WorldWideScience

Sample records for premix membrane emulsification

  1. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  2. Membrane emulsification to produce perfume microcapsules

    Science.gov (United States)

    Pan, Xuemiao

    Microencapsulation is an efficient technology to deliver perfume oils from consumer products onto the surface of fabrics. Microcapsules having uniform size/mechanical strength, may provide better release performance. Membrane emulsification in a dispersion cell followed by in-situ polymerization was used to prepare narrow size distribution melamine-formaldehyde (MF) microcapsules containing several types of oil-based fragrances or ingredients. Investigated in this study are the parameters impacting to the size and size distribution of the droplets and final MF microcapsules. A pilot plant-scale cross-flow membrane system was also used to produce MF microcapsules, demonstrating that the membrane emulsification process has potential to be scaled up for industrial applications. In this study, health and environmental friendly poly (methyl methacrylate) (PMMA) microcapsules with narrow size distribution were also prepared for the first time using the dispersion cell membrane emulsification system. Characterization methods previously used for thin-shell microcapsules were expanded to analyse microcapsules with thick shells. The intrinsic mechanical properties of thick shells were determined using a micromanipulation technique and finite element analysis (FEM). The microcapsules structure was also considered in the determination of the permeability and diffusivity of the perfume oils in good solvents..

  3. Membranes for Enhanced Emulsification Processes

    NARCIS (Netherlands)

    Güell, Carme; Ferrando, Montse; Schroen, C.G.P.H.

    2016-01-01

    The use of membrane technology for the production of single and double emulsions has been proven feasible for a wide range of systems. The low energy requirements and mild process conditions (shear stress and temperature) of membrane emulsification (ME) compared to conventional processes makes it of

  4. Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation.

    Science.gov (United States)

    Mustapha, Omer; Kim, Kyung Soo; Shafique, Shumaila; Kim, Dong Shik; Jin, Sung Giu; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-02-01

    The objective of this study was to develop a novel solid self-nanoemulsifying drug delivery system (SNEDDS) using a membrane emulsification technique involving Shirasu porous glass (SPG) which produced very small and uniform emulsion droplets, resulting in enhanced solubility, dissolution and oral bioavailability of poorly water-soluble cilostazol. The effects of carriers on the drug solubility were assessed, and pseudo-ternary phase diagrams were plotted. Among the liquid SNEDDS formulations tested, the liquid SNEDDS composed of peceol (oil), Tween 20 (surfactant) and Labrasol (cosurfactant) at a weight ratio of 15/55/30, produced the smallest emulsion droplet size. The cilostazol-loaded liquid SNEDDS formulation was suspended in the distilled water and subjected to SPG membrane emulsification. Calcium silicate was added as a solid carrier in this liquid SNEDDS, completely suspended and spray-dried, leading to the production of a cilostazol-loaded solid SNEDDS. The emulsion droplet size, solubility and dissolution of the emulsified solid SNEDDS were assessed as compared to the solid SNEDDS prepared without emulsification. Moreover, the physicochemical characteristics and pharmacokinetics in rats were evaluated with the emulsified solid SNEDDS. The emulsified solid SNEDDS provided significantly smaller and more uniform nanoemulsions than did the non-emulsified solid SNEDDS. The emulsified solid SNEDDS showed significantly higher drug solubility and dissolution as compared to the non-emulsified solid SNEDDS. The crystalline drug in it was converted into the amorphous state. Moreover, in rats, it gave significantly higher initial plasma concentrations and AUC compared to the drug powder, suggesting its improved oral bioavailability of cilostazol. Thus, this novel solid SNEDDS developed using a membrane emulsification technique represents a potentially powerful oral delivery system for cilostazol. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Antitumor activity of docetaxel-loaded polymeric nanoparticles fabricated by Shirasu porous glass membrane-emulsification technique

    Directory of Open Access Journals (Sweden)

    Yu YN

    2013-07-01

    Full Text Available Yunni Yu,1,* Songwei Tan,1,2,* Shuang Zhao,1 Xiangting Zhuang,1 Qingle Song,1 Yuliang Wang,1 Qin Zhou,2,3 Zhiping Zhang1,2 1Tongji School of Pharmacy, 2National Engineering Research Center for Nanomedicine, 3College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Docetaxel (DTX has excellent efficiency against a wide spectrum of cancers. However, the current clinical formulation has limited its usage, as it causes some severe side effects. Various polymeric nanoparticles have thus been developed as alternative formulations of DTX, but they have been mostly fabricated on a laboratory scale. Previously, we synthesized a novel copolymer, poly(lactide-D-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS, and found that it exhibited great potential in drug delivery with improved properties. In this study, we applied the Shirasu porous glass (SPG membrane-emulsification technique to prepare the DTX-loaded PLA-TPGS nanoparticles on a pilot scale. The effect of several formulation variables on the DTX-loaded nanoparticle properties, including particle size, zeta potential, and drug-encapsulation efficiency, were investigated based on surfactant type and concentration in the aqueous phase, organic/aqueous phase volumetric ratio, membrane-pore size, transmembrane cycles, and operation pressure. The DTX-loaded nanoparticles were obtained with sizes of 306.8 ± 5.5 nm and 334.1 ± 2.7 nm (mean value ± standard deviation, and drug-encapsulation efficiency of 81.8% ± 4.5% and 64.5% ± 2.7% for PLA-TPGS and poly(lactic-co-glycolic acid (PLGA nanoparticles, respectively. In vivo pharmacokinetic study exhibited a significant advantage of PLA-TPGS nanoparticles over PLGA nanoparticles and Taxotere. Drug-loaded PLA-TPGS nanoparticles exhibited 1.78-, 6.34- and 3.35-fold higher values for area under the curve, half-life, and mean

  6. Production of Concentrated Pickering Emulsions with Narrow Size Distributions Using Stirred Cell Membrane Emulsification.

    Science.gov (United States)

    Manga, Mohamed S; York, David W

    2017-09-12

    Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.

  7. Purification of Drug Loaded PLGA Nanoparticles Prepared by Emulsification Solvent Evaporation Using Stirred Cell Ultrafiltration Technique.

    Science.gov (United States)

    Paswan, Suresh K; Saini, T R

    2017-12-01

    The emulsifiers in an exceedingly higher level are used in the preparation of drug loaded polymeric nanoparticles prepared by emulsification solvent evaporation method. This creates great problem to the formulator due to their serious toxicities when it is to be administered by parenteral route. The final product is therefore required to be freed from the used surfactants by the conventional purification techniques which is a cumbersome job. The solvent resistant stirred cell ultrafiltration unit (Millipore) was used in this study using polyethersulfone ultrafiltration membrane (Biomax®) having pore size of NMWL 300 KDa as the membrane filter. The purification efficiency of this technique was compared with the conventional centrifugation technique. The flow rate of ultrafiltration was optimized for removal of surfactant (polyvinyl alcohol) impurities to the acceptable levels in 1-3.5 h from the nanoparticle dispersion of tamoxifen prepared by emulsification solvent evaporation method. The present investigations demonstrate the application of solvent resistant stirred cell ultrafiltration technique for removal of toxic impurities of surfactant (PVA) from the polymeric drug nanoparticles (tamoxifen) prepared by emulsification solvent evaporation method. This technique offers added benefit of producing more concentrated nanoparticles dispersion without causing significant particle size growth which is observed in other purification techniques, e.g., centrifugation and ultracentrifugation.

  8. Evaluation of Time-Temperature Integrators (TTIs) with Microorganism-Entrapped Microbeads Produced Using Homogenization and SPG Membrane Emulsification Techniques.

    Science.gov (United States)

    Rahman, A T M Mijanur; Lee, Seung Ju; Jung, Seung Won

    2015-12-28

    A comparative study was conducted to evaluate precision and accuracy in controlling the temperature dependence of encapsulated microbial time-temperature integrators (TTIs) developed using two different emulsification techniques. Weissela cibaria CIFP 009 cells, immobilized within 2% Na-alginate gel microbeads using homogenization (5,000, 7,000, and 10,000 rpm) and Shirasu porous glass (SPG) membrane technologies (10 μm), were applied to microbial TTIs. The prepared micobeads were characterized with respect to their size, size distribution, shape and morphology, entrapment efficiency, and bead production yield. Additionally, fermentation process parameters including growth rate were investigated. The TTI responses (changes in pH and titratable acidity (TA)) were evaluated as a function of temperature (20°C, 25°C, and 30°C). In comparison with conventional methods, SPG membrane technology was able not only to produce highly uniform, small-sized beads with the narrowest size distribution, but also the bead production yield was found to be nearly 3.0 to 4.5 times higher. However, among the TTIs produced using the homogenization technique, poor linearity (R(2)) in terms of TA was observed for the 5,000 and 7,000 rpm treatments. Consequently, microbeads produced by the SPG membrane and by homogenization at 10,000 rpm were selected for adjusting the temperature dependence. The Ea values of TTIs containing 0.5, 1.0, and 1.5 g microbeads, prepared by SPG membrane and conventional methods, were estimated to be 86.0, 83.5, and 76.6 kJ/mol, and 85.5, 73.5, and 62.2 kJ/mol, respectively. Therefore, microbial TTIs developed using SPG membrane technology are much more efficient in controlling temperature dependence.

  9. Flashback resistant pre-mixer assembly

    Science.gov (United States)

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  10. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  11. Emulsification: modelling, technologies and applications (preface)

    International Nuclear Information System (INIS)

    Sheibat-Othman, Nida; Charton, Sophie

    2014-01-01

    This special issue section offers an overview of the papers presented at the conference 'Emulsification: Modelling, Technologies and Applications' held in Lyon, France from 19 to 21 November 2012. The conference was part of the 'Vingt cinquiemes Entretiens du Centre Jacques Cartier', a series of meetings organised by the Centre Jacques Cartier and chaired by Dr. Alain Bideau. The symposium dealt with the topic of Emulsification, highlighting the common issues shared by different sectors of activity, including the chemical, petrochemical, nuclear, cosmetics, and food industries. Despite the recent significant advances, the research presented in this special issue section highlights the inadequacies of our knowledge of the complex, and often coupled, phenomena involved in the emulsification process. Indeed in order to understand how emulsions are created, it is necessary to determine how the droplet size and size distribution are related to the relevant fields of Physics, and in particular one can identify fluid dynamics and interfacial chemistry as the key disciplines. Furthermore, due to a lack of appropriate and accurate measurements of the important physical properties of emulsions, modelling and numerical simulation appear as essential tools for R and D in emulsion processes and control. This of course implies that physically realistic models are developed and implemented. The knowledge and control of the concentration and drop size distribution (DSD) in a given apparatus are indeed of primary importance for optimal process performances and minimal environmental impact. In order to address some of these needs, the current special issue section focuses on the main chemical engineering aspects of emulsification systems. It gathers papers that treat the generation of emulsions, their implementation and characterisation, as well as the current research studies regarding interfacial chemistry and dynamics, and the basic models of breakage/coalescence, without

  12. Microfluidic step-emulsification in axisymmetric geometry.

    Science.gov (United States)

    Chakraborty, I; Ricouvier, J; Yazhgur, P; Tabeling, P; Leshansky, A M

    2017-10-25

    Biphasic step-emulsification (Z. Li et al., Lab Chip, 2015, 15, 1023) is a promising microfluidic technique for high-throughput production of μm and sub-μm highly monodisperse droplets. The step-emulsifier consists of a shallow (Hele-Shaw) microchannel operating with two co-flowing immiscible liquids and an abrupt expansion (i.e., step) to a deep and wide reservoir. Under certain conditions the confined stream of the disperse phase, engulfed by the co-flowing continuous phase, breaks into small highly monodisperse droplets at the step. Theoretical investigation of the corresponding hydrodynamics is complicated due to the complex geometry of the planar device, calling for numerical approaches. However, direct numerical simulations of the three dimensional surface-tension-dominated biphasic flows in confined geometries are computationally expensive. In the present paper we study a model problem of axisymmetric step-emulsification. This setup consists of a stable core-annular biphasic flow in a cylindrical capillary tube connected co-axially to a reservoir tube of a larger diameter through a sudden expansion mimicking the edge of the planar step-emulsifier. We demonstrate that the axisymmetric setup exhibits similar regimes of droplet generation to the planar device. A detailed parametric study of the underlying hydrodynamics is feasible via inexpensive (two dimensional) simulations owing to the axial symmetry. The phase diagram quantifying the different regimes of droplet generation in terms of governing dimensionless parameters is presented. We show that in qualitative agreement with experiments in planar devices, the size of the droplets generated in the step-emulsification regime is independent of the capillary number and almost insensitive to the viscosity ratio. These findings confirm that the step-emulsification regime is solely controlled by surface tension. The numerical predictions are in excellent agreement with in-house experiments with the axisymmetric

  13. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems.

    Science.gov (United States)

    Vasconcelos, Teófilo; Marques, Sara; Sarmento, Bruno

    2018-02-01

    Self-emulsifying drug delivery systems (SEDDS) are one of the most promising technologies in the drug delivery field, particularly for addressing solubility and bioavailability issues of drugs. The development of these drug carriers excessively relies in visual observations and indirect determinations. The present manuscript intended to describe a method able to measure the emulsification of SEDDS, both micro and nano-emulsions, able to measure the droplet size and to evaluate the physical stability of these formulations. Additionally, a new process to evaluate the physical stability of SEDDS after emulsification was also proposed, based on a cycle of mechanical stress followed by a resting period. The use of a multiparameter continuous evaluation during the emulsification process and stability was of upmost value to understand SEDDS emulsification process. Based on this method, SEDDS were classified as fast and slow emulsifiers. Moreover, emulsification process and stabilization of emulsion was subject of several considerations regarding the composition of SEDDS as major factor that affects stability to physical stress and the use of multicomponent with different properties to develop a stable and robust SEDDS formulation. Drug loading level is herein suggested to impact droplets size of SEDDS after dispersion and SEDDS stability to stress conditions. The proposed protocol allows an online measurement of SEDDS droplet size during emulsification and a rationale selection of excipients based on its emulsification and stabilization performance. Copyright © 2017. Published by Elsevier B.V.

  14. Experiments for the premixing phase (PREMIX); Experimente zur Vorvermischungsphase (PREMIX)

    Energy Technology Data Exchange (ETDEWEB)

    Cherdron, W.; Huber, F.; Kaiser, A.; Schuetz, W.; Steinbrueck, M.; Will, H.

    1995-08-01

    In the PREMIX experiment, the premixing phenomena are studied by means of real high temperature melt jets. Jet fragmentation as well as (coarse) fragmentation of melt drops are being investigated. The objective is to avoid as far as possible a fine fragmentation and thus to help prevent explosions. Therefore water is used close to boiling temperature. The pressure can be varied in a relevant range up to nearly 10 bar. The melt is created by a thermite reaction after which most of the iron is separated from the melt. In this way a predominantly oxide melt with temperatures of about 2700 K is produced. Preliminary experiments showed as a surprising result that melt jets can penetrate into the water as far as nearly 1 m depth before a violant evaporation comes about. (orig.)

  15. Legume Protein Isolates for Stable Acidic Emulsions Prepared by Premix Membrane Emulsification

    NARCIS (Netherlands)

    Ladjal Ettoumi, Yakoub; Berton-Carabin, Claire; Chibane, Mohamed; Schroën, Karin

    2017-01-01

    Proteins originating from dry legumes are not that much used in food formulations, yet, they are interesting components from a sustainability point of view, and could have interesting functional properties, e.g. for emulsion preparation. Therefore, this work focuses on the potential of the water

  16. Large eddy simulation of premixed and non-premixed combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Sadasivuni, SK; Gubba, SR

    2010-01-01

    This paper summarises the authors experience in using the Large Eddy Simulation (LES) technique for the modelling of premixed and non-premixed combustion. The paper describes the application of LES based combustion modelling technique to two well defined experimental configurations where high quality data is available for validation. The large eddy simulation technique for the modelling flow and turbulence is based on the solution of governing equations for continuity and momentum in a struct...

  17. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    Science.gov (United States)

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  18. Experiments for the premixing phase (PREMIX)

    International Nuclear Information System (INIS)

    Cherdron, W.; Huber, F.; Kaiser, A.; Schuetz, W.; Steinbrueck, M.; Will, H.

    1995-01-01

    In the PREMIX experiment, the premixing phenomena are studied by means of real high temperature melt jets. Jet fragmentation as well as (coarse) fragmentation of melt drops are being investigated. The objective is to avoid as far as possible a fine fragmentation and thus to help prevent explosions. Therefore water is used close to boiling temperature. The pressure can be varied in a relevant range up to nearly 10 bar. The melt is created by a thermite reaction after which most of the iron is separated from the melt. In this way a predominantly oxide melt with temperatures of about 2700 K is produced. Preliminary experiments showed as a surprising result that melt jets can penetrate into the water as far as nearly 1 m depth before a violant evaporation comes about. (orig.)

  19. Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor

    OpenAIRE

    Zhang, K.; Ghobadian, A.; Nouri, J. M.

    2017-01-01

    A comparative study of two combustion models based on non-premixed assumption and partially premixed assumptions using the overall models of Zimont Turbulent Flame Speed Closure Method (ZTFSC) and Extended Coherent Flamelet Method (ECFM) are conducted through Reynolds stress turbulence modelling of Tay model gas turbine combustor for the first time. The Tay model combustor retains all essential features of a realistic gas turbine combustor. It is seen that the non-premixed combustion model fa...

  20. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.; Chung, Suk-Ho

    2015-01-01

    Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  1. Optimization of Premix Powders for Tableting Use.

    Science.gov (United States)

    Todo, Hiroaki; Sato, Kazuki; Takayama, Kozo; Sugibayashi, Kenji

    2018-05-08

    Direct compression is a popular choice as it provides the simplest way to prepare the tablet. It can be easily adopted when the active pharmaceutical ingredient (API) is unstable in water or to thermal drying. An optimal formulation of preliminary mixed powders (premix powders) is beneficial if prepared in advance for tableting use. The aim of this study was to find the optimal formulation of the premix powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC) by using statistical techniques. Based on the "Quality by Design" concept, a (3,3)-simplex lattice design consisting of three components, LAC, CS, and MCC was employed to prepare the model premix powders. Response surface method incorporating a thin-plate spline interpolation (RSM-S) was applied for estimation of the optimum premix powders for tableting use. The effect of tablet shape identified by the surface curvature on the optimization was investigated. The optimum premix powder was effective when the premix was applied to a small quantity of API, although the function of premix was limited in the case of the formulation of large amount of API. Statistical techniques are valuable to exploit new functions of well-known materials such as LAC, CS, and MCC.

  2. Gas turbine premixing systems

    Science.gov (United States)

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  3. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  4. Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F

    NARCIS (Netherlands)

    Vreman, A.W.; Albrecht, B.A.; Oijen, van J.A.; Goey, de L.P.H.; Bastiaans, R.J.M.

    2008-01-01

    Premixed and nonpremixed flamelet-generated manifolds have been constructed and applied to large-eddy simulation of the piloted partially premixed turbulent flames Sandia Flame D and F. In both manifolds the chemistry is parameterized as a function of the mixture fraction and a progress variable.

  5. Emulsification of Hydrocarbons by Biosurfactant: Exclusive Use of Agrowaste

    Directory of Open Access Journals (Sweden)

    Olusola Solomon Amodu

    2014-04-01

    Full Text Available Novel biosurfactant-producing strains were isolated from hydrocarbon-contaminated environments that exclusively utilize agro-waste as their primary carbon source for the expression of biosurfactants. These were quantified using various standardized methods. Among the agro-waste screened, Beta vulgaris (Beetroot proved to be the most suitable substrate, for which the biosurfactants produced by three bacterial isolates–B. licheniformis STK01, B. subtilis STK02, and P. aeruginosa STK03–lowered the surface tension of the culture media to 30.0, 32.98, and 30.37 mN/m, respectively. The biosurfactants achieved considerable emulsification activity, particularly for heavy hydrocarbons, with the highest emulsification indices being 65.5% and 95% for anthracene and lubricant oil, respectively. The emulsion formed with lubricant oil was thermally stable even up to 50 °C for 21 days. The results showed the proficiency of the novel bacterial isolates used, as well as the suitability of solid agro-waste for biosurfactant production, thus suggesting that exclusive utilization of solid agro-waste is a promising option for use in biosurfactant production for environmental remediation. The outstanding emulsification activity and thermal stability demonstrated by the biosurfactants produced showed their potential applications in enhancing bioavailability and bioremediation of recalcitrant and hydrophobic environmental contaminants.

  6. Effect of surface wettability on microfluidic EDGE emulsification

    NARCIS (Netherlands)

    Maan, A.A.; Sahin, S.; Mujawar, L.H.; Boom, R.M.; Schroen, C.G.P.H.

    2013-01-01

    The effect of wettability on microfluidic EDGE emulsification was investigated at dispersed phase contact angles between 90 and 160. The highest contact angle (160) produced monodispersed emulsions with droplet size 5.0 lm and coefficient of variation

  7. Multidimensional flamelet-generated manifolds for partially premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam; Domingo, Pascale [CORIA - CNRS and INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray (France)

    2010-01-15

    Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which is tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)

  8. Spontaneous emulsification at surfactantless liquid/liquid interfaces

    Czech Academy of Sciences Publication Activity Database

    Silver, Barry Richard; Holub, Karel; Mareček, Vladimír

    2017-01-01

    Roč. 805, NOV 2017 (2017), s. 91-97 ISSN 1572-6657 R&D Projects: GA ČR(CZ) GA17-09980S Institutional support: RVO:61388955 Keywords : ities * Open circuit potential * Spontaneous emulsification * Water-in-oil Subject RIV: CG - Electrochemistry OBOR OECD: Physical chemistry Impact factor: 3.012, year: 2016

  9. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    Science.gov (United States)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  10. Rotor-stator and disc systems for emulsification processes

    Energy Technology Data Exchange (ETDEWEB)

    Urban, K.; Roeglin, D.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, FB Ingenieurwissenschaften, Institut fuer Verfahrenstechnik/TVT, D-06099 Halle (Saale) (Germany); Wagner, G.; Schaffner, D. [DSM Nutritional Products AG, CH-4002 Basel (Switzerland)

    2006-01-01

    Emulsions now find a wide range of applications in industry and daily life. In the pharmaceutical industry lipophilic active ingredients as well as many nutritional products such as vitamins are often formulated in the dispersed phase of oil-in-water emulsions. Emulsions can be produced with different mechanical emulsification techniques. In the following review, the process of rotor-stator systems and disc systems are compared to other popular mechanical emulsification systems. On the basis of experimental results from the authors' laboratory, a discontinuous gear-rim dispersing system, discontinuous disc system, and a continuous high pressure system are compared with regard to their attainable mean droplet diameter and drop size distribution in an oil-in-water emulsion. It can be shown that dissolver discs with a very simple geometry attain very small mean droplet diameters and a very narrow droplet size distribution, comparable to the emulsions obtained with established rotor-stator systems such as gear-rim dispersers. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Colorimetric determination of selenium in mineral premixes .

    Science.gov (United States)

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  12. Simulation of lean premixed turbulent combustion

    International Nuclear Information System (INIS)

    Bell, J; Day, M; Almgren, A; Lijewski, M; Rendleman, C; Cheng, R; Shepherd, I

    2006-01-01

    There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels such as hydrogen or syngas. Lean premixed systems have the potential to burn these types of fuels with high efficiency and low NOx emissions due to reduced burnt gas temperatures. Although traditional Scientific approaches based on theory and laboratory experiment have played essential roles in developing our current understanding of premixed combustion, they are unable to meet the challenges of designing fuel-flexible lean premixed combustion devices. Computation, with its ability to deal with complexity and its unlimited access to data, has the potential for addressing these challenges. Realizing this potential requires the ability to perform high fidelity simulations of turbulent lean premixed flames under realistic conditions. In this paper, we examine the specialized mathematical structure of these combustion problems and discuss simulation approaches that exploit this structure. Using these ideas we can dramatically reduce computational cost, making it possible to perform high-fidelity simulations of realistic flames. We illustrate this methodology by considering ultra-lean hydrogen flames and discuss how this type of simulation is changing the way researchers study combustion

  13. Emulsification kinetics during quasi-miscible flow in dead-end pores

    Science.gov (United States)

    Broens, M.; Unsal, E.

    2018-03-01

    Microemulsions have found applications as carriers for the transport of solutes through various porous media. They are commonly pre-prepared in bulk form, and then injected into the medium. The preparation is done by actively mixing the surfactant, water and oil, and then allowing the mixture to stagnate until equilibrium is reached. The resulting microemulsion characteristics of the surfactant/oil/water system are studied at equilibrium conditions, and perfect mixing is assumed. But in applications like subsurface remediation and enhanced oil recovery, microemulsion formation may occur in the pore space. Surfactant solutions are injected into the ground to solubilize and/or mobilize the non-aqueous phase liquids (NAPLs) by in-situ emulsification. Flow dynamics and emulsification kinetics are coupled, which also contributes to in-situ mixing. In this study, we investigated the nature of such coupling for a quasi-miscible fluid system in a conductive channel with dead-end extensions. A microfluidic setup was used, where an aqueous solution of an anionic, internal olefin sulfonate 20-24 (IOS) surfactant was injected into n-decane saturated glass micromodel. The oil phase was coloured using a solvatochromatic dye allowing for direct visualization of the aqueous and oil phases as well as their microemulsions under fluorescent light. Presence of both conductive and stagnant dead-end channels in a single pore system made it possible to isolate different transport mechanisms from each other but also allowed to study the transitions from one to the other. In the conductive channel, the surfactant was carried with flow, and emulsification was controlled by the localized flow dynamics. In the stagnant zones, the driving force of the mass transfer was driven by the chemical concentration gradient. Some of the equilibrium phase behaviour characteristics of the surfactant/oil/water system were recognisable during the quasi-miscible displacement. However, the equilibrium tests

  14. Effect of Alcohols on the Phase Behavior and Emulsification of a Sucrose Fatty Acid Ester/Water/Edible Oil System.

    Science.gov (United States)

    Matsuura, Tsutashi; Ogawa, Akihiro; Ohara, Yukari; Nishina, Shogo; Nakanishi, Maho; Gohtani, Shoichi

    2018-02-01

    The effect of alcohols (ethanol, 1-propanol, propylene glycol, glycerin, sucrose) on the phase behavior and emulsification of sucrose stearic acid ester (SSE)/water/edible vegetable oil (EVO) systems was investigated. Adding sucrose, propylene glycol, and glycerin narrowed the oil-separated two-phase region in the phase diagram of the SSE/water/EVO systems, whereas adding ethanol and 1-propanol expanded the oil-separated two-phase region. Changing the course of emulsification in the phase diagram showed that the size of the oil-droplet particle typically decreased in a system with a narrowed oil-separated region. The emulsification properties of the systems varied with respect to changes in the phase diagram. The microstructure of the systems was examined using small-angle X-ray scattering, and the ability to retain the oil in the lamellar structure of the SSEs was suggested as an important role in emulsification, because the mechanism of the systems was the same as that for the liquid crystal emulsification method.

  15. Experience with the Large Eddy Simulation (LES) Technique for the Modelling of Premixed and Non-premixed Combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Gubba, SR; Sadasivuni, SK

    2013-01-01

    Compared to RANS based combustion modelling, the Large Eddy Simulation (LES) technique has recently emerged as a more accurate and very adaptable technique in terms of handling complex turbulent interactions in combustion modelling problems. In this paper application of LES based combustion modelling technique and the validation of models in non-premixed and premixed situations are considered. Two well defined experimental configurations where high quality data are available for validation is...

  16. Safety, cost, and clinical considerations for the use of premixed parenteral nutrition.

    Science.gov (United States)

    Hall, Jacob W

    2015-06-01

    Premixed parenteral nutrition (PN) can be used for PN therapy in place of traditional compounded or customized PN. Premixed PN may have a number of advantages over compounded PN such as decreased costs, decreased compounding time, reduced chance for error, and reduced incidence of bloodstream infections. However, premixed PN may not be appropriate for all patients and may have other additional costs associated with its use. This article discusses the data available with regard to the use of premixed PN, focusing on the potential advantages and disadvantages of using premixed PN, and also discusses the implementation of premixed PN in a large tertiary cancer center. © 2015 American Society for Parenteral and Enteral Nutrition.

  17. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based

  18. Pembakaran Premixed Minyak Nabati Pada Bunsen Burner Type Silinder

    OpenAIRE

    La Muhaya, Syamsul Bahri; Wardana, ING; Widhiyanuriyawan, Denny

    2015-01-01

    In the premixed combustion wave propagation combustion occurs is called the flame front. Premixed flame will propagate at the speed of moving towards the reactants unique. If the speed of the reactants is equal to the speed of propagation of fire, the fire (reaction zone) will be stationary. It is necessary to follow up on the influence of equivalence ratio (φ) varied with laminar flame speed (SL) in the premixed combustion of vegetable oil (virgin coconut oil, jatropha and cotton seeds). Res...

  19. Emulsification of crude oil by an alkane-oxidizing Rhodococcus species isolated from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bredholt, H.; Bruheim, P.; Eimhjellen, K. [Norwegian Univ. of Scince and Technology, Trondheim (Norway); Josefsen, K.; Vatland, A. [SINTEF SI, Oslo (Norway). Industrial Chemistry Div.

    1998-04-01

    A Rhodococcus species, which has proven to be the best of 99 oil-emulsifying bacteria isolated from seawater, was characterized. This bacterium produced very stable oil-in-water emulsions from different crude oils with various content of aliphatic and aromatic compounds, by utilizing C{sub 1}1 and C{sub 3}3 n-alkanes as carbon and energy sources. Bacteria that produce stable emulsions are often able to adhere strongly to hydrocarbons or hydrophobic surfaces. It was at these surfaces that extensive emulsification of the residual oil and accumulation of acidic oxidation products occurred. The acidic products were consumed in a second step. This step was characterized by linear growth and an increasing number of cells growing in the water phase. The most extensive emulsification occurred at the end of the exponential phase. There was no evidence of surfactants at the end of the exponential phase, however, a polymeric compound with emulsifying activity, tightly bound to the oil droplets, was isolated, suggesting that the emulsification resulted from the release of the hydrophobic cell surface discarded during growth limitations. 38 refs., 7 figs.

  20. Chemical structures and theoretical models of lean premixed ...

    African Journals Online (AJOL)

    To better understand the chemistry involved in the lean-fuel combustion, the chemical structure of lean premixed propene-oxygen-nitrogen flames stabilized on a flat-flame burner at atmospheric pressure was determined experimentally. The species mole fraction profiles were also computed by the Premix code and three ...

  1. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu; Cho, Eunseong; Chung, Suk-Ho

    2014-01-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration

  2. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  3. Thermal Radiation Properties of Turbulent Lean Premixed Methane Air Flames

    National Research Council Canada - National Science Library

    Ji, Jun; Sivathanu, Y. R; Gore, J. P

    2000-01-01

    ... of turbulent premixed flames. Reduced cooling airflows in lean premixed combustors, miniaturization of combustors, and the possible use of radiation sensors in combustion control schemes are some of the practical reasons...

  4. Fabrication of starch-based microparticles by an emulsification-crosslinking method

    Science.gov (United States)

    Starch-based microparticles (MPs) fabricated by a water-in-water (w/w) emulsification-crosslinking method could be used as a controlled-release delivery vehicle for food bioactives. Due to the processing route without the use of toxic organic solvents, it is expected that these microparticles can be...

  5. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  6. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    Directory of Open Access Journals (Sweden)

    Emma Piacentini

    2016-05-01

    Full Text Available Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively were produced. The release of biophenols was also investigated.

  7. Investigation into the Cause of Spontaneous Emulsification of a Free Steel Droplet; Validation of the Chemical Exchange Pathway

    Science.gov (United States)

    Spooner, Stephen; Assis, Andre N.; Warnett, Jason; Fruehan, Richard; Williams, Mark A.; Sridhar, Seetharaman

    2016-08-01

    Small Fe-based droplets have been heated to a molten phase suspended within a slag medium to replicate a partial environment within the basic oxygen furnace (BOF). The confocal scanning laser microscope (CSLM) has been used as a heating platform to interrogate the effect of impurities and their transfer across the metal/slag interface, on the emulsification of the droplet into the slag medium. The samples were then examined through X-ray computer tomography (XCT) giving the mapping of emulsion dispersion in 3D space, calculating the changing of interfacial area between the two materials, and changes of material volume due to material transfer between metal and slag. Null experiments to rule out thermal gradients being the cause of emulsification have been conducted as well as replication of the previously reported study by Assis et al.[1] which has given insights into the mechanism of emulsification. Finally chemical analysis was conducted to discover the transfer of oxygen to be the cause of emulsification, leading to a new study of a system with undergoing oxygen equilibration.

  8. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  9. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano

    2017-08-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up to 4 atm, thereby addressing realistic gas turbine conditions. The skeletal mechanism is obtained by applying the directed relation graph method and performing sensitivity analysis on the detailed mechanism. The mechanism has been validated for flame speed and flame structure in a wide range of conditions and configurations. A good agreement between the skeletal mechanism and GRI-3.0 was obtained. The configurations considered include one-dimension laminar premixed flames, laminar non-premixed counterflow burners, and two- and three-dimensional unsteady configurations with variations of temperature, pressure, and composition. The skeletal mechanism allows for the inclusion of accurate finite rate chemistry in large-scale direct numerical simulations of lean turbulent premixed flames. In a large-scale direct numerical simulation, the use of the skeletal mechanism reduces the memory requirements by more than a factor of 3 and accelerates the simulation by a factor of 7 compared with the detailed mechanism. The skeletal mechanism is suitable for unsteady three-dimensional simulations of methane turbulent premixed, non-premixed, and globally lean partially premixed flames and is available as supplementary material.

  10. Quantification of extinction mechanism in counterflow premixed flames

    International Nuclear Information System (INIS)

    Choi, Sang Kyu; Cho, Eun Seong; Chung, Suk Ho

    2014-01-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH 4 , C 3 H 8 , H 2 , CO and for the mixture fuels of CH 4 +H 2 and CO+H 2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H 2 , CH 4 , CH 4 +H 2 , CO+H 2 , and rich C 3 H 8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H 2 , CH 4 , CH 4 +H 2 , CO+H 2 , and lean C 3 H 8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H 2 mixing to CO is found to be quite significant as compared to CH 4 +H 2 cases, which can alter the flame behavior of CO flames to that of H 2 .

  11. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu

    2014-09-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.

  12. Chaos in an imperfectly premixed model combustor.

    Science.gov (United States)

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  13. Modeling emulsification processes in rotary-disk mixers

    Science.gov (United States)

    Laponov, S. V.; Shulaev, N. S.; Ivanov, S. P.; Bondar', K. E.; Suleimanov, D. F.

    2017-10-01

    This article presents the experimental studies results of emulsification processes in liquid-liquid systems in rotary-disk mixers, allowing regulating the distribution of dispersed particles by changing the process conditions and the ratio of the dispersed phase. It is shown that with the increase of mixer’s revolutions per minute (RPM), both the size of dispersed particles and the deviation of dispersed particles sizes from the average decrease. The increase of the dispersed particles part results in the increase of particles average sizes at the current energy consumption. Discovered relationships can be used in the design of industrial equipment and laboratory research.

  14. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    Science.gov (United States)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  15. Quantification of extinction mechanism in counterflow premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Kyu [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Cho, Eun Seong [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Chung, Suk Ho [Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH{sub 4}, C{sub 3}H{sub 8}, H{sub 2}, CO and for the mixture fuels of CH{sub 4}+H{sub 2} and CO+H{sub 2} by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H{sub 2} , CH{sub 4}, CH{sub 4}+H{sub 2}, CO+H{sub 2}, and rich C{sub 3}H{sub 8} premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H{sub 2}, CH{sub 4}, CH{sub 4}+H{sub 2}, CO+H{sub 2}, and lean C{sub 3}H{sub 8} premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H{sub 2} mixing to CO is found to be quite significant as compared to CH{sub 4}+H{sub 2} cases, which can alter the flame behavior of CO flames to that of H{sub 2}.

  16. Development of rapid mixing fuel nozzle for premixed combustion

    International Nuclear Information System (INIS)

    Katsuki, Masashi; Chung, Jin Do; Kim, Jang Woo; Hwang, Seung Min; Kim, Seung Mo; Ahn, Chul Ju

    2009-01-01

    Combustion in high-preheat and low oxygen concentration atmosphere is one of the attractive measures to reduce nitric oxide emission as well as greenhouse gases from combustion devices, and it is expected to be a key technology for the industrial applications in heating devices and furnaces. Before proceeding to the practical applications, we need to elucidate combustion characteristics of non-premixed and premixed flames in high-preheat and low oxygen concentration conditions from scientific point of view. For the purpose, we have developed a special mixing nozzle to create a homogeneous mixture of fuel and air by rapid mixing, and applied this rapidmixing nozzle to a Bunsen-type burner to observe combustion characteristics of the rapid-mixture. As a result, the combustion of rapid-mixture exhibited the same flame structure and combustion characteristics as the perfectly prepared premixed flame, even though the mixing time of the rapid-mixing nozzle was extremely short as a few milliseconds. Therefore, the rapid-mixing nozzle in this paper can be used to create preheated premixed flames as far as the mixing time is shorter than the ignition delay time of the fuel

  17. An Underwater Superoleophobic Sepiolite Fibrous Membrane (SFM) for Oil­‐in­‐water Emulsion Separation

    KAUST Repository

    Yao, Pinjiang

    2014-12-01

    Separating oil/water emulsions is significant for the ecosystem and the petroleum and processing industry. To this end, we prepared an underwater superoleophobic membrane inspired by unique wettability of the fish scales. This membrane was fabricated by a facile vacuum filtration process of sepiolite nanofibers and chitosan, and after the cross-linking via glutaraldehyde, a self-standing membrane was obtained. The as-prepared membrane exhibited excellent capability of separating both the surfactant-free and surfactant-stabilized oil-in-water emulsions with high efficiency. This sepiolite fibrous membrane offers a convenient, reliable and efficient way for the large-scale de-emulsification process.

  18. Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation

    Science.gov (United States)

    Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah

    2018-02-01

    Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.

  19. Gravity Effects Observed In Partially Premixed Flames

    Science.gov (United States)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  20. The Role of Shearing Energy and Interfacial Gibbs Free Energy in the Emulsification Mechanism of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-05-01

    Full Text Available Crude oil is generally produced with water, and the water cut produced by oil wells is increasingly common over their lifetime, so it is inevitable to create emulsions during oil production. However, the formation of emulsions presents a costly problem in surface process particularly, both in terms of transportation energy consumption and separation efficiency. To deal with the production and operational problems which are related to crude oil emulsions, especially to ensure the separation and transportation of crude oil-water systems, it is necessary to better understand the emulsification mechanism of crude oil under different conditions from the aspects of bulk and interfacial properties. The concept of shearing energy was introduced in this study to reveal the driving force for emulsification. The relationship between shearing stress in the flow field and interfacial tension (IFT was established, and the correlation between shearing energy and interfacial Gibbs free energy was developed. The potential of the developed correlation model was validated using the experimental and field data on emulsification behavior. It was also shown how droplet deformation could be predicted from a random deformation degree and orientation angle. The results indicated that shearing energy as the energy produced by shearing stress working in the flow field is the driving force activating the emulsification behavior. The deformation degree and orientation angle of dispersed phase droplet are associated with the interfacial properties, rheological properties and the experienced turbulence degree. The correlation between shearing stress and IFT can be quantified if droplet deformation degree vs. droplet orientation angle data is available. When the water cut is close to the inversion point of waxy crude oil emulsion, the interfacial Gibbs free energy change decreased and the shearing energy increased. This feature is also presented in the special regions where

  1. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity.

    Science.gov (United States)

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics.

  2. Use of Piggyback Electrolytes for Patients Receiving Individually Prescribed vs Premixed Parenteral Nutrition.

    Science.gov (United States)

    Busch, Rebecca A; Curtis, Caitlin S; Leverson, Glen E; Kudsk, Kenneth A

    2015-07-01

    Parenteral nutrition (PN) is available as individualized prescriptions frequently prepared with an automated compounding device or as commercially prepared premixed solutions. Our institution exclusively used individualized PN until an amino acid shortage forced a temporary switch to premixed solutions. In general, premixed solutions contain lower electrolyte levels than individualized formulations prescribed for patients with normal organ function. We aimed to quantify supplemental intravenous piggyback (IVPB) electrolyte use in adult patients receiving individualized and premixed PN and to quantify any effect on difference in the cost of therapy. We compared use of supplemental IVPB electrolytes administered to patients receiving PN during consecutive periods prior to and during the amino acid shortage. Electrolyte IVPBs tabulated were potassium chloride, 10 and 20 mEq; magnesium sulfate, 2 g and 4 g; potassium phosphate, 7.5 and 15 mmol; and sodium phosphate, 7.5 and 15 mmol IVPB. There was no statistical difference in the number of PN formulations administered per day during each period (14.7 ± 3.9 vs 14.0 ± 2.6, individualized vs premixed, respectively). Total IVPB electrolytes prescribed per day increased significantly from the individualized PN period to the premixed PN period (7.03 ± 3.8 vs 13.8 ± 6.8; P Parenteral and Enteral Nutrition.

  3. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Zuo-Yu Sun

    2014-07-01

    Full Text Available Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures. The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability when the equivalence ratio has been reduced to a certain value, which is totally different from the traditional understanding of the instability characteristics of lean hydrogen premixed flames. Accompanied by the smoothened flame front, the propagation mode of lean hydrogen premixed flames transitions from initially spherical outwardly towards upwardly when the flames expand to certain sizes. To quantitatively investigate such buoyant instability behaviors, two parameters, “float rate (ψ” and “critical flame radius (Rcr”, have been proposed in the present article. The quantitative results demonstrate that the influences of initial pressure (Pint on buoyant unstable behaviors are different. Based on the effects of variation of density difference and stretch rate on the flame front, the mechanism of such buoyant unstable behaviors has been explained by the competition between the stretch force and the results of gravity and buoyancy, and lean hydrogen premixed flames will display buoyant unstable behavior when the stretch effects on the flame front are weaker than the effects of gravity and buoyancy.

  4. 21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.

    Science.gov (United States)

    2010-04-01

    ... premixes, may continue to be used under prior sanctions in the commercial curing of meat and meat products... that apply to meat curing preparations for the home curing of meat and meat products, including poultry and wild game. To assure safe use of such ingredients the labeling of the premixes shall bear...

  5. Standard practice for fluorescent liquid penetrant testing using the hydrophilic Post-Emulsification process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for fluorescent penetrant examination utilizing the hydrophilic post-emulsification process. It is a nondestructive testing method for detecting discontinuities that are open to the surface such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination hydrophilic post-emulsification process recommended or required by individual organizations can be reviewed to ascertain their applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the fluorescent penetrant examination of materials and parts using the hy...

  6. Analysis of biosurfactants from industrially-viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect on emulsification property and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Palashpriya eDas

    2014-12-01

    Full Text Available Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL and di-rhamnolipid (DRL congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67 was found to be very efficacious based on its critical micelle concentration (CMC value and hydrocarbon emulsification property. Strikingly, antimicrobial and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography (TLC analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affect the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In consistent, rhamnolipids of IMP67 reduced the MIC of some antibiotics against bacteria, suggesting the potential of biosurfactant as antibiotics synergist.

  7. Effects of premixed diethyl ether (DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine

    International Nuclear Information System (INIS)

    Cinar, Can; Can, Ozer; Sahin, Fatih; Yucesu, H. Serdar

    2010-01-01

    In this study, the effects of premixed ratio of diethyl ether (DEE) on the combustion and exhaust emissions of a single-cylinder, HCCI-DI engine were investigated. The experiments were performed at the engine speed of 2200 rpm and 19 N m operating conditions. The amount of the premixed DEE was controlled by a programmable electronic control unit (ECU) and the DEE injection was conducted into the intake air charge using low pressure injector. The premixed fuel ratio (PFR) of DEE was changed from 0% to 40% and results were compared to neat diesel operation. The percentages of premixed fuel were calculated from the energy ratio of premixed DEE fuel to total energy rate of the fuels. The experimental results show that single stage ignition was found with the addition of premixed DEE fuel. Increasing and phasing in-cylinder pressure and heat release were observed in the premixed stage of the combustion. Lower diffusion combustion was also occurred. Cycle-to cycle variations were very small with diesel fuel and 10% DEE premixed fuel ratio. Audible knocking occurred with 40% DEE premixed fuel ratio. NO x -soot trade-off characteristics were changed and improvements were found simultaneously. NO x and soot emissions decreased up to 19.4% and 76.1%, respectively, while exhaust gas temperature decreased by 23.8%. On the other hand, CO and HC emissions increased.

  8. Effect of air-excess on blends of RON70 partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; Bakker, P.C.; Somers, L.M.T.; de Goey, L.P.H.

    Partially Premixed Combustion (PPC) is a combustion concept that aims to provide combustion with low smoke and NOx emissions and a high thermal efficiency. Extending the ignition delay to enhance premixing, avoiding spray-driven combustion, and controlling temperature at an optimum level through use

  9. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  10. Computational aspects of premixing modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, D.F. [Sydney Univ., NSW (Australia). Dept. of Chemical Engineering; Witt, P.J.

    1998-01-01

    In the steam explosion research field there is currently considerable effort being devoted to the modelling of premixing. Practically all models are based on the multiphase flow equations which treat the mixture as an interpenetrating continuum. Solution of these equations is non-trivial and a wide range of solution procedures are in use. This paper addresses some numerical aspects of this problem. In particular, we examine the effect of the differencing scheme for the convective terms and show that use of hybrid differencing can cause qualitatively wrong solutions in some situations. Calculations are performed for the Oxford tests, the BNL tests, a MAGICO test and to investigate various sensitivities of the solution. In addition, we show that use of a staggered grid can result in a significant error which leads to poor predictions of `melt` front motion. A correction is given which leads to excellent convergence to the analytic solution. Finally, we discuss the issues facing premixing model developers and highlight the fact that model validation is hampered more by the complexity of the process than by numerical issues. (author)

  11. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    This article describes an experimental investigation of the forced response of a swirl-stabilized partially premixed flame when it is subjected to acoustic velocity and equivalence ratio fluctuations. The flame's response is analyzed using phase-resolved CH{sup *} chemiluminescence images and flame transfer function (FTF) measurements, and compared with the response of a perfectly premixed flame under acoustic perturbations. The nonlinear response of the partially premixed flame is manifested by a partial extinction of the reaction zone, leading to rapid reduction of flame surface area. This nonlinearity, however, is observed only when the phase difference between the acoustic velocity and the equivalence ratio at the combustor inlet is close to zero. The condition, {delta}{phi}{sub {phi}}'-V'{approx}0 , indicates that reactant mixtures with high equivalence ratio impinge on the flame front with high velocity, inducing large fluctuations of the rate of heat release. It is found that the phase difference between the acoustic velocity and equivalence ratio nonuniformities is a key parameter governing the linear/nonlinear response of a partially premixed flame, and it is a function of modulation frequency, inlet velocity, fuel injection location, and fuel injector impedance. The results presented in this article will provide insight into the response of a partially premixed flame, which has not been well explored to date. (author)

  12. Comparison Between Premixed and Compounded Parenteral Nutrition Solutions in Hospitalized Patients Requiring Parenteral Nutrition.

    Science.gov (United States)

    Beattie, Colleen; Allard, Johane; Raman, Maitreyi

    2016-04-01

    Parenteral nutrition (PN) may be provided through compounded or premixed solutions. To determine the proportion of stable custom-compounded PN prescriptions that would fit within a 20% deviance of an existing premixed PN solution. A retrospective study design was used. Inpatients who received PN in non-critical care units in the preceding year were screened for eligibility. Results are reported descriptively as means (95% confidence intervals) and proportions. We reviewed 97 PN prescriptions that met inclusion criteria. Stable hospital PN prescriptions compared with the reference premixed prescription provided 1838 (1777-1898) vs 1843 (1781-1905) kcal/d, P = .43; dextrose, 266 (254-277) vs 225 (216-234) g/d, P magnesium, 5.4 (4.8-5.4) vs 7.6 (7.4-7.9) mmol/L. Calories and protein were remarkably similar, but dextrose, lipid, and electrolytes differed between hospital PN and the reference premixed prescription. We believe that there may be a role for premixed solutions in quaternary centers in stable non-critically ill patients. © 2016 American Society for Parenteral and Enteral Nutrition.

  13. Emulsification properties of soy bean protein

    Directory of Open Access Journals (Sweden)

    WENPU CHEN

    2014-12-01

    Full Text Available Chen W, Li X, Rahman MRT, Al-Hajj NQM, Dey KC, Raqib SM. 2014. Emulsification properties of soy bean protein. Nusantara Bioscience 6: 196-202. Emulsion stability and emulsifying ability are two important factors in food industry. Soy protein has the great of interest because of its amphilic structure. β-Conglycinnin and glycinin are main components in soy protein which can be used as emulsifiers in food processing. However, due to its size and molecular weight, the emulsifying ability of soy protein is limited. By chemical, physical and enzymatic modification, the emulsifying ability of soy protein can be improved. The addition of polysaccharides in emulsion is common. The interaction of polysaccharides and proteins are being discussed in this review. In some complex food emulsion, the function of soy protein molecules and emulsifier at the interface need to be investigated in the future study.

  14. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad; Hourani, Nadim; Chahine, May; Selim, Hatem; Sarathy, Mani; Farooq, Aamir

    2014-01-01

    Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry

  15. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    OpenAIRE

    Pan, Zhenzhong; Cui, Bo; Zeng, Zhanghua; Feng, Lei; Liu, Guoqiang; Cui, Haixin; Pan, Hongyu

    2015-01-01

    The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt) and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate) screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with ...

  16. Large eddy simulation of turbulent premixed combustion flows over backward facing step

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Seob [Yuhan University, Bucheon (Korea, Republic of); Ko, Sang Cheol [Jeju National University, Jeju (Korea, Republic of)

    2011-03-15

    Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained.

  17. Large eddy simulation of turbulent premixed combustion flows over backward facing step

    International Nuclear Information System (INIS)

    Park, Nam Seob; Ko, Sang Cheol

    2011-01-01

    Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained

  18. Emulsification in binary liquids containing colloidal particles: a structure-factor analysis

    International Nuclear Information System (INIS)

    Thijssen, Job H J; Clegg, Paul S

    2010-01-01

    We present a quantitative confocal-microscopy study of the transient and final microstructure of particle-stabilized emulsions formed via demixing in a binary liquid. To this end, we have developed an image-analysis method that relies on structure factors obtained from discrete Fourier transforms of individual frames in confocal image sequences. Radially averaging the squared modulus of these Fourier transforms before peak fitting allows extraction of dominant length scales over the entire temperature range of the quench. Our procedure even yields information just after droplet nucleation, when the (fluorescence) contrast between the two separating phases is scarcely discernible in the images. We find that our emulsions are stabilized on experimental timescales by interfacial particles and that they are likely to have bimodal droplet-size distributions. We attribute the latter to coalescence together with creaming being the main coarsening mechanism during the late stages of emulsification and we support this claim with (direct) confocal-microscopy observations. In addition, our results imply that the observed droplets emerge from particle-promoted nucleation, possibly followed by a free-growth regime. Finally, we argue that creaming strongly affects droplet growth during the early stages of emulsification. Future investigations could clarify the link between quench conditions and resulting microstructure, paving the way for tailor-made particle-stabilized emulsions from binary liquids.

  19. Estabilidade térmica das vitaminas A e E em rações e premixes vitamínicos para camarões Thermal stability of vitamins A and E in rations and vitamin premixes for shrimp

    Directory of Open Access Journals (Sweden)

    João Paulo de Sousa Prado

    2011-03-01

    Full Text Available O trabalho teve como objetivo avaliar a estabilidade térmica das vitaminas A e E em diferentes rações e premixes vitamínicos utilizados na carcinicultura. Foram utilizadas no experimento três rações comerciais peletilizadas e desintegradas em diferentes diâmetros e dois premixes vitamínicos. As amostras de cada dieta e de premixes foram acondicionadas em recipientes plásticos e armazenadas nas seguintes condições: ambiente refrigerado (6°C±2°C, ambiente climatizado (20°C±3°C e ambiente de estufa (40°C±3°C. Os teores das vitaminas foram determinados em triplicata nas amostras nos períodos 0 (controle, 5, 10, 15, 20, 25 e 30 dias, nas condições anteriormente descritas. Os resultados obtidos mostraram que o percentual médio das perdas de vitamina A nas rações foram de 65, 60 e 68% para os ambientes refrigerado, climatizado e em estufa, respectivamente. Para o premix vitamínico A, o percentual médio de degradação foi de 78 a 87%, observando maiores perdas nos ambiente climatizado e de estufa. Com relação à vitamina E, observou-se nas rações perdas de 88 a 100%, verificando-se perdas totais para o armazenamento em ambiente de refrigeração e estufa. Já o premix vitamínico E as perdas foram de 71 a 82%. Durante o armazenamento da ração e dos premixes vitamínicos, as perdas por degradação térmica demonstraram falta de estabilidade das vitaminas lipossolúveis na estrutura das rações e premixes, utilizados na alimentação de camarões.The study aimed to evaluate the thermal stability of vitamins A and E on different rations and vitamin premixes used in shrimp farming. Three commercial rations pelleted and disintegrated in two different diameters and two vitamin premixes were used in the experiment. Samples of each ration and premixes were placed in plastic containers and stored under the following conditions: refrigerated environment (6°C±2°C, acclimatized environment (20°C±3°C and greenhouse

  20. Premixed combustion on ceramic foam burners

    NARCIS (Netherlands)

    Bouma, P.H.; Goey, de L.P.H.

    1999-01-01

    Combustion of a lean premixed methane–air mixture stabilized on a ceramic foam burner has been studied. The stabilization of the flame in the radiant mode has been simulated using a one-dimensional numerical model for a burner stabilized flat-flame, taking into account the heat transfer between the

  1. Emulsification index of petroleum products by bacteria isolated from mangrove; Taxa de emulsificacao de derivados do petroleo por bacterias isoladas de mangue

    Energy Technology Data Exchange (ETDEWEB)

    Krepsky, Natascha; Queiroz, Fernanda; Barcelos, Mabel Araujo de; Fontana, Luis Francisco; Bittencourt, Jose Augusto Pires; Pimenta, Alessandro L.; Silva, Frederico Sobrinho da; Bispo, Maria das Gracas Silveira; Crapez, Mirian Araujo Carlos [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Programa de Pos-graduacao em Biologia Marinha]. E-mail: mirian@vm.uff.br

    2003-07-01

    Oil spillage during ship transportation or at gas stations may be deleterious to environment due to its affinity for organic matter and its prompt distribution over the ground water surface, limiting bioremediation. The usage of bacterial surfactants can enhance the removal of petroleum hydrocarbons from the impacted area. Thus, the study of bacterial emulsification is relevant for improved environmental decontamination programs. Three Bacillus spp. were isolated from mangrove sediment of APA de Guapimirim -RJ, a protection area previously impacted with petroleum hydrocarbon. Emulsification index was quantified from gasoline, kerosene and Arabian light. The bacteria showed a high emulsification index, especially for gasoline, that seemed to be related to its biomass. Our results indicated a possible utilization of this biosurfactant in the environmental remediation on areas impacted with gasoline or Arabian light. (author)

  2. Crossed-Plane Imaging of Premixed Turbulent Combustion Processes

    National Research Council Canada - National Science Library

    Gouldin, F

    2003-01-01

    .... Rayleigh scattering from premixed flames can be used for temperature imaging, and we have developed crossed-plane Rayleigh imaging in order to measure with high-resolution instantaneous temperature...

  3. Extraction of Uranium with Amin as solvent and HCl as internal phase at membrane emulsion

    International Nuclear Information System (INIS)

    Ninik Bintarti, A.; Bambang-Edi-HB; Sudibyo, R.

    1996-01-01

    An extraction process of uranium by Tri-n-Actylamine(TOA) solution with kerosene as thinner and surfactant of Span-80 as emulgator to bend a membrane emulsion. HCI 0.01 N is used as an internal phase uranium in HNO 3 as feed and butanol is used to split the membrane. In the case of membrane, the result was 1 % vol. TOA and 5 % vol. Span-80, emulsification time was 30 minutes and 50 % vol. HCI 0.01 N. The product of an extraction was concentration of HNO 3 is 3 M. The time of extraction 20 minutes and uranium concentration in feed of 600 ppm will give distribution coefficient of membrane extraction was 5.830 and coefficient of stripping was 0.276

  4. Role of medium-chain fatty acids in the emulsification mechanistics of self-micro-emulsifying lipid formulations.

    Science.gov (United States)

    Hasan, Naser M Y

    2014-12-01

    The objective of the present study was to design and develop stable o/w microemulsions comprising Miglyol 812, Imwitor 988 and Tagat TO as a non ionic surfactant. This was based on particle size measurements and phase behavior studies. The empirical role of incorporating medium-chain mono/di-glycerides in the lipid matrix in the mechanistic processes of emulsification was also established in various simulating physiological conditions. The efficiency of self-emulsification was evaluated under conditions of varying key compositions in the lipid mixtures; oil, cosurfactant and surfactant. Droplet diameter was measured using laser diffraction and light scattering techniques. Equilibrium phase studies were performed and phase boundaries were determined for the lipid-water systems. Microemulsion systems were produced from blends of Miglyol 812, Imwitor 988 and Tagat TO. An optimized formulation consisted of {Miglyol 812/Imwitor 988} and Tagat TO spontaneously self-emulsified in water producing dispersions with droplet diameters of ∼50 nm. Phase equilibrium diagrams have revealed significant enhancement in the water-solubilized region (L2) without any presence of liquid crystalline materials. Potential SMEDDS formulations for the bioavailability enhancement of poorly water-soluble compounds were developed by mixing blends of {Miglyol 812/Imwitor 988} and Tagat TO as a non-ionic surfactant. 'Diffusion and stranding' appears to be the dominant mechanism of emulsification.

  5. Thermal stability of vitamins A and E in rations and vitamin premixes for shrimp

    OpenAIRE

    Prado, João Paulo de Sousa; Cavalheiro, José Marcelino Oliveira; Silva, Fernanda Vanessa Gomes da; Queiroga Neto, Vicente; Bora, Pushkar Singh; Cavalheiro, Thiago Brandão

    2011-01-01

    O trabalho teve como objetivo avaliar a estabilidade térmica das vitaminas A e E em diferentes rações e premixes vitamínicos utilizados na carcinicultura. Foram utilizadas no experimento três rações comerciais peletilizadas e desintegradas em diferentes diâmetros e dois premixes vitamínicos. As amostras de cada dieta e de premixes foram acondicionadas em recipientes plásticos e armazenadas nas seguintes condições: ambiente refrigerado (6°C±2°C), ambiente climatizado (20°C&p...

  6. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  7. Subgrid scale modeling in large-Eddy simulation of turbulent combustion using premixed fdlamelet chemistry

    NARCIS (Netherlands)

    Vreman, A.W.; Oijen, van J.A.; Goey, de L.P.H.; Bastiaans, R.J.M.

    2009-01-01

    Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier-Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet

  8. An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames

    Science.gov (United States)

    Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin

    2015-11-01

    Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.

  9. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  10. A combined single-multiphase flow formulation of the premixing phase using the level set method

    International Nuclear Information System (INIS)

    Leskovar, M.; Marn, J.

    1999-01-01

    The premixing phase of a steam explosion covers the interaction of the melt jet or droplets with the water prior to any steam explosion occurring. To get a better insight of the hydrodynamic processes during the premixing phase beside hot premixing experiments, where the water evaporation is significant, also cold isothermal premixing experiments are performed. The specialty of isothermal premixing experiments is that three phases are involved: the water, the air and the spheres phase, but only the spheres phase mixes with the other two phases whereas the water and air phases do not mix and remain separated by a free surface. Our idea therefore was to treat the isothermal premixing process with a combined single-multiphase flow model. In this combined model the water and air phase are treated as a single phase with discontinuous phase properties at the water air interface, whereas the spheres are treated as usually with a multiphase flow model, where the spheres represent the dispersed phase and the common water-air phase represents the continuous phase. The common water-air phase was described with the front capturing method based on the level set formulation. In the level set formulation, the boundary of two-fluid interfaces is modeled as the zero set of a smooth signed normal distance function defined on the entire physical domain. The boundary is then updated by solving a nonlinear equation of the Hamilton-Jacobi type on the whole domain. With this single-multiphase flow model the Queos isothermal premixing Q08 has been simulated. A numerical analysis using different treatments of the water-air interface (level set, high-resolution and upwind) has been performed for the incompressible and compressible case and the results were compared to experimental measurements.(author)

  11. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  12. The effects of pre-mix on burn in ICF capsules

    International Nuclear Information System (INIS)

    Wilson, D C; Kyrala, G A; Jr, J F Benage; Wysocki, F J; Gunderson, M A; Herrman, H W; Cooley, J H; Welser-Sherrill, L; Garbett, W J; Horsfield, C J; Glebov, V Y; Yaakobi, B; Roberts, S A; Frenje, J

    2008-01-01

    Directly driven implosions at the Omega laser have tested the effects of pre-mix of Ar, Kr, and Xe in D 2 + 3 He filled glass micro-balloons. Diagnostics included: D+D and D+T neutron yields, D+ 3 He proton yields and spectra, Doppler broadened ion temperatures, time dependent neutron and proton burn rates, and time gated, high energy filtered, X-ray images. Yields are better calculated by XSN LTE than by non-LTE. Yields with a small amount of pre-mix, atom fractions of ∼5e-3 for Ar, 2e-3 Kr, and Xe for 5e-4, are more degraded than calculated, while the measured ion temperatures are the same as without pre-mix. There is also a decrease in fuel ρr. The neutron burn histories suggest that the early yield coming before the reflected shock strikes the incoming shell is un-degraded, with yield degradation occurring afterwards. Adding 20 atm % 3 He to pure D fuel seems to produce a similar degradation. Calculated gated X-ray images agree with observed when the reflected shock strikes the incoming shell, but are smaller than observed afterward. This partially explains yield degradation and both the low fuel and whole capsule ρr's observed in secondary T+D neutrons and slowing of the D+ 3 He protons. Neither LTE on non-LTE captures the degradation by 3 He or at low pre-mix levels, nor matches the large shell radii after impact of the reflected shock

  13. Effect of emulsification on the skin permeation and UV protection of catechin.

    Science.gov (United States)

    Yoshino, Sachie; Mitoma, Tomoaki; Tsuruta, Keiko; Todo, Hiroaki; Sugibayashi, Kenji

    2014-06-01

    An anti-aging effect may be obtained by skin application of tea catechins (Camellia sinensis) since they have high ultraviolet (UV)-protection activity. In this study, the skin permeation of catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) was determined and compared, and the effect of emulsification on the skin permeation of C was measured. The UV-protective effect of C was also determined. The in vitro skin permeability of each catechin derivative was determined using side-by-side diffusion of cells. The UV-protective effect of C was determined by applying different concentrations of C to the solution or emulsion on a three-dimensional cultured human skin model or normal human epidermal keratinocytes with UV-irradiation. ECg and EGCg with gallate groups showed lower skin permeability than C, EC and EGC without gallate groups, suggesting that the skin permeability of catechin derivatives may be dependent on the existence of a gallate group. Interestingly, the skin permeation of C was increased by an o/w emulsification. In addition, the C emulsion showed a significantly higher UV-protective effect by C than that with its aqueous solution. These results suggest that the o/w emulsion of catechin derivatives is probably useful as a cosmetic formulation with anti-aging efficacy.

  14. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  15. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  16. Intensifying existing premix therapy (BIAsp 30) with BIAsp 50 and BIAsp 70

    DEFF Research Database (Denmark)

    Brito, Miguel; Ligthelm, Robert Jan; Boemi, Massimo

    2011-01-01

    In 2009, consensus guidelines were published on intensification of insulin therapy using the premix analog biphasic insulin aspart (BIAsp) 30 in the treatment of type 2 diabetes, based on the recommendations of an international, independent expert panel. The guidelines included recommendations an...... assist physicians in introducing mid-/high-ratio premixes to optimize the insulin therapy of patients with type 2 diabetes who are failing to achieve glycemic targets on a BIAsp 30 BID or TID regimen....

  17. ASSESSMENT OF FLOW AND TECHNOLOGICAL BEHAVIOR OF FRENCH BREAD PREMIXES

    Directory of Open Access Journals (Sweden)

    E. VALDUGA

    2008-08-01

    Full Text Available

    In this work formulations of French bread premixes were investigated. The premixes were based on blends of Argentinean and Brazilian wheat. The bread produced with the mixtures was compared to the bread obtained with standard flour, which did not contain any additives. The flour was characterized by physico-chemical and biochemical analysis (humidity, ashes, water absorption, color, gluten index, flour strength and a-amylase activity. The bread rolls were prepared using a standard formulation (without additives and two different formulations, using ascorbic acid, a-amylase, esterlac, soybean flour and diacetyl tartaric acid emulsifier. The physico-chemical analysis results indicate that the standard flour is better than the formulations. Nevertheless bread-making tests showed that the premixes formulations have better performance concerning the specific volume and the sensory characteristics. Statistical analysis confirmed that there is a significant difference in the specific volume and the sensory characteristics between the formulations, proving that the use of additives can enhance the quality of the French bread.

  18. Implementation of Premixed Equilibrium Chemistry Capability in OVERFLOW

    Science.gov (United States)

    Olsen, Mike E.; Liu, Yen; Vinokur, M.; Olsen, Tom

    2004-01-01

    An implementation of premixed equilibrium chemistry has been completed for the OVERFLOW code, a chimera capable, complex geometry flow code widely used to predict transonic flowfields. The implementation builds on the computational efficiency and geometric generality of the solver.

  19. Direct Numerical Simulations of NOx formation in spatially developing turbulent premixed Bunsen flames with mixture inhomogeneity

    KAUST Repository

    Luca, Stefano

    2017-01-05

    Direct Numerical Simulation of three-dimensional spatially developing turbulent methane/air flames are performed. Four flames are simulated; they differ for the level of premixing of the fuel inlet: one has a fully premixed inlet, the other three have a partially premixed inlet that mimic a common injection strategy in stationary gas turbines. The jet consist of a methane/air mixture with global equivalence ratio ɸ = 0.7 and temperature of 800 K. The simulations are performed at 4 atm. The inlet velocity field and the fuel/air fields were extracted from a fully developed turbulent channel simulation. Chemistry is treated with a new skeletal chemical mechanism consisting of 33 species developed specifically for the DNS. The data are analyzed to study possible influences of partial premixing on the flame structure and the combustion efficiency. The results show that increasing the level of partial premixing, the fluctuations of heat release rate increase, due to the richer and leaner pockets of mixture in the flame, while the conditional mean decreases. Increasing the level of partial premixing, the peak of NO and the range of NO values for a given temperature increase. An analysis of NO production is performed categorizing the different initiation steps in the Ndecomposition through four pathways: thermal, prompt, NNH and NO. Different behaviour with respect to laminar flames is found for the NNH pathway suggesting that turbulence influences this pathway of formation of NO.

  20. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence-Chemistry Interaction in High- Reynolds -Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number 5a. CONTRACT NUMBER turbulent...for public release Final Report: Experimental investigation of turbulence-chemistry interaction in high- Reynolds -number turbulent partially premixed

  1. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used

  2. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    Science.gov (United States)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  3. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    Science.gov (United States)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  4. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion

    Science.gov (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul

    2015-01-01

    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  5. Quantifying the Pathway and Predicting Spontaneous Emulsification during Material Exchange in a Two Phase Liquid System.

    Science.gov (United States)

    Spooner, Stephen; Rahnama, Alireza; Warnett, Jason M; Williams, Mark A; Li, Zushu; Sridhar, Seetharaman

    2017-10-30

    Kinetic restriction of a thermodynamically favourable equilibrium is a common theme in materials processing. The interfacial instability in systems where rate of material exchange is far greater than the mass transfer through respective bulk phases is of specific interest when tracking the transient interfacial area, a parameter integral to short processing times for productivity streamlining in all manufacturing where interfacial reaction occurs. This is even more pertinent in high-temperature systems for energy and cost savings. Here the quantified physical pathway of interfacial area change due to material exchange in liquid metal-molten oxide systems is presented. In addition the predicted growth regime and emulsification behaviour in relation to interfacial tension as modelled using phase-field methodology is shown. The observed in-situ emulsification behaviour links quantitatively the geometry of perturbations as a validation method for the development of simulating the phenomena. Thus a method is presented to both predict and engineer the formation of micro emulsions to a desired specification.

  6. Determination of appropriate models and parameters for premixing calculations

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan

    2008-03-15

    The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al{sub 2}O{sub 3}) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested.

  7. Determination of appropriate models and parameters for premixing calculations

    International Nuclear Information System (INIS)

    Park, Ik-Kyu; Kim, Jong-Hwan; Min, Beong-Tae; Hong, Seong-Wan

    2008-03-01

    The purpose of the present work is to use experiments that have been performed at Forschungszentrum Karlsruhe during about the last ten years for determining the most appropriate models and parameters for premixing calculations. The results of a QUEOS experiment are used to fix the parameters concerning heat transfer. The QUEOS experiments are especially suited for this purpose as they have been performed with small hot solid spheres. Therefore the area of heat exchange is known. With the heat transfer parameters fixed in this way, a PREMIX experiment is recalculated. These experiments have been performed with molten alumina (Al 2 O 3 ) as a simulant of corium. Its initial temperature is 2600 K. With these experiments the models and parameters for jet and drop break-up are tested

  8. Partially premixed prevalorized kerosene spray combustion in turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chrigui, M.; Ahmadi, W.; Sadiki, A.; Janicka, J. [Institute for Energy and Powerplant Technology, TU Darmstadt, Petersenstr. 30, 64287 Darmstadt (Germany); Moesl, K. [Lehrstuhl fuer Thermodynamik, TU Muenchen, Boltzmannstr. 15, D-85747 Garching (Germany)

    2010-04-15

    A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carried out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)

  9. Applying Lean Techniques to Reduce Intravenous Waste Through Premixed Solutions and Increasing Production Frequency.

    Science.gov (United States)

    Lin, Alex C; Penm, Jonathan; Ivey, Marianne F; Deng, Yihong; Commins, Monica

    This study aims to use lean techniques and evaluate the impact of increasing the use of premixed IV solutions and increased IV production frequency on IV waste. Study was conducted at a tertiary hospital pharmacy department in three phases. Phase I included evaluation of IV waste when IV production occurred three times a day and eight premixed IV products were used. Phase II increased the number of premixed IV products to 16. Phase III then increased IV production to five times a day. During Phase I, an estimate of 2,673 IV doses were wasted monthly, accounting for 6.14% of overall IV doses. This accounted for 688 L that cost $60,135. During Phase II, the average monthly IV wastage reduced significantly to 1,069 doses (2.84%), accounting for 447 L and $34,003. During Phase III, the average monthly IV wastage was further decreased to 675 doses (1.69%), accounting for 78 L and $3,431. Hence, a potential annual saving of $449,208 could result from these changes. IV waste was reduced through the increased use of premixed solutions and increasing IV production frequency.

  10. Acute toxicity study of Vilocym Premix (herbal growth promoter for Livestockin Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    A.H. Ahmad

    2009-06-01

    Full Text Available An experimental study with the objective of safety evaluation of Vilocym Premix, herbal growth promoter for Livestock (supplied by Ayurvet Ltd., Baddi, India, was done as per standard guidelines of OECD-423 for acute toxicity testing. Vilocym Premix is a scientifically developed combination of herbs that contains herbal ingredients namely Azadirachta indica, Curcuma longa & many more alongwith natural zeolites. The study was done in 3 males and 3 female Wistar Albino rats, which were administered an initial dose of 50 mg/kg body weight followed by dose rates of 300, 500 & 5000 mg/kg body weight of test compound. The animals were observed for signs of convulsions, tremors, circling, depression, excitement and mortality. Body weight was recorded at 0,7th and 14th day and plasma total protein, albumin; AST and ALT were measured after 3rd day of experiment. No abnormal sign of symptoms were observed in any of the animal fed with Vilocym Premix at the dose rate of 50, 300, 500 & 5000 mg/kg. No mortality was observed indicating safety of herbal premix. [Vet. World 2009; 2(3.000: 100-102

  11. On the regimes of premixing

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, S.; Theofanous, T.G.; Yuen, W.W. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

    1998-01-01

    The conditions of the MAGICO-2000 experiment are extended to more broadly investigate the regimes of premixing, and the corresponding internal structures of mixing zones. With the help of the data and numerical simulations using the computer code PM-ALPHA, we can distinguish extremes of behavior dominated by inertia and thermal effects - we name these the inertia and thermal regimes, respectively. This is an important distinction that should guide future experiments aimed at code verification in this area. Interesting intermediate behaviors are also delineated and discussed. (author)

  12. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    Science.gov (United States)

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  13. The conditional moment closure method for modeling lean premixed turbulent combustion

    Science.gov (United States)

    Martin, Scott Montgomery

    Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from

  14. Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3

    NARCIS (Netherlands)

    Paques, J.P.; Sagis, L.M.C.; Rijn, van C.J.M.; Linden, van der E.

    2014-01-01

    Gelled nanospheres of alginate are prepared through a single step technique involving emulsification and gelation. CaCO3 nanoparticles, together with glucono delta-lactone (GDL), are dispersed in an alginate solution, which is subsequently dispersed in an oil phase and followed by gelation of the

  15. Experimental study of flame stability in biogas premix system

    International Nuclear Information System (INIS)

    Diaz G, Carlos A; Amell A Andres; Cardona Luis F

    2008-01-01

    Utilization of new renewable energy sources have had a special interest in last years looking for decrease the dependence of fossil fuels and the environmental impact generated for them. This work studies experimentally the flame stability of a simulated biogas with a volumetric composition of 60% methane and 40% carbon dioxide. The objective of this study is to obtain information about design and interchangeability of gases in premixed combustion systems that operate with different fuel gases. The critical velocity gradient was the stability criteria used. Utilization of this criteria and the experimental method followed, using a partial premixed burner, stability flame diagram of biogas studied had been obtained. Presence of carbon dioxide has a negative effect in flame stability, decreasing significantly the laminar flame speed and consequently, the stability range of biogas burners because of apparition of blow off.

  16. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem

    2016-07-23

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition effects on premixed flame chemistry is important. In this study, the combustion chemistry of low-pressure, burner-stabilized, premixed flames of two gasoline fuels was investigated under stoichiometric conditions. Flame speciation was conducted using vacuum-ultraviolet synchrotron photoionization time-of-flight molecular beam mass spectroscopy. Stable end-products, intermediate hydrocarbons, and free radicals were detected and quantified. In addition, several isomeric species in the reaction pool were distinguished and quantified with the help of the highly tunable synchrotron radiation. A comparison between the products of both flames is presented and the major differences are highlighted. Premixed flame numerical simulations were conducted using surrogate fuel kinetic models for each flame. Furthermore, a new approach was developed to elucidate the main discrepancies between experimental measurements and the numerical predictions by comparing quantities of interest. © 2016.

  17. Flamelet Surface Density and Burning Rate Integral in Premixed Combustion

    National Research Council Canada - National Science Library

    Gouldin, F

    1999-01-01

    We have developed, tested and applied in V-flames and a spark ignition engine a new experimental method, crossed-plane laser imaging, for measuring flamelet surface normals in premixed turbulent flames...

  18. LES of a laboratory-scale turbulent premixed bunsen flame using FSD, PCM-FPI and thickened flame models

    NARCIS (Netherlands)

    Hernandez Perez, F.E.; Yuen, F.T.C.; Groth, C.P.T.; Gülder, O.L.

    2011-01-01

    Large-eddy simulations (LES) of a turbulent premixed Bunsen flame were carried out with three subfilter-scale (SFS) modelling approaches for turbulent premixed combustion. One approach is based on the artificially thickened flame and power-law flame wrinkling models, the second approach is based on

  19. Effect of Addition of Soybean Oil and Gamma-Ray Cross-linking on the Nanoporous HDPE Membrane

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2012-01-01

    Full Text Available A nanoporous high-density polyethylene (HDPE membrane was prepared by a wet process. Soybean oil and dibutyl phthalate (DBP were premixed as codiluents, and gamma-rays were used for the cross-linking of HDPE. The pore volume of the nanoporous HDPE membranes with soybean oil was affected by the extracted amount of oil. The tensile strength of the membrane improved with an increasing absorbed dose up to 60 kGy, but decreased at 80 kGy due to severe degradation. The ionic conductivity of the nanoporous HDPE membrane did not really change with an increasing absorbed dose because the pores had already been formed before the gamma-ray radiation. Finally, the electrochemical stability of the HDPE membrane increased when the absorbed dose increased up to 60 kGy.

  20. Experimental study on flame propagation characteristics of Hydrogen premixed gas in gas pipeline

    Science.gov (United States)

    Ma, Danzhu; Li, Zhuang; Jia, Fengrui; Li, Zhou

    2018-06-01

    Hydrogen is the cleanest high-energy gas fuel, and also is the main industrial material. However, hydrogen is more explosive and more powerful than conventional gas fuels, which restricts its application. In particular, the expansion of premixed combustion under a strong constraint is more complicated, the reaction spreads faster. The flame propagation characteristics of premixed hydrogen/air were investigated by experiment. The mechanism of reaction acceleration is discussed, and then the speed of the flame propagation and the reaction pressure were tested and analysed.

  1. Liftoff characteristics of partially premixed flames under normal and microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lock, Andrew J.; Briones, Alejandro M.; Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Qin, Xiao [Department of Mechanical & amp; Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Puri, Ishwar K. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Hegde, Uday [National Center for Microgravity Research, Cleveland, OH 44135 (United States)

    2005-11-01

    An experimental and computational investigation on the liftoff characteristics of laminar partially premixed flames (PPFs) under normal (1-g) and microgravity ({mu}-g) conditions is presented. Lifted methane-air PPFs were established in axisymmetric coflowing jets using nitrogen dilution and various levels of partial premixing. The {mu}-g experiments were conducted in the 2.2-s drop tower at the NASA Glenn Research Center. A time-accurate, implicit algorithm that uses a detailed description of the chemistry and includes radiation effects is used for the simulations. The predictions are validated through a comparison of the flame reaction zone topologies, liftoff heights, lengths, and oscillation frequencies. The effects of equivalence ratio, gravity, jet velocity, and radiation on flame topology, liftoff height, flame length, base structure, and oscillation frequency are characterized. Both the simulations and measurements indicate that under identical conditions, a lifted {mu}-g PPF is stabilized closer to the burner compared with the 1-g flame, and that the liftoff heights of both 1-g and {mu}-g flames decrease with increasing equivalence ratio and approach their respective nonpremixed flame limits. The liftoff height also increases as the jet velocity is increased. In addition, the flame base structure transitions from a triple- to a double-flame structure as the flame liftoff height decreases. A modified flame index is developed to distinguish between the rich premixed, lean premixed, and nonpremixed reaction zones near the flame base. The 1-g lifted flames exhibit well-organized oscillations due to buoyancy-induced instability, while the corresponding {mu}-g flames exhibit steady-state behavior. The effect of thermal radiation is to slightly decrease the liftoff heights of both 1-g and {mu}-g flames under coflow conditions.

  2. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  3. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Carla S.T.; Barreta, Luiz G.; Sbampato, Maria E.; dos Santos, Alberto M. [Aerothermodynamic and Hypersonic Division, Institute of Advanced Studies - General Command of Aerospatial Technology, Rodovia dos Tamoios, km 5.5, 12228-001 Sao Jose dos Campos - SP (Brazil)

    2010-11-15

    In this study, nitric oxide laser-saturated fluorescence (LSF) measurements were acquired from premixed ethanol flames at atmospheric pressure in a burner. NO-LSF experimental profiles for fuel-rich premixed ethanol flames ({phi} = 1.34 and {phi} = 1.66) were determined through the excitation/detection scheme of the Q{sub 2}(26.5) rotational line in the A{sup 2}{sigma}{sup +} - X{sup 2}{pi} (0,0) vibronic band and {gamma}(0,1) emission band. A calibration procedure by NO doping into the flame was applied to establish the NO concentration profiles in these flames. Chemiluminescent emission measurements in the (0, 0) vibronic emission bands of the OH{sup *} (A{sup 2}{sigma}{sup +} - X{sup 2}{pi}) and CH{sup *}(A{sup 2}{delta} - X{sup 2}{pi}) radicals were also obtained with high spatial and spectral resolution for fuel-rich premixed ethanol flames to correlate them with NO concentrations. Experimental chemiluminescence profiles and the ratios of the integrated areas under emission spectra (A{sub CH*}/A{sub CH*}(max.) and A{sub CH*}/A{sub OH*}) were determined. The relationships between chemiluminescence and NO concentrations were established along the premixed ethanol flames. There was a strong connection between CH{sup *} radical chemiluminescence and NO formation and the prompt-NO was identified as the governing mechanism for NO production. The results suggest the optimum ratio of the chemiluminescence of two radicals (A{sub CH*}/A{sub OH*}) for NO diagnostic purposes. (author)

  4. Effects of premixed flames on turbulence and turbulent scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Lipatnikov, A.N.; Chomiak, J. [Department of Applied Mechanics, Chalmers University of Technology, 412 75 Goeteborg (Sweden)

    2010-02-15

    Experimental data and results of direct numerical simulations are reviewed in order to show that premixed combustion can change the basic characteristics of a fluctuating velocity field (the so-called flame-generated turbulence) and the direction of scalar fluxes (the so-called countergradient or pressure-driven transport) in a turbulent flow. Various approaches to modeling these phenomena are discussed and the lack of a well-elaborated and widely validated predictive approach is emphasized. Relevant basic issues (the transition from gradient to countergradient scalar transport, the role played by flame-generated turbulence in the combustion rate, the characterization of turbulence in premixed flames, etc.) are critically considered and certain widely accepted concepts are disputed. Despite the substantial progress made in understanding the discussed effects over the past decades, these basic issues strongly need further research. (author)

  5. Modeling of Dissipation Element Statistics in Turbulent Non-Premixed Jet Flames

    Science.gov (United States)

    Denker, Dominik; Attili, Antonio; Boschung, Jonas; Hennig, Fabian; Pitsch, Heinz

    2017-11-01

    The dissipation element (DE) analysis is a method for analyzing and compartmentalizing turbulent scalar fields. DEs can be described by two parameters, namely the Euclidean distance l between their extremal points and the scalar difference in the respective points Δϕ . The joint probability density function (jPDF) of these two parameters P(Δϕ , l) is expected to suffice for a statistical reconstruction of the scalar field. In addition, reacting scalars show a strong correlation with these DE parameters in both premixed and non-premixed flames. Normalized DE statistics show a remarkable invariance towards changes in Reynolds numbers. This feature of DE statistics was exploited in a Boltzmann-type evolution equation based model for the probability density function (PDF) of the distance between the extremal points P(l) in isotropic turbulence. Later, this model was extended for the jPDF P(Δϕ , l) and then adapted for the use in free shear flows. The effect of heat release on the scalar scales and DE statistics is investigated and an extended model for non-premixed jet flames is introduced, which accounts for the presence of chemical reactions. This new model is validated against a series of DNS of temporally evolving jet flames. European Research Council Project ``Milestone''.

  6. The Effect of Premixed Al-Cu Powder on the Stir Zone in Friction Stir Welding of AA3003-H18

    Science.gov (United States)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2015-02-01

    In this research, 3-mm-thick AA3003-H18 non-heat-treatable aluminum alloy plates were joined by friction stir welding (FSW). It was performed by adding pure Cu and premixed Cu-Al powders at various rotational speeds of 800, 1000, and 1200 rpm and constant traveling speeds of 100 mm/min. At first, the powder was filled into the gap (0.2 or 0.4 mm) between two aluminum alloy plates, and then the FSW process was performed in two passes. The microstructure, mechanical properties, and formation of intermetallic compounds were investigated in both cases of using pure Cu and premixed Al-Cu powders. The results of using pure Cu and premixed Al-Cu powders were compared in the stir zone at various rotational speeds. The copper particle distribution and formation of Al-Cu intermetallic compounds (Al2Cu and AlCu) in the stir zone were desirable using premixed Al-Cu powder into the gap. The hardness values were significantly increased by formation of Al-Cu intermetallic compounds in the stir zone and it was uniform throughout the stir zone when premixed Al-Cu powder was used. Also, longitudinal tensile strength from the stir zone was higher when premixed Al-Cu powder was used instead of pure Cu powder.

  7. Properties of Ni-Mo steel prepared from premixed and prealloyed powder in sintered, forged and annealed state

    International Nuclear Information System (INIS)

    Salak, A.; Hrubjak, M.

    Investigated were 2Ni-0.5Mo steel specimens made of premixed powder on the base of Hametag iron and of ATST-A prealloyed powder with graphite additives of 0.3% and 0.8%. In the sintered and forged state, specimens prepared from premixed powder exhibit better strength properties compared with those made of prealloyed ATST-A powder. After annealing, the carbon content has a different bearing on both systems. With premixed powder steel of 0.6% carbon content the tensile strength amounts to 1,800 MPa whilst that of prealloyed steel specimens with 0.2% carbon content is about 1,240 MPa. (author)

  8. Modeling of pollutant formation in fully premixing surface burners using a verified practice-oriented experimental reaction-kinetic calculation method. Final report

    International Nuclear Information System (INIS)

    Ruy, C.; Kremer, H.

    1996-01-01

    The intent of the present study was to simulate quantitatively pollutant formation in premixing surface burners and to describe qualitatively the share of the premixing flame in pollut emissions from atmospheric burners. For this purpose reaction-kinetic programmes for one-dimensional premixing flames were extended by a terms describing heat discharge through gas radiation. Furthermore, the calculation range for the flame was extended far into the secondary reaction zone. Temperature, CO, and NO x profiles were measured in the secondary reaction zone of premixing burners at standard pressure. The air-fuel ratio was calculated within the practically relevant range between 0.5 and 1.5, as was load behaviour. (DG) [de

  9. Optimization of instant dalia dessert pre-mix production by using response surface methodology.

    Science.gov (United States)

    Jha, Alok; Shalini, B N; Patel, Ashok Ambalal; Singh, Mithilesh; Rasane, Prasad

    2015-02-01

    Dalia, a wheat-based, particulate containing dairy dessert is popularly consumed as a breakfast food and is also considered as a health food. Though popular throughout Northern parts of the country, its limited shelf-life even under refrigeration imposes severe restrictions on its organized manufacture and marketing. In order to promote dalia dessert as a marketable product, in the present study, a process was developed for manufacture of instant dalia pre-mix, as a dry product with long shelf-life, which could be attractively packaged and easily reconstituted for consumption. During the investigation, the effect of different levels of milk solids and wheat solids was studied on dalia pre-mix quality by employing a central composite rotatable design (CCRD). The suggested formulation had 17.82 % milk solids and 2.87 % wheat solids. This formulation was found to be most appropriate for manufacture of instant dalia pre-mix with predicted sensory scores (Max. 100) of 85.35, 41.98 and 67.27 for mouthfeel, consistency and flavor, respectively; the viscosity of the product was 941.0 cp.

  10. A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows

    International Nuclear Information System (INIS)

    Gao, X.; Groth, C.P.T.

    2005-01-01

    A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the κ-ψ turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed diffusion flames, including cold- and hot-flow predictions for a bluff body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting complex non-premixed turbulent combusting flows. (author)

  11. An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames

    Science.gov (United States)

    Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.

  12. Effect of Different Routes of Vitamin/Mineral premix Administration ...

    African Journals Online (AJOL)

    An experiment was conducted to determine the best route of vitamin/mineral premix administration to broilers using a completely randomized design. The routes of administrations were through formulated diets, daily in drinking water, and daily mixing in feed ration. Histological examination of the liver did not reveal any ...

  13. Structure of Unsteady Partially Premixed Flames and the Existence of State Relationships

    Directory of Open Access Journals (Sweden)

    Suresh K. Aggarwal

    2009-09-01

    Full Text Available In this study, we examine the structure and existence of state relationships in unsteady partially premixed flames (PPFs subjected to buoyancy-induced and external perturbations. A detailed numerical model is employed to simulate the steady and unsteady two-dimensional PPFs established using a slot burner under normal and zero-gravity conditions. The coflow velocity is parametrically varied. The methane-air chemistry is modeled using a fairly detailed mechanism that contains 81 elementary reactions and 24 species. Validation of the computational model is provided through comparisons of predictions with nonintrusive measurements. The combustion proceeds in two reaction zones, one a rich premixed zone and the other a nonpremixed zone. These reaction zones are spatially separated, but involve strong interactions between them due to thermochemistry and scalar transport. The fuel is mostly consumed in the premixed zone to produce CO and H2, which are transported to and consumed in the nonpremixed zone. The nonpremixed zone in turn provides heat and H-atoms to the premixed zone. For the range of conditions investigated, the zero-g partially premixed flames exhibit a stable behavior and a remarkably strong resistance to perturbations. In contrast, the corresponding normal-gravity flames exhibit oscillatory behavior at low coflow velocities but a stable behavior at high coflow velocities, and the behavior can be explained in terms of a global and convective instabilities. The effects of coflow and gravity on the flames are characterized through a parameter VR, defined as the ratio of coflow velocity to jet velocity. For VR ≤ 1 (low coflow velocity regime, the structures of both 0- and 1-g flames are strongly sensitive to changes in VR, while they are only mildly affected by coflow in the high coflow velocity regime (VR > 1. In addition, the spatio-temporal characteristics of the 0- and 1-g flames are markedly different in the first regime, but are

  14. Miniemulsification process - different form of spontaneous emulsification

    Energy Technology Data Exchange (ETDEWEB)

    El-Aasser, M.S.; Lack, C.D.; Vanderhoff, J.W.; Fowkes, F.M.

    1988-01-15

    The miniemulsification process involves the use of low concentrations of mixed emulsifier combinations of an ionic surfactant (e.g. sodium lauryl sulfate) and a cosurfactant (e.g. long-chain fatty alcohol - cetyl alcohol). The product is an oil-in-water miniemulsion with an average droplet diameter of 100-400 nm, and excellent shelf stability. The dominant presence of liquid crystals in the aqueous mixed emulsifier system, under conditions of the miniemulsification process, was confirmed by consideration of phase diagrams, conductivity and birefringence studies. Unexpectedly, interfacial tension studies showed relatively high values of 5-15 dyn cm/sup -1/. In spite of these high interfacial tensions, spontaneous emulsification was found at the oil-water interface, contrary to what is known in the field. Adsorption and electrophoretic mobility studies suggested that the miniemulsification process takes place by unidirectional swelling of the lamellar bilayers in the aqueous mixed emulsifier liquid crystal system as a result of absorption of oil, followed by subdivision of these entities. The stability of miniemulsions formed by this process is influenced by a steric component in the mixed emulsifier complex adsorbed at the oil-water interface.

  15. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng

    2013-01-01

    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome......An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass...

  16. The application of Flamelet Generated Manifolds in partailly-premixed flames

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Albrecht, B.A.; Oijen, van J.A.; Goey, de L.P.H.; Eggels, R.L.G.M.

    2005-01-01

    To reduce harmful emissions numerical models are developed to simulate combustion processes in engineering applications. In this paper a model for partially-premixed combustion used in Reynolds Averaged Navier-Stokes Simulations (RANS) is presented. A flamelet approach combined with a Probability

  17. Premixer Design for High Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the

  18. Linear Stability Analysis of Laminar Premixed Fuel-Rich Double-Spray Flames

    Directory of Open Access Journals (Sweden)

    Noam Weinberg

    2014-03-01

    Full Text Available This paper considers the stability of a double-spray premixed flame formed when both fuel and oxidizer are initially present in the form of sprays of evaporating liquid droplets. To simplify the inherent complexity that characterizes the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed double-spray flames, and assumes a single-step global chemical reaction mechanism. Steady-state solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial liquid fuel and/or oxidizer loads are established. The stability analysis revealed an increased proneness to cellular instability induced by the presence of the two sprays, and for the fuel-rich case considered here the influence of the liquid oxidizer was found to be more pronounced than that of the liquid fuel. Similar effects were noted for the neutral pulsating stability boundaries. The impact of unequal latent heats of vaporization is also investigated and found to be in keeping with the destabilizing influence of heat loss due to droplet evaporation. It should be noted that as far as the authors are aware no experimental evidence is available for (at least validation of the predictions. However, they do concur in a general and reasonable fashion with independent experimental evidence in the literature of the behavior of single fuel spray laminar premixed flames.

  19. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  20. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  1. Methane combustion in catalytic premixed burners

    International Nuclear Information System (INIS)

    Cerri, I.; Saracco, G.; Specchia, V.

    1999-01-01

    Catalytic premixed burners for domestic boiler applications were developed with the aim of achieving a power modularity from 10 to 100% and pollutant emissions limited to NO x 2 , where the combustion took place entirely inside the burner heating it to incandescence and allowing a decrease in the flame temperature and NO x emissions. Such results were confirmed through further tests carried out in a commercial industrial-scale boiler equipped with the conical panels. All the results, by varying the excess air and the heat power employed, are presented and discussed [it

  2. Experimental study of a premixed oscillating flame stabilized inside the tube

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.I.; Shin, H.D. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    An experimental study of premixed oscillating flame stabilized inside the tube has been conducted in order to examine the kinematic behavior of premixed flame under the flow oscillation and flame/flow interaction. Flow oscillation is accomplished by an acoustic excitation. Oscillating nature of flow has been studied with and without the flame using velocity and pressure measurements by a LDV and microphone, respectively Kinematic behavior of the oscillating flame is examined using triggered ICCD camera system. Velocity oscillation and flame oscillation is the same frequency as that produced by the acoustic excitation and flame shape has a similarity at various phase of oscillation. Upstream velocity field near the flame zone is greatly influenced by the flame oscillation. This is the typical example of flame/flow interaction. (author). 9 refs., 7 figs.

  3. Optimization of gas mixing system of premixed burner based on CFD analysis

    International Nuclear Information System (INIS)

    Zhang, Tian-Hu; Liu, Feng-Guo; You, Xue-Yi

    2014-01-01

    Highlights: • New multi-ejectors gas mixing system for premixed combustion burner is provided. • Two measures are proposed to improve the flow uniformity at the outlet of GMS. • Small improvement of uniformity induces significant decrease of pollutant emission. • Uniformity of velocity and fuel–gas mixing of ejector increases 234.2% and 2.9%. • Uniformity of flow rate and fuel–gas mixing of ejectors increases 1.9% and 2.2%. - Abstract: The optimization of gas mixing system (GMS) of premixed burner is presented by Computational Fluid Dynamics (CFD) and the uniformity at the outlet of GMS is proved experimentally to have strong influence on pollutant emission. To improve the uniformity at the outlet of GMS, the eleven distribution orifice plates and a diversion plate are introduced. The quantified analysis shows that the uniformity at the outlet of GMS is improved significantly. With applying the distribution orifice plates, the uniformity of velocity and fuel–gas mixing of single ejector is increased by 234.2% and 2.9%, respectively. With applying the diversion plate, the uniformity of flow rate and fuel–gas mixing of different ejectors is increased by 1.9% and 2.2%, respectively. The optimal measures and geometrical parameters provide an applicable guidance for the design of commercial premixed burner

  4. Cost analysis of premixed multichamber bags versus compounded parenteral nutrition: breakeven point.

    Science.gov (United States)

    Bozat, Erkut; Korubuk, Gamze; Onar, Pelin; Abbasoglu, Osman

    2014-02-01

    Industrially premixed multichamber bags or hospital-manufactured compounded products can be used for parenteral nutrition. The aim of this study was to compare the cost of these 2 approaches. Costs of compounded parenteral nutrition bags in an university hospital were calculated. A total of 600 bags that were administered during 34 days between December 10, 2009 and February 17, 2010 were included in the analysis. For quality control, specific gravity evaluation of the filled bags was performed. It was calculated that the variable cost of a hospital compounded bag was $26.15. If we take the annual fixed costs into consideration, the production cost reaches $36.09 for each unit. It was estimated that the cost for the corresponding multichamber bag was $37.79. Taking the fixed and the variable costs into account, the breakeven point of the hospital compounded and the premixed multichamber bags was seen at 5,404 units per year. In specific gravity evaluation, it was observed that the mean and interval values were inside the upper and lower control margins. In this analysis, usage of hospital-compounded parenteral nutrition bags showed a cost advantage in hospitals that treat more than 15 patients per day. In small volume hospitals, premixed multichamber bags may be more beneficial.

  5. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Elliot Sullivan- [Univ. of California, Irvine, CA (United States); McDonell, Vincent G. [Univ. of California, Irvine, CA (United States)

    2014-12-01

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  6. Investigation of Scalar Filtered Density Function in Turbulent Partially Premixed Flames

    National Research Council Canada - National Science Library

    Tong, Chenning

    2006-01-01

    ... using measurement data obtained in turbulent partially premixed methane/air (Sandia) flames. For SGS scalar variance small compared to its mean, the FMDF is not far from Gaussian and the SGS scalar is well mixed...

  7. Quantification of trace metals in infant formula premixes using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cama-Moncunill, Raquel; Casado-Gavalda, Maria P.; Cama-Moncunill, Xavier; Markiewicz-Keszycka, Maria; Dixit, Yash; Cullen, Patrick J.; Sullivan, Carl

    2017-09-01

    Infant formula is a human milk substitute generally based upon fortified cow milk components. In order to mimic the composition of breast milk, trace elements such as copper, iron and zinc are usually added in a single operation using a premix. The correct addition of premixes must be verified to ensure that the target levels in infant formulae are achieved. In this study, a laser-induced breakdown spectroscopy (LIBS) system was assessed as a fast validation tool for trace element premixes. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers real-time analyses, little to no sample preparation and ease of use. LIBS was employed for copper and iron determinations of premix samples ranging approximately from 0 to 120 mg/kg Cu/1640 mg/kg Fe. LIBS spectra are affected by several parameters, hindering subsequent quantitative analyses. This work aimed at testing three matrix-matched calibration approaches (simple-linear regression, multi-linear regression and partial least squares regression (PLS)) as means for precision and accuracy enhancement of LIBS quantitative analysis. All calibration models were first developed using a training set and then validated with an independent test set. PLS yielded the best results. For instance, the PLS model for copper provided a coefficient of determination (R2) of 0.995 and a root mean square error of prediction (RMSEP) of 14 mg/kg. Furthermore, LIBS was employed to penetrate through the samples by repetitively measuring the same spot. Consequently, LIBS spectra can be obtained as a function of sample layers. This information was used to explore whether measuring deeper into the sample could reduce possible surface-contaminant effects and provide better quantifications.

  8. A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates

    KAUST Repository

    Li, Song

    2015-01-01

    Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.

  9. The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis

    Science.gov (United States)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2018-04-01

    Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.

  10. Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner

    KAUST Repository

    Kruse, Stephan

    2018-04-11

    Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.

  11. Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner

    KAUST Repository

    Kruse, Stephan; Mansour, Mohy S.; Elbaz, Ayman M.; Varea, Emilien; Grü nefeld, Gerd; Beeckmann, Joachim; Pitsch, Heinz

    2018-01-01

    Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.

  12. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.

    2016-07-15

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  13. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad; Han, Jie; Chahine, May; Selim, Hatem; Belhi, Memdouh; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2016-01-01

    chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon

  14. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions.

    Science.gov (United States)

    Assadpour, Elham; Maghsoudlou, Yahya; Jafari, Seid-Mahdi; Ghorbani, Mohammad; Aalami, Mehran

    2016-05-01

    Due to susceptibility of folic acid like many other vitamins to environmental and processing conditions, it is necessary to protect it by highly efficient methods such as micro/nano-encapsulation. Our aim was to prepare and optimize real water in oil nano-emulsions containing folic acid by a low energy (spontaneous) emulsification technique so that the final product could be encapsulated within maltodextrin-whey protein double emulsions. A non ionic surfactant (Span 80) was used for making nano-emulsions at three dispersed phase/surfactant ratios of 0.2, 0.6, and 1.0. Folic acid content was 1.0, 2.0, and 3.0mg/mL of dispersed phase by a volume fraction of 5.0, 8.5, and 12%. The final optimum nano-emulsion formulation with 12% dispersed phase, a water to surfactant ratio of 0.9 and folic acid content of 3mg/mL in dispersed phase was encapsulated within maltodextrin-whey protein double emulsions. It was found that the emulsification time for preparing nano-emulsions was between 4 to 16 h based on formulation variables. Droplet size decreased at higher surfactant contents and final nano-emulsions had a droplet size<100 nm. Shear viscosity was higher for those formulations containing more surfactant. Our results revealed that spontaneous method could be used successfully for preparing stable W/O nano-emulsions containing folic acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Efficacy of Ultrasonic Homogenization in the Separation of Benzene-n-Heptane Mixture by Liquid Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Chung, T.S. [Department of Chemical Engineering, Sung Kyun Kwan University, Seoul (Korea)

    1999-04-01

    In the separation of benzene-n-heptane mixture by liquid membrane, the efficacy of ultrasonic homogenization in emulsification was studied with two anionic surfactants. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether sulfate. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether stifle. The highest value of the separation factor obtained by ultrasonic homogenization was approximately three times as large as that for triethanolamine lauryl sulfate and one and a half times as large as that for sodium polyoxyethylene(2) lauryl sulfate when the mechanical stirring was used on the same operational conditions. The lowest membrane breakup was observed when the highest value of the separation factor was achieved with sodium polyoxyethylene(2) lauryl sulfate. 14 refs., 7 figs., 1 tab.

  16. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk; Chung, Suk-Ho; Kim, Hwanho

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity

  17. DNS of non-premixed combustion in a compressible mixing layer

    NARCIS (Netherlands)

    Bastiaans, R.J.M.; Somers, L.M.T.; Lange, de H.C.; Geurts, B.J.

    2001-01-01

    The non-premixed reaction of fuel with air in a mixing layer is studied using DNS. The situation is a model for the mixing-controlled combustion in a Diesel engine. We show that the combustion region can be comparably passive with respect to relatively large scale aerodynamic instabilities. However

  18. Visualization of the heat release zone of highly turbulent premixed jet flames

    Science.gov (United States)

    Lv, Liang; Tan, Jianguo; Zhu, Jiajian

    2017-10-01

    Visualization of the heat release zone (HRZ) of highly turbulent flames is significantly important to understand the interaction between turbulence and chemical reactions, which is the foundation to design and optimize engines. Simultaneous measurements of OH and CH2O using planar laser-induced fluorescence (PLIF) were performed to characterize the HRZ. A well-designed piloted premixed jet burner was employed to generate four turbulent premixed CH4/air jet flames, with different jet Reynolds numbers (Rejet) ranging from 4900 to 39200. The HRZ was visualized by both the gradient of OH and the pixel-by-pixel product of OH and CH2O. It is shown that turbulence has an increasing effect on the spatial structure of the flame front with an increasing height above the jet exit for the premixed jet flames, which results in the broadening of the HRZ and the increase of the wrinkling. The HRZ remains thin as the Rejet increases, whereas the preheat zone is significantly broadened and thickened. This indicates that the smallest turbulent eddies can only be able to enter the flame front rather than the HRZ in the present flame conditions. The flame quenching is observed with Rejet = 39200, which may be due to the strong entrainment of the cold air from outside of the burned gas region.

  19. Estabilidade térmica das vitaminas A e E em rações e premixes vitamínicos para camarões

    OpenAIRE

    Prado,João Paulo de Sousa; Cavalheiro,José Marcelino Oliveira; Silva,Fernanda Vanessa Gomes da; Queiroga Neto,Vicente; Bora,Pushkar Singh; Cavalheiro,Thiago Brandão

    2011-01-01

    O trabalho teve como objetivo avaliar a estabilidade térmica das vitaminas A e E em diferentes rações e premixes vitamínicos utilizados na carcinicultura. Foram utilizadas no experimento três rações comerciais peletilizadas e desintegradas em diferentes diâmetros e dois premixes vitamínicos. As amostras de cada dieta e de premixes foram acondicionadas em recipientes plásticos e armazenadas nas seguintes condições: ambiente refrigerado (6°C±2°C), ambiente climatizado (20°C&p...

  20. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    Directory of Open Access Journals (Sweden)

    Amirnordin Shahrin Hisham

    2016-01-01

    Full Text Available The flow characteristics of multi-circular jet (MCJ plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in the premix chamber was studied numerically. Results illustrated that plate open area, Ae, influenced the turbulence inside the chamber. MCJ 3, which had the lowest open area, generated the highest flow velocity and turbulence kinetic energy compared with MCJ 1 and 2. The MCJ plates could increase the turbulence in the premix chamber and contribute to the combustion efficiency.

  1. Petroleum and derivatives emulsification by bacterial consortium of sea meeds from Enseada do Forno-Armacao de Buzios (RJ); Emulsificacao de petroleo e seus derivados pelos consorcios bacterianos de algas da Enseada do Forno-Armacao dos Buzios (RJ)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Frederico S. da; Crapez, Mirian A.C.; Krepsky, Natascha; Fontana, Luiz F.; Baptista-Neto, Jose Antonio [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)]. E-mail: fred@igeo.uff.br

    2004-07-01

    Constant petroleum spill over natural habitats made necessary alternatives for environmental damage mitigation and recuperation. Bio surfactants can be used as an alternative for oil spill once they reduce surface oil tension, making them soluble in water or can make it available from the sediments. Bacterial consortia were isolated and bio amplified from Caulerpa (C), Laurencia (L) and Dictyota (D) algae biofilm. Bacterial carbon (CB); surface tension (TS); Emulsification index (E{sub 24}) and non-aqueous (A) and aqueous (B) emulsification of gasoline, kerosene and Arabian Light were estimated in 0, 7, 15 and 30 days of incubation. Results show a decrease of Laurencia and Caulerpa CB. However, Dictyota showed an increase at CB. Laurencia TS showed no significant reduction at days 7 and 15. For Dictyota and Caulerpa there was a increase at day 7 and reduction at day 15. E{sub 24} was higher than 70% for all the three substances and consortia tested. Laurencia bacteria consortia presented emulsification B for Arabian Light and emulsification A for gasoline and kerosene. Caulerpa consortia emulsified all compounds. All bacterial consortia isolated were surfactant producer, with emulsification A and B, being indicated for recuperation of environments contaminated with oil and its derivatives compounds. (author)

  2. PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, A; Wichman, IS

    2014-06-04

    This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulation results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.

  3. Dynamics and Suppression Effectiveness of Monodisperse Water Droplets in Non-Premixed Counterflow Flames

    National Research Council Canada - National Science Library

    Zegers, E. J; Williams, B. A; Sheinson, R. S; Fleming, J. W

    2000-01-01

    ...-premixed propane/air counterflow flames are reported. Droplets were generated piezoelectrically, and the size and velocity distributions and the number density were determined by phase-Doppler particle anemometry...

  4. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate

    DEFF Research Database (Denmark)

    Stock, Roberto; Brewer, Jonathan R.; Wagner, Kerstin

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model...... membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy...... and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing...

  5. Study of possible reduction or withdrawal of vitamin premix during ...

    African Journals Online (AJOL)

    The effect of dietary vitamin premix withdrawal or reduction between 29 and 35, 36 and 42, and 29 and 42 days of age on broiler chicken performance and immunocompetence was evaluated. The diets were formulated based on wheat and barley, and the experiment was conducted in floor pens (experiment 1) and battery ...

  6. Study of possible reduction or withdrawal of vitamin premix during ...

    African Journals Online (AJOL)

    Jane

    2011-07-06

    Jul 6, 2011 ... The effect of dietary vitamin premix withdrawal or reduction between 29 and 35, 36 and 42, and 29 and. 42 days of age on broiler chicken performance and immunocompetence was evaluated. The diets were formulated based on wheat and barley, and the experiment was conducted in floor pens ...

  7. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.; Lecoustre, Vivien R.; Roy, Somesh; Luo, Zhaoyu; Haworth, Daniel C.; Lu, Tianfeng; Trouvé , Arnaud; Im, Hong G.

    2015-01-01

    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments

  8. Transient combustion modeling of an oscillating lean premixed methane/air flam

    NARCIS (Netherlands)

    Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar

    2009-01-01

    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions

  9. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  10. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    Science.gov (United States)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  11. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  12. Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

    KAUST Repository

    Tay-Wo-Chong, Luis

    2015-11-16

    The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.

  13. Development of method of optimized flavor production systems design based on nano-emulsification Kawista (Feronia limonia) Fruit extraction

    Science.gov (United States)

    Suyanto, A.; Noor, E.; Fahma, F.; Rusli, M. S.; Djatna, T.

    2018-01-01

    ‘Kawista’ (Feronia limonia) as a tropical fruit has unique flavor that can be applied as a flavor for food products. Flavor as volatile components are unstable by environment factors such as temperature and storage. Flavor nano emulsification form to improve the stability towards environment and increase its use in food products. Research carried out is system development of the nano emulsification Kawista extract flavor with sonication method. The best treatments are selected by Response Surface Methodology (RSM) for independent variable are amplitude (70-100%), time (90-150s) and temperature (5-45°C) controlled by the software of the device. The Flavor Extraction by maceration technique extended highest yield and flavor components. Nano-emulsions made with composition 1% (w/w) flavor extract, 2% (w/w) surfactant (tween 80), 0.25% Gum, and 96.75% (w/w) deionized water. The probe of sonication successfully for preparing stable O/W nano emulsions at amplitude, time and temperature 81.01%, 150s, 45°C, respectively. Characteristic of nano-emulsions i.e energy input (15.489J), viscosity (2.076 mPa.s), droplet size (13.446nm), and Polydispersity index (0.469).

  14. Direct numerical simulations of premixed turbulent flames with flamelet-generated manifolds

    NARCIS (Netherlands)

    Oijen, van J.A.; Bastiaans, R.J.M.; Goey, de L.P.H.

    2005-01-01

    Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion. In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the thin reaction zone regime and in the broken reaction zone regime are

  15. On mathematical modeling and numerical simulation of chemical kinetics in turbulent lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilleberg, Bjorn

    2011-07-01

    This thesis investigates turbulent reacting lean premixed flows with detailed treatment of the chemistry. First, the fundamental equations which govern laminar and turbulent reacting flows are presented. A perfectly stirred reactor numerical code is developed to investigate the role of unmixedness and chemical kinetics in driving combustion instabilities. This includes both global single-step and detailed chemical kinetic mechanisms. The single-step mechanisms predict to some degree a similar behavior as the detailed mechanisms. However, it is shown that simple mechanisms can by themselves introduce instabilities. Magnussens Eddy Dissipation Concept (EDC) for turbulent combustion is implemented in the open source CFD toolbox OpenFOAM R for treatment of both fast and detailed chemistry. RANS turbulence models account for the turbulent compressible flow. A database of pre-calculated chemical time scales, which contains the influence of chemical kinetics, is coupled to EDC with fast chemistry to account for local extinction in both diffusion and premixed flames. Results are compared to fast and detailed chemistry calculations. The inclusion of the database shows significantly better results than the fast chemistry calculations while having a comparably small computational cost. Numerical simulations of four piloted lean premixed jet flames falling into the 'well stirred reactor/broken reaction zones' regime, with strong finite-rate chemistry effects, are performed. Measured and predicted scalars compare well for the two jets with the lowest velocities. The two jets with the highest velocities experience extinction and reignition, and the simulations are able to capture the decrease and increase of the OH mass fractions, but the peak values are higher than in the experiments. Also numerical simulations of a lean premixed lifted jet flame with high sensitivity to turbulence modeling and chemical kinetics are performed. Limitations of the applied turbulence and

  16. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.; Shanbhogue, Santosh J.; Speth, Raymond L.; Ghoniem, Ahmed F.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides

  17. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano; Al-Khateeb, Ashraf N.; Attili, Antonio; Bisetti, Fabrizio

    2017-01-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up

  18. Dynamics of Practical Premixed Flames, Part I: Model Structure and Identification

    Directory of Open Access Journals (Sweden)

    A. Huber

    2009-06-01

    Full Text Available For the analysis of thermoacoustic instabilities it is most important to determine the dynamic flame response to acoustic disturbances. Premixed flames are often modelled as single-input single-output system, where the “output” (the overall rate of heat release responds to a single “input” variable (often the velocity at the exit of the burner nozzle. However, for practical premixed flames, where perturbations of pressure or velocity at the fuel injector will modulate the fuel equivalence ratio, the heat release rate will respond to fluctuations of equivalence ratio as well as nozzle mass flow rate. In this case, a multiple-input, single-output (MISO model structure for the flame is appropriate. Such a model structure is developed in the present paper. Staged fuel injection as well as fuel line impedances can be taken into account, the integration with low-order or finite-element based models for stability analysis is straightforward. In order to determine unit impulse and frequency response functions for such a model structure, an identification scheme based on unsteady CFD calculation with broadband excitation followed by correlation analysis is proposed and validated successfully. Identification of MISO model coefficients is a challenging task, especially in the presence of noise. Therefore criteria are introduced which allow to ascertain a posteriori how well the identified model represents the true system dynamics. Using these criteria, it is investigated how excitation signal type, time series length and signal-to-noise ratio influence the results of the identification process. Consequences for passive design strategies based on multi-stage fuel injection and experimental work on practical premixed flame dynamics are discussed.

  19. Response mechanisms of attached premixed flames subjected to harmonic forcing

    Science.gov (United States)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  20. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, S.; LaRue, J.; Vilayanur, S. [Univ. of California, Irvine, CA (United States)] [and others

    1995-10-01

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the {open_quotes}unmixedness.{close_quotes} Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine Systems (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines which have (1) a wide range of operation/stability, (2) a minimal amount of pollutant formation, and (3) high combustion efficiency. Specifically, with regard to pollutants, the goals are to reduce the NO{sub x} emissions by at least 10%, obtain less than 20 PPM of both CO and UHC, and increase the combustion efficiency by 5%.

  1. DNS of turbulent premixed slot flames with mixture inhomogeneity: a study of NOx formation

    Science.gov (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2016-11-01

    A set of Direct Numerical Simulations of three-dimensional methane/air lean flames in a spatially developing turbulent slot burner are performed. The flames are in the thin-reaction zone regimes and the jet Reynolds number is 5600. This configuration is of interest since it displays turbulent production by mean shear as in real devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit. Combustion is treated with finite-rate chemistry. The jet is characterized by a non-uniform equivalence ratio at the inlet and varying levels of incomplete premixing for the methane/air mixture are considered. The global equivalence ratio is 0.7 and temperature is 800 K. All simulations are performed at 4 atm. The instantaneous profiles of the mass fractions of methane and air at the inlet are sampled from a set of turbulent channel simulations that provide realistic, fully turbulent fields. The data are analyzed to study the influence of partial premixing on the flame structure. Particular focus is devoted to the assessment of heat release rate fluctuations and NOx formation. In particular, the effects of partial premixing on the production rates for the various pathways to NOx formation are investigated.

  2. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  3. Combustion and radiation modeling of laminar premixed flames using OpenFOAM: A numerical investigation of radiative heat transfer in the RADIADE project

    DEFF Research Database (Denmark)

    Haider, Sajjad; Pang, Kar Mun; Ivarsson, Anders

    2013-01-01

    This paper presents the computational fluid dynamics modelling of a laminar premixed flame. A specific solver named ’rareLTSFoam’ is developed using OpenFOAM ® code. The solver is used to simulate experimental stoichiometric and rich laminar premixed flames. The modelling is carried out for thermal...

  4. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.; Altay, H.M.; Ghoniem, A.F.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange

  5. A numerical study of a premixed flame on a slit burner

    NARCIS (Netherlands)

    Somers, L.M.T.; Goey, de L.P.H.

    1995-01-01

    A numerical study of a premixed methane/air flame on a 4 mm slit burner is presented. A local grid refinement technique is used to deal with large gradients and curvature of all variables encountered in the flame, keeping the number of grid points within reasonable bounds. The method used here leads

  6. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  7. Production of micron-sized polymer particles for additive manufacturing by melt emulsification

    Energy Technology Data Exchange (ETDEWEB)

    Fanselow, Stephanie; Schmidt, Jochen; Wirth, Karl-Ernst; Peukert, Wolfgang, E-mail: Wolfgang.Peukert@fau.de [Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen (Germany)

    2016-03-09

    Melt emulsification is an advanced top-down approach that permits to produce spherical particles and thus widens the availability of polymer feed materials for additive manufacturing. In the process the polymer is molten in a continuous phase and droplet breakup is realized in a rotor-stator-device. The stabilization of the newly formed surfaces is quite challenging. Therefore, a new method to identify an appropriate emulsifier by measuring the interfacial tension between the polymer and continuous phase using a high pressure / high temperature cell is presented. The obtained powders are characterized by scanning electron microscopy (SEM) and by a Zimmermann tensile strength tester to determine the powder flowability. The processability of the polymer powders for additive manufacturing is investigated and demonstrated by building single layers by laser beam melting.

  8. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos

    2012-01-01

    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  9. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    OpenAIRE

    Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng

    2014-01-01

    In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...

  10. Inadequacy representation of flamelet-based RANS model for turbulent non-premixed flame

    Science.gov (United States)

    Lee, Myoungkyu; Oliver, Todd; Moser, Robert

    2017-11-01

    Stochastic representations for model inadequacy in RANS-based models of non-premixed jet flames are developed and explored. Flamelet-based RANS models are attractive for engineering applications relative to higher-fidelity methods because of their low computational costs. However, the various assumptions inherent in such models introduce errors that can significantly affect the accuracy of computed quantities of interest. In this work, we develop an approach to represent the model inadequacy of the flamelet-based RANS model. In particular, we pose a physics-based, stochastic PDE for the triple correlation of the mixture fraction. This additional uncertain state variable is then used to construct perturbations of the PDF for the instantaneous mixture fraction, which is used to obtain an uncertain perturbation of the flame temperature. A hydrogen-air non-premixed jet flame is used to demonstrate the representation of the inadequacy of the flamelet-based RANS model. This work was supported by DARPA-EQUiPS(Enabling Quantification of Uncertainty in Physical Systems) program.

  11. Flame Structure and Dynamics for an Array of Premixed Methane-Air Jets

    Science.gov (United States)

    Nigam, Siddharth P.; Lapointe, Caelan; Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Rieker, Gregory B.; Hamlington, Peter E.

    2017-11-01

    Premixed flames have been studied extensively, both experimentally and computationally, and their properties are reasonably well characterized for a range of conditions and configurations. However, the premixed combustion process is potentially much more difficult to predict when many such flames are arranged in a closely spaced array. These arrays must be better understood, in particular, for the design of industrial burners used in chemical and heat treatment processes. Here, the effects of geometric array parameters (e.g., angle and diameter of jet inlets, number of inlets and their respective orientation) and operating conditions (e.g., jet velocities, fuel-air ratio) on flame structure and dynamics are studied using large eddy simulations (LES). The simulations are performed in OpenFOAM using multi-step chemistry for a methane-air mixture, and temperature and chemical composition fields are characterized for a variety of configurations as functions of height above the array. Implications of these results for the design and operation of industrial burners are outlined.

  12. Management of Type 2 diabetes in Ramadan: Low-ratio premix insulin working group practical advice

    Science.gov (United States)

    Hassanein, Mohamed; Belhadj, Mohamed; Abdallah, Khalifa; Bhattacharya, Arpan D.; Singh, Awadhesh K.; Tayeb, Khaled; Al-Arouj, Monira; Elghweiry, Awad; Iraqi, Hinde; Nazeer, Mohamed; Jamoussi, Henda; Mnif, Mouna; Al-Madani, Abdulrazzaq; Al-Ali, Hossam; Ligthelm, Robert

    2014-01-01

    The challenge of insulin use during Ramadan could be minimized, if people with diabetes are metabolically stable and are provided with structured education for at least 2–3 months pre-Ramadan. Although, American diabetes association (ADA) recommendations 2010 and South Asian Consensus Guideline 2012 deal with management of diabetes in Ramadan and changes in insulin dosage, no specific guidance on widely prescribed low-ratio premix insulin is currently available. Hence, the working group for insulin therapy in Ramadan, after collective analysis, evaluation, and opinion from clinical practice, have formulated a practical advice to empower physicians with pre-Ramadan preparation, dose adjustment, and treatment algorithm for self-titration of low-ratio premix insulin. PMID:25364673

  13. Management of Type 2 diabetes in Ramadan: Low-ratio premix insulin working group practical advice

    Directory of Open Access Journals (Sweden)

    Mohamed Hassanein

    2014-01-01

    Full Text Available The challenge of insulin use during Ramadan could be minimized, if people with diabetes are metabolically stable and are provided with structured education for at least 2-3 months pre-Ramadan. Although, American diabetes association (ADA recommendations 2010 and South Asian Consensus Guideline 2012 deal with management of diabetes in Ramadan and changes in insulin dosage, no specific guidance on widely prescribed low-ratio premix insulin is currently available. Hence, the working group for insulin therapy in Ramadan, after collective analysis, evaluation, and opinion from clinical practice, have formulated a practical advice to empower physicians with pre-Ramadan preparation, dose adjustment, and treatment algorithm for self-titration of low-ratio premix insulin.

  14. Study on laminar burning velocity of syngas-air premixed flames in various mixing conditions

    International Nuclear Information System (INIS)

    Lee, Kee Man; Jeong, Byeong Gyu; Lee, Seung Ro

    2015-01-01

    The laminar burning velocity of syngas-air premixed flames was measured with various equivalence ratios from 0.5 to 5.0 and a mole fraction of H 2 from 0.05 to 0.75. The laminar burning velocity was experimentally determined using a Bunsen flame according to the cone angle and surface area methods. A premixed code with a USC-II detailed reaction mechanism was used for the numerical calculations to predict the laminar burning velocity and to examine the relationship between the burning velocity enhancement and the hydrogen-related reactions. The results indicate that an appropriate method for the measurement of laminar burning velocity is necessary in the H 2 /CO/air syngas premixed flame. In addition, the burning velocity linearly increased with the increase of the H 2 mole fraction in the syngas mixture, although the burning velocity of H 2 was 10 times larger than that of CO. This result is attributed to the rapid production of H-radicals at the early stage of combustion. Furthermore, the predicted mole fractions of H and OH radicals increased with the increase of H 2 mole fraction for a lean syngas mixture. However, the mole fraction of OH radicals, an indicator of heat release rate, decreased for rich syngas mixture, resulting in a reduction of the laminar burning velocity, even with an increase of the H 2 mole fraction.

  15. Flashback mechanisms in lean premixed gas turbine combustion

    CERN Document Server

    Benim, Ali Cemal

    2014-01-01

    Blending fuels with hydrogen offers the potential to reduce NOx and CO2 emissions in gas turbines, but doing so introduces potential new problems such as flashback.  Flashback can lead to thermal overload and destruction of hardware in the turbine engine, with potentially expensive consequences. The little research on flashback that is available is fragmented. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion by Ali Cemal Benim will address not only the overall issue of the flashback phenomenon, but also the issue of fragmented and incomplete research.Presents a coherent review of f

  16. Extinction of counterflow premixed laminar flames

    International Nuclear Information System (INIS)

    Smooke, M.D.; Giovangigli, V.

    1987-01-01

    Problems in combustion and heat and mass transfer often depend upon one or more physical/chemical parameters. In many cases the combustion scientist is interested in knowing how the solution will behave if one or more of these parameters is varied. For some parameter regimes the governing equations can produce multiple solutions and the branches of the solution curve are linked via singular points. It is at these singular points, however that the system exhibits special behavior. To be able to predict the solution structure in the neighborhood of these points, the authors employ a phase-space, pseudo arclength, continuation method that utilizes Newton-like iterations and adaptive gridding techniques. The authors apply the method in the solution of counterflow premixed laminar flames

  17. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh; Cha, Min; Lee, Byeongjun; Chung, Suk-Ho

    2015-01-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred

  18. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines

    Science.gov (United States)

    Huang, Ying

    This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable

  19. The global, centralized approach of the GAIN Premix Facility has made oil fortification in Indonesia more affordable.

    Science.gov (United States)

    Jallier, Vincent; Guyondet, Christophe; Provent, Adeline; Laillou, Arnaud; Soekirman; Moench-Pfanner, Regina

    2013-06-01

    Access to high-grade micronutrients is a recurring challenge that often threatens the long-term sustainability of food fortification programs. To assess the efficiency of the Global Alliance for Improved Nutrition (GAIN) Premix Facility in procuring quality, affordable vitamin A for fortification of edible oil in Indonesia. A global approach to procurement of standard items was used by combining volumes across various demand streams in order to reduce the total cost of acquisition through economies of scale. The GAIN Premix Facility undertook a detailed analysis of vitamin A requirements across its existing customer base, which served as a basis for developing a reliable demand forecast. A consolidated, competitive tender was launched that resulted in the setting up of a long-term commercial agreement with the selected supplier to lock in the most competitive price for a given period of time. The direct benefit to oil manufacturers of fortifying with vitamin A is that the cost of fortification went down significantly compared with prices they would have been offered had they ordered vitamin A individually. In Indonesia, this consolidated procurement approach has allowed a 14.5% decrease in the unit price of vitamin A. The GAIN Premix Facility demonstrated its effectiveness in acting as a global procurement platform by aggregating demand across different customers and leveraging improved prices through increased volumes. Building on the success of this effort, the GAIN Premix Facility is replicating this global approach for procurement of other standard items being procured across fortification programs worldwide.

  20. Kecepatan Pembakaran Premixed Campuran Minyak Jarak - Liquefied Petroleum Gas (LPG pada Circular Tube Burner

    Directory of Open Access Journals (Sweden)

    Defmit B.N. Riwu

    2016-10-01

    Full Text Available This study was conducted to determine the characteristics of premixed combustion of a mixture of castor oil - LPG on a circular tube burner. Percentage of LPG fuel in a mixture of jatropha curcas oil - LPG varied as much as 10%, 20%, 30%, and 40% of the mass flow jatropha curcas oil vapor. Considering the flame of fire there are two angles formed which describe burning velocity. Also there are formed two cones of fire where the bright blue inside cone is a premixed flame, while the outer blue white cone is flame a diffusion flame. An increase in the percentage of LPG makes the value of top and bottom angle increase. So that the burning velocity on the upper angle decrease whilst on bottom angle increase.

  1. Modeling of confined and unconfined laminar premixed flames on slit and tube burners

    NARCIS (Netherlands)

    Mallens, R.M.M.; Lange, de H.C.; Ven, van de C.J.H.; Goey, de L.P.H.

    1995-01-01

    A model is presented for laminar premixed Bunsen flames on slit and cylindrical burners burning in a surrounding atmosphere. A comparison between modeling and experimental results shows that the model can reproduce the experimental results within 10% accuracy. The influence of a surrounding

  2. Effectiveness of insulin glargine in type 2 diabetes mellitus patients failing glycaemic control with premixed insulin: Adriatic countries data meta-analysis.

    Science.gov (United States)

    Cigrovski Berkovic, Maja; Petrovski, Goran; Grulovic, Natasa

    2016-10-01

    Type 2 diabetes mellitus (T2DM) is a progressive disease, often requiring exogenous insulin therapy and treatment intensification. Despite new therapies, most patients do not reach the recommended HbA1c targets, among them a significant proportion of patients on premixed insulins. The aim was to summarize published data in Adriatic countries on effectiveness of insulin glargine based therapy in type 2 diabetic patients suboptimally controlled on premix insulin. A meta-analysis was carried out in major medical databases up to April 2014, focusing on Adriatic region. We searched observational studies with duration of at least 6 months, evaluating effectiveness and safety of insulin glargine (IGlar), in combination with OAD or bolus insulin in patients with T2 failing premixed insulin therapy. Outcomes included values of HbA1c, fasting blood glucose and two hours post-prandial glucose concentration as well as changes in body mass index after at least 6 months of study duration. Three prospective, observational, multicentric trials (698 patients in total) were included. The basal bolus regimen with glargine significantly reduced HbA1c (Mean Difference, MD=2.27, CI [1.76, 2.78]), fasting glucose (MD=5.15, CI [4.86, 5.44]) and 2-hours postprandial glucose concentration (MD=6.94, CI [6.53, 7.34]). No significant changes were found in BMI after switching from premixes to IGlar based treatment. Insulin glargine based therapy following premix failure is efficacious and safe option of type 2 diabetes treatment intensification.

  3. Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing

    International Nuclear Information System (INIS)

    Wang, Ying; Zhao, Yuwei; Xiao, Fan; Li, Dongchang

    2014-01-01

    Highlights: • Combustion and emission of diesel engine with DME as premixing fuel were examined. • Injection timing has profound effect on HRR of diffusive combustion in PCCI engine. • DME introduction drastically influenced HRR of PCCI combustion, especially for HTR. • Effect of injection timing on emission of PCCI engine is similar to that of DICI engine. - Abstract: This work dealt with the combustion and exhaust performance of a DME premixed charge compression ignition diesel engine. With the port premixing DME, the heat-release process was made up of the premixed charge homogeneous charge compression ignition combustion and diffusion combustion. The in-cylinder fuel injection timing and port premixing DME quantity played the important roles in combustion and emission control. They had little impact on the peak position of heat-release rate (HRR) during LTR phase. However, they had great effects on the peak values and the crank-angle positions corresponding to the HRR peaks during HTR and diffusion combustion phase. The peak value of HRR increased and the crank-angle corresponding to the HRR peak advanced with an incremental DME quantity or an early injection during HTR phase. However, the peak value of HRR dropped with an incremental DME quantity or a late injection during the diffusion combustion phase. p max and T max increased with an incremental DME quantity or an early injection. At the fixed direct-injection timing, BSFC decreased slightly with a rise of DME quantity due to CA50 closer to TDC. At a fixed DME quantity, BSFC was lowest when diesel was injected into cylinder at 7°CA BTDC. Moreover, as more DME was aspirated from port, NO x emissions decreased firstly but this decreasing trend ceased later. Smoke reduced, but CO and HC increased with a rise of DME quantity. Meanwhile, like the conventional DICI operation, NO x increased, but smoke, CO and HC declined with an early direct-injection

  4. Compression ignition of light naphtha and its multicomponent surrogate under partially premixed conditions

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, B.; Chang, J.; Sarathy, M.; Johansson, B.

    2017-01-01

    Light naphtha is the light distillate from crude oil and can be used in compression ignition (CI) engines; its low boiling point and octane rating (RON = 64.5) enable adequate premixing. This study investigates the combustion characteristics of light naphtha (LN) and its multicomponent surrogate

  5. Study on laminar burning velocity of syngas-air premixed flames in various mixing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Man; Jeong, Byeong Gyu [Sunchon National University, Suncheon (Korea, Republic of); Lee, Seung Ro [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-07-15

    The laminar burning velocity of syngas-air premixed flames was measured with various equivalence ratios from 0.5 to 5.0 and a mole fraction of H{sub 2} from 0.05 to 0.75. The laminar burning velocity was experimentally determined using a Bunsen flame according to the cone angle and surface area methods. A premixed code with a USC-II detailed reaction mechanism was used for the numerical calculations to predict the laminar burning velocity and to examine the relationship between the burning velocity enhancement and the hydrogen-related reactions. The results indicate that an appropriate method for the measurement of laminar burning velocity is necessary in the H{sub 2}/CO/air syngas premixed flame. In addition, the burning velocity linearly increased with the increase of the H{sub 2} mole fraction in the syngas mixture, although the burning velocity of H{sub 2} was 10 times larger than that of CO. This result is attributed to the rapid production of H-radicals at the early stage of combustion. Furthermore, the predicted mole fractions of H and OH radicals increased with the increase of H{sub 2} mole fraction for a lean syngas mixture. However, the mole fraction of OH radicals, an indicator of heat release rate, decreased for rich syngas mixture, resulting in a reduction of the laminar burning velocity, even with an increase of the H{sub 2} mole fraction.

  6. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.; Han, Jie; Chahine, May; Selim, Hatem; Belhi, Memdouh; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2017-01-01

    chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon

  7. Cellular burning in lean premixed turbulent hydrogen-air flames: Coupling experimental and computational analysis at the laboratory scale

    International Nuclear Information System (INIS)

    Day, M S; Bell, J B; Beckner, V E; Lijewski, M J; Cheng, R K; Tachibana, S

    2009-01-01

    One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.

  8. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    Energy Technology Data Exchange (ETDEWEB)

    Antariksawan, A.R. [Reactor Safety Technology Research Center of BATAN (Indonesia); Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs.

  9. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    International Nuclear Information System (INIS)

    Antariksawan, A.R.; Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs

  10. The influence of a mineral-vitamin premix on the metabolism of pregnant horses with microelemetosis

    Directory of Open Access Journals (Sweden)

    A. R. Shcherbatyy

    2017-04-01

    Full Text Available The article presents data on research into the influence of a mineral-vitamin premix on the clinical condition, erythropoiesis and the metabolism (macro- and micro-elemental, vitaminic, proteinaceous, enzymic of Hucul breed mares in the last trimester of pregnancy. The Marmix premix contains: vitamins – А, D3, Е, В1, В2, В12, pantothenic and ascorbic acids, niacin, biotin; nonorganic compounds of microelements – sulphate of cobalt, copper, zinc, iron, manganese; potassium iodide, sodium selenite; amino acids – lysine, threonine, methionine.The usage of the mineral-vitaminic premix Marmix on pregnant mares during 60 days causes recovery of clinical status, erythropoiesis, raises the level of the cobalt (by 45.9% and copper (by 2.15 times, normalizes the calcium-phosphorus ratio, raises the phosphorus level in the blood (by 17.7%, raises vitamin А (by 2.5 times and tocopherol (by 2.02 times, total protein (by 27.7%, decreases the level of urea (by 42.2%, activity of AspAT [aspartate transaminase or aspartate aminotransferase] (by 42.9% and AlAT [alanine transaminase] (by 44.9% and alkaline phosphatase (by 43.7%. The research conducted contributes to improvements in the study of the pathogenesis of microelementosis of mares and develops an efficient way of treating and preventing the development of microelementosis among these animals.

  11. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  12. Effects of pressure fluctuations on the combustion process in turbulent premixed flames

    Science.gov (United States)

    Beardsell, Guillaume; Lapointe, Simon; Blanquart, Guillaume

    2016-11-01

    The need for a thorough understanding of turbulence-combustion interactions in compressible flows is driven by recent technological developments in propulsion as well as renewed interest in the development of next generation supersonic and hypersonic vehicles. In such flows, pressure fluctuations displaying a wide range of length and timescales are present. These fluctuations are expected to impact the combustion process to varying degrees, depending amongst other things on the amplitude of the pressure variations and the timescales of the chemical reactions taking place in the flame. In this context, numerical simulations of these flows can provide insight into the impact of pressure fluctuations on the combustion process. In the present work, we analyze data from simulations of statistically-flat premixed n-heptane/air flames at high Karlovitz numbers. The compressible Navier-Stokes equations are solved exactly (DNS) and results obtained with both detailed kinetic modeling and one-step chemistry are considered. The effects of pressure fluctuations on the fuel burning rate are investigated. The findings are compared with results obtained from simulations of one-dimensional premixed flames subjected to various pressure waves.

  13. Evaluation of resistant starch, glycemic index and fortificants content of premix rice coated with various concentrations and types of edible coating materials

    Science.gov (United States)

    Yulianto, W. A.; Susiati, A. M.; Adhini, H. A. N.

    2018-01-01

    The incidence of diabetes in Indonesia has been increasing year by year. Diets with a low glycemic index and high resistant starch foods can assist diabetics in controlling their blood glucose levels. Diabetics are known to have micro-nutrient deficiencies of chromium, magnesium and vitamin D that can be overcome by consuming parboiled rice fortified by use of a coating method. The fortification of parboiled rice (premix rice) can be achieved by coating with HPMC (hydroxypropyl methyl cellulose), MC (methyl cellulose), CMC (carboxyl methyl cellulose), gum arabic and rice starch. This research aimed to evaluate the levels of resistant starch, glycemic index and fortificants of premix rice coated with different concentrations and types of edible coating materials. This research used completely randomized design, with treatments to the concentrations and the types of edible coating (HPMC, CMC, MC, gum arabic and rice starch). The concentrations of edible coating were 0.15%, 0.2% and 0.25% for cellulose derivative coatings; 25%, 30%, 35% for gum arabic and 2%, 3.5% and 5% for rice starch. This research shows that fortified premix rice coated with various concentrations and types of edible coating materials is high in resistant starch and has a low glycemic index. The coating treatment affects the levels of magnesium and vitamin D, but does not affect the levels of chromium in parboiled rice. The premix rice with a low glycemic index and high nutrient content (chromium, magnesium and vitamin D) was premix rice coated by CMC 0.25% and HPMC 0.25% with glycemic indeces of 39.34 and 38.50, respectively.

  14. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  15. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate

  16. Ion chromatography for the analysis of salt splitting capacities of cation and anion resin in premixed resin sample

    International Nuclear Information System (INIS)

    Ghosh, Satinath; Kumar, Rakesh; Tripathy, M.K.; Dhole, K.; Sharma, R.S.; Varde, P.V.

    2017-01-01

    Mixed bed ion exchange resin is commonly used in various plants including nuclear reactors for the purpose of fine polishing. The analysis of ion exchange capacities of cation and anion resin in resin mixture is therefore an agenda in the context of purchasing of premixed resin from the manufacturer. An ion chromatographic method for assaying ion exchange capacities of pure as well as mixed resin has been optimized. The proposed method in contrast to the conventional ASTM method has been found to be quite encouraging to consider it as an alternate method for the analysis of premixed resin. (author)

  17. Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation

    KAUST Repository

    Manias, Dimitrios

    2018-01-08

    The dynamics and structure of two turbulent H2/air premixed flames, representative of the corrugated flamelet (Case 1) and thin reaction zone (Case 2) regimes, are analyzed and compared, using the computational singular perturbation (CSP) tools, by incorporating the tangential stretch rate (TSR) approach. First, the analysis is applied to a laminar premixed H2/air flame for reference. Then, a two-dimensional (2D) slice of Case 1 is studied at three time steps, followed by the comparison between two representative 2D slices of Case 1 and Case 2, respectively. Last, statistical analysis is performed on the full three-dimensional domain for the two cases. The dominant reaction and transport processes are identified for each case and the overall role of kinetics/transport is determined.

  18. An experimental and kinetic modeling study of premixed nitromethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Li, Yuyang; Yuan, Tao

    2011-01-01

    An experimental and modeling study is reported on three premixed nitromethane/oxygen/argon flames at low pressure (4.655kPa) with equivalence ratios (ϕ) of 1.0, 1.5 and 2.0. Flame species were identified with tunable synchrotron vacuum ultraviolet photoionization. The mole fraction profiles of more...

  19. Saturation mechanism of the heat release response of a premixed swirl flame using LES

    NARCIS (Netherlands)

    Krediet, H.J.; Beck, C. H.; Krebs, W.; Kok, J. B.W.

    2013-01-01

    The nonlinear heat release response of a premixed swirl flame to velocity perturbations is investigated using Large Eddy Simulation. The nonlinear heat release response is required for the prediction of thermoacoustic limit cycle pressure amplitudes and is represented here by the Flame Describing

  20. Premixer assembly for mixing air and fuel for combustion

    Science.gov (United States)

    York, William David; Johnson, Thomas Edward; Keener, Christopher Paul

    2016-12-13

    A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length

  1. Study on biogas premixed charge diesel dual fuelled engine

    International Nuclear Information System (INIS)

    Duc, Phan Minh; Wattanavichien, Kanit

    2007-01-01

    This paper presents an experimental investigation of a small IDI biogas premixed charge diesel dual fuelled CI engine used in agricultural applications. Engine performance, diesel fuel substitution, energy consumption and long term use have been concerned. The attained results show that biogas-diesel dual fuelling of this engine revealed almost no deterioration in engine performance but lower energy conversion efficiency which was offset by the reduced fuel cost of biogas over diesel. The long term use of this engine with biogas-diesel dual fuelling is feasible with some considerations

  2. Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Consul, R.; Oliva, A.; Perez-Segarra, C.D.; Carbonell, D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222, Terrassa, Barcelona (Spain); de Goey, L.P.H. [Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2008-04-15

    The aim of this work is to analyze the application of flamelet models based on the mixture fraction variable and its dissipation rate to the numerical simulation of partially premixed flames. Although the main application of these models is the computation of turbulent flames, this work focuses on the performance of flamelet concept in laminar flame simulations removing, in this way, turbulence closure interactions. A well-known coflow methane/air laminar flame is selected. Five levels of premixing are taken into account from an equivalence ratio {phi}={infinity} (nonpremixed) to {phi}=2.464. Results obtained using the flamelet approaches are compared to data obtained from the detailed solution of the complete transport equations using primitive variables. Numerical simulations of a counterflow flame are also presented to support the discussion of the results. Special emphasis is given to the analysis of the scalar dissipation rate modeling. (author)

  3. Comparison of spray congealing and melt emulsification methods for the incorporation of the water-soluble salbutamol sulphate in lipid microparticles.

    Science.gov (United States)

    Scalia, Santo; Traini, Daniela; Young, Paul M; Di Sabatino, Marcello; Passerini, Nadia; Albertini, Beatrice

    2013-02-01

    Salbutamol sulphate is widely used as bronchodilator for the treatment of asthma. Its use is limited by the relatively short duration of action and hence sustained delivery of salbutamol sulphate offers potential benefits to patients. This study explores the preparation of lipid microparticles (LMs) as biocompatible carrier for the prolonged release of salbutamol sulphate. The LMs were produced using different lipidic materials and surfactants, by classical melt emulsification-based methods (oil-in-water and water-in-oil-in-water emulsions) and the spray congealing technique. For the LMs obtained by melt emulsification a lack of release modulation was observed. On the other hand, the sustained release of salbutamol sulphate was achieved with glyceryl behenate microparticles prepared by spray congealing. These LMs were characterized by scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry. The drug loading was 4.72% (w/w). The particle size distribution measured by laser diffraction and electrical zone sensing was represented by a volume median diameter (Dv(50)) of 51.7-71.4 µm. Increasing the atomization air pressure from 4 to 8 bar produced a decrease of the Dv(50) to 12.7-17.5 µm. Incorporation of the hydrophilic salbutamol sulphate into LMs with sustained release characteristics was achieved by spray congealing.

  4. Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation

    KAUST Repository

    Manias, Dimitrios; Tingas, Alexandros-Efstathios; Hernandez Perez, Francisco E.; Im, Hong G.; Galassi, Riccardo Malpica; Ciottoli, Pietro Paolo; Valorani, Mauro

    2018-01-01

    The dynamics and structure of two turbulent H2/air premixed flames, representative of the corrugated flamelet (Case 1) and thin reaction zone (Case 2) regimes, are analyzed and compared, using the computational singular perturbation (CSP) tools

  5. Optimization of operating conditions in the early direct injection premixed charge compression ignition regime

    NARCIS (Netherlands)

    Boot, M.D.; Luijten, C.C.M.; Rijk, E.P.; Albrecht, B.A.; Baert, R.S.G.

    2009-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a

  6. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    Science.gov (United States)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  7. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong; Gil, Y. S.; Chung, TaeWon; Chung, Suk-Ho

    2009-01-01

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a

  8. INTERFACIAL ENERGY DURING THE EMULSIFICATION OF WATER-IN-HEAVY CRUDE OIL EMULSIONS

    Directory of Open Access Journals (Sweden)

    V. Karcher

    2015-03-01

    Full Text Available Abstract The aim of this study was to investigate the interfacial energy involved in the production of water-in-oil (W/O emulsions composed of water and a Brazilian heavy crude oil. For such purpose an experimental set-up was developed to measure the different energy terms involved in the emulsification process. W/O emulsions containing different water volume fractions (0.1, 0.25 and 0.4 were prepared in a batch calorimeter by using a high-shear rotating homogenizer at two distinct rotation speeds (14000 and 22000 rpm. The results showed that the energy dissipated as heat represented around 80% of the energy transferred to the emulsion, while around 20% contributed to the internal energy. Only a very small fraction of the energy (0.02 - 0.06% was stored in the water-oil interface. The results demonstrated that the high energy dissipation contributes to the kinetic stability of the W/O emulsions.

  9. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  10. Subfilter Scale Modelling for Large Eddy Simulation of Lean Hydrogen-Enriched Turbulent Premixed Combustion

    NARCIS (Netherlands)

    Hernandez Perez, F.E.

    2011-01-01

    Hydrogen (H2) enrichment of hydrocarbon fuels in lean premixed systems is desirable since it can lead to a progressive reduction in greenhouse-gas emissions, while paving the way towards pure hydrogen combustion. In recent decades, large-eddy simulation (LES) has emerged as a promising tool to

  11. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  12. Combustion and radiation modeling of laminar premixed flames using OpenFOAM: A numerical investigation of radiative heat transfer in the RADIADE project

    OpenAIRE

    Haider, Sajjad; Pang, Kar Mun; Ivarsson, Anders; Schramm, Jesper

    2013-01-01

    This paper presents the computational fluid dynamics modelling of a laminar premixed flame. A specific solver named ’rareLTSFoam’ is developed using OpenFOAM ® code. The solver is used to simulate experimental stoichiometric and rich laminar premixed flames. The modelling is carried out for thermal flow and combusting flow cases. The results show that without including radiation modelling, the predicted flame temperature is higher than the measured values. P1 radiation Model is used with sub-...

  13. Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NO x concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O 2 ↔ NO + O and N + OH ↔ NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased. - Highlights: • Premixed combustion system with EGR is studied for a high efficiency and low NO x . • All research is performed with various EGR and equivalence ratios. • It verified that efficiency increases and the NO x emission decreases with EGR method. • NO production rates are remarkably changed by N + O 2 ↔ NO + O and N + OH ↔ NO + H with EGR

  14. Emission noise spectrum in a premixed H2-O2-N2 flame

    NARCIS (Netherlands)

    Alkemade, C.T.J.; Hooymayers, H.P.; Lijnse, P.L.; Vierbergen, T.J.M.J.

    Experimental noise spectra in the frequency range of 15–105 Hz are reported for the thermal emission of the first resonance doublet of Na and K in a premixed H2-O2-N2 flame, and for the flame background emission. Under certain conditions, low-frequency peaks arise in the noise spectrum below 100 Hz,

  15. Effects of Driving Frequency on Propagation Characteristics of Methane - Air Premixed Flame Influenced by Ultrasonic Standing Wave

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Seok; Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Seo, Hang Seok [Hanwha Corporation, DaeJeon (Korea, Republic of)

    2015-02-15

    An experimental study was conducted to scrutinize the influence of the frequency of an ultrasonic standing wave on the variation in the behavior of a methane-air premixed flame. The evolutionary features of the propagating flame were captured by a high-speed camera, and the macroscopic flame behavior, including the flame structure and local velocities, was investigated in detail using a post-processing analysis of the high-speed images. It was found that a structural variation and propagation-velocity augmentation of the methane-air premixed flame were caused by the intervention of the ultrasonic standing wave, which enhanced the combustion reaction. Conclusive evidence for the dependency of the flame behaviors on the driving frequency of the ultrasonic standing wave and equivalence ratio of the reactants is presented.

  16. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends

    International Nuclear Information System (INIS)

    Du, Jiakun; Sun, Wanchen; Guo, Liang; Xiao, Senlin; Tan, Manzhi; Li, Guoliang; Fan, Luyan

    2015-01-01

    Highlights: • A compound combustion concept was proposed and investigated. • Premixed combustion near the top dead center was investigated using blended fuels. • Increasing gasoline blend ratio was found to enhance the mixture preparation. • Too much addition of gasoline decreases indicated thermal efficiency. • Gasoline/diesel blends may be a promising alternative for premixed combustion. - Abstract: The effects of gasoline/diesel blended fuel composed of diesel fuel with gasoline as additives in volume basis, on combustion, fuel economies and exhaust emissions were experimentally investigated. Tests were carried out based on a turbocharged Common-rail Direct Injection engine at a constant engine speed of 1800 r/min and different loads of 3.2 bar, 5.1 bar Indicated Mean Effective Pressure. Additionally, the effect of combustion phasing and Exhaust Gas Recirculation were evaluated experimentally for various fuels. The results indicated that with the fraction of gasoline increasing in blends, the ignition delay was prolonged and the combustion phasing was retarded with the common injection timing. This led to a significant increase of premixed burning phase, which was in favor of smoke reduction; although, too much gasoline might be adverse to fuel consumption. An optimum combustion phasing was identified, leading to a higher thermal efficiency and better premixed combustion with blended fuels. A combined application of Exhaust Gas Recirculation and blended fuel with a high gasoline fraction was confirmed effective in reducing the oxides of nitrogen and smoke emissions simultaneously at the optimum combustion phasing without giving significant penalty of fuel consumption. A compound combustion mode with its emission lower than the conventional Compression Ignition engines, and efficiency higher than the typical Spark Ignition engines, could be achieved with a cooperative control of Exhaust Gas Recirculation and combustion phasing of the gasoline

  17. Application of ultrasound-assisted emulsification microextraction for simultaneous determination of aminophenol isomers in human urine, hair dye, and water samples using high-performance liquid chromatography.

    Science.gov (United States)

    Asghari, Alireza; Fazl-Karimi, Hamidreza; Barfi, Behruz; Rajabi, Maryam; Daneshfar, Ali

    2014-08-01

    Aminophenol isomers (2-, 3-, and 4-aminophenols) are typically classified as industrial pollutants with genotoxic and mutagenic effects due to their easy penetration through the skin and membranes of human, animals, and plants. In the present study, a simple and efficient ultrasound-assisted emulsification microextraction procedure coupled with high-performance liquid chromatography with ultraviolet detector was developed for preconcentration and determination of these compounds in human fluid and environmental water samples. Effective parameters (such as type and volume of extraction solvent, pH and ionic strength of sample, and ultrasonication and centrifuging time) were investigated and optimized. Under optimum conditions (including sample volume: 5 mL; extraction solvent: chloroform, 80 µL; pH: 6.5; without salt addition; ultrasonication: 3.5 min; and centrifuging time: 3 min, 5000 rpm min(-1)), the enrichment factors and limits of detection were ranged from 42 to 51 and 0.028 to 0.112 µg mL(-1), respectively. Once optimized, analytical performance of the method was studied in terms of linearity (0.085-157 µg mL(-1), r (2) > 0.998), accuracy (recovery = 88.6- 101.7%), and precision (repeatability: intraday precision water samples. © The Author(s) 2014.

  18. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    Science.gov (United States)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due

  19. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  20. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification.

    Science.gov (United States)

    Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M

    2016-11-01

    Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as

  1. [Methods quantitative for determination of water-soluble vitamins in premixes and fortified food products by micellar electrokinetic chromatography on short end of the capillary].

    Science.gov (United States)

    Bogachuk, M N; Bessonov, V V; Perederiaev, O I

    2011-01-01

    It was purposed new technique by micellar electrokinetic chromatography on short end of the capillary (capillary electrophoresis system Agilent 3D CE, DAD, quartz capillary HPCE stndrd cap 56 cm, 50 microm, 50 mM borate buffer pH=9,3, 100 mM sodium dodecil sulfate) for simultaneous determination of water-soluble vitamins (B1, B2, B6, B12, PP, B5, B9, C, B8) in fortified food products and premixes. It was observed on 6 samples of vitamin premixes and 28 samples of fortified food products using this technique. Our findings are consistent with the results of research on certain vitamins, conducted by other methods. The developed technique can be used in analysis of water-soluble vitamins in premixes and fortified food products.

  2. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  3. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    Directory of Open Access Journals (Sweden)

    Roberto P Stock

    Full Text Available The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1 ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2 the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3 in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  4. Effect of energetic electrons on combustion of premixed burner flame

    Science.gov (United States)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  5. Streamline segment statistics of premixed flames with nonunity Lewis numbers

    Science.gov (United States)

    Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus

    2014-03-01

    The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.

  6. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.; Ghoniem, Ahmed F.

    2012-01-01

    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly

  7. NO{sub x} formation in lean premixed combustion of methane at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K U.M.; Griebel, P; Schaeren, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    High pressure experiments in a jet-stirred reactor have been performed to study the NO{sub x} formation in lean premixed combustion of methane/air mixtures. The experimental results are compared with numerical predictions using four well known reaction mechanisms and a model which consists of a series of two perfectly stirred reactors and a plug flow reactor. (author) 2 figs., 7 refs.

  8. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  9. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  10. Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde.

    Science.gov (United States)

    Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia

    2015-01-01

    Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.

  11. Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel.

    Science.gov (United States)

    Riaud, Antoine; Zhang, Hao; Wang, Xueying; Wang, Kai; Luo, Guangsheng

    2018-04-18

    Microchannel emulsification requires large amounts of surfactant to prevent coalescence and improve emulsions lifetime. However, most numerical studies have considered surfactant-free mixtures as models for droplet formation in microchannels, without taking into account the distribution of surfactant on the droplet surface. In this paper, we investigate the effects of nonuniform surfactant coverage on the microfluidic flow pattern using an extended lattice-Boltzmann model. This numerical study, supported by micro-particle image velocimetry experiments, reveals the likelihood of uneven distribution of surfactant during the droplet formation and the appearance of a stagnant cap. The Marangoni effect affects the droplet breakup by increasing the shear rate. According to our results, surfactant-free and surfactant-rich droplet formation processes are qualitatively different, such that both the capillary number and the Damköhler number should be considered when modeling the droplet generation in microfluidic devices. The limitations of traditional volume and pressure estimation methods for determining the dynamic interfacial tension are also discussed on the basis of the simulation results.

  12. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    Directory of Open Access Journals (Sweden)

    Zhenzhong Pan

    2015-01-01

    Full Text Available The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with high dispersity and stability. The mean particle size and polydispersity index of the nanosuspension were 16.01 ± 0.11 nm and 0.266 ± 0.002, respectively. The high zeta potential value of −41.7 ± 1.3 mV and stable crystalline state of the nanoparticles indicated the excellent physical and chemical stability. The method could be widely used for preparing nanosuspension of various pesticides with melting points below boiling point of water. This formulation may avoid the use of organic solvents and reduce surfactants and is perspective for improving bioavailability and reducing residual pollution of pesticide in agricultural products and environment.

  13. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.

    Science.gov (United States)

    Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-04-18

    To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C 2 H 5 OH+OH→Products+H 2 O is also discussed.

  14. Dynamics of premixed hydrogen/air flames in mesoscale channels

    Energy Technology Data Exchange (ETDEWEB)

    Pizza, Gianmarco [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Frouzakis, Christos E.; Boulouchos, Konstantinos [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Mantzaras, John [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Tomboulides, Ananias G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2008-10-15

    Direct numerical simulation with detailed chemistry and transport is used to study the stabilization and dynamics of lean ({phi}=0.5) premixed hydrogen/air atmospheric pressure flames in mesoscale planar channels. Channel heights of h=2, 4, and 7 mm, and inflow velocities in the range 0.3{<=}U{sub IN}{<=}1100cm/ s are investigated. Six different burning modes are identified: mild combustion, ignition/extinction, closed steady symmetric flames, open steady symmetric flames, oscillating and, finally, asymmetric flames. Chaotic behavior of cellular flame structures is observed for certain values of U{sub IN}. Stability maps delineating the regions of the different flame types are finally constructed. (author)

  15. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    Science.gov (United States)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  16. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  17. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley; Chowdhury, Snehaunshu; Roberts, William L.

    2017-01-01

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  18. The instability characteristics of lean premixed hydrogen and syngas flames stabilized on meso-scale bluff-body

    KAUST Repository

    Kim, Yu Jeong

    2017-01-05

    Bluff-body flame stabilization has been used as one of main flame stabilization schemes to improve combustion stability in both large and small scale premixed combustion systems. The detailed investigation of instability characteristics is needed to understand flame stability mechanism. Direct numerical simulations are conducted to investigate flame dynamics on the instability of lean premixed hydrogen/air and syngas/air flames stabilized on a meso-scale bluff-body. A two-dimensional channel of 10 mm height and 10 mm length with a square bluff-body stabilizer of 0.5 mm is considered. The height of domain is chosen as an unconfined condition to minimize the effect of the blockage ratio. Flame/flow dynamics are observed by increasing the mean inflow velocity from a steady stable to unsteady asymmetrical instability, followed by blowoff. Detailed observations between hydrogen and syngas flames with a time scale analysis are presented.

  19. Turbulent Premixed Flame Propagation in Microgravity

    Science.gov (United States)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    A facility in which turbulent Couette flow could be generated in a microgravity environment was designed and built. To fit into the NASA Lewis drop tower the device had to be very compact. This means that edge effects and flow re-circulation were expected to affect the flow. The flow was thoroughly investigated using LDV and was found to be largely two dimensional away from the edges with constant turbulence intensities in the core. Slight flow asymmetries are introduced by the non symmetric re-circulation of the fluid outside the test region. Belt flutter problems were remedied by adding a pair of guide plates to the belt. In general, the flow field was found to be quite similar to previously investigated Couette flows. However, turbulence levels and associated shear stresses were higher. This is probably due to the confined re-circulation zone reintroducing turbulence into the test section. An estimate of the length scales in the flow showed that the measurements were able to resolve nearly all the length scales of interest. Using a new LES method for subgrid combustion it has been demonstrated that the new procedure is computational feasible even on workstation type environment. It is found that this model is capable of capturing the propagation of the premixed names by resolving the flame in the LES grid within 2-3 grid points. In contrast, conventional LES results in numerical smearing of the flame and completely inaccurate estimate of the turbulent propagation speed. Preliminary study suggests that there is observable effect of buoyancy in the 1g environment suggesting the need for microgravity experiments of the upcoming experimental combustion studies. With the cold flow properties characterized, an identical hot flow facility is under construction. It is assumed that the turbulence properties ahead of the flame in this new device will closely match the results obtained here. This is required since the hot facility will not enable LDV measurements. The

  20. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method

    Directory of Open Access Journals (Sweden)

    Zaida Urbán-Morlán

    2010-08-01

    Full Text Available Zaida Urbán-Morlán1, Adriana Ganem-Rondero1, Luz María Melgoza-Contreras2, José Juan Escobar-Chávez1,2, María Guadalupe Nava-Arzaluz1, David Quintanar-Guerrero11División de Estudios de Posgrado (Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Estado de México, México; 2Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso, Colonia Villa Quietud, MéxicoAbstract: Solid lipid nanoparticles (SLNs have been used for carrying different therapeutic agents because they improve absorption and bioavailability. The aim of the study was to prepare lipidic nanoparticles containing cyclosporine (CyA by the emulsification-diffusion method and to study their physicochemical stability. Glyceryl behenate (Compritol® ATO 888 and lauroyl macrogolglycerides (Gelucire® 44/14 were used as carrier materials. Nanoparticles with good stability were obtained with Gelucire®, while it was difficult to obtain stable systems with Compritol®. Systems with Gelucire® were characterized by particle size, Z-potential, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, entrapment efficiency and in vitro release. Particle size and Z-potential were evaluated for at least three months. With a high CyA content (≥60 mg in Gelucire® SLNs, variations in size were greater and particle size also increased over time in all batches; this effect may have been caused by a probable expulsion of the drug due to the lipid’s partial rearrangement. While the Z-potential decreased 10 mV after three months, this effect may be explained by the superficial properties of the drug that make the molecules to be preferably oriented at the solid-liquid interface, causing a change in the net charge of the particle. SEM confirmed size and shape of the nanoparticles. DSC studies evidenced that CyA affects the lipid structure by a mechanism still unknown

  1. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.

    Science.gov (United States)

    Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua

    2017-04-05

    Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6

  2. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  3. A LES-CMC formulation for premixed flames including differential diffusion

    Science.gov (United States)

    Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2018-05-01

    A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.

  4. Direct Numerical Simulations of NOx formation in spatially developing turbulent premixed Bunsen flames with mixture inhomogeneity

    KAUST Repository

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2017-01-01

    have a partially premixed inlet that mimic a common injection strategy in stationary gas turbines. The jet consist of a methane/air mixture with global equivalence ratio ɸ = 0.7 and temperature of 800 K. The simulations are performed at 4 atm. The inlet

  5. PREMIX, documentation of the results of experiments PM01 to PM06

    International Nuclear Information System (INIS)

    Huber, F.; Kaiser, A.; Steinbrueck, M.; Will, H.

    1996-03-01

    A series of so-called PREMIX experiments is being performed in which the mixing behaviour is investigated of a hot alumina melt which is discharged into water. The tests are part of a multi-lateral programme carried out in support of the licencing procedure of LWR. The programme, which aims at the safety of the reactor, includes relevant experiments and the numerical simulation by computer codes. The parameters of the 1st experimental series were: Melt masses of 10 and 20 kg, released through nozzles of 40 and 56 mm in diameter, resp., the type of melt discharge, a slender size of the water pool, and the degree of sub-cooling. The phenomena of mixing can well be described by means of both high speed and video films and a variety of measurements. The results show that it is the period up to about 0.4 to 0.5 s in which the decisive processes of premixing occur. The very first material release generally occurs as single droplets. In 3 of the first 6 tests, a more or less compact stream of melt formed soon after that. In the other tests, the spray-type discharge of melt continued. A funnel-shaped interaction region is formed in the water pool. Its radial and axial growth rates are determined by the discharge mode and mass flux of the melt. A vapour explosion did not occur. The test results are well suited to be used in the verification and validation of computer models. The results of the measurements and the post-test examination of the debris give an indication of a possible inherent limitation of the masses involved in premixing. Consequently, the probability of a steam explosion to occur would also be limited. This limitation is anticipated to occur in 2 stages: 1. The bulk portion of the water is displaced far enough by the growing interaction region and is prevented from taking part immediately in the thermal interaction. Vapour is the continuous phase in the interaction region. 2. In case of a compact melt stream, the major part of the melt quickly flows down

  6. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  7. Premixed Flames Under Microgravity and Normal Gravity Conditions

    Science.gov (United States)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  8. Computational Fluid Dynamics (CFD-Based Droplet Size Estimates in Emulsification Equipment

    Directory of Open Access Journals (Sweden)

    Jo Janssen

    2016-12-01

    Full Text Available While academic literature shows steady progress in combining multi-phase computational fluid dynamics (CFD and population balance modelling (PBM of emulsification processes, the computational burden of this approach is still too large for routine use in industry. The challenge, thus, is to link a sufficiently detailed flow analysis to the droplet behavior in a way that is both physically relevant and computationally manageable. In this research article we propose the use of single-phase CFD to map out the local maximum stable droplet diameter within a given device, based on well-known academic droplet break-up studies in quasi-steady 2D linear flows. The results of the latter are represented by analytical correlations for the critical capillary number, which are valid across a wide viscosity ratio range. Additionally, we suggest a parameter to assess how good the assumption of quasi-steady 2D flow is locally. The approach is demonstrated for a common lab-scale rotor-stator device (Ultra-Turrax, IKA-Werke GmbH, Staufen, Germany. It is found to provide useful insights with minimal additional user coding and little increase in computational effort compared to the single-phase CFD simulations of the flow field, as such. Some suggestions for further development are briefly discussed.

  9. Numerical simulation of nitrogen oxide formation in lean premixed turbulent H2/O2/N2 flames

    DEFF Research Database (Denmark)

    Day, Marc S.; Bell, John B.; Gao, Xinfeng

    2011-01-01

    Lean premixed hydrogen flames are thermodiffusively unstable and burn in cellular structures. Within these cellular structures the flame is locally enriched by preferential diffusion of hydrogen, leading to local hotspots that burn more intensely than an idealized flat steady flame at comparable ...

  10. Experimental study on the potential of higher octane number fuels for low load partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; van der Waart, K.; Somers, B.; de Goey, P.

    2017-01-01

    The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30

  11. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary; Shanbhogue, Santosh; Ghoniem, Ahmed

    2011-01-01

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  12. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  13. Impact of fuel composition on the recirculation zone structure and its role in lean premixed flame anchoring

    KAUST Repository

    Hong, Seunghyuck; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2015-01-01

    ) and chemiluminescence measurements for C3H8/H2/air lean premixed flames stabilized in a backward-facing step combustor. Results show an intricate coupling between the flame anchoring and the RZ structure and length. For a fixed fuel composition, at relatively low

  14. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane.

    Science.gov (United States)

    Zereshki, Sina; Daraei, Parisa; Shokri, Amin

    2018-05-18

    Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Production of crosslinked protein particles through membrane emulsification

    CSIR Research Space (South Africa)

    Kotzé-Jacobs, L

    2010-09-01

    Full Text Available In recent years, the drive towards cleaner technologies has made us more aware of the need for green and sustainable methodologies for chemical synthesis. It is here that enzymes are beneficial due to mild reaction conditions, biodegradability...

  16. Nutrient composition of premixed and packaged complementary foods for sale in low- and middle-income countries: Lack of standards threatens infant growth.

    Science.gov (United States)

    Masters, William A; Nene, Marc D; Bell, Winnie

    2017-10-01

    Premixed flours for infant porridge are increasingly produced and sold in developing countries to complement continued breastfeeding. Such complementary food (CF) products have known efficacy against malnutrition in children from 6 to 24 months of age, but ingredient ratios and production processes may vary. This study provides the first systematic measurement of their actual nutrient composition. We purchased samples of 108 premixed CF products in 22 low- and middle-income countries, and commissioned blind laboratory measurement of each product's macronutrients and micronutrients. We compared measured contents to nutrient claims on their packaging and to CF standards from the Codex Alimentarius, the Super Cereal Plus product used in nutrition assistance programs, and the Lutter and Dewey (2003) recommendations, as well as our own modeled nutrient requirements for a healthy breastfed child. Actual densities are significantly different from nutrient claims for protein (p = .013) and fat (p = .000). Only 15% of samples met two of the three benchmarks for fat, 32% met the most stringent protein standard, while only 22% met them for iron, and 21% for zinc. The median healthy child consuming breast milk plus enough of these solid foods to meet energy needs would experience deficits of zinc at 6 months, iron at 6 and 9 months, and dietary fat from 12 months of age. In summary, premixed CF products can provide adequate nutrient density but usually do not, revealing the need and opportunity for independent monitoring and quality assurance to help grain millers making premixed foods maintain uniform ingredient ratios and production practices. © 2016 John Wiley & Sons Ltd.

  17. Three-dimensional simulations of cellular non-premixed jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Valaer, A.L.; Frouzakis, C.E.; Boulouchos, K. [Aerothermochemistry and Combustion System Laboratory, Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Papas, P. [Division of Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Tomboulides, A.G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2010-04-15

    The formation, dynamics and structure of cellular flames in circular non-premixed jets are examined with three-dimensional numerical simulations incorporating detailed descriptions of chemistry and transport. Similar to past experiments reported in the literature, CO{sub 2}-diluted hydrogen in diluted or pure oxygen co-flowing streams in the proximity of the extinction limit are considered. As in the experiments, several preferred cellular states are found to co-exist with the particular state realized depending on initial conditions as well as on the jet characteristics. The simulations provide additionally the temporal transitions to different stationary or rotating cellular flames, their detailed structure, and the dependence of the scaling of the realized number of cells with the vorticity thickness. (author)

  18. The challenge of modeling fuel–coolant interaction: Part I – Premixing

    Energy Technology Data Exchange (ETDEWEB)

    Meignen, Renaud, E-mail: renaud.meignen@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Picchi, Stephane; Lamome, Julien [Communication and Systèmes, 22 avenue Galilée, 92350 Le Plessis Robinson (France); Raverdy, Bruno [IRSN/PSN-RES/SAG, BP3, 92362 Fontenay aux Roses Cedex (France); Escobar, Sebastian Castrillon [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Nicaise, Gregory [IRSN/PSN-RES/SAG, BP3, 92362 Fontenay aux Roses Cedex (France)

    2014-12-15

    Highlights: • We present the status modeling of the fuel–coolant interaction premixing stage in the computer code MC3D. • We also propose a general state of the art, highlighting recent improvements in understanding and modeling, remaining difficulties, controversies and needs. • We highlight the need for improving the understanding of the melt fragmentation and oxidation. • The verification basis is presented. - Abstract: Fuel–coolant interaction is a complex mixing process that can occur during the course of a severe accident in a nuclear power plant involving core melting and relocation. Under certain circumstances, a steam explosion might develop during the mixing of the melt and the water and induce a loss of integrity of the containment. Even in the absence of an explosion, studying the mixing phenomenon is also of high interest due to its strong impact on the progression of the accident (debris bed formation, hydrogen production). This article is the first of two aiming at presenting both a status of research and understanding of fuel–coolant interaction and the main characteristics of the model developed in the 3-dimensional computer code MC3D. It is devoted to the premixing phase whereas the second is related to the explosion phase. A special attention is given to major difficulties, uncertainties and needs for further improvements in knowledge and modeling. We discuss more particularly the major phenomena that are melt fragmentation and film boiling heat transfer and the challenges related to modeling melt solidification and oxidation. Some highlights related to the code verification are finally given.

  19. Numerical and experimental investigation of NO{sub x} formation in lean premixed combustion of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, K; Benz, P; Marti, T; Schaeren, R; Schlegel, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A high pressure jet-stirred reactor has been built and employed to investigate NO{sub x} formation in lean premixed combustion of methane/air. Experimental results are compared with numerical predictions using the model of a perfectly stirred reactor and elementary reaction mechanisms. Four reaction mechanisms are considered with respect to NO{sub x} formation. (author) 3 figs., 6 refs.

  20. Computational Enhancements for Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Mukhadiyev, Nurzhan

    2017-05-01

    Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean

  1. OPTIMASI PROSES PEMBUATAN BUBUK OLEORESIN LADA (Piper nigrum MELALUI PROSES EMULSIFIKASI DAN MIKROENKAPSULASI (Optimization Process Production Powder of Oleoresin Pepper (Piper nigrum by Process of Emulsification and Microencapsulation

    Directory of Open Access Journals (Sweden)

    Firdaus Syafi'i

    2016-10-01

    Full Text Available The aim of this study was to improve the quality of pepper product by optimize process of emulsification and microencapsulation. The experimental design used in this study was Response Surface Methodology (RSM. The results showed that the selected emulsifier was arabic gum that had the highest solubility in water (99.78%. The optimum point of emulsification occured at 15% of concentration arabic gum and 4 minutes of homogenization time with the result was solubility in water 99.80%, and emulsion stability 97.78%. The optimum point of microencapsulation process occured at 3:1 of maltodextrin and sodium caseinate ratio, 10% of coating material concentration, and 180°C of drying temperature with the result was essential oil content 1.04%, solubility in water 98.18%, surface oil 0.20%, water content 2.45%, oil recovery 77.07%, and the yield of microcapsule 69.87% Keywords: Pepper oleoresin, RSM, emulsification, microencapsulation ABSTRAK Penelitian ini bertujuan untuk memperbaiki kualitas mutu produk oleoresin lada melalui optimasi proses emulsifikasi dan mikroenkapsulasi. Rancangan percobaan yang digunakan adalah Response Surface Methodology (RSM. Hasil penelitian menunjukkan bahan pengemulsi yang terpilih adalah gum arab yang memiliki kelarutan tertinggi dalam air (99,78%. Titik optimum proses emulsifikasi terjadi pada konsentrasi gum arab 15% dan lama homogenisasi 4 menit yang memberikan nilai kelarutan dalam air 99,80% dan stabilitas emulsi 97,15%. Titik optimum proses mikroenkapsulasi terjadi pada rasio maltodekstrin dan natrium kaseinat (3:1, konsentrasi bahan penyalut 10%, dan suhu inlet pengeringan 180°C yang memberikan nilai kadar minyak atsiri 1,04%, kelarutan dalam air 98,18%, kadar surface oil 0,20%, kadar air 2,45%, oil recovery 77,07%, dan rendemen 69,87% Kata kunci: Oleoresin lada, RSM, emulsifikasi, mikroenkapsulasi

  2. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  3. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.; Zayed, M.F.; Samy, M.; Roberts, William L.; Mansour, Mohy S.

    2015-01-01

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work

  4. AN ASSESSMENT OF THE USE OF VARYING LEVELS OF MORINGA OLEIFERA LEAF MEAL AS A SUBSTITUTE FOR VITAMIN + MINERAL PREMIX IN FINISHER BROILER DIET.

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available One hundred and twenty (120 4 weeks old unsexed broiler chicken were used in a twenty eight days feeding trial to evaluate the use of Moringa oleifera leaf meal as a replacement for vitamin + mineral premix in finisher broilers. The birds were assigned to four treatment group with three replicates per group .The treatment groups includes T1, T2, T3, and T4 representing 0, 2.5, 5.0 and 7.5% inclusion levels of Moringa oleifera leaf meal as a replacement for vitamin + mineral premix. The result of the study showed that average final weight gain, average feed intake and feed conversion ratio differed significantly (P and lt;0.05 in favour of T4 and T3 .The dressing percentage as well as organ (gizzard, liver and heart weights also differed significantly(p and lt;0.05. The study thus indicate that the inclusion of Moringa oleifera leaf meal at 5% and 7.5% can successfully be used to replace vitamin + mineral premix in finisher diet.

  5. Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model

    International Nuclear Information System (INIS)

    Xiao, Gang; Jia, Ming; Wang, Tianyou

    2016-01-01

    Spray combustion of n-heptane in a constant-volume vessel under engine-relevant conditions was investigated using linear eddy model in the framework of large eddy simulation. In this numerical approach, turbulent mixing was traced by an innovative stochastic approach instead of the conventional gradient diffusion model. Chemical reaction rates were calculated with the consideration of the sub-grid scale spatial fluctuations of reactive scalars. Turbulence-chemistry interactions were represented by the separated treatments of the underlying processes including turbulent stirring, chemical reaction, and molecular diffusion. The model was validated against the experimental data of ignition delay times, chemiluminescence images, and soot images from Sandia National Laboratories. Numerical results showed that the ignition process changed from the temperature-controlled regime to the mixing-controlled regime as the initial ambient temperature increased from 800 K to 1000 K. The premixed flame and the diffusion flame coexisted, while the gross heat release rate was found to be dominated by the premixed flame. The temperature fluctuation was mainly observed around the spray jet due to the cooling effect of the fuel vaporization. The fluctuations were more significantly smoothed out by the high-temperature flame than the low-temperature flame. The mean temperature would be overpredicted if the sub-grid temperature fluctuation was neglected. - Highlights: • Turbulent mixing is traced by stochastic method instead of gradient diffusion model. • Sub-grid scale fluctuations of reactive scalars are captured. • Ignition process varies from temperature-controlled to mixing-controlled regime. • Temperature fluctuation can be smoothed out by high-temperature flame. • The heat release rate is dominated by the premixed flame.

  6. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  7. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    Science.gov (United States)

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  8. Investigation of Turbulent Hydrogen Premixed Flame Topologies at Different Combustion Regimes Using Computational Singular Perturbation

    Science.gov (United States)

    Tingas, Efstathios-Alexandros; Hernandez Perez, Francisco; Im, Hong

    2017-11-01

    The investigation of turbulent flames at higher Reynolds and Karlovitz numbers has been gaining research interest, due to the advances in the computational power that has facilitated the use of direct numerical simulations (DNS). One of the additional challenges associated with highly turbulent premixed flames is the difficulties in identifying the turbulent flame topologies as the flame structures become severely corrugated or even disrupted by the small scale turbulent eddies. In these conditions, the conventional methods using a scalar iso-surface may lead to uncertainties in describing the flame front dynamics. In this study, the computational singular perturbation (CSP) is utilized as an automated tool to identify the flame front topologies based on the dynamical time scales and eigenvalues. In particular, the tangential stretch rate (TSR) approach, an extended generalized method to depict the dynamics of chemical and transport processes, is used for the flame front identification. The CSP/TSR approach and tools are used to compare the flame fronts of two turbulent H2/air premixed flames and to identify their similarities/differences, from a dynamical point of view. The results for two different combustion regimes are analyzed and compared.

  9. Effects of diluents on cellular instabilities in outwardly propagating spherical syngas-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Tran Manh; Park, Jeong; Kwon, Oh Boong; Bae, Dae Seok [School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739 (Korea); Yun, Jin Han; Keel, Sang In [Environment and Energy Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea)

    2010-04-15

    Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide-nitrogen-helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. The cellular instabilities for the diluted syngas-air flames were interpreted and evaluated in the viewpoint of the hydrodynamic and diffusional-thermal instabilities. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. The measured unstretched laminar burning velocities were compared with the predicted results computed using the PREMIX code with the kinetic mechanism developed by Sun et al. Also, experimentally measured Peclet numbers were compared with the predicted results for fuel-lean flames. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide- and nitrogen-diluted syngas-air flames were not suppressed. (author)

  10. Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion

    KAUST Repository

    Papapostolou, Vassilios

    2017-09-11

    Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.

  11. Analyzing of in-cylinder flow structures and cyclic variations of partially premixed combustion in a light duty engine

    NARCIS (Netherlands)

    Tanov, S.; Johansson, B,; Izadi Najafabadi, M.; Wang, H.

    2016-01-01

    Partially Premixed Combustion (PPC) strategy offers the potential for simultaneously reduction of NOx and soot emissions with high efficiency. This low temperature combustion strategy involves a proper mixing of fuel and air prior to auto-ignition. During ignition delay (ID) the exact amount of

  12. Direct numerical simulations of turbulent lean premixed combustion

    International Nuclear Information System (INIS)

    Sankaran, Ramanan; Hawkes, Evatt R; Chen, Jacqueline H; Lu Tianfeng; Law, Chung K

    2006-01-01

    In recent years, due to the advent of high-performance computers and advanced numerical algorithms, direct numerical simulation (DNS) of combustion has emerged as a valuable computational research tool, in concert with experimentation. The role of DNS in delivering new Scientific insight into turbulent combustion is illustrated using results from a recent 3D turbulent premixed flame simulation. To understand the influence of turbulence on the flame structure, a 3D fully-resolved DNS of a spatially-developing lean methane-air turbulent Bunsen flame was performed in the thin reaction zones regime. A reduced chemical model for methane-air chemistry consisting of 13 resolved species, 4 quasi-steady state species and 73 elementary reactions was developed specifically for the current simulation. The data is analyzed to study possible influences of turbulence on the flame thickness. The results show that the average flame thickness increases, in qualitative agreement with several experimental results

  13. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  14. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  15. Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification.

    Science.gov (United States)

    Fernandes, A R; Dias-Ferreira, J; Cabral, C; Garcia, M L; Souto, E B

    2018-06-01

    The clinical use of poorly water-soluble drugs has become a big challenge in pharmaceutical development due to the compromised bioavailability of the drugs in vivo. Nanocrystals have been proposed as a formulation strategy to improve the dissolution properties of these drugs. The benefits of using nanocrystals in drug delivery, when compared to other nanoparticles, are related to their production facilities, simple structure, and suitability for a variety of administration routes. High pressure homogenization (HPH) is the most promising production process, which can be employed at low or high temperatures. Ibuprofen nanocrystals with a mean size below 175 nm, and polydispersity below 0.18, have been produced by melt-emulsification, followed by HPH. Two nanocrystal formulations, differing on the surfactant composition, have been produced, their in vitro ibuprofen release tested in Franz diffusion cells and adjusted to several kinetic models (zero order, first order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, Baker-Lonsdale and Weibull model). Cell viability was assessed at 3, 6 and 24 h of incubation on human epithelial colorectal cells (Caco-2) by AlamarBlue ® colorimetric assay. For both formulations, Caco-2 cells viability was dependent on the drug concentration and time of exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves

    International Nuclear Information System (INIS)

    Lin, Bo-Chih; Su, Yu-Chuan

    2008-01-01

    This paper presents an active emulsification scheme that is capable of producing micro-droplets with desired volumes and compositions on demand. Devices with pneumatically actuated membranes constructed on top of specially designed microfluidic channels are utilized to meter and fuse liquid-in-liquid droplets. By steadily pressurizing a fluid and intermittently blocking its flow, droplets with desired volumes are dispersed into another fluid. Furthermore, droplets from multiple sources are fused together to produce combined droplets with desired compositions. In the prototype demonstration, a three-layer PDMS molding and irreversible bonding process was employed to fabricate the proposed microfluidic devices. For a dispersed-phase flow that is normally blocked by a membrane valve, the relationship between the volume (V) of a metered droplet and the corresponding valve open time (T) is found to be approximately V = kT a , in which k and a are constants determined mainly by the fluid-driving pressures. In addition to the metering device, functional droplet entrapment, fusion and flow-switching devices were also integrated in the system to produce desired combined droplets and deliver them to intended destinations upon request. As such, the demonstrated microfluidic system could potentially realize the controllability on droplet volume, composition and motion, which is desired for a variety of chemical and biological applications

  17. QUEOS, an experimental investigation of the premixing phase with hot spheres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    A second series of experiments with hot spheres to investigate the premixing phase of a steam explosion has been performed in the QUEOS facility at FZK. The diameter of the sphere jet plunging into the water has been reduced from 180 mm to 100 mm and larger masses have been employed. Both changes led to longer pours, compared to the short pours in the first series. The data of seven experiments are presented using three types of spheres at 1800 K and total volumes of approximately two and four liters, respectively. High speed films were taken, pressures, water temperatures and the steaming rate were measured. (author)

  18. THE EFFECTS OF EQUIVALENCE RATIO ON THE FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOOT IN PREMIXED ETHANE FLAMES. (R825412)

    Science.gov (United States)

    AbstractThe formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...

  19. Effects of injection timing on fluid flow characteristics of partially premixed combustion based on high-speed particle image velocimetry

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Tanov, S.; Wang, H.; Somers, L.M.T.; Johansson, B.; Dam, N.J.

    2017-01-01

    Partially premixed combustion (PPC) is a promising combustion concept to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delay of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NOx

  20. Analgesic efficacy of equimolar 50% nitrous oxide/oxygen gas premix (Kalinox®) as compared with a 5% eutectic mixture of lidocaine/prilocaine (EMLA®) in chronic leg ulcer debridement.

    Science.gov (United States)

    Traber, Juerg; Held, Ulrike; Signer, Maria; Huebner, Tobias; Arndt, Stefan; Neff, Thomas A

    2017-08-01

    Chronic foot and leg ulcers are a common health problem worldwide. A mainstay of chronic ulcer therapy is sharp mechanical wound debridement requiring potent analgesia. In this prospective, controlled, single-centre, crossover design study, patients were assigned to either the administration of topical analgesia with 5% lidocaine/prilocaine cream or the inhalation of an analgesic 50% N 2 O/O 2 gas premix. Primary outcome parameter was level of pain at maximum wound depth during debridement as measured by a visual analogue scale. Secondary outcomes included level of pain after debridement, overall duration of treatment session, duration and completeness of debridement, and the patient's subjective perception of analgesic quality during debridement. Pain level increased from 0·60/0·94 (first/second debridement; baseline) to 1·76/2·50 (debridement) with 5% lidocaine/prilocaine and from 1·00/1·35 (baseline) to 3·95/3·29 (debridement) with 50% N 2 O/O 2 gas premix. Patient satisfaction was 90·48%/94·44% (first/second debridement) with topical 5% lidocaine/prilocaine analgesia and 90·48%/76·47% with the inhalation of 50% N 2 O/O 2 gas premix. Debridement was completed in a significantly higher percentage of 85·71%/88·89% (first/second debridement) with 5% lidocaine/prilocaine than with 50% N 2 O/O 2 gas premix (42·86%/58·82%) (odds ratio 6·7; P = 0·001). This study provides sound evidence that analgesia with topically administered 5% lidocaine/prilocaine cream is superior to the use of inhaled 50% N 2 O/O 2 gas premix in chronic leg ulcer debridement. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  1. Experimental validation of large-eddy simulation for swirling methane-air non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H.; Xu, C.S. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    Large-eddy simulation of swirling methane-air non-premixed combustion was carried out using a Smagorinsky-Lilly subgrid scale stress model and a presumed-PDF fast-chemistry combustion model. The LES statistical results are validated by PIV, temperature and species concentration measurements made by the present authors. The results indicate that in the present case the presumed-PDF fast-chemistry combustion model is a fairish one. The instantaneous vorticity and temperature maps show clearly the development and the interaction between coherent structures and combustion.

  2. Nonorthogonality analysis of a thermoacoustic system with a premixed V-shaped flame

    International Nuclear Information System (INIS)

    Ji, Chenzhen; Zhao, Dan; Li, Xinyan; Li, Shihuai; Li, Junwei

    2014-01-01

    Highlights: • Nonorthogonality analysis of a choked thermoacoustic system is conducted. • A thermoacoustic model of a premixed V-shaped flame is developed. • Nonorthogonality is identified to arise from the boundary condition and the flame. • The contribution from the flame is shown to play a dominant role. • Eigenmodes nonorthogonality leads to transient growth of acoustic disturbances. - Abstract: Thermoacoustic instability occurs in many combustion systems, such as aero-engine afterburners, rocket motors, ramjets and gas turbines. It most often arises due to the coupling between unsteady heat release and acoustic waves. In this work, nonorthogonality analysis of a choked combustor with a gutter confined is conducted. Such configuration is used as a simplified model of the afterburner of an aero-engine. A thermoacoustic model is developed first to study the nonnormal interaction between acoustic disturbances and a premixed V-shaped flame anchored to the tip of the gutter. Eigenmode nonorthogonality analysis is then conducted. The thermoacoustic system is shown to be nonnormal and characterized by nonorthogonal eigenmodes. The nonorthogonality is identified to arise from both the complex boundary condition and the monopole-like flame. However, the contribution from the Robin-type boundary is approximately 1.5% of that from the flame. Thus the flame is identified to play a dominant role. One practical conclusions is that acoustic disturbances undergo transient growth in a combustion system with nonorthogonal eigenmodes. Such finite-time growth, which cannot be predicted by using classical linear theory might trigger high-amplitude self-sustained oscillations

  3. An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.; Ghoniem, Ahmed F.

    2013-01-01

    The dynamic response of a premixed flame stabilized on a heat-conducting perforated plate depends critically on their coupled thermal interaction. The objective of this paper is to develop an analytical model to capture this coupling. The model

  4. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method

    Science.gov (United States)

    Kim, Jeonglae; Pope, Stephen B.

    2014-05-01

    A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.

  5. LES of explosions in venting chamber: A test case for premixed turbulent combustion models

    OpenAIRE

    Vermorel , Olivier; Quillatre , Pierre; Poinsot , Thierry

    2017-01-01

    International audience; This paper presents a new experimental and Large Eddy Simulation (LES) database to study upscaling effects in vented gas explosions. The propagation of premixed flames in three setups of increasing size is investigated experimentally and numerically. The baseline model is the well-known laboratory-scale combustion chamber from Sydney (Kent et al., 2005; Masri et al., 2012); two exact replicas at scales 6 and 24.4 were set up by GexCon (Bergen, Norway). The volume ratio...

  6. Addition of Zinc Improves the Physical Stability of Insulin in the Primary Emulsification Step of the Poly(lactide-co-glycolide Microsphere Preparation Process

    Directory of Open Access Journals (Sweden)

    Chandrasekar Manoharan

    2015-04-01

    Full Text Available In this study, the effect of zinc on insulin stability during the primary emulsification step of poly(lactide-co-glycolide microspheres preparation by the water-in-oil-in-water (w/o/w double emulsion solvent evaporation technique was evaluated. Insulin was emulsified at homogenization speeds of 5000 and 10,000 rpm. Insulin was extracted from the primary w/o emulsion by a method previously reported from our laboratory and analyzed by comprehensive analytical techniques. The differential scanning calorimetry thermograms of insulin with zinc showed a single peak around 83 °C with calorimetric enthalpy values similar to native insulin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE of extracted insulin showed a single intense band around 6 kDa, demonstrating the preservation of primary structure. High performance liquid chromatography (HPLC analysis revealed that no degradation products were formed during the homogenization process. Insulin aggregates residing at the w/o interfaces were found to be of non-covalent nature. In addition, observation of a single characteristic peak for insulin at m/z 5808 in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrum confirmed the absence of insulin degradation products and covalent dimers. Presence of zinc preserved the secondary structure of insulin as indicated by circular dichroism. In conclusion, these results show that with the addition of zinc, insulin stability can be improved during the primary emulsification step.

  7. Propagation of a premixed flame in a divided-chamber combustor

    Science.gov (United States)

    Cattolica, R. J.; Barr, P. K.; Mansour, N. N.

    1989-01-01

    Experimental observations on the propagation of lean premixed ethylene-air flames in a divided-chamber combustion vessel have been compared with the results of numerical simulations based on a flame sheet-vortex dynamics model in axisymmetric coordinates. Flame speeds were found to increase from 10-24 cm/s as the equivalence ratio was varied from 0.5-0.65 in the experiments. Using the associated increase in gas velocity with equivalence ratio, the estimated Reynolds number in the experiment was changed from 1870 to 8090. Good agreement between experimental and theoretical results was obtained for the prechamber flame propagation rates and for the spatial and temporal development of the flame in the main combustion chamber at the lowest Reynolds number.

  8. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  9. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook

    2010-11-15

    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  10. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  11. The Effect of Heat Treatments on Alloying of Pre-mixed Al + 4.5 wt. % Cu Powders

    Directory of Open Access Journals (Sweden)

    Kübra KÖPRÜLÜ

    2018-06-01

    Full Text Available In this study, 4.5 wt. % Cu powder was added to Al powder and mixed for 45 minutes to produce premixed metal powders. Premixed powders were compacted by cold pressing at 20 MPa. After that these samples were pressed at 500℃ under 200 MPa for 30 minutes by hot pressed method. Hot pressed block samples were subjected to diffusion annealing at 540 ℃ for 2, 4, 8, 16, 32 hours. These samples, produced by powder metallurgy, are used at metallographic and microscopic researches to investigate the diffusion process. During the diffusion annealing, it was determined that significant amount of copper powder particles was dissolved in the Al matrix by diffusion. Diffusion annealing was followed by aging heat treatment, characterized by metallographic and mechanical tests. According to the increasing the annealing time, the homogeneity of the chemical composition is not provided, however the increasing of the heat treatment (T6 capability of the produced parts, and partial porosity which is believed to be due to atomic diffusion, have been observed. Moreover, in the XRD analyses, it was determined that the phases of -Al,  and  were formed in the microstructure.

  12. USE OF MEMBRANE EMULSION SPAN 80 AND TOPO IN URANIUM EXTRACTION AND STRIPPING

    Directory of Open Access Journals (Sweden)

    Kris Tri Basuki

    2017-01-01

    Full Text Available ABSTRACT USE OF MEMBRANE EMULSION SPAN 80 AND TOPO IN URANIUM EXTRACTION AND STRIPPING. Membrane emulsion span 80 and TOPO used in uranium extraction and stripping has been done. The extraction was carried outby emulsion membrane H3PO4 in TOPO-Kerosene. The feed or external aqueous phase was uranium in  HNO3. The emulgator span-80 was used to obtain a stable emulsion membrane system. The influence factors were percentage of TOPO-Kerosene, time extraction,  molarity of external aqueous phase and  molarity of internal aqueous. After the emulsion membrane was formed, the extractionand stripping process was performed. The ratio volume feed : volume membrane phase equal to 1 : 1 and volume of 5 % TOPO-Kerosene : Volume 3 M H3PO4 equal 1 : 1 were used. The relative good yield were obtained at concentration of TOPO in Kerosene and 3 M H3PO4 was 5 %, molarity of internal aqueous phase equal to 1 M, molarity of external aqueous phase 3 M H3PO4 and time extraction equalto 10 minutes with the speed of emulsification was 8000 rpm. At this condition the extraction efficiency of uranium obtained was 97.8 %, the stripping efficiency 52.56 %, and the total efficiency was 53.80 %. Keywords: membrane emulsion, extraction, stripping, span 80, kerosene, uranium. ABSTRAK PENGGUNAAN MEMBRAN EMULSI SPAN 80 DAN TOPO UNTUK EKSTRASI DAN STRIPPING URANIUM. Telah dilakukan penelitian membran emulsi span 80 dan TOPO yang digunakan untuk ekstraksi uranium. Extraksi dengan membran emulsi H3PO4 dalam TOPO-Kerosen. Larutan umpan untuk fasa air eksternal adalah uranium dalam asam nitrat. Untuk memperoleh sistem emulsi yang stabil dipakai emulgator Span 80. Parameter yang berpengaruh adalah persen TOPO-Kerosene, molaritas fasa air internal H3PO4, molaritas fasa air eksternal HNO3 dan waktu ekstraksi. Setelah diperoleh membran emulsi, kemudian dilakukan proses ekstraksi dan stripping, dengan rasio volume umpan : volume membran sebesar 1 : 1; volume 5% TOPO-Kerose : volume 3M

  13. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata

    2014-01-01

    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  14. Considerations and calculations on the breakup of jets and drops of melt related to premixing

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, M.; Berg, E. von; Buck, M. [Inst. fuer Kernenergetik und Energiesysteme (IKE), Univ. of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    1998-01-01

    Various descriptions of jet and drop breakup are applied in premixing codes, presently. The main task is to check these descriptions over a wide range of conditions in order to assure extrapolation capabilities for the codes. Jet breakup under non-boiling conditions is relatively well described by IKEJET, based on Conte/Miles (CM) instability description and a relatively detailed stripping model, in contrast to using Kelvin/Helmholtz (KH) theory. Remaining open questions are elaborated. Especially, thick jet behavior with dominance of stripping even at small relative velocities must be distinguished from thin jets with coarse breakup. The application of IKEJET to cases with jet breakup under strong film boiling yielded significantly too little fragmentation. As a possible explanation line, multiphase effects on the wave growth and stripping are considered, due to entrainment of melt and water. Parametric checking calculations are performed with a strongly simplified approach for PREMIX and FARO experiments in order to reveal main effects and the possible physical explanation features as a basis for extended modelling. The results indicate that jet breakup may be essentially sufficient to explain the experimental behavior. Rather coalescence than further drop breakup may be expected. This is also indicated by calculations with IKE drop breakup models. (author)

  15. Numerical and Experimental Investigation of Computed Tomography of Chemiluminescence for Hydrogen-Air Premixed Laminar Flames

    Directory of Open Access Journals (Sweden)

    Liang Lv

    2016-01-01

    Full Text Available Computed tomography of chemiluminescence (CTC is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The OH⁎ chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the OH⁎ chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1. The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.

  16. Impact of computerized order entry and pre-mixed dialysis solutions for continuous veno-venous hemodiafiltration on selection of therapy for acute renal failure.

    Science.gov (United States)

    Saadulla, Lawand; Reeves, W Brian; Irey, Brittany; Ghahramani, Nasrollah

    2012-02-01

    To investigate the impacts of availability of pre-mixed solutions and computerized order entry on nephrologists' choice of the initial mode of renal replacement therapy in acute renal failure. We studied 898 patients with acute renal failure in 3 consecutive eras: era 1 (custom-mixed solution; n = 309), era 2 (pre-mixed commercial solution; n = 324), and era 3 (post-computerized order entry; n = 265). The proportion of patients treated with renal replacement therapy and the time from consult to initiation of continuous renal replacement therapy was similar in the 3 eras. Following introduction of the pre-mixed solution, the proportion of patients treated with continuous renal replacement therapy increased (20% vs. 33%; p mixed solution increases the likelihood of initiating continuous renal replacement therapy in acute renal failure, initiating it at a lower creatinine and for older patients, use of continuous veno-venous hemodialysis and higher prescribed continuous renal replacement therapy dose. Computerized order entry implementation is associated with an additional increase in the use of continuous veno-venous hemodialysis, higher total prescribed dialysis dose, and use of CRRT among an increasing number of patients not on mechanical ventilation. The effect of these changes on patient survival is not significant.

  17. Attempt of multiple stage injection with EGR for high load operation of a premixed compression ignition engine; Tadan funsha ni yoru yokongo asshuku chakka kikan no unten ryoiki kakudai

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Miyamoto, T.; Akagawa, H. [New ACE Institute Co. Ltd., Tsukuba (Japan); Tsujimura, K. [Chiba Institute of Technology, Chiba (Japan)

    2000-01-25

    By injecting fuel at the very early stage of compression stroke and thus creating homogeneous lean mixture before ignition, (PREDIC ; PREmixed lean DIesel Combustion), simultaneous reduction of NO{sub x} and smoke was obtained. However, since increasing the mixture equivalence ratio cause knocking, it was difficult to operate at higher load conditions. In this study, in order to reduce combustion rate at high load conditions in a premixed compression ignition engine, multiple stage injection method and EGR were combined, and heterogeneous mixture was made before ignition. The engine test results showed that NO{sub x} emissions could be reduced to less than 50 ppm, without knocking even at full load conditions. In addition, smoke emissions were also maintained below invisible level. It can be understood that the premixing of fuel was advanced, smoke was reduced, and EGR rate was increased, resulting lower heat release rate and NO{sub x} emissions. (author)

  18. Flame Front Detection Using Formaldehyde Laser Induced Fluorescence In Turbulent Lean Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, S.; Tylli, N.; Bombach, R.

    2005-03-01

    The present work aims at suggesting the excitation-detection scheme best suited for laser-induced fluorescence measurements of formaldehyde in turbulent lean premixed flames. In the literature, three different excitation schemes within the A{sup 1} X{sup 1} electronic transition have been suggested, with excitation into the 2{sup 1}{sub 0} 4{sup 1}{sub 0} , 4{sup 1}{sub 0} , and 4{sup 0}{sub 1} vibratoric bands, respectively. These excitation schemes were tested systematically and both advantages and disadvantages for each scheme are discussed. (author)

  19. Experiments for the premixing phase (QUEOS)

    International Nuclear Information System (INIS)

    Meyer, L.; Huber, R.; Haessler, M.; Kirstahler, M.; Kuhn, D.; Rehme, K.; Schumacher, G.; Schwall, M.; Wachter, E.; Woerner, G.

    1995-01-01

    Experiments are performed with solid spheres at high temperatures to establish a data base for the premixing phase of a steam explosion, which will be used for code improvement and validation. The hot spheres (T≤2600 K) are being dropped into saturated water at 1 bar pressure. The objective of the experiments is to obtain data on the cooling rate of the spheres, their distribution in the water, the amount of generated steam and its distribution with respect to the spheres. The spheres have a diameter of 4.2 mm, 4.8 mm and 10 mm, respectively, depending on the material used. Molybdenum coated with Rhenium to inhibit oxidation and ZrO 2 are used. The experimental parameters are the mass flow of the spheres, their density and their temperature. The QUEOS test facility has been set up and tested. A series of first tests has been performed with cold spheres and spheres at 1000 C. The main results are the distribution of the spheres during the fall through the water and their distribution at the bottom of the water vessel. A large air bubble is being entrained into the water in both the cold and hot tests. (orig./HP)

  20. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.

    2014-04-23

    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.

  1. Production of BCG alginate-PLL microcapsules by emulsification/internal gelation.

    Science.gov (United States)

    Esquisabel, A; Hernández, R M; Igartua, M; Gascón, A R; Calvo, B; Pedraz, J L

    1997-01-01

    A biocompatible emulsification method for microencapsulation of live cells and enzymes within a calcium alginate matrix applied to Bacillus Calmette-Guérin (BCG) has been developed. Small-diameter alginate beads (microcapsules) were formed via internal gelation of an alginate solution emulsified within vegetable oil. Five different oils (sesame, sweet almond, perhydrosqualene, camomile and jojoba) were used. The rheological analysis of the oils showed a Newtonian behaviour, with viscosities = 30.0, 37.7, 51.2, 59.3 and 67.1 mPa.s for perhydrosqualene, jojoba, camomile, sesame and sweet almond oil respectively. The particle size of the microcapsules obtained ranged from 30.3 microns for the microcapsules prepared with sweet almond oil to 57.0 microns for those made with perhydrosqualene. The mean particle diameter obtained was found to be dependent on the viscosity of the oil employed, according to the equation: phi (micron) = 76.6-0.628 eta (mPa.s) (r2 = 0.943). The encapsulated BCG was identified by the Difco TB stain set K, followed by observation under optical microscopy. Freeze-drying of the microcapsules was carried out to ensure their stability during storage. Two batches of microcapsules (those prepared with sesame and jojoba oil) and four types of cryoprotectors (glucose, trehalose, mannitol and sorbitol), at three concentration levels (5, 10 and 20% w/v) were studied. The parameters evaluated were particle size, physical appearance, reconstitution of lyophilizates and microscopical evaluation. For both batches of microcapsules the best results were obtained with trehalose 5%, showing particle sizes of 42.1 microns in the case of the microcapsules prepared with sesame oil, and of 45.3 microns for those prepared with jojoba.

  2. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    Science.gov (United States)

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  3. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  4. CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor

    NARCIS (Netherlands)

    Schmehl, R.; Maier, G.; Wittig, S.

    2000-01-01

    The two phase flow in the premix duct of a LPP combustor is computed using a Lagrangian droplet tracking method. To reproduce the characteristic spray structure of an air-assisted pressure-swirl atomizer, a sheet spray model is de-rived from measured sheet parameters and combined with an advanced

  5. Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach

    Science.gov (United States)

    Lee, Chin Yik; Cant, Stewart

    2017-07-01

    A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and

  6. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications.

    Science.gov (United States)

    Ma, Guanghui

    2014-11-10

    Bio-degradable poly(lactide) (PLA)/poly(lactide-glycolide) (PLGA) and chitosan microspheres (or microcapsules) have important applications in Drug Delivery Systems (DDS) of protein/peptide drugs. By encapsulating protein/peptide drugs in the microspheres, the serum drug concentration can be maintained at a higher constant value for a prolonged time, or injection formulation can be changed to orally or mucosally administered formulation. PLA/PLGA and chitosan are most often used in injection formulation and oral formulation. However, in the preparation and applications of PLA/PLGA and chitosan microspheres containing protein/peptide drugs, the problems of broad size distribution and poor reproducibility of microspheres, and deactivation of protein during the preparation, storage and release, are still big challenges. In this article, the techniques for control of the diameter of microspheres and microcapsules will be introduced at first, then the strategies about how to maintain the bioactivity of protein drugs during preparation and drug release will be reviewed and developed in our research group. The membrane emulsification techniques including direct membrane emulsification and rapid membrane emulsification processes were developed to prepare uniform-sized microspheres, the diameter of microspheres can be controlled from submicron to 100μm by these two processes, and the reproducibility of products can be guaranteed. Furthermore, compared with conventional stirring method, the big advantages of membrane emulsification process were that the uniform microspheres with much higher encapsulation efficiency can be obtained, and the release behavior can be adjusted by selecting microsphere size. Mild membrane emulsification condition also can prevent the deactivation of proteins, which frequently occurred under high shear force in mechanical stirring, sonification, and homogenization methods. The strategies for maintaining the bioactivity of protein drug were

  7. Hydrogen-hydrocarbon turbulent non-premixed flame structure

    Energy Technology Data Exchange (ETDEWEB)

    Tabet, F. [ANSYS-Benelux, 4 Avenue Pasteur, B-1300 Wavre (Belgium); Sarh, B.; Goekalp, I. [Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), 1 C avenue de la recherche scientifique, Orleans 45071 Cedex 2 (France)

    2009-06-15

    In this study, the structure of turbulent non-premixed CH{sub 4}-H{sub 2}/air flames is analyzed with a special emphasis on mixing and air entrainment. The amount of H{sub 2} in the fuel mixture varies under constant volumetric fuel flow. Mixing is described by mixture fraction and its variance while air entrainment is characterized by the ratio of gas mass flow to fuel mass flow at the inlet section. The flow field and the chemistry are coupled by the flamelet assumption. Mixture fraction and its variance are transported by the computational fluid dynamics (CFD) code. The slow chemistry aspect of NO{sub x} is handled by solving an additional transport equation with a source term derived from flamelet library. The results obtained show an improvement of mixing with hydrogen addition leading to a strong consumption of CH{sub 4} and a high air entrainment into the centerline region. As a global effect of this, the composite fuels burn faster and thereby reduce the residence time which ultimately shortens the flame length and thickness. On the other hand, hydrogen is found to increase NO{sub x} level. (author)

  8. Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

    OpenAIRE

    Klingmann, Jens; Johansson, Bengt

    1998-01-01

    Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...

  9. Management of Type 2 diabetes in Ramadan: Low-ratio premix insulin working group practical advice

    OpenAIRE

    Mohamed Hassanein; Mohamed Belhadj; Khalifa Abdallah; Arpan D Bhattacharya; Awadhesh K Singh; Khaled Tayeb; Monira Al-Arouj; Awad Elghweiry; Hinde Iraqi; Mohamed Nazeer; Henda Jamoussi; Mouna Mnif; Abdulrazzaq Al-Madani; Hossam Al-Ali; Robert Ligthelm

    2014-01-01

    The challenge of insulin use during Ramadan could be minimized, if people with diabetes are metabolically stable and are provided with structured education for at least 2–3 months pre-Ramadan. Although, American diabetes association (ADA) recommendations 2010 and South Asian Consensus Guideline 2012 deal with management of diabetes in Ramadan and changes in insulin dosage, no specific guidance on widely prescribed low-ratio premix insulin is currently available. Hence, the working group for i...

  10. An experimental and kinetic modeling study of premixed NH3/CH4/O-2/Ar flames at low pressure

    DEFF Research Database (Denmark)

    Tian, Z.Y.; Li, Y. Y.; Zhang, L. D.

    2009-01-01

    An experimental and modeling study of 11 premixed NH3/CH4/O-2/Ar flames at low pressure (4.0 kPa) with the same equivalence ratio of 1.0 is reported. Combustion intermediates and products are identified using tunable synchrotron vacuum Ultraviolet (VUV) photoionization and molecular-beam mass...

  11. CSP-based chemical kinetics mechanisms simplification strategy for non-premixed combustion: An application to hybrid rocket propulsion

    KAUST Repository

    Ciottoli, Pietro P.

    2017-08-14

    A set of simplified chemical kinetics mechanisms for hybrid rocket applications using gaseous oxygen (GOX) and hydroxyl-terminated polybutadiene (HTPB) is proposed. The starting point is a 561-species, 2538-reactions, detailed chemical kinetics mechanism for hydrocarbon combustion. This mechanism is used for predictions of the oxidation of butadiene, the primary HTPB pyrolysis product. A Computational Singular Perturbation (CSP) based simplification strategy for non-premixed combustion is proposed. The simplification algorithm is fed with the steady-solutions of classical flamelet equations, these being representative of the non-premixed nature of the combustion processes characterizing a hybrid rocket combustion chamber. The adopted flamelet steady-state solutions are obtained employing pure butadiene and gaseous oxygen as fuel and oxidizer boundary conditions, respectively, for a range of imposed values of strain rate and background pressure. Three simplified chemical mechanisms, each comprising less than 20 species, are obtained for three different pressure values, 3, 17, and 36 bar, selected in accordance with an experimental test campaign of lab-scale hybrid rocket static firings. Finally, a comprehensive strategy is shown to provide simplified mechanisms capable of reproducing the main flame features in the whole pressure range considered.

  12. Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity

    International Nuclear Information System (INIS)

    Mu Haibao; Yu Lin; Li Ping; Zhang Guanjun; Tang Chenglong; Wang Jinhua

    2015-01-01

    Recently, plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios. In this paper, a dielectric barrier discharge (DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process, and several properties of combustion are considered. First, in the presence or absence of plasma discharge, physical appearance of the flame is examined and analyzed. Second, the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method. Finally, the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process. We also discuss the possible kinetic regime of plasma-assisted combustion. Experimental results imply that plasma discharge applied to the premixed CH4/O2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10, with the flame speed improved by 17% to 35%. It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer, especially at a low equivalence ratio. (paper)

  13. A study of the effectiveness and energy efficiency of ultrasonic emulsification.

    Science.gov (United States)

    Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O

    2017-12-20

    Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.

  14. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    Science.gov (United States)

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which

  16. Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame

    Science.gov (United States)

    Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi

    2011-10-01

    We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.

  17. Measurement of OH radical density in DBD-enhanced premixed burner flame by laser-induced fluorescence

    Science.gov (United States)

    Zaima, Kazunori; Sasaki, Koichi

    2013-09-01

    We examined OH density in DBD-enhanced premixed burner flame by laser-induced fluorescence (LIF). We ignited a premixed flame with CH4 /O2 / Ar mixture using a burner which worked as the ground electrode. The upper part of the flame was covered with a quartz tube, and we attached an aluminum electrode on the outside of the quartz tube. DBD inside the quartz tube was obtained between the aluminum electrode and the burner nozzle. The planar beam from a pulsed tunable laser excited OH in X2 Π (v'' = 0) to A2Σ+ (v' = 0) , and we captured two-dimensional distribution of the LIF intensity using an ICCD camera. We employed three pump lines of Q1(J=4, 8 and 10), and the rotational temperature of OH(X) was deduced from the ratio of the LIF intensities. The total density of OH was obtained from the LIF intensities and the rotational temperature. A principal experimental result was that no remarkable increase was observed in the OH density by the superposition of DBD. The correlation between the pulsed discharge current and the temporal variation of the OH density was not clear, suggesting that the oscillation of the OH density with a small amplitude is related to the transittion time constant between equilibrium and nonequilibrium combustion chemistries.

  18. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.; Elbaz, Ayman M.; Roberts, William L.; Senosy, Mohamed S.; Zayed, Mohamed F.; Juddoo, Mrinal; Masri, Assaad R.

    2016-01-01

    of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some

  19. The Utilization of Premix Flour with Sorghum Mutant Lines Zh-30 Based as Material For Dough Making And Dry Noodle Industry

    International Nuclear Information System (INIS)

    Dwi Djoko Slamet Santosa

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induced plant genetic variability. Through selection processes on several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher yield than the original variety. Research on flour quality of this mutant line was done to identify its potential use in dry noodle. Subsequent experiments, i.e. the effect of kansui (alkaline salt Na 2 CO 3 and K 2 CO 3 ) on rheological properties of dough, the effect of egg addition on rheological properties of dough and cooked noodles. Observations were done on dough which were premix flour I, II and III with 10.2 %, 14.5 % and 17.4 % protein content respectively. The influence of each alkaline salt and their mixture on dough rheology i.e., dough consistency and resistant to extension and extensibility. The kansui Concentration applied were 0, 0.5, 1.0 and 1.5 %. Obviously premix flour I + 0.5 % kansui gave optimal consistency, resistance and extensibility of the dough. The addition of five ml egg to premix I dough + 0.5 % kansui gave optimal results. The increase of egg mellowed the dough, and increase noodle texture and reduce stickiness. Addition of five ml egg already gave significant increase of elasticity, with the highest elasticity was reached by addition of 35 ml egg, although no difference was found for 5 - 35 ml.. (author)

  20. The Influence of Emulgator on Stability of Emulsion H3PO4 in Topo-Kerosene and Efficiency at Emulsion Membrane Extraction of La and Nd Concentrate Product of Monazite Sand Treatment

    International Nuclear Information System (INIS)

    Purwani, MV.; Bintarti, AN.; Subagiono, R.

    2002-01-01

    The making of La and Nd concentrate from monazite sand have been done. The separation of La and Nd by emulsion 1M H 3 PO 4 in 5 % TOPO-Kerosene membrane extraction. The feed or aqueous phase was La and Nd concentrate in 1M HNO 3 . Emulgator Span-80 and Tween-80 were used to stabilize emulsion membrane. The influence parameters were percentage of Span-80 and ratio of Span-80 and Tween-80. After formation of emulsion membrane, the extraction process was carried out. Ratio of volume of feed : volume membrane phase = 1 : 1, ratio of volume of 5% TOPO - Kerosene : ratio of volume of 1M H 3 PO 4 1 : 1. The best yield were obtained time of emulsification was 10 minutes with the speed of emulsion was 6000 rpm and concentration of span-80 was 5%. At this condition was obtained the extraction efficiency of La was 55.55%, the extraction efficiency of Nd was 41.6% the stripping efficiency of La was 35.05%, the stripping efficiency of Nd was 87.32 %, the total efficiency of La was 19.46%, the total efficiency of Nd was 36.30% and Separation factor of Nd and La = 1.87. (author)

  1. Incipient Soot Formation in Rich Partially Premixed Flames under High Pressure Conditions of Relevance to Compression-Ignition Engines

    Science.gov (United States)

    2017-09-09

    a Laminar Premixed Flame, Aerosol Reaction Engineering , Center for Aerosol science and Engineering (CASE) Workshop 2016, Saint Louis, Missouri, May...Publication Type: Conference Paper or Presentation Conference Name: Aerosol Reaction Engineering , Center for Aerosol science and Engineering (CASE...measurements of critical soot precursors up to 3-ring aromatics is available online to modelers to improve the chemical reaction mechanism [24]. To give a

  2. The effect of calcium on the composition and physical properties of whey protein particles prepared using emulsification.

    Science.gov (United States)

    Westerik, Nieke; Scholten, Elke; Corredig, Milena

    2015-06-15

    Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. Copyright © 2015. Published by Elsevier Ltd.

  3. A study on the amount of pilot injection and its effects on rich and lean boundaries of the premixed CNG/air mixture for a CNG/diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang Lin; Wanhua Su [Tianjin University (China). State Key Laboratory of Engines

    2003-07-01

    A sequential port injection, lean-burn, fully electronically-controlled compressed natural gas (CNG)/diesel dual-fuel engine has been developed based on a turbo-charged and inter-cooled direct injection (D.I.) diesel engine. During the optimisation of engine overall performance, the effects of pilot diesel and premixed CNG/air mixture equivalence ratio on emissions (CO, HC, NO{sub x}, soot), knocking, misfire and fuel economy are studied. The rich and lean boundaries of the premixed CNG/air mixture versus engine load are also provided, considering the acceptable values of NO{sub x} and THC emissions, respectively. It is interesting to find that there is a critical amount of pilot diesel for each load and speed point, which proved to be the optimum amount of pilot fuel. Any decrease in the amount of pilot diesel from this optimum amount results in an increase of NO{sub x} emissions, because the premixed CNG/air mixture must be made richer, otherwise THC emissions would increase. However, the soot emissions remain almost unchanged at a very low level. (author)

  4. Study of high load operation limit for premixed compression ignition engine; Yokongo asshuku chakka kikan no kofuka unten genkai ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, N. [Isuzu Advanced Engineering Center Ltd., Kanagawa (Japan); Akagawa, H. [Nissan Diesel Motor Co. Ltd., Saitama (Japan); Tsujimura, K. [Chiba Institute of Technology, Chiba (Japan); Miyamoto, T.

    2000-11-25

    NO{sub x} emission was remarkably reduced by PREDIC (PREmixed lean DIesel Combustion) system in which fuel was injected at very early stage of compression stroke and the major part of the fuel is considered to be burned with self-ignition of premixed charge around TDC. However PREDIC system had some problems, a restriction of a high load operation was one of these problems. In order to investigate the combustion characteristics of PREDIC at the richer operation limit, a test engine was operated with gaseous fuel-air mixture where less heterogeneous mixture can be formed than that of conventional diesel engines. A steep pressure rise or the abrupt increase in NO{sub x} emission determined the richer operation limit. This was at 2 to 2.4 of excess air ratio. Supercharging operation enabled the high load operation more than 2.4 of excess air ratio. (author)

  5. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  6. LES of the interaction between a premixed flame and complex turbulent swirling flow

    International Nuclear Information System (INIS)

    Iudiciani, P; Duwig, C; Szasz, R Z; Fuchs, L; Gutmark, E

    2011-01-01

    In this paper the Triple Annular Research Swirler, a fuel injector characterized by complex design with three concentric air passages, has been studied numerically. A swirl-stabilized lean premixed flame has been simulated by means of Large Eddy Simulation. The computations characterize successfully the dynamics of the flame and their interactions with the complex swirling flow. The flame is stabilized upstream the fuel injector exit, and the dynamics are led by a Precessing Vortex Core which seems to originate in the inner air passage. The results obtained by Proper Orthogonal Decomposition analysis are in agreement with previous findings in the context of swirling flows/flames.

  7. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Eon [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of); Park, Seul Hyun [Dept. of Mechanical Systems Engineering, Chosun University, Gwangju (Korea, Republic of); Hwang, Cheol Hong [Dept. of Fire and Disaster Prevention, Daejeon University, Daejeon (Korea, Republic of)

    2016-11-15

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics.

  8. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    International Nuclear Information System (INIS)

    Lee, Chang Eon; Park, Seul Hyun; Hwang, Cheol Hong

    2016-01-01

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics

  9. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  10. Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame (Supplementary material).

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wang [Technical Univ. of Darmstadt (Germany); Wang, Haiou [Univ. of New South Wales, Sydney, NSW (Australia); Kuenne, Guido [Technical Univ. of Darmstadt (Germany); Hawkes, Evatt R. [Univ. of New South Wales, Sydney, NSW (Australia); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Janicka, Johannes [Technical Univ. of Darmstadt (Germany); Hasse, Christian [Technical Univ. of Darmstadt (Germany)

    2017-12-01

    This supplementary material complements the article and provides additional information to the chemical mechanism used in this work, boundary conditions for the LES con guration and table generation, comparisons of axial velocities, results from a LES/ nite-rate chemistry (FRC) approach, and results from the LES/DTF/SPF approach with a particular chemistry table that is generated using a single strained premixed amelet solution.

  11. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  12. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  13. Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.

    Science.gov (United States)

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei

    2008-12-25

    Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.

  14. Microcapsules with a pH responsive polymer: Influence of the encapsulated oil on the capsule morphology

    NARCIS (Netherlands)

    Wagdare, N.A.; Marcelis, A.T.M.; Boom, R.M.; Rijn, van C.J.M.

    2011-01-01

    Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core–shell

  15. On flame kernel formation and propagation in premixed gases

    Energy Technology Data Exchange (ETDEWEB)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  16. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    OpenAIRE

    Zaima, Kazunori; Sasaki, Koichi

    2016-01-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experim...

  17. Optimization of a premixed low-swirl burner for industrial applications

    International Nuclear Information System (INIS)

    Fable, S.E.; Cheng, R.K.

    2000-01-01

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-similar behavior. This self-similarity may explain why the flame remains stationary relative to the burner exit despite a change in bulk flow velocity from 5 to 90m/s. The recess distance of the swirler affects the shape of the mean and rms velocity profiles. Lean blow-off limits were also determined for various recess distances, and an optimum exit length was found that provides stable operation for ultra-lean flames

  18. Tabulated Combustion Model Development For Non-Premixed Flames

    Science.gov (United States)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  19. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G.

    2015-01-01

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  20. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  1. Numerical simulation of premixed turbulent methane combustion

    International Nuclear Information System (INIS)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.

    2001-01-01

    In this paper we study the behavior of a premixed turbulent methane flame in three dimensions using numerical simulation. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The species and enthalpy equations are treated using an operator-split approach that incorporates stiff integration techniques for modeling detailed chemical kinetics. The methodology also incorporates a mixture model for differential diffusion. For the simulations presented here, methane chemistry and transport are modeled using the DRM-19 (19-species, 84-reaction) mechanism derived from the GRIMech-1.2 mechanism along with its associated thermodynamics and transport databases. We consider a lean flame with equivalence ratio 0.8 for two different levels of turbulent intensity. For each case we examine the basic structure of the flame including turbulent flame speed and flame surface area. The results indicate that flame wrinkling is the dominant factor leading to the increased turbulent flame speed. Joint probability distributions are computed to establish a correlation between heat release and curvature. We also investigate the effect of turbulent flame interaction on the flame chemistry. We identify specific flame intermediates that are sensitive to turbulence and explore various correlations between these species and local flame curvature. We identify different mechanisms by which turbulence modulates the chemistry of the flame

  2. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels

    International Nuclear Information System (INIS)

    Yousefi, Amin; Birouk, Madjid; Lawler, Benjamin; Gharehghani, Ayatallah

    2015-01-01

    Highlights: • Natural gas/diesel, methanol/diesel, and hydrogen/diesel cases were investigated. • For leaner mixtures, the hydrogen/diesel case has the highest IMEP and ITE. • The methanol/diesel case has the maximum IMEP and ITE for richer mixtures. • Hydrogen/diesel case experiences soot and CO free combustion at rich regions. - Abstract: A multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effect of various premixed fuels and equivalence ratios on the combustion, performance, and emissions characteristics of a dual-fuel indirect injection (IDI) pilot diesel ignition engine. The diesel fuel is supplied via indirect injection into the cylinder prior to the end of the compression stroke. Various premixed fuels were inducted into the engine through the intake manifold. The results showed that the dual-fuel case using hydrogen/diesel has a steeper pressure rise rate, higher peak heat release rate (PHRR), more advanced ignition timing, and shorter ignition delay compared to the natural gas/diesel and methanol/diesel dual-fuel cases. For leaner mixtures (Φ_P 0.32). For instance, with an equivalence ratio of 0.35, the ITE is 56.24% and 60.85% for hydrogen/diesel and methanol/diesel dual-fuel cases, respectively. For an equivalence ratio of 0.15, the natural gas/diesel simulation exhibits partial burn combustion and thus results in a negative IMEP. At equivalence ratios of 0.15, 0.2, and 0.25, the methanol/diesel case experiences misfiring phenomenon which consequently deteriorates the engine performance considerably. As for the engine-out emissions, the hydrogen/diesel results display carbon monoxide (CO) free combustion relative to natural gas/diesel and methanol/diesel engines; however, considerable amount of nitrogen oxides (NO_x) emissions are produced at an equivalence ratio of 0.35 which exceeds the Euro 6 NO_x limit. Due to the larger area exposed to high temperature regions

  3. Investigating the effects of critical phenomena in premixed methane-oxygen flames at cryogenic conditions

    Science.gov (United States)

    Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan

    2017-11-01

    Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.

  4. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  5. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    Science.gov (United States)

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    OpenAIRE

    Ghazaleh Esmaeelzade; Mohammad Reza Khani; Rouzbeh Riazi; Mohammad Hossein Sabour

    2017-01-01

    The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of ...

  7. An experimental study on the structural alteration of C3H8-air premixed flame affected by ultrasonic standing waves of various frequencies

    International Nuclear Information System (INIS)

    Lee, Sang Shin; Kim, Jeong Soo; Kim, Heuy Dong

    2015-01-01

    This experimental study scrutinizes the structural variation of a premixed propane-air flame according to the frequency change of ultrasonic standing waves (USWs) at various equivalence ratios. Visualization technique via Schlieren photography is employed in the observation of the flame structure and in the analysis of the flame velocities along the propagation. A distorted flame front and horizontal splitting in the burnt zone result from the USW. The vertical locations of the distortion and horizontal stripes are closely dependent on the frequency of the USW. In addition, the propagation velocity of the flame front floored by the standing wave is greater than that in the case without the excitation by the standing wave. As expected, the influence of the USW on the premixed-flame propagation becomes prominent as the frequency increases. The results suggest that a well-defined USW may be applied to combustion devices, such as gas turbines and chemical rocket engines, to achieve an active control of the instability that frequently intervenes in such systems.

  8. Evaluating dietary supply of microminerals as a premix in a complete plant ingredient-based diet to juvenile rainbow trout (Oncorhynchus mykiss)

    NARCIS (Netherlands)

    Prabhu, P.A.J.; Schrama, J.W.; Fontagné-Dicharry, S.; Mariojouls, C.; Surget, A.; Bueno de Mesquita, M.; Geurden, I.; Kaushik, Sadasivam J.

    2018-01-01

    Two basal diets M0 and V0 were formulated with marine and plant based ingredient composition. Seven experimental diets were prepared from the two basal diets namely M0, M100, V0, V30, V60, V100 and V150 by incorporating different levels of a micromineral premix (Cu, Fe, Mn, Se and Zn). Triplicate

  9. Excitable dynamics in high-Lewis number premixed gas combustion at normal and microgravity

    Science.gov (United States)

    Pearlman, Howard

    1995-01-01

    Freely-propagating, premixed gas flames in high-Lewis (Le) number, quiescent mixtures are studied experimentally in tubes of various diameter at normal (lg) and microgravity (mu g). A premixture of lean butane and oxygen diluted with helium, argon, neon, nitrogen or a mixture of multiple diluents is examined such that the thermal diffusivity of the mixture (and to a lesser extent, the mass diffusivity of the rate-limiting component) is systematically varied. In effect, different diluents allow variation of the Le without changing the chemistry. The flames are recorded with high speed cinematography and their stability is visually assessed. Different modes of propagation were observed depending on the diameter of the tubes (different conductive heat loss), the composition of the mixture and the g-level. At 1g, four modes of propagation were observed in small and intermediate diameter tubes (large conductive heat loss): (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, (3) 'wavering' flames, and (4) rotating spiral flames. As the diameter of the tube increases, the radial modes become more pronounced while the longitudinal modes systematically disappear. Also, multiple, simultaneous, spatially-separated 'pacemaker' sites are observed in intermediate and large diameter tubes. Each site starts as a small region of high luminosity and develops into a flamelet which assumes the form of one of the fore mentioned modes. These flamelets eventually interact, annihilate each other in their regions of intersection and merge at their newly created free-ends. For very large tubes, radially-propagating wave-trains (believed to be 'trigger waves') are observed. These are analogous to the radial pulsations observed in the smaller diameter tubes. At mu g, three modes of propagation have been observed: (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, and (3) multi-armed, rotating flames. Since the pulsating mode exists at mu

  10. Experimental study on the effects of the number of heat exchanger modules on thermal characteristics in a premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Lee, Chang-Eon; Kum, Sung Min; Lee, Seungro

    2016-01-01

    The effects of the number of heat exchanger modules on thermal characteristics were experimentally studied in a premixed combustion system with a cross-flow staggered-tube heat exchanger. The various heat exchanger modules, from 4 to 8, combined with a premixed burner were tested to investigate the performance of the heat exchanger through the surface area of the heat exchanger at various equivalence ratios. Additionally, the performance of the heat exchanger was analyzed by applying entropy generation theory to the heat exchanger system. As a result, although the heat transfer rate increases with the increase of the equivalence ratio, the NOx and CO concentrations also increase due to the increasing flame temperature. In addition, the entropy generation increases with an increase of the equivalence ratio. Furthermore, the heat transfer rate and the effectiveness are increased with the increase of the number of the heat exchanger modules. Also, the effectiveness is sharply increased when the number of the heat exchanger modules is increased from 4 to 5. Consequently, the optimal operating conditions regarding pollutant emission, effectiveness and entropy generation in this experimental range are 0.85 for the equivalence ratio and 8 for the number of heat exchanger modules

  11. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  12. Premix fuels study applicable to duct burner conditions for a variable cycle engine

    Science.gov (United States)

    Venkataramani, K. S.

    1978-01-01

    Emission levels and performance of a premixing Jet-A/air duct burner were measured at reference conditions representative of take-off and cruise for a variable cycle engine. In a parametric variation sequence of tests, data were obtained at inlet temperatures of 400, 500 and 600K at equivalence ratios varying from 0.9 to the lean stability limit. Ignition was achieved at all the reference conditions although the CO levels were very high. Significant nonuniformity across the combustor was observed for the emissions at the take-off condition. At a reference Mach number of 0.117 and an inlet temperature of 600K, corresponding to a simulated cruise condition, the NOx emission level was approximately 1 gm/kg-fuel.

  13. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie

    2016-07-17

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  14. 2-d LIF measurements of the thermo-acoustic phenomena in lean premixed flames of a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, R.; Hubschmid, W.; Inauen, A.; Kreutner, W.; Schenker, S.; Flohr, P.; Haffner, K.; Motz, C.; Paschereit, C.O.; Schuermans, B.; Zajadatz, M.

    2003-03-01

    Thermo-acoustic phenomena give rise to pressure oscillations in lean premixed flames of gas turbines at distinct frequencies characteristic of the burner design and its operation. They can lead to early materials ageing or even severe damages. Therefore, a detailed understanding of the underlying principles is fundamental for gas turbine design and improvement. In order to study the coupling between the heat release and the acoustics in the combustor as well as their feedback to the fuel/air premixing, upstream of the combustion chamber, phase-locked 2-D laser-induced fluorescence (LIF) measurements of the hydroxyl radical (OH) and acetone, respectively, have been performed. These experiments were carried out on a test rig equipped with a commercial 700 kW burner and a combustion chamber of UV transparent quartz, using a pulsed Nd:YAG/dye laser system and an intensified CCD camera for detection. Intensity variations in the integral OH LIF signal of up to {+-}10 % for one oscillation period are observed for peak sound pressure of 6 mbar and more. In addition, the phase-averaged position of the flame zone varies in axial direction, i.e. the main flow direction. The analysis shows that the observed flame motion is not only due to the acoustic motion of the gas itself, but is caused by a change of the flame velocity relative to the gas. (author)

  15. CFD analysis of premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber

    International Nuclear Information System (INIS)

    Gera, B.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    Premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber has been performed numerically using commercial CFD code CFD-ACE+. The combustion chamber had dimensions 1 m X 0.024 m X 1 m. Simulations were carried out for 10% (v/v) hydrogen concentration for which experimental results were available. Effect of different boundary condition and ignition position on flame propagation was studied. Time dependent flame propagation in the chamber was predicted by CFD code. The computed transient flame propagation in the chamber was in good agreement with experimental results. The present work demonstrated that the available commercial CFD codes are capable of modeling hydrogen deflagration in a realistic manner. (author)

  16. Central recirculation zone analysis in an unconfined tangential swirl burner with varying degrees of premixing

    Energy Technology Data Exchange (ETDEWEB)

    Valera-Medina, A. [CIATEQ, Parque Industrial Bernardo Quintana, Turbomachinery Department, Queretaro (Mexico); Syred, N.; Kay, P.; Griffiths, A. [Cardiff University, School of Engineering, Cardiff, Wales (United Kingdom)

    2011-06-15

    Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends on the generation of an aerodynamically formed central recirculation zone (CRZ) and which serves to recycle heat and active chemical species to the root of the flame as well as providing low-velocity regions where the flame speed can match the local flow velocity. Enhanced mixing in and around the CRZ is another beneficial feature. The structure of the CRZ and hence that of the associated flames, stabilisation and mixing processes have shown to be extremely complex, three-dimensional and time dependent. The characteristics of the CRZ depend very strongly on the level of swirl (swirl number), burner configuration, type of flow expansion, Reynolds number (i.e. flowrate) and equivalence ratio. Although numerical methods have had some success when compared to experimental results, the models still have difficulties at medium to high swirl levels, with complex geometries and varied equivalence ratios. This study thus focuses on experimental results obtained to characterise the CRZ formed under varied combustion conditions with different geometries and some variation of swirl number in a generic swirl burner. CRZ behaviour has similarities to the equivalent isothermal state, but is strongly dependent on equivalence ratio, with interesting effects occurring with a high-velocity fuel injector. Partial premixing and combustion cause more substantive changes to the CRZ than pure diffusive combustion. (orig.)

  17. Methyl Salicylate-Based Vortex-Assisted Surfactant-Enhanced Emulsification Microextraction and HPLC for Determination of Fungicides in Honey Samples.

    Science.gov (United States)

    Santaladchaiyakit, Yanawath; Bunchamnan, Jutamas; Tongsa, Darunee; Srijaranai, Supalax

    2017-12-01

    Methyl salicylate based vortex-assisted surfactant-enhanced emulsification microextraction (MeSA-VASEME) has been developed and applied for rapid preconcentration of fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in honey samples followed by high performance liquid chromatographic analysis. MeSA was used as an extraction solvent, while surfactant was used to enhance the extraction performance under the dispersion by vortex agitation. The optimum MeSA-VASEME conditions were 100 μL MeSA, 2.0 mmol L‒1 sodium dodecyl sulfate, and vortex agitation at 1200 rpm for 90 s. Preconcentration factors were obtained in the range of 32-40. The limit of detection in the studied honey samples was 0.5 μg L‒1. The recovery of the spiked target fungicides at 20, 50, and 100 μg L‒1 were 81.5-116.8 % with the relative standard deviation below 11%. The proposed method is simple, sensitive, less organic solvent consuming, inexpensive, and a rapid procedure for the residue analysis of fungicides in honey samples.

  18. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NO x and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NO x and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NO x concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NO x concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ► The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ► Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ► EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  19. Bifurcation and extinction limit of stretched premixed flames with chain-branching intermediate kinetics and radiative loss

    Science.gov (United States)

    Zhang, Huangwei; Chen, Zheng

    2018-05-01

    Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.

  20. Jet flow and premixed jet flame control by plasma swirler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang, E-mail: ligang@iet.cn [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang, Xi [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhao, Yujun [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liu, Cunxi [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Qi [School of Mechanism, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xu, Gang; Liu, Fuqiang [Key laboratory of light duty gas turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-04

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design. - Highlights: • The discharge does not ignite the mixture nor does it induce flashback. • The prominent advantage of this novel plasma swirler is its swirl number adjustable without any mechanical movement. • The frequency of the plasma swirler is adjustable. • The plasma swirler can be used as an oscillator to the reactants. • The plasma swirler can be used alone or combine with other traditional swirlers.

  1. Tangential stretching rate (TSR) analysis of non premixed reactive flows

    KAUST Repository

    Valorani, Mauro

    2016-10-16

    We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.

  2. Evaluating the toxicity of permeability enhanchers of polyethylene ...

    African Journals Online (AJOL)

    The aim of this study is to evaluate the effect of polyethylene glycol brij ethers surfactants group on red blood cells as a model for biological membranes. Also in this study, physicochemical properties including emulsification index (E24), foam producing activity (Fh) and critical micelle concentration (cmc) were studied.

  3. Melt water interaction tests. PREMIX tests PM10 and PM11

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, A.; Schuetz, W.; Will, H. [Forschungszentrum Karlsruhe Inst. fuer Reaktorsicherheit, Karlsruhe (Germany)

    1998-01-01

    A series of experiments is being performed in the PREMIX test facility in which the mixing behaviour is investigated of a hot alumina melt discharged into water. The major parameters have been: the melt mass, the number of nozzles, the distance between the nozzle and the water, and the depth of the water. The paper describes the last two tests in which 20 kg of melt were released through one and three nozzles, respectively, directly into the water whose depth was 500 mm. The melt penetration and the associated phenomena of mixing are described by means of high-speed films and various measurements. The steam production and, subsequently, the pressure increased markedly only after the melt had reached the bottom of the pool. Spreading of the melt across the bottom caused violent boiling in both tests. Whereas the boiling lasted for minutes in the single-jet test, a steam explosion occurred in the triple-jet test about one second after the start of melt penetration. (author)

  4. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame

    OpenAIRE

    Gueniche, Hadj-Ali; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2007-01-01

    The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified species included carbon monoxide and dioxide, methane, oxyg...

  5. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.

    Science.gov (United States)

    Lorenz, T; Bojko, S; Bunjes, H; Dietzel, A

    2018-02-13

    Nanosizing increases the specific surface of drug particles, leading to faster dissolution inside the organism and improving the bioavailability of poorly water-soluble drugs. A novel approach for the preparation of drug nanoparticles in water using chemically inert microfluidic emulsification devices is presented in this paper. A lithographic fabrication sequence was established, allowing fabrication of intersecting and coaxial channels of different depths in glass as is required for 3D flow-focusing. Fenofibrate was used as a model for active pharmaceutical ingredients with very low water solubility in the experiments. It was dissolved in ethyl acetate and emulsified in water, as allowed by the 3D flow-focusing geometry. In the thread formation regime, the drug solution turned into monodisperse droplets of sizes down to below 1 μm. Fast supersaturation occurs individually in each droplet, as the disperse phase solvent progressively diffuses into the surrounding water. Liquid antisolvent precipitation results in highly monodisperse and amorphous nanoparticles of sizes down to 128 nm which can be precisely controlled by the continuous and disperse phase pressure. By comparing optically measured droplet sizes with particle sizes by dynamic light scattering, we could confirm that exactly one particle forms in every droplet. Furthermore, a downstream on-chip concentration allowed withdrawal of major volumes of only the continuous phase fluid which enabled an increase of particle concentration by up to 250 times.

  6. An experimental study on the structural alteration of C{sub 3}H{sub 8}-air premixed flame affected by ultrasonic standing waves of various frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Shin [SK E and S, Busan (Korea, Republic of); Kim, Jeong Soo [Pukyong National University, Busan (Korea, Republic of); Kim, Heuy Dong [Andong National University, Andong (Korea, Republic of)

    2015-03-15

    This experimental study scrutinizes the structural variation of a premixed propane-air flame according to the frequency change of ultrasonic standing waves (USWs) at various equivalence ratios. Visualization technique via Schlieren photography is employed in the observation of the flame structure and in the analysis of the flame velocities along the propagation. A distorted flame front and horizontal splitting in the burnt zone result from the USW. The vertical locations of the distortion and horizontal stripes are closely dependent on the frequency of the USW. In addition, the propagation velocity of the flame front floored by the standing wave is greater than that in the case without the excitation by the standing wave. As expected, the influence of the USW on the premixed-flame propagation becomes prominent as the frequency increases. The results suggest that a well-defined USW may be applied to combustion devices, such as gas turbines and chemical rocket engines, to achieve an active control of the instability that frequently intervenes in such systems.

  7. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kurdyumov, Vadim N. [Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Pizza, Gianmarco [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland); Frouzakis, Christos E. [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Mantzaras, John [Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland)

    2009-11-15

    The effect of channel height, inflow velocity and wall temperature on the dynamics and stability of unity Lewis number premixed flames in channels with specified wall temperature is investigated with steady and transient numerical simulations using a two-dimensional thermo-diffusive model. The simplified model is capable of capturing many of the transitions and the combustion modes observed experimentally and in direct numerical simulations in micro- and meso-scale channels, and indicates that the thermal flame/wall interaction is the mechanism leading to the observed flame instabilities. Finally, an ad-hoc one-dimensional model based on the flame-sheet approximation is tested in its capacity to reproduce some of the flame dynamics of the two-dimensional thermo-diffusive model. (author)

  8. High-temperature oxidation chemistry of n-butanol--experiments in low-pressure premixed flames and detailed kinetic modeling.

    Science.gov (United States)

    Hansen, N; Harper, M R; Green, W H

    2011-12-07

    An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.

  9. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  10. A test device for premixed gas turbine combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-03-01

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

  11. Cavity ring down spectroscopy of CH, CH2, HCO, and H2CO in a premixed flat flame at both atmospheric and sub-atmospheric pressure

    NARCIS (Netherlands)

    Evertsen, R.; Staicu, A.D.; Oijen, van J.A.; Dam, N.J.; Goey, de L.P.H.; Meulen, ter J.J.; Cheauveau, C.; Vovelle, C.

    2003-01-01

    Density distributions of CH, CH2, HCO and H2CO have been measured in a premixed CH4/air flat flame by Cavity Ring Down Spectroscopy (CRDS). At atmospheric pressure problems are encountered due to the narrow spatial distribution of these species. Rotational flame Temperatures have been derived from

  12. Applying flame colors to mixture strength measurement in laminar premixed flames. 2nd Report; Kaenshoku ni yoru soryu yokongo kaen no toryohi keisoku. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, S. [Asahikawa National College of Technology, Hokkaido (Japan); Fujita, O.; Ito, K. [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1998-09-25

    The flame color method to measure mixture strength in laminar premixed flames was investigated as a new combustion diagnostic technique. Flame colors were quantitatively determined by chromaticity coordinates (x, y) defined by the CIE 1931 standard colorimetric system. Using 12 types of hydrocarbons, the (x, y) of an inner cone in premixed laminar flames held on a circular tube burner were measured with a colorimeter, and the relationship between the (x, y) and the equivalence ratio {phi} of the mixture was examined in a range of {phi}=0.9 to 1.4. The experimental results indicated that the equivalence ratio could be measured with accuracy of 0.008-0.014 and error due to axial position in the inner cone was less than 0.02-0.05. Humidity of air had almost negligible effects on the accuracy of the measurement. Results also indicated that the effect of back-light could be corrected by introducing the concept of additive mixture of color stimuli. 21 refs., 8 figs., 2 tabs.

  13. Experimental study of the structure of rich premixed 1,3-butadiene/CH4/O2/Ar flame.

    OpenAIRE

    Gueniche , Hadj-Ali; Glaude , Pierre-Alexandre; Fournet , René; Battin-Leclerc , Frédérique

    2006-01-01

    traduit de Fizika Goreniya I Vzryva, 2006, 42, 89-95.; The structure of a laminar rich premixed 1,3-C4H6/CH4/O2/Ar flame have been investigated. 1,3-Butadiene, methane, oxygen and argon mole fractions are 0.033; 0.2073; 0.3315, and 0.4280, respectively, for an equivalent ratio of 1.80. The flame has been stabilized on a burner at a pressure of 6.7 kPa (50 Torr). The concentration profiles of stable species were measured by gas chromatography after sampling with a quartz probe. Quantified spec...

  14. Effectiveness of ready-to-use therapeutic food compared to a corn/soy-blend-based pre-mix for the treatment of childhood moderate acute malnutrition in Niger.

    Science.gov (United States)

    Nackers, Fabienne; Broillet, France; Oumarou, Diakité; Djibo, Ali; Gaboulaud, Valérie; Guerin, Philippe J; Rusch, Barbara; Grais, Rebecca F; Captier, Valérie

    2010-12-01

    Standard nutritional treatment of moderate acute malnutrition (MAM) relies on fortified blended flours though their importance to treat this condition is a matter of discussion. With the newly introduced World Health Organization growth standards, more children at an early stage of malnutrition will be treated following the dietary protocols as for severe acute malnutrition, including ready-to-use therapeutic food (RUTF). We compared the effectiveness of RUTF and a corn/soy-blend (CSB)-based pre-mix for the treatment of MAM in the supplementary feeding programmes (SFPs) supported by Médecins Sans Frontières, located in the Zinder region (south of Niger). Children measuring 65 to childhood MAM in Niger, RUTF resulted in a higher weight gain, a higher recovery rate, a shorter length of stay and a lower transfer rate to the I-TFC compared to a CSB pre-mix. This might have important implications on the efficacy and the quality of SFPs.

  15. Premixed flame chemistry of a gasoline primary reference fuel surrogate

    KAUST Repository

    Selim, Hatem

    2017-03-10

    Investigating the combustion chemistry of gasoline surrogate fuels promises to improve detailed reaction mechanisms used for simulating their combustion. In this work, the combustion chemistry of one of the simplest, but most frequently used gasoline surrogates – primary reference fuel 84 (PRF 84, 84 vol% iso-octane and 16 vol% n-heptane), has been examined in a stoichiometric premixed laminar flame. Time-of-flight mass spectrometry coupled with a vacuum ultraviolet (VUV) synchrotron light source for species photoionization was used. Reactants, major end-products, stable intermediates, free radicals, and isomeric species were detected and quantified. Numerical simulations were conducted using a detailed chemical kinetic model with the most recently available high temperature sub-mechanisms for iso-octane and heptane, built on the top of an updated pentane isomers model and AramcoMech 2.0 (C0C4) base chemistry. A detailed interpretation of the major differences between the mechanistic pathways of both fuel components is given. A comparison between the experimental and numerical results is depicted and rate of production and sensitivity analyses are shown for the species with considerable disagreement between the experimental and numerical findings.

  16. The gas chimney formation during the steam explosion premixing phase

    International Nuclear Information System (INIS)

    Leskovar, M.

    2001-01-01

    The crucial part in isothermal premixing experiment simulation is the correct prediction of the gas chimney, which forms when the spheres penetrate into water. The first simulation results with the developed original combined multiphase model showed that the gas chimney starts to close at the wrong place at the top of the chimney and not in the middle, like it was observed in the experiments. To find the physical explanation for this identified weakness of our numerical model a comprehensive parametric analysis (mesh size, initial water-air surface thickness, water density, momentum coupling starting position) has been performed. It was established that the reason for the unphysical gas chimney closing at the top could be the gradual air-water density transition in the experiment model, since there is due to the finite differences description always a transition layer with intermediate phases density over the pure water phase. It was shown that this difference between our numerical model and the experiment can be somewhat compensated if the spheres interfacial drag coefficient at the upmost mesh plane of the unphysical air-water transition layer is artificially risen. On this way a more correct gas chimney formation can be obtained.(author)

  17. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry

    2018-01-01

    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  18. Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder

    Directory of Open Access Journals (Sweden)

    Haris Rudianto

    2015-01-01

    Full Text Available Sintering of light aluminium alloys powder has been investigated as a way to substitute steels in automotive and aerospace industries. Premix Al-5.5Zn-2.5Mg-0.5Cu composite powder called Alumix 431D was analyzed in this research. Sintering was carried out under ultra high purity nitrogen gas and before reaching sintering temperature, green samples were delubricated at 400°C for 30 min. The powder possesses high sinterability by reaching 96% relative density at 580°C sintering temperature. Formation of liquid phase seems to support achieving high sintering density. Optimum mechanical properties also were obtained under those conditions. T6 heat treatment was done to improve the mechanical properties by formation of precipitation strengthening, and MgZn2 appears to be dominant strengthening precipitate. X-ray diffraction, optical microscopy, and SEM-EDS were used to characterize powder, and sintered and heat treated samples.

  19. Characteristics of sound radiation from turbulent premixed flames

    Science.gov (United States)

    Rajaram, Rajesh

    Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.

  20. Measurements of the absolute concentrations of HCO and (CH2)-C-1 in a premixed atmospheric flat flame by cavity ringdown spectroscopy

    NARCIS (Netherlands)

    Evertsen, R.; Oijen, van J.A.; Hermanns, R.T.E.; Goey, de L.P.H.; Meulen, ter J.J.

    2003-01-01

    Singlet methylene (1CH2) and the formyl radical (HCO) have been studied in a premixed flat flame of CH4 and air by cavity ring-down spectroscopy at 1 atm. The absorption lines lie in the same spectral region for both species. The 1CH2 radicals were probed via the 1B1 (0,13,0) ¿ã1A1 (0,0,0) band at

  1. Correspondence Between Uncoupled Flame Macrostructures and Thermoacoustic Instability in Premixed Swirl-Stabilized Combustion

    KAUST Repository

    Taamallah, Soufien

    2014-06-16

    In this paper, we conduct an experimental investigation of a confined premixed swirl-stabilized dump combustor similar to those found in modern gas turbines. We operate the combustor with premixed methane-air in the lean range of equivalence ratio ϕ ∈ [0.5–0.75]. First, we observe different dynamic modes in the lean operating range, as the equivalence ratio is raised, confirming observations made previously in a similar combustor geometry but with a different fuel [1]. Next we examine the correspondence between dynamic mode transitions and changes in the mean flame configuration or macrostructure. We show that each dynamic mode is associated with a specific flame macrostructure. By modifying the combustor length without changing the underlying flow, the resonant frequencies of the geometry are altered allowing for decoupling the heat release fluctuations and the acoustic field, in a certain range of equivalence ratio. Mean flame configurations in the modified (short) combustor and for the same range of equivalence ratio are examined. It is found that not only the same sequence of flame configurations is observed in both combustors (long and short) but also that the set of equivalence ratio where transitions in the flame configuration occur is closely related to the onset of thermo-acoustic instabilities. For both combustor lengths, the flame structure changes at similar equivalence ratio whether thermo-acoustic coupling is allowed or not, suggesting that the flame configuration holds the key to understanding the onset of self-excited thermo-acoustic instability in this range. Finally, we focus on the flame configuration transition that was correlated with the onset of the first dynamically unstable mode ϕ ∈ [0.61–0.64]. Our analysis of this transition in the short, uncoupled combustor shows that it is associated with an intermittent appearance of a flame in the outer recirculation zone (ORZ). The spectral analysis of this “ORZ flame flickering”

  2. Correspondence Between Uncoupled Flame Macrostructures and Thermoacoustic Instability in Premixed Swirl-Stabilized Combustion

    KAUST Repository

    Taamallah, Soufien; LaBry, Zachary A.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2014-01-01

    In this paper, we conduct an experimental investigation of a confined premixed swirl-stabilized dump combustor similar to those found in modern gas turbines. We operate the combustor with premixed methane-air in the lean range of equivalence ratio ϕ ∈ [0.5–0.75]. First, we observe different dynamic modes in the lean operating range, as the equivalence ratio is raised, confirming observations made previously in a similar combustor geometry but with a different fuel [1]. Next we examine the correspondence between dynamic mode transitions and changes in the mean flame configuration or macrostructure. We show that each dynamic mode is associated with a specific flame macrostructure. By modifying the combustor length without changing the underlying flow, the resonant frequencies of the geometry are altered allowing for decoupling the heat release fluctuations and the acoustic field, in a certain range of equivalence ratio. Mean flame configurations in the modified (short) combustor and for the same range of equivalence ratio are examined. It is found that not only the same sequence of flame configurations is observed in both combustors (long and short) but also that the set of equivalence ratio where transitions in the flame configuration occur is closely related to the onset of thermo-acoustic instabilities. For both combustor lengths, the flame structure changes at similar equivalence ratio whether thermo-acoustic coupling is allowed or not, suggesting that the flame configuration holds the key to understanding the onset of self-excited thermo-acoustic instability in this range. Finally, we focus on the flame configuration transition that was correlated with the onset of the first dynamically unstable mode ϕ ∈ [0.61–0.64]. Our analysis of this transition in the short, uncoupled combustor shows that it is associated with an intermittent appearance of a flame in the outer recirculation zone (ORZ). The spectral analysis of this “ORZ flame flickering”

  3. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement...... temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently...... synthesized to the full extent allowed by the overall precursor composition. The addition of even small amounts of alumina to ZnO increases the specific surface area of the composites significantly, for e.g. zinc aluminate particles to approximately 150 m2/g. The gas-to-particle conversion is initiated...

  4. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    Science.gov (United States)

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Description of premixing with the MC3D code including molten jet behavior modeling. Comparison with FARO experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Berthoud, G.; Crecy, F. de; Meignen, R.; Valette, M. [CEA-G, DRN/DTP/SMTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    1998-01-01

    The premixing phase of a molten fuel-coolant interaction is studied by the way of mechanistic multidimensional calculation. Beside water and steam, corium droplet flow and continuous corium jet flow are calculated independent. The 4-field MC3D code and a detailed hot jet fragmentation model are presented. MC3D calculations are compared to the FARO L14 experiment results and are found to give satisfactory results; heat transfer and jet fragmentation models are still to be improved to predict better final debris size values. (author)

  6. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Science.gov (United States)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  7. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  8. Experiments for the premixing phase (QUEOS); Experimente zur Vorvermischungsphase (QUEOS)

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L.; Huber, R.; Haessler, M.; Kirstahler, M.; Kuhn, D.; Rehme, K.; Schumacher, G.; Schwall, M.; Wachter, E.; Woerner, G.

    1995-08-01

    Experiments are performed with solid spheres at high temperatures to establish a data base for the premixing phase of a steam explosion, which will be used for code improvement and validation. The hot spheres (T{<=}2600 K) are being dropped into saturated water at 1 bar pressure. The objective of the experiments is to obtain data on the cooling rate of the spheres, their distribution in the water, the amount of generated steam and its distribution with respect to the spheres. The spheres have a diameter of 4.2 mm, 4.8 mm and 10 mm, respectively, depending on the material used. Molybdenum coated with Rhenium to inhibit oxidation and ZrO{sub 2} are used. The experimental parameters are the mass flow of the spheres, their density and their temperature. The QUEOS test facility has been set up and tested. A series of first tests has been performed with cold spheres and spheres at 1000 C. The main results are the distribution of the spheres during the fall through the water and their distribution at the bottom of the water vessel. A large air bubble is being entrained into the water in both the cold and hot tests. (orig./HP)

  9. Determination and Scaling of Thermo Acoustic Characteristics of Premixed Flames

    Directory of Open Access Journals (Sweden)

    P. R. Alemela

    2010-06-01

    Full Text Available The paper investigates the determination and the scaling of thermo acoustical characteristics of lean premixed flames as used in gas turbine combustion systems. In the first part, alternative methods to characterize experimentally the flame dynamics are outlined and are compared on the example of a scaled model of an industrial gas turbine burner. Transfer matrix results from the most general direct method are contrasted with data obtained from the hybrid method, which is based on Rankine-Hugoniot relations and the experimental flame transfer function obtained from OH*-chemiluminescence measurements. Also the new network model based regression method is assessed, which is based on a n – τ – σ dynamic flame model. The results indicate very good consistency between the three techniques, providing a global check of the methods/tools used for analyzing the thermo acoustic mechanisms of flames. In the second part, scaling rules are developed that allow to calculate the dynamic flame characteristics at different operation points. Towards this a geometric flame length model is formulated. Together with the other operational data of the flame it provides the dynamic flame model parameters at these points. The comparison between the measured and modeled flame lengths as well as the n – τ – σ parameters shows an excellent agreement.

  10. Influence of Turbulent Scalar Mixing Physics on Premixed Flame Propagation

    Directory of Open Access Journals (Sweden)

    H. Kolla

    2011-01-01

    Full Text Available The influence of reactive scalar mixing physics on turbulent premixed flame propagation is studied, within the framework of turbulent flame speed modelling, by comparing predictive ability of two algebraic flame speed models: one that includes all relevant physics and the other ignoring dilatation effects on reactive scalar mixing. This study is an extension of a previous work analysing and validating the former model. The latter is obtained by neglecting modelling terms that include dilatation effects: a direct effect because of density change across the flame front and an indirect effect due to dilatation on turbulence-scalar interaction. An analysis of the limiting behaviour shows that neglecting the indirect effect alters the flame speed scaling considerably when / is small and the scaling remains unaffected when / is large. This is evident from comparisons of the two models with experimental data which show that the quantitative difference between the two models is as high as 66% at /=0.3 but only 4% at /=52.4. Furthermore, neglecting the direct effect results in a poor prediction of turbulent flame speed for all values of /, and both effects are important for practically relevant values of this velocity ratio.

  11. Transport of inertial particles in a turbulent premixed jet flame

    International Nuclear Information System (INIS)

    Battista, F; Picano, F; Casciola, C M; Troiani, G

    2011-01-01

    The heat release, occurring in reacting flows, induces a sudden fluid acceleration which particles follow with a certain lag, due to their finite inertia. Actually, the coupling between particle inertia and the flame front expansion strongly biases the spatial distribution of the particles, by inducing the formation of localized clouds with different dimensions downstream the thin flame front. A possible indicator of this preferential localization is the so-called Clustering Index, quantifying the departure of the actual particle distribution from the Poissonian, which would correspond to a purely random spatial arrangement. Most of the clustering is found in the flame brush region, which is spanned by the fluctuating instantaneous flame front. The effect is significant also for very light particles. In this case a simple model based on the Bray-Moss-Libby formalism is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect is found to increases and persist well within the region of burned gases. The effect is maximum when the particle relaxation time is of the order of the flame front time scale. The evidence of this peculiar source of clustering is here provided by data from a direct numerical simulation of a turbulent premixed jet flame and confirmed by experimental data.

  12. Control of the low-load region in partially premixed combustion

    Science.gov (United States)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  13. An Experimental Investigation of Premixed Combustion in Extreme Turbulence

    Science.gov (United States)

    Wabel, Timothy Michael

    This work has explored various aspects of high Reynolds number combustion that have received much previous speculation. A new high-Reynolds number premixed Bunsen burner, called Hi-Pilot, was designed to produce turbulence intensities in the extreme range of turbulence. The burner was modified several times in order to prevent boundary layer separation in the nozzle, and a large co-flow was designed that was capable of maintaining reactions over the entire flame surface. Velocity and turbulence characteristics were measured using a combination of Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). Flame structure was studied using a combination of formaldehyde (CH2O), hydroxyl (OH), and the CH radical. Planar Laser Induced Fluorescence (PLIF). The spatial Overlap of formaldehyde and OH PLIF qualitatively measures the reaction rate between formaldehyde molecules and OH radicals, and is a measure of the reaction layers of the flame. CH PLIF provides an alternative measure of the reaction zone, and was measured to compare with the Overlap PLIF results. Reaction layers are the full-width at half-maximum of the Overlap or CH PLIF signal, and extinction events were defined as regions where the PLIF signal drops below this threshold. Preheat structures were measured using formaldehyde PLIF, and are defined as beginning at 35% of the local maximum PLIF signal, and continue up to the leading edge of the reaction layer. Previous predictions of regime diagram boundaries were tested at the largest values of turbulent Reynolds number to date. The Overlap and CH PLIF diagnostics allowed extensive testing of the predicted broken reaction zones boundary of Peters. Measurements indicated that all run conditions are in the Broadened Preheat - Thin Reaction layers regime, but several conditions are expected to display a broken reaction zone structure. Therefore the work shows that Peters's predicted boundary is not correct, and therefore a Karlovitz number of 100 is

  14. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    Science.gov (United States)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  15. Acoustic radiation from weakly wrinkled premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham, [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 (United States)

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.

  16. A Numerical Study on Premixed Bluff Body Flame of Different Bluff Apex Angle

    Directory of Open Access Journals (Sweden)

    Gelan Yang

    2013-01-01

    Full Text Available In order to investigate effects of apex angle (α on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45° to 150°. Eddy dissipation concept (EDC combustion model was used for air and propane premixed flame. LES-Smagorinsky model was selected for turbulence. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that as α increases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase of α makes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability.

  17. An experimental and kinetic investigation of premixed furan/oxygen/argon flames.

    Science.gov (United States)

    Tian, Zhenyu; Yuan, Tao; Fournet, Rene; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Zhang, Kuiwen; Qi, Fei

    2011-04-01

    The detailed chemical structures of three low-pressure (35 Torr) premixed laminar furan/oxygen/argon flames with equivalence ratios of 1.4, 1.8 and 2.2 have been investigated by using tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry. About 40 combustion species including hydrocarbons and oxygenated intermediates have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of the flame species including reactants, intermediates and products have been determined by scanning burner position with some selected photon energies near ionization thresholds. Flame temperatures have been measured by a Pt-6%Rh/Pt-30%Rh thermocouple. A new mechanism involving 206 species and 1368 reactions has been proposed whose predictions are in reasonable agreement with measured species profiles for the three investigated flames. Rate-of-production and sensitivity analyses have been performed to track the key reaction paths governing furan consumption for different equivalence ratios. Both experimental and modeling results indicate that few aromatics could be formed in these flames. Furthermore, the current model has been validated against previous pyrolysis results of the literature obtained behind shock waves and the agreement is reasonable as well.

  18. EFEITO DO PROGRAMA DE ALIMENTAÇÃO E DO TIPO DE PREMIX NA RAÇÃO SOBRE O DESEMPENHO, RENDIMENTO DE CARCAÇA E CORTES NOBRES DE FRANGO DE CORTE

    Directory of Open Access Journals (Sweden)

    Ana Carolina Gomes Provenzano

    2016-12-01

    eficiência produtiva. Porém, foi verificado efeito significativo para o ganho de peso. Não foi verificado efeito significativo dos programas de alimentação e do premix tampouco a interação desses fatores sobre as variáveis, peso de fígado, peso de peito com pele, peso de peito sem pele, peso de coxa e sobre coxa e peso de asa. Porém, foi verificado efeito significativo para às variáveis, peso da moela e peso do coração. Independente do tipo de premix utilizado, em programas de alimentação com 4 rações as aves apresentaram maior ganho de peso, demonstrando ser esse tipo de programa alimentar o mais adequado tanto para suprir as exigências nutricionais das aves quanto para evitar problemas metabólicos oriundos do excesso de nutrientes da dieta.

  19. Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study

    International Nuclear Information System (INIS)

    Pouransari, Zeinab; Vervisch, Luc; Johansson, Arne V.

    2013-01-01

    Highlights: ► A non-premixed turbulent flame close to a solid surface is studied using DNS. ► Heat release effects delay transition and enlarge fluctuation of density and pressure. ► The fine-scale structures damped and surface wrinkling diminished due to heat-release. ► Using semilocal scaling improves the collapse of turbulence statistic in inner region. ► There are regions of the flame where considerable (up to 10%) premixed burning occurs. -- Abstract: The present study concerns the role of heat release effects on characteristics mixing scales of turbulence in reacting wall-jet flows. Direct numerical simulations of exothermic reacting turbulent wall-jets are performed and compared to the isothermal reacting case. An evaluation of the heat-release effects on the structure of turbulence is given by examining the mixture fraction surface characteristics, diagnosing vortices and exploring the dissipation rate of the fuel and passive scalar concentrations, and moreover by illustration of probability density functions of reacting species and scatter plots of the local temperature against the mixture fraction. Primarily, heat release effects delay the transition, enlarge the fluctuation intensities of density and pressure and also enhance the fluctuation level of the species concentrations. However, it has a damping effect on all velocity fluctuation intensities and the Reynolds shear stress. A key result is that the fine-scale structures of turbulence are damped, the surface wrinkling is diminished and the vortices become larger due to heat-release effects. Taking into account the varying density by using semi-local scaling improves the collapse of the turbulence statistics in the inner region, but does not eliminate heat release induced differences in the outer region. Examining the two-dimensional premultiplied spanwise spectra of the streamwise velocity fluctuations indicates a shifting in the positions of the outer peaks, associated with large

  20. Conscious sedation with inhaled 50% nitrous oxide/oxygen premix in photodynamic therapy sessions for vulvar lichen sclerosus treatment.

    Science.gov (United States)

    Cabete, Joana; Campos, Sara; Lestre, Sara

    2015-01-01

    Photodynamic therapy has been described as an effective therapeutic option in selected cases of anogenital lichen sclerosus that are refractory to first-line treatments. However, procedure-related pain is a limiting factor in patient adherence to treatment. The authors report the case of a 75-year-old woman with highly symptomatic vulvar lichen sclerosus, successfully treated with photodynamic therapy. An inhaled 50% nitrous oxide/oxygen premix was administered during sessions, producing a pain-relieving, anxiolytic, and sedative effect without loss of consciousness. This ready-to-use gas mixture may be a well-tolerated and accepted alternative to classical anesthetics in Photodynamic therapy, facilitating patients' adherence to illumination of pain-prone areas.

  1. Basic study on the generation of RF plasmas in premixed oxy-combustion with methane

    International Nuclear Information System (INIS)

    Osaka, Yugo; Razzak, M.A.; Kobayashi, Noriyuki; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko

    2010-01-01

    Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N 2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility. (author)

  2. Effect of filling ratio on premixed methane/air explosion in an open-end pipe

    Directory of Open Access Journals (Sweden)

    Chang Guo

    2016-06-01

    Full Text Available The propagation characteristics of premixed methane/air explosion under different filling ratios (20%, 30%, 40%, 50%, 60%, and 100% were studied using an experimental system. The results indicate that the peak overpressure showed a decreasing trend at the initial stage but then showed an increasing trend until reaching its maximum value under different filling ratios. As the explosion propagated to the open end, the overpressure showed a downtrend. At this point, the flame speed initially increased along the pipe but then dropped dramatically. In addition, the explosion overpressure and flame speed increased with the increase of filling ratio. However, when the filling ratio reached 50%, the explosion overpressure and flame speed tended to be stable and the increase was not obvious. These results will be of great importance in evaluating the explosive damage to equipment and human personnel working in coal mines or other chemical industries.

  3. An Investigation of Fuel Mixing and Reaction in a CH4/Syngas/Air Premixed Impinging Flame with Varied H2/CO Proportion

    Directory of Open Access Journals (Sweden)

    Chih-Pin Chiu

    2017-07-01

    Full Text Available For industrial applications, we propose a concept of clean and efficient combustion through burning syngas on an impinging burner. We performed experimental measurements of particle image velocimetry, OH radical (OH* chemiluminescence, flame temperature, and CO emission to examine the fuel mixing and reaction of premixed impinging flames of CH4/syngas/air with H2/CO in varied proportions. The velocity distribution of the combustion flow field showed that a deceleration area in the main flow formed through the mutual impingement of two jet flows, which enhanced the mixing of fuel and air because of an increased momentum transfer. The deceleration area expanded with an increased CO proportion, which indicated that the mixing of fuel and air also increased with the increased CO proportion. Our examination of the OH* chemiluminescence demonstrated that its intensity increased with increased CO proportion, which showed that the reaction between fuel and air accordingly increased. CO provided in the syngas hence participated readily in the reaction of the CH4/syngas/air premixed impinging flames when the syngas contained CO in a large proportion. Although the volume flow rate of the provided CO quadrupled, the CO emission increased by only 12% to 15%. The results of this work are useful to improve the feasibility of fuel-injection systems using syngas as an alternative fuel.

  4. Blowoff dynamics of bluff body stabilized turbulent premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, U-3139, Storrs, CT 06269 (United States)

    2010-04-15

    This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

  5. Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry

    International Nuclear Information System (INIS)

    Qi, J.A.; Leung, C.W.; Wong, W.O.; Probert, S.D.

    2006-01-01

    Reference-beam interferometry (RBI) was applied to study the axisymmetric temperature fields of a small-scale, low Reynolds-number, low-pressure and fuel-rich premixed butane/air circular-flame jet, when it was impinging vertically upwards onto a horizontal copper plate. By maintaining a Reynolds number, Re, of 500 and an equivalence ratio, φ, of 1.8, interferograms of the impinging-flame jet were obtained for various nozzle-to-plate-distances. Temperature fields of the flame were then determined using the inverse Abel transformation from the obtained interferograms. Temperatures at several locations were measured experimentally with a T-type thermocouple: they were used as a reference to help in the determination as well as the validation. In the present study, a non-contact method has been successfully developed to measure the temperature fields of a circular impinging gas-fired flame jet

  6. An experimental study on the effects of swirling oxidizer flow and diameter of fuel nozzle on behaviour and light emittance of propane-oxygen non-premixed flame

    Directory of Open Access Journals (Sweden)

    Javareshkian Alireza

    2017-01-01

    Full Text Available In this study, the stability and the light emittance of non-premixed propane-oxygen flames have been experimentally evaluated with respect to swirling oxidizer flow and variations in fuel nozzle diameter. Hence, three types of the vanes with the swirl angles of 30°, 45°, and 60° have been chosen for producing the desired swirling flows. The main aims of this study are to determine the flame behaviour, light emittance, and also considering the effect of variation in fuel nozzle diameter on combustion phenomena such as flame length, flame shape, and soot free length parameter. The investigation into the flame phenomenology was comprised of variations of the oxidizer and fuel flow velocities (respective Reynolds numbers and the fuel nozzle diameter. The results showed that the swirl effect could change the flame luminosity and this way could reduce or increase the maximum value of the flame light emittance in the combustion zone. Therefore, investigation into the flame light emittance can give a good clue for studying the mixing quality of reactants, the flame phenomenology (blue flame or sooty flame, localized extinction, and the combustion intensity in non-premixed flames.

  7. Diffusion of Acetic Acid Across Oil/Water Interface in Emulsification-Internal Gelation Process for Preparation of Alginate Gel Beads

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-dong; YU Wei-ting; LIN Jun-zhang; MA Xiao-jun; YUAN Quan

    2007-01-01

    Alginate has been widely used in cell microencapsulation and drug delivery systems in the form of gel beads or microcapsules. Although an alternative novel emulsification-internal gelation technology has been established and both the properties and the potential applications of the beads in drug delivery systems have been studied, the mechanism has not been well understood compared with the traditional droplet method( external gelation technology). On the basis of our previous knowledge that the novel technology is composed of complicatedly consecutive processes with multistep diffusion and re action, and the diffusion of acetic acid across oil/water interface being the prerequisite that determines the occurrence and rate for the reactions and the structures and properties of final produced gel beads, a special emphasis was placed on the diffusion process. With the aid of diffusion modeling and simple experimental design, the diffusion rate constant and diffusion coefficient of acetic acid across oil/water interface were determined to be in the orders of magnitude of 10-6 and 10-16, respectively. This knowledge will be of particular importance in understanding and interpreting the formation, structure of the gel beads and the relationship between the structure and properties and guiding the preparation and quality control of the gel beads.

  8. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  9. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  10. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min; Lee, Yonggyu

    2012-01-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  11. Development of flurbiprofen-loaded nanoparticles with a narrow size distribution using sucrose.

    Science.gov (United States)

    Oh, Dong Hoon; Yan, Yi-Dong; Kim, Dong Wuk; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2014-02-01

    A novel flurbiprofen-loaded nanoemulsion which gave uniform emulsion droplets with a narrow size distribution was previously reported to be prepared using membrane emulsification method. The purpose of this study is to develop a novel flurbiprofen-loaded nanoparticle with a narrow size distribution and improved bioavailability. The nanoparticle was prepared by solidifying nanoemulsion using sucrose as a carrier via spray drying method. Its physicochemical properties were investigated using SEM, DSC and PXRD. Furthermore, dissolution and bioavailability in rats were evaluated compared to a flurbiprofen-loaded commercial product. The flurbiprofen-loaded nanoparticles with flurbiprofen/sucrose/surfactant mixture (1/20/2, weight ratio) gave good solidification and no stickiness. They associated with about 70,000-fold improved drug solubility and had a mean size of about 300 nm with a narrow size distribution. Flurbiprofen was present in a changed amorphous state in these nanoparticles. Moreover, the nanoparticles gave significantly shorter Tmax, and higher AUC and Cmax of the drug compared to the commercial product (p flurbiprofen-loaded nanoparticles prepared with sucrose by the membrane emulsification and spray drying method would be a potential candidate for orally delivering poorly water-soluble flurbiprofen with enhanced bioavailability.

  12. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  13. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  14. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    KAUST Repository

    Wacks, Daniel H.

    2016-12-02

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  15. Simulated use of premixed 0.25% isoflurane in 50% nitrous oxide and 50% oxygen.

    Science.gov (United States)

    Ross, J A; Tunstall, M E

    2002-12-01

    Isoflurane (0.25%) in premixed nitrous oxide and oxygen, 50/50, v/v (IN(2)O), has been suggested for pain relief in labour. Possible phase separation of the mixture was studied during simulated administration. A sinusoidal pump set at stroke volume of 2 litres and a rate of 20-22 bpm and cycling for 1 min in three was used to simulate breathing during the painful contractions of labour. The temperature inside a 10-litre capacity cylinder did not drecrease sufficiently to cause separation of the gas mixture. Temperature in the demand valve decreased to -15.5 degrees C and this caused a small amount of liquid formation within the valve. Accordingly, the inspired concentration during the first breath of mixture in a cycle could be transiently as high as 0.55%. The concentration observed at the patient connection after the first breath varied between 0.17 and 0.28%. The system delivered a clinically acceptable performance although further development to avoid liquid condensation is needed.

  16. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    KAUST Repository

    Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.

    2016-01-01

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H-2-air flames with an equivalence ratio phi = 0.7. It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P, Q, and R) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  17. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  18. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    Science.gov (United States)

    Zaima, Kazunori; Sasaki, Koichi

    2016-08-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experimental results reveal the oscillation of the rates of combustion chemical reactions as a response to the activation by pulsed DBD. The cycle of the oscillation was 0.18-0.2 ms, which could be understood as the eigenfrequency of the plasma-assisted combustion reaction system.

  19. Effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames

    International Nuclear Information System (INIS)

    Guo, H.; Tayebi, B.; Galizzi, C.; Escudie, D.

    2009-01-01

    Hydrogen (H 2 ) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H 2 . H 2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.

  20. Pulsed Current-Voltage-Induced Perturbations of a Premixed Propane/Air Flame

    Directory of Open Access Journals (Sweden)

    Jacob. B. Schmidt

    2011-01-01

    Full Text Available The effect of millisecond wide sub-breakdown pulsed voltage-current induced flow perturbation has been measured in premixed laminar atmospheric pressure propane/air flame. The flame equivalence ratios were varied from 0.8 to 1.2 with the flow speeds near 1.1 meter/second. Spatio-temporal flame structure changes were observed through collection of CH (A-X and OH (A-X chemiluminescence and simultaneous spontaneous Raman scattering from N2. This optical collection scheme allows us to obtain a strong correlation between the measured gas temperature and the chemiluminescence intensity, verifying that chemiluminescence images provide accurate measurements of flame reaction zone structure modifications. The experimental results suggest that the flame perturbation is caused by ionic wind originating only from the radial positive space-charge distribution in/near the cathode fall. A net momentum transfer acts along the annular space discharge distribution in the reaction zone at or near the cathode fall which modifies the flow field near the cathodic burner head. This radially inward directed body force appears to enhance mixing similar to a swirl induced modification of the flame structure. The flame fluidic response exhibit a strong dependence on the voltage pulse width ≤10 millisecond.

  1. Investigation on Effect of Air Velocity in Turbulent Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Namazian Zafar

    2016-09-01

    Full Text Available In this study, the turbulent non-premixed methane-air flame is simulated to determine the effect of air velocity on the length of flame, temperature distribution and mole fraction of species. The computational fluid dynamics (CFD technique is used to perform this simulation. To solve the turbulence flow, k-ε model is used. In contrast to the previous works, in this study, in each one of simulations the properties of materials are taken variable and then the results are compared. The results show that at a certain flow rate of fuel, by increasing the air velocity, similar to when the properties are constant, the width of the flame becomes thinner and the maximum temperature is higher; the penetration of oxygen into the fuel as well as fuel consumption is also increased. It is noteworthy that most of the pollutants produced are NOx, which are strongly temperature dependent. The amount of these pollutants rises when the temperature is increased. As a solution, decreasing the air velocity can decrease the amount of these pollutants. Finally, comparing the result of this study and the other work, which considers constant properties, shows that the variable properties assumption leads to obtaining more exact solution but the trends of both results are similar.

  2. In Vivo Evaluation of an Injectable Premixed Radiopaque Calcium Phosphate Cement

    Directory of Open Access Journals (Sweden)

    Jonas Åberg

    2011-01-01

    Full Text Available In this work a radiopaque premixed calcium phosphate cement (pCPC has been developed and evaluated in vivo. Radiopacity was obtained by adding 0–40 % zirconia to the cement paste. The effects of zirconia on setting time, strength and radiopacity were evaluated. In the in vivo study a 2 by 3.5 mm cylindrical defect in a rat vertebrae was filled with either the pCPC, PMMA or bone chips. Nano-SPECT CT analysis was used to monitor osteoblast activity during bone regeneration. The study showed that by adding zirconia to the cement the setting time becomes longer and the compressive strength is reduced. All materials evaluated in the in vivo study filled the bone defect and there was a strong osteoblast activity at the injury site. In spite of the osteoblast activity, PMMA blocked bone healing and the bone chips group showed minimal new bone formation. At 12 weeks the pCPC was partially resorbed and replaced by new bone with good bone ingrowth. The radiopaque pCPC may be considered to be used for minimal invasive treatment of vertebral fractures since it has good handling, radiopacity and allows healing of cancellous bone in parallel with the resorption of the cement.

  3. 3D velocity measurements in a premixed flame by tomographic PIV

    International Nuclear Information System (INIS)

    Tokarev, M P; Sharaborin, D K; Lobasov, A S; Chikishev, L M; Dulin, V M; Markovich, D M

    2015-01-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV. (paper)

  4. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  5. Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-05-15

    A strained flamelet model is proposed for turbulent premixed flames using scalar dissipation rate as a parameter. The scalar dissipation rate of reaction progress variable is a suitable quantity to describe the flamelet structure since it is governed by convection-diffusion-reaction balance and it is defined at every location in the flamelets, which are represented by laminar flames in reactant-to-product opposed flow configuration. The mean reaction rate is obtained by using the flamelets reaction rate and the joint pdf of the progress variable and its dissipation rate. The marginal pdf of the progress variable is presumed to be {beta}-pdf and the pdf of the conditional dissipation rate is taken to be log-normal. The conditional mean dissipation rate is obtained from modelled mean dissipation rate. This reaction rate closure is assessed using RANS calculations of statistically planar flames in the corrugated flamelets and thin reaction zones regimes. The flame speeds calculated using this closure are close to the experimental data of Abdel-Gayed et al. (1987) for flames in both the regimes. Comparisons with other reaction rate closures showed the benefits of the strained flamelets approach. (author)

  6. Radiation Effects on the Thermodiffusive Instability of Premixed Flames on a Cylindrical Porous Flame Holder

    Science.gov (United States)

    Du, Minglong; Yang, Lijun

    2017-10-01

    A linear analysis method was used to investigate the mechanics of radiation heat loss and mass transfer in the porous wall of premixed annular flames and their effect on thermodiffusive instability. The dispersion relation between the disturbance wave growth rate and wavenumber was calculated numerically. Results showed that radiation heat loss elevated the annular flame slightly away from the porous wall. In the annular flame with small Lewis numbers, radiation heat loss changed the thermodiffusive instability from a pulsating to a cellular state, while for the large Lewis numbers, only the pulsating instability was represented. Increasing radiation heat loss and the radius of the porous wall enhanced the instability of the annular flames. Heat losses decreased with the continued increase in thickness of the porous wall and the decrease in porosity. Annular flames with long-wave mode along the angular direction were more unstable than the shortwave mode.

  7. Deformation Study of Lean Methane-Air Premixed Spherically Expanding Flames under a Negative Direct Current Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-09-01

    Full Text Available This paper compares numerical simulations with experiments to study the deformation of lean premixed spherically expanding flames under a negative direct current (DC electric field. The experiments, including the flame deformation and the ionic distribution on the flame surface were investigated in a mesh to mesh electric field. Besides, a numerical model of adding an electric body force to the positive ions on the flame surface was also established to perform a relevant simulation. Results show that the spherical flame will acquire an elliptical shape with a marked flame stretch in the horizontal direction and a slight inhibition in the vertical direction under a negative DC electric field. Meanwhile, a non-uniform ionic distribution on the flame surface was also detected by the Langmuir probe. The simulation results from the numerical model show good agreement with experimental data. According to the velocity field analysis in simulation, it was found the particular motion of positive ions and neutral molecules on the flame surface should be responsible for the special flame deformation. When a negative DC electric field was applied, the majority of positive ions and colliding neutral molecules will form an ionic flow along the flame surface by a superposition of the electric field force and the aerodynamic drag. The ionic flow was not uniform and mainly formed on the upper and lower sides, so it will lead to a non-uniform ionic distribution along the flame surface. What’s more, this ionic flow will also induce two vortexes both inside and outside of the flame surface due to viscosity effects. The external vortexes could produce an entraining effect on the premixed gas and take away the heat from the flame surface by forced convection, and then suppress the flame propagation in the vertical direction, while, the inner vortexes would scroll the burned zones and induce an inward flow at the horizontal center, which could be the reason for the

  8. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  9. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  10. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  11. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  12. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  13. Thermodynamics of premixed combustion in a heat recirculating micro combustor

    International Nuclear Information System (INIS)

    Rana, Uttam; Chakraborty, Suman; Som, S.K.

    2014-01-01

    A thermodynamic model has been developed to evaluate exergy transfer and its destruction in the process of premixed combustion in a heat recirculating micro combustor. Exergy destruction caused by process irreversibilities is characterized by entropy generation in the process. The entropy transport equation along with the solution of temperature and species concentration fields in the wake of flame sheet assumptions have been used to determine the different components of entropy generation. The role of thermal conductivity and thickness of combustor wall, and Peclet number on transfer and destruction rate of exergy is depicted in the process of flame stabilization via heat recirculation. The entropy generations due to gas phase heat conduction and chemical reaction are identified as the major sources of exergy destruction. The total irreversibility in pre-flame region is confined only within a small distance upstream of the flame. It has been observed that the local volumetric entropy generation is higher near the axis than that near the combustor wall. The second law efficiency is almost invariant with heat loss from the combustor, Peclet number, and thermal conductivity and thickness of combustor wall. - Highlights: • Irreversibility in the combustor is mainly due to conduction and chemical reaction. • Entropy generation near the axis is higher compared to that near the wall. • Heat recirculation and process irreversibility decrease with heat loss. • The second law efficiency is almost independent of Peclet number. • Second law efficiency is almost independent of wall thermal conductivity

  14. Analysis of fuel spray characteristics for premixed lean diesel combustion; Kihaku yokongo diesel kikan ni okeru nenryo funmu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S; Harada, a; Miyamoto, T; Akagawa, H; Tsujimura, K

    1997-10-01

    Premixed lean diesel combustion (PREDIC) makes it possible to achieve low NOx emission. It is an important factor to make the homogeneous spray formation for PREDIC. In this paper presents I the effect of the spray dispersion on emission characteristic were analyzed with the spray observation and engine test. Pintle type nozzle, which has different feature from orifice type nozzle, are used to form the hollow cone spray. As a result, the pintle type nozzle having grooves to generate the swirl flow, makes the reduced penetration in comparison with the hole nozzle under low ambient gas pressure. And it could improve THC, CO emissions at low NOx emission condition. 7 refs., 12 figs., 1 tab.

  15. Nutritional and functional properties of whey proteins concentrate and isolate

    OpenAIRE

    Zoran Herceg; Anet Režek

    2006-01-01

    Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fract...

  16. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  17. Lean premixed flames for low NO{sub x} combustors

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.; Tseng, L.; Bryjak, J. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-10-01

    Gas turbines are being used throughout the world to generate electricity. Due to increasing fuel costs and environmental concerns, gas turbines must meet stringent performance requirements, demonstrating high thermal efficiencies and low pollutant emissions. In order for U.S. manufactured gas turbines to stay competitive, their NO{sub x} levels must be below 10 ppm and their thermal efficiencies should approach 60%. Current technology is being stretched to achieve these goals. The twin goals of high efficiency and low NO{sub x} emissions require extending the operating range of current gas turbines. Higher efficiency requires operation at higher pressures and temperatures. Lower NO{sub x} emissions requires lower flame temperatures. Lower flame temperatures can be achieved through partially to fully pre-mixed combustion. However, increased performance and lower emissions result in a set of competing goals. In order to achieve a successful compromise between high efficiency and low NO{sub x} emissions, advanced design tools must be developed. One key design tool is a computationally efficient, high pressure, turbulent flow, combustion model capable of predicting pollutant formation in an actual gas turbine. Its development is the goal of this program. Achieving this goal requires completion of three tasks. The first task is to develop a reduced chemical kinetics model describing N{sub O}x formation in natural gas-air systems. The second task is to develop a computationally efficient model that describes turbulence-chemistry interactions. The third task is to incorporate the reduced chemical kinetics and turbulence-chemistry interaction models into a commercially available flow solver and compare its predictions with experimental data obtained under carefully controlled conditions so that the accuracy of model predictions can be evaluated.

  18. Monte-Carlo computation of turbulent premixed methane/air ignition

    Science.gov (United States)

    Carmen, Christina Lieselotte

    The present work describes the results obtained by a time dependent numerical technique that simulates the early flame development of a spark-ignited premixed, lean, gaseous methane/air mixture with the unsteady spherical flame propagating in homogeneous and isotropic turbulence. The algorithm described is based upon a sub-model developed by an international automobile research and manufacturing corporation in order to analyze turbulence conditions within internal combustion engines. Several developments and modifications to the original algorithm have been implemented including a revised chemical reaction scheme and the evaluation and calculation of various turbulent flame properties. Solution of the complete set of Navier-Stokes governing equations for a turbulent reactive flow is avoided by reducing the equations to a single transport equation. The transport equation is derived from the Navier-Stokes equations for a joint probability density function, thus requiring no closure assumptions for the Reynolds stresses. A Monte-Carlo method is also utilized to simulate phenomena represented by the probability density function transport equation by use of the method of fractional steps. Gaussian distributions of fluctuating velocity and fuel concentration are prescribed. Attention is focused on the evaluation of the three primary parameters that influence the initial flame kernel growth-the ignition system characteristics, the mixture composition, and the nature of the flow field. Efforts are concentrated on the effects of moderate to intense turbulence on flames within the distributed reaction zone. Results are presented for lean conditions with the fuel equivalence ratio varying from 0.6 to 0.9. The present computational results, including flame regime analysis and the calculation of various flame speeds, provide excellent agreement with results obtained by other experimental and numerical researchers.

  19. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

    Science.gov (United States)

    Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

    2018-02-01

    Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    Science.gov (United States)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  1. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    Science.gov (United States)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  2. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  3. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, N.H.; Alwahabi, Z.T.; King, K.D. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chan, Q.N. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Nathan, G.J. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Roekaerts, D. [Department of Multi-Scale Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg, 1, NL-2628 CJ Delft (Netherlands)

    2009-07-15

    Planar laser-induced incandescence (LII) has been used to measure soot volume fraction in a well-characterised, piloted, turbulent non-premixed flame known as the ''Delft Flame III''. Simulated Dutch natural gas was used as the fuel to produce a flame closely matching those in which a wide range of previous investigations, both experimental and modelling, have been performed. The LII method was calibrated using a Santoro-style burner with ethylene as the fuel. Instantaneous and time-averaged data of the axial and radial soot volume fraction distributions of the flame are presented here along with the Probability Density Functions (PDFs) and intermittency. The PDFs were found to be well-characterised by a single exponential distribution function. The distribution of soot was found to be highly intermittent, with intermittency typically exceeding 97%, which increases measurement uncertainty. The instantaneous values of volume fraction are everywhere less than the values in strained laminar flames. This is consistent with the soot being found locally in strained flame sheets that are convected and distorted by the flow. (author)

  4. Tip opening of premixed bunsen flames: Extinction with negative stretch and local Karlovitz number

    KAUST Repository

    Vu, Tranmanh

    2015-04-01

    The characteristics of tip openings in premixed bunsen flames have been studied experimentally by measuring OH radicals from laser-induced fluorescence and tip curvatures from chemiluminescent images. Results showed that the tip opening occurred at a constant equivalence ratio and was independent of the jet velocity in propane/air mixtures. The observation of a local extinction phenomenon of the negatively stretched flame due to the flame curvature could not be consistently explained based on flame stretch or the Karlovitz number, since they varied appreciably with the jet velocity. The concept of the local Karlovitz number (KaL) was introduced, which is defined as the ratio of the characteristic reaction time in the normal direction for a stretched flame to the characteristic flow time in the tangential direction for the stretched flame. The local Karlovitz number maintained a constant value under tip opening conditions, irrespective of the jet velocity. Tip opening occurred at a reasonably constant local Karlovitz number of about ~1.72 when the nitrogen dilution level in propane and n-butane fuels was varied.

  5. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  6. The near-field region behaviour of hydrogen-air turbulent non-premixed flame

    Energy Technology Data Exchange (ETDEWEB)

    Tabet, F. [EDF R and D, EIFER (European Institute for Energy Research), Karlsruhe (Germany); Sarh, B. [Centre National de la Recherche Scientifique (CNRS), Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Orleans (France); Universite d' Orleans, Institut Universitaire de Technologie d' Orleans (France); Birouk, M. [University of Manitoba, Department of Mechanical and Manufacturing Engineering, Winnipeg, MB (Canada); Goekalp, I. [Centre National de la Recherche Scientifique (CNRS), Institut de Combustion, Aerothermique, Reactivite et Environnement (ICARE), Orleans (France)

    2012-02-15

    A computational study of mixing process and air entrainment in hydrogen turbulent non-premixed flame characterized by strong gradients of velocity and density at the inlet section is presented. Different approaches for turbulence-combustion interactions are evaluated in the framework of RSM (Reynolds Stress Model) turbulence model and the computational results are compared to experimental data. The combustion models investigated are SLFM (Steady Laminar Flamelet Model) and EDC (Eddy Dissipation Concept). Mixing is described by oxygen atom mixture fraction and air entrainment is characterized by gas mass flow rate. Computational results are compared to measurements in physical space at two locations (the first one represent the near-field region and the second one the far-field region). At the first station, the results showed an overestimation of mixing and air entrainment and an inaccurate consumption of O{sub 2} and H{sub 2}. In addition, the predictions are found to be sensitive to combustion modelling. At the second station, the description of mixing and air entrainment is improved and the predictions are in reasonably agreement with experimental data. Less dependency to combustion modelling is noticed in this location. Further analysis of the near-field region based on the turbulence time scales revealed that turbulence is not well developed in this region of the flame. (orig.)

  7. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  8. Effect of an external electric field on the propagation velocity of premixed flames

    KAUST Repository

    Sánchez-Sanz, Mario

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.

  9. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Impact of Equivalence Ratio on the Macrostructure of Premixed Swirling CH 4 /Air and CH 4 /O 2 /CO 2 Flames

    KAUST Repository

    Watanabe, Hirotatsu

    2015-06-15

    Premixed CH4/O2/CO2 flames (oxy-flames) and CH4/air flames (air-flames) were experimentally studied in a swirl-stabilized combustor. For comparing oxy and air flames, the same equivalence ratio and adiabatic flame temperature were used. CO2 dilution was adjusted to attain the same adiabatic temperature for the oxy-flame and the corresponding air-flame while keeping the equivalence ratio and Reynolds number (=20,000) the same. For high equivalence ratios, we observed flames stabilized along the inner and outer shear layers of the swirling flow and sudden expansion, respectively, in both flames. However, one notable difference between the two flames appears as the equivalence ratio reaches 0.60. At this point, the outer shear layer flame disappears in the air-flame while it persists in the oxy-flame, despite the lower burning velocity of the oxy-flame. Prior PIV measurements (Ref. 9) showed that the strains along the outer shear layer are higher than along the inner shear layer. Therefore, the extinction strain rates in both flames were calculated using a counter-flow premixed twin flame configuration. Calculations at the equivalence ratio of 0.60 show that the extinction strain rate is higher in the oxy than in the air flame, which help explain why it persists on the outer shear layer with higher strain rate. It is likely that extinction strain rates contribute to the oxy-flame stabilization when air flame extinguish in the outer shear layer. However, the trend reverses at higher equivalence ratio, and the cross point of the extinction strain rate appears at equivalence ratio of 0.64.

  11. Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials.

    Science.gov (United States)

    Lee, Mina; Lee, Eun Yeol; Lee, Daeyeon; Park, Bum Jun

    2015-03-21

    Microbubbles with diameters ranging from a few micrometers to tens of micrometers have garnered significant attention in various applications including food processing, water treatment, enhanced oil recovery, surface cleaning, medical purposes, and material preparation fields with versatile functionalities. A variety of techniques have been developed to prepare microbubbles, such as ultrasonication, excimer laser ablation, high shear emulsification, membrane emulsification, an inkjet printing method, electrohydrodynamic atomization, template layer-by-layer deposition, and microfluidics. Generated bubbles should be immediately stabilized via the adsorption of stabilizing materials (e.g., surfactants, lipids, proteins, and solid particles) onto the gas-liquid interface to lower the interfacial tension. Such adsorption of stabilizers prevents coalescence between the microbubbles and also suppresses gas dissolution and resulting disproportionation caused by the presence of the Laplace overpressure across the gas-liquid interface. Herein, we comprehensively review three important topics of microbubbles: stabilization, fabrication, and applications.

  12. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  13. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  14. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  15. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    Energy Technology Data Exchange (ETDEWEB)

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M. [German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany); Bonaldo, A. [Siemens Industrial Turbomachinery Ltd., Combustion Group, P. O. Box 1, Waterside South, Lincoln LN5 7FD (United Kingdom)

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  16. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  17. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  18. Enhancing emulsification and antioxidant ability of egg albumin by moderately acid hydrolysis: Modulating an emulsion-based system for mulberry seed oil.

    Science.gov (United States)

    Chang, Jing; Kang, Xu; Yuan, Jiang-Lan

    2018-07-01

    Mulberry seed oil (MSO) is a kind of potential health-care lipids. This study, we investigated unsaturated fatty acids profiles of freshly squeezed MSO by GC-MS and modulated an oil-in-water emulsion system stabilized by acid hydrolyzed egg albumin (AHEA) to protect MSO from oxidation. The results showed that the content of total unsaturated fatty acids in MSO was almost 80%, of which 9, 12- and 10, 13-linoleic acid was over 60% and 10% respectively. In the case of the MSO-in-AHEA emulsions, it was observed that acid hydrolysis improved emulsifying effect, emulsifying stability and antioxidant activity of egg albumin (EA). The hydrolysates of EA (1%, w/w) acid hydrolyzed for 4 h at 85 °C had the best DPPH radical scavenging efficiency. It was suitable for EA to hydrolyze for 4 to 12 h at pH 2.5 and 85 °C because of their better emulsification and oxidation stability than the others. The results about AHEA could be valuable for designing delivery and protect systems for MSO or other bioactive component to avoid their oxidative damage or control their release. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Emulsification based dispersive liquid microextraction prior to flame atomic absorption spectrometry for the sensitive determination of Cd(II) in water samples

    International Nuclear Information System (INIS)

    Rahimi-Nasrabadi, Mehdi; Banan, Alireza; Zahedi, Mir Mahdi; Pourmortazavi, Seied Mahdi; Nazari, Zakieh; Asghari, Alireza

    2013-01-01

    We report on the application of emulsification-based dispersive liquid micro extraction (EB-DLME) to the preconcentration of Cd(II). This procedure not only possesses all the advantages of routine DLLME, but also results in a more stable cloudy state which is particularly useful when coupling it to FAAS. In EB-DLME, appropriate amounts of the extraction solvent (a solution of dithizone in chloroform) and an aqueous solution of sodium dodecyl sulfate (SDS; acting as a disperser) are injected into the samples. A stable cloudy microemulsion is formed and Cd(II) ion is extracted by chelation. After phase separation, the sedimented phase is subjected to FAAS. Under optimized conditions, the calibration curve for Cd(II) is linear in the range from 0.1 to 25 μg L −1 , the limit of detection (at S/N = 3) is 30 pg L −1 , the relative standard deviations for seven replicate analyses (at 0.56 μg L −1 of Cd(II)) is 4.6 %, and the enrichment factor is 151. EB-DLME in our opinion is a simple, efficient and rapid method for the preconcentration of Cd(II) (and most likely of many other ions) prior to FAAS determination. (author)

  20. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  1. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: effect of passive mixing

    Directory of Open Access Journals (Sweden)

    Ortiz de Solorzano I

    2016-07-01

    Full Text Available Isabel Ortiz de Solorzano,1,2,* Laura Uson,1,2,* Ane Larrea,1,2,* Mario Miana,3 Victor Sebastian,1,2 Manuel Arruebo1,2 1Department of Chemical Engineering and Environmental Technologies, Institute of Nanoscience of Aragon (INA, University of Zaragoza, 2CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, Centro de Investigación Biomédica en Red, Madrid, 3ITAINNOVA, Instituto Tecnológico de Aragón, Materials & Components, Zaragoza, Spain *These authors contributed equally to this work Abstract: By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid nanoparticles (NPs can be produced in a continuous manner and at a large scale (~10 g/h. An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification–evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates. Keywords: microchannel emulsification, high-throughput synthesis, drug-loaded polymer

  2. A two-step chemical scheme for kerosene-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Franzelli, B.; Riber, E.; Sanjose, M. [CERFACS, CFD Team, 42 Avenue G. Coriolis, 31057 Toulouse Cedex 01 (France); Poinsot, T. [IMFT-UMR 5502, allee du Professeur Camille Soula, 31400 Toulouse (France)

    2010-07-15

    A reduced two-step scheme (called 2S-KERO-BFER) for kerosene-air premixed flames is presented in the context of Large Eddy Simulation of reacting turbulent flows in industrial applications. The chemical mechanism is composed of two reactions corresponding to the fuel oxidation into CO and H{sub 2}O, and the CO - CO{sub 2} equilibrium. To ensure the validity of the scheme for rich combustion, the pre-exponential constants of the two reactions are tabulated versus the local equivalence ratio. The fuel and oxidizer exponents are chosen to guarantee the correct dependence of laminar flame speed with pressure. Due to a lack of experimental results, the detailed mechanism of Dagaut composed of 209 species and 1673 reactions, and the skeletal mechanism of Luche composed of 91 species and 991 reactions have been used to validate the reduced scheme. Computations of one-dimensional laminar flames have been performed with the 2S{sub K}ERO{sub B}FER scheme using the CANTERA and COSILAB softwares for a wide range of pressure ([1; 12] atm), fresh gas temperature ([300; 700] K), and equivalence ratio ([0.6; 2.0]). Results show that the flame speed is correctly predicted for the whole range of parameters, showing a maximum for stoichiometric flames, a decrease for rich combustion and a satisfactory pressure dependence. The burnt gas temperature and the dilution by Exhaust Gas Recirculation are also well reproduced. Moreover, the results for ignition delay time are in good agreement with the experiments. (author)

  3. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  4. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  5. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  6. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  7. Experimental study of the effects of swirl and air dilution on biogas non-premixed flame stability

    Directory of Open Access Journals (Sweden)

    Rowhani Amir

    2015-01-01

    Full Text Available An experimental investigation of the stability limits of biogas in a swirling non-premixed burner has been carried out. A mixture of 60% methane (CH4 and 40% carbon dioxide (CO2 was used to reach the typical biogas composition. Vane swirlers with 30º, 45º and 60º angles were used to make the swirling air. The biogas stability limits and flame behavior under swirling conditions were tested. Besides, effects of air dilution with nitrogen (N2 and CO2 on biogas stability limits were investigated. The results show that using swirl can enhance the flame stability limits approximately four or five times comparing to non-swirling air stream. Adding N2/CO2 to the air had negative effects on the flame stability but no changes were observed in the flame structure. The maximum air dilution was also obtained when 27% and 15% N2 was added to the swirling air under strong and weak swirl, respectively.

  8. γ-Oryzanol nanoemulsions produced by a low-energy emulsification method: an evaluation of process parameters and physicochemical stability.

    Science.gov (United States)

    Zhong, Jinfeng; Liu, Xiong; Wang, Yonghua; Qin, Xiaoli; Li, Zeling

    2017-06-21

    γ-Oryzanol is a natural antioxidant and nutraceutical compound, which makes it a good candidate for nutraceuticals, food supplements and pharmaceutical preparations. However, the incorporation of γ-oryzanol into aqueous formulations is rather difficult and its bioavailability can be severely decreased because of its water-insoluble property. In this study, γ-oryzanol-enriched nanoemulsion based fish oil and medium-chain triglyceride as carrier oils were proposed. The main objective was to optimize process parameters to form stable nanoemulsions and evaluate their physicochemical stability. The formulations of stable γ-oryzanol nanoemulsions were composed of 10% mixed carrier oils (weight ratio of fish oil to medium-chain triglyceride = 3 : 7) and 10% mixed surfactants (weight ratio of Tween 80 to Span 20 = 3 : 1). The nanoemulsions were stable at a broad pH range of 2-7 and high salt concentrations (≤0.8 mol L -1 ) and sucrose levels (≤16%). The nanoemulsions were much more stable at heating temperatures below 50 °C than at elevated heating temperatures (60 and 70 °C). The nanoemulsions maintained their physical stability at various storage temperatures (5-37 °C) for 18 days. Nanoemulsions at 5 and 23 °C had lower peroxide values and anisidine values than those at an elevated storage temperature (37 °C). These results demonstrate that the low-energy emulsification method can produce γ-oryzanol-enriched nanoemulsions using fish oil and medium-chain triglyceride as carrier oils, and provide useful information for producing bioactive lipids-loaded nanoemulsions for food systems, personal care and pharmaceutical products.

  9. Síntesis de microcápsulas de poliurea a partir de aminas renovables, mediante doble emulsificación Synthesis of polyurea microcapsules from renewable amines by double emulsification

    Directory of Open Access Journals (Sweden)

    Paula Mazo

    2011-01-01

    Full Text Available En este trabajo se realizó la microencapsulación de un perfume comercial mediante una doble emulsificación, la coraza de poliurea fue sintetizada por la reacción de Lisina con dos diisocianatos comerciales, uno aromático y otro alifático. En la síntesis se evaluó el efecto que tiene la relación molar amina:diisocianato y el tipo de emulsificante. Se optimizó el tamaño de partícula utilizando un diseño factorial 32 y análisis de superficie de respuesta, las variables fueron: cantidad de alcohol polivinílico y la relación de fase dispersa a fase continua. Las microcápsulas se caracterizaron mediante: análisis de calorimetría diferencial de barrido (DSC, espectroscopía infrarroja (IR, microscopía electrónica de barrido (SEM y tamaño medio de partícula. La doble emulsificación permite un mayor rendimiento de encapsulación del perfume, las micropartículas presentan un menor tamaño de partícula cuando: se emplea diisocianato aromático, un aumento de coloide protector (PVA y una disminución de la fase dispersa.This paper reports on the microencapsulation of a commercial perfume by means of a double emulsification, where the polyurea shell was synthesized by the reaction of lysine with two commercial di-isocyanates (aromatic and aliphatic. In the synthesis the factors evaluated were the amine:di-isocyanate molar ratio and the type of emulsifier. The particle size was optimized using a 3² factorial design and response surface analysis, with the following variables: amount of polyvinyl alcohol and the relationship of the disperse phase to continuous phase. The microcapsules were characterized using differential scanning calorimetry analysis (DSC, infrared spectroscopy (IR, scanning electron microscopy (SEM and mean particle size. The double emulsification allows for a greater yield in the encapsulation of perfume. Furthermore, the microparticles have a smaller particle size when the aromatic di-isocyanate was used, also

  10. Experimental and kinetic study of the iodine reactivity in low pressure H2/O2/H2O/HI/Ar premixed flames

    International Nuclear Information System (INIS)

    Delicat, Y.G.

    2012-01-01

    To assess kinetics aspects of iodine chemistry in an environment of a severe accident in a Pressurized Water Reactor (PWR), at the laboratory scale, an experimental reactor named 'flat flame burner' has been implemented. Low pressure flames of H 2 /O 2 /Ar premixed gas seeded with known amounts of iodhydric acid and steam were studied. The quantification of chemical species (HI, H 2 O, OH) in such environment was obtained by specific analytical techniques (Fourier Transform Infrared absorption spectrometry, FTIR and Laser Induced Fluorescence, LIF), the evolution of the temperature was determined by LIF and by thermocouple measurements. Further assays were performed in a flow reactor in which gaseous molecular iodine was injected and transported in a stream or hydrogen flow and a strong temperature gradient, representative of the primary circuit in the case of a severe accident. The resulting gaseous species (I 2 and HI) were quantified by ICP-MS and UV-Visible spectrometry. This experimental database has been used as a support to develop a detailed kinetic mechanism for the {I, O, H} system. It is composed of 37 reversible reactions involving 5 iodinated species. The thermo-kinetic parameter database has been actualized by using theoretical chemistry tools and also completed with data found in the literature. Modelling was performed by using the PREMIX code for flame assays, and with the in IRSN's severe accident simulation code ASTEC/SOPHAREOS code for flow reactor assays. The comparison between experiment and modelling shows that this detailed mechanism is able to reproduce the iodine chemistry in conditions representative of a PWR severe accident. (author)

  11. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shokri, Masood; Beiraghi, Asadollah; Seidi, Shahram

    2015-01-01

    For the first time, a simple and efficient in situ emulsification microextraction method using a dicationic ionic liquid followed by magnetic assisted physisorption was presented to determine trace amounts of lead. In this method, 400 μL of 1.0 mol L −1 lithium bis (trifluoromethylsulfonyl) imide aqueous solution, Li[NTf 2 ], was added into the sample solution containing 100 μL of 1.0 mol L −1 1,3-(propyl-1,3-diyl) bis (3-methylimidazolium) chloride, [pbmim]Cl 2 , to form a water immiscible ionic liquid, [pbmim][NTf 2 ] 2 . This new in situ formed dicationic ionic liquid was applied as the acceptor phase to extract the lead-ammonium pyrrolidinedithiocarbamate (Pb-APDC) complexes from the sample solution. Subsequently, 30 mg of Fe 3 O 4 magnetic nanoparticles (MNPs) were added into the sample solution to collect the fine droplets of [pbmim][NTf 2 ] 2 , physisorptively. Finally, MNPs were eluted by acetonitrile, separated by an external magnetic field and the obtained eluent was subjected to micro-sampling flame atomic absorption spectrometry (FAAS) for further analysis. Comparing with other microextraction methods, no special devices and centrifugation step are required. Parameters influencing the extraction efficiency such as extraction time, pH, concentration of chelating agent, amount of MNPs and coexisting interferences were studied. Under the optimized conditions, this method showed high extraction recovery of 93% with low LOD of 0.7 μg L −1 . Good linearity was obtained in the range of 2.5–150 μg L −1 with determination coefficient (r 2 ) of 0.9921. Relative standard deviation (RSD%) for seven repeated measurements at the concentration of 10 μg L −1 was 4.1%. Finally, this method was successfully applied for determination of lead in some water and plant samples. - Highlights: • A dicationic ionic liquid was used as the extraction solvent, for the first time. • A simple and efficient in situ emulsification microextraction

  12. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  13. Effects of switching from prandial premixed insulin therapy to basal plus two times bolus insulin therapy on glycemic control and quality of life in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ito H

    2014-04-01

    Full Text Available Hiroyuki Ito, Mariko Abe, Shinichi Antoku, Takashi Omoto, Masahiro Shinozaki, Shinya Nishio, Mizuo Mifune, Michiko ToganeDepartment of Diabetes, Metabolism and Kidney Disease, Edogawa Hospital, Tokyo, JapanBackground: The effects of switching from prandial premixed insulin therapy (PPT injected three times a day to basal plus two times bolus insulin therapy (B2B on glycemic control and quality of life were investigated in patients with type 2 diabetes mellitus.Methods: The clinical course was prospectively observed during the first 16 weeks after switching to B2B (insulin glargine plus insulin glulisine before breakfast and dinner in 27 subjects previously treated with PPT using 50/50 premixed insulin. The Diabetes Treatment Satisfaction Questionnaire (DTSQ was administered at the start and end of the study.Results: The glycated hemoglobin (HbA1c level (8.3%±1.8% to 8.2%±1.1% and the DTSQ score did not change between the start and end of the study. An improvement in HbA1c level was found in nine (33% subjects. The change in HbA1c showed a significant negative correlation with baseline HbA1c, and was significantly better in patients with a baseline HbA1c >8.0% than in those with an HbA1c ≤8.0% (−0.9±2.0 versus 0.3±0.6, respectively, P=0.02. The change in DTSQ score representing treatment satisfaction was significantly greater in patients whose HbA1c level was improved than in those in whom it was not (2.7±3.6 versus −0.8±3.5, P=0.04.Conclusion: B2B was noninferior to PPT with regard to HbA1c levels in patients with type 2 diabetes mellitus. B2B should be considered particularly for subjects whose glycemic control is poor despite PPT.Keywords: type 2 diabetes mellitus, insulin therapy, basal plus two times bolus insulin therapy, prandial premixed insulin therapy, Diabetes Treatment Satisfaction Questionnaire

  14. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  16. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  17. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  18. Lean premixed reacting flows with swirl and wall-separation zones in a contracting chamber

    Science.gov (United States)

    Zhang, Yuxin; Rusak, Zvi; Wang, Shixiao

    2017-11-01

    Low Mach number lean premixed reacting swirling flows with wall-separation zones in a contracting circular finite-length open chamber are studied. Assuming a complete reaction with high activation energy and chemical equilibrium behind the reaction zone, a nonlinear partial differential equation is derived for the solution of the flow stream function behind the reaction zone in terms of the inlet total enthalpy for a reacting flow, specific entropy and the circulation functions. Bifurcation diagrams of steady flows are described as the inlet swirl level is increased at fixed chamber contraction and reaction heat release. The approach is applied to an inlet solid-body rotation flow with constant profiles of the axial velocity, temperature and mixture reactant mass fraction. The computed results provide predictions of the critical inlet swirl levels for the first appearance of wall-separation states and for the size of the separation zone as a function of the inlet swirl ratio, Mach number, chamber contraction and heat release of the reaction. The methodology developed in this paper provides a theoretical feasibility for the development of the technology of swirl-assisted combustion where the reaction zone is supported and stabilized by a wall-separation zone.

  19. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas; Park, Sungwoo; Hansen, Nils; Sarathy, Mani

    2014-01-01

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model's capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  20. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas

    2014-06-14

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model\\'s capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.