stratification is achieved by using radially non-uniform fuel injection. The goal of the current study is to reduce the propensity of flashback in a premixed annular swirl combustor that uses a premix section with center-body. A porous metal center-body (10 micron pore size) is used to bleed air directly into the boundary layer and thus locally reduce the equivalence ratio. Planar laser-induced fluorescence imaging of anisole-seeded flow is carried out to assess the stratification in the flow. Time-resolved PIV and chemiluminescence imaging are used to investigate flashback at atmospheric pressure conditions. A comparative study between fully premixed and stratified flame flashback is conducted to determine how stratification influences flashback physics. This work was sponsored by the DOE NETL under Grant DEFC2611-FE0007107. This source of funding is gratefully acknowledged.

  15. Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering

    Science.gov (United States)

    Olofsson, Nils-Erik; Simonsson, Johan; Török, Sandra; Bladh, Henrik; Bengtsson, Per-Erik

    2015-03-01

    A detailed study has been made of soot growth in two premixed flat ethylene/air flames, at Φ = 2.1 and Φ = 2.3, where focus has been on following the change in optical properties from nascent to more mature soot, and the importance of these properties for laser-induced incandescence (LII). A combination of two-color LII (2C-LII) and elastic light scattering was utilized for studies of soot absorption and sublimation for a range of laser fluences in a pump-probe experiment, and the experimental results were compared with LII model predictions. Both flames show similar trends, indicating that the soot becomes less transparent during the growth process until some level of maturity is reached at higher flame heights, where the measured properties reach almost constant values. A sublimation fluence threshold of ~0.14 J/cm2 (at 1064 nm for a flame temperature around 1700 K) was evaluated for mature soot, corresponding to a sublimation temperature of ~3400 K. Soot peak temperatures from 2C-LII were evaluated both using a constant E(m) and a wavelength dependence for E(m) extracted from extinction measurements, leading to a discussion on how the sublimation temperature relates to the maturity of soot.

  16. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames

    KAUST Repository

    Choi, J. H.

    2015-05-01

    In order to investigate the effect of DME mixing on the number density and size of soot particles, DME was mixed in a counter flow non-premixed ethylene flame with mixture ratios of 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and mean size of soot particles. The experimental results showed that the highest soot concentrations were observed for flames with mixture ratios of 5% and 14%; however, for a mixture ratio of 30% the soot concentration decreased. Numerical results showed that the concentrations of propargyl radicals (C3H3) at the 5% and 14% ratios were higher than those measured in the ethylene-based flame, and the production of benzene (C6H6) in the 5% and 14% DME mixture flames was also increased. This indicates the crucial role of propargyl in benzene ring formation. These reactions generally become stronger with increased DME mixing, except for A1- + H2 → A1 + H (-R554) and n-C4H5 + C2H2 → A1 + H (R542). Therefore, it is indicated that adding DME to ethylene flames promotes benzene ring formation. Note that although the maximum C6H6 concentration is largest in the 30% DME mixing flame, the soot volume fraction is smaller than those for the 5% and 14% mixture ratios. This is because the local C6H6 concentration decreases in the relatively low temperature region in the fuel side where soot growth occurs. © 2015, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  17. Pdf modeling for premixed turbulent combustion based on the properties of iso-concentration surfaces

    Science.gov (United States)

    Vervisch, L.; Kollmann, W.; Bray, K. N. C.; Mantel, T.

    1994-01-01

    In premixed turbulent flames the presence of intense mixing zones located in front of and behind the flame surface leads to a requirement to study the behavior of iso-concentration surfaces defined for all values of the progress variable (equal to unity in burnt gases and to zero in fresh mixtures). To support this study, some theoretical and mathematical tools devoted to level surfaces are first developed. Then a database of direct numerical simulations of turbulent premixed flames is generated and used to investigate the internal structure of the flame brush, and a new pdf model based on the properties of iso-surfaces is proposed.

  18. Measurement of laminar burning velocities and analysis of flame stabilities for hydrogen-air-diluent premixed mixtures

    Institute of Scientific and Technical Information of China (English)

    HU ErJiang; HUANG ZuoHua; HE JiaJia; JIN Chun; MIAO HaiYan; WANG XiBin

    2009-01-01

    The laminar burning velocities and Markstein lengths of the hydrogen-air-diluent mixtures were meas-ured at different equivalence ratios (0.4-1.5), different diluents (N2, CO2 and 15%CO2+85%N2) and di-lution ratios (0, 0.05, 0.10 and 0.15) by using the outwardly expanding flame. The influences of flame stretch rate on the flame propagation characteristics were analyzed. The results show that both the laminar burning velocities and the Markstein lengths of the hydrogen-air-diluent mixtures decrease with the increase of dilution ratio. The decrease in Markstein lengths means that adding diluents into the hydrogen-air mixtures will decrease the diffusional-thermal instability of the flame front. For a specified dilution ratio, the laminar burning velocities give their maximum values at an equivalence ratio of 1.8. The Markstein lengths increase with the increase of the equivalence ratio monotonously regardless of the diluents. The study shows that CO2 as the diluent has a greater impact on the laminar flame speed and the flame front stability than N2 as the diluent.

  19. Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    KAUST Repository

    Hong, Seunghyuck

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the dependence of the recirculation zone (RZ) size and structure on the fuel composition using high-speed particle image velocimetry (PIV) and chemiluminescence measurements for C3H8/H2/air lean premixed flames stabilized in a backward-facing step combustor. Results show an intricate coupling between the flame anchoring and the RZ structure and length. For a fixed fuel composition, at relatively low equivalence ratios, the time-averaged RZ is comprised of two counter rotating eddies: a primary eddy (PE) between the shear layer and the bottom wall; and a secondary eddy (SE) between the vertical step wall and the PE. The flame stabilizes downstream of the saddle point of the dividing streamline between the two eddies. As equivalence ratio is raised, the flame moves upstream, pushing the saddle point with it and reducing the size of the SE. Higher temperature of the products reduces the velocity gradient in the shear layer and thus the reattachment length. As equivalence ratio approaches a critical value, the saddle point reaches the step and the SE collapses while the flame starts to exhibit periodic flapping motions, suggesting a correlation between the RZ structure and flame anchoring. The overall trend in the flow field is the same as we add hydrogen to the fuel at a fixed equivalence ratio, demonstrating the impact of fuel composition on the flow field. We show that the reattachment lengths (LR), which are shown to encapsulate the mean RZ structure, measured over a range of fuel composition and equivalence ratio collapse if plotted against the strained consumption speed (Sc). Results indicate that for the flame to remain anchored, the RZ structure should satisfy lR,isothermal/L R,reacting · S c/U ∞ ∼ 0.1. If this criterion cannot be met, the flame blows off, flashes back or becomes thermoacoustically unstable, suggesting a Damköhler-like criterion for

  20. Propagation and Extinction of a Cylindrical Premixed Flame Undergoing Equivalence Ratio Fluctuation Near the Lean Limit

    Science.gov (United States)

    Suenaga, Yosuke; Kitano, Michio; Takahashi, Yoichi

    Experimental study was made to investigate the propagation and extinction characteristics of a stretched cylindrical flame undergoing periodic fluctuation of equivalence ratio near the lean limit. With a lean methane-air and a lean propane-air mixture, burning velocity, flame luminosity and flame stretch rate were measured or evaluated for the fluctuation frequencies of 5Hz and 20Hz. The results were summarized as follows: (1) In some part of a period, burning velocity and flame luminosity of the dynamic flame near the lean limit were possible to become lower than those at the lean flammability limit of the static flame. (2) At the high frequency of 20Hz, the burning velocity took a negative value in a certain time range. In spite of this loss of propagation ability, the flame was not extinguished but sustained, indicating the recovery of the flame intensity due to the dynamic effect of fluctuating flame. (3) Flame recovery phenomenon could occur more easily for the methane flame which was strengthened by the Lewis number effect than the propane flame which was weakened by that effect.

  1. Tulip flames: changes in shape of premixed propagating in closed tubes

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, D. [California Univ., Irvine, CA (United States). Dept. of Mechanical and Aerospace Engineering; Sawyer, R.F. [California Univ., Berkeley, CA (United States). Dept. of Mechanical Engineering

    1998-02-01

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel. (orig.) 32 refs.

  2. Interaction of a flame front with its self-generated flow in an enclosure; The tulip flame phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Borghi, R.; Saouab, A. (Univ. de Rouen, Mont-Saint-Aignan (FR))

    1992-02-01

    This paper reports on the propagation of a flame front under nonturbulent condition in a closed tube ignited at one end which is numerically investigated using a computing procedure based on finite volumes technique and devoted to two-dimensional, compressible, reacting flows. A global one-step reaction for the chemical process and an Arrhenius law for fuel consumption are assumed. The detailed analysis of the results of computations in which wall friction, tube aspect ratio and initial flame configuration are varied allows to highlight the influence of different parameters and to get more insight into the tulip-shaped flame phenomenon. In particular, Darrieus-landau instability is examined by comparing the shape variations of an initially perturbed flat front in a tube closed at both ends to those in a tube in which the ignition end is open while the opposite one is closed. Attention is also given to the computed flame generated flowfield; the flame front-confined flow interaction is specially scrutinized. Furthermore, the oscillatory acoustic regime occurring during tulip flame appearance, as well as the collapse of the tulip shape in tubes of large aspect ratio, already experimentally put into evidence but never numerically addressed, have also been simulated and discussed.

  3. NO formation in the burnout region of a partially premixed methane-air flame with upstream heat loss

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, A.V.; Levinsky, H.B.

    1999-09-01

    Measurements of temperature and NO concentration in laminar, partially premixed methane-air flames stabilized on a ceramic burner in coflow are reported. The NO concentration and temperature were determined by laser-induced fluorescence (LIF) and coherent anti-Stokes Raman scattering (CARS), respectively. Upstream heat loss to the burner was varied by changing the exit velocity of the fuel-air mixture at a constant equivalence ratio of 1,3; this alters the structure of the flame from an axisymmetric Bunsen-type to a strongly stabilized flat flame. To facilitate analysis of the results, a method is derived for separating the effects of dilution from those of chemical reaction based on the relation between the measured temperature and the local mixture fraction, including the effects of upstream heat loss. Using this method, the amount of NO formed during burnout of the hot, fuel-rich combustion products can be ascertained. In the Bunsen-type flame, it is seen that {approximately}40 ppm of NO are produced in this burnout region, at temperatures between {approximately}2,100 K and {approximately}1,900 K, probably via the Zeldovich mechanism. Reducing the exit velocity of 12 cm/s reduces the flame temperature substantially, and effectively eliminates this contribution. At velocities of 12 and 8 cm/s, {approximately}10 ppm of NO are formed in the burnout region, even though the gas temperatures are too low for Zeldovich NO to be significant. Although the mechanism responsible for these observations is as yet unclear, the results are consistent with the idea that the low temperatures in the fuel-rich gases caused by upstream heat loss retard the conversion of HCN (formed via the Fenimore mechanism) to NO, with this residual HCN then being converted to NO during burnout.

  4. An experimental study of premixed laminar methane/oxygen/argon flames doped with hydrogen at low pressure with synchrotron photoionization

    Institute of Scientific and Technical Information of China (English)

    WANG JinHua; HU ErJiang; HUANG ZuoHua; MA ZhiHao; TIAN ZhenYu; WANG Jing; LI YuYang

    2008-01-01

    Laminar premixed stoichiometric methane/hydrogen/oxygen/argon flames were investigated with tun-able synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam sampling mass spec-trometry techniques. The methane/hydrogen fuel blends with hydrogen volumetric fraction of 0, 20%, 40%, 60% and 80% were studied. All observed flame species, including stable intermediates and radi-cals in the flames, were detected by measuring photoionization mass spectra and photoionization effi-ciency (PIE) spectra. Mole fraction profiles of major species and intermediates were derived by scan-ning burner at some selected photon energies near ionization thresholds. The influence of hydrogen addition on mole fraction of major species and intermediates was analyzed. The results show that the major species mole fraction of CO, CO2 and CH4 decreases with the increase of hydrogen fraction. The mole fraction of intermediates measured in this experiment decreases remarkably with the increase of hydrogen fraction. This would be due to the increase of H and OH radicals by hydrogen addition and the high diffusivity and activity of H radical promoting the chemical reaction. In addition, the increase of H/C ratio with the increase of hydrogen fraction also leads to the decrease of the mole fraction of car-bon-related intermediates and contributes to the decrease of unburned and incomplete combustion products.

  5. Experimental study of the structure of a lean premixed indane/CH4/O2/Ar flame

    CERN Document Server

    Pousse, Emir; Fournet, René; Battin-Leclerc, Frédérique

    2009-01-01

    In order to better understand the chemistry involved during the combustion of components of diesel fuel, the structure of a laminar lean premixed methane flame doped with indane has been investigated. The gases of this flame contains 7.1% (molar) of methane, 36.8% of oxygen and 0.90% of indane corresponding to an equivalence ratio of 0.74 and a ratio C9H10/CH4 of 12.75%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 49.2 cm/s at 333 K. Quantified species included usual methane C0-C2 combustion products, but also 11 C3-C5 hydrocarbons and 3 C1-C3 oxygenated compounds, as well as 17 aromatic products, namely benzene, toluene, phenylacetylene, styrene, ethylbenzene, xylenes, trimethylbenzenes, ethyltoluenes, indene methylindane, methylindene, naphthalene, phenol, benzaldehyde, benzofuran. The temperature was measured thanks to a thermocouple in PtRh (6%)-PtRh (30%) settled inside the enclosure and ranged from 800 K close to the bu...

  6. Impact of Turbulence Intensity and Equivalence Ratio on the Burning Rate of Premixed Methane–Air Flames

    Directory of Open Access Journals (Sweden)

    Gábor Janiga

    2011-05-01

    Full Text Available Direct Numerical Simulations (DNS have been conducted to study the response of initially laminar spherical premixed methane–air flame kernels to successively higher turbulence intensities at five different equivalence ratios. The numerical experiments include a 16-species/25-step skeletal mechanism for methane oxidation and a multicomponent molecular transport model. Highly turbulent conditions (with integral Reynolds numbers up to 4513 have been accessed. The effect of turbulence on the physical properties of the flame, in particular its consumption speed Sc, which is an interesting measure of the turbulent flame speed ST has been investigated. Local quenching events are increasingly observed for highly turbulent conditions, particularly for lean mixtures. The obtained results qualitatively confirm the expected trend regarding correlations between u′/SL and the consumption speed: Sc first increases, roughly linearly, with u′/SL (low turbulence zone, then levels off (bending zone before decreasing again (quenching limit for too intense turbulence. For a fixed value of u′/SL, Sc/SL varies with the mixture equivalence ratio, showing that additional parameters should probably enter phenomenological expressions relating these two quantities.

  7. Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach-Zehnder interferometry

    Science.gov (United States)

    Irandoost, M. S.; Ashjaee, M.; Askari, M. H.; Ahmadi, S.

    2015-11-01

    In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach-Zehnder interferometry. Different equivalence ratios (φ=1.4-2.2) and Reynolds numbers (Re=100-1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.

  8. Adjoint-based sensitivity of flames to ignition parameters in non-premixed shear-flow turbulence

    Science.gov (United States)

    Capecelatro, Jesse; Bodony, Daniel; Freund, Jonathan

    2016-11-01

    The adjoint of the linearized and perturbed compressible flow equations for a mixture of chemically reacting ideal gases is used to assess the sensitivity of ignition in non-premixed shear-flow turbulence. Direct numerical simulations are used to provide an initial prediction, and the corresponding space-time discrete-exact adjoint is used to provide a sensitivity gradient for a specific quantity of interest (QoI). Owing to the ultimately binary outcome of ignition (i.e., it succeeds or fails after some period), a QoI is defined that both quantifies ignition success and varies smoothly near its threshold based on the heat release parameter in a short-time horizon during the ignition process. We use the resulting gradient to quantify the flow properties and model parameters that most affect the initiation of a sustained flame. A line-search algorithm is used to identify regions of high ignition probability and map the boundary between successful and failed ignition. The approach is demonstrated on a non-premixed turbulent shear layer and on a reacting jet-in-crossflow.

  9. Turbulent combustion modelling of a confined premixed jet flame including heat loss effects using tabulated chemistry

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.

    2015-01-01

    The present work addresses the coupling of a flamelet database, to a low-Mach approximation of the Navier–Stokes equations using scalar controlling variables. The model is characterized by the chemistry tabulation based on laminar premixed flamelets in combination with an optimal choice of the react

  10. Buoyancy induced limits for nanoparticle synthesis experiments in horizontal premixed low-pressure flat-flame reactors

    Science.gov (United States)

    Weise, C.; Faccinetto, A.; Kluge, S.; Kasper, T.; Wiggers, H.; Schulz, C.; Wlokas, I.; Kempf, A.

    2013-06-01

    Premixed low-pressure flat-flame reactors can be used to investigate the synthesis of nanoparticles. The present work examines the flow field inside such a reactor during the formation of carbon (soot) and iron oxide (from Fe(CO)5) nanoparticles, and how it affects the measurements of nanoparticle size distribution. The symmetry of the flow and the impact of buoyancy were analysed by three-dimensional simulations and the nanoparticle size distribution was obtained by particle mass spectrometry (PMS) via molecular beam sampling at different distances from the burner. The PMS measurements showed a striking, sudden increase in particle size at a critical distance from the burner, which could be explained by the flow field predicted in the simulations. The simulation results illustrate different fluid mechanical phenomena which have caused this sudden rise in the measured particle growth. Up to the critical distance, buoyancy does not affect the flow, and an (almost) linear growth is observed in the PMS experiments. Downstream of this critical distance, buoyancy deflects the hot gas stream and leads to an asymmetric flow field with strong recirculation. These recirculation zones increase the particle residence time, inducing very large particle sizes as measured by PMS. This deviation from the assumed symmetric, one-dimensional flow field prevents the correct interpretation of the PMS results. To overcome this problem, modifications to the reactor were investigated; their suitability to reduce the flow asymmetry was analysed. Furthermore, 'safe' operating conditions were identified for which accurate measurements are feasible in premixed low-pressure flat-flame reactors that are transferrable to other experiments in this type of reactor. The present work supports experimentalists to find the best setup and operating conditions for their purpose.

  11. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame

    KAUST Repository

    Attili, Antonio

    2014-07-01

    The formation, growth, and transport of soot is investigated via large scale numerical simulation in a three-dimensional turbulent non-premixed n-heptane/air jet flame at a jet Reynolds number of 15,000. For the first time, a detailed chemical mechanism, which includes the soot precursor naphthalene and a high-order method of moments are employed in a three-dimensional simulation of a turbulent sooting flame. The results are used to discuss the interaction of turbulence, chemistry, and the formation of soot. Compared to temperature and other species controlled by oxidation chemistry, naphthalene is found to be affected more significantly by the scalar dissipation rate. While the mixture fraction and temperature fields show fairly smooth spatial and temporal variations, the sensitivity of naphthalene to turbulent mixing causes large inhomogeneities in the precursor fields, which in turn generate even stronger intermittency in the soot fields. A strong correlation is apparent between soot number density and the concentration of naphthalene. On the contrary, while soot mass fraction is usually large where naphthalene is present, pockets of fluid with large soot mass are also frequent in regions with very low naphthalene mass fraction values. From the analysis of Lagrangian statistics, it is shown that soot nucleates and grows mainly in a layer close to the flame and spreads on the rich side of the flame due to the fluctuating mixing field, resulting in more than half of the total soot mass being located at mixture fractions larger than 0.6. Only a small fraction of soot is transported towards the flame and is completely oxidized in the vicinity of the stoichiometric surface. These results show the leading order effects of turbulent mixing in controlling the dynamics of soot in turbulent flames. Finally, given the difficulties in obtaining quantitative data in experiments of turbulent sooting flames, this simulation provides valuable data to guide the development of

  12. Pressure dependence of NO formation in laminar fuel-rich premixed CH4/air flames

    NARCIS (Netherlands)

    van Essen, V. M.; Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    Effects of pressure on NO formation in CH4/air flames at a fixed equivalence ratio of 1.3 are investigated. The axial profiles of temperature, OH, CH, and NO mole fractions are measured using laser-induced fluorescence and compared with one-dimensional flame calculations. The measured and calculated

  13. Dynamics of bluff-body-stabilized premixed hydrogen/air flames in a narrow channel

    KAUST Repository

    Lee, Bok Jik

    2015-06-01

    Two-dimensional direct numerical simulations were conducted for bluff-body stabilized flames of a lean hydrogen/air mixture at near-blowoff conditions in a meso-scale channel. Parametric simulations were conducted by incrementally varying the inflow velocity in the vicinity of the blowoff limit, and the corresponding flame response was monitored. The present study is a showcase of combustion DNS with embedded boundary representation, and full demonstration of the detailed visualization of the near-blowoff flame characteristics. As the inflow velocity approaches blowoff limit, the flame dynamics exhibit a complex sequence of events, such as periodic local extinction and recovery, and regrowth of the bulk flame by the flame segments attached behind the bluff-body. The total extinction is observed as the attached flames shrink down and are no longer able to regrow the bulk flames. Despite the disparity in the physical scale under study, the observed sequence of the extinction pathway shows a strong similarity with experimental observations at larger scale combustion systems. © 2015 The Combustion Institute.

  14. Modification of premixed combustion in shear layers by grid turbulence

    Institute of Scientific and Technical Information of China (English)

    MU Kejin; WANG Yue; ZHANG Zhedian; NIE Chaoqun

    2007-01-01

    The influence of grid turbulence on the shear layer of a jet and the premixed flames embedded in it was investigated in the present study. The velocity field of the jet was measured by using hot-wire anemometry. It was found that grid turbulence reduced turbulence intensities in the shear layer and suppressed low frcquency fluctuation. Moreover, the energy contained in small-scale fluctuation was increased and turbulence became homogeneous. The results indicate that grid turbulence inhibits the formation of a large-scale coherent structure in the shear layer. Flame temperature was measured by using a compensated free-wire thermocouple. It was found that grid turbulence reduced low frequency fluctuation of thc flame fronts, increased the small-scale wrinkles and elevated the mean temperature of the flame zone. The results show that grid turbulence can enhance and stabilize premixed flames in shear flow.

  15. Experimental study on velocity characteristics of recirculation zone in humid air non-premixed flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To examine the effect of the flow field within the recirculation zone on flame structure,the characteristic velocity fields of methane/humid air flame in nonpremixed combustion behind a disc bluff-body burner were experimentally studied by particle image velocimeter (PIV).The results show that two stagnation points exist on the centerline in the recirculation zone flame.However,the distance of the two stagnation points in humid air combustion shortens,and the minimal dimensionless velocity increases compared with the conventional nonhumid air combustion.In addition,the positional curves of the minimal velocities can be partitioned into three phases representing three different flame patterns.The analysis of axial minimal velocities on the centerline and their positions under different co-flow air velocity conditions reveals that fuel-to-air velocity ratio is the crucial parameter that governs humid air combustion flame characteristics.

  16. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  17. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna A.

    2016-07-16

    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization of the flame in a V-shape or an M-shape geometry, over a central stainless steel rod. The plasma is produced by short pulses of 10-ns duration, 8-kV maximum voltage amplitude, applied at 10 kHz. The central rod is used as a cathode, while the anode is a stainless steel ring, fixed on the outer surface of the quartz tube. Plasma forcing is produced by positive or negative steps of plasma. The step response of the flame is investigated through heat release rate (HRR) fluctuations, to facilitate comparisons with flame response to acoustic perturbations. The chemiluminescence of CH* between two consecutive pulses was recorded using an intensified camera equipped with an optical filter to estimate the HRR fluctuations. First, the results show that the flame does not respond to each single plasma pulse, but is affected only by the average plasma power, confirming the step nature of the forcing. The temporal evolutions of HRR are analyzed and the flame transfer functions are determined. A forcing mechanism, as a local increase in the reactivity of the fluid close to the rod, is proposed and compared with numerical simulations. Experiments and numerical simulations are in good qualitative agreement. © 2016.

  18. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  19. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    Science.gov (United States)

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  20. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    Science.gov (United States)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  1. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.

    2016-11-11

    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  2. Experiments and Modeling of Impinging Jets and Premixed Hydrocarbon Stagnation Flames

    Science.gov (United States)

    2005-05-26

    coupling of the acoustic properties of the two jets could lead to oscillations and instabilities in the flames. Impinging-jet flames are found to be more...the Knudsen-Weber slip correction factor [see Eq. (A.10)], τS is the Stokes time, and σ = dup/dx ∼= duf /dx is the (local) velocity gradient [see...that act on a particle in a typical flow are ΣF = FPG + FFI + FUD + FG + FSD + FTP , (A.2) where FPG = ρf ρp mp duf dt (A.3) is the pressure-gradient

  3. Diffusive-thermal oscillations of rich premixed hydrogen-air flames in a microflow reactor

    Science.gov (United States)

    Miroshnichenko, Taisia; Gubernov, Vladimir; Maruta, Kaoru; Minaev, Sergei

    2016-03-01

    In this paper the dynamics of rich hydrogen-air flames in a microflow reactor with controlled temperature of the walls is investigated numerically using the thermal-diffusion model with two-step kinetics in one spatial dimension. It is found that as the parameters of the system are varied the sequence of bifurcation occurs leading to the formation of complex spatio-temporal patterns. These include pulsating, chaotic, mixed-mode and FREI (Flames with Repetitive Extinction and Ignition) oscillations. The critical parameter values for the existence of different dynamical regimes are found in terms of equivalence ratio and flow velocity.

  4. NR4.00002: Response of a laminar M-shaped premixed flame to plasma forcing

    KAUST Repository

    Lacoste, Deanna A.

    2015-07-27

    We report on the response of a lean methane-air flame to non-thermal plasma forcing. The set-up consists of an axisymmetric burner, with a nozzle made of a quartz tube of 7-mm inlet diameter. The equivalence ratio is 0.9 and the flame is stabilized in an M-shape morphology over a central stainless steel rod and the quartz tube. The plasma is produced by nanosecond pulses of 10 kV maximum voltage amplitude, applied at 10 kHz. The central rod is used as a cathode, while the anode is a stainless steel ring, fixed on the outer surface of the quartz tube. The plasma forcing is produced by bursts of plasma pulses of 1 s duration. The response of the flame is investigated through the heat release rate (HRR) fluctuations. The chemiluminescence of CH* between two consecutive pulses was recorded using an intensified camera with an optical filter to estimate the HRR fluctuations. The results show that, even though the plasma is located in the combustion area, the flame is not responding to each single plasma pulse, but is affected by the discharge burst. The plasma forcing can then be considered as a step of forcing: the beginning of a positive step corresponding to the first plasma pulse, and the beginning of a negative step corresponding to the end of the last pulse of the burst. The effects of both positive and negative steps were investigated. The response of the flame is then analyzed and viable mechanisms are discussed.

  5. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei

    2012-01-01

    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  6. Joint PDF Modelling of Local Extinction and Pollutant Formation in Non-premixed Turbulent Flames

    Science.gov (United States)

    Tang, Qing; Xu, Jun; Pope, Stephen B.

    2000-11-01

    A velocity-composition-turbulence frequency joint PDF approach is applied to model piloted methane/air turbulent diffusion flames investigated experimentally by Barlow and Frank. These flames exhibit an increasing amount of local extinction with increasing jet velocity, and are good cases to test the capabilities of turbulence-chemistry and combustion-chemistry models to account for local extinction and pollutant formation. In this study, the chemistry is an augmented reduced mechanism (19 species and 15 reaction steps) derived from the GRI2.11 detailed mechanism for methane oxidation by Sung and co-workers. The mechanism takes account of C2 chemistry, and the formation of oxides of nitrogen is treated by the inclusion of NO, NH3 and HCN. The turbulence models include the simplified Langevin model (SLM) for velocity, a stochastic model of Jayesh and Pope for turbulence frequency, the EMST model of Subramaniam and Pope for molecular mixing. The computational method for the solution of the modeled joint PDF equation features moving particles in a Lagrangian framework. The reaction calculations are performed via the in situ adaptive tabulation (ISAT) algorithm of Pope. The calculation results show good agreement with the experimental data, including the minor species NO and CO. The increase of local extinction (quantitatively characterized by a single variable - burning index) with increasing jet velocity is also accurately predicted by the calculations. It is founded that a small change of the inlet pilot temperature has a significant influence on the calculations and a systematic study has been made to investigate this sensitivity. For the flame with lowest velocity, the large influence is mainly observed close to the nozzle, while for the flame close to extinction, the calculated behavior is exquisitely sensitive to the pilot temperature, i.e., a 10K lower pilot temperature may cause global extinction.

  7. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    Science.gov (United States)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  8. Proposal of quantitative measurement of OH radical using planar laser induced fluorescence calibrated by cavity ring-down spectroscopy in turbulent premixed flames

    Science.gov (United States)

    Chen, Shuang; Tu, Xiaobo; Su, Tie; Mu, Jinhe; Yang, Furong

    2017-05-01

    Planar laser induced fluorescence (PLIF) has been a very important species analysis approach in combustion research, but is most often presented qualitatively. Therefore, another supplementary techniques are needed for quantitative PLIF measurement. In this paper, we propose a quantitative OH concentration measurement method using PLIF calibrated by cavity ring-down spectroscopy (CRDS). The CRDS measurement is firstly applied to a methane-air atmospheric pressure flame on a McKenna burner and determine the OH absolute density. Then the PLIF signal is calibrated by the determined OH concentration on the same flame under the same condition. The calibrated PLIF setup is fixed, and another PLIF setup is added to form a two-line OHPLIF thermometry to measure the 2D temperature distribution. Finally, a quantitative OH-PLIF measurement method is provided for the turbulent premixed flame on a Bunsen burner based on this setup.

  9. A study on measurement of NO concentrations in laminar premixed CH{sub 4}/O{sub 2}/N{sub 2} flames by LIF

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyung Hee University Graduate School, Seoul (Korea); Jin, S.H.; Kim, G.S. [Korea Institute of Industrial Technology, Chonan (Korea); Park, K.S. [Kyung Hee University, Seoul (Korea)

    2000-11-01

    In this study, quantitative nitric oxide concentration distributions are investigated in the post-flame zone of laminar premixed CH{sub 4}/O{sub 2}/N{sub 2} flames by laser-induced fluorescence (LIF). The measurements are taken in flames for different equivalence ratios varying from 0.8 {approx} 1.4, and flow rate is fixed as 5 slpm. The No A-X (0,0) vibrational band around 226 nm is excited using a XeCl excimer-pumped dye laser. Selecting an appropriate NO transition minimizes interferences from Rayleigh scattering and O{sub 2} fluorescence. NO concentration is rised when equivalence ratios increase at different vertical distances form nozzle tip. In any case, the maximum NO concentration reaches the maximum in reaction zone. (author). 11 refs., 9 figs., 1 tab.

  10. Gravitational Influences on Flame Propagation Through Non-Uniform Premixed Gas Systems

    Science.gov (United States)

    Miller, Fletcher J.; White, Ed; Ross, Howard D.

    1997-01-01

    We have built an apparatus for measuring flame spread rates through non-homogeneous fuel-air mixtures as a function of layer thickness and concentration. The layer thickness is adjusted by controlling the diffusion time above a fuel-saturated porous media, while the concentration is controlled by the fuel temperature. Normal gravity tests with methanol have so far explored largely the effect of temperature, as well as the effects of various aspects of the apparatus. Good agreement with previous research has been obtained. We have also demonstrated the ability of a rainbow schlieren system to quantitatively measure fuel vapor concentrations in the static case.

  11. On a Strongly Damped Wave Equation for the Flame Front

    Institute of Scientific and Technical Information of China (English)

    Claude-Michel BRAUNER; Luca LORENZI; Gregory I.SIVASHINSKY; Chuanju XU

    2010-01-01

    In two-dimensional free-interface problems,the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S).However,away from the stability threshold,the structure of the front equation may be more in-volved.In this paper,a generalized K-S equation,a nonlinear wave equation with a strong damping operator,is considered.As a consequence,the associated semigroup turns out to be analytic.Asymptotic convergence to K-S is shown,while numerical results illustrate the dynamics.

  12. EFFECTS OF SIMPLIFIED CHEMICAL KINETIC MODEL ON THE MICRO-FLAME STRUCTURE AND TEMPERATURE OF THE LEAN PREMIXED METHANE-AIR MIXTURES

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2015-07-01

    Full Text Available The effect of simplified chemical kinetic model on the micro-flame structure, central axis and wall temperatures were investigated with different one-step global chemical kinetic mechanisms following Mantel, Duterque and Fernández-Tarrazo models. Numerical investigations of the premixed methane-air flame in the micro-channel and lean conditions were carried out to compare and analyze the effect of the comprehensive chemical kinetic mechanisms. The results indicate that one-step global chemical kinetic mechanism affects both the micro-flame shape and the combustion temperature. Among three simulation models, Mantel model allows a stable micro-flame with a bamboo shoot form, which anchor at the inlet. Duterque model gives a stable elongated micro-flame with a considerable ignition delay, and a dead zone with fluid accumulation is observed at the entrance, which may explain the very high combustion temperature and the fast reaction rate obtained, despite the micro-flame development presents a very hot spot and causes a broadening of the combustion zone. Fernández-Tarrazo model results in a rapid extinction and doesn't seem to take all the kinetic behavior into account for the appropriate micro-combustion simulations.

  13. An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2013-01-01

    The dynamic response of a premixed flame stabilized on a heat-conducting perforated plate depends critically on their coupled thermal interaction. The objective of this paper is to develop an analytical model to capture this coupling. The model predicts the mean flame base standoff distance; the flame base area, curvature and speed; and the burner plate temperature given the operating conditions; the mean velocity, temperature and equivalence ratio of the reactants; thermal conductivity and the perforation ratio of the burner. This coupled model is combined with our flame transfer function (FTF) model to predict the dynamic response of the flame to velocity perturbations. We show that modeling the thermal coupling between the flame and the burner, while accounting for the two-dimensionality of the former, is critical to predicting the dynamic response characteristics such as the overshoot in the gain curve (resonant condition) and the phase delay. Good agreement with the numerical and experimental results is demonstrated over a range of conditions. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  14. Visualization and Analysis of a Hydrocarbon Premixed Flame a in Small Scale Scramjet Combustor

    Science.gov (United States)

    Cantu, Luca Maria Luigi

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight enthalpy. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature. In the same facility, OH PLIF measurements were also performed; OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulations. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical

  15. RADICAL QUENCHING OF METHANE-AIR PREMIXED FLAME IN MICROREACTORS USING DETAILED CHEMICAL KINETICS

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2015-10-01

    Full Text Available The steady hetero-/homogeneous combustion of lean methane-air mixtures in plane channel-flow microreactors was investigated numerically to elucidate the effects of wall material and initial sticking coefficient on radical quenching. Simulations were performed with a two-dimensional numerical model employing detailed reaction mechanisms to examine the interaction between heterogeneous and homogeneous reactions on platinum, alumina, quartz and copper. Comparisons among wall materials revealed that the wall chemical effect plays a vital role in the distribution of OH* radical. Homogeneous reaction of methane over platinum is significantly inhibited due to the rapid depletion of reactants on catalytic surfaces, rather than the radical adsorption. The inhibition of radical quenching on the surface of alumina is most pronounced. As the microreactor is smaller than the critical dimension of 0.7 mm, the wall chemical effect on flame characteristics becomes of great importance.

  16. On the transition from a highly turbulent curved flame into a tulip flame

    Energy Technology Data Exchange (ETDEWEB)

    Kratzel, T.; Pantow, E.; Fischer, M. [German Aerospace Research Establishment, Stuttgart (Germany). Institute of Technical Thermodynamics

    1998-12-31

    Experimental and numerical investigations of premixed flame propagation behaviour associated with vortex interactions due to planar pressure waves crossing a curved flame front have been carried out. The resulting ``tulip flame`` formation in such a closed tube has been studied by Schlieren visualization. The ``tulip flame`` phenomenon was observed only closed tubes, while cellular flame fronts appeared in half-open tubes. A physical model has been developed and implemented in a discrete vortex method combined with a flame tracking algorithm. The numerical method has been applied to model and understand the processes that cause the flame to change from a curved to a tulip shape. The results of the simulation are in good agreement with the experimental observations. (author)

  17. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    Science.gov (United States)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma

  18. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; YAN Limin; ZHANG Hao; LI Guoxiu

    2016-01-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V,0-500 Hz) and DC (0-3300 V) electric fields were studied.Ⅰ-Ⅴ curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA,the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone.At the same time,the meso-scale premixed flame conductivity 10-4-10-3 Ω-1.m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitnde estimate.Moreover,the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed,based on the combination of simulation and theoretical analysis.As a result,the electrode sheath dimension was evaluated to less than 0.5 mm,which indicatcd a complex effect of the collisiou sheath on the current measurements.The surface contamination effect of an active electrode was further analyzed using the SEM imaging method,which showed elements immigration during the contamination layer formation process.

  19. Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration

    KAUST Repository

    Luca, Stefano

    2015-03-30

    A set of lifted tribrachial n-heptane flames in a laminar jet configuration are simulated. The simulations are performed using finite rate chemistry and detailed transport, and aim at investigating the propagation of tribrachial flames. Varying the inlet velocity of the fuel, different stabilization heights are obtained, and the dependence of the stabilization height in the inlet velocity is compared with experimental data. A detailed analysis of the flame geometry is performed by comparingthe flame structure to that of unstretched premixed flames. Issues related to differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front are discussed.

  20. Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect

    KAUST Repository

    Kim, Minkuk

    2012-03-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally by applying AC electric fields at low frequency below 60. Hz together with DC in the single electrode configuration. The blowoff velocity has been measured for varying AC voltage and frequency. A transition frequency between low and high frequency regimes has been identified near 40-50. Hz, where AC electric fields have minimal effect on flame stabilization. In the low frequency regime, the blowoff velocity decreased linearly with AC voltage such that the flames became less stable. This was consistent with the DC result, implying the influence of the ionic wind effect. The variation of blowoff velocity with AC frequency showed a non-monotonic behavior in that the velocity decreased and then increased, exhibiting minimum blowoff velocity near 6-8. Hz. Based on the molecular kinetic theory, the developing degree of ionic wind was derived. By considering the ionic wind effects arising from both positive and negative ions in a flame zone, the bi-ionic wind effect successfully explained the non-monotonic behavior of blowoff velocity with AC frequency in the low frequency regime. © 2011 The Combustion Institute.

  1. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    Science.gov (United States)

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed.

  2. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  3. Flame front. Evaluation of camera based flame front control in grate furnaces regarding operation and emissions; Flamfront. Utvaerdering av drift och miljoe med hjaelp av kamerabaserad flamfrontsstyrning i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bubholz, Monika; Myringer, Aase; Nordgren, Daniel

    2007-09-15

    This project aims at showing the usability of camera based flame front control in grate furnaces regarding increased possibilities to use fuels with fluctuating moisture/quality with stable/improved levels of emissions and ash quality. A furnace camera and the human eye make the detection of the flame front movements. Further, the flame front was fixed due to an increase/decrease of the speed of the fuel feeding system. The result is to be generalised for all grate furnaces with a movable grate. During the spring 2007 two weeks of tests were executed at E.ON Heat's plant Hammargaarden at Kungsbacka. Dry and wet fuel pulses of approximately 10 m3, with moisture content of approximately 40 and 60 weights percent, were induced to the grate. At the same time, tries to ward off the flame front movement were carried through. The most important result of the tests were the following: The results is based on a relatively small number of tests and it should be considered to be more of an indication of the usefulness of the control strategy that has been investigated rather than definitive results. The results indicate that the economical and environmental benefits from using a system involving only visual detecting followed by warding off a movement of the flame front mechanically are small, and most likely hard to pay off. It is important to start to ward off the flame front as soon as it seems to be moving. In this way the flame front can be kept stable and often improved emission levels follow. A slight tendency to lower CO-emissions was observed when dry fuel pulses were warded off. When no warding off of dry fuel pulses took place, the combustion took place close to the lower part of the fuel-feeding wall. This was prevented when the dry fuel pulses were warded off. The content of unburnt carbon in ash at wet fuel pulses was lower when warding off in comparison with cases where no warding off took place. An important element of future work is, apart from using a

  4. Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions

    KAUST Repository

    Elbaz, Ayman M.

    2015-12-19

    Detailed measurements are presented of the turbulent flow field, gas species concentrations and temperature field in a non-premixed methane swirl flame. Attention is given to the effect of the quarl geometry on the flame structure and emission characteristics due to its importance in gas turbine and industrial burner applications. Two different quarls were fitted to the burner exit, one a straight quarl and the other a diverging quarl of 15° half cone angle. Stereoscopic Particle Image Velocimetry (SPIV) was applied to obtain the three components of the instantaneous velocity on a vertical plane immediately downstream of the quarl exit. Temperature and gaseous species measurements were made both inside and downstream of the quarls, using a fine wire thermocouple and sampling probe, respectively. This work provides experimental verification by complementary techniques. The results showed that although the main flame structures were governed by the swirl motion imparted to the air stream, the quarl geometry, fuel loading and air loading also had a significant effect on the flow pattern, turbulence intensity, mixture formation, temperature distribution, emissions and flame stabilization. Particularly, in the case of the straight quarl flame, the flow pattern leads to strong, rapid mixing and reduces the residence time for NO formation within the internal recirculation zone (IRZ). However, for the diverging quarl flames, the recirculation zone is shifted radially outward, and the turbulent interaction between the central fuel jet and the internal recirculation zone IRZ induces another small vortex between these two flow features. Less mixing near the diverging quarl exit is observed, with a higher concentration of NO and CO in the post-combustion zone. The instantaneous flow field for both flames showed the existence of small scale vortical structure near the shear layers which were not apparent in the time averaged flow field. These structures, along with high levels

  5. Combustion waves and fronts in flows flames, shocks, detonations, ablation fronts and explosion of stars

    CERN Document Server

    Clavin, Paul

    2016-01-01

    Combustion is a fascinating phenomenon coupling complex chemistry to transport mechanisms and nonlinear fluid dynamics. This book provides an up-to-date and comprehensive presentation of the nonlinear dynamics of combustion waves and other non-equilibrium energetic systems. The major advances in this field have resulted from analytical studies of simplified models performed in close relation with carefully controlled laboratory experiments. The key to understanding the complex phenomena is a systematic reduction of the complexity of the basic equations. Focusing on this fundamental approach, the book is split into three parts. Part I provides physical insights for physics-oriented readers, Part II presents detailed technical analysis using perturbation methods for theoreticians, and Part III recalls the necessary background knowledge in physics, chemistry and fluid dynamics. This structure makes the content accessible to newcomers to the physics of unstable fronts in flows, whilst also offering advanced mater...

  6. Numerical and experimental study of the distribution of charged species in a flat stoichiometric premixed CH4/O2/Ar flame

    KAUST Repository

    Han, Jie

    2015-03-30

    In this paper, an existing ion reaction mechanism is used to compute the distribution of charged species in a at stoichiometric premixed CH4/O2/Ar flame stabilized on top of a McKenna burner. The ion reaction rates and charged species thermodynamic data are updated according to the most recent data. A modified version of the detailed ARAMCO 1.3 reaction mechanism is used to describe the chemistry of neutral species. Because of the important role of CH in the chemi-ionization process, its prediction is improved based on the available measured data. The ability of the ion reaction mechanism to predict the distribution of positive ions is assessed by comparing to the experimental measurements performed in our group. The calculated results are qualitatively consistent with the experimental data, even though there exist quantitative differences that need to be addressed in future work.

  7. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion

    Science.gov (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul

    2015-01-01

    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  8. Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion

    KAUST Repository

    Shanbhogue, S.J.

    2016-01-01

    © 2015 The Combustion Institute. In this paper, we report results from an experimental investigation on transitions in the average flame shape (or microstructure) under acoustically coupled and uncoupled conditions in a 50 kW swirl stabilized combustor. The combustor burns CH4/H2 mixtures at atmospheric pressure and temperature for a fixed Reynolds number of 20,000 and fixed swirl angle. For both cases, essentially four different flame shapes are observed, with the transition between flame shapes occurring at the same equivalence ratio (for the same fuel mixture) irrespective of whether the combustor is acoustically coupled or uncoupled. The transition equivalence ratio depends on the fuel mixture. For the baseline case of pure methane, the combustor is stable close to the blowoff limit and the average flame in this case is stabilized inside the inner recirculation zone. As the equivalence ratio is raised, the combustor transitions to periodic oscillations at a critical equivalence ratio of φ=0.65. If hydrogen is added to the mixture, the same transition occurs at lower equivalence ratios. For all cases that we investigated, flame shapes captured using chemiluminescence imaging show that the transition to harmonic oscillations in the acoustically coupled cases is preceded by the appearance of the flame in the outer recirculation zone. We examine the mechanism associated with the transition of the flame between different shapes and, ultimately, the propagation of the flame into the outer recirculation zone as the equivalence ratio is raised. Using the extinction strain rates for each mixture at different equivalence ratios, we show that these transitions in the flame shape and in the instability (in the coupled case) for different fuel mixtures collapse as a function of a normalized strain rate : κextDU∞. We show that the results as consistent with a mechanism in which the flame must overcome higher strains prevailing in the outer recirculation zone, in order

  9. Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique

    Science.gov (United States)

    Seeger, Thomas; Jonuscheit, Joachim; Schenk, Martin; Leipertz, Alfred

    2003-12-01

    Using combined 'smeared' vibrational coherent anti-Stokes Raman spectroscopy (VCARS) and dual-broadband rotational CARS (DBB-RCARS) simultaneous measurements of temperature and relative concentrations of O 2/N 2 and CH 4/N 2 have been conducted in a fuel-rich ( φ=10), laminar, partially premixed CH 4/air-flame. The equivalence ratio was calculated from the relative concentration data determined. Using a dye laser which has been tuned to the Q-branch transitions of methane both VCARS and DBB-CARS signals were generated and detected simultaneously by a conventional DBB-RCARS-setup and a planar BOXCARS phase-matching scheme. In contrast to previous approaches, an important advantage of this technique is that no modification of the experimental setup is necessary which would increase the complexity of the system. Due to its molecular symmetry, methane can only be observed by VCARS. The DBB-RCARS approach was used to probe nitrogen and oxygen. In this way the measured signal is separated into two parts. The relative intensity of the 'smeared' VCARS signal determines the relative concentration of methane and the residual DBB-RCARS signal is evaluated by a conventional contour fit to obtain the temperature and the relative concentration of oxygen. Radial temperature and concentration profiles are measured at different downstream positions in the flame. A comparison of the obtained temperatures with previous results from spontaneous Raman scattering and filtered Rayleigh scattering indicates good agreement.

  10. High-Resolution OH and CH2O Visualization in a Premixed Cavity-Anchored Ethylene-Air Flame in a M = 0.6 Flowfield

    Science.gov (United States)

    Geipel, Clayton M.; Rockwell, Robert D.; Chelliah, Harsha K.; Cutler, Andrew D.; Spelker, Christopher A.; Hashem, Zeid; Danehy, Paul M.

    2017-01-01

    OH and CH2O were imaged in a premixed, cavity-anchored, ethylene-air turbulent flame using a high resolution planar laser-induced fluorescence (PLIF) system. The electrically-heated, continuous flow facility (UVa Supersonic Combustion Facility, Configuration E) consisted of a Mach 2 nozzle, an isolator with fuel injectors, a test section with a cavity flame holder and optical access, and an extender. Standard test conditions comprised total temperature 1200 K, total pressure 300 kPa, local equivalence ratio near 0.4, and local Mach number near 0.6. OH PLIF data was also collected for a case with reduced total temperature and another with reduced equivalence ratio. OH and CH2O were excited in separate experiments with light sheets at 283.55 nm and 352.48 nm, respectively. A light sheet of approximate thickness 25 ?m illuminated the stream-wise midplane. This plane was imaged for 120 mm downstream of the backward-facing step. The intensified camera system imaged OH with magnification 1.97, a square 6.67 mm field of view, and in-plane resolution of 39 ?m. The smallest observed OH structures observed were approximately 100 ?m wide. The CH2O PLIF image signal was much weaker; the smallest observed structures were approximately 200 ?m wide. Composite fluorescence images were computed for the observed area.

  11. Non-dispersive atomic-fluorescence spectrometry of trace amounts of bismuth by introduction of its gaseous hydride into a premixed argon (entrained air)-hydrogen flame.

    Science.gov (United States)

    Kobayashi, S; Nakahara, T; Musha, S

    1979-10-01

    A method has been developed for the determination of bismuth by generation of its gaseous hydride and introduction of the hydride into a premixed argon (entrained air)-hydrogen flame, the atomic-fluorescence lines from which are all detected by use of a non-dispersive system. The detection limit is 5 pg/ml, or 0.1 ng of bismuth, but the reagent blank found in a 20-ml sample volume was approximately 2 ng of bismuth. Analytical working curves obtained by measuring peak-heights and integrated peak-areas of the signals are linear over a range of about four orders of magnitude from the detection limit. Perchloric, phosphoric and sulphuric acids up to 2.0M concentration give no interference, but nitric acid gives slight depression of the signal. The presence of silver, gold, nickel, palladium, platinum, selenium and tellurium in 1000-fold ratio to bismuth causes pronounced depression of the signal, whereas mercury and tin slightly enhance the atomic-fluorescence signal. The method has been applied to the determination of bismuth in aluminium-base alloys and sulphide ores with use of the standard additions method. The results are in good agreement with those obtained by flame atomic-absorption spectrometry and optical emission spectrometry with an inductively coupled plasma.

  12. Study of carbonaceous nanoparticles in premixed C{sub 2}H{sub 4}-air flames and behind a spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Grotheer, Horst-Henning; Hoffmann, Kai; Wolf, Katrin; Kanjarkar, Santosh; Wahl, Claus; Aigner, Manfred [Institute of Combustion Technology, DLR, Pfaffenwaldring 38, 70569 Stuttgart (Germany)

    2009-04-15

    Nanoparticle size distributions and their concentrations were studied in atmospheric premixed ethylene/air flames using photo ionization mass spectrometry (PIMS) and total organic carbon (TOC) calibration supplemented by differential mobility analysis (DMA). Focus of this study is the evolution of nanoparticles as a function of height above burner (HAB) and of the C/O ratio of the unburned gases. It was found that especially particles of the cluster type exhibit a sharp concentration drop by more than two orders of magnitude within a narrow C/O window which is close to the sooting threshold. Using DMA a decline by two orders of magnitude was found. These results suggest that at best only small concentrations of nanoparticles should be formed significantly below the sooting threshold. As these conditions prevail in a homogeneously charged IC engine no or only very small nanoparticle emissions are expected in the exhaust gas. This was indeed found for a small Otto engine driving a power generator unit. Using flame nanoparticle profiles as standard, absolute concentrations for their emissions could be deduced. These data were supported by additional DMA measurements. The calibration using TOC did not completely match the one based on the condensation particle counter of the DMA apparatus. (author)

  13. Investigations into the Impact of the Equivalence Ratio on Turbulent Premixed Combustion Using Particle Image Velocimetry and Large Eddy Simulation Techniques: “V” and “M” Flame Configurations in a Swirl Combustor

    KAUST Repository

    Kewlani, Gaurav

    2016-03-24

    Turbulent premixed combustion is studied using experiments and numerical simulations in an acoustically uncoupled cylindrical sudden-expansion swirl combustor, and the impact of the equivalence ratio on the flame–flow characteristics is analyzed. In order to numerically capture the inherent unsteadiness exhibited in the flow, the large eddy simulation (LES) technique based on the artificial flame thickening combustion model is employed. The experimental data are obtained using particle image velocimetry. It is observed that changes in heat loading, in the presence of wall confinement, significantly influence the flow field in the wake region, the stabilization location of the flame, and the flame intensity. Specifically, increasing the equivalence ratio drastically reduces the average inner recirculation zone size and causes transition of the flame macrostructure from the “V” configuration to the “M” configuration. In other words, while the flame stabilizes along the inner shear layer for the V flame, a persistent diffuse reaction zone is also manifested along the outer shear layer for the M flame. The average chemiluminescence intensity increases in the case of the M flame macrostructure, while the axial span of the reaction zone within the combustion chamber decreases. The predictions of the numerical approach resemble the experimental observations, suggesting that the LES framework can be an effective tool for examining the effect of heat loading on flame–flow interactions and the mechanism of transition of the flame macrostructure with a corresponding change in the equivalence ratio.

  14. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  15. Computational Flame Diagnostics for Direct Numerical Simulations with Detailed Chemistry of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianfeng [Univ. of Connecticut, Storrs, CT (United States)

    2017-02-16

    The goal of the proposed research is to create computational flame diagnostics (CFLD) that are rigorous numerical algorithms for systematic detection of critical flame features, such as ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-chemistry interactions and pollutant emissions etc. The goal has been accomplished through an integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine conditions and a variety of turbulent flames with transport fuels, computational diagnostics, turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are primarily based on the chemical explosive mode analysis (CEMA) and a recently developed bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are developed through graph-based methods and timescale analysis. The flame structures, stabilization mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are unambiguously identified through CFLD. CEMA is further employed to segment complex turbulent flames based on the critical flame features, such as premixed reaction fronts, and to enable zone-adaptive turbulent combustion modeling.

  16. An experimental and kinetic modeling study of premixed NH3/CH4/O-2/Ar flames at low pressure

    DEFF Research Database (Denmark)

    Tian, Z.Y.; Li, Y. Y.; Zhang, L. D.;

    2009-01-01

    spectrometry. Mole fraction profiles of the flame species including reactants, intermediates and products are determined by scanning burner position at some selected photon energies near ionization thresholds. Temperature profiles are measured by a Pt/Pt-13%Rh thermocouple. A comprehensive kinetic mechanism...

  17. Current status of NO{sub x} prediction by conditional moment closure method for turbulent non premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Huh, K.Y. [Pohang Univ. of Science and Technology, Pohang, (Korea, Republic of). Dept. of Mechanical Engineering

    2005-07-01

    Nitrogen oxides (NO{sub x}) are one of the most strictly regulated atmospheric pollutants originating from industrial and automotive combustion processes, and the development of an accurate prediction method has become an urgent research goal in both academic and engineering communities. NO{sub x} emissions are sensitive to most design parameters and operating conditions of combustion devices, since they are controlled by both chemical kinesis and turbulent mixing. This paper presented a summary of the current status of NO{sub x} prediction by the conditional moment closure (CMC) method, as well as details of experiments conducted to validate the CMC method. Recent validation results of first and second order CMC were discussed. It was suggested that given proper information on mixture composition and boundary conditions, it is possible to make accurate predictions of NO{sub x} employing detailed chemical kinetic mechanisms for hydrocarbon oxidation and NO{sub x}, even in extreme cases with significant local extinction. Four test flames were analyzed in this experiment: piloted jet, simple jet, MILD combustion, and bluffbody flames. Results indicate that first order closure is accurate enough for most flames not far from equilibrium, while significant improvements can be made near ignition or extinction limits by second-order closure. The CMC method can be applied to predict NO{sub x} emission in many practical combustion systems involving complicated flow fields. Details of mixing calculations and turbulence models were discussed along with issues concerning flame structure determined by chemistry and scalar dissipation. It was concluded that the CMC method is more accurate than approaches based on unconditional averaging, and computationally more efficient than other transport methods. 15 refs., 6 figs.

  18. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    Science.gov (United States)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (combustion experiments.

  19. Effects of Hydrogen Enhancement in LPG/Air Premixed Flame%添加氢气对LPG/空气预混火焰结构的影响

    Institute of Scientific and Technical Information of China (English)

    王彬彬; 邱榕; 蒋勇

    2008-01-01

    针对氢气添加的LPG(液化石油气)+空气预混火焰结构进行了数值研究,详细计算了在含氢比a为O%到45%、稀释引子D为21%到16%条件下的自由蔓延火焰,得到了不同燃烧条件(φ=0.7-1.4)下的绝热燃烧速率变化规律.由于LPG中的主要成分为丙烷和丁烷,作者针对C3和C4物质提出了详细化学反应动力学系统,并针对氢气添加的丁烷燃烧过程进行了数值计算,得到了与实验相一致的结果,验证了改进的详细化学机理的有效性.此外,进一步计算了对撞双火焰的加氢LPG火焰,更加深入地探讨了火焰拉伸对燃烧稳定性和温度的影响,重点研究了φ在0.5到0.7的稀薄燃烧,验证了氢气添加可以有效提高稀薄燃烧条件下熄火拉伸率,扩大稀薄燃烧的极限,增加火焰的稳定性.%A numerical study of hydrogen-enhanced liquefied petroleum gas (LPG)+air flames was presented.The variations of the adiabatic burning velocity in different conditions of combustion(φ=0.7-1.4)were studied extensively.The hydrogen content in the fuel was varied from 0% to 45% and the dilution factor was from 21% to 16%.Since the major components of LPG are butane and propane.an appropriate chemical kinetic model must be chosen to solve the chemical reaction of C3 and C4 species.Validation of the chemical kinetic model against the fundamental combustion data was performed to insure accuracy.In addition,independem simulations were conducted in the opposed-jet,symmetric,twin-flame configuration.The effects of fluid mechanics,as manifested by the induced strain rate,were also considered.The effects of extinction strain rate on flame temperature and the fiammability limits were calculated and the results showed that hydrogen-enhanced LPG/air premixed flames were more stable at high flame strain.The lean flammability limits were extended by the H2 addition.

  20. Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame

    Science.gov (United States)

    Cléon, G.; Amodeo, T.; Faccinetto, A.; Desgroux, P.

    2011-08-01

    In this work, the two-excitation wavelength laser induced incandescence (LII) method has been applied in a low-pressure premixed methane/oxygen/nitrogen flame (equivalence ratio 2.32) to determine the variation of the ratio of the soot absorption functions at 532 nm and 1064 nm E( m,532 nm)/ E( m,1064 nm) along the flame. This method relies on the comparison of LII signals measured upon two different excitation wavelengths (here 532 nm and 1064 nm) and with laser fluences selected in such a way that the soot particles are equally laser-heated. The comparison of the laser fluences at 532 nm and 1064 nm leads to an easy determination of E( m,532 nm)/ E( m,1064 nm). The reliability of the method is demonstrated for the first time in a low pressure flame in which the soot nucleation zone can be spatially resolved and which contains soot particles acting differently with the laser fluence according to their residence time in the flame. The method is then applied to determine the profile of E( m,532 nm)/ E( m,1064 nm) along the flame. A very important decrease of this ratio is observed in the region of nascent soot, while the ratio remains constant at high distance above the burner. Implication on temperature determination from spectrally resolved measurement of flame emission is studied.

  1. Asymptotic analysis, direct numerical simulation and modeling of premixed turbulent flame-wall interaction; Etude asymptotique, simulation numerique directe et modelisation de l`interaction flamme turbulente premelangee-paroi

    Energy Technology Data Exchange (ETDEWEB)

    Bruneaux, G.

    1996-05-20

    Premixed turbulent flame-wall interaction is studied using theoretical and numerical analysis. Laminar interactions are first investigated through a literature review. This gives a characterization of the different configurations of interaction and justifies the use of simplified kinetic schemes to study the interaction. Calculations are then performed using Direct Numerical Simulation with a one-step chemistry model, and are compared with good agreements to asymptotic analysis. Flame-wall distances and wall heat fluxes obtained are compared successfully with those of the literature. Heat losses decrease the consumption rate, leading to extinction at the maximum of wall heat flux. It is followed by a flame retreat, when the fuel diffuses into the reaction zone, resulting in low unburnt hydrocarbon levels. Then, turbulent regime is investigated, using two types of Direct Numerical Simulations: 2D variable density and 3D constant density. Similar results are obtained: the local turbulent flame behavior is identical to a laminar interaction, and tongues of fresh gases are expelled from the wall region, near zones of quenching. In the 2D simulations, minimal flame-wall distances and maximum wall heat fluxes are similar to laminar values. However, the structure of the turbulence in the 3D calculations induces smaller flame-wall distances and higher wall heat fluxes. Finally, a flame-wall interaction model is built and validated. It uses the flamelet approach, where the flame is described in terms of consumption speed and flame surface density. This model is simplified to produce a law of the wall, which is then included in a averaged CFD code (Kiva2-MB). It is validated in an engine calculation. (author) 36 refs.

  2. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Science.gov (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  3. The Structure of Cool Flame Fronts of Pentane,Iso—Pentane and Their Mixture

    Institute of Scientific and Technical Information of China (English)

    Z.A.Mansurov; Ch.K.Westbrook; 等

    2000-01-01

    An experimental study of the combustion of two isomers of n-pentane and iso-pertane in laminar cool flames has been carried out.Thrree flames were studied,one with n-pentane,the second with iso-pentane,and the third with an equimolar mixture of the two isomers.Particular attention has been given to the low temperature region ahead of the hot region of the flame and the cool flame chemistry occurring there.A unique experimental facility has been used to provide access to this cool flame region.Comparison are made of the structures of the three flames,with particular attention on the different intermediate species produced and the correlations between the fuel molecule structure and the specific intermediates produced.

  4. Structure of Cool Flame Fronts of Pentane, Iso-Pentane and Their Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Mansurov, Z A; Mironenko, A A; Bodykov, D U; Rakhimetkaliev, K N; Westbrook, C K

    2000-01-11

    An experimental study of the combustion of two isomers of pentane, n-pentane and iso-pentane, in laminar cool flames has been carried out. Three flames were studied, one with n-pentane, the second with iso-pentane, and the third with an equimolar mixture of the two isomers. Particular attention has been given to the low temperature region ahead of the hot region of the flame and the cool flame chemistry occurring there. A unique experimental facility has been used to provide access to this cool flame region. Comparisons are made of the structures of the three flames, with particular attention on the different intermediate species produced and the correlations between the fuel molecule structure and the specific intermediates produced.

  5. On Self-Ignition and the Propagation of Flame Fronts on the Surfaces of Accreting Neutron Stars

    Science.gov (United States)

    Bayliss, A.; Sandquist, E. L.; Taam, R. E.

    1998-12-01

    The behavior of nuclear burning in the accreted layer of a neutron star is investigated for helium and hydrogen-helium mixtures. Attention is focused on the propagation of a thermal wave due to electron conduction or radiative diffusion in the lateral direction. The fully time-dependent calculations reveal that a steady state flame front is not necessarily applicable at high mass accretion rates (dM/dt > (dM/dt)Edd). In particular, there are parameter regimes in which a steady state structure is never attained within physically relevant timescales because the gas ahead of a front self-ignites. Hence, a thermonuclear flash may take place on a timescale unrelated to the timescale for a steady state front to propagate over a homogeneous region. The existence of irregular burst activity in highly luminous neutron star X-ray binary systems may provide some observational support for this theoretical picture.

  6. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  7. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    KAUST Repository

    Bisetti, Fabrizio

    2015-01-01

    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.

  8. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    Science.gov (United States)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  9. 甲醇抑制层流预混火焰中碳烟生成的机理%Suppression of Soot in Laminar Premixed Flames with Methanol

    Institute of Scientific and Technical Information of China (English)

    倪培永; 王忠; 王向丽; 袁银男

    2011-01-01

    Using the method of moment, a computational study is performed on the chemical mechanism of the formation of soot particles in laminar premixed methanol/ethylene/air flames. The model involves particle inception, coagulation, condensation and heterogeneous surface growth and oxidation. This mechanism involves 101 species and 543 reactions. The simulations of volume fraction and average diameter of the soot particles and mole fraction of intermediate species import for soot formation were conducted for methanol of different mole fractions. Sensitivity analysis on formation/consumption of acetylene and benzene was made. The oxygen atom transfer path in methanol molecules in the process of fuel combustion was also disclosed. The results show that methanol can effectively reduce soot, polycyclic aromatic hydrocarbons which are the precursor of soot, and the precursors of polycyclic aromatic hydrocarbons such as acetylene and propargyl. The oxygen atoms in methanol molecules transfer among methanoyl, formaldehyde, hydroxide radical, formyl, carbon monoxide and carbon dioxide.%利用矩方法研究了层流甲醇/乙烯预混火焰中碳烟颗粒形成的化学反应动力学机理.模型考虑了颗粒的成核、颗粒间的凝结与聚合、气态组分在颗粒表面的生长与氧化过程.整个机理涉及101种组分和543个基元反应.计算了不同甲醇摩尔分数时碳烟粒子体积分数、粒子直径及重要中间组分的摩尔分数,对乙炔和苯的生成/消耗进行了敏感性分析,揭示了甲醇燃烧过程中氧原子的迁移路径.计算结果表明,甲醇能有效地减少碳烟及其前驱体多环芳香烃、多环芳香烃前驱体物质(如乙炔、炔丙基等)的生成量.燃烧过程甲醇中氧原子在甲醇基、甲醛、羟基、甲醛基、一氧化碳和二氧化碳等物质中迁移.

  10. PENETRATION OF A SHOCK WAVE IN A FULLY SUPERSONIC FLAME FRONT WITH THE FORMATION OF AN EXPANSION FAN

    Directory of Open Access Journals (Sweden)

    Dan PANTAZOPOL

    2011-03-01

    Full Text Available In a previous paper [3] was treated the ,,simple penetration” of an incident shock wavethrough a fully supersonic flame front in the space of the hot burnt gases, situated in a supersonictwo-dimensional flow of an ideal homogeneous /combustible gas was treated in a previous paper [3].In the present paper takes into consideration, a configuration, in which an expansion fan is produced,is take into consideration the shock polar and expansion polar are used for the analyze of theinterference phenomena.

  11. A Contribution to Turbulent Combustion: Premixed Flames and Material Surfaces Une contribution à la combustion turbulente : flammes prémélangées et surfaces des matériaux

    Directory of Open Access Journals (Sweden)

    Nicolleau F.

    2006-11-01

    Full Text Available The behavior of premixed flames has been examined by many authors. In fact the problem of combustion which develops in a turbulent medium depends on two scalings. One makes reference to the scales of the flame the other one is related to the turbulent field. Comparisons between these two scalings allow us to identified what sort of regime is expected. In this paper we first study the development of a material surface which may be identify with a flame front under rather severe conditions. An analytical approach is first used. Hereafter a numerical simulation will be introduced. The role of a fine grained turbulence is more active on the extension of the surface than large structures. To a large extent big eddies convey the surface without distorting it. The risks of extinction are generally predicted by making comparisons between the scales of the flame and the scales of the turbulent field starting from a direct simulation. Poinçot et al show that the smallest structures are not responsible for the extinction : intermediate structures are more efficient than the smallest ones. In a previous paper the role of these structures was examined : the distorting mechanism are acting in a cumulative way. The life time of the smallest structures is too short to have them playing a decive role in the extinction process. Intermediate sized structures are less active but they strain the flame during a longer period. This idea requires a detailed description of the turbulent field. That is made possible by using the ß model which accounts for the location of turbulent structures whose ranks in the whole sequence is termed n . The cumulative role of the velocity gradients is given as a function of n . The influence of the intermediate structure on the extinction process is thereby emphasized. Finally the ß model is also used to describe the domain of distributed combustion zones. Flames propagate in limited regions of space. These regions are disconnected

  12. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  13. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes

    CERN Document Server

    Kazakov, Kirill A

    2013-01-01

    The problem of spontaneous acceleration of premixed flames propagating in open horizontal tubes with smooth walls is revisited. It is proved that in long tubes, this process can be considered quasi-steady, and an equation for the flame front position is derived using the on-shell description. Numerical solutions of this equation are found which show that as in the case of uniform flame movement, there are two essentially different regimes of flame propagation. In the type I regime, the flame speed and its acceleration are comparatively low, whereas the type II regime is characterized by significant flame acceleration that rapidly increases as the flame travels along the tube. A detailed comparison of the obtained results with the experimental data on flame acceleration in methane-air mixtures is given. In particular, it is confirmed that flames propagating in near-stoichiometric mixtures and mixtures near the limits of inflammability belong to the types II and I, respectively, whereas flames in transient mixt...

  14. Structure and dynamics of modulated traveling waves in cellular flames

    CERN Document Server

    Bayliss, A; Riecke, H

    1994-01-01

    We describe spatial and temporal patterns in cylindrical premixed flames in the cellular regime, $Le < 1$, where the Lewis number $Le$ is the ratio of thermal to mass diffusivity of a deficient component of the combustible mixture. A transition from stationary, axisymmetric flames to stationary cellular flames is predicted analytically if $Le$ is decreased below a critical value. We present the results of numerical computations to show that as $Le$ is further decreased traveling waves (TWs) along the flame front arise via an infinite-period bifurcation which breaks the reflection symmetry of the cellular array. Upon further decreasing $Le$ different kinds of periodically modulated traveling waves (MTWs) as well as a branch of quasiperiodically modulated traveling waves (QPMTWs) arise. These transitions are accompanied by the development of different spatial and temporal symmetries including period doublings and period halvings. We also observe the apparently chaotic temporal behavior of a disordered cellul...

  15. Visualization of flashback in a premixed burner with swirling flow

    Institute of Scientific and Technical Information of China (English)

    Satoshi; TANIMURA; Masaharu; KOMIYAMA; Kenichiro; TAKEISHI; Yuji; IWASAKI; Kiyonobu; NAKAYAMA

    2010-01-01

    In this study,the measurement object is a flame propagating in a premixed burner with swirling flow in order to investigate unsteady flame behavior in a gas turbine premixer.During flashback,the flame propagating upstream was visualized with a high-speed camera.Moreover,we established the technique to measure the instantaneous flow fields of unburned fuel-air mixture in a swirling premixed burner using particle image velocimetry(PIV).As a result,the characteristics of flame behavior propagating upstream were examined.And it was found that a low velocity region existed in the vicinity of the flame tip.The relationship between low velocity region and flame behavior was discussed in detail.

  16. The effects of burner stabilization on Fenimore NO formation in low-pressure, fuel-rich premixed CH4/O2/N2 flames

    NARCIS (Netherlands)

    van Essen, Vincent; Sepman, Alexey; Mokhov, A. V.; Levinsky, H. B.

    We investigate the effects of varying the degree of burner stabilization on Fenimore NO formation in fuel-rich low-pressure flat CH4/O-2/N-2 flames. Towards this end, axial profiles of flame temperature and OH, NO and CH mole fractions are measured using laser-induced fluorescence (LIF). The

  17. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  18. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures

    KAUST Repository

    Taamallah, Soufien

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the onset of thermo-acoustic instabilities and their link to the mean flame configurations - or macrostructures - under acoustically coupled and decoupled conditions. Methane-hydrogen mixtures are used to explore the role of the fuel in changing the flame macrostructure, as determined by chemilumi-nescence, as the equivalence ratio (φ) varies. We observe four different configurations: a columnar flame (I); a bubble-columnar flame (II); a single conical flame (III); and a double conical flame (IV). We also observe different thermo-acoustic modes in the lean regime investigated, φ ∈ [0.5-0.75], that correspond to different flame configurations. By changing the combustor length without affecting the underlying flow, the resonant modes of the combustor are shifted to higher frequencies allowing for the decoupling of heat release fluctuations and the acoustic field over a range of equivalence ratio. We find that the same flame macrostructures observed in the long, acoustically coupled combustor arise in the short, acoustically decoupled combustor and transition at similar equivalence ratios in both combustors. The onset of the first fully unstable mode in the long combustor occurs at similar equivalence ratio as the flame transition from configuration III to IV. In the acoustically decoupled case, this transition occurs gradually starting with the intermittent appearance of a flame in the outer recirculation zone (ORZ). Spectral analysis of this phenomenon, referred to as "ORZ flame flickering" shows the existence of an unsteady event occurring over a narrow frequency band centered around 28 Hz along with a weaker broadband region at lower frequency in the range [1-10] Hz. The tone at 28 Hz is shown to be associated with the azimuthal advection of the flame by the outer recirculation zone flow. Changes in the fuel composition, by adding hydrogen (up to 20%), do not

  19. Combustion and radiation modeling of laminar premixed flames using OpenFOAM: A numerical investigation of radiative heat transfer in the RADIADE project

    DEFF Research Database (Denmark)

    Haider, Sajjad; Pang, Kar Mun; Ivarsson, Anders

    2013-01-01

    flow and combusting flow cases. The results show that without including radiation modelling, the predicted flame temperature is higher than the measured values. P1 radiation Model is used with sub-models for absorption and emission coefficients. The model using constant values for the absorption...... and emission coefficients gave good agreement with measurements for the regions close to burner outlet. However, the weighted Sum of Gray Gas model (WSGGM) reasonably predicts the flame temperature as the flame height about the burner outlet increases....

  20. Enhancement of turbulent flame speed of V-shaped flames in fractal-grid-generated turbulence

    NARCIS (Netherlands)

    Verbeek, A.A.; Willems, P.A.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der T.H.

    2016-01-01

    A variety of fractal grids is used to investigate how fractal-grid-generated turbulence affects the turbulent flame speed for premixed flames. The grids are placed inside a rectangular duct and a V-shaped flame is stabilized downstream of the duct, using a metal wire. This flame is characterized usi

  1. Investigation on effect of syngas components and Reynolds number on premixed turbulent syngas flame structure%合成气组分及雷诺数对火焰结构影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    周雅君; 王智化; 何勇; 翁武斌; 周志军; 周俊虎; 岑可法

    2014-01-01

    利用非接触的激光PLIF技术测量了在湍流贫燃预混燃烧中的OH自由基分布。以典型煤制合成气真实组分为基础进行工况设计,分为H2含量变化、CO/(CO+CH4)相对比例变化、雷诺数变化和中低热值对比4部分进行实验。通过OH-PLIF信号分析,探讨了H2含量、CO/(CO+CH4)相对比例和雷诺数对燃烧的影响。实验结果表明,雷诺数、H2含量和CO/(CO+CH4)相对比例的变化对合成气燃烧过程都有显著的影响。其中雷诺数的增大和H2含量的增加都加强了OH-PLIF信号强度,即有利于火焰中OH自由基的生成。而CO/(CO+CH4)相对比例的上升,因同时减少了CH4含量,导致OH自由基浓度下降。H2含量的升高和CO/(CO+CH4)相对比例的上升(转折点前)对于火焰行程都有缩短的作用,强化了燃烧。转折点之后CO/(CO+CH4)相对比例的继续上升不利于燃烧。后文对裂解气火焰瞬时图像和火焰面密度的分析印证了上述规律。%The application of simultaneous single-shot imaging of OH radicals using the non-intrusive planar laser-induced fluorescence (PLIF)method to investigate lean premixed turbulent jet flame was reported.13 working conditions were designed according to real component of typi-cal air gasification coal syngas.Effect of H2 content,CO/(CO+CH4 )relative ratio and Reynolds number on flame structure were studied based on the acquired OH-planar laser-induced fluores-cence (OH-PLIF)images.And then,this method was applied to typical premixed turbulent py-rolysis syngas flame.Pyrolysis syngas contained over 80 percent combustible component,which led to a much higher calorific efficiency.Results indicated that,each of H2 content,CO/(CO+CH4 )relative ratio and Reynolds number played an important role in the formation of OH radical during combustion,therefore had an effect on combustion structure.H2 content increase and Reynolds number increase can

  2. 湍流扩散火焰局部熄火和再燃现象的PDF模拟%PDF Modeling of Local Extinction and Re-ignition Within Turbulent Non-Premixed Flame

    Institute of Scientific and Technical Information of China (English)

    王海峰; 陈义良

    2004-01-01

    对一个值班湍流CH2/O2/N2射流扩散火焰(Sandia Flame D)进行了数值模拟研究.所采用的数学物理模型包括双尺度的k-ε湍流模型,标量联合的概率密度函数(PDF)输运方程方法,甲烷氧化的ARM简化化学反应机理(包含16种组分,12步总包反应)和欧几里德最小生成树(EMST)小尺度混合模型.将计算结果和实验数据进行了比较,不仅对于平均量,对于标量的散点分布和条件概率密度分布也是如此.计算结果表明文中采用的模型不仅能够预测宏观的火焰结构,而且预测了湍流燃烧中复杂的局部熄火和再燃过程.%A piloted CH4/O2/N2 turbulent jet non-premixed flame(Sandia flame D)is numerically investigated. The summary of the adopted models contains a two-scale k - ε turbulence model, the scalar joint probability density function (PDF) transport equation approach, the augmented reduced mechanism(ARM)for methane oxidation (consisting of 16 species and 12 lumped reaction steps), the Euclidean minimum spanning tree (EMST)small scale mixing model etc. The agreements between the numerical results and the experimental data are good, including the scatter plots and conditional PDFs of scalars as well as the scalar averages.The numerical results indicate that the present models are not only able to represent the macro flame structure accurately, but also can successfully predict the complicated local extinction and re-ignition processes in the turbulent combustion.

  3. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    Science.gov (United States)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  4. Bounds for the propagation speed of combustion flames

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Joaquim [Departament de FIsica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain); Campos, Daniel [Grup de FIsica EstadIstica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Gonzalez, Josep R [Grup de Mecanica de Fluids, Departament d' Enginyeria Mecanica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain); Velayos, Joaquim [Grup de Mecanica de Fluids, Departament d' Enginyeria Mecanica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-23

    We focus on a combustion model for premixed flames based on two coupled equations determining the spatial dynamics of temperature and fuel density. We rewrite these equations as a classical reaction-diffusion model, so that we can apply some known methods for the prediction of lower and upper bounds to the front speed. The predictions are compared to simulations, which show that our new bounds substantially improve those following from the linearization method, used in the previous work of Fort et al (2000 J. Phys. A: Math. Gen. 33 6953). Radiative losses lead to pulses rather than fronts. We find a bound for their speed which (in contrast to the linearization one) correctly predicts the order of magnitude of the flame speed.

  5. Experimental Study on Combustion Characteristics of Premixed Laminar Flame for Simulated Biogas%模拟沼气预混层流燃烧特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    吴怡; 暴秀超; 黄海波

    2012-01-01

    The combustion characteristics of premixed laminar flame for simulated biogas are studied in a constant volume combus-tion bomb by using high - speed schlieren photography. The components of simulated biogas contain methane and CO2, the methane content is from 70% to 75% , CO2 content is from 25% to 30% . The burning speed and combustion pressure of simulated biogas with different components are compared with pure methane. Experimental results show that the burning speed of biogas decreases compared with pure methane because CO2 restrains flame from spreading, and the combustion process extends with the increase of CO2 propor-tion.%在定容燃烧弹上采用高速纹影系统对模拟沼气预混层流火焰的燃烧特性进行研究.模拟沼气为甲烷含量70% ~ 75%和二氧化碳含量25%~ 30%的混合气.对不同成分的模拟沼气和纯甲烷的燃烧速度及燃烧压力进行了对比分析.研究结果表明,沼气中较高含量的二氧化碳对燃烧有强烈的抑制作用,使沼气的燃烧速度与纯甲烷相比有所下降,并且随着成分中二氧化碳含量的增加,整个燃烧过程延长.

  6. Measurements and simulation of the interaction of turbulence and premixed flames; Messungen und Simulationen zur Wechselwirkung zwischen Turbulenz und vorgemischten Flammen

    Energy Technology Data Exchange (ETDEWEB)

    Durst, B.

    2000-11-01

    The interaction between turbulence and hydrogen-flames was investigated in an explosion tube. The flow velocity around single flow obstacles was measured with a laser-Doppler system and compared to the flame velocity which was recorded using photodiodes. The highest turbulence intensity (up to 10 m/s) and correspondingly the highest flame acceleration was measured in the shear layer downstream of the obstacle with the highest blockage ratio. A closure model based on probability density functions (PDF) was developed for the time averaged chemical reaction rate for the purpose of simulating turbulent combustion processes. Comparisons of the results gained from simulations using the PDF combustion modell showed good agreement with the measurements performed. [German] Die Wechselwirkung zwischen Turbulenz und Wasserstoff-Flammen wurde in einem Explosionsrohr untersucht. Die Stroemungsgeschwindigkeit wurde mit einem Laser-Doppler System an Einzelhindernissen gemessen und mit der Flammengeschwindigkeit, die mittels Photodioden erfasst wurde, verglichen. In der Scherschicht hinter dem Hindernis mit der hoechsten Blockierrate wurde die hoechste Turbulenzintensitaet (bis 10 m/s) und damit die hoechste Flammenbeschleunigung gemessen. Fuer numerische Simulationen der turbulenten Verbrennung wurde ein Schliessungsansatz fuer die zeitgemittelte chemische Reaktionsrate entwickelt, der auf Wahrscheinlichkeitsdichtefunktionen (englisch: PDF) basiert. Vergleichsrechnungen mit dem PDF-Verbrennungsmodell zeigten gute Uebereinstimmung mit den durchgefuehrten Messungen.

  7. Measurements and simulation of the interaction of turbulence and premixed flames; Messungen und Simulationen zur Wechselwirkung zwischen Turbulenz und vorgemischten Flammen

    Energy Technology Data Exchange (ETDEWEB)

    Durst, B.

    2000-11-01

    The interaction between turbulence and hydrogen-flames was investigated in an explosion tube. The flow velocity around single flow obstacles was measured with a laser-Doppler system and compared to the flame velocity which was recorded using photodiodes. The highest turbulence intensity (up to 10 m/s) and correspondingly the highest flame acceleration was measured in the shear layer downstream of the obstacle with the highest blockage ratio. A closure model based on probability density functions (PDF) was developed for the time averaged chemical reaction rate for the purpose of simulating turbulent combustion processes. Comparisons of the results gained from simulations using the PDF combustion modell showed good agreement with the measurements performed. [German] Die Wechselwirkung zwischen Turbulenz und Wasserstoff-Flammen wurde in einem Explosionsrohr untersucht. Die Stroemungsgeschwindigkeit wurde mit einem Laser-Doppler System an Einzelhindernissen gemessen und mit der Flammengeschwindigkeit, die mittels Photodioden erfasst wurde, verglichen. In der Scherschicht hinter dem Hindernis mit der hoechsten Blockierrate wurde die hoechste Turbulenzintensitaet (bis 10 m/s) und damit die hoechste Flammenbeschleunigung gemessen. Fuer numerische Simulationen der turbulenten Verbrennung wurde ein Schliessungsansatz fuer die zeitgemittelte chemische Reaktionsrate entwickelt, der auf Wahrscheinlichkeitsdichtefunktionen (englisch: PDF) basiert. Vergleichsrechnungen mit dem PDF-Verbrennungsmodell zeigten gute Uebereinstimmung mit den durchgefuehrten Messungen.

  8. Chaos in an imperfectly premixed model combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kabiraj, Lipika, E-mail: lipika.kabiraj@tu-berlin.de; Saurabh, Aditya; Paschereit, Christian O. [Hermann Föttinger Institut, Technische Universität Berlin (Germany); Karimi, Nader [School of Engineering, University of Glasgow (United Kingdom); Sailor, Anna [University of Wisconsin-Madison, Madison 53706 (United States); Mastorakos, Epaminondas; Dowling, Ann P. [Department of Engineering, University of Cambridge (United Kingdom)

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  9. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E.; Coy, E.B.

    1996-03-01

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  10. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  11. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  12. Simulations of premixed combustion in porous media

    Science.gov (United States)

    Diamantis, D. J.; Mastorakos, E.; Goussis, D. A.

    2002-09-01

    A numerical model for planar premixed flames of methane in ceramic porous media has been developed to improve the understanding of the structure of such flames. The model successfully reproduces experimental data for both single- and two-layer surface flames. The success is attributed to the detail given to the boundary conditions and the radiation modelling, which was done by solving the radiation transfer equation inside the porous medium without any simplifying models. Surface-stabilized flames yielded SL/SL01 and their energy balance was similar to that of a free flame, which implies that the burning velocity acceleration is due to the reactant preheat. The flame solutions were further analysed with concepts from the computational singular perturbation method to construct reduced mechanisms. For all types of combustion (surface or submerged), an almost identical ordering of chemistry timescales to free flames was found and previously developed reduced mechanisms for free flames were accurate also for the flames inside the porous medium. The results suggest that the thermal exchange between the two phases that is responsible for the flame behaviour remains decoupled from the fast part of the chemistry.

  13. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy

    Science.gov (United States)

    Chen, Shuang; Su, Tie; Li, Zhong-Shan; Bai, Han-Chen; Yan, Bo; Yang, Fu-Rong

    2016-10-01

    An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence (LIF) methods is developed to quantitatively measure the concentrations of hydroxyl in CH4/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338), the Science and Technology on Scramjet Key Laboratory Funding, China (Grant No. STSKFKT 2013004), and the China Scholarship Council.

  14. Flame dynamics in a micro-channeled combustor

    Science.gov (United States)

    Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  15. Large eddy simulation of bluff body stabilized premixed and partially premixed combustion

    Science.gov (United States)

    Porumbel, Ionut

    Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The main goal of the thesis is the study of the equivalence ratio effect on flame stability and dynamics in premixed and partially premixed flames. An LES numerical algorithm able to handle the entire range of combustion regimes and equivalence ratios is developed for this purpose. The algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions, without user intervention. Algorithm validation is achieved by conducting LES of reactive and non-reactive flow. Comparison with experimental data shows good agreement for both mean and unsteady flow properties. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. In LEMLES, the reaction-diffusion equation is not filtered, but resolved on a linear domain and the model maintains validity. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface when compared to EBULES. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction, the flame structure shows higher complexity, and the far field spreading of the wake is closer to the experimental observations. Three premixed (φ = 0.6, 0.65, and 0.75) cases are simulated. As expected, for the leaner case (φ = 0.6) the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case (φ = 0.75), the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release. The ignition

  16. Microgravity experiments and numerical studies on ethanol/air spray flames

    Science.gov (United States)

    Thimothée, Romain; Chauveau, Christian; Halter, Fabien; Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno

    2017-01-01

    same order of magnitude as that of the single-phase premixed flame. On the other hand, the numerical results exhibit the role played by the droplet radius in spray-flame propagation, and retrieve the experiments only when the droplets are small enough and when the Darrieus-Landau instability is triggered. A final discussion is developed to interpret the various patterns experimentally observed for the spray-flame front.

  17. High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame

    Science.gov (United States)

    Kojima, Jun; Fischer, David

    2013-01-01

    We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.

  18. A study of the propagation, dynamics, and extinguishment of cellular flames using microgravity techniques

    Science.gov (United States)

    Ronney, Paul D.

    1989-01-01

    The characteristics of premixed gas flames in mixtures with low Lewis numbers, free of natural convection effects, were investigated and found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. As a result of these phenomena, well-defined flammability limits were not observed. The experimental results are found to be in qualitative agreement with a simple analytical model based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and heat losses due to gas radiation.

  19. 甲醇对正庚烷层流预混火焰影响的实验研究%Experimental Study of the Effect of Methanol on the n-Heptane Premixed Laminar Flame

    Institute of Scientific and Technical Information of China (English)

    许汉君; 姚春德; 徐广兰; 阳向兰; 杨玖重; 王占东

    2011-01-01

    利用低压层流预混火焰结合同步辐射真空紫外光电离技术和分子束取样质谱技术,探测到并计算了甲醇摩尔掺混比为0%、11%、28%和50%的甲醇/正庚烷/氧气/氩气火焰中62种燃烧中间产物和最终产物的摩尔分数.结果发现,甲醇的加入对正庚烷的消耗速率和大分子裂解没有影响,其主要作用表现在对C1和C2小分子摩尔分数的影响.甲醇的氧化速率比正庚烷快,故用甲醇替换一部分正庚烷后,整体氧化速率加快.甲醇的加入对甲基、乙炔、乙基、乙烷、乙烯酮有抑制作用,对甲醛和乙醛有促进作用.研究结果为今后机理验证模拟提供了实验依据.%An experimental study of the low pressure premixed laminar methanol/n-heptane/oxygen/argon flame with the methanol mole fraction blend ratio of 0%, 11%, 28%, 50% was performed with the tunable synchrotron vacuum ultra-violet (VUV) photoionization and molecular-beam sampling mass spectrometry. 62 kinds of combustion intermediates and final products were detected as well as their mole fractions. The results show that the consumption rate of n-heptane and the dissociation of large molecular are not impacted by the methanol addition, the effect of methanol behaviors at the small C1 and C2 moleculars. The oxidation rate of methanol is larger than that of n-heptane, so with the methanol addition increase, the overall reaction rate increases. At the same time the equivalent concentrations of methyl, acetylene, ethyl, ethane and ketene decrease with the increase of methanol but formaldehyde and acetaldehyde increase. The experiment provides the valuable data for the validation of mechanism in the future.

  20. Flame wrinkles from the Zhdanov–Trubnikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Joulin, Guy, E-mail: guy.joulin@lcd.ensma.fr [Institut P-prime, UPR 3346 CNRS, ENSMA, Université de Poitiers, 1 rue Clément Ader, B.P. 40109, 86961 Futuroscope Cedex, Poitiers (France); Denet, Bruno, E-mail: bruno.denet@irphe.univ-mrs.fr [Aix-Marseille Univ., IRPHE, UMR 7342 CNRS, Technopole de Château-Gombert, 49 rue Joliot-Curie, 13384 Marseille Cedex 13 (France)

    2012-04-30

    The Zhdanov–Trubnikov equation describing wrinkled premixed flames is studied, using pole decompositions as starting points. Its one-parameter (−1⩽c⩽+1) nonlinearity generalises the Michelson–Sivashinsky equation (c=0) to a stronger Darrieus–Landau instability. The shapes of steady flame crests (or periodic cells) are deduced from Laguerre (or Jacobi) polynomials when c≈−1, which numerical resolutions confirm. Large wrinkles are analysed via a pole density: adapting results of Dunkl relates their shapes to the generating function of Meixner–Pollaczek polynomials, which numerical results confirm for −10 (over-stabilisation) such analytical solutions can yield accurate flame shapes for 0⩽c⩽0.6. Open problems are invoked. -- Highlights: ► We study a 1-parameter (c) nonlinear integral equation and get flame-wrinkle shapes. ► Pole decompositions of the front slope (periodic or not) are used as a basis. ► In limiting cases we relate the flame shapes to Laguerre or Jacobi polynomials. ► Linear integral equations for pole densities give accurate large-wrinkle shapes if c<0. ► Though locally singular the shapes so obtained for c>0 can be fairly accurate.

  1. Propagation Limits of High Pressure Cool Flames

    Science.gov (United States)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  2. Presumed PDF Modeling of Early Flame Propagation in Moderate to Intense Turbulence Environments

    Science.gov (United States)

    Carmen, Christina; Feikema, Douglas A.

    2003-01-01

    The present paper describes the results obtained from a one-dimensional time dependent numerical technique that simulates early flame propagation in a moderate to intense turbulent environment. Attention is focused on the development of a spark-ignited, premixed, lean methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. A Monte-Carlo particle tracking method, based upon the method of fractional steps, is utilized to simulate the phenomena represented by a probability density function (PDF) transport equation. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on three primary parameters that influence the initial flame kernel growth: the detailed ignition system characteristics, the mixture composition, and the nature of the flow field. The computational results of moderate and intense isotropic turbulence suggests that flames within the distributed reaction zone are not as vulnerable, as traditionally believed, to the adverse effects of increased turbulence intensity. It is also shown that the magnitude of the flame front thickness significantly impacts the turbulent consumption flame speed. Flame conditions studied have fuel equivalence ratio s in the range phi = 0.6 to 0.9 at standard temperature and pressure.

  3. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    Science.gov (United States)

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  4. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck

    2013-08-01

    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  5. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    Science.gov (United States)

    2015-06-01

    dynamic adaptive hybrid integration, was developed for stiff chemistry. 15. SUBJECT TERMS chemical explosive mode analysis ( CEMA ...TECHNICAL DISCUSSION 1. Chemical explosive mode analysis ( CEMA ) for computational flame diagnostics The method of chemical explosive mode...analysis ( CEMA ) is a systematic approach to identify limit flame phenomena, including local ignition, extinction, and premixed and non- premixed reaction

  6. Premixed Combustion of Coconut Oil on Perforated Burner

    OpenAIRE

    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi

    2013-01-01

    Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ) varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL) is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ ...

  7. Large eddy simulation of unsteady lean stratified premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Duwig, C. [Division of Fluid Mechanics, Department of Energy Sciences, Lund University, SE 221 00 Lund (Sweden); Fureby, C. [Division of Weapons and Protection, Warheads and Propulsion, The Swedish Defense Research Agency, FOI, SE 147 25 Tumba (Sweden)

    2007-10-15

    Premixed turbulent flame-based technologies are rapidly growing in importance, with applications to modern clean combustion devices for both power generation and aeropropulsion. However, the gain in decreasing harmful emissions might be canceled by rising combustion instabilities. Unwanted unsteady flame phenomena that might even destroy the whole device have been widely reported and are subject to intensive studies. In the present paper, we use unsteady numerical tools for simulating an unsteady and well-documented flame. Computations were performed for nonreacting, perfectly premixed and stratified premixed cases using two different numerical codes and different large-eddy-simulation-based flamelet models. Nonreacting simulations are shown to agree well with experimental data, with the LES results capturing the mean features (symmetry breaking) as well as the fluctuation level of the turbulent flow. For reacting cases, the uncertainty induced by the time-averaging technique limited the comparisons. Given an estimate of the uncertainty, the numerical results were found to reproduce well the experimental data in terms both of mean flow field and of fluctuation levels. In addition, it was found that despite relying on different assumptions/simplifications, both numerical tools lead to similar predictions, giving confidence in the results. Moreover, we studied the flame dynamics and particularly the response to a periodic pulsation. We found that above a certain excitation level, the flame dynamic changes and becomes rather insensitive to the excitation/instability amplitude. Conclusions regarding the self-growth of thermoacoustic waves were drawn. (author)

  8. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  9. Influence Factors of Carbon Nanotubes Synthesis via Acetylene/Air Premixed Flame%乙炔/空气预混火焰合成碳纳米管的影响因素

    Institute of Scientific and Technical Information of China (English)

    张倚; 潘剑锋; 杨辉; 卢青波; 唐爱坤

    2015-01-01

    火焰法制备碳纳米管的过程中存在许多影响因素.使用涂覆硝酸镍(NiNO3)溶液的紫铜片作取样基板,通过改变取样时间及催化剂溶液浓度进行实验研究,对合成出的产物使用扫描电镜及投射电镜进行表征,发现延长取样时间或增加催化剂溶液的浓度会导致管径的增大,降低碳纳米管的质量,最终得到催化剂浓度为0.1,mol/L,取样时间为5,min时,生成的碳纳米管质量较好,且数量较多.利用CFD软件对燃烧区域进行数值模拟,分析了合成区域的流场、温度场及碳浓度分布,流场影响了组分停留时间,温度场和碳的浓度影响了碳纳米管的生长速度和碳原子的供给速度,三者对碳纳米管的质量具有重要影响,在合成温度800~1,100,K的范围内,降低温度及碳原子浓度有利于提高碳纳米管的质量.%There are many influence factors in the process of carbon nanotubes synthesis via acetylene/air premixed flame. The copper piece coated with nickel nitrate(NiNO3)was used as sampling substrate. Experimental study was conducted by changing sampling time and the concentration of the catalyst solution,respectively. The synthesized products were characterized by scanning electron microscopy and transmission electron microscopy. It was found that extending sampling time or increasing the concentration of the catalyst solution would cause the increase of diameter and the lowing of quality. When the concentration of the catalyst is 0.1,mol/L and the sampling time is 5,min,the carbon nanotubes of higher quality and larger quantities can be obtained. The combustion area was numerically calcu-lated by CFD software and flow field,temperature field and carbon concentration distribution were analyzed. Flow field affects the residence time of the component,and temperature and the concentration of carbon affect the growth rate of carbon nanotubes and the supply rate of carbon atoms. The

  10. Computational aspects of premixing modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, D.F. [Sydney Univ., NSW (Australia). Dept. of Chemical Engineering; Witt, P.J.

    1998-01-01

    In the steam explosion research field there is currently considerable effort being devoted to the modelling of premixing. Practically all models are based on the multiphase flow equations which treat the mixture as an interpenetrating continuum. Solution of these equations is non-trivial and a wide range of solution procedures are in use. This paper addresses some numerical aspects of this problem. In particular, we examine the effect of the differencing scheme for the convective terms and show that use of hybrid differencing can cause qualitatively wrong solutions in some situations. Calculations are performed for the Oxford tests, the BNL tests, a MAGICO test and to investigate various sensitivities of the solution. In addition, we show that use of a staggered grid can result in a significant error which leads to poor predictions of `melt` front motion. A correction is given which leads to excellent convergence to the analytic solution. Finally, we discuss the issues facing premixing model developers and highlight the fact that model validation is hampered more by the complexity of the process than by numerical issues. (author)

  11. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  12. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun

    2017-07-03

    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  13. Control of the flame front advance in a sintering bed of iron ores; Control del avance del frente de llama en el lecho de sinterizacion de minerales de hierro

    Energy Technology Data Exchange (ETDEWEB)

    Cores, A.; Mochon, J.; Ruiz-Bustinza, I.; Parra, R.

    2010-07-01

    A sintering pan of 40 cm cubed is loaded with a mixture of iron ores, limestone and coke weighing 110 kg in a sintering pilot plant. In this sintering pan, a series of thermocouples have been introduced at different depths. Tests have been carried out to study the width of the combustion zone and the maximum temperature of the flame front across the sintering bed. For the analysis of the results, a data acquisition system was used. This consisted of two modules connected in serie, for performing the analogue-digital conversion. The analogue entry point is the exit point of the thermocouples and the digital exit point was the temperature average. A computer was used for conserving and storing the data and for carrying out interpolations, simulating the state and evolution of the flame front across the bed. (Author) 21 refs.

  14. Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames

    Science.gov (United States)

    Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin

    2017-05-01

    Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.

  15. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Noel [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  16. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  17. Flame Reconstruction Using Synthetic Aperture Imaging

    CERN Document Server

    Murray, Preston; Tree, Dale; Truscott, Tadd

    2011-01-01

    Flames can be formed by burning methane (CH4). When oxygen is scarce, carbon particles nucleate into solid particles called soot. These particles emit photons, making the flame yellow. Later, methane is pre-mixed with air forming a blue flame; burning more efficiently, providing less soot and light. Imaging flames and knowing their temperature are vital to maximizing efficiency and validating numerical models. Most temperature probes disrupt the flame and create differences leading to an inaccurate measurement of the flame temperature. We seek to image the flame in three dimensions using synthetic aperture imaging. This technique has already successfully measured velocity fields of a vortex ring [1]. Synthetic aperture imaging is a technique that views one scene from multiple cameras set at different angles, allowing some cameras to view objects that are obscured by others. As the resulting images are overlapped different depths of the scene come into and out of focus, known as focal planes, similar to tomogr...

  18. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Elliot Sullivan- [Univ. of California, Irvine, CA (United States); McDonell, Vincent G. [Univ. of California, Irvine, CA (United States)

    2014-12-01

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  19. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Elliot; McDonell, Vincent

    2015-03-31

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  20. Free Radical Imaging Techniques Applied to Hydrocarbon Flames Diagnosis

    Institute of Scientific and Technical Information of China (English)

    A. Caldeira-Pires

    2001-01-01

    This paper evaluates the utilization of free radical chemiluminescence imaging and tomographic reconstruction techniques to assess advanced information on reacting flows. Two different laboratory flow configurations were analyzed, including unconfined non-premixed jet flame measurements to evaluate flame fuel/air mixing patterns at the burner-port of a typical glass-furnace burner. The second case characterized the reaction zone of premixed flames within gas turbine combustion chambers, based on a laboratory scale model of a lean prevaporized premixed (LPP) combustion chamber.The analysis shows that advanced imaging diagnosis can provide new information on the characterization of flame mixing and reacting phenomena. The utilization of local C2 and CH chemiluminescence can assess useful information on the quality of the combustion process, which can be used to improve the design of practical combustors.

  1. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  2. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  3. Radical recombinations in acetylene-air flames

    NARCIS (Netherlands)

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    1965-01-01

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to th

  4. Premixed Combustion of Kapok (ceiba pentandra) seed oil on Perforated Burner

    OpenAIRE

    I.K.G. Wirawan; I. N. G. Wardana; Rudy Soenoko; Slamet Wahyudi

    2014-01-01

    Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra) seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ) varie...

  5. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  6. Transient combustion modeling of an oscillating lean premixed methane/air flam

    NARCIS (Netherlands)

    Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar

    2009-01-01

    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions

  7. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  8. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  9. 滞止火焰场中TiO2颗粒的烧结特征研究%Sintering Behavior of TiO2 Particles in a Premixed Stagnation Flame

    Institute of Scientific and Technical Information of China (English)

    王俊晶; 陶雨洁; 张易阳; 邓斯理; 李水清; 姚强

    2011-01-01

    由于对颗粒粒径分布和晶型的显著影响,纳米TiO2颗粒的烧结特征在滞止火焰合成工艺中至关重要.本文通过插入式热泳采样和对合成时间的调控,对颗粒在火焰中和滞止板上的烧结特征进行了研究,进而利用颗粒群平衡模型结合表面积线性衰减理论,对火焰中颗粒的团聚和滞止板上沉积颗粒的粒径分布进行了理论分析预测,其结果与实验结果相吻合.%The sintering of nano-sized titania particles plays an important role in stagnation flame synthesis process, which greatly affects particles size distribution and crystal phase. In this paper, by using insert particle thermophcresis sampler, the sintering behavior of titania particles both above and on the substrate are investigated under conditions of various synthesis time. A linear rate law for the decay of surface area between binary particles are embeded in the population balance model to predict particle coagulation in the flame and then size distribution of particles collected on the substrate, which fits well with the experimental observation.

  10. Premixer Design for High Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the

  11. Effect of fuel mixture fraction and velocity perturbations on the flame transfer function of swirl stabilized flames

    Science.gov (United States)

    Wysocki, Stefan; Di-Chiaro, Giacomo; Biagioli, Fernando

    2015-11-01

    A novel methodology is developed to decompose the classic Flame Transfer Function (FTF) used in the thermo-acoustic stability analysis of lean premix combustors into contributions of different types. The approach is applied, in the context of Large Eddy Simulation (LES), to partially-premixed and fully-premixed flames, which are stabilized via a central recirculation zone as a result of the vortex breakdown phenomenon. The first type of decomposition is into contributions driven by fuel mixture fraction and dynamic velocity fluctuations. Each of these two contributions is further split into the components of turbulent flame speed and flame surface area. The flame surface area component, driven by the pure dynamic velocity fluctuation, which is shown to be a dominant contribution to the overall FTF, is also additionally decomposed over the coherent flow structures using proper orthogonal decomposition. Using a simplified model for the dynamic response of premixed flames, it is shown that the distribution of the FTF, as obtained from LES, is closely related to the characteristics of the velocity field frequency response to the inlet perturbation. Initially, the proposed method is tested and validated with a well characterized laboratory burner geometry. Subsequently, the method is applied to an industrial gas turbine burner.

  12. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  13. Pulsating instability and self-acceleration of fast turbulent flames

    CERN Document Server

    Poludnenko, A Y

    2015-01-01

    (Abridged) A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully-resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damk\\"ohler numbers Da = 0.1-6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. 1) Turbulent flame speed develops pulsations with the observed peak-to-peak amplitude > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. 2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when the flame s...

  14. Effects Of Ignition on Premixed Vortex Rings: A Simultaneous PLIF and PIV Investigation

    Science.gov (United States)

    Meyer, T. R.; Gord, J. R.; Katta, V. R.; Gogineni, S. P.

    2001-11-01

    Preliminary studies of reacting, premixed vortex rings have shown that flame propagation is highly sensitive to ignition timing, equivalence ratio, and vortex strength. A variety of divergent phenomena have been observed, such as interior/exterior flame propagation, vortex-induced flame bridging across the jet column, and the formation of unburned pockets. In the current work, planar laser-induced fluorescence (PLIF) of acetone and OH is performed to study the non-reacting and reacting regions, respectively, and particle image velocimetry (PIV) is used to study the effects of reaction on the flow field. The flow field consists of well-characterized vortex rings of premixed methane and air generated at the exit of an axisymmetric nozzle using a solenoid-driven piston. Ignition is initiated at various phases of vortex development and propagation. Results are compared with corresponding numerical simulations from a time-dependent computational fluid dynamics code with chemistry.

  15. Highly Turbulent Counterflow Flames: A Laboratory Scale Benchmark for Practical Combustion Systems

    Science.gov (United States)

    Gomez, Alessandro

    2013-11-01

    Since the pioneering work of Weinberg's group at Imperial College in the `60s, the counterflow system has been the workhorse of laminar flame studies. Recent developments have shown that it is also a promising benchmark for highly turbulent (Ret ~ 1000) nonpremixed and premixed flames of direct relevance to gasturbine combustion. Case studies will demonstrate the versatility of the system in mimicking real flame effects, such as heat loss and flame stratification in premixed flames, and the compactness of the combustion region. The system may offer significant advantages from a computational viewpoint, including: a) aerodynamic flame stabilization near the interface between the two opposed jets, with ensuing simplifications in the prescription of boundary conditions; b) a fiftyfold reduction of the domain of interest as compared to conventional nonpremixed jet flames at the same Reynolds number; and c) millisecond mean residence times, which is particularly useful for DNS/LES computational modeling, and for soot suppression in the combustion of practical fuels.

  16. Experimental study and modeling of CH{sub 4}/O{sub 2}/Ar and C{sub 2}H{sub 6}/O{sub 2}/Ar pre-mixing laminar flames; Etude experimentale et modelisation de flammes laminaires de premelange CH{sub 4}/O{sub 2}/Ar et C{sub 2}H{sub 6}/O{sub 2}/Ar

    Energy Technology Data Exchange (ETDEWEB)

    Crunelle, B.; Desgroux, P.; Pauwels, J.F. [Lille-1 Univ., 59 - Villeneuve-d`Ascq (France). Laboratoire de Cinetique et Chimie de la Combustion URA-CNRS

    1996-12-31

    New studies are always needed to better determine the physico-chemical processes involved in the combustion of natural gas. The understanding of the reaction mechanisms that lead to the formation of nitrogen oxides or volatile organic compounds requires to identify the inner mechanisms which take place during combustion and in particular the mechanisms of formation of intermediate products. The aim of this study is to analyze the thermal degradation of methane and ethane in low pressure pre-mixed stabilized laminar flames condition, because both of these compounds represent the major part of natural gas composition. The main chemical reaction ways identified in the studied flames and responsible for combustion have been identified after a comparison between experimental results and the computerized simulation performed using an a-priori postulated chemical mechanism. This study stresses on the transfer reaction schemes between the different C1, C2 and C3 oxidation ways which play an important role in the formation of intermediate hydrocarbons. (J.S.) 13 refs.

  17. Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames

    KAUST Repository

    Guiberti, Thibault F.

    2016-11-08

    This paper presents a comprehensive study of the effects of pilot parameters on flame stability in a turbulent jet flame. The Sydney inhomogeneous piloted burner is employed as the experimental platform with two main fuels, namely, compressed natural gas and liquefied petroleum gas. Various concentrations of five gases are used in the pilot stream, hydrogen, acetylene, oxygen, nitrogen, and argon, to enable a sufficient range in exploring the following parameters: pilot heat release, temperature, burnt gas velocity, equivalence ratio, and H/C ratio. The experimental results are mainly presented in the form of blow-off limits and supported by simple calculations, which simulate various conditions of the pilot–mixture interface. It is found that increasing the pilot adiabatic flame temperature benefits the flame stability and has an even greater influence than the heat release, which is also known to enhance the blow-off limits. Conversely, increasing the pilot burnt gas velocity reduces the blow-off velocity, except for the limiting case when the jet is fully non-premixed. The H/C ratio has negligible effects, while resorting to lean pilots significantly increases the stability of globally rich partially premixed and premixed jets. Such findings are consistent with trends obtained from laminar flame calculations for rich fuel/air mixtures issuing against hot combustion products to simulate the pilot stream.

  18. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2014-05-01

    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  19. Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames

    Science.gov (United States)

    Cheskis, Sergey

    1995-01-01

    Formyl radical, HCO, was monitored for the first time in an atmospheric pressure premixed hydrocarbon flame. Intracavity laser absorption spectroscopy based on quasi-(cw) argon-ion pumped dye laser was used. The sensitivity of the detection is ˜5×1012 cm-3 and can be improved with better flame and laser stabilization.

  20. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  1. Conditional budgets of second-order statistics in nonpremixed and premixed turbulent combustion

    Science.gov (United States)

    Macart, Jonathan F.; Grenga, Temistocle; Mueller, Michael E.

    2016-11-01

    Combustion heat release modifies or introduces a number of new terms to the balance equations for second-order turbulence statistics (turbulent kinetic energy, scalar variance, etc.) compared to incompressible flow. A major modification is a significant increase in viscosity and dissipation in the high-temperature combustion products, but new terms also appear due to density variation and gas expansion (dilatation). Previous scaling analyses have hypothesized that dilatation effects are important in turbulent premixed combustion but are unimportant in turbulent nonpremixed combustion. To explore this hypothesis, a series of DNS calculations have been performed in the low Mach number limit for spatially evolving turbulent planar jet flames of hydrogen and air in both premixed and nonpremixed configurations. Unlike other studies exploring the effects of heat release on turbulence, the turbulence is not forced, and detailed chemical kinetics are used to describe hydrogen-air combustion. Budgets for second-order statistics are computed conditioned on progress variable in the premixed flame and on mixture fraction in the nonpremixed flame in order to locate regions with respect to the flame structure where dilatation effects are strongest.

  2. Flashback detection sensor for lean premix fuel nozzles

    Science.gov (United States)

    Thornton, Jimmy Dean; Richards, George Alan; Straub, Douglas L.; Liese, Eric Arnold; Trader, Jr., John Lee; Fasching, George Edward

    2002-08-06

    A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.

  3. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook

    2010-11-15

    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  4. Detailed reduction of reaction mechanisms for flame modeling

    Science.gov (United States)

    Wang, Hai; Frenklach, Michael

    1991-01-01

    A method for reduction of detailed chemical reaction mechanisms, introduced earlier for ignition system, was extended to laminar premixed flames. The reduction is based on testing the reaction and reaction-enthalpy rates of the 'full' reaction mechanism using a zero-dimensional model with the flame temperature profile as a constraint. The technique is demonstrated with numerical tests performed on the mechanism of methane combustion.

  5. Fluorescence Spectra of Polycyclic Aromatic Hydrocarbons and Soot Concentration in Partially Premixed Flames of Diesel Surrogate Containing Oxygenated Additives%掺混含氧燃料的柴油替代物部分预混火焰中多环芳香烃的荧光光谱和碳烟浓度

    Institute of Scientific and Technical Information of China (English)

    张鹏; 刘海峰; 陈贝凌; 唐青龙; 尧命发

    2015-01-01

    Partial y premixed laminar flames were formed using our purpose-built burner. The soot reduction mechanism of blends of diesel and oxygenated fuel was explored. The mixture of toluene and n-heptane (volume ratio, 20:80) (T20) was used as a diesel surrogate. Methanol, ethanol, n-butanol, methyl butyrate, and 2,5-dimethylfuran (DMF) were blended with T20, whilst retaining a 4% oxygen content. Laser-induced fluorescence (LIF) was used to obtain spatial fluorescence spectra of polycyclic aromatic hydrocarbons (PAHs) in partial y premixed co-flow flames. Laser-induced incandescence (LII) was used to measure soot concentration (volume fraction). The formation and growth of PAHs in flames varied with the fuel blend. Four-ring aromatics (A4) exhibited similar formation and oxidation to soot, so A4 was suitable for estimating soot formation and oxidation. With oxygenated additives, the content of toluene is reduced in T20 fuel, which is the major reason for the reduction of PAH fluorescence spectral intensity and soot concentration. The contribution of different oxygenated additives to PAH formation also affected soot reduction. The PAH-LIF spectral intensity and soot concentration of n-butanol/T20 blends were lower than those of fuels containing methanol, ethanol, methyl butyrate, and DMF. Therefore, n- butanol more effectively reduced PAHs and soot emission during the combustion of the diesel surrogate (T20).%为研究不同含氧燃料与柴油掺混后碳烟降低机理,本文在自行设计的燃烧器上构建部分预混层流火焰,采用甲苯和正庚烷混合物(T20,20%(体积分数)甲苯、80%正庚烷)作为柴油替代物,并分别添加甲醇、乙醇、正丁醇、丁酸甲酯和2,5-二甲基呋喃(DMF),且保证混合燃料的含氧量均为4%。进而应用激光诱导荧光法和激光诱导炽光法分别测量不同混合燃料的火焰中多环芳香烃(PAHs)的荧光光谱和碳烟浓度。结果表明:通过PAHs的荧光光谱可测量不同燃

  6. Inclusion of preferential diffusion in simulations of premixed combustion of hydrogen/methane mixtures with flamelet generated manifolds

    NARCIS (Netherlands)

    Swart, J.A.M.de; Bastiaans, R.J.M.; Oijen, J.A. van; Goey, L.P.H. de; Cant, R.S.

    2010-01-01

    In this paper we study the possibility to account for preferential diffusion effects in lean turbulent premixed flames in numerical predictions with reduced chemistry. We studied the situation when hydrogen is added to methane at levels of 20% and 40% by volume in the fuel, at lean combustion (φ=

  7. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  8. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-04-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify, and to confirm or determine rate constants for, the main benzene oxidation reactions in flames, and to characterize soot and fullerenes and their formation mechanisms and kinetics. Stable and radical species profiles in the aromatics oxidation study are measured using molecular beam sampling with on-line mass spectrometry. The rate of soot formation measured by conventional optical techniques is found to support the hypotheses that particle inception occurs through reactive coagulation of high molecular weight PAH in competition with destruction by OHattack, and that the subsequent growth of the soot mass occurs through addition reactions of PAH and C[sub 2]H[sub 2] with the soot particles. During the first year of this reporting period, fullerenes C[sub 60] and C[sub 70] in substantial quantities were found in the flames being studied. The fullerenes were recovered, purified and spectroscopically identified. The yields of C[sub 60] and C[sub 70] were then determined over ranges of conditions in low-pressure premixed flames of benzene and oxygen.

  9. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  10. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  11. Hydrodynamic instabilities in an ablation front

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A R; Portugues, R F [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2004-06-01

    The hydrodynamic stability of an ablation front is studied for situations in which the wavelength of the perturbations is larger than the distance to the critical surface where the driving radiation is absorbed. An analytical model is presented, and it shows that under conditions in which the thermal flux is limited within the supercritical region of the ablative corona, the front may behave like a flame or like an ablation front, depending on the perturbation wavelength. For relatively long wavelengths the critical and ablation surfaces practically lump together into a unique surface and the front behaves like a flame, whereas for the shortest wavelengths the ablation front substructure is resolved.

  12. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    mainly between the fuel nozzle and the lifted flame edge. On the other hand, they were formed just prior to the flame edge for the non-autoignited lifted flames. The effect of fuel pyrolysis and partial oxidation were found to be important in explaining autoignited liftoff heights, especially in the Mild combustion regime. Flame structures of autoignited flames were investigated numerically for syngas (CO/H2) and methane fuels. The simulations of syngas fuel accounting for the differential diffusion have been performed by adopting several kinetic mechanisms to test the models ability in predicting the flame behaviors observed previously. The results agreed well with the observed nozzle-attached flame characteristics in case of non-autoignited flames. For autoignited lifted flames in high temperature regime, a unique autoignition behavior can be predicted having HO2 and H2O2 radicals in a broad region between the nozzle and stabilized lifted flame edge. Autoignition characteristics of laminar nonpremixed methane jet flames in high- temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  13. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  14. Turbulent non-premixed combustion driven by the Richtmyer-Meshkov instability

    Science.gov (United States)

    Varshochi, Hilda; Ramaprabhu, Praveen; Attal, Nitesh

    2016-11-01

    We report on 3D high resolution numerical simulations of a non-premixed, reacting Richmyer-Meshkov (RM) instability performed using the FLASH code. In the simulations, a Mach 1.6 shock traverses a diffuse, corrugated material interface separating Hydrogen at 1000 K and Oxygen at 300 K, so that local misalignments between pressure and density gradients induce baroclinic vorticity at the contact line. The vorticity deposition drives the RM instability, which in turn results in combustion and flame formation. We study the evolution of the interface and the flame as the resulting RM instability grows through linear, nonlinear and turbulent stages. We develop a detailed understanding of the effects of heat release and combustion on the underlying flow properties by comparing our results with a baseline non-reacting RM flow. We document the properties of the instability (growth rates, pdfs, spectra) and the flame (scalar dissipation rate, flame surface area, heat release rate) as well as the nature of the coupling between the two. Our findings are relevant to supernovae detonation, knocking in IC engines and scramjet performance, while the underlying flow problem defined here represents a novel canonical framework to understand the broader class of non-premixed turbulent flames.

  15. Sooting turbulent jet flame: characterization and quantitative soot measurements

    Science.gov (United States)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  16. Simulation of flame-vortex interaction using detailed and reduced

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [Gaz de France (GDF), 75 - Paris (France); Veynante, D. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Baum, M. [CERFACS (France); Poinsot, T.J. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France). Institut de Mecanique des Fluides de Toulouse

    1996-12-31

    The interaction between a pair of counter-rotating vortices and a lean premixed CH{sub 4}/O{sub 2}/N{sub 2} flame ({Phi} = + 0.55) has been studied by direct numerical simulations using detailed and reduced chemical reaction schemes. Results from the complex chemistry simulation are discussed with respect to earlier experiments and differences in the simulations using detailed and reduces chemistry are investigated. Transient evolutions of the flame surface and the total heat release rate are compared and modifications in the evolution of the local flame structure are displayed. (authors) 22 refs.

  17. Investigation of H2 Concentration and Combustion Instability Effects on the Kinetics of Strained Syngas Flames

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2006-08-07

    The flame extinction limits of syngas (H{sub 2}-CO) flames were measured using a twin-flame-counter-flow burner. Plots of Extinction limits vs. global stretch rates were generated at different mixture compositions and an extrapolation method was used to calculate the flame extinction limit corresponding to an experimentally unattainable zero-stretch condition. The zero-stretch extinction limit of H{sub 2}-CO mixtures decreases (from rich to lean) with the increase in H{sub 2} concentration in the mixture. The average difference between the measured flame extinction limit and the Le Chatelier's calculation is around {approx} 7%. The measured OH{sup -} chemiluminescent data indicates that regardless of mixture compositions the OH radical concentration reduces (within the experimental uncertainties) to an extinction value prior to the flame extinction. Flame extinction limits of H{sub 2}-CO mixtures measured in a flat-flame burner configuration also show a similar relation. Additionally, the measured laminar flame velocity close to the extinction indicates that regardless of fuel composition the premixed flame of hydrogen fuel blends extinguishes when the mixture laminar flame velocity falls below a critical value. The critical laminar flame velocity at extinction for H{sub 2}-CO premixed flames (measured in the flat flame burner configuration) is found to be 3.77({+-}0.38) cm/s. An externally perturbed H{sub 2}-CO twin flame was not experimentally achievable for the mixture conditions used in the present investigation. A slightest perturbation in the flow-field distorts the H{sub 2}-CO twin-flame. The flame becomes highly unstable with the introduction of an externally excited flow oscillation.

  18. Transport Algorithms for Premixed, Laminar Steady State Flames

    Science.gov (United States)

    1981-03-01

    II i/) 11 * • Orwell O ii 1- UJ •— >D ■C => O U. 1- >- •—i O O 1 1 UJ UJ a. t— 1 1 UJ UJ 3 o 5 » •—< p UJ UJ o o u * o • t...2 AFRPL (DYSC) ATTN: D. George J.N. Levine Edwards AFB, CA 93523 2 National Bureau of Standards ATTN: J. Hastie T. Kashiwagi Washington, DC

  19. On the acoustics of turbulent non-premixed flames

    NARCIS (Netherlands)

    Klein, Sikke Ate

    2000-01-01

    Gas turbines are clean, compact and eÆcient engines for electric power generation. They are used at a large scale to this end and are usually red with natural gas. A novel development is to re them with coal gas produced by a coal gasier. This opens ways to use the huge coal resources in a clean and

  20. Heat Transfer Effects on a Fully Premixed Methane Impinging Flame

    Science.gov (United States)

    2014-10-30

    the momentum equation twice and the continuity equation once. The momentum equation is solved using the GMRES or BICGSTAB method (diagonal and Gauss ...together with a linelet preconditioner well-suited for boundary ley - ers. The parallelization of the solver is extensively de- scribed elsewhere...Houzeaux et al., 2009). The GM- RES solver is also employed to solve for the enthalpy and species mass fractions. The Gauss -Seidel iterative method is

  1. Numerical simulation of tulip flame dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  2. Numerical simulation of tulip flame dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  3. The initial development of a tulip flame

    Energy Technology Data Exchange (ETDEWEB)

    Matalon, M.; Mcgreevy, J.L. [Northwestern Univ., Evanston, IL (United States)

    1994-12-31

    The initial development of a ``tulip flame``, often observed during flame propagation in closed tubes, is attributed to a combustion instability. The roles of hydrodynamic and of the diffusional-thermal processes on the onset of instability are investigated through a linear stability analysis in which the growth or decay of small disturbances, superimposed on an otherwise smooth and planar flame front, are followed. A range of the Markstein parameter, related to the mixture composition through an appropriately defined Lewis number, has been identified where a tulip flame could be observed. For a given value of the Markstein parameter within this range, a critical wavelength is identified as the most unstable mode. This wavelength is directly related to the minimal aspect ratio of the tube where a tulip flame could be observed. The time of onset of instability is identified as the time when the most unstable disturbance, associated with the critical wavelength, grows at a faster rate than the flame front itself and exceeds a certain threshold. This occurs after the flame has propagated a certain distance down the tube: a value which has been explicitly determined in terms of the relevant parameters. Experimental records on the tulip flame phenomenon support the finding of the analysis. That is, the tulip flame forms after the flame has traveled half the tube`s length, it does not form in short tubes, and its formation depends on the mixture composition and on the initial pressure in the tube.

  4. Localized flame extinction and re-ignition in turbulent jet ignition assisted combustion

    Science.gov (United States)

    Validi, Abdoulahad; Schock, Harold; Jaberi, Farhad; Computational Fluid Dynamics Laboratory Team

    2016-11-01

    Direct numerical simulations (DNS) of turbulent jet ignition (TJI)-assisted combustion of ultra-lean fuel-air is performed in a three-dimensional planar jet configuration. TJI is a novel ignition enhancement method which facilitates the combustion of lean and ultra-lean mixtures by rapidly exposing them to high temperature combustion products. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen-air reaction is simulated with a detailed chemical kinetics mechanism consisting of 9 species and 38 elementary reactions. The interesting phenomena involved in TJI combustion including localized premixed flame extinction/re-ignition and simultaneous premixed/non-premixed flames are investigated by using the flame heat release, temperature, species concentrations, and a newly defined TJI progress variable.

  5. Simulation studies of premixed ch4/air Microcombustion

    Directory of Open Access Journals (Sweden)

    P.Bala Murali

    2014-04-01

    Full Text Available A numerical study of CH4-air premixed combustion in the micro combustors with a five step global mechanism is performed by solving the two dimensional governing equations of continuity, momentum and species, coupled with the energy equation. A reference case is defined as the combustion in a cylindrical tube with 1 mm inlet diameter and length 10 times its inlet diameter with a uniform velocity profile at the inlet plane. Different physical and boundary conditions have been applied in order to investigate their respective effects on the flame temperature. The conditions studied in the current paper include the combustor size, geometry and inlet velocities. Downscaling the combustion chamber and higher velocities leaded to reduction in residence time which results in lower combustion efficiency causing insufficient heat generation unable to maintain the self-sustained combustion. The effect of variation in inlet velocity has role in the determining the flame position in combination with given thermal conditions. The results of this paper indicate that these various boundary and physical conditions have effects on the flame temperature to different extent and should be carefully monitored when applied for different applications.

  6. Study of the mechanisms of the flame propagation and stabilization in porous media

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CH4/air premixed gas combustion processes in porous media were numerically studied using the two-temperature reacting fluid model with dispersions and detailed chemical reaction mechanism GRI 3.0. The mechanisms of the propagation and stabilization of submerge flames and surface flames in porous media were illuminated distinctly by considering the magnitude of the terms in the two energy equations, analyzing the sensibility of flame propagation speed to flame location, heat exchange coefficient between gas and solid, thermal conductivity and radiative extinction coefficient of porous media. It was concluded that the propagation mechanism of a submerged flame is similar to that of a free flame with an additional preheat zone and that the surface-flame propagation mechanism in porous media is similar to that of a free flame with heat loss in reaction zone.

  7. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index

    KAUST Repository

    Joo, Peter H.

    2013-01-01

    Sooting limits in counterflow diffusion flames of propane/ethylene fuels have been studied experimentally using a light scattering technique, including the effects of dilution, fuel mixing, and strain rate. The results are discussed in view of the threshold soot index (TSI). In soot-formation (SF) flames, where the flame is located on the oxidizer side of the stagnation plane, the sooting limit depends critically on fuel type and subsequently on flame temperature. The sooting limit has a non-linear dependence on the fuel-mixing ratio, which is similar to the non-linear mixing rule for TSI observed experimentally in rich premixed flames, where soot oxidation is absent for both SF and rich premixed flames. In soot-formation-oxidation (SFO) flames, where the flame is located on the fuel side, the sooting limit depends critically on flame temperature, while it is relatively independent on fuel type. This result suggests a linear mixing rule for sooting limits in SFO flames, which is similar to the TSI behavior for coflow diffusion flames. Soot oxidation takes place for both types of flames. The aerodynamic strain effect on the sooting limits has also been studied and an appreciable influence has been observed. Under sooting conditions, soot volume fraction was measured using a light extinction technique. The soot loadings in SF flames of the mixture fuels demonstrated a synergistic effect, i.e., soot production increased for certain mixture fuels as compared to the respective singlecomponent fuels. © 2012 The Combustion Institute.

  8. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    Science.gov (United States)

    2015-09-01

    rates (stronger fuel jet induced bow shock), diminishes the influence of fuel concentration on the location of the quasi-stable partially-premixed...lip angle of the inlet is increased to 12° from 6° to induce stronger incident shockwaves into the isolator. As shown in the 3 – 6 ms panel of Fig. 5...downstream to pilot a partially- premixed flame (12 – 27 ms panels of Fig. 5). As shown in Fig. 5, under the high-enthalpy and high Mach number conditions

  9. Effect of Inhibitors on Biogas Laminar Burning Velocity and Flammability Limits in Spark Ignited Premix Combustion

    Directory of Open Access Journals (Sweden)

    Willyanto Anggono

    2014-01-01

    Full Text Available Biogas is the natural byproduct of the decomposition of vegetation or animal manure, of which there are almost in exhaustable supplies in the world, and which does not contribute CO2 or other greenhouse gases to global warming or climate change. Biogas contains 66.4% flammable gas (CH4 and 33.6% inhibitors (CO2 and N2. This study focuses on the effects of inhibitors on biogas laminar burning velocity and flammability limits in spark ignited premix combustion. Spherically expanding laminar premixed flames, freely propagating from spark ignition sources in initially quiescent biogas–air mixtures, are continuously recorded by a high-speed digital camera. Initially, all the experiments in this paper were performed using inhibitorless biogas (biogas without inhibitors at room temperature, at reduced pressure (0.5 atm and at various equivalence ratios (ϕ from the lower flammable limit to the upper flammable limit. The results are compared with those from biogas (containing inhibitors flames at reduced pressure, inhibitorless biogas flames at atmospheric pressure (1 atm, and biogas flames at atmospheric pressure to emphasize the effect of inhibitors on biogas laminar burning velocity and flammability limits. Compared to an inhibitorless biogas-air mixtures, in the biogas-air mixtures, the presence of inhibitors cause a reduction in the laminar burning velocity and the flammable limits become narrower.

  10. Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion

    KAUST Repository

    Papapostolou, Vassilios

    2017-09-11

    Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.

  11. Numerical solution of an edge flame boundary value problem

    Science.gov (United States)

    Shields, Benjamin; Freund, Jonathan; Pantano, Carlos

    2016-11-01

    We study edge flames for modeling extinction, reignition, and flame lifting in turbulent non-premixed combustion. An adaptive resolution finite element method is developed for solving a strained laminar edge flame in the intrinsic moving frame of reference of a spatially evolving shear layer. The variable-density zero Mach Navier-Stokes equations are used to solve for both advancing and retreating edge flames. The eigenvalues of the system are determined simultaneously (implicitly) with the scalar fields using a Schur complement strategy. A homotopy transformation over density is used to transition from constant- to variable-density, and pseudo arc-length continuation is used for parametric tracing of solutions. Full details of the edge flames as a function of strain and Lewis numbers will be discussed. This material is based upon work supported [in part] by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  12. Mixing Model Performance in Non-Premixed Turbulent Combustion

    Science.gov (United States)

    Pope, Stephen B.; Ren, Zhuyin

    2002-11-01

    In order to shed light on their qualitative and quantitative performance, three different turbulent mixing models are studied in application to non-premixed turbulent combustion. In previous works, PDF model calculations with detailed kinetics have been shown to agree well with experimental data for non-premixed piloted jet flames. The calculations from two different groups using different descriptions of the chemistry and turbulent mixing are capable of producing the correct levels of local extinction and reignition. The success of these calculations raises several questions, since it is not clear that the mixing models used contain an adequate description of the processes involved. To address these questions, three mixing models (IEM, modified Curl and EMST) are applied to a partially-stirred reactor burning hydrogen in air. The parameters varied are the residence time and the mixing time scale. For small relative values of the mixing time scale (approaching the perfectly-stirred limit) the models yield the same extinction behavior. But for larger values, the behavior is distictly different, with EMST being must resistant to extinction.

  13. Enhancements of Impinging Flame by Pulsation

    Institute of Scientific and Technical Information of China (English)

    AySu; Ying-ChiehLiu

    2000-01-01

    Experimental investigations on the pulsating jet-impinging diffusion flame were executed.A soleoid valve was aligned upstream of the jet orifice and the methane fuel was controlled in open-closed cycles from 0 Hz to 20Hz.Results show that the open-closed cycles,indeed increase the fluctuations of the methane fuel obviously.The evolutions of pulsating flame therefore develop faster than the continuous impinging flame.The optimized pulating frequencies are near 9 to 11 hz from the Re=170 to 283.The temperature differences between that under optimized pulsating rate and full open condition(no pulsation)are ranging from 100 to 150 degree.The pulsating effect is more singnificant at low Reynolds number.The cross section of continuous impinging flame behaves as elliptic shape with axial ratio equals to 2/3.The tip of the impinging flame obviously crosses at 42mm above the impinging point.ecause of the phenomenon of pulsation flame,the flame sheet or flame front may not be identified clearly in the averaged temperature contours.Results shows that the averaged end-contour of pulsation flame rears at 38mm above the impinging point.By observation and experiment,the pulsating flame behaves more stable and efficient than the continuous impinging flame.

  14. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    Science.gov (United States)

    Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.

    2016-12-01

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H2-air flames with an equivalence ratio ϕ =0.7 . It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P ,Q , and R ) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  15. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    KAUST Repository

    Wacks, Daniel H.

    2016-12-02

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  16. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...... for the analysis of particle formation in flames. Good results for a wide range of operating conditions were obtained. Therefore, the method should be useful as a tool for the optimization and/or design of flame processes for particle production.......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...... flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...

  17. Experimental study of flame microstructure and propagation behavior of mine-gas explosion

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; ZHANG Jian-hua; WANG Yu-jie; REN Shao-feng

    2008-01-01

    The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process. Meanwhile, the ionization current probes were set up to detect the reaction intensity of the reaction zone. The characteristics of methane/air flame propagation and microstructure were analyzed in detail by the experi-mental results coupled with chemical reaction thermodynamics. The high speed schlieren image showed the transition from laminar flame to turbulence combustion. The ion current curves disclosed the reaction intensity and combustion characteristic of flame front. In the test, the particular tulip flame was formed clearly, which was induced to some extent by turbulent combustion. Based on the schlieren images and iron current result, it can be drawn that the small scale turbulence combustion also appears in laminar flame, which thickens the flame front, but makes little influence on the flame front shape. During the laminar-turbulent transition, the explosion pressure plays an important role on the flame structure change.

  18. Real fuel effects on flame extinction and re-ignition

    Science.gov (United States)

    Zhao, Xinyu; Wu, Bifen; Xu, Chao; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Flame-vortex interactions have significant implications in studying combustion in practical aeronautical engines, and can be used to facilitate the model development in capturing local extinction and re-ignition. To study the interactions between the complex fuel and the intense turbulence that are commonly encountered in engines, direct numerical simulations of the interactions between a flame and a vortex pair are carried out using a recently-developed 24-species reduced chemistry for n-dodecane. Both non-premixed and premixed flames with different initial and inlet thermochemical conditions are studied. Parametric studies of different vortex strengths and orientations are carried out to induce maximum local extinction and re-ignition. Chemical-explosive-mode-analysis based flame diagnostic tools are used to identify different modes of combustion, including auto-ignition and extinction. Results obtained from the reduced chemistry are compared with those obtained from one-step chemistry to quantify the effect of fuel pyrolysis on the extinction limit. Effects of flame curvature, heat loss and unsteadiness on flame extinction are also explored. Finally, the validity of current turbulent combustion models to capture the local extinction and re-ignition will be discussed.

  19. On the regimes of premixing

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, S.; Theofanous, T.G.; Yuen, W.W. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    The conditions of the MAGICO-2000 experiment are extended to more broadly investigate the regimes of premixing, and the corresponding internal structures of mixing zones. With the help of the data and numerical simulations using the computer code PM-ALPHA, we can distinguish extremes of behavior dominated by inertia and thermal effects - we name these the inertia and thermal regimes, respectively. This is an important distinction that should guide future experiments aimed at code verification in this area. Interesting intermediate behaviors are also delineated and discussed. (author)

  20. The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

    CERN Document Server

    Poludnenko, Alexei Y; 10.1016/j.combustflame.2010.09.002

    2011-01-01

    (Abridged) Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S_T, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S_L, resulting in the Damkohler number Da = 0.05. Here we show that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S_T is predominantly determined by the increase of the flame surface area, A_T, caused by turbulence. (4) The observed increase of S_T relative to S_L exceeds the corresponding increase of A_T relative to the surface area of...

  1. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  2. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  3. Measurements of density field in a swirling flame by 2D spontaneous Raman scattering

    Science.gov (United States)

    Sharaborin, D. K.; Dulin, V. M.; Lobasov, A. S.; Markovich, D. M.

    2016-10-01

    This paper presents an evaluation of the density distribution in swirling turbulent premixed flames. The measurement principle is based on registration of spontaneous Raman scattering, when the reacting gas flow is illuminated by a laser sheet. Evaluation of 1D and 2D distributions of density and temperature were performed in a laminar Bunsen flame as a test case for validation of experimental technique. Time-averaged 2D images of the scattering during rovibronic transitions of nitrogen molecules were captured in turbulent premixed low-swirl and high-swirl (Re = 5000) propane-air flames in a wide range of equivalence ratio. The obtained density fields are useful for better understanding of heat and mass transfer in swirl-stabilized turbulent flames and for validation of CFD results.

  4. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  5. Implementation variations of adiabatic steady PPDF flamelet model in turbulent H2/air non-premixed combustion simulation

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2015-09-01

    Full Text Available Implementation of the adiabatic steady PPDF flamelet model involves a lot of variations including different scalar dissipation rate calculation methods and different mass diffusion models of the opposed jet flame. Four different look-up tables have been generated with the combinations of two different scalar dissipation rate calculation methods and two different mass diffusion models of the opposed jet flame. Simulation of a turbulent non-premixed H2 jet flame is used to discriminate the accuracy of different implementation methods by comparison with experimental data. It is observed that the turbulent flamelets are very close to their equilibrium states and the simulation result is not sensitive to the choice of dissipation rate calculation method. However, the choice of mass diffusion model has significant influence on the simulation result and excluding the Lewis number effect should be enforced for the opposed jet flame simulation.

  6. Unstrained and strained flamelets for LES of premixed combustion

    Science.gov (United States)

    Langella, Ivan; Swaminathan, Nedunchezhian

    2016-05-01

    The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.

  7. Spontaneous Transition of Turbulent Flames to Detonations in Unconfined Media

    CERN Document Server

    Poludnenko, Alexei Y; Oran, Elaine S

    2011-01-01

    Deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems to astrophysical thermonuclear (type Ia) supernovae explosions. Substantial progress has been made in explaining the nature of DDT in confined systems with walls, internal obstacles, or pre-existing shocks. It remains unclear, however, whether DDT can occur in unconfined media. Here we use direct numerical simulations (DNS) to show that for high enough turbulent intensities unconfined, subsonic, premixed, turbulent flames are inherently unstable to DDT. The associated mechanism, based on the nonsteady evolution of flames faster than the Chapman-Jouguet deflagrations, is qualitatively different from the traditionally suggested spontaneous reaction wave model, and thus does not require the formation of distributed flames. Critical turbulent flame speeds, predicted by this mechanism for the onset of DDT, are in agreement with DNS results.

  8. Terahertz time-domain spectroscopy of high-pressure flames

    Institute of Scientific and Technical Information of China (English)

    Jason BASSI; Mark STRINGER; Bob MILES; Yang ZHANG

    2009-01-01

    Laser spectroscopy in the visible and near infrared is widely used as a diagnostic tool for combustion devices, but this approach is difficult at high pressures within a sooty flame itself. High soot concentrations render flames opaque to visible light, but they remain transparent to far-infrared or terahertz (THz) radiation. The first far-infrared absorption spectra, to the best of our knowledge, of sooty, non-premixed, ethylene high-pressure flames covering the region of 0.2-2.5 THz is presented. A specially designed high-pressure burner which is optically accessible to THz radiation has been built allowing flame transmission measurements up to pressures of 1.6 MPa. Calculations of the theoretical combustion species absorption spectra in the 0.2-3 THz range have shown that almost all the observable features arise from H2O. A few OH (1.84 and 2.51 THz), CH (2.58 THz), and NH3 (1.77 and 2.95 THz) absorption lines are also observable in principle. A large number of H2O absorption lines are observed in the ground vibrational in a laminar non-premixed, sooty flame (ethylene) at pressures up to 1.6 MPa.

  9. Studies of Methane Counterflow Flames at Low Pressures

    Science.gov (United States)

    Burrell, Robert Roe

    Methane is the smallest hydrocarbon molecule, the fuel most widely studied in fundamental flame structure studies, and a major component of natural gas. Despite many decades of research into the fundamental chemical kinetics involved in methane oxidation, ongoing advancements in research suggest that more progress can be made. Though practical combustors of industrial and commercial significance operate at high pressures and turbulent flow conditions, fundamental understanding of combustion chemistry in flames is more readily obtained for low pressure and laminar flow conditions. Measurements were performed from 1 to 0.1 atmospheres for premixed methane/air and non-premixed methane-nitrogen/oxygen flames in a counterflow. Comparative modeling with quasi-one-dimensional strained flame codes revealed bias-induced errors in measured velocities up to 8% at 0.1 atmospheres due to tracer particle phase velocity slip in the low density gas reacting flow. To address this, a numerically-assisted correction scheme consisting of direct simulation of the particle phase dynamics in counterflow was implemented. Addition of reactions describing the prompt dissociation of formyl radicals to an otherwise unmodified USC Mech II kinetic model was found to enhance computed flame reactivity and substantially improve the predictive capability of computed results for measurements at the lowest pressures studied. Yet, the same modifications lead to overprediction of flame data at 1 atmosphere where results from the unmodified USC Mech II kinetic mechanism agreed well with ambient pressure flame data. The apparent failure of a single kinetic model to capture pressure dependence in methane flames motivates continued skepticism regarding the current understanding of pressure dependence in kinetic models, even for the simplest fuels.

  10. Candle Flames in Microgravity: USML-1 Results - 1 Year Later

    Science.gov (United States)

    Ross, H. D.; Dietrich, D. L.; Tien, J. S.

    1994-01-01

    We report on the sustained behavior of a candle flame in microgravity determined in the glovebox facility aboard the First United States Microgravity Labomtofy. In a quiescent, microgmvjfy environment, diffusive transport becomes the dominant mode of heat and mass transfer; whether the diffusive transport rate is fast enough to sustain low-gravity candle flames in air was unknown to this series of about 70 tests. After an initial transient in which soot is observed, the microgravity candle flame in air becomes and remains hemispherical and blue (apparently soot-Ne) with a large flame standoff distance. Near flame extinction, spontaneous flame oscillations are regularly observed; these are explained as a flashback of flame through a premixed combustible gas followed by a retreat owed to flame quenching. The frequency of oscillations can be related to diffusive transport rates, and not to residual buoyant convective flow. The fact that the flame tip is the last point of the flame to survive suggests that it is the location of maximum fuel reactivity; this is unlike normal gravity, where the location of maximum fuel reactivity is the flame base. The flame color, size, and shape behaved in a quasi-steady manner; the finite size of the glovebox, combined with the restricted passages of the candlebox, inhibited the observation of true steady-state burning. Nonetheless, through calculations, and inference from the series of shuttle tests, if is concluded that a candle can burn indefinitely in a large enough ambient of air in microgravity. After igniting one candle, a second candle in close pximity could not be lit. This may be due to wax coating the wick and/or local oxygen depletion around the second, unlit candle. Post-mission testing suggests that simultaneous ignition may overcome these behaviors and enable both candles to be ignited.

  11. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  12. Numerical modeling for flame dynamics and combustion processes in a two-sectional porous burner with a detailed chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Jun; Kim, Yong Mo [Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    A two-dimensional model with the detailed chemistry and variable transport properties has been applied to numerically investigate the combustion processes and flame dynamics in the bilayer porous burner. To account for the velocity transition and diffusion influenced by solid matrix, porosity terms are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. The detailed chemistry is based on GRI 2.11. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous media in terms of the precise flame structure, pollutant formation, and stabilization characteristics. In this bilayer porous burner, the heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix. This heat transfer process through the solid matrix substantially influences the flame structure and stabilization characteristics in the porous media. The predicted results are compared with experimental data in terms of temperature for gaseous mixture and solid matrix, CO and NO emission level. Based on numerical results, a precise comparison has been made for the freely propagating premixed flames and the premixed flames with a porous media for various inlet velocities.

  13. 带侧边微孔射流扰动火焰结构特性%Flame Structure of a Jet Flame with Penetration of Side Micro-jets

    Institute of Scientific and Technical Information of China (English)

    曹玉春; 吴金星; 米建春; 周钰

    2008-01-01

    In this paper, an innovative jet lifted flame with side micro-jets has been proposed and its effects on the flame structure have also been investigated. Due to the changes of the initial combustion conditions, mixing and aerodynamics which resulted from the perturbation of the side micro-jets, such a lifted jet flame has different flame structure compared with the common premixed flame. Results demonstrate that use of the micro-jets can control, to a certain extent, the flame structure, including the flame length, lift-off distance and blow-off limit. With the same fuel and air flow rate, the flame length with the side micro-jets will decrease about 5% 40% as the air volume ratio a increases from 58%-76%. Compared with the common diffusion flame, the jet flame with the side micro-jets demonstrates to be easier to be a momentum-dominated flame. The flame length with 2 micro-jets is about 5% less than with 6 micro-jets under the same fuel and air flow rate. With the same α, the fewer number of the controlled jets lead to the flame with relatively shorter length, not easier to be blown off and higher NOx emission. With certain fuel flow rate, the critical air volume ratio is largest for the flame with 3 micro-jets, which is more difficult to be blown off than the cases with 2,4 or 6 micro-jets.

  14. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    Science.gov (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  15. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    Science.gov (United States)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  16. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    Science.gov (United States)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  17. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  18. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  19. Emissions measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    Science.gov (United States)

    Roffe, G.

    1979-01-01

    A series of experiments was conducted in which the emissions of a lean premixed system of propane and air were measured at pressures of 5, 10, 20 and 30 atm in a flametube apparatus. Measurements were made for inlet temperatures between 600K and 1000K and combustor residence times from 1.0 to 3.0 msec. A schematic of the test rig is presented along with graphs showing emissions measurements for nitric oxide, carbon monoxide, and UHC as functions of bustor residence time for various equivalence ratios, entrance temperatures and pressures; typical behavior of emissions as a function of equivalence ratio for a fixed residence time. Correlations of nitric oxide emission index with adiabatic flame temperature for a fixed residence time of 2 msec and pressures from 5 to 30 atm; and adiabatic flame temperature corresponding to CO breakpoint conditions for 2 msec residence time as a function of inlet temperature.

  20. Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame.

    Science.gov (United States)

    Petersson, Per; Olofsson, Jimmy; Brackman, Christian; Seyfried, Hans; Zetterberg, Johan; Richter, Mattias; Aldén, Marcus; Linne, Mark A; Cheng, Robert K; Nauert, Andreas; Geyer, Dirk; Dreizler, Andreas

    2007-07-01

    The diagnostic techniques for simultaneous velocity and relative OH distribution, simultaneous temperature and relative OH distribution, and three component velocity mapping are described. The data extracted from the measurements include statistical moments for inflow fluid dynamics, temperature, conditional velocities, and scalar flux. The work is a first step in the development of a detailed large eddy simulation (LES) validation database for a turbulent, premixed flame. The low-swirl burner used in this investigation has many of the necessary attributes for LES model validation, including a simplified interior geometry; it operates well into the thin reaction zone for turbulent premixed flames, and flame stabilization is based entirely on the flow field and not on hardware or pilot flames.

  1. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  2. Design factors for stable lean premix combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.

    1995-10-01

    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  3. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  4. Tangential stretching rate (TSR) analysis of non premixed reactive flows

    KAUST Repository

    Valorani, Mauro

    2016-10-16

    We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.

  5. Chemistry and flow in industrial diffusion flames. Chemie und Stroemung bei technischen Diffusionsflammen

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of nine papers were presented at the seminar. The papers have the following titles: laminar flamelet models for describing the combustion characteristics of pre-mixed and non-mixed turbulent flames; testing chemical-kinetic models by laser-optical measurement of concentration paths in flames; the simulation of turbulent CO-air and CH/sub 4/-air diffusion flames in consideration of complex reaction mechanisms; measurement and computer results from turbulent swirling flows; heat transfer by gas and soot formation in turbulent flames; reaction sequences in pulverised-coal flames; mathematical model formation of pulverised-coal combustion in large-scale combustion plants; calculating flows in practical burner and combustion-chamber configurations and groundwork for describing gas radiation in gas-turbine combustion chambers. Three of the papers have been abstracted separately.

  6. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  7. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    Science.gov (United States)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  8. Experimental study of limit lean methane/air flame in a standard flammability tube using particle image velocimetry method

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, Yuriy; Gorecki, Grzegorz; Jarosinski, Jozef; Fodemski, Tadeusz [Department of Heat Technology and Refrigeration, Technical University of Lodz, Lodz 90-924 (Poland)

    2010-05-15

    Lean limit methane/air flame propagating upward in a standard 50 mm diameter and 1.8 m length tube was studied experimentally using particle image velocimetry method. Local stretch rate along the flame front was determined by measured gas velocity distributions. It was found that local stretch rate is maximum at the flame leading point, which is in agreement with earlier theoretical results. Similar to earlier observations, extinction of upward propagating limit flame was observed to start from the flame top. It is stated that the observed behavior of the extinction of the lean limit methane/air flame can not be explained in terms of the coupled effect of flame stretch and preferential diffusion. To qualitatively explain the observed extinction behavior, it is suggested that the positive strain-induced flame stretch increases local radiation heat losses from the flame front. An experimental methodology for PIV measurements in a round tube is described. (author)

  9. Numerical study of flame structure in the mild combustion regime

    Directory of Open Access Journals (Sweden)

    Mardani Amir

    2015-01-01

    Full Text Available In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.

  10. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    Science.gov (United States)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical

  11. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  12. Short communication: Preference for flavored concentrate premixes by dairy cows.

    Science.gov (United States)

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Weeks, H L; Faugeron, J; Hristov, A N

    2016-08-01

    Flavor preferences may be used to stimulate feed intake in dairy cows, which may improve use of robotic milking systems and increase feed intake of sick cows. A cafeteria-design experiment was used to determine if dairy cows have flavor preferences. Sixteen lactating Holstein cows averaging 197±32d in milk, 1.9±0.8 lactations, 27.8±4.2kg/d of dry matter intake, and 41.5±7.4kg/d of milk yield were involved in the experiment. Cows were offered 7 flavored concentrate premixes (FCP) and 1 control premix. The FCP flavors were anise, fenugreek, honey, orange, thyme, molasses, and vanilla; the absence of flavor, neutral, acted as a control. The inclusion rate of the flavors in FCP was 250 to 300g/t on an as-is basis. Cows were not adapted to the flavors before the experiment. Cows were housed in a tiestall barn and offered, on each day, 4 different FCP (1kg each) in plastic bins placed in front of each cow. The experiment lasted 6 consecutive days. Each FCP was presented to each cow once every 2d, 2h after the morning feeding. Flavors and position of the bins in front of the cows were randomized. As a result, each flavor was presented to each cow 3 times during the experiment, at 3 different bin locations. Each cow had access to the FCP for 5min from the time they started eating. Eating time and amount eaten were recorded. The vanilla and fenugreek FCP were consumed the most, at 408 and 371g/5-min offering, respectively, whereas the orange and anise FCP were consumed the least, at 264 and 239g/5-min offering, respectively. Similarly, cows spent the most time eating the vanilla and fenugreek FCP at 99 and 75 s/offering, respectively, and the least amount of time eating the orange and anise FCP at 49 and 50 s/offering, respectively. We detected an effect of bin position: the 2 center FCP were consumed more than the outer 2 FCP. Flavor had no effect on consumption rate. In conclusion, relative to the control, concentrate intake was not affected by flavor, but dairy cows

  13. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability

    Science.gov (United States)

    Yu, Rixin; Bai, Xue-Song; Bychkov, Vitaly

    2015-12-01

    By using large scale numerical simulations, we obtain fractal structure, which develops at originally planar flame fronts due to the hydrodynamic Darrieus-Landau (DL) instability bending the fronts. We clarify some important issues regarding the DL fractal flames, which have been debated for a long time. We demonstrate an increase of the flame propagation speed with the hypothetic channel width, which controls the length scale of the instability development. We show that this increase may be fitted by a power law indicating the mean fractal properties of the flame front structure. The power exponent in this law is found to be not a universal constant, rather it depends on the flame properties—on the density drop at the front. Using box counting on the simulated flame front shapes we show the fractal flame dimension at the intermediate scale is smaller than the one given by the power law, but it has a similar dependency on the density drop. We also obtain a formation of pockets at the DL fractal flame fronts, which previously has been associated only with turbulent burning.

  14. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior

  15. Numerical analysis of tulip flame formation in a closed vessel. Yoki nai tulip kaen keisei no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kadowaki, S.; Ota, Y.; Terada, K. (Nagoya Inst. of Tech., Nagoya (Japan))

    1991-08-25

    The flame formation of the premixed flame propagating in a closed vessel varies considerably during the time from the start of its combustion to the end. In case where the length of the vessel is long in comparison with its width, the tulip flame formation is formed. In this article, in order to investigate the mechanism of tulip flame formation by means of numerical analysis, the unsteady motions of two-dimensional reactive flows were calculated using the explicit MacCormack scheme. The flame formation of every predetermined time propagating in the vessel was obtained and it was shown that the above formation changed from the semi-elliptic formation through the flat formation to the tulip formation. The tulip flame formation could be simulated fairly realistically by the calculation using the heat-insulating wall condition as the boundary condition, but the clear tulip flame formation could not be simulated by the calculation using the condition of a slippery wall or of the constant wall temperature. For the tulip flame formation, it was necessary to ignite the air-fuel mixture locally, but not flatly. Since the initial semi-elliptic flame reached the side wall of the vessel, the heating speed of the flame decreased and a dent was formed in the center of the flame. 21 refs., 12 figs.

  16. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray

    2011-01-04

    In this paper, we investigate flame-vortex interaction in a lean premixed, laboratory scale, backward-facing step combustor. Two series of tests were conducted, using propane/hydrogen mixtures and carbon monoxide/hydrogen mixtures as fuels, respectively. Pressure measurements and high speed particle imaging velocimetry (PIV) were employed to generate pressure response curves as well as the images of the velocity field and the flame brush. We demonstrate that the step combustor exhibits several operating modes depending on the inlet conditions and fuel composition, characterized by the amplitude and frequency of pressure oscillations along with distinct dynamic flame shapes. We propose a model in which the combustor\\'s selection of the acoustic mode is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a relationship between these quantities at the operating conditions corresponding to each mode transition. Based on this relationship, we show that numerically-calculated density-weighted strained flame speed can be used to collapse the combustion dynamics data over the full range of conditions (inlet temperature, fuel composition, and equivalence ratio). Finally, we validate our strain flame based model by measuring the strain rate using the flame image and the velocity field from the PIV measurement. Our results show that the measured strain rates lie in the same range as the critical values at the transitions among distinct modes as those predicted by our model.

  17. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  18. Concept for premixed combustion of hydrogen-containing fuels in gas turbines; Konzept zur vorgemischten Verbrennung wasserstoffhaltiger Brennstoffe in Gasturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Christoph

    2012-07-19

    One of the main challenges for future gas turbines and their combustion systems is to provide fuel flexibility. The fuel range is expected to reach from the lowly reactive natural gas to highly reactive hydrogen-containing syngases. The objective of the project in which this work was pursued is to develop such a combustion system. The burner has to ensure premixed operation with an aerodynamically stabilized flame. The focus of this work is on characterizing and optimizing the operational safety of the system, but also on ensuring sufficientmixing and lowemissions. A burner and fuel injection design is achieved that leads not only to emissions far below the permissible values, but also to flashback safety for hydrogen combustion that comes close to the theoretically achievable maximum at atmospheric pressure conditions. In this design flashback due to combustion-induced vortex breakdown and wall boundary layer flashback is avoided. Flashback only takes place when the flow velocity reaches the flame velocity.

  19. Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2012-10-01

    Full Text Available To reveal the inner mechanism of gas explosion dynamic behavior affected by gas equivalent concentration, a high speed Schlieren image system and flow field measurement technology was applied to record the gas explosion flame propagation and flame structure transition. The results show that a flame front structure transition occurs, followed by a flame accelerating propagation process. The laminar to turbulence transition was the essential cause of the flame structure changes. The laminar flame propagation behavior was influenced mainly by gas expansion and fore-compressive wave effect, while the turbulent flame speed mostly depended on turbulence intensity, which also played an important role in peak value of the explosive pressure and flame speed. On the condition that the laminar-turbulent transition was easier to form, the conclusion was drawn that, the lowest CH4 concentration for maximum overpressure can be obtained, which was the essential reason why the ideal explosive concentration differs under different test conditions.

  20. On the instability of a modified cup-burner flame in the infrared spectral region

    Directory of Open Access Journals (Sweden)

    Petr Bitala

    2016-03-01

    Full Text Available This study describes the modification of a standardised cup-burner apparatus. The replacement of the original glass chimney is performed by shielding a nitrogen co-flow enabled measurement at a wavelength of 3.9 μm. This modification, together with a special arrangement of the measuring system (spectral filtering, data acquisition and post-processing, permitted the observation of various types of hydrodynamic instabilities, including transition states. The advantages of our arrangement are demonstrated with an ethylene non-premixed flame with high sooting tendency. Two known modes of hydrodynamic instability (varicose and sinuous that occur in buoyant flames were studied and described quantitatively. Based on the intensity of the infrared emissions, we identified and qualitatively described the modes of periodic hydrodynamic instability that are accompanied by flame tip opening, which has not been observed for this type of flame.

  1. Synthesis of ZnO particles in a quench-cooled flame reactor

    DEFF Research Database (Denmark)

    Hansen, Jens Peter; Jensen, Joakim Reimer; Livbjerg, Hans

    2001-01-01

    . At the highest tested production rate, the specific surface area of the ZnO particles increases from 20 to 60 m(2)/g when quenching is employed. The particles are characterized by BET surface area measurements, TEM images, and the size distributions of particle aggregates are measured by a scanning mobility......The quench cooling of a flame by injection of cold air was studied in a flame reactor for the formation of ZnO particles in a premixed flame with a precursor jet. A rapid temperature drop downstream from the temperature peak is advantageous for the attainment of a large specific surface area....... Computational fluid dynamics simulations were used to design a quench ring with nozzles directed slightly upward and at a small tangential angle from the direct line to the center. This novel design avoids distortion of the flow pattern below the quenching plane and effectively cools the flame immediately above...

  2. Soot Deposit Properties in Practical Flames

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, Ignacio [University of Utah; Eddings, Eric G. [University of Utah; Sarofim, Adel F. [University of Utah; Dinwiddie, Ralph Barton [ORNL; Porter, Wallace D [ORNL; Lance, Michael J [ORNL

    2009-01-01

    Soot deposition from hydrocarbon flames was investigated in order to evaluate the evolution of the deposits during the transient process of heating an object that starts with a cold metal surface that is exposed to a flame. The study focused on the fire/metal surface interface and the critical issues associated with the specification of the thermal boundaries at this interface, which include the deposition of soot on the metal surface, the chemical and physical properties of the soot deposits and their subsequent effect on heat transfer to the metal surface. A laboratory-scale device (metallic plates attached to a water-cooled sampling probe) was designed for studying soot deposition in a laminar ethylene-air premixed flame. The metallic plates facilitate the evaluation of the deposition rates and deposit characteristics such as deposit thickness, bulk density, PAH content, deposit morphology, and thermal properties, under both water-cooled and uncooled conditions. Additionally, a non-intrusive Laser Flash Technique (in which the morphology of the deposit is not modified) was used to estimate experimental thermal conductivity values for soot deposits as a function of deposition temperature (water-cooled and uncooled experiments), location within the flame and chemical characteristics of the deposits. Important differences between water-cooled and uncooled surfaces were observed. Thermophoresis dominated the soot deposition process and enhanced higher deposition rates for the water-cooled experiments. Cooler surface temperatures resulted in the inclusion of increased amounts of condensable hydrocarbons in the soot deposit. The greater presence of condensable material promoted decreased deposit thicknesses, larger deposit densities, different deposit morphologies, and higher thermal conductivities.

  3. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S. R.; inivasan, K. K.

    2010-09-14

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NOx). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NOx trends, which showed the lowest NOx emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to

  4. Aromatics oxidation and soot formation in flames. Progress report, August 15, 1990--August 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-04-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify, and to confirm or determine rate constants for, the main benzene oxidation reactions in flames, and to characterize soot and fullerenes and their formation mechanisms and kinetics. Stable and radical species profiles in the aromatics oxidation study are measured using molecular beam sampling with on-line mass spectrometry. The rate of soot formation measured by conventional optical techniques is found to support the hypotheses that particle inception occurs through reactive coagulation of high molecular weight PAH in competition with destruction by OHattack, and that the subsequent growth of the soot mass occurs through addition reactions of PAH and C{sub 2}H{sub 2} with the soot particles. During the first year of this reporting period, fullerenes C{sub 60} and C{sub 70} in substantial quantities were found in the flames being studied. The fullerenes were recovered, purified and spectroscopically identified. The yields of C{sub 60} and C{sub 70} were then determined over ranges of conditions in low-pressure premixed flames of benzene and oxygen.

  5. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  6. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  7. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Alnoman, Saeed

    2015-12-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted flames were analyzed. With the coflow air at relatively low initial temperatures below 940 K, an external ignition source was required to stabilize the flame. These lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization. At high initial temperatures over 940 K, the autoignited flames were stabilized without requiring an external ignition source. These autoignited lifted flames exhibited either tribrachial edge structures or mild combustion behaviors depending on the level of fuel dilution. Two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then to lifted mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. © 2015 Elsevier Ltd. All rights reserved.

  8. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  9. Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture

    Science.gov (United States)

    Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram

    2017-03-01

    In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.

  10. Low-dimensional modelling of flame dynamics in heated microchannels

    CERN Document Server

    Bianco, Federico; Legros, Guillaume

    2014-01-01

    This paper presents simulations of stoichiometric methane/air premixed flames into a microchannel at atmospheric pressure. These simulations result from numerical resolutions of reduced-order models. Indeed, combustion control into microchannels would be allowed by fast simulations that in turn enable real-time adjustments of the device's parameters. Former experimental studies reported the occurrence of a Flame Repetitive Extinction/Ignition (FREI) phenomenon provided that a temperature gradient is sustained at the channel's walls. Conducting unsteady one-dimensional simulations including complex chemistry, a late numerical study tried to explain the occurrence of this phenomenon. The present study therefore explores low-dimensional models that potentially reproduce the FREI phenomenon. Provided a calibration of some empirical constants, an unsteady two-dimensional model including one-step chemical reaction is shown to decently reproduce the FREI regime all along the range of mixture flow rates investigated ...

  11. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  12. A numerical study of the the response of transient inhomogeneous flames to pressure fluctuations and negative stretch in contracting hydrogen/air flames

    CERN Document Server

    Malik, Nadeem A; Lovas, Terese

    2016-01-01

    Transient premixed hydrogen/air flames contracting through inhomogeneous fuel distributions and subjected to stretch and pressure oscillations are investigated numerically using an implicit method which couples the fully compressible flow to the realistic chemistry and multicomponent transport properties. The impact of increasing {\\em negative} stretch is investigated through the use of planar, cylindrical and spherical geometries, and a comparison with the results from {\\em positively} stretched expanding H2/air flames (MALIK2010) and CH4/air flames (MALIK2012a) is made. A flame relaxation number $n_R=\\tau_R/\\tau_L$ ($\\tau_R$ is the time that the flame takes to return to the mean equilibrium conditions after initial disturbance; $\\tau_L$ is a flame time scale) decreases by 10\\% with increasing {\\em negative} stretch, in contrast to the two expanding flames where $n_R$ decreased by 40\\% with increasing {\\em positive} stretch. $n_R$ appears to much more sensitive to variations in positive/negative curvature th...

  13. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies.

    Science.gov (United States)

    Wang, Juan; Chaos, Marcos; Yang, Bin; Cool, Terrill A; Dryer, Fred L; Kasper, Tina; Hansen, Nils; Osswald, Patrick; Kohse-Höinghaus, Katharina; Westmoreland, Phillip R

    2009-03-07

    Molecular-beam synchrotron photoionization mass spectrometry and electron-ionization mass spectrometry are used for measurements of species mole fraction profiles for low-pressure premixed dimethyl ether (DME) flames with equivalence ratios ranging from near-stoichiometric conditions (Phi = 0.93) to fuel-rich flames near the limits of flat-flame stability (Phi = 1.86). The results are compared with predictions of a recently modified kinetic model for DME combustion [Zhao et al., Int. J. Chem. Kinet., 2008, 40, 1-18] that has been extensively tested against laminar flame speed measurements, jet-stirred reactor experiments, pyrolysis and oxidation experiments in flow reactors, species measurements for burner-stabilized flames and ignition delay measurements in shock tubes. The present comprehensive measurements of the composition of reaction intermediates over a broad range of equivalence ratios considerably extends the range of the previous experiments used for validation of this model and allows for an accurate determination of contributions of individual reactions to the formation or destruction of any given flame species. The excellent agreement between measurements and predictions found for all major and most intermediate species over the entire range of equivalence ratios provides a uniquely sensitive test of details of the kinetic model. The dependence on equivalence ratio of the characteristic reaction paths in DME flames is examined within the framework of reaction path analyses.

  14. Numerical study of effects of the intermediates and initial conditions on flame propagation in a real homogeneous charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Zhang Meng

    2014-01-01

    Full Text Available The premixed flame speed under a small four stock homogeneous charge compression ignition engine, fueled with dimethyl ether, was investigated. The effects of intermediate species, initial temperature, initial pressure, exhaust gas recirculation, and equivalence ratio were studied and compared to the baseline condition. Results show that, under all conditions, the flame speeds calculated without intermediates are higher than those which took the intermediates in consideration. Flame speeds increase with the increase of crank angle. The increase rate is divided into three regions and the increase rate is obviously high in the event of low temperature heat release. Initial temperature and pressure only affect the crank angle of flame speed, but have little influence on its value. Equivalence ratio and exhaust gas recirculation ratio do not only distinctly decrease the flame speed, but also advance the crank angle of flame speed.

  15. Effects of side walls on facade flame entrainment and flame height from opening in compartment fires

    Directory of Open Access Journals (Sweden)

    Hu L.H.

    2013-11-01

    Full Text Available This paper presents an investigation of the side wall effects on facade flames ejected from the opening (such as a window of an under-ventilated room fire. Experiments are carried out in a reduced-scale experimental setup, consisting of a cubic fire compartment having an opening with a vertical facade wall and two side walls normal to the façade wall. By changing the distance of the two side walls, the facade flame heights for different opening conditions (width, height are recorded by a CCD camera. It is found that as the distance of the two side walls decreases the behavior the flame height can be distinguished into two regimes characterized by the dimensionless excess heat release rate, $skew5dot{Q}_{ex}^{ast}$ See Formula in PDF , outside the opening: (a for the “wall fire” (skew5dot{Q}_{ex}^{ast }$See Formula in PDF ≤ 1.3 , the flame height is shown to change little with decrease of side wall distance as the dominant entrainment is from the front direction (normal to the facade wall independent of the side wall distances; (b for the “axis-symmetrical fire” (\\skew5dot{Q}_{ex}^{ast}$ > 1.3, the flame height increases significantly with a decrease in side wall distance as both the entrainment from the two side directions (parallel to the facade wall and that from the front direction (normal to the facade wall together apply. A global physically based non-dimensional factor K is then brought forward based on the side wall constraint effect on the facade flame entrainment to characterize the side wall effect on the flame height, by accounting for the dimensionless excess heat release rate, the characteristic length scales of the opening as well as the side wall separation distance. The experimental data for different opening dimensions and side wall distances collapse by using this global non-dimensional factor.

  16. A Stereo Imaging Velocimetry Technique for Analyzing Structure of Flame Balls at Low Lewis-Number (SOFBALL) Data

    Science.gov (United States)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    Stereo Imaging Velocimetry (SIV) is a NASA Glenn Research Center (GRC) developed fluid physics technique for measuring threedimensional (3-D) velocities in any optically transparent fluid that can be seeded with tracer particles. SIV provides a means to measure 3-D fluid velocities quantitatively and qualitatively at many points. This technique provides full-field 3-D analysis of any optically clear fluid or gas experiment using standard off-the-shelf CCD cameras to provide accurate and reproducible 3-D velocity profiles for experiments that require 3-D analysis. A flame ball is a steady flame in a premixed combustible atmosphere which, due to the transport properties (low Lewis-number) of the mixture, does not propagate but is instead supplied by diffusive transport of the reactants, forming a premixed flame. This flame geometry presents a unique environment for testing combustion theory. We present our analysis of flame ball phenomena utilizing SIV technology in order to accurately calculate the 3-D position of a flame ball(s) during an experiment, which can be used as a direct comparison of numerical simulations.

  17. Candle flames in microgravity

    Science.gov (United States)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  18. Triple-flame propagation against a Poiseuille flow in a channel with porous walls

    Science.gov (United States)

    Al-Malki, Faisal; Daou, Joel

    2013-12-01

    We present an essentially numerical study of triple-flame propagation in a non-strained two-dimensional mixing layer against a Poiseuille flow, within a thermo-diffusive model. The aim of the study is twofold. First, to examine the recent analytical findings derived in the asymptotic limit of infinite Zeldovich number β for flame fronts thin compared with their typical radius of curvature and to extend these to finite-values of β. Second, to gain insight into the influence of the flow on the flame in situations where the flame in not necessarily thin, as assumed analytically. The study has focused on the effect of two main non-dimensional parameters on flame propagation, namely the flow amplitude A and the flame-front thickness ε. For moderate values of A, the flow is found to have a negligible effect on the structure of the flame, while modifying its speed by an amount proportional to A, in agreement with the asymptotic findings. Two new qualitative behaviours are found however. The first is obtained for sufficiently large values of A where the flow is shown to modify the flame structure significantly for small values of ε; more precisely, the concavity of the triple-flame front is found to turn towards the unburnt gas for A larger than a critical value. This inversion of the front curvature, which cannot be captured by the infinitely-large β asymptotic study, is found to be intimately linked to the finite values of β, which are necessarily found in any realistic model or computational study. The second new behaviour, which is also obtained for small ε, is the existence of termination-points on the flame front, or flame-tips. These termination-points are shown to exist for ε ≪ 1 only if A takes on positive values of order unity or larger; in particular they are absent for thin triple-flames without the presence of a non-uniform flow field. Furthermore, several additional novel contributions are made in the present context of triple-flame interaction with

  19. Influence of the radiation absorbed by micro particles on the flame propagation and combustion regimes

    CERN Document Server

    Ivanov, M F; Liberman, M A

    2015-01-01

    Thermal radiation of the hot combustion products usually does not influence noticeably the flame propagating through gaseous mixture. the situation is changed drastically in the presence even small concentration of particles, which absorb radiation, transfer the heat to the surrounding unburned gaseous mixture by means of heat conduction, so that the gas phase temperature in front of the advancing flame lags that of the particles. It is shown that radiative preheating of unreacted mixture ahead of the flame results in a modest increase of the advancing flame velocity for a highly reactive gaseous fuel, or to considerable increase of the flame velocity in the case of a slow reactive mixture. The effects of radiation preheating as stronger as smaller the normal flame velocity. The radiation heat transfer can become a dominant mechanism compared with molecular heat conduction, determining the structure and the speed of combustion wave in the case of a small enough velocity of the advancing flame. It is shown tha...

  20. Hydroxyl time series and recirculation in turbulent nonpremixed swirling flames

    Energy Technology Data Exchange (ETDEWEB)

    Guttenfelder, Walter A.; Laurendeau, Normand M.; Ji, Jun; King, Galen B.; Gore, Jay P. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-1288 (United States); Renfro, Michael W. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269-3139 (United States)

    2006-10-15

    Time-series measurements of OH, as related to accompanying flow structures, are reported using picosecond time-resolved laser-induced fluorescence (PITLIF) and particle-imaging velocimetry (PIV) for turbulent, swirling, nonpremixed methane-air flames. The [OH] data portray a primary reaction zone surrounding the internal recirculation zone, with residual OH in the recirculation zone approaching chemical equilibrium. Modeling of the OH electronic quenching environment, when compared to fluorescence lifetime measurements, offers additional evidence that the reaction zone burns as a partially premixed flame. A time-series analysis affirms the presence of thin flamelet-like regions based on the relation between swirl-induced turbulence and fluctuations of [OH] in the reaction and recirculation zones. The OH integral time-scales are found to correspond qualitatively to local mean velocities. Furthermore, quantitative dependencies can be established with respect to axial position, Reynolds number, and global equivalence ratio. Given these relationships, the OH time-scales, and thus the primary reaction zone, appear to be dominated by convection-driven fluctuations. Surprisingly, the OH time-scales for these nominally swirling flames demonstrate significant similarities to previous PITLIF results in nonpremixed jet flames. (author)

  1. Pollutant emissions from flat-flame burners at high pressures

    Science.gov (United States)

    Maahs, H. G.; Miller, I. M.

    1980-01-01

    Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.

  2. Numerical simulation of laminar premixed combustion in a porous burner

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pinghui; CHEN Yiliang; LIU Minghou; DING Min; ZHANG Genxuan

    2007-01-01

    Premixed combustion in porous media differs substantially from combustion in free space. The interphase heat transfer between a gas mixture and a porous medium becomes dominant in the premixed combustion process. In this paper, the premixed combustion of CH4/air mixture in a porous medium is numerically simulated with a laminar combustion model. Radiative heat transfer in solids and convective heat transfer between the gas and the solid is especially studied. A smaller detailed reaction mechanism is also used and the results can show good prediction for many combustion phenomena.

  3. Flame Holder System

    Science.gov (United States)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  4. An experimental study on turbulent lifted flames of methane in coflow jets at elevated temperatures

    KAUST Repository

    Choi, Byungchul

    2013-01-01

    An experimental study was conducted on the effects of initial temperature variation on the stabilization characteristics of turbulent nonpremixed flames in coflow jets of methane fuel diluted by nitrogen. The typical behavior seen in the study showed that the liftoff height increased linearly with the jet velocity regardless of the initial temperature in the turbulent regime. Two models were investigated for predicting liftoff heights in the methane jets: the premixed flame model and the large-scale mixing model. For the premixed flame model, the liftoff heights in the methane jets were accurately predicted using the thermal diffusivity of the unburned gas temperature αst,0, instead of that of the burned gas temperature αst,b. For the large-scale mixing model, however, the prediction of liftoff heights differed slightly for the various fuel mole fractions. However, when considering the initial fuel mass fraction YF,0, the liftoff heights were successfully predicted. This result implies that the characteristics of the unburned fuel-air mixture play a crucial role for flame stabilization in coflow jets for a variety of initial conditions. In the turbulent regime, the blowout velocity and the liftoff height at blowout could be accurately predicted by the two models based on a consideration of the physical properties and the buoyancy effect of the initial temperature variation. © 2012 Elsevier Ltd. All rights reserved.

  5. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    CONG BeiHua; LIAO GuangXuan

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7±0.6)% for H2O, (15.9±0.6)% for CO2, and (31.9±0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de-veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup-pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  6. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de- veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup- pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  7. A Posteriori Quantification of Rate-Controlling Effects from High-Intensity Turbulence-Flame Interactions Using 4D Measurements

    Science.gov (United States)

    2016-11-22

    complete information on the thermo-chemical-fluid state available from the DNS. 9 Publications Journal Articles (Published or Accepted): 1. J. R...Tomographic PIV and OH PLIF Measurements in Turbulent Reactive Flows, Experiments in Fluids, 55:1743-62 (2014) *Two further journal articles currently are...turbulent premixed flames measured from simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF, Com- bustion Institute Canadian Section Meeting, Waterloo ON

  8. Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker

    Science.gov (United States)

    Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea

    2013-01-01

    The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…

  9. An evolution equation modeling inversion of tulip flames

    Energy Technology Data Exchange (ETDEWEB)

    Dold, J.W. [Univ. of Bristol (United Kingdom). School of Mathematics; Joulin, G. [E.N.S.M.A., Poitiers (France). Lab. d`Energetique et de Detonique

    1995-02-01

    The authors attempt to reduce the number of physical ingredients needed to model the phenomenon of tulip-flame inversion to a bare minimum. This is achieved by synthesizing the nonlinear, first-order Michelson-Sivashinsky (MS) equation with the second order linear dispersion relation of Landau and Darrieus, which adds only one extra term to the MS equation without changing any of its stationary behavior and without changing its dynamics in the limit of small density change when the MS equation is asymptotically valid. However, as demonstrated by spectral numerical solutions, the resulting second-order nonlinear evolution equation is found to describe the inversion of tulip flames in good qualitative agreement with classical experiments on the phenomenon. This shows that the combined influences of front curvature, geometric nonlinearity and hydrodynamic instability (including its second-order, or inertial effects, which are an essential result of vorticity production at the flame front) are sufficient to reproduce the inversion process.

  10. Variations in non-thermal NO formation pathways in alcohol flames

    KAUST Repository

    Bohon, Myles

    2016-07-04

    This work investigates the formation of NO in a range of laminar, premixed, burner-stabilized C1 to C3 alcohol and alkane flames, in the equivalence ratio between 0.8 and 1.2. Measurements of temperature and NO concentration were conducted, and simulations utilizing the measured temperature profile allowed for the comparison of predicted NO with experiment, as well as a detailed investigation of the contributions from a number of NO formation pathways. In the alcohol flames, reduced contributions to Prompt NO were observed along with reduced consumption of NO through the NO-HCN Reburn mechanism, demonstrating the importance of hydrocarbon radicals (CH, CH2, CH3, and HCCO) to NO formation. Additionally, significant contributions to NO through the combined NNH and N2O mechanism were observed, representing a greater proportion of the NO produced in the alcohol flames. © 2016.

  11. Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction

    Science.gov (United States)

    Zhang, Bin; Zhao, Minmin; Liu, Zhigang; Wu, Zhaohang

    2016-08-01

    Deflection tomography with limited angle projections was investigated to visualize a premixed flame. A projection sampling system for deflection tomography was used to obtain chronological deflectogram arrays at six view angles with only a pair of gratings. A new iterative reconstruction algorithm with deflection angle compressed-sensing revision was developed to improve reconstruction-distribution quality from incomplete projection data. Numerical simulation and error analysis provided a good indication of algorithm precision and convergence. In the experiment, 150 fringes were processed, and temperature distributions in 20 cross-sections were reconstructed from projection data in four instants. Four-dimensional flame structures and temperature distributions in the flame interior were visualized using the visualization toolkit. The experimental reconstruction was then compared with the result obtained from computational fluid dynamic analysis.

  12. Premixes production for synthesis of wear-resistant composite materials

    Science.gov (United States)

    Kontsevoi, Yu V.; Meilakh, A. G.; Shubin, A. B.; Pastukhov, E. A.; Dolmatov, A. V.; Sipatov, I. S.

    2017-01-01

    State of the art line of powder metallurgy is application of initial powders as micro-composites with additional components - premixes. Usage of premixes inhibits segregation of added components and implies the homogeneity of powder charge composition, and finally it has a significant impact on structure formation and properties of end products. The aim of the present work was to design the new production technology of premixes based on iron powder which is layer-by-layer plated by aluminium and copper. We propose to carry out production of Cu-Al-Fe premixes in two stages: cladding of iron powder by aluminium and coating of the obtained composite by copper. The self-developed technique of vibration treatment of iron and aluminium powder mixture was chosen for this purpose. The uniform in thickness and unbroken copper-plating of Fe-Al powders were carried out by chemical technique. Physico-chemical properties and production conditions of premixes-powders were studied, besides optimal parameters of production and further heat-treatment were selected. In the result of the present study the Fe-Al-Cu premixes with laminated structure comprising of iron core, Fe-Al and Cu-Al intermetallide shells were synthesised.

  13. Experimental study of flame microstructure and propagation behavior of mine-gas explosion

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; ZHANG Jian-hua; WANG Yu-jie; REN Shao-feng

    2008-01-01

    The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process.Meanwhile,the ionization current probeswere set up to detect the reaction intensity of the reaction zone.The characteristics ofmethane/air flame propagation and microstructure were analyzed in detail by the experi-mental results coupled with chemical reaction thermodynamics.The high speed schlieren image showed the transition from laminar flame to turbulence combustion.The ion current curves disclosed the reaction intensity and combustion characteristic of flame front.In the test,the particular tulip flame was formed clearly,which was induced to some extent by turbulent combustion.Based on the schlieren images and iron current result,it can be drawn that the small scale turbulence combustion also appears in laminar flame,which thickens the flame front,but makes little influence on the flame front shape.During the laminar-turbulent transition,the explosion pressure plays an important role on the flamestructure change.

  14. Hi-tech Flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Modern science plays a crucial role in lighting the Olympic flame on the world’s highest mountain when the world saw live telecasts of the Olympic flame burning onthe top of Mount Qomolangma(Mount Everest) at 9:17 on the morning of May 8, few realized the years of work and high level of technology that had

  15. Unsupervised analysis of experiments of laminar flame propagation in a spherical enclosure

    Science.gov (United States)

    Barone, Mario; Chaumeix, Nabiha; Comandini, Andrea; Continillo, Gaetano; Lombardi, Simone; Nativel, Damien

    2016-12-01

    The paper illustrates the methodology developed for unsupervised analysis to be conducted on high-definition, high sampling rate image sequences collected in experiments with a single spark ignition optically accessible spherical bomb. Images recorded along the line-of-sight were first processed to identify the reaction front, and then analyzed by means of a two-dimensional numerical estimation technique. The laminar flame front is detected by making use of the concept of "scalar dissipation rate" basing on flame luminosity data, i.e. the square of the gradient of flame luminosity. The new scalar field is then tracked to derive the time history of the flame radius. In order to extract the Region Of Interest from the images, masking techniques are employed, whereas signal-to-noise ratio is improved by means of data binning. The proposed automatic, non-intrusive method proves effective in providing a fast characterization of the flame propagation phenomenon in terms of apparent velocity.

  16. Combustion of butanol isomers - A detailed molecular beam mass spectrometry investigation of their flame chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Gueldenberg, Hanna; Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University (Germany); Yang, Bin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui (China); Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA (United States); Yuan, Tao; Qi, Fei [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui (China)

    2011-01-15

    The combustion chemistry of the four butanol isomers, 1-, 2-, iso- and tert-butanol was studied in flat, premixed, laminar low-pressure (40 mbar) flames of the respective alcohols. Fuel-rich ({phi} = 1.7) butanol-oxygen-(25%)argon flames were investigated using different molecular beam mass spectrometry (MBMS) techniques. Quantitative mole fraction profiles are reported as a function of burner distance. In total, 57 chemical compounds, including radical and isomeric species, have been unambiguously assigned and detected quantitatively in each flame using a combination of vacuum ultraviolet (VUV) photoionization (PI) and electron ionization (EI) MBMS. Synchrotron-based PI-MBMS allowed to separate isomeric combustion intermediates according to their different ionization thresholds. Complementary measurements in the same flames with a high mass-resolution EI-MBMS system provided the exact elementary composition of the involved species. Resulting mole fraction profiles from both instruments are generally in good quantitative agreement. In these flames of the four butanol isomers, temperature, measured by laser-induced fluorescence (LIF) of seeded nitric oxide, and major species profiles are strikingly similar, indicating seemingly analog global combustion behavior. However, significant variations in the intermediate species pool are observed between the fuels and discussed with respect to fuel-specific destruction pathways. As a consequence, different, fuel-specific pollutant emissions may be expected, by both their chemical nature and concentrations. The results reported here are the first of their kind from premixed isomeric butanol flames and are thought to be valuable for improving existing kinetic combustion models. (author)

  17. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  18. Explosive Combustion of a Neutron Star into a Quark Star: the non-premixed scenario

    CERN Document Server

    Ouyed, Rachid; Jaikumar, Prashanth

    2013-01-01

    We review aspects of the hydrodynamical combustion of nuclear matter to strange quark matter in a neutron star. Numerical studies on non-premixed combustion that consistently include hydrodynamical flows in a reactive-diffusive setup show that in 1D, the conversion (burning) front moves at sub-sonic speeds and stops short of converting the entire star to SQM, essentially due to advective forces. However, in the process, we also find that neutrino cooling of the interface causes it to wrinkle, laying a platform for a deflagrative-to-detonative transition (DDT). We outline progress on improvements in the burning code (Burn-UD: http://quarknova.ucalgary.ca/software/Burn-UD/) that will ultimately reveal the mechanism that can explode the outermost layers of even a dense compact object like a neutron star.

  19. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  20. Predicting the Effects of Fuel Composition and Flame Structure on Soot Generation in Turbulent Non-Premixed Flames

    Science.gov (United States)

    2011-03-01

    surprising because, as a result of its non-diffusive nature, soot largely follows the local streaklines (except for the influence of thermophoresis in...Leung et al. as well as Pitsch et al. [118]. Generally, the Lewis number for soot particles is large and is neglected. The thermophoresis term is

  1. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.

    Science.gov (United States)

    Valiev, Damir M; Bychkov, Vitaly; Akkerman, V'yacheslav; Eriksson, Lars-Erik

    2009-09-01

    Numerical simulations of spontaneous flame acceleration are performed within the problem of flame transition to detonation in two-dimensional channels. The acceleration is studied in the extremely wide range of flame front velocity changing by 3 orders of magnitude during the process. Flame accelerates from realistically small initial velocity (with Mach number about 10(-3)) to supersonic speed in the reference frame of the tube walls. It is shown that flame acceleration undergoes three distinctive stages: (1) initial exponential acceleration in the quasi-isobaric regime, (2) almost linear increase in the flame speed to supersonic values, and (3) saturation to a stationary high-speed deflagration velocity. The saturation velocity of deflagration may be correlated with the Chapman-Jouguet deflagration speed. The acceleration develops according to the Shelkin mechanism. Results on the exponential flame acceleration agree well with previous theoretical and numerical studies. The saturation velocity is in line with previous experimental results. Transition of flame acceleration regime from the exponential to the linear one, and then to the constant velocity, happens because of gas compression both ahead and behind the flame front.

  2. The Role of Markstein Number on the Turbulent Flame Speed and Its Scaling

    CERN Document Server

    Chaudhuri, Swetaprovo; Law, Chung K

    2012-01-01

    In this paper we clarify the role of the Markstein Number (Mk) on the turbulent flame speed and its scaling, from experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame speed data are presented for methane, ethylene and n-butane-air premixed flames with negative and positive Mk, propagating in nearly homogenous isotropic turbulence in a dual-chamber, fan-stirred vessel. The cold flow is characterized by high-speed particle image velocimetry, while the flame propagation rate is obtained by tracking high-speed Schlieren images. For all fuel-air mixtures of C1-C4 hydrocarbons presented in this work, the normalized turbulent flame speed data follows the recent theoretical [Chaudhuri, Akkerman and Law, Physical Review E, 84, (2011) 026322] and experimental [Chaudhuri, Wu, Zhu and Law, Physical Review Letters, 108, (2012), 044503], [Re_{T,f}]^{0.5} scaling, where the average radius is the length scale and thermal diffusivity is the transport property. For a constant Re_{T,f} it i...

  3. Numerical simulations of the process of multiple shock-flame interactions

    Science.gov (United States)

    Jiang, Hua; Dong, Gang; chen, Xiao; Wu, Jin-Tao

    2016-08-01

    Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier-Stokes equations with a single-step Arrhenius chemical reaction. The two-dimensional sinusoidally perturbed premixed flames with different initial perturbed amplitudes are used to investigate the effect of the initial perturbation on the flame evolutions. The results show that the development of the flame interface is directly affected by the initial perturbed amplitudes before the passages of reshock waves, and the perturbation development is mainly controlled by the Richtmyer-Meshkov instability (RMI). After the successive impacts of multiple reshock waves, the chemical reaction accelerates the consumption of reactants and leads to a gradual disappearance of the initial perturbed information. The perturbation developments in frozen flows with the same initial interface as those in reactive flows are also demonstrated. Comparisons of results between the reactive and frozen flows show that a chemical reaction changes the perturbation pattern of the flame interface by decreasing the density gradient, thereby weakening the baroclinic torque in the flame mixing region, and therefore plays a dominant role after the passage of reshock waves.

  4. Progress in front propagation research

    Science.gov (United States)

    Fort, Joaquim; Pujol, Toni

    2008-08-01

    We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.

  5. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Rahbari, Alireza [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Shakibi, Ashkan [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidabadi, Mehdi [Combustion Research Laboratory, Narmak, Tehran (Iran, Islamic Republic of)

    2015-09-15

    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists