WorldWideScience

Sample records for preliminary surface characterization

  1. Trial fabrication and preliminary characterization of electrical insulator for liquid metal system

    International Nuclear Information System (INIS)

    Nakamichi, Masaru; Kawamura, Hiroshi; Oyamada, Rokuro

    1995-03-01

    In the design of the liquid metal blanket, MHD pressure drop is one of critical issues. Ceramic coating on the surface of structural material is considered as an electrical insulator to reduce the MHD pressure drop. Ceramic coating such as Y 2 O 3 is a promising electrical insulator due to its high electrical resistivity and good compatibility with liquid lithium. This report describes the trial fabrication and preliminary characterization of electrical insulator for a design study of the liquid metal system. From the results of trial fabrication and preliminary characterization, it is concluded that densified atmospheric plasma spray Y 2 O 3 coating with 410SS undercoating between 316SS substrate and Y 2 O 3 coating is suitable for Y 2 O 3 coating fabrication. (author)

  2. Preliminary characterization of abandoned septic tank systems. Volume 1

    International Nuclear Information System (INIS)

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site

  3. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    Science.gov (United States)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  4. Preliminary characterization of slow growing rhizobial strains ...

    African Journals Online (AJOL)

    In this paper, we did some preliminary characterization of six slow growing rhizobial strains, isolated from Retama monosperma (L.) Boiss. root nodules sampled from 3 sites along the coast of Oran (CapeFalcon, Bousfer and MersElHadjadj) in Northwestern Algeria. Results of this study showed that all strains had a very ...

  5. Preliminary Validation of Composite Material Constitutive Characterization

    Science.gov (United States)

    John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson

    2012-01-01

    This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...

  6. Thermoluminescent dosemeters characterization for patient dosimetry in diagnostic radiology preliminary results

    International Nuclear Information System (INIS)

    Castro, William J.; Squair, Peterson L.; Gonzaga, Natalia B.; Nogueira, Maria S.; Silva, Teogenes A. da

    2009-01-01

    The determination of the metrological characteristics of thermoluminescent (TL) dosimeters plays an important role in dosimetry of patients submitted to x-ray examinations for diagnostic purpose. Entrance surface doses can be measured with TL dosimeters to verify the compliance with the diagnostic reference levels. Organ doses can be estimated through TL measurements in an anthropomorphic phantom which it allows the radiation risk assessment. In this work, LiF:Mg,Ti (TLD-100) rod and chip thermoluminescent dosimeters were characterized considering their use for patient dosimetry in computerized tomography and mammography. Preliminary results showed that TL dosimeters have a response reproducibility of 7.8% and 4.8% and homogeneity of 18.4% and 6.5% for rod and chip shapes, respectively. (author)

  7. Design and characterization of textured surfaces for applications in the food industry

    Science.gov (United States)

    Lazzini, G.; Romoli, L.; Blunt, L.; Gemini, L.

    2017-12-01

    The aim of this work is to design, manufacture and characterize surface morphologies on AISI 316L stainless steel produced by a custom designed laser-texturing strategy. Surface textures were characterized at a micrometric dimension in terms of areal parameters compliant with ISO 25178, and correlations between these parameters and processing parameters (e.g. laser energy dose supplied to the material, repetition rate of the laser pulses and scanning velocity) were investigated. Preliminary efforts were devoted to the research of special requirements for surface morphology that, according to the commonly accepted research on the influence of surface roughness on cellular adhesion on surfaces, should discourage the formation of biofilms. The topographical characterization of the surfaces was performed with a coherence scanning interferometer. This approach showed that increasing doses of energy to the surfaces increased the global level of roughness as well as the surface complexity. Moreover, the behavior of the parameters S pk, S vk also indicates that, due to the ablation process, an increase in the energy dose causes an average increase in the height of the highest peaks and in the depth of the deepest dales. The study of the density of peaks S pd showed that none of the surfaces analyzed here seem to perfectly match the conditions dictated by the theories on cellular adhesion to confer anti-biofouling properties. However, this result seems to be mainly due to the limits of the resolving power of coherence scanning interferometry, which does not allow the resolution of sub-micrometric features which could be crucial in the prevention of cellular attachment.

  8. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  9. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    International Nuclear Information System (INIS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Blázquez, O.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Hernández, S.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Garrido, B.

    2016-01-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  10. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    Science.gov (United States)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  11. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    International Nuclear Information System (INIS)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-01-01

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity(trademark) surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects

  12. Preliminary GRS Measurement of Chlorine Distribution on Surface of Mars

    Science.gov (United States)

    Keller, J. M.; Boynton, W. V.; Taylor, G. J.; Hamara, D.; Janes, D. M.; Kerry, K.

    2003-12-01

    Ongoing measurements with the Gamma Ray Spectrometer (GRS) aboard Mars Odyssey provide preliminary detection of chlorine at the surface of Mars. Summing all data since boom deployment and using a forward calculation model, we estimate values for chlorine concentration at 5° resolution. Rebinning this data and smoothing with a 15-degree-radius boxcar filter reveal regions of noticeable chlorine enrichment at scales larger than the original 5° resolution and allow for preliminary comparison with previous Mars datasets. Analyzing chlorine concentrations within 30 degrees of the equator, we find a negative correlation with thermal inertia (R2=0.55) and positive correlation with albedo (R2=0.52), indicating that chlorine is associated with fine, non-rock surface materials. Although possibly a smoothing artifact, the spatial correlation is more noticeable in the region covering Tharsis and Amazonis than around Arabia and Elysium. Additionally, a noticeable region of chlorine enrichment appears west of Tharsis Montes ( ˜0 to 20N, ˜110 to 150W) and chlorine concentration is estimated to vary in the equatorial region by over a factor of two. A simplified two-component model involving chlorine-poor rocks and a homogenous chlorine-rich fine material requires rock abundance to vary from zero to over 50%, a result inconsistent with previous measurements and models. In addition to variations in rock composition and distribution, substantial variations in chlorine content of various types of fine materials including dust, sand, and duricrust appear important in explaining this preliminary observation. Surprisingly, visual comparison of surface units mapped by Christensen and Moore (1992) does not show enrichment in chlorine associated with regions of indurated surfaces, where cementation has been proposed. Rather, Tharsis, a region of active deposition with proposed mantling of 0.1 to 2 meters of recent dust (Christensen 1986), shows the greatest chlorine signal. In light of

  13. Characterization of solid surfaces

    National Research Council Canada - National Science Library

    Kane, Philip F; Larrabee, Graydon B

    1974-01-01

    .... A comprehensive review of surface analysis, this important volume surveys both principles and techniques of surface characterization, describes instrumentation, and suggests the course of future research...

  14. SURFACE GEOPHYSICAL EXPLORATION OF B, BX, and BY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    International Nuclear Information System (INIS)

    MYERS DA

    2007-01-01

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around the site with large metallic subsurface debris or metallic infrastructure

  15. Surface characterization of ceramic materials

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Salmeron, M.

    1976-01-01

    In recent years several techniques have become available to characterize the structure and chemical composition of surfaces of ceramic materials. These techniques utilize electron scattering and scattering of ions from surfaces. Low-energy electron diffraction is used to determine the surface structure, Auger electron spectroscopy and other techniques of electron spectroscopy (ultraviolet and photoelectron spectroscopies) are employed to determine the composition of the surface. In addition the oxidation state of surface atoms may be determined using these techniques. Ion scattering mass spectrometry and secondary ion mass spectrometry are also useful in characterizing surfaces and their reactions. These techniques, their applications and the results of recent studies are discussed. 12 figures, 52 references, 2 tables

  16. Detailed characterization and preliminary adsorption model for materials for an intermediate-scale reactive-transport experiment

    International Nuclear Information System (INIS)

    Ward, D.B.; Bryan, C.R.

    1994-01-01

    An experiment involving migration of fluid and tracers (Li, Br, Ni) through a 6-m-high x 3-m-dia caisson Wedron 510 sand, is being carried out for Yucca Mountain Site Characterization Project. Sand's surface chemistry of the sand was studied and a preliminary surface-complexation model of Ni adsorption formulated for transport calculations. XPS and leaching suggest that surface of the quartz sand is partially covered by thin layers of Fe-oxyhydroxide and Ca-Mg carbonate and by flakes of kaolinite. Ni adsorption by the sand is strongly pH-dependent, showing no adsorption at pH 5 and near-total adsorption at pH 7. Location of adsorption edge is independent of ionic strength and dissolved Ni concentration; it is shifted to slightly lower pH with higher pCO2 and to slightly higher pH by competition with Li. Diminished adsorption at alkiline pH with higher pCO2 implies formation of dissolved Ni-carbonato complexes. Ni adsorption edges for goethite and quartz, two components of the sand were also measured. Ni adsorption on pure quartz is only moderately pH-dependent and differs in shape and location from that of the sand, whereas Ni adsorption by goethite is strongly pH-dependent. A triple-layer surface-complexation model developed for goethite provides a good fit to the Ni-adsorption curve of the sand. Based on this model, the apparent surface area of the Fe-oxyhydroxide coating is estimated to be 560 m 2 /g, compatible with its occurrence as amorphous Fe-oxyhydroxide. Potentiometric titrations on sand also differ from pure quartz and suggest that effective surface area of sand may be much greater than that measured by N 2 -BET gas adsorption. Attempts to model the adsorption of bulk sand in terms of properties of pure end member components suggest that much of the sand surface is inert. Although the exact Ni adsorption mechanisms remain ambiguous, this preliminary adsorption model provides an initial set of parameters that can be used in transport calculations

  17. Topographic characterization of glazed surfaces

    International Nuclear Information System (INIS)

    Froeberg, Linda; Hupa, Leena

    2008-01-01

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface

  18. Topographic characterization of glazed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Froeberg, Linda [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)], E-mail: lfroberg@abo.fi; Hupa, Leena [Process Chemistry Centre, Abo Akademi University, FI-20500 Turku (Finland)

    2008-01-15

    Detailed characterization of surface microstructure, i.e. phase composition and surface geometry, has become an important criterion of glazed ceramics. Topographic characterization is an important parameter in, e.g. estimating the influence of additional films on the average roughness of a surface. Also, the microscaled and nanoscaled roughnesses correlate with the cleanability and the self-cleaning properties of the surfaces. In this work the surface geometry of several matte glazes were described by topography and roughness as given by whitelight confocal microscopy and atomic force microscopy. Different measuring parameters were compared to justify the usefulness of the techniques in giving a comprehensive description of the surface microstructure. The results suggest that confocal microscopy is well suited for giving reliable topographical parameters for matte surfaces with microscaled crystals in the surfaces. Atomic force microscopy was better suited for smooth surfaces or for describing the local topographic parameters of closely limited areas, e.g. the surroundings of separate crystals in the surface.

  19. Surface characterization protocol for precision aspheric optics

    Science.gov (United States)

    Sarepaka, RamaGopal V.; Sakthibalan, Siva; Doodala, Somaiah; Panwar, Rakesh S.; Kotaria, Rajendra

    2017-10-01

    In Advanced Optical Instrumentation, Aspherics provide an effective performance alternative. The aspheric fabrication and surface metrology, followed by aspheric design are complementary iterative processes for Precision Aspheric development. As in fabrication, a holistic approach of aspheric surface characterization is adopted to evaluate actual surface error and to aim at the deliverance of aspheric optics with desired surface quality. Precision optical surfaces are characterized by profilometry or by interferometry. Aspheric profiles are characterized by contact profilometers, through linear surface scans to analyze their Form, Figure and Finish errors. One must ensure that, the surface characterization procedure does not add to the resident profile errors (generated during the aspheric surface fabrication). This presentation examines the errors introduced post-surface generation and during profilometry of aspheric profiles. This effort is to identify sources of errors and is to optimize the metrology process. The sources of error during profilometry may be due to: profilometer settings, work-piece placement on the profilometer stage, selection of zenith/nadir points of aspheric profiles, metrology protocols, clear aperture - diameter analysis, computational limitations of the profiler and the software issues etc. At OPTICA, a PGI 1200 FTS contact profilometer (Taylor-Hobson make) is used for this study. Precision Optics of various profiles are studied, with due attention to possible sources of errors during characterization, with multi-directional scan approach for uniformity and repeatability of error estimation. This study provides an insight of aspheric surface characterization and helps in optimal aspheric surface production methodology.

  20. Ultrafine Magnetite Nanopowder: Synthesis, Characterization, and Preliminary Use as Filler of Polymethylmethacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2012-01-01

    Full Text Available Magnetite (Fe3O4 nanoparticles prepared by microwave-assisted hydrothermal synthesis have been characterized in terms of morphological and structural features. Electron micrographs collected in both scanning (SEM and transmission (TEM modes and evaluations of X-ray powder diffraction (XRD patterns have indicated the achievement of a monodispersed crystallite structure with particles having an average size around 15–20 nm. Structural investigations by Micro-Raman spectroscopy highlighted the obtainment of magnetite nanocrystals with a partial surface oxidation to maghemite (γ-Fe3O4. Preliminary attention has been also paid to the use of these magnetite nanoparticles as filler for a commercial polymethylmethacrylate resin. Hybrid formulations containing up to 3 wt% of nanoparticles were prepared by melt blending and characterized by calorimetric and thermogravimetric tests. For sake of comparison, same formulations containing commercial Fe3O4 nanoparticles are also reported. Calorimetric characterization indicates an increase of both glass transition temperature and thermal stability of the nanocomposite systems when loaded with the synthesized magnetite nanoparticles rather then loaded with the same amount of commercial Fe3O4. This first observation represents just one aspect of the promising potentiality offered by the novel magnetic nanoparticles when mixed with PMMA.

  1. Development of polygonal surface version of ICRP reference phantoms: Preliminary study for posture change

    International Nuclear Information System (INIS)

    Nguyen, Tat Thang; Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong

    2013-01-01

    Even though International Commission on Radiological Protection (ICRP) officially adopted a set of adult male and female voxel phantoms as the ICRP reference phantoms, there are several critical limitations due to the nature of voxel geometry and their low voxel resolutions. In order to overcome these limitations of the ICRP phantoms, we are currently developing polygonal surface version of ICRP reference phantoms by directly converting the ICRP voxel phantoms to polygonal surface geometries. Among the many advantages of the ICRP polygonal surface phantom, especially, it is flexible and deformable. In principle, it is, therefore, possible to make the posture-changed ICRP phantoms which can provide more accurate dose values for exposure situations strongly relevant to worker's postures. As a preliminary study for developing the posture-changed ICRP phantoms, in this work we changed the posture of the preliminary version of ICRP male polygon-surface phantom constructed in the previous study. Organ doses were then compared between original and posture-changed phantoms. In the present study, we successfully changed a posture of the preliminary version of ICRP male polygon-surface phantom to the walking posture. From this results, it was explicitly shown that the polygon-surface version of the ICRP phantoms can be sufficiently modified to be various postures with the posture-changing method used in this study. In addition, it was demonstrated that phantom's posture must be considered in certain exposure situations, which can differ dose values from the conventional standing-posture phantom

  2. Statistical characterization of surface features from tungsten-coated divertor inserts in the DIII-D Metal Rings Campaign

    Science.gov (United States)

    Adams, Jacob; Unterberg, Ezekial; Chrobak, Christopher; Stahl, Brian; Abrams, Tyler

    2017-10-01

    Continuing analysis of tungsten-coated inserts from the recent DIII-D Metal Rings Campaign utilizes a statistical approach to study carbon migration and deposition on W surfaces and to characterize the pre- versus post-exposure surface morphology. A TZM base was coated with W using both CVD and PVD and allowed for comparison between the two coating methods. The W inserts were positioned in the lower DIII-D divertor in both the upper (shelf) region and lower (floor) region and subjected to multiple plasma shots, primarily in H-mode. Currently, the post-exposure W inserts are being characterized using SEM/EDX to qualify the surface morphology and to quantify the surface chemical composition. In addition, profilometry is being used to measure the surface roughness of the inserts both before and after plasma exposure. Preliminary results suggest a correlation between the pre-exposure surface roughness and the level of carbon deposited on the surface. Furthermore, ongoing in-depth analysis may reveal insights into the formation mechanism of nanoscale bumps found in the carbon-rich regions of the W surfaces that have not yet been explained. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  3. Preliminary crystallographic characterization of an RNA helicase from Kunjin virus

    International Nuclear Information System (INIS)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Brisbarre, Nadège; Lamballerie, Xavier de; Coutard, Bruno; Canard, Bruno; Khromykh, Alexander; Bolognesi, Martino

    2006-01-01

    The C-terminal 440 amino acids of the NS3 protein from Kunjin virus (Flaviviridae) code for a helicase. The protein has been overexpressed and crystallized. Characterization of the isolated monoclinic crystal form and diffraction data (at 3.0 Å resolution) are presented, together with a preliminary molecular-replacement solution. Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3′ nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds

  4. SURFACE GEOPHYSICAL EXPLORATION OF TX AND TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    International Nuclear Information System (INIS)

    MYERS DA; RUCKER D; LEBITT M; CUBBAGE B; HENDERSON

    2008-01-01

    This report documents the results of preliminary surface geophysical exploration activities performed between September and October 2007 at the waste management areas surrounding the TX and TY tank farms. The TX-TY tank farms are located in the 200 West Area of the US Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to acquire background characterization information using magnetic gradiometry (Mag) and electromagnetic induction (EM) methods to understand the spatial distribution of buried metallic objects that could potentially interfere with the results of a subsequently completed high resolution resistivity survey

  5. Hydrodynamic Characterization of a Surface Storage Zone in a Natural Stream

    Science.gov (United States)

    Sandoval Ulloa, J. C.; Escauriaza, C. R.; Mignot, E.; Mao, L.

    2015-12-01

    Flow developed in surface storage zones in rivers is very important for many physical and biogeochemical processes. These regions are characterized by low velocities compared to the flow in the main channel and long residence times that favor the deposition of contaminants, nutrient uptake and interactions with reactive sediments. The dynamics of the turbulent flows in these zones is very complex, typically characterized by a shear layer that induces a recirculating area, with multiple large-scale coherent structures of different temporal and spatial scales. In this work we present the methodology and analysis of measurements in a natural surface storage zone. We report detailed information of a field campaign carried out in the Lluta River, located in northern Chile in the high altitude Andean environment known as the Altiplano (~4,000 masl). The area of study has great interest for the river ecosystem, since the water has high concentration levels of arsenic and other metals. The Lluta River is also a water source for many agricultural communities and urban centers located in the lower parts of the watershed. Field information obtained was: detailed topography, 3D velocity components in several points, and sediment arsenic concentration in the main channel and in the recirculating region of the natural surface storage zone. Topography was obtained through DGPS and digital image processing. The 3D velocity field was measured with an acoustic Doppler velocimeter (ADV) and surface velocity data was obtained through the LSPIV technique. Arsenic concentration was obtained by sediment sampling analysis. With this data we analyze the flow topology and characteristics features of the velocity, which constitute the controlling mechanisms of contaminant transport in the field. In addition, we contrast with preliminary results of a three-dimensional (3D) numerical simulation, to determine the influence of different parameters on the transport and mixing processes in natural

  6. Recent characterization of steel by surface analysis methods

    International Nuclear Information System (INIS)

    Suzuki, Shigeru

    1996-01-01

    Surface analysis methods, such as Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, glow discharge optical emission spectrometry and so on, have become indispensable to characterize surface and interface of many kinds of steel. Although a number of studies on characterization of steel by these methods have been carried out, several problems still remain in quantification and depth profiling. Nevertheless, the methods have provided essential information on the concentration and chemical state of elements at the surface and interface. Recent results on characterization of oxide layers, coated films, etc. on the surface of steel are reviewed here. (author). 99 refs

  7. Topographic characterization of nanostructures on curved polymer surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Petersen, Jan C.; Taboryski, Rafael J.

    2014-01-01

    The availability of portable instrumentation for characterizing surface topography on the micro- and nanometer scale is very limited. Particular the handling of curved surfaces, both concave and convex, is complicated or not possible on current instrumentation. However, the currently growing use...... method with a portable instrument that can be used in a production environment, and topographically characterize nanometer-scale surface structures on both flat and curved surfaces. To facilitate the commercialization of injection moulded polymer parts featuring nanostructures, it is pivotal...... of injection moulding of polymer parts featuring nanostructured surfaces, requires an instrument that can characterize these structures to ensure replication-confidence between master structure and replicated polymer parts. This project concerns the development of a metrological traceable quality control...

  8. Preliminary data evaluation for thermal insulation characterization testing

    International Nuclear Information System (INIS)

    DeClue, J.F.; Moses, S.D.; Tollefson, D.A.

    1991-01-01

    The purpose of Thermal Insulation Characterization Testing is to provide physical data to support certain assumptions and calculational techniques used in the criticality safety calculations in Section 6 of the Safety Analysis Reports for Packaging (SARPs) for drum-type packaging for Department of Energy's (DOE) Oak Ridge Y-12 Plant, managed by Martin Marietta Energy Systems, Inc. Results of preliminary data evaluation regarding the fire-test condition reveal that realistic weight loss consideration and residual material characterization in developing calculational models for the hypothetical accident condition is necessary in order to prevent placement of unduly conservative restrictions on shipping requirements as a result of overly conservative modeling. This is particularly important for fast systems. Determination of the geometric arrangement of residual material is of secondary importance. Both the methodology used to determine the minimum thermal insulation mass remaining after the fire test and the treatment of the thermal insulation in the criticality safety calculational models requires additional evaluation. Specific testing to be conducted will provide experimental data with which to validate the mass estimates and calculational modeling techniques for extrapolation to generic drum-type containers

  9. Characterization of a surface dielectric barrier discharge

    NARCIS (Netherlands)

    Pemen, A.J.M.; Beckers, F.J.C.M.; Heesch, van E.J.M.

    2009-01-01

    A surface dielectric barrier discharge (SDBD) reactor provides a homogeneous plasma over a large surface area. This allows surface treatments of foils, textiles or fibers. Here we present results of a study to characterize the AC and pulsed performance of SDBD with regard to ozone production,

  10. uleSIMS characterization of silver reference surfaces

    Science.gov (United States)

    Palitsin, V. V.; Dowsett, M. G.; Mata, B. Guzmán de la; Oloff, I. W.; Gibbons, R.

    2006-07-01

    Ultra low energy SIMS (uleSIMS) is a high sensitivity analytical technique that is normally used for ultra shallow profiling at a depth resolution of up to1 nm. This work describes the use of uleSIMS as both a spectroscopic and depth-profiling tool for the characterization of the early stages of corrosion formed on reference surfaces of silver. These samples are being developed to help with the characterization of tarnished surfaces in a cultural heritage context, and uleSIMS enables the tarnishing to be studied from its very earliest stages due to its high sensitivity (ppm-ppb) and surface specificity. We show that, uleSIMS can be used effectively to study the surface chemistry and aid the development of reference surfaces themselves. In particular, handling contaminants, surface dust, and residues from polishing are relatively easy to identify allowing them to be separated from the parts of the mass spectrum specific to the early stages of corrosion.

  11. Integrated biomechanical and topographical surface characterization (IBTSC)

    Energy Technology Data Exchange (ETDEWEB)

    Löberg, Johanna, E-mail: Johanna.Loberg@dentsply.com [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Mattisson, Ingela [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Ahlberg, Elisabet [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg (Sweden)

    2014-01-30

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  12. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  13. Preliminary tank characterization report for single-shell tank 241-TY-102: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TY-102. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  14. Preliminary tank characterization report for single-shell tank 241-TX-113: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-113. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  15. Optimized Extraction, Preliminary Characterization, and In Vitro Antioxidant Activity of Polysaccharides from Glycyrrhiza Uralensis Fisch.

    Science.gov (United States)

    Chen, Jie; Li, Wan-Chen; Gu, Xin-Li

    2017-04-13

    BACKGROUND This study performed optimized extraction, preliminary characterization, and in vitro antioxidant activities of polysaccharides from Glycyrrhiza uralensis Fisch. MATERIAL AND METHODS Three parameters (extraction temperature, ratio of water to raw material, and extraction time) were optimized for yields of G. uralensis polysaccharides (GUP) using response surface methodology with Box-Behnken design (BBD). The GUP was purified using DEAE cellulose 32-column chromatography. The main fraction obtained from G. uralensis Fisch was GUP-II, which was composed of rhamnose, arabinose, galactose, and glucose monosaccharide, was screened for antioxidant properties using DP Hand hydroxyl radical scavenging assays. In addition, immunological activity of GUP-II was determined by nitric oxide and lymphocyte proliferation assays. RESULTS Optimization revealed maximum GUP yields with an extraction temperature of 99°C, water: raw material ratio of 15: 1, and extraction duration of 2 h. GUP-II purified from G. uralensis Fisch had good in vitro DPPH and hydroxyl radical scavenging abilities. Immunologically, GUP-II significantly stimulated NO production in RAW 264.7 macrophages, and significantly enhanced LPS-induced lymphocyte proliferation. CONCLUSIONS Extraction of GUP from G. uralensis Fisch can be optimized with respect to temperature, extraction period, and ratio of water to material, using response surface methodology. The purified product (GUP-II) possesses excellent antioxidant and immunological activities.

  16. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    International Nuclear Information System (INIS)

    Lim, Doo Hyun; Hatanaka, Koichiro; Ishii, Eiichi

    2010-01-01

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  17. Site Characterization and Preliminary Performance Assessment Calculation Applied To JAEA-Horonobe URL Site of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Doo Hyun [NE Union Hill Road, Suite 200, WA 98052 (United States); Hatanaka, Koichiro; Ishii, Eiichi [Japan Atomic Energy Agency, Hokkaido (Japan)

    2010-10-15

    JAEA-Horonobe Underground Research Laboratory (URL) is designed for research and development on high-level radioactive waste (HLW) repository in sedimentary rock. For a potential HLW repository, understanding and implementing fracturing and faulting system, with data from the site characterization, into the performance assessment is essential because fracture and fault will be the major conductors or barriers for the groundwater flow and radionuclide release. The objectives are i) quantitative derivation of characteristics and correlation of fracturing/faulting system with geologic and geophysics data obtained from the site characterization, and ii) preliminary performance assessment calculation with characterized site information

  18. Preliminary Examination of Particles Recovered from the Surface of the Asteroid Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Tsuchiyama, A.; Ebihara, M.; Kimura, M.; Kitajima, F.; Kotsugi, M.; Ito, S.; Nagao, K.; Nakamura, T.; Naraoka, H.; Noguchi, T.; hide

    2011-01-01

    The Hayabusa spacecraft arrived at S-type Asteroid 25143 Itokawa in November 2006, and reveal astounding features of the small asteroid (535 x 294 x 209 m). Near-infrared spectral shape indicates that the surface of this body has an olivinerich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering. Based on the surface morphological features observed in high-resolution images of Itokawa s surface, two major types of boulders were distinguished: rounded and angular boulders. Rounded boulders seem to be breccias, while angular boulders seem to have severe impact origin. Although the sample collection did not be made by normal operations, it was considered that some amount of samples, probably small particles of regolith, was collected from MUSES-C regio on the Itokawa s surface. The sample capsule was successfully recovered on the earth on June 13, 2010, and was opened at curation facility of JAXA (Japan Aerospace Exploration Agency), Sagamihara, Japan. A large number of small particles were found in the sample container. Preliminary analysis with SEM/EDX at the curation facility showed that at least more than 1500 grains were identified as rocky particles, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa. Minerals (olivine, low-Ca pyroxene, high-Ca pyroxene, plagioclase, Fe sulfide, Fe-Ni metal, chromite, Ca phosphate), roughly estimated mode the minerals and rough measurement of the chemical compositions of the silicates show that these particles are roughly similar to LL chondrites. Although their size are mostly less than 10 m, some larger particles of about 100 m or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team and examined preliminary in Japan within one year after the sample recovery in prior to detailed analysis phase. Hayabusa Asteroidal Sample Preliminary

  19. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  20. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  1. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  2. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav; Mantega, Mauro; Rungger, Ivan; Sanvito, Stefano; Boland, John J.

    2011-01-01

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  3. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    International Nuclear Information System (INIS)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Lamballeire, Xavier de; Brisbare, Nadege; Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno; Gould, Ernest; Forrester, Naomi; Bolognesi, Martino

    2006-01-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup

  4. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy); Lamballeire, Xavier de; Brisbare, Nadege [Unité des Virus Emergents, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille (France); Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS ESIL, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France); Gould, Ernest; Forrester, Naomi [CEH Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Bolognesi, Martino, E-mail: martino.bolognesi@unimi.it [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy)

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.

  5. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay

    International Nuclear Information System (INIS)

    Domingos, Luanda G.; Rego, Jose K.M.A. do; Ito, Edson N.; Acchar, Wilson

    2011-01-01

    The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

  6. Bulk and surface characterization of novel photoresponsive polymeric systems

    Science.gov (United States)

    Venkataramani, Shivshankar

    This dissertation presents a detailed characterization of two important classes of photoresponsive polymers-polydiacetylenes (PDAs) and azopolymers. Bulk and surface characterization techniques were used to evaluate the structure-property relationships of the PDAs and surface characterization, in particular-atomic force microscopy (AFM) was used to characterize the azopolymers. PDAs from bis-alkylurethanes of 5,7 dodecadiyn 1,12-diol (viz.,) ETCD, IPUDO and PUDO are of particular interest in view of reports of reversible thermochromic and photochromic phase transitions in these materials. Thermochromism in the above PDAs is associated with a first order phase transition involving expansion of the crystallographic unit cell, the preservation of the urethane hydrogen bonding and possibly some relief of mechanical strain upon heating. Insights into thermochromism obtained from studies of nonthermochromic forms of PDA-ETCD are discussed. Some of the bulk characterization experiments reported In the literature are repeated. The motivation to investigate the surface morphology of the PDA single crystals using AFM was derived from Raman spectroscopy studies of various PDAs in which dispersion of the Raman spectrum indicating surface heterogeneity was observed. Micron scale as well as molecularly resolved images were obtained The micron scale images indicated a variable surface of the crystals. The molecularly resolved images showed a well defined 2-D lattice and are interpreted in terms of known crystallographic data. The surface parameters obtained from AFM measurements are similar to those determined from X-ray diffraction. During an attempt of AFM imaging of IPUDO crystals exposed to 254 nm ultraviolet light, it was observed that these crystals undergo a "macroscopic shattering". In the interest of rigorously defining conditions for photochromism, this research has undertaken a combined study of the surface morphology of the above mentioned PDA crystals by AFM and the

  7. Extraction, Preliminary Characterization and Evaluation of in Vitro Antitumor and Antioxidant Activities of Polysaccharides from Mentha piperita

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2014-09-01

    Full Text Available This study describes the extraction, preliminary characterization and evaluation of the in vitro antitumor and antioxidant activities of polysaccharides extracted from Mentha piperita (MPP. The optimal parameters for the extraction of MPP were obtained by Box-Behnken experimental design and response surface methodology (RSM at the ratio of water to raw material of 20, extraction time of 1.5 h and extraction temperature at 80 °C. Chemical composition analysis showed that MPP was mainly composed of glucuronic acid, galacturonic acid, glucose, galactose and arabinose, and the molecular weight of its two major fractions were estimated to be about 2.843 and 1.139 kDa, respectively. In vitro bioactivity experiments showed that MPP not only inhibited the growth of A549 cells but possessed potent inhibitory action against DNA topoisomerase I (topo I, and an appreciative antioxidant action as well. These results indicate that MPP may be useful for developing safe natural health products.

  8. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  9. Characterization of Pectin Nanocoatings at Polystyrene and Titanium Surfaces

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna; Dirscherl, Kai; Yihua, Yu

    2013-01-01

    . To characterize, compare and visualize the surface nanocoatings measurements of contact angle measurements and surface roughness with atomic force microscopy, scanning electron microscopy, and confocal microscopy was performed. We found that, both unmodified and enzymatic modified RG-Is influenced surface...

  10. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis

    International Nuclear Information System (INIS)

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk

  11. Surface and Electrical Characterization of Conjugated Molecular Wires

    Science.gov (United States)

    Demissie, Abel Tesfahun

    This thesis describes the surface and electrical characterization of ultrathin organic films and interfaces. These films were synthesized on the surface of gold by utilizing layer by layer synthesis via imine condensation. Film growth by imine click (condensation) chemistry is particularly useful for molecular electronics experiments because it provides a convenient means to obtain and extend ?-conjugation in the growth direction. However, in the context of film growth from a solid substrate, the reaction yield per step has not been characterized previously, though it is critically important. To address these issues, my research focused on a comprehensive characterization of oligophenyleneimine (OPI) wires via Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), reflection-absorption infrared spectroscopy (RAIRS), and cyclic voltammetry (CV). In addition, we had the unique opportunity of developing the first of its kind implementation of nuclear reaction analysis (NRA) to probe the intensity of carbon atoms after each addition step. Overall the combination of various techniques indicated that film growth proceeds in a quantitative manner. Furthermore, the NRA experiment was optimized to measure the carbon content in self-assembled monolayers of alkyl thiols. The results indicated well-resolved coverage values for ultrathin films with consecutive steps of 2 carbon atoms per molecule. Another fundamental problem in molecular electronics is the vast discrepancy in the values of measured resistance per molecule between small and large area molecular junctions. In collaboration with researchers at the National University of Singapore, we addressed these issues by comparing the electrical properties of OPI wires with the eutectic gallium indium alloy (EGaIn) junction (1000 mum2), and conducting probe atomic force microscopy (CP-AFM) junction (50 nm2). Our results showed that intensive (i.e., area

  12. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum.

    Science.gov (United States)

    Chen, Xin-Xin; Cheng, Bin; Yang, Yi-Xin; Cao, Aoneng; Liu, Jia-Hui; Du, Li-Jing; Liu, Yuanfang; Zhao, Yuliang; Wang, Haifang

    2013-05-27

    Nanotechnology shows great potential for producing food with higher quality and better taste through including new additives, improving nutrient delivery, and using better packaging. However, lack of investigations on safety issues of nanofood has resulted in public fears. How to characterize engineered nanomaterials in food and assess the toxicity and health impact of nanofood remains a big challenge. Herein, a facile and highly reliable separation method of TiO2 particles from food products (focusing on sugar-coated chewing gum) is reported, and the first comprehensive characterization study on food nanoparticles by multiple qualitative and quantitative methods is provided. The detailed information on nanoparticles in gum includes chemical composition, morphology, size distribution, crystalline phase, particle and mass concentration, surface charge, and aggregation state. Surprisingly, the results show that the number of food products containing nano-TiO2 (TiO2 in gum is nano-TiO2 , and it is unexpectedly easy to come out and be swallowed by a person who chews gum. Preliminary cytotoxicity assays show that the gum nano-TiO2 particles are relatively safe for gastrointestinal cells within 24 h even at a concentration of 200 μg mL(-1) . This comprehensive study demonstrates accurate physicochemical property, exposure, and cytotoxicity information on engineered nanoparticles in food, which is a prerequisite for the successful safety assessment of nanofood products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels

    International Nuclear Information System (INIS)

    Adaixo, Ricardo; Morais-Cabral, João Henrique

    2010-01-01

    The N-terminal PAS domains from the eukaryotic EAG potassium channels are thought to have a regulatory function. Here the expression, purification, crystallization and preliminary crystallographic characterization of two of these domains are described. Per–Arnt–Sim (PAS) domains are ubiquitous in nature; they are ∼130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported

  14. Investigation on the micromilled surface characterization through replica technology

    DEFF Research Database (Denmark)

    Baruffi, Federico; Parenti, P.; Cacciatore, F.

    2016-01-01

    for the indirect measurement of micromilled surfaces, characterized by submicrometer roughness levels. The study assesses the performance of the replication method by measuring the surface roughness (in terms of Sa) of specifically designed micromilled flat surfaces. A 3D confocal optical microscope is employed...

  15. Preliminary characterization of dose in personnel of interventional radiology

    International Nuclear Information System (INIS)

    Godolfim, Laura Larre; Anes, Mauricio; Bacelar, Alexandre; Lykawka, Rochelle

    2016-01-01

    Exposure to X-rays of Interventional Radiology professionals (IR) impacts in the high dose rate received by these individuals, and there are reports of biological effects of this professional activity. Therefore, it is fomented greater control over the doses received by these workers. This research intends to characterize the doses received by the professionals during IR procedures. We evaluated the doses of radiologists, anesthesiologists and nursing staff of the Hospital de Clinicas de Porto Alegre, through measures with dosimeters of the OSL type, distributed in up to six regions of the body of these professionals. Until now were accompanied 33 cholangiography procedures and 29 embolization procedures. As a preliminary result, it was possible to identify a wide variation between doses of the professionals of the same function in each procedure. In overview, the dose of the professionals presented in descending order as a radiologist 1> radiologist 2 > anesthetist > nursing. (author)

  16. Spinorial characterizations of surfaces into 3-dimensional psuedo-Riemannian space forms

    OpenAIRE

    Lawn , Marie-Amélie; Roth , Julien

    2011-01-01

    9 pages; We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For Lorentzian surfaces, this generalizes a recent work of the first author in $\\mathbb{R}^{2,1}$ to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well ...

  17. Surface spectroscopic characterization of a model methane-activation catalyst

    International Nuclear Information System (INIS)

    Chen, J.G.; Weisel, M.D.; Hoffmann, F.M.; Hall, R.B.

    1992-01-01

    In an effort to understand the details concerning the alkali-promoted selectivity for the oxidative coupling of methane, the authors have carried out a detailed characterization of a model K/NiO/Ni(100) catalyst under well-controlled, ultrahigh vacuum conditions. The authors' systematic approach involved the following procedures: detailed investigation of the formation and structure of NiO on a clean Ni(100) surface; spectroscopic characterization of K-doped NiO by in situ deposition of potassium onto well-characterized NiO/Ni(100) substrate; and determination of the reactivities of NiO/Ni(100) and K/NiO/Ni(100) towards H 2 and CH 4 . In this paper, the authors will use the model K/NiO/Ni(100) system as an example to demonstrate that a detailed, complementary characterization of the model catalyst could best be achieved by using a combination of a variety of surface techniques: The methods of HREELS, LEED, XPS and AES could be applied to obtain properties on and near the surface regions; the technique of FYNES, being a photon-in/photon-out method could be utilized to investigate the bulk properties up to 2000 Angstrom below the surface; the method of FTIR using CO as a probing molecule is, on the other hand, sensitive only to the properties of the top-most surface layer. The result is to be presented in this paper will be mainly those obtained by using the two vibrational spectroscopies (HREELS and FTIR). Results from other surface techniques will also be discussed or presented when they provide additional information to the vibrational data

  18. Preliminary Phytochemical and Physicochemical Characterization of ...

    African Journals Online (AJOL)

    Purpose: To carry out phytochemical and physicochemical studies on the leaves of Gynura segetum. Methods: Preliminary phytochemical and physicochemical studies using chromatographic techniques,were carried out, Parameters evaluated include ash value, loss on drying and extractive value, amongst others.

  19. Synthesis, surface characterization and optical properties of 3

    Indian Academy of Sciences (India)

    3-Thiopropionic acid (TPA) capped ZnS:Cu nanocrystals have been successfully synthesized by simple aqueous method. Powder X-ray diffraction (XRD) studies revealed the particle size to be 4.2 nm. Surface characterization of the nanocrystals by FTIR spectroscopy has been done and the structure for surface bound TPA ...

  20. Surface characterization of Ag/Titania adsorbents

    International Nuclear Information System (INIS)

    Samokhvalov, Alexander; Nair, Sachin; Duin, Evert C.; Tatarchuk, Bruce J.

    2010-01-01

    The Ag/Titania adsorbent for selective removal of the desulfurization-refractive polycyclic aromatic sulfur heterocycles (PASHs) from liquid hydrocarbon fuels was prepared, its total and the Ag specific surface area were determined and the surface reaction sites in the sorbent that may be active in the adsorptive selective desulfurization were characterized by several spectroscopic and surface science techniques. The sorbent contains Ag, Ti, O and spurious C on its surface, as by the XPS measurements. Silver is present as an oxide, as judged by the XPS Auger parameter (AP). The complementary electron spin resonance (ESR) spectroscopy confirms that the majority of Ag is present in the diamagnetic Ag 1+ form, with the minor concentration (∼0.1% of total Ag) present as Ag 2+ . The findings by XPS and ESR are confirmed by the XRD, UV-vis spectroscopy and thermodynamic considerations. The supported Ag is highly dispersed on the surface of the titania support, with the particle size of ∼30-60 A depending on Ag content, with an Ag specific surface area of ∼7-14 m 2 /g, vs. the total surface area of ∼114-58 m 2 /g.

  1. Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut water

    Science.gov (United States)

    Indrianingsih, A. W.; Rosyida, V. T.; Jatmiko, T. H.; Prasetyo, D. J.; Poeloengasih, C. D.; Apriyana, W.; Nisa, K.; Nurhayati, S.; Hernawan; Darsih, C.; Pratiwi, D.; Suwanto, A.; Ratih, D.

    2017-12-01

    Bacterial cellulose produced by Acetobacter xylinum is a unique type of bacterial cellulose. It contains more than 90% of water. A preliminary study had shown that bacterial cellulose films has remarkable mechanical properties. The aim of this study was to investigate the optimum condition such as percentage of carbon source, time of cultivation, and pH to produce bacterial cellulose films from local coconut water, and its characterization on morphology, swelling ability and tensile strength of dried bacterial cellulose. A. xylinum was grown on coconut water culture medium with addition of 3%, 5%, and 7% of sugar, while the cultivation time was vary from 3 days, 5 days and 7 days. pH condition was conducted in pH 3, pH 5 and pH 7. Bacterial cellulose samples were dried using oven with temperature of 100°C until the moisture content reached 4-5%. This study showed that several parameters for optimum condition to produce bacterial cellulose films from local waste of coconut water had been obtained (5% of carbon source; pH 5; and 7 day of incubation period). The electron microscopy also showed that dried bacterial cellulose films had pores covered by fibrils on the surface. Therefore, the present work proposes the optimum formula and condition that can be used based on properties of end product needed.

  2. Digital assessment of preliminary impression accuracy for edentulous jaws: Comparisons of 3-dimensional surfaces between study and working casts.

    Science.gov (United States)

    Matsuda, Takashi; Goto, Takaharu; Kurahashi, Kosuke; Kashiwabara, Toshiya; Watanabe, Megumi; Tomotake, Yoritoki; Nagao, Kan; Ichikawa, Tetsuo

    2016-07-01

    The aim of this study was to compare 3-dimensional surfaces of study and working casts for edentulous jaws and to evaluate the accuracy of preliminary impressions with a view to the future application of digital dentistry for edentulous jaws. Forty edentulous volunteers were serially recruited. Nine dentists took preliminary and final impressions in a routine clinical work-up. The study and working casts were digitized using a dental 3-dimensional scanner. The two surface images were superimposed through a least-square algorithm using imaging software and compared qualitatively. Furthermore, the surface of each jaw was divided into 6 sections, and the difference between the 2 images was quantitatively evaluated. Overall inspection showed that the difference around residual ridges was small and that around borders were large. The mean differences in the upper and lower jaws were 0.26mm and 0.45mm, respectively. The maximum values of the differences showed that the upward change mainly occurred in the anterior residual ridge, and the downward change mainly in the posterior border seal, and the labial and buccal vestibules, whereas every border of final impression was shortened in the lower jaw. The accuracy in all areas except the border, which forms the foundation, was estimated to be less than 0.25mm. Using digital technology, we here showed the overall and sectional accuracy of the preliminary impression for edentulous jaws. In our clinic, preliminary impressions have been made using an alginate material while ensuring that the requisite impression area was covered. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

    International Nuclear Information System (INIS)

    Lawn, Marie-Amélie; Roth, Julien

    2011-01-01

    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ 2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.

  4. Thermoluminescent dosemeters characterization for patient dosimetry in diagnostic radiology preliminary results;Caracterizacao de dosimetros termoluminescentes para dosimetria de pacientes em radiodiagnostico - resultados iniciais

    Energy Technology Data Exchange (ETDEWEB)

    Castro, William J.; Squair, Peterson L. [Faculdade Novo Rumo, Belo Horizonte, MG (Brazil); Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Gonzaga, Natalia B. [Universidade Unincor, Belo Horizonte, MG (Brazil); Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nogueira, Maria S.; Silva, Teogenes A. da [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    The determination of the metrological characteristics of thermoluminescent (TL) dosimeters plays an important role in dosimetry of patients submitted to x-ray examinations for diagnostic purpose. Entrance surface doses can be measured with TL dosimeters to verify the compliance with the diagnostic reference levels. Organ doses can be estimated through TL measurements in an anthropomorphic phantom which it allows the radiation risk assessment. In this work, LiF:Mg,Ti (TLD-100) rod and chip thermoluminescent dosimeters were characterized considering their use for patient dosimetry in computerized tomography and mammography. Preliminary results showed that TL dosimeters have a response reproducibility of 7.8% and 4.8% and homogeneity of 18.4% and 6.5% for rod and chip shapes, respectively. (author)

  5. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  6. Characterization of the intrinsic density profiles for liquid surfaces

    International Nuclear Information System (INIS)

    Chacon, Enrique; Tarazona, Pedro

    2005-01-01

    This paper presents recent advances in the characterization of the intrinsic structures in computer simulations of liquid surfaces. The use of operational definitions for the intrinsic surface, associated with each molecular configuration of a liquid slab, gives direct access to the intrinsic profile and to the wavevector dependent surface tension. However, the characteristics of these functions depend on the definition used for the intrinsic surface. We discuss the pathologies associated with a local Gibbs dividing surface definition, and consider the alternative definition of a minimal area surface, going though a set of surface pivots, self-consistently chosen to represent the first liquid layer

  7. Characterization of technical surfaces by structure function analysis

    Science.gov (United States)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  8. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS).

    Science.gov (United States)

    Berto, Daniela; Rampazzo, Federico; Gion, Claudia; Noventa, Seta; Ronchi, Francesca; Traldi, Umberto; Giorgi, Giordano; Cicero, Anna Maria; Giovanardi, Otello

    2017-06-01

    Plastic waste is a growing global environmental problem, particularly in the marine ecosystems, in consideration of its persistence. The monitoring of the plastic waste has become a global issue, as reported by several surveillance guidelines proposed by Regional Sea Conventions (OSPAR, UNEP) and appointed by the EU Marine Strategy Framework Directive. Policy responses to plastic waste vary at many levels, ranging from beach clean-up to bans on the commercialization of plastic bags and to Regional Plans for waste management and recycling. Moreover, in recent years, the production of plant-derived biodegradable plastic polymers has assumed increasing importance. This study reports the first preliminary characterization of carbon stable isotopes (δ 13 C) of different plastic polymers (petroleum- and plant-derived) in order to increase the dataset of isotopic values as a tool for further investigation in different fields of polymers research as well as in the marine environment surveillance. The δ 13 C values determined in different packaging for food uses reflect the plant origin of "BIO" materials, whereas the recycled plastic materials displayed a δ 13 C signatures between plant- and petroleum-derived polymers source. In a preliminary estimation, the different colours of plastic did not affect the variability of δ 13 C values, whereas the abiotic and biotic degradation processes that occurred in the plastic materials collected on beaches and in seawater, showed less negative δ 13 C values. A preliminary experimental field test confirmed these results. The advantages offered by isotope ratio mass spectrometry with respect to other analytical methods used to characterize the composition of plastic polymers are: high sensitivity, small amount of material required, rapidity of analysis, low cost and no limitation in black/dark samples compared with spectroscopic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On-Surface Synthesis and Characterization of Honeycombene Oligophenylene Macrocycles.

    Science.gov (United States)

    Chen, Min; Shang, Jian; Wang, Yongfeng; Wu, Kai; Kuttner, Julian; Hilt, Gerhard; Hieringer, Wolfgang; Gottfried, J Michael

    2017-01-24

    We report the on-surface formation and characterization of [30]-honeycombene, a cyclotriacontaphenylene, which consists of 30 phenyl rings (C 180 H 120 ) and has a diameter of 4.0 nm. This shape-persistent, conjugated, and unsubstituted hexagonal hydrocarbon macrocycle was obtained by solvent-free synthesis on a silver (111) single-crystal surface, making solubility-enhancing alkyl side groups unnecessary. Side products include strained macrocycles with square, pentagonal, and heptagonal shape. The molecules were characterized by scanning tunneling microscopy and density functional theory (DFT) calculations. On the Ag(111) surface, the macrocycles act as molecular quantum corrals and lead to the confinement of surface-state electrons inside the central cavity. The energy of the confined surface state correlates with the size of the macrocycle and is well described by a particle-in-the-box model. Tunneling spectroscopy suggests conjugation within the planar rings and reveals influences of self-assembly on the electronic structure. While the adsorbed molecules appear to be approximately planar, the free molecules have nonplanar conformation, according to DFT.

  10. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  11. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    Science.gov (United States)

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  12. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja.

    Science.gov (United States)

    Jing, Changliang; Yuan, Yuan; Tang, Qi; Zou, Ping; Li, Yiqiang; Zhang, Chengsheng

    2017-10-01

    Single-factor experiment and Central Composite Design (CCD) was applied to optimize the ultrasound-assisted extraction (UAE) conditions of polysaccharides from Glycine soja (CGPS), and a preliminary characterization of three polysaccharide fractions (CGPS, GPS-1, and GPS-2) and their antioxidant activities were investigated. Under the optimal conditions: ratio of liquid to solid 42.7mL/g, extraction power 293.7W, extraction temperature 68.9°C, and extraction time 34.7min, the experimental CGPS yield was 6.04mg/g. CGPS was further purified by DEAE-cellulose and Sephadex-100 chromatography to obtain two fractions (GPS-1 and GPS-2), and their monosaccharides compositions were characterized by HPLC. Fourier-transform infrared spectra (FT-IR) indicated the chemical structures of them. Moreover, they exhibited high antioxidant activities in a concentration-dependent manner in vitro. In summary, the present study suggested that UAE was a very effective method to extract polysaccharides from Glycine soja and the polysaccharides could be explored as potential antioxidant agents for medicine and function food. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  14. Surface characterization of silver and palladium modified glassy ...

    Indian Academy of Sciences (India)

    WINTEC

    The morphology of metal coatings was characterized by ... face of sample containing the highest quantity of surface oxide complexes. It has been concluded that ..... Environment Protection of the Republic of Serbia for financial support.

  15. Atmospheric Surface Layer Characterization: Preliminary Desert Lapse Rate Study 22-25 August 2000

    National Research Council Canada - National Science Library

    Elliott, Doyle

    2003-01-01

    Results of the August 2000 Desert Lapse Rate (DLR) Experiment are presented. The DLR Experiment was performed to document the night-to-day transition effects on the desert Atmospheric Surface Layer (ASL...

  16. Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Jung, Yong Chae

    2006-01-01

    Superhydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature due to their roughness and the presence of a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surfaces on the micro- and nanoscale while separating out the effects of the micro- and the nanobumps of hydrophobic leaves on the hydrophobicity. Hydrophilic leaves were also studied to better understand the role of wax and roughness. Furthermore, the adhesion and friction properties of hydrophobic and hydrophilic leaves were studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements were made to fully characterize the leaf surfaces. It is shown that the nanobumps play a more important role than the microbumps in the hydrophobic nature as well as friction of the leaf. This study will be useful in developing superhydrophobic surfaces

  17. A system for the characterization of the HAWC PMTs sensitivity

    Science.gov (United States)

    Langarica, R.; Lara, G.; Martinez, L. A.; Tinoco, S.; Alfaro, R.; Iriarte, A.; Sandoval, A.; Vanegas, P.

    2012-07-01

    The HAWC Project is a very high-energy gamma-ray observatory under construction at the Sierra Negra volcano (4100 meters above sea level) in the Pico de Orizaba National Park located in central Mexico. HAWC will reuse the 900 Hamamatsu R5912 photomultipliers (PMTs) from Milagro Observatory for the 300 Water Cherenkov Detectors. In order to characterize their present performance it is necessary to scan the active area of the photocathode by measuring its efficiency and gain. A characterization system was designed and manufactured to achieve an automated measurement of over 100 points distributed on the PMT active spherical surface. Preliminary results show the variation of QE of PMTs with respect of the position of incoming photons, as well as the changes in the PMTs response due to the Earth's magnetic field and gain vs. high voltage. The system allows automated PMT characterization improving its performance, reliability, precision and repeatability. In this work we present the characterization system and preliminary results on the PMT efficiency.

  18. Characterization of the damage produced on different materials surfaces

    International Nuclear Information System (INIS)

    Dellavale Clara, Hector Damian

    2004-01-01

    In the present work the characterization techniques of surfaces ULOI and RIMAPS have been applied on laboratory samples made from aluminium, stainless steel and material based on fiberglass.The resultant surfaces of, chemical etching with corrosive agents Keller and Tucker, mechanic damage from the wear and tear of abrasive paper and sandrubbing with alumina particles, are analyzed to different level of damage.The systematic application of the above mentioned techniques is carried out with the objective of finding information, which allows to characterize the superficial damage, both in its incipient state as in the extreme situation revealed by the presence of etch pits. Important results have been obtained, in the characterization of the incipient stage of the chemical etching, using the curves of the normalized area.In addition, it was possible to verify the capacity of the techniques in the early detection of the preferential directions generated by the etch pits

  19. Evaluation of shot peened surfaces using characterization technique of three-dimensional surface topography

    International Nuclear Information System (INIS)

    Kurokawa, S; Ariura, Y

    2005-01-01

    Objective parameters to characterize global topography of three-dimensional surfaces have been derived. The idea of this evaluation is to separate the topography into two global form deviations and residual ones according to the degree of curved surfaces. A shot peened Almen strip is measured by profilometer and concrete parameters of inclination and circular-arc shaped global topography are extracted using the characterization technique. The arc height is calculated using the circular arc-shaped part and compared with a value measured by an Almen gauge. The relation between the coverage and roughness parameters is also investigated. The advantage of this evaluation is that it is possible to determine the arc height and the coverage at the same time from single measured topography. In addition, human error can be excluded from measurement results. This method has the wide application in the field of measurement

  20. Surface Characterization of Nanoparticles: Critical Needs and Significant Challenges

    International Nuclear Information System (INIS)

    Baer, Donald R.

    2011-01-01

    There is a growing recognition that nanoparticles and other nanostructured materials are sometimes inadequately characterized and that this may limit or even invalidate some of the conclusions regarding particle properties and behavior. A number of international organizations are working to establish the essential measurement requirements that enable adequate understanding of nanoparticle properties for both technological applications and for environmental health issues. Our research on the interaction of iron metal-core oxide-shell nanoparticles with environmental contaminants and studies of the behaviors of ceria nanoparticles, with a variety of medical, catalysis and energy applications, have highlighted a number of common nanoparticle characterization challenges that have not been fully recognized by parts of the research community. This short review outlines some of these characterization challenges based on our research observations and using other results reported in the literature. Issues highlighted include: (1) the importance of surfaces and surface characterization, (2) nanoparticles are often not created equal - subtle differences in synthesis and processing can have large impacts; (3) nanoparticles frequently change with time having lifetime implications for products and complicating understanding of health and safety impacts; (4) the high sensitivity of nanoparticles to their environment complicates characterization and applications in many ways; (5) nanoparticles are highly unstable and easily altered (damaged) during analysis.

  1. Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images

    Science.gov (United States)

    Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.

    2018-04-01

    Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.

  2. Characterization and robust filtering of multifunctional surfaces using ISO standards

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Godi, Alessandro; De Chiffre, Leonardo

    2011-01-01

    Engineered surfaces containing lubrication pockets and directional surface texture can decrease wear and friction in sliding or rolling contacts. A new generation of multifunctional (MUFU) surfaces has been created by hard machining followed by robot-assisted polishing. The production method allows...... for a large degree of freedom in specifying surface topography defined by frequency, depth and volume of the lubricant retention valleys, as well as the amount of load bearing area and the surface roughness. The surfaces cannot readily be characterized by means of conventional roughness parameters due...

  3. Water slip and friction at a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Brigo, L; Pierno, M; Mammano, F; Sada, C; Fois, G; Pozzato, A; Zilio, S dal; Mistura, G [Dipartimento di Fisica G Galilei, Universita degli Studi di Padova, via Marzolo 8, 35131 Padova (Italy); Natali, M [Istituto di Chimica Inorganica e delle Superfici (ICIS), CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Tormen, M [TASC-INFM, CNR, S S 14 km 163.5 Area Science Park, 34012 Basovizza, Trieste (Italy)], E-mail: mistura@padova.infm.it

    2008-09-03

    A versatile micro-particle imaging velocimetry ({mu}-PIV) recording system is described, which allows us to make fluid velocity measurements in a wide range of flow conditions both inside microchannels and at liquid-solid interfaces by using epifluorescence and total internal reflection fluorescence excitation. This set-up has been applied to study the slippage of water over flat surfaces characterized by different degrees of hydrophobicity and the effects that a grooved surface has on the fluid flow inside a microchannel. Preliminary measurements of the slip length of water past various flat surfaces show no significant dependence on the contact angle.

  4. Map of natural gamma radiation in Spain: radiometric characterization of different types of surfaces

    International Nuclear Information System (INIS)

    Suarez Mahou, E.; Fernandez Amigot, J.A.; Botas Medina, J.

    1997-01-01

    The gamma radioactivity flowing from ground and rocks is due to the presence in these of uranium, thorium and potassium-40. The method of radiometric characterization depends on the purpose of the undertaking. Radiometric characterization can be realized on big surfaces (tens or hundreds of square kilometres studied on a national scale), medium size surfaces (50 to 1000 square kilometres, for example, in epidemiological or biological studies in areas with a determined radiometric background) small surfaces of less than 50 square kilometres (industrial sites, pre-operational studies, etc.). This article considers aspects of radiometric characterization on surfaces of interest and describes the contribution of the MARNA (Natural Provisional Radiation Map of Spain) Project selection and radiometric characterization

  5. Surface characterization of pretreated and microbial-treated populus cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Allison K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The first objective of this thesis is to illustrate the advantages of surface characterization in biomass utilization studies. The second objective is to gain insight into the workings of potential consolidated bioprocessing microorganisms on the surface of poplar samples. The third objective is to determine the impact biomass recalcitrance has on enzymatic hydrolysis and microbial fermentation in relation to the surface chemistry.

  6. UAS-Borne Photogrammetry for Surface Topographic Characterization: A Ground-Truth Baseline for Future Change Detection and Refinement of Scaled Remotely-Sensed Datasets

    Science.gov (United States)

    Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.

    2015-12-01

    While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying

  7. Preliminary analysis of surface radiation measurements recorded at the Nansen ice sheet (Antarctica)

    International Nuclear Information System (INIS)

    Bonafe', U.; Dalpane, E.; Georgiadis, T.; Pitacco, A.

    1996-01-01

    An experiment on radiation and surface energy balance was conducted during the 9. Italian expedition in Antarctica at the Nancen ice sheet, a glacier situated close to the Italian base at Terra Nova Bay, to correlate surface balances to the formation and development of katabatic winds. Measurements were taken by radiometers covering the whole spectra of solar and terrestrial emissions and by fast sensors of atmospheric wind velocity and humidity for the application of the eddy correlation technique. A preliminary analysis of the radiometric data collected in order to quantify the major components of radiative energy balance during the Antarctic summer in clear sky conditions is reported and discussed. The findings show the very low available energy (mean about 1 W/m 2 ), in terms of net radiation, for the physical processes such as sensible- and latent-heat fluxes. Long-wave radiation balance was applied to estimate the reliability of the Swinbank's parametrization, relative to general conditions of the atmosphere

  8. Functional properties of bio-inspired surfaces: characterization and technological applications

    National Research Council Canada - National Science Library

    Favret, Eduardo A; Fuentes, Néstor O

    2009-01-01

    ... technological materials. It analyses how such surfaces can be described and characterized using microscopic techniques and thus reproduced, encompassing the important areas of current surface replication techniques and the associated acquisition of good master structures. It is well known that biological systems have the ability to sense, ...

  9. Anisotropic characterization of rock fracture surfaces subjected to profile analysis

    International Nuclear Information System (INIS)

    Zhou, H.W.; Xie, H.

    2004-01-01

    The mechanical parameters of a rock fracture are dependent on its surface roughness anisotropy. In this Letter, we show how quantitatively describe the anisotropy of a rock fracture surface. A parameter, referred to as the index for the accumulation power spectral density psd*, is proposed to characterize the anisotropy of a rock fracture surface. Variation of psd*, with orientation angle θ of sampling, is also discussed

  10. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    International Nuclear Information System (INIS)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy; Elder, Alison; Baisch, Brittany L.; Karakoti, Ajay; Kuchibhatla, Satyanarayana V. N. T.; Moon, DaeWon

    2013-01-01

    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may

  11. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  12. Wastewater characterization of IPEN facilities - a preliminary study

    International Nuclear Information System (INIS)

    Monteiro, Lucilena R.; Goncalves, Cristina; Terazan, Wagner R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F.

    2011-01-01

    As part of IPEN's Environmental Monitoring Program, wastewater sample collection and analysis was implemented on a daily basis. CQMA- Centro de Quimica e Meio Ambiente was responsible for the determination of total, fixed and volatile solids, pH, metals (as Al, Sb, Ba, Cd, Pb, Co, Cu, Cr, Hg, Mo, Ni, Ag, Na, Zn, Ca, Mg, Be, Sn, Li, K, Sr, Ti and V), semimetals (As, B, Se and Si) and anions (such as chloride, nitrate, sulfate and fluoride). The results were compared to the legal values established by the Sao Paulo State regulation 8,468/76, which defines the maximum permitted values for most of the studied substances in wastewater, aiming its releasing in public wastewater treatment system. The evaluation of this parameters concentration on Ipen's effluent implies that 50% of the wastewater corresponds to organic matter due to the sanitary load and inorganic macro elements, mainly as sodium, potassium, calcium. The only parameter not found in accordance with Brazilian legislation was pH in four out of the one hundred and seven samples collected throughout 2009 (2.8% of the samples analyzed). This preliminary study showed the effluents generated at Ipen's facility is characterized by the presence of organic matter and macro elements, commonly found in sanitary wastewater and it is in compliance with Sao Paulo regulations. (author)

  13. Surface characterization of self-assembled N-Cu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Lucila J.; Moreno-Lopez, Juan C. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Sferco, Silvano J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Fisica, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria, C.C. 242, (S3000ZAA) Santa Fe (Argentina); Passeggi, Mario C.G.; Vidal, Ricardo A. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Ferron, Julio, E-mail: jferron@intec.unl.edu.ar [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829,(S3000AOM) Santa Fe (Argentina)

    2012-01-01

    We report on the process of low energy N{sub 2}{sup +} implantation and annealing of a Cu(0 0 1) surface. Through AES we study the N diffusion process as a function of the substrate temperature. With STM and LEIS we characterize the surface morphology and the electronic structure is analyzed with ARUPS. Under annealing (500 < T < 700 K) N migrates to the surface and reacts forming a Cu{sub x}N compound that decomposes at temperatures above 700 K. LEIS measurements show that N locates on the four-fold hollow sites of the Cu(0 0 1) surface in a c(2 Multiplication-Sign 2) arrangement. Finally, a gap along the [0 0 1] azimuthal direction is determined by ARUPS. DFT calculations provide support to our conclusions.

  14. Derivatization, characterization, and tribological behavior of an amine-terminated polymer surface

    International Nuclear Information System (INIS)

    Ren, S.L.; Yang, S.R.; Zhao, Y.P.

    2004-01-01

    The derivatization, characterization, and micro-tribological behavior of an amine-terminated polymer surface were investigated. Thus, the heptafluorobutyric anhydride (HFBA) derivatized film was characterized by means of contact-angle measurement and X-ray photoelectron spectroscopy (XPS). It was found that the HFBA-derivatized film was generated on the PEI surface in the presence of a chemical amide bond. The tribological properties were characterized as well. The polymer PEI film had relative high adhesion, friction, and poor anti-wear ability, while the HFBA-derivatized polymer film possessed a very low adhesive force of only about 5.5 nN (a pyramidal Si 3 N 4 tip with radius of curvature about 50 nm was used to measure the adhesion), which was more than an order of magnitude lower than that of the silicon substrate surface. Besides, the HFBA-derivatized film registered good friction-reducing ability and thermal stability. Thus, a good alternative method was presented to improve the tribological properties of polymer film by chemisorbing molecules with low surface energy. This makes it feasible for the derivatized polymer film to find promising application in resolving the tribological problems of micro-electromechanical systems (MEMS)

  15. Surface characterization of low-temperature grown yttrium oxide

    Science.gov (United States)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  16. rf duress alarms: market survey and preliminary characterization

    International Nuclear Information System (INIS)

    Draper, B.L.

    1979-05-01

    This report represents the first phase of the duress alarm studies. Presented here are the results of an extensive market survey and some preliminary observations on the effectiveness of many system components

  17. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  18. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kumari, Renu; Besser, Heino; Scharnweber, Tim; Majumdar, Jyotsna Dutta

    2015-01-01

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti_2O_3 phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  19. Preparation of ceramic materials for surface characterization

    International Nuclear Information System (INIS)

    Zipperian, D.C.

    1989-01-01

    This paper discusses how microstructural preparation permits a microscopic analysis of a material's internal structure, which is related to the physical properties of the material. Today, numerous microstructural quantitative and qualitative measurements are commonly utilized. Several of these include phase determination, phase hardness, phase distribution, grain size and shape, and porosity and size distribution. The most widely used surface characterization techniques are optical microscopy, electron microscopy, and x-ray microscopy. Optical microscopy includes both transmitted-and reflected-light techniques and requires a surface preparation prior to analysis. Transmitted-light microscopy samples require thinning and polishing of both sides of the sample, whereas reflected light techniques require polishing of only one side of the sample

  20. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  1. Extraction Optimization, Preliminary Characterization and Bioactivities in Vitro of Ligularia hodgsonii Polysaccharides

    Directory of Open Access Journals (Sweden)

    Xueping Song

    2016-05-01

    Full Text Available The optimization extraction, preliminary characterization and bioactivities of Ligularia hodgsonii polysaccharides were investigated. Based on single-factor experiments and orthogonal array test, the optimum extraction conditions were obtained as follows: extraction time 3 h, temperature 85 °C, water/raw material ratio 36. Further Sevag deproteinization and dialysis yielded the dialyzed Ligularia hodgsonii polysaccharides (DLHP, 19.2 ± 1.4 mg/g crude herb. Compositional analysis, size-exclusion chromatography connected with multi-angle laser light-scattering and refractive index (SEC-MALLS-RI, Fourier transform infrared (FT-IR and 1H nuclear magnetic resonance (NMR spectroscopy were employed for characterization of the polysaccharides. DLHP was found to have a major component with a weight-average molecular weight of 1.17 × 105 Da, mainly comprising of glucose, galactose, arabinose, mannose, rhamnose, glucuronic acid and galacturonic acid. By in vitro antioxidant activity assays, DLHP presented remarkable scavenging capacities towards 1,1-diphenyl-2-picrylhydrazyl (DPPH, 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS and hydroxyl radicals, and ferrous ions chelating ability. Moreover, it exhibited appreciable anti-hyperglycemic activity as demonstrated by differential inhibition of α-glucosidase and α-amylase. The results indicated that DLHP could potentially be a resource for antioxidant and hypoglycemic agents.

  2. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...

  3. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  4. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  5. Evolution of the transfer function characterization of surface scatter phenomena

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  6. Preparation and surface characterization of plasma-treated and biomolecular-micropatterned polymer substrates

    Science.gov (United States)

    Langowski, Bryan Alfred

    A micropatterning process creates distinct microscale domains on substrate surfaces that differ from the surfaces' original chemical/physical properties. Numerous micropatterning methods exist, each having relative advantages and disadvantages in terms of cost, ease, reproducibility, and versatility. Polymeric surfaces micropatterned with biomolecules have many applications, but are specifically utilized in tissue engineering as cell scaffolds that attempt to controlled tissue generation in vivo and ex vivo. As the physical and chemical cues presented by micropatterned substrates control resulting cellular behavior, characterization of these cues via surface-sensitive analytical techniques is essential in developing cell scaffolds that mimic complex in vivo physicochemical environments. The initial focus of this thesis is the chemical and physical characterization of plasma-treated, microcontact-printed (muCP) polymeric substrates used to direct nerve cell behavior. Unmodified and oxygen plasma-treated poly(methyl methacrylate) (PMMA) substrates were analyzed by surface sensitive techniques to monitor plasma-induced chemical and physical modifications. Additionally, protein-micropattern homogeneity and size were microscopically evaluated. Lastly, poly(dimethylsiloxane) (PDMS) stamps and contaminated PMMA substrates were characterized by spectroscopic and microscopic methods to identify a contamination source during microcontact printing. The final focus of this thesis is the development of microscale plasma-initiated patterning (muPIP) as a versatile, reproducible micropatterning method. Using muPIP, polymeric substrates were micropatterned with several biologically relevant inks. Polymeric substrates were characterized following muPIP by surface-sensitive techniques to identify the technique's underlying physical and chemical bases. In addition, neural stem cell response to muPIP-generated laminin micropatterns was microscopically and biologically evaluated

  7. A task specific uncertainty analysis method for least-squares-based form characterization of ultra-precision freeform surfaces

    International Nuclear Information System (INIS)

    Ren, M J; Cheung, C F; Kong, L B

    2012-01-01

    In the measurement of ultra-precision freeform surfaces, least-squares-based form characterization methods are widely used to evaluate the form error of the measured surfaces. Although many methodologies have been proposed in recent years to improve the efficiency of the characterization process, relatively little research has been conducted on the analysis of associated uncertainty in the characterization results which may result from those characterization methods being used. As a result, this paper presents a task specific uncertainty analysis method with application in the least-squares-based form characterization of ultra-precision freeform surfaces. That is, the associated uncertainty in the form characterization results is estimated when the measured data are extracted from a specific surface with specific sampling strategy. Three factors are considered in this study which include measurement error, surface form error and sample size. The task specific uncertainty analysis method has been evaluated through a series of experiments. The results show that the task specific uncertainty analysis method can effectively estimate the uncertainty of the form characterization results for a specific freeform surface measurement

  8. Facet Model and Mathematical Morphology for Surface Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Abidi, B.R.; Goddard, J.S.; Hunt, M.A.; Sari-Sarraf, H.

    1999-11-13

    This paper describes an algorithm for the automatic segmentation and representation of surface structures and non-uniformities in an industrial setting. The automatic image processing and analysis algorithm is developed as part of a complete on-line web characterization system of a papermaking process at the wet end. The goal is to: (1) link certain types of structures on the surface of the web to known machine parameter values, and (2) find the connection between detected structures at the beginning of the line and defects seen on the final product. Images of the pulp mixture (slurry), carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. This characterization algorithm succeeded where conventional contrast and edge detection techniques failed due to a poorly controlled environment. The images obtained have poor contrast and contain noise caused by a variety of sources. After a number of enhancement steps, conventional segmentation methods still f ailed to detect any structures and are consequently discarded. Techniques tried include the Canny edge detector, the Sobel, Roberts, and Prewitt's filters, as well as zero crossings. The facet model algorithm, is then applied to the images with various parameter settings and is found to be successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image computed. Carefully tailored morphological operators are then applied to detect and segment regions of interest. Those regions are then selected according to their size, elongation, and orientation. Their bounding rectangles are computed and represented. Also addressed in this paper are aspects of the real time implementation of this algorithm for on-line use. The algorithm is tested on over 500 images of slurry and is found to segment and characterize nonuniformities on all 500 images.

  9. Characterization of holding brake friction pad surface after pin-on-plate wear test

    Science.gov (United States)

    Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.

    2018-03-01

    This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.

  10. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    Science.gov (United States)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  11. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    Science.gov (United States)

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. An investigation of laser processing of silica surfaces

    International Nuclear Information System (INIS)

    Weber, A.J.; Stewart, A.F.; Exarhos, G.J.; Stowell, W.K.

    1988-01-01

    An initial set of experiments has been conducted to determine the practicality of laser processing of optical substrates. In contrast to earlier work, a high average power CO 2 laser was used to flood load the entire surface of each test sample. Fused silica substrates were laser polished on both surfaces at power densities ranging from 150 to 350 W/cm 2 . During each test sequence sample surface temperatures were recorded using a thermal imaging system. Extensive pre- and post-test characterization revealed that surface roughness and scattering of bare silica surfaces were reduced while internal stress increased. Laser damage thresholds were found to increase only for certain conditions. Changes in the microstructure were observed. These preliminary experiments demonstrate that laser processing can dramatically improve the optical properties of fused silica substrates

  13. Cloning, expression, and preliminary structural characterization of RTN-1C

    International Nuclear Information System (INIS)

    Fazi, Barbara; Melino, Sonia; Sano, Federica Di; Cicero, Daniel O.; Piacentini, Mauro; Paci, Maurizio

    2006-01-01

    Reticulons (RTNs) are endoplasmic reticulum-associated proteins widely distributed in plants, yeast, and animals. They are characterized by unique N-terminal parts and a common 200 amino acid C-terminal domain containing two long hydrophobic sequences. Despite their implication in many cellular processes, their molecular structure and function are still largely unknown. In this study, the reticulon family member RTN-1C has been expressed and purified in Escherichia coli and its molecular structure has been analysed by fluorescence and CD spectroscopy in different detergents in order to obtain a good solubility and a relative stability. The isotopically enriched protein has been also produced to perform structural studies by NMR spectroscopy. The preliminary results obtained showed that RTN-1C protein possesses helical transmembrane segments when a membrane-like environment is produced by detergents. Moreover, fluorescence experiments indicated the exposure of tryptophan side chains as predicted by structure prediction programs. We also produced the isotopically labelled protein and the procedure adopted allowed us to plan future NMR studies to investigate the biochemical behaviour of reticulon-1C and of its peptides spanning out from the membrane

  14. Fast Characterization of Moving Samples with Nano-Textured Surfaces

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Zalkovskij, Maksim

    2015-01-01

    Characterization of structures using conventional optical microscopy is restricted by the diffraction limit. Techniques like atomic force and scanning electron microscopy can investigate smaller structures but are very time consuming. We show that using scatterometry, a technique based on optical...... diffraction, integrated into a commercial light microscope we can characterize nano-textured surfaces in a few milliseconds. The adapted microscope has two detectors, a CCD camera used to easily find an area of interest and a spectrometer for the measurements. We demonstrate that the microscope has...

  15. Implications of the timing of the preliminary determination of suitability

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1986-01-01

    The Nuclear Waste Policy Act of 1982 requires that the Enviromental Impact Statement prepared for the recommendation of a repository site must consider three sites -- the one selected for the repository and at least two alternatives. All of these sites must have been characterized, and the Secretary of Energy must have made a preliminary determination that each is suitable for development as a repository. There is great disagreement about whether that ''preliminary determination of suitability'' is to be made before or after site characterization. If the Act is interpreted as requiring the determination to be made after characterization is completed, DOE cannot recommend the first site for licensing until it has three sites that appear suitable after full characterization; if the determination can be made before characterization, DOE can proceed to licensing even if only one site survives characterization. While DOE plans to make the preliminary determination before starting characterization, the uncertainty about how a court might ultimately interpret the Act injects a significant institutional uncertainty into the schedule for the repository, and complicates contingency planning for the siting process. Early resolution of the interpretation would greatly aid DOE's planning for the siting program

  16. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  17. Preliminary safety evaluation of an aircraft impact on a near-surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, R.; Forasassi, G.; Pugliese, G. [Department of Industrial and Civil Engineering (DICI), University of Pisa, Pisa (Italy)

    2013-07-01

    The aircraft impact accident has become very significant in the design of a nuclear facilities, particularly, after the tragic September 2001 event, that raised the public concern about the potential damaging effects that the impact of a large civilian airplane could bring in safety relevant structures. The aim of this study is therefore to preliminarily evaluate the global response and the structural effects induced by the impact of a military or commercial airplane (actually considered as a 'beyond design basis' event) into a near surface radioactive waste (RWs) disposal facility. The safety evaluation was carried out according to the International safety and design guidelines and in agreement with the stress tests requirements for the security track. To achieve the purpose, a lay out and a scheme of a possible near surface repository, like for example those of the El Cabril one, were taken into account. In order to preliminarily perform a reliable analysis of such a large-scale structure and to determine the structural effects induced by such a types of impulsive loads, a realistic, but still operable, numerical model with suitable materials characteristics was implemented by means of FEM codes. In the carried out structural analyses, the RWs repository was considered a 'robust' target, due to its thicker walls and main constitutive materials (steel and reinforced concrete). In addition to adequately represent the dynamic response of repository under crashing, relevant physical phenomena (i.e. penetration, spalling, etc.) were simulated and analysed. The preliminary assessment of the effects induced by the dynamic/impulsive loads allowed generally to verify the residual strength capability of the repository considered. The obtained preliminary results highlighted a remarkable potential to withstand the impact of military/large commercial aircraft, even in presence of ongoing concrete progressive failure (some penetration and spalling of the

  18. Site characterization report for the basalt waste isolation project. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  19. Site characterization report for the basalt waste isolation project. Volume II

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment

  20. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Formation and surface characterization of nanostructured Al2O3–TiO2 coatings by Vairamuthu Raj and Mohamed Sirajudeen Mumjitha. (pp 1411–1418).

  1. Surface characterization of adsorbed asphaltene on a stainless steel surface

    International Nuclear Information System (INIS)

    Abdallah, W.A.; Taylor, S.D.

    2007-01-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p 3/2 , N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies

  2. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gosse, J.C.; Harrington, C.D.

    1995-01-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain

  3. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Science.gov (United States)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  4. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, A; Torralba, G; Hausmann, M; Lindenstruth, V [Kirchhoff Institute of Physics, In Neuenheimer Feld 227, Heidelberg (Germany); Loeffler, F; Cheng, Yun-Chien; Koenig, K; Stadler, V; Bischoff, F R [German Cancer Research Centre, In Neuenheimer Feld 280, Heidelberg (Germany); Breitling, F, E-mail: Frank.Breitling@KIT.ed, E-mail: alexander.nesterov-mueller@kit.ed [Karlsruhe Institute of Technology (KIT), Institute for Microstructure Technology, Herrmann von Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-04-28

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  5. PALEOARCHEAN MAFIC ROCKS OF THE SOUTHWESTERN SIBERIAN CRATON: PRELIMINARY GEOCHRONOLOGY AND GEOCHEMICAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2017-01-01

    Full Text Available The Siberian craton consists of Archean blocks, which were welded up into the same large unit by ca 1.9 Ga [Gladkochub et al., 2006; Rojas-Agramonte et al., 2011]. The history of the constituent Archean blocks is mosaic because of limited number of outcrops, insufficient sampling coverage because of their location in remote regions and deep forest and difficulties with analytical studies of ancient rocks, which commonly underwent metamorphic modifications and secondary alterations. In this short note, we report data on discovery of unusual for Archean mafic rocks of ultimate fresh appearance. These rocks were discovered within southwestern Siberian craton in a region near a boundary between Kitoy granulites of the Sharyzhalgai highgrade metamorphic complex and Onot green-schist belt (Fig. 1. Here we present preliminary data on geochronology of these rocks and provide their geochemical characterization.

  6. Particle desorption mass spectrometric surface characterization

    International Nuclear Information System (INIS)

    Summers, W.R.

    1986-01-01

    The feasibility of utilizing 252 Cf-Particle Desorption Mass Spectrometry (PDMS) to characterize the surface region of solid samples has been evaluated. The PDMS experiment was adapted to an ultrahigh vacuum (UHV) environment and was configured so as to allow the analysis of thick as well as thin samples. This apparatus included an in situ sputter cleaning/depth profiling facility. The mass resolution was variable from 300 to 200 at 133 daltons by changing the drift length from 27 cm to 20 cm. Desorbed ions were focused by using either a dual grid assembly or an einzel lens. The overall instrumental transmission efficiency with the einzel lens operative was approximately 50%. The applicability of 252 Cf-PDMS to samples that were thick and insulating was demonstrated in the analysis of geological specimens. Pollucite, Microcline, Amblygonite, and Lepidolite were analyzed without complications associated with sample thickness or charge accumulation. Substitution occurring between the alkali metals in the environment was observed by PDMS and was corroborated by SIMS, XPS, and EMP analyses. The analysis of NBM SRM glasses addressed the suitability of combining the PDMS technique was sputter etching. This application demonstrated the ability of this technique to sense changes in the chemical environment brought about by sputter cleaning. The analysis of these samples also allowed the estimation of detection limits for lithium, rubidium, and cesium in a glass matrix as 300 ppm, 400 ppm, and 400 ppm, respectively. Sputter depth profiling combined with 252 Cf-PDMS analysis of an aluminum layer on a silicon substrate established the utility of the PDMS technique in surface characterization

  7. NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers

    International Nuclear Information System (INIS)

    Samuel, Newton T.; Lee, C.-Y.; Gamble, Lara J.; Fischer, Daniel A.; Castner, David G.

    2006-01-01

    Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers

  8. Surface characterization of modern resin composites: a multitechnique approach.

    Science.gov (United States)

    Silikas, Nick; Kavvadia, Katerina; Eliades, George; Watts, David

    2005-04-01

    To characterize the surface properties of some modern resin composites employing a series of physicochemical methods. Specimens from three microhybrid (Palfique Estellite-PE, Z250 Filtek-ZF, Tetric Ceram-TC) and one nanofilled (Supreme Filtek-SF) conventionally photo-cured resin composites polished with Soflex disks were studied for the following properties: Surface chemical composition and degree of C=C conversion (FTIR), surface energetics (contact angles), surface texture (AFM), surface roughness (AFM, stylus profilometry) and gloss (60 degrees-, 20 degrees-angle specular gloss). Polar and non polar molecular groups were identified in all products including NH and CONH (SF, ZF, TC). SF and ZF demonstrated higher conversion than PE and TC (P 0.05) were found in critical surface tension, total work of adhesion and its polar and dispersion components, the latter being the highest in all products. AFM showed the smoothest surface texture in PE. The ranking of Sa, Sq, Ra and Rz roughness parameters was PEgloss measurements (PE, SF>ZF>TC, PTC, Pgloss differences. A positive correlation was found between Sa and Ra and a negative one between Sa and 20 degree-angle gloss.

  9. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  10. Identification and characterization of the surface proteins of Clostridium difficile

    International Nuclear Information System (INIS)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated

  11. Surface characterization

    Science.gov (United States)

    Mandla A. Tshabalala

    2005-01-01

    Surface properties of wood play an important role when wood is used or processed into different commodities such as siding, joinery, textiles, paper, sorption media or wood composites. Thus, for example, the quality and durability of a wood coating are determined by the surface properties of the wood and the coating. The same is true for wood composites, as the...

  12. Wavelet-fractal approach to surface characterization of nanocrystalline ITO thin films

    International Nuclear Information System (INIS)

    Raoufi, Davood; Kalali, Zahra

    2012-01-01

    In this study, indium tin oxide (ITO) thin films were prepared by electron beam deposition method on glass substrates at room temperature (RT). Surface morphology characterization of ITO thin films, before and after annealing at 500 °C, were investigated by analyzing the surface profile of atomic force microscopy (AFM) images using wavelet transform formalism. The wavelet coefficients related to the thin film surface profiles have been calculated, and then roughness exponent (α) of the films has been estimated using the scalegram method. The results reveal that the surface profiles of the films before and after annealing process have self-affine nature.

  13. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  14. A preliminary investigation of the distribution of heavy metals in surface sediments of the Cona tidal marsh (Venice Lagoon)

    International Nuclear Information System (INIS)

    Bernardi, S.; Costa, F.; Vazzoler, S.; Zonta, R.

    1988-01-01

    Data are from the two series of surface sediment sampling in an interface area between the Venice Lagoon and the mainland. The distribution of heavy metals gives a correlation with polluted sourcesites-identified in the channel systems with a highly polluted input-and allows us to identify the localities of accumulation. Restricted to the estuary of the river tributary transporting a high concentration of pollutants into a tidal marsh area of the lagoon, the study shows the effect of the fresh water forcing to distribute heavy metals on surface sediments. Within the scope of this preliminary investigation, indications from sampling identify a sector of the 'palude of Cona' in this estuary, which is highly suitable for detailed studies on precesses affecting heavy-metal distributions in bottom surface sediments of shallow-water areas

  15. Preliminary assessments the shortcut to remediation (category III-surplus facility assessments)

    International Nuclear Information System (INIS)

    Byars, L.L.

    1995-01-01

    This report presents the details of the preliminary assessments for the shortcut of decontamination of surplus nuclear facilities. Topics discussed include: environment, health and safety concerns; economic considerations; reduction of transition time; preliminary characterization reports; preliminary project plan; health and safety plan; quality assurance plan; surveillance and maintenance plan; and waste management plan

  16. Preliminary tank characterization report for single-shell tank 241-TX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  17. Preliminary tank characterization report for single-shell tank 241-TX-103: Best-basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  18. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  19. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  20. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  1. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history

  2. Crystallization and preliminary X-ray crystallographic characterization of a cyclic nucleotide-binding homology domain from the mouse EAG potassium channel

    International Nuclear Information System (INIS)

    Marques-Carvalho, Maria João; Morais-Cabral, João Henrique

    2012-01-01

    The crystallization conditions and preliminary crystal characterization of the cytoplasmic cyclic nucleotide-binding homology domain from the mouse EAG potassium channel are reported. The members of the family of voltage-gated KCNH potassium channels play important roles in cardiac and neuronal repolarization, tumour proliferation and hormone secretion. These channels have a C-terminal cytoplasmic domain which is homologous to cyclic nucleotide-binding domains (CNB-homology domains), but it has been demonstrated that channel function is not affected by cyclic nucleotides and that the domain does not bind nucleotides in vitro. Here, the crystallization and preliminary crystallographic analysis of a CNB-homology domain from a member of the KCNH family, the mouse EAG channel, is reported. X-ray diffraction data were collected to 2.2 Å resolution and the crystal belonged to the hexagonal space group P3 1 21

  3. Surface characterization and stability of an epoxy resin surface modified with polyamines grafted on polydopamine

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Vercammen, Yannick; Van Vaeck, Luc [Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Vanderleyden, Els; Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2014-06-01

    This paper reports on polydopamine and polyamine surface modifications of an etched epoxy cresol novolac (ECN) resin using the ‘grafting to’ method. Three different polyamines are used for the grafting reactions: branched polyethyleneimine (B-PEI), linear polyethyleneimine (L-PEI) and diethylenetriamine (DETA). These modifications are compared to control materials prepared via direct deposition of polyamines. The stability of the modifications toward a concentrated hydrochloric acid (HCl) environment is evaluated. The modified surfaces are characterized with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectroscopy (TOF-S-SIMS).

  4. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  5. Preliminary assessment of RTR and visual characterization for selected waste categories

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1992-01-01

    The first transuranic (TRU) waste shipped to the Waste Isolation Pilot Plant (WIPP) will be for the WIPP Experimental Program. The purpose of the Experimental Program is to determine the gas generation rates and potential for gas generation by the waste after it has been permanently stored at the WIPP. The first phase of these tests will be performed at WIPP with test bins that have been filled and sealed in accordance with the test plan for bin scale tests. A second phase of the testing, the Alcove Test, will involve drummed waste placed in sealed rooms within WIPP. A preliminary test was conducted at the Rocky Flats Plant (RFP) to evaluate potential methods for use in the characterization of waste. The waste material types to be identified were as defined in the bin-scale test plan -- Cellulosics, Plastic, Rubber, Corroding Metal/Steel, Corroding Metal/Aluminum, Non-corroding Metal, Solid Inorganic, Inorganic Sludges, other organics and Cements. A total of 19 drums representing eleven different waste types (Rocky Flats Plant -- Identification Description Codes (IDC)) and seven different TRUCON Code materials were evaluated. They included Dry Combustibles, Wet Combustibles, Plastic, light Metal, Glass (Non-Raschig Ring). Raschig Rings, M g O crucibles, HEPA Filters, Insulation, Leaded Dry Box Gloves, and Graphite. These Identification Description Codes were chosen because of their abundance on plant, as well as the variability in drum loading techniques. The goal of this test was to evaluate the effectiveness of RTR inspection and visual inspection as characterization methods for waste. In addition, gas analysis of the head space was conducted to provide an indication of the types of gas generated

  6. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: chuanhuigao@foxmail.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)

    2010-03-01

    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  7. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  8. Surface characterization of graphene based materials

    International Nuclear Information System (INIS)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-01-01

    Highlights: • Two kind of samples: commercial graphene on Cu substrate and rGO flakes. • EPES applied to measure the IMFPs in graphene based materials. • Characterization by various techniques like: FE-SEM, AFM, XPS, AES and REELS. • EPES IMFPs for rGO deviated up to 14% from IMFPs calculated using the optical data. - Abstract: In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5–2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  9. Surface characterization of graphene based materials

    Energy Technology Data Exchange (ETDEWEB)

    Pisarek, M., E-mail: mpisarek@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Jablonski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Two kind of samples: commercial graphene on Cu substrate and rGO flakes. • EPES applied to measure the IMFPs in graphene based materials. • Characterization by various techniques like: FE-SEM, AFM, XPS, AES and REELS. • EPES IMFPs for rGO deviated up to 14% from IMFPs calculated using the optical data. - Abstract: In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5–2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  10. Characterization of the silicon nanopillar-surface filled and grafted with nanomaterials

    International Nuclear Information System (INIS)

    He, Yuan; Che, Xiangchen; Que, Long

    2014-01-01

    This paper reports the characterization of the silicon nanopillar-surface filled and grafted with nanomaterials. Usually a silicon nanopillar-surface contains nanopillars and air among them. The air is not a good medium to absorb and trap the incoming photons. In order to improve this capability, the air should be replaced with other material. To this end, copper sulfide–gold (CuS–Au) core–shell nanostructures and silver nanoplates are used as two representative substitutes for air among the nanopillars. Experiments find that the reflectance of the nanomaterial-coated nanopillar-surface can be reduced at least 50% compared to that of the bare nanopillar-surface. Different nanomaterial-coated nanopillar-surface can tune the optical reflectance and absorption profile, thereby trapping photons in different wavelength ranges. (paper)

  11. Characterization of the solar climate in Malawi using NASA's surface ...

    African Journals Online (AJOL)

    user

    Characterization of the solar climate in Malawi using. NASA's surface meteorology and solar energy. (SSE) model. Senganimalunje, T. C.1 and Tenthani, C. M. 2*. 1Malawi Bureau of Standards, Metrology Services Department, Box 946, Blantyre, Malawi. 2Physics and Biochemical Sciences Department, Malawi Polytechnic, ...

  12. Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP campaign

    Directory of Open Access Journals (Sweden)

    C. S. Law

    2017-11-01

    Full Text Available Establishing the relationship between marine boundary layer (MBL aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addressed by the SOAP (Surface Ocean Aerosol Production campaign, which examined air–sea interaction over biologically productive frontal waters east of New Zealand. This overview details the objectives, regional context, sampling strategy and provisional findings of a pilot study, PreSOAP, in austral summer 2011 and the following SOAP voyage in late austral summer 2012. Both voyages characterized surface water and MBL composition in three phytoplankton blooms of differing species composition and biogeochemistry, with significant regional correlation observed between chlorophyll a and DMSsw. Surface seawater dimethylsulfide (DMSsw and associated air–sea DMS flux showed spatial variation during the SOAP voyage, with maxima of 25 nmol L−1 and 100 µmol m−2 d−1, respectively, recorded in a dinoflagellate bloom. Inclusion of SOAP data in a regional DMSsw compilation indicates that the current climatological mean is an underestimate for this region of the southwest Pacific. Estimation of the DMS gas transfer velocity (kDMS by independent techniques of eddy covariance and gradient flux showed good agreement, although both exhibited periodic deviations from model estimates. Flux anomalies were related to surface warming and sea surface microlayer enrichment and also reflected the heterogeneous distribution of DMSsw and the associated flux footprint. Other aerosol precursors measured included the halides and various volatile organic carbon compounds, with first measurements of the short-lived gases glyoxal and methylglyoxal in pristine Southern Ocean marine air indicating an unidentified local source. The application of a real-time clean sector

  13. Comparison of optical methods for surface roughness characterization

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul Erik; Pilny, Lukas

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler....... For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance...... of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal...

  14. Atomic force microscopy characterization of the surface wettability of natural fibres

    International Nuclear Information System (INIS)

    Pietak, Alexis; Korte, Sandra; Tan, Emelyn; Downard, Alison; Staiger, Mark P.

    2007-01-01

    Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics

  15. Real-time, automated characterization of surfaces for alpha and beta radiation

    International Nuclear Information System (INIS)

    Egidi, P.V.

    1997-01-01

    A new data collection system, called ABACUS trademark, has been developed that automates and expedites the collection, conversion, and reporting of radiological survey data of surfaces. Field testing of the system by Oak Ridge National Laboratory/Environmental Technology Section is currently underway. Preliminary results are presented. The system detects, discriminates, and separately displays the results for alpha and beta contamination scans on floors and walls with a single pass. Fixed-position static counting is also possible for quantitative measuring. The system is currently configured with five 100 cm 2 dual-phosphor plastic scintillation detectors mounted in a lightweight aluminum fixture that holds the detectors in a fixed array. ABACUS trademark can be configured with other detectors if desired. Ratemeter/scalars traditionally coupled to individual detectors have been replaced by a single unit that houses the power supply and discriminator circuit boards to support up to five detectors. The system is designed to be used by a single operator. Each detector's position and data are transmitted once per second and recorded on a nearby laptop computer. The data are converted to appropriate units, color-coded, and mapped to display graphically the findings for each detector in real-time. Reports can be generated immediately following the survey. Survey data can be exported in a variety of formats. Benefits of ABACUS trademark are: (1) immediate feedback to decision makers using the observational approach to characterization or remediation, (2) thorough documentation of survey results, (3) increased statistical confidence in scans by recording counts every second, (4) reduced paperwork and elimination of transcription errors, and (5) time and cost savings for collection, conversion, mapping, evaluating, and reporting data over traditional methods

  16. Composites in small and simple devices to increase mixing on detector surfaces

    Science.gov (United States)

    Hernandez, L. F.; Lima, R. R.; Leite, A. R.; Fachini, E. R.; Silva, M. L. P.

    2013-03-01

    This work aims at three different applications for the betterment of plasma generated-composite thin films: pre-mixing, spray formation in miniaturized structures and an increase in the performance of detector surfaces. Miniaturized structures were projected, simulated with FEMLAB® 3.2 software and then constructed. Clustered films made from tetraethoxysilane (TEOS) and nonafluoro(iso)butyl ether (HFE®) precursors were deposited on silicon, acrylic and quartz substrates for different kinds of film characterization/or in the projected structures. Physical and chemical characterization guided the selection of best films previous to/after UVC exposure. The active surfaces (plasma-deposited films) in structures were modified by UVC exposure and then tested. The applications include pre-mixing of liquids and/or spray formation, best results being obtained with surface covered by derivative-HFE films, which acted as passivation layers. Preliminary results show good humidity sensing for TEOS-derivative films.

  17. Composites in small and simple devices to increase mixing on detector surfaces

    International Nuclear Information System (INIS)

    Hernandez, L F; Lima, R R; Leite, A R; Silva, M L P; Fachini, E R

    2013-01-01

    This work aims at three different applications for the betterment of plasma generated-composite thin films: pre-mixing, spray formation in miniaturized structures and an increase in the performance of detector surfaces. Miniaturized structures were projected, simulated with FEMLAB ® 3.2 software and then constructed. Clustered films made from tetraethoxysilane (TEOS) and nonafluoro(iso)butyl ether (HFE ® ) precursors were deposited on silicon, acrylic and quartz substrates for different kinds of film characterization/or in the projected structures. Physical and chemical characterization guided the selection of best films previous to/after UVC exposure. The active surfaces (plasma-deposited films) in structures were modified by UVC exposure and then tested. The applications include pre-mixing of liquids and/or spray formation, best results being obtained with surface covered by derivative-HFE films, which acted as passivation layers. Preliminary results show good humidity sensing for TEOS-derivative films.

  18. COLUROUTE : a mobile gonio-reflectometer to characterize the road surface photometry

    OpenAIRE

    MUZET, Valérie; PAUMIER, Jean Luc; GUILLARD, Yannick

    2008-01-01

    Designing a lighting installation involves accounting for site-specific geometric parameters and photometric characteristics of both the light sources and the road surface. The standard tool for characterizing road surface photometry is the reduced luminance coefficient table (or R-table), as defined in the 70's by the CIE. However, recent studies have shown that these tables are no longer representative. In this context, measuring road photometry is necessary for optimizing a lighting ins...

  19. Surface characterization of graphene based materials

    Science.gov (United States)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-12-01

    In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5-2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  20. Formation and Characterization of Stacked Nanoscale Layers of Polymers and Silanes on Silicon Surfaces

    Science.gov (United States)

    Ochoa, Rosie; Davis, Brian; Conley, Hiram; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Complete and consistent formation of nanoscale layers of silanes and polymers is a necessary first step for chemical patterning. We explored methods of silanizing silicon substrates for the purpose of functionalizing the surfaces. The chemical functionalization, stability, flatness, and repeatability of the process was characterized by use of ellipsometry, water contact angle, and Atomic Force Microscopy (AFM). We found that forming the highest quality functionalized surfaces was accomplished through use of chemical vapor deposition (CVD). Specifically, surfaces were plasma cleaned and hydrolyzed before the silane was applied. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer. The chemical functionalization, stability, flatness, and repeatability of the process was also characterized for the polymer layer using ellipsometry, water contact angle, and AFM.

  1. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  2. Characterization of holding brake friction pad surface after pin-on-plate wear test

    DEFF Research Database (Denmark)

    Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.

    2018-01-01

    This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different...

  3. Preliminary Characterization of the Liquid Discharge of the Mexico Hospital

    International Nuclear Information System (INIS)

    Hernandez Rojas, A

    2001-01-01

    The generation and wrong handling of hospital waste constitutes a serious problem at national level. In this work, a preliminary characterization of the discharge it liquidates of the Mexico Hospital is carried out. For it, different pouring points were analyzed inside the institution; they are: Laundry, Central Kitchen, Clinical Laboratory, X-Rays, Laboratory of Biomass, Morgue, and the final discharge of the hospital. This with the purpose of knowing the handling of the liquid waste in the health center, the sanitary quality of these liquids and their influence in the raw waters of the Mexico Hospital in the receiving body. For this study, we first coordinated with the personnel of each department to know about the handling and type of liquid residuals that are discharged to the system of pipes. Later on the physical-chemical and biological tests were carried out with base in two compound samplings done the days October 26 and November 4 1998. Among the carried out tests we have: pH, DBO, DQO, SAAM, Fatty and Oils, Temperature, Nitrogen and Faecal Coniforms, depending on the characteristics of their origin point. At the end of the study, the obtained results were evaluated for each studied pouring point, and then the influence of these focuses on the quality of the raw waters of the hospital that discharge in a gulch located to the northwest side of the facilities was analyzed. The obtained results allow to preliminarily know the characterization of the liquid discharge of the Mexico Hospital and it was classified as a source of contamination. The Hospital requires of a biological treatment plant for those biodegradable poured liquids, and of a system of chemical treatment for that type of products used in the processes characteristic of each department. It is also required to take into account measures of reduction of contamination that diminish the quantity of waste from the source. (Author) [es

  4. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting

    International Nuclear Information System (INIS)

    Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Barthlott, Wilhelm; Albach, Dirk C

    2013-01-01

    The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells. (paper)

  5. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting.

    Science.gov (United States)

    Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm

    2013-09-01

    The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.

  6. Characterization of Fine Metal Particles Derived from Shredded WEEE Using a Hyperspectral Image System: Preliminary Results

    Science.gov (United States)

    Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello

    2017-01-01

    Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070

  7. Nanopolyaniline as immobilization template for signal enhancement of surface plasmon resonance biosensor - A preliminary study

    Science.gov (United States)

    Kamarun, Dzaraini; Abdul Azem, Nor Hazirah Kamel; Sarijo, Siti Halimah; Mohd, Ahmad Faiza; Abdullah @ Mohd Noor, Mashita

    2012-07-01

    A technique for the enhancement of Surface Plasmon Resonance (SPR) signal for sensing biomolecular interactions is described. Polyaniline (PANI) of particle size in the range of 1 to 15 nm was synthesized and used as the template for the immobilization of protein molecules. Biomolecular interactions of unbound and PANI-bound proteins with antibody molecules were SPR-monitored using a model system comprising of Bovine Serum Albumin (BSA) and anti BSA. A 7-fold increased in the signal was recorded from interactions of the PANI-bound BSA with anti BSA compared to the interactions of its unbound counterpart. This preliminary observation provides new avenue in immunosensor technology for improving the detection sensitivity of SPR biosensor; and thereby increasing the lower detection limit of biomolecules.

  8. Preliminary characterization of materials for a reactive transport model validation experiment

    International Nuclear Information System (INIS)

    Siegel, M.D.; Ward, D.B.; Cheng, W.C.; Bryant, C.; Chocas, C.S.; Reynolds, C.G.

    1993-01-01

    The geochemical properties of a porous sand and several tracers (Ni, Br, and Li) have been characterized for use in a caisson experiment designed to validate sorption models used in models of inactive transport. The surfaces of the sand grains have been examined by a combination of techniques including potentiometric titration, acid leaching, optical microscopy, and scanning electron microscopy with energy-dispersive spectroscopy. The surface studies indicate the presence of small amounts of carbonate, kaolinite and iron-oxyhydroxides. Adsorption of nickel, lithium and bromide by the sand was measured using batch techniques. Bromide was not sorbed by the sand. A linear (K d ) or an isotherm sorption model may adequately describe transport of Li; however, a model describing the changes of pH and the concentrations of other solution species as a function of time and position within the caisson and the concomitant effects on Ni sorption may be required for accurate predictions of nickel transport

  9. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    Science.gov (United States)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  10. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Asher, R.C.; Bullen, D.; Davies, D.

    1976-03-01

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 900 0 C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  11. The friction of polymers around Tg,Tm : Preliminary results

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V N; Persson, B N J

    We present Molecular Dynamics calculations involving polymers of different lengths. Polymers with lengths from 20 to 1400 carbon atoms are considered. The systems are able to simulate friction between polymer surfaces and polymer against metal. The results we present are very preliminary and they......We present Molecular Dynamics calculations involving polymers of different lengths. Polymers with lengths from 20 to 1400 carbon atoms are considered. The systems are able to simulate friction between polymer surfaces and polymer against metal. The results we present are very preliminary...

  12. Validation of in-line surface characterization by light scattering in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    The suitability of a commercial scattered light sensor for in-line characterization of fine surfaces in the roughness range Sa 1 – 30 nm generated by the Robot Assisted Polishing (RAP) was investigated and validated. A number of surfaces were generated and directly measured with the scattered light...

  13. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS).

    Science.gov (United States)

    Kurouski, Dmitry; Deckert-Gaudig, Tanja; Deckert, Volker; Lednev, Igor K

    2014-01-07

    Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer's and Parkinson's diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Microanalytical characterization of surface decoration in Majolica pottery

    International Nuclear Information System (INIS)

    Padilla, R.; Schalm, O.; Janssens, K.; Arrazcaeta, R.; Espen, P. van

    2005-01-01

    This paper presents the results of the characterization of the surface finishing works in archaeological pottery fragments belonging to several Majolica types. The homogeneity, thickness and inclusions of both ground glaze and color decorations were, among other characteristics, inspected by scanning electron microscopy X-ray analysis (SEM-EDX). The identification of the main constituents in the decoration motifs was performed by means of scanning micro X-ray fluorescence analysis. Additionally, compositional classification based on non-destructive quantitative analysis of the ground glaze was performed

  15. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    Science.gov (United States)

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively

  16. Surface characterization of alloy Ti-6Al-7Nb treated plasma

    International Nuclear Information System (INIS)

    Moura, J.K.L.; Macedo, H.R.A.; Brito, E.M.; Brandim, A.S.

    2014-01-01

    Plasma surface modifications are subject of numerous studies to improve the quality of a given material. Titanium and its alloys are widely used in biomedical applications and plasma treatment technique is increasingly used to improve the surface properties thereof. The research have a objective in the comparative analysis of the change in microstructure of Ti-6Al-7Nb alloys after treatment of plasma nitriding. The technical are: nitriding with cathode cage (NGC) and planar discharge. The characterization was obtained by MEV (Scanning Electronic Microscope) and hardness. The results was compared about the better surface modification that meets future prospects of the biocompatibility of the alloy.(author)

  17. Characterization of a Laser Surface-Treated Martensitic Stainless Steel.

    Science.gov (United States)

    Al-Sayed, S R; Hussein, A A; Nofal, A A; Hassab Elnaby, S I; Elgazzar, H

    2017-05-29

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min-1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  18. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  19. Characterizing AISI 1045 steel surface duplex-treated by alternating current field enhanced pack aluminizing and nitriding

    Science.gov (United States)

    Xie, Fei; Zhang, Ge; Pan, Jianwei

    2018-02-01

    Thin cases and long treating time are shortcomings of conventional duplex treatment of aluminizing followed by nitriding (DTAN). Alternating current field (ACF) enhanced DTAN was carried out on AISI 1045 steel by applying an ACF to treated samples and treating agents with a pair of electrodes for overcoming those shortcomings. By investigating cases' structures, phases, composition and hardness distributions of differently treated samples, preliminary studies were made on characterizations of the ACF enhanced duplex treatment to AISI 1045 steel. The results show that, with the help of the ACF, the surface Al-rich phase Al5Fe2 formed in conventional pack aluminizing can be easily avoided and the aluminizing process is dramatically promoted. The aluminizing case can be nitrided either with conventional pack nitriding or ACF enhanced pack nitriding. By applying ACF to pack nitriding, the diffusion of nitrogen into the aluminizing case is promoted. AlN, Fe2∼3N and solid solution of N in iron are efficiently formed as a result of reactions of N with the aluminizing case. A duplex treated case with an effective thickness of more than 170 μm can be obtained by the alternating current field enhanced 4 h pack aluminizing plus 4 h pack nitriding.

  20. New Method to Characterize Degradation of First Surface Aluminum Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, F.; Heller, P.; Meyen, S.; Pitz-Paal, R.; Kennedy, C.; Fernandez-Garcia, A.; Schmucker, M.

    2010-10-01

    This paper reports the development of a new optical instrument capable of characterizing the aging process of enhanced first surface aluminum reflectors for concentrating solar power (CSP) application. Samples were exposed outdoors at different sites and in accelerated exposure tests. All samples exposed outdoors showed localized corrosion spots. Degradation originated from points of damage in the protective coating, but propagated underneath the protective coating. The degraded samples were analyzed with a microscope and with a newly designed space-resolved specular reflectometer (SR)2 that is capable of optically detecting and characterizing the corrosion spots. The device measures the specular reflectance at three acceptance angles and the wavelengths with spatial resolution using a digital camera's CMOS sensor. It can be used to measure the corrosion growth rate during outdoor and accelerated exposure tests. These results will allow a correlation between the degraded mirror surface and its specular reflectance.

  1. Spectroscopic characterization of the on-surface induced (cyclo) dehydrogenation of a N-heteroaromatic compound on noble metal surfaces

    Czech Academy of Sciences Publication Activity Database

    Palacio, I.; Pinardi, A. L.; Martínez, J. I.; Preobrajenski, A.; Cossaro, A.; Jančařík, Andrej; Stará, Irena G.; Starý, Ivo; Méndez, J.; Martín-Gago, J.A.; López, M.F.

    2017-01-01

    Roč. 19, č. 33 (2017), s. 22454-22461 ISSN 1463-9076 Institutional support: RVO:61388963 Keywords : dibenzohelicene * on-surface (cyclo)dehydrogenation * spectroscopic characterization Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 4.123, year: 2016

  2. Characterization and flip angle calibration of 13C surface coils for hyperpolarization studies

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Gutte, Henrik; Larsen, Majbrit M E

    The aim of the present work is to address the challenge of optimal The aim of the present work is to address the challenge of optimal flflip angle calibration of ip angle calibration of C surface coils in C surface coils in hyperpolarization studies. To this end, we characterize the spatial pro h...

  3. Electronic and structural characterizations of unreconstructed {0001} surfaces and the growth of graphene overlayers

    International Nuclear Information System (INIS)

    Emtsev, Konstantin

    2009-01-01

    The present work is focused on the characterization of the clean unreconstructed SiC{0001} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  4. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  5. Preliminary site characterization radiological monitoring plan for the Nevada Nuclear Waste Storage Investigations Project, Yucca Mountain Site

    International Nuclear Information System (INIS)

    1987-03-01

    The activities described in this plan occur in the early phases of site characterization. This document presents the Preliminary Site Characterization Radiological Monitoring Plan (PSCRMP) for collecting and evaluating data in support of the NNWSI Project. The PSCRMP defines and identifies control procedures for the monitoring activities. The PSCRMP activity will utilize integrating radon monitoring devices, a continuous radon monitor, and a particulate air sampler. These instruments will be used to establish the baseline radioactivity and/or radioactivity released due to early site characterization activities. The sections that follow provide a general project description, the specifics of the monitoring program, and the practices that will be employed to ensure the validity of the collected data by integrating quality assurance into all activities. Section 2 of this document describes the regulatory base of this document. Section 3 describes the site characterization activities which may lead to release of radioactivity. Section 4 provides a description of the potential sources of radioactivity that site characterization could generate. Section 5 summarizes the sampling and monitoring methodology, which will be used to monitor the potential sources of radioactivity. The network of sampling and monitoring equipment is described in Section 6, and Section 7 summarizes the systems operation activities. The data reporting activities are described in Section 8. Finally, a description of the Quality Assurance (QA) and Quality Control (QC) activities is provided in Section 9. Appendix A contains a summary of the procedures to be used in this program, and Appendix B contains technical specification on equipment and services. 20 refs., 11 figs., 2 tabs

  6. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  7. Short communication: Unexpected findings on the physicochemical characterization of the silver nanoparticle surface

    Science.gov (United States)

    Loran, S.; Yelon, A.; Sacher, E.

    2018-01-01

    The bactericidal properties of silver nanoparticles (Ag NPs) have been variously attributed to the action of the NP surface and/or the Ag ions released therefrom. However, the published literature does not appear to contain any information on the physicochemical characterization of the NP surface. Herein, we report on the surprisingly reactive surface of the Ag NP, which has an almost total lack of free Ag on atmospheric exposure. Rather, an abundance of surface hydrocarbons, hydrides and oxides, as well as amines and oxidized N, argues for a reinterpretation of their bactericidal action.

  8. A method for the characterization of the reflectance of anisotropic functional surfaces

    DEFF Research Database (Denmark)

    Regi, Francesco; Nielsen, J B; Li, Dongya

    2018-01-01

    The functional properties of micro-structured surfaces have gained increasing interest thanks to many applications such as wetting, adhesion, thermal and/or electrical conductivity. In this study, directional optical properties, i.e. contrast between two regions of a surface, were achieved...... reflectance of the surface for a range of design-specific view-illumination configurations was determined using a method that involves a Hirox RH-2000 digital microscope, used as a gonioreflectometer. This method allows the empirical determination of the optimum surface microstructure for maximizing contrast...... between two horizontally orthogonal views. The results show that even if the uncertainty related to the instrumentation is up to 20% in some cases, this procedure is suitable for the characterization of the surface of both metal and plastic counterpart....

  9. Crystallization, characterization and preliminary X-ray crystallographic analysis of GK2848, a putative carbonic anhydrase of Geobacillus kaustophilus

    International Nuclear Information System (INIS)

    Ragunathan, Preethi; Raghunath, Gokul; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2013-01-01

    The expression, purification, characterization and crystallization of GK2848, a carbonic anhydrase from G. kaustophilus, are described. The crystals diffracted to a resolution of 2.70 Å. GK2848, a hypothetical protein from the thermophilic organism Geobacillus kaustophilus, was cloned and overexpressed in Escherichia coli. The protein was purified to homogeneity using Ni–NTA affinity-column and gel-filtration chromatography. The purified protein was crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.70 Å and belonged to the orthorhombic space group P2 1 2 1 2. GK2848 bears sequence homology to carbonic anhydrases of various bacterial species, indicating that it belongs to the carbonic anhydrase family of proteins. A subsequent carbonic anhydrase activity assay of GK2848 using the Wilbur–Anderson method confirmed its function as a carbonic anhydrase. A preliminary structure solution was obtained by molecular replacement using MOLREP. Mutation and biochemical characterization of the protein are in progress. The structure and functional analysis of GK2848 might provide valuable information on a novel class of carbonic anhydrases, as none of its homologous structures have been characterized

  10. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  11. Analysis of atomic force microscopy data for surface characterization using fuzzy logic

    International Nuclear Information System (INIS)

    Al-Mousa, Amjed; Niemann, Darrell L.; Niemann, Devin J.; Gunther, Norman G.; Rahman, Mahmud

    2011-01-01

    In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional search technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: → A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. → The technique is applicable to different surfaces regardless of their densities. → Fuzzy logic technique does not require manual adjustment of the algorithm parameters. → The technique can quantitatively capture differences between surfaces. → This technique yields more realistic structure boundaries compared to other methods.

  12. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  13. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  14. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  15. Fabrication and surface characterization of photopatterned encapsulated micromagnets for microrobotics and microfluidics applications

    Science.gov (United States)

    Li, Hui; Leachman, William; Kershaw, Joe

    2016-11-01

    In this paper, encapsulated micromagnets with magnetic core surrounded by pure SU-8 were fabricated utilizing multilayer photolithography with a middle NdFeB magnetic composite layer. Various geometries of micromagnets were fabricated with high density magnetic core and high resolution features, showing magnetically response while still being biocompatible and chemically resistant and making them suitable for a wide range of microrobotics and microfluidics applications. Especially, crescent and C-channel micromagnets showed potential of microtransportation devices because of their interior reservoirs. Surface characterization of the micromagnets was conducted using closed-form solutions derived from the general biplanar surface characterization method. The fabrication method was evaluated and the process errors were found less than 1%.

  16. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    S.R. Al-Sayed

    2017-05-01

    Full Text Available Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min−1 was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  17. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness

  18. Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds

    Science.gov (United States)

    Roth, Julien

    2010-06-01

    We give spinorial characterizations of isometrically immersed surfaces into three-dimensional homogeneous manifolds with four-dimensional isometry group in terms of the existence of a particular spinor field. This generalizes works by Friedrich for R3 and Morel for S3 and H3. The main argument is the interpretation of the energy-momentum tensor of such a spinor field as the second fundamental form up to a tensor depending on the structure of the ambient space.

  19. Development and preliminary experimental study on micro-stacked insulator

    International Nuclear Information System (INIS)

    Ren Chengyan; Yuan Weiqun; Zhang Dongdong; Yan Ping; Wang Jue

    2009-01-01

    High gradient insulating technology is one of the key technologies in new type dielectric wall accelerator(DWA). High gradient insulator, namely micro-stacked insulator, was developed and preliminary experimental study was done. Based on the finite element and particle simulating method, surface electric field distribution and electron movement track of micro-stacked insulator were numerated, and then the optimized design proposal was put forward. Using high temperature laminated method, we developed micro-stacked insulator samples which uses exhaustive fluorinated ethylene propylene(FEP) as dielectric layer and stainless steel as metal layer. Preliminary experiment of vacuum surface flashover in nanosecond pulse voltage was done and micro-stacked insulator exhibited favorable vacuum surface flashover performance with flashover field strength of near 180 kV/cm. (authors)

  20. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Rivera, Lymaris, E-mail: luo105@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Bakaev, Victor A.; Banerjee, Joy [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Pantano, Carlo G. [Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-05-01

    Highlights: • XPS revealed that these fiber surfaces contain sodium carbonate weathering products. • IGC–MS data confirms the products of acetic acid reaction with sodium carbonate. • NMR data shows two closely spaced, but distinct sodium carboxylate peaks. • Acetic acid reacts with both sodium in the glass and sodium in the sodium carbonate. - Abstract: Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a {sup 13}C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC–MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H

  1. Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation

    International Nuclear Information System (INIS)

    Ţălu, Ştefan; Marković, Zoran; Stach, Sebastian; Todorović Marković, B.; Ţălu, Mihai

    2014-01-01

    This study presents a multifractal approach, obtained with atomic force microscopy analysis, to characterize the structural evolution of single wall carbon nanotube thin films upon exposure to optical parametric oscillator laser irradiation at wavelength of 430 nm. Microstructure and morphological changes of carbon nanotube films deposited on different substrates (mica and TGX grating) were recorded by atomic force microscope. A detailed methodology for surface multifractal characterization, which may be applied for atomic force microscopy data, was presented. Multifractal analysis of surface roughness revealed that carbon nanotube films surface has a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of carbon nanotube films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.

  2. Characterization of surface properties of glass vials used as primary packaging material for parenterals.

    Science.gov (United States)

    Ditter, Dominique; Mahler, Hanns-Christian; Roehl, Holger; Wahl, Michael; Huwyler, Joerg; Nieto, Alejandra; Allmendinger, Andrea

    2018-04-01

    The appropriate selection of adequate primary packaging, such as the glass vial, rubber stopper, and crimp cap for parenteral products is of high importance to ensure product stability, microbiological quality (integrity) during storage as well as patient safety. A number of issues can arise when inadequate vial material is chosen, and sole compliance to hydrolytic class I is sometimes not sufficient when choosing a glass vial. Using an appropriate pre-treatment, such as surface modification or coating of the inner vial surface after the vial forming process the glass container quality is often improved and interactions of the formulation with the surface of glass may be minimized. This study aimed to characterize the inner surface of different type I glass vials (Exp33, Exp51, Siliconized, TopLyo™ and Type I plus®) at the nanoscale level. All vials were investigated topographically by colorimetric staining and Scanning Electron Microscopy (SEM). Glass composition of the surface was studied by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS), and hydrophobicity/hydrophilicity of the inner surface was assessed by dye tests and surface energy measurements. All containers were studied unprocessed, as received from the vendor, i.e. in unwashed and non-depyrogenized condition. Clear differences were found between the different vial types studied. Especially glass vials without further surface modifications, like Exp33 and Exp51 vials, showed significant (I) vial-to-vial variations within one vial lot as well as (II) variations along the vertical axis of a single vial when studying topography and chemical composition. In addition, differences and heterogeneity in surface energy were found within a given tranche (circumferential direction) of Exp51 as well as Type I plus® vials. Most consistent quality was achieved with TopLyo™ vials. The present comprehensive characterization of surface properties of the

  3. Characterizing Pavement Surface Distress Conditions with Hyper-Spatial Resolution Natural Color Aerial Photography

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-05-01

    Full Text Available Roadway pavement surface distress information is critical for effective pavement asset management, and subsequently, transportation management agencies at all levels (i.e., federal, state, and local dedicate a large amount of time and money to routinely evaluate pavement surface distress conditions as the core of their asset management programs. However, currently adopted ground-based evaluation methods for pavement surface conditions have many disadvantages, like being time-consuming and expensive. Aircraft-based evaluation methods, although getting more attention, have not been used for any operational evaluation programs yet because the acquired images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial resolution natural color aerial photography (HSR-AP provides a potential method for collecting pavement surface distress information that can supplement or substitute for currently adopted evaluation methods. Using roadway pavement sections located in the State of New Mexico as an example, this research explored the utility of aerial triangulation (AT technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS, in this case a tethered helium weather balloon, to permit characterization of detailed pavement surface distress conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were used to compare detailed pavement surface distress rates measured from HSR-AP derived products (orthophotos and digital surface models generated from AT with reference distress rates manually collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial resolution imaging and AT techniques can provide detailed and reliable primary observations suitable for characterizing detailed pavement surface distress conditions comparable to the ground-based manual measurement, which lays the foundation for the future application

  4. III-V semiconductors for photoelectrochemical applications: surface preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Dominic; Schaechner, Birgit; Calvet, Wofram; Kaiser, Bernhard; Jaegermann, Wolfram [TU Darmstadt, Fachbereich Materialwissenschaft, Fachgebiet Oberflaechenforschung (Germany)

    2011-07-01

    III-V semiconductors are promising reference systems for photoelectrochemical energy conversion. Therefore we have studied the influence of different acids and acidic solutions on the etching of p-doped gallium-arsenide and gallium-phosphide single crystal surfaces. From our experiments we conclude, that etching with HCl and subsequent annealing up to 450 C gives the best results for the removal of the carbonates and the oxides without affecting the quality of the sample. By treating the surfaces with ''piranha''-solution (H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O/7:2:1), the creation of an oxide layer with well defined thickness can be achieved. For the creation of an efficient photoelectrochemical cell, Pt nanoparticles have been deposited from solution. These surfaces are then characterized by photoelectron spectroscopy and AFM. Further electrochemical measurements try to correlate the effect of the surface cleaning and the Pt deposition on the photoactivity of the GaAs- and GaP-semiconductors.

  5. Characterization of iron surface modified by 2-mercaptobenzothiazole self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yuanyuan [Department of Chemistry, Shandong University, Jinan 250100 (China); Chen Shenhao [Department of Chemistry, Shandong University, Jinan 250100 (China) and State Key Laboratory for Corrosion and Protection, Shenyang 110016 (China)]. E-mail: shchen@sdu.edu.cn; Zhang Honglin [Department of Chemistry, Qufu Normal University, Qufu 273165 (China); Li Ping [Department of Chemistry, Shandong University, Jinan 250100 (China); Wu Ling [Department of Chemistry, Shandong University, Jinan 250100 (China); Guo Wenjuan [Department of Chemistry, Shandong University, Jinan 250100 (China)

    2006-12-30

    A self-assembled monolayer of 2-mercaptobenzothiazole (MBT) adsorbed on the iron surface was prepared. The films were characterized by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection spectroscopy (FT-IR) and scanning electron microscopy (SEM). Besides, the microcalorimetry method was utilized to study the self-assembled process on iron surface and the adsorption mechanism was discussed from the power-time curve. The results indicated that MBT was able to form a film spontaneously on iron surface and the presence of it could protect iron from corrosion effectively. However, the assembling time and the concentration influence the protection efficiency. Quantum chemical calculations, according to which adsorption mechanism was discussed, could explain the experimental results to some extent.

  6. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    Science.gov (United States)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  7. A new systematic and quantitative approach to characterization of surface nanostructures using fuzzy logic

    Science.gov (United States)

    Al-Mousa, Amjed A.

    Thin films are essential constituents of modern electronic devices and have a multitude of applications in such devices. The impact of the surface morphology of thin films on the device characteristics where these films are used has generated substantial attention to advanced film characterization techniques. In this work, we present a new approach to characterize surface nanostructures of thin films by focusing on isolating nanostructures and extracting quantitative information, such as the shape and size of the structures. This methodology is applicable to any Scanning Probe Microscopy (SPM) data, such as Atomic Force Microscopy (AFM) data which we are presenting here. The methodology starts by compensating the AFM data for some specific classes of measurement artifacts. After that, the methodology employs two distinct techniques. The first, which we call the overlay technique, proceeds by systematically processing the raster data that constitute the scanning probe image in both vertical and horizontal directions. It then proceeds by classifying points in each direction separately. Finally, the results from both the horizontal and the vertical subsets are overlaid, where a final decision on each surface point is made. The second technique, based on fuzzy logic, relies on a Fuzzy Inference Engine (FIE) to classify the surface points. Once classified, these points are clustered into surface structures. The latter technique also includes a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and then tune the fuzzy technique system uniquely for that surface. Both techniques have been applied to characterize organic semiconductor thin films of pentacene on different substrates. Also, we present a case study to demonstrate the effectiveness of our methodology to identify quantitatively particle sizes of two specimens of gold nanoparticles of different nominal dimensions dispersed on a mica surface. A comparison

  8. Self-cleaning Foliar Surfaces Characterization using RIMAPS Technique and Variogram Method

    International Nuclear Information System (INIS)

    Rosi, Pablo E.

    2002-01-01

    Along the last ten years many important studies about characterization of self-cleaning foliar surfaces have been done and focused new interest on this kind of surfaces.These studies were possible due to the development of a novel preparation technique for this biological material that let us observe the delicate structures of a foliar surface under scanning electron microscope (S.E.M.).This technique consists of replacing the natural water of the specimen by glycerol. Digital S.E.M. images from both self-cleaning and non-self-cleaning foliar surfaces were obtained and analyzed using RIMAPS technique and Variograms method. Our results revealed the existence of a common and exclusive geometrical pattern that is found in species which present self-cleaning foliar surfaces.This pattern combines at least nine different directions.The results from the Variograms method showed that the stomata play a key role in the determination of foliar surface roughness. In addition, spectra from RIMAPS technique constitute a fingerprint of a foliar surface so they can be used to find evolutionary relationships among species.Further studies will provide more detailed information to fully elucidate the self-cleaning pattern, so it might be possible to reproduce it on an artificial surface and make it self-cleaning

  9. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    International Nuclear Information System (INIS)

    Sekimoto, Tadashi; Maruyama, Hitoshi; Kondo, Takayuki; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu; Otsuka, Masayuki; Miyazaki, Masaru; Mine, Yoshitaka

    2013-01-01

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis

  10. Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma

    International Nuclear Information System (INIS)

    Zheng Zhiwen; Ren Li; Feng Wenjiang; Zhai Zhichen; Wang Yingjun

    2012-01-01

    In order to study the surface characterization and protein adhesion behavior of polyethylene terephthalate film, low temperature ammonia plasma was used to modify the film. Effects of plasma conditions of the surface structures and properties were investigated. Results indicated that surface hydrophilicity of polyethylene terephthalate was significantly improved by ammonia plasma treatment. Ammonia plasma played the role more important than air treatment in the process of modification. Furthermore, by Fourier Transform Infrared spectra some new bonds such as -N=O and N-H which could result in the improvement of the surface hydrophilicity were successfully grafted on the film surface. Atom force microscope experiments indicated that more protein adsorbed on hydrophobic surfaces than hydrophilic ones, and the blobs arranged in a straight line at etching surface by plasma. Modified membrane after ammonia plasma treatment had a good cell affinity and could be effective in promoting the adhesion and growth of cells on the material surface. Timeliness experiments showed that the plasma treatment gave the material a certain performance only in a short period of time and the hydrophobicity recovered after 12 days.

  11. Preliminary rock mechanics laboratory: Investigation plan

    International Nuclear Information System (INIS)

    Oschman, K.P.; Hummeldorf, R.G.; Hume, H.R.; Karakouzian, M.; Vakili, J.E.

    1987-01-01

    This document presents the rationale for rock mechanics laboratory testing (including the supporting analysis and numerical modeling) planned for the site characterization of a nuclear waste repository in salt. This plan first identifies what information is required for regulatory and design purposes, and then presents the rationale for the testing that satisfies the required information needs. A preliminary estimate of the minimum sampling requirements for rock laboratory testing during site characterization is also presented. Periodic revision of this document is planned

  12. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  13. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  14. Synthesis, Characterization, Topographical Modification, and Surface Properties of Copoly(Imide Siloxane)s

    Science.gov (United States)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2012-01-01

    Novel copoly(imide siloxane)s were synthesized from commercially available aminopropyl terminated siloxane oligomers, aromatic dianhydrides, and diamines. This synthetic approach produced copolymers with well-defined siloxane blocks linked with imide units in a random fashion. The copoly(amide acid)s were characterized by solution viscosity and subsequently used to cast thin films followed by thermal imidization in an inert atmosphere. Thin films were characterized using contact angle goniometry, attenuated total reflection Fourier transform infrared spectroscopy, confocal and optical microscopy, and tensile testing. Adhesion of micronsized particles was determined quantitatively using a sonication device. The polydimethylsiloxane (PDMS) moieties lowered the copolymer surface energy due to migration of siloxane moieties to the film s surface, resulting in a notable reduction in particle adhesion. A further reduction in particle adhesion was achieved by introducing topographical features on a scale of several to tens of microns by a laser ablation technique.

  15. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers.

    Science.gov (United States)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A Umran; Ottaviani, Maria Francesca

    2016-04-05

    Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Study of measurement methods of ultrafine aerosols surface-area for characterizing occupational exposure

    International Nuclear Information System (INIS)

    Bau, S.

    2008-12-01

    This work aims at improving knowledge on ultrafine aerosols surface-area measurement. Indeed, the development of nano-technologies may lead to occupational exposure to airborne nano-structured particles, which involves a new prevention issue. There is currently no consensus concerning what parameter (mass, surface-area, number) should be measured. However, surface-area could be a relevant metric, since it leads to a satisfying correlation with biological effects when nano-structured particles are inhaled. Hence, an original theoretical work was performed to position the parameter of surface-area in relation to other aerosol characteristics. To investigate measurement techniques of nano-structured aerosols surface-area, the experimental facility CAIMAN (Characterization of Instruments for the Measurement of Aerosols of Nano-particles) was designed and built. Within CAIMAN, it is possible to produce nano-structured aerosols with varying and controlled properties (size, concentration, chemical nature, morphology, state-of-charge), stable and reproducible in time. The generated aerosols were used to experimentally characterize the response of the instruments in study (NSAM and AeroTrak 9000 TSI, LQ1-DC Matter Engineering). The response functions measured with monodisperse aerosols show a good agreement with the corresponding theoretical curves in a large size range, from 15 to 520 nm. Furthermore, hypotheses have been formulated to explain the reasonable biases observed when measuring poly-disperse aerosols. (author)

  17. Characterizing bars in low surface brightness disc galaxies

    Science.gov (United States)

    Peters, Wesley; Kuzio de Naray, Rachel

    2018-05-01

    In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.

  18. Characterization of SCC crack tips and surface oxide layers in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  19. Comparison of optical methods for surface roughness characterization

    International Nuclear Information System (INIS)

    Feidenhans’l, Nikolaj A; Hansen, Poul-Erik; Madsen, Morten H; Petersen, Jan C; Pilný, Lukáš; Bissacco, Giuliano; Taboryski, Rafael

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler. For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal instruments, if the common bandwidth is applied. Likewise, a correlation is observed when determining the Aq value with the BRDF and the rBRDF instruments.Furthermore, we show that it is possible to determine the Rq value from the Aq value, by applying a simple transfer function derived from the instrument comparisons. The presented method is validated for surfaces with predominantly 1D roughness, i.e. consisting of parallel grooves of various periods, and a reflectance similar to stainless steel. The Rq values are predicted with an accuracy of 38% at the 95% confidence interval. (paper)

  20. Radioactive waste shredding: Preliminary evaluation

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size

  1. Recent surface displacements in the Upper Rhine Graben — Preliminary results from geodetic networks

    Science.gov (United States)

    Fuhrmann, Thomas; Heck, Bernhard; Knöpfler, Andreas; Masson, Frédéric; Mayer, Michael; Ulrich, Patrice; Westerhaus, Malte; Zippelt, Karl

    2013-08-01

    Datasets of the GNSS Upper Rhine Graben Network (GURN) and the national levelling networks in Germany, France and Switzerland are investigated with respect to current surface displacements in the Upper Rhine Graben (URG) area. GURN consists of about 80 permanent GNSS (Global Navigation Satellite Systems) stations. The terrestrial levelling network comprises 1st and 2nd order levelling lines that have been remeasured at intervals of roughly 25 years, starting in 1922. Compared to earlier studies national institutions and private companies made available raw data, allowing for consistent solutions for the URG region. We focussed on the southern and eastern parts of the investigation area. Our preliminary results show that the levelling and GNSS datasets are sensitive to resolve small surface displacement rates down to an order of magnitude of 0.2 mm/a and 0.4 mm/a, respectively. The observed horizontal velocity components for a test region south of Strasbourg, obtained from GNSS coordinate time series, vary around 0.5 mm/a. The results are in general agreement with interseismic strain built-up in a sinistral strike-slip regime. Since the accuracy of the GNSS derived vertical component is insufficient, data of precise levelling networks is used to determine vertical displacement rates. More than 75% of the vertical rates obtained from a kinematic adjustment of 1st order levelling lines in the eastern part of URG vary between - 0.2 mm/a and + 0.2 mm/a, indicating that this region behaves stable. Higher rates up to 0.5 mm/a in a limited region south of Freiburg are in general agreement with active faulting. We conclude that both networks deliver stable results that reflect real surface movements in the URG area. We note, however, that geodetically observed surface displacements generally result from a superposition of different effects, and that a separation in tectonic and non-tectonic processes needs additional information and expertise.

  2. Surface characterization of retinal tissues for the enhancement of vitreoretinal surgical methods

    Science.gov (United States)

    Valentin-Rodriguez, Celimar

    Diabetic retinopathy is the most common ophthalmic complication of diabetes and the leading cause of blindness among adults, ages 30 to 70. Surgery to remove scar tissue in the eye is the only corrective treatment once the retina is affected. Visual recovery is often hampered by retinal trauma during surgery and by low patient compliance. Our work in this project aimed to improve vitreoretinal surgical methods from information gathered by sensitive surface analysis of pre-retinal tissues found at the vitreoretinal interface. Atomic force microscopy characterization of human retinal tissues revealed that surgically excised inner limiting membrane (ILM) has a heterogeneous surface and is mainly composed of globular and fibrous structures. ILM tissues also show low adhesion for clean unmodified surfaces as opposed to those with functional groups attractive to those on the ILM surface, due to their charge. Based on these observations, layer-by-layer films with embedded gold nanoparticles with a positive outer charge were designed. These modifications increased the adhesion between surgical instruments and ILM by increasing the roughness and tuning the film surface charge. These films proved to be stable under physiological conditions. Finally, the effect of vital dyes on the topographical characteristics of ILMs was characterized and new imaging modes to further reveal ILM topography were utilized. Roughness and adhesion force data suggest that second generation dyes have no effect on the surface nanostructure of ILMs, but increase adhesion at the tip sample interface. This project clearly illustrates that physicochemical information from tissues can be used to rationally re-design surgical procedures, in this case for tissue removal purposes. This rational design method can be applied to other soft tissue excision procedures as is the case of cataract surgery or laparoscopic removal of endometrial tissue.

  3. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  4. Solid-phase microextraction/gas chromatography-mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles.

    Science.gov (United States)

    Omanovic-Miklicanin, Enisa; Valzacchi, Sandro; Simoneau, Catherine; Gilliland, Douglas; Rossi, Francois

    2014-10-01

    A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further

  5. Characterization of chemical composition, surface area pore, and thermal properties of zeolites from Bayah, Tasikmalaya, and Lampung

    International Nuclear Information System (INIS)

    Ginting, Aslina Br.; Dian Anggraini; Sutri Indaryati; Rosika Kriswarini

    2007-01-01

    Characterization of chemical composition, surface area, pore radius, adsorption, and thermal properties of zeolites from Bayah, Tasikmalaya, and Lampung have been performed. The purpose of the characterization is to understand the characteristics of the three zeolites since different types of zeolite will yield different chemical composition, surface area, pore radius, and adsorption. The analysis shows that zeolites from Bayah, Tasikmalaya, and Lampung consist of chemical elements Al, Si, P, K, Ca, Ti, Fe, and S. The analysis of the surface area indicates that zeolite from Lampung has surface area of 10.0477 m 2 , pore radius of 16.0653 Å, and adsorption of 24.500 ml/g, which are greater than those of zeolite from Tasikmalaya with surface area of 6.3319 m2, pore radius of 16.2350 Å, adsorption of 13.2500 ml/g, zeolite from Bayah with surface area of 8.3528 m2, pore radius of 16.2350 Å, and adsorption of 13.250 ml/g. From of the thermal properties characterization it is shown the three zeolites experienced weight reduction from 5.93% to 8.33%, which results in the formation of new phases as indicated by endothermic reactions from 150 °C to 600 °C and from 850 °C to 1000 °C. The three zeolites experienced a decrease in heat capacity up to temperature of 199.96 °C, whereas at temperatures above 216.66 °C the zeolites experienced an increase in heat capacity up to 437.78 °C. The results of the characterization indicate that different types of zeolite do not yield significant difference in chemical composition and thermal characteristics as proven with F test, however different surface area, pore radius, and adsorption characteristics are observed. The characterization results are expected to be the first step in determining the characteristics of the three zeolites that are to be used for cesium ion exchange in the incoming research. (author)

  6. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    International Nuclear Information System (INIS)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara; Marques, Isabella S.V.; Sukotjo, Cortino; Mathew, Mathew T.; Rangel, Elidiane C.; Cruz, Nilson C.; Mesquita, Marcelo F.; Consani, Rafael X.

    2016-01-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H_2O_2 (Cl), H_2SO_4 + H_2O_2 (S); sandblasted with Al_2O_3 (Sb), Al_2O_3 followed by HCl + H_2O_2 (SbCl), and Al_2O_3 followed by H_2SO_4 + H_2O_2 (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R_p) and the lowest capacitance (Q) and corrosion current density (I_c_o_r_r) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R_p values of cp-Ti surfaces and produced the highest I_c_o_r_r values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp-Ti. • Acid etching is a promising dental implants surface treatment.

  7. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL, USA, 60612 (United States); IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL, USA, 61107 (United States); Rangel, Elidiane C.; Cruz, Nilson C. [IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180 (Brazil); Mesquita, Marcelo F.; Consani, Rafael X. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); and others

    2016-08-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H{sub 2}O{sub 2} (Cl), H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (S); sandblasted with Al{sub 2}O{sub 3} (Sb), Al{sub 2}O{sub 3} followed by HCl + H{sub 2}O{sub 2} (SbCl), and Al{sub 2}O{sub 3} followed by H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R{sub p}) and the lowest capacitance (Q) and corrosion current density (I{sub corr}) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R{sub p} values of cp-Ti surfaces and produced the highest I{sub corr} values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp

  8. SEM, Scanning Auger and XPS characterization of chemically pretreated Ti surfaces intended for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pisarek, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)], E-mail: marcinp@ichf.edu.pl; Lewandowska, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Roguska, A. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Kurzydlowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Janik-Czachor, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2007-07-15

    Titanium is known as a biocompatible metal characterized by biological and corrosion immunity and good mechanical properties, including a high fracture toughness. In a variety of environments, this metal undergoes 'natural' oxidation which determine its resistance to corrosion. It can also be exposed to chemical treatments in acidic or alkaline solutions which 'enforces' chemical and morphological changes of Ti surface. Those methods, if well controlled, may increase the effective Ti surface area, making it more biocompatible. However, the morphological and chemical factors responsible for their interactions with biological cells are still not well known. The aim of this work was to compare surface chemical and morphological changes introduced by commonly used aqueous NaOH pretreatment with those occurring in a new 'piranha' acidic solution. Particular attention was paid to possible changes which may be decisive for the biocompatibility of the Ti-elements subjected to these surface modifications. Surface analytical techniques such as Auger electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) combined with Ar{sup +} ion sputtering allowed us to investigate in detail the chemical composition of Ti oxide layers. SEM examinations provided morphological characterization of the surface of Ti samples. The results revealed large difference in morphology of Ti surfaces pretreated with different procedures whereas only minor difference in the chemistry of the surfaces were detected.

  9. Effect of preliminary oxidation on process of steel carburization

    Energy Technology Data Exchange (ETDEWEB)

    Devochkin, O V; Vorontsov, E S; Filonov, V N [Voronezhskij Politekhnicheskij Inst. (USSR)

    1975-01-01

    Effects of preliminary oxidation of the metal surface and its subsequent reduction steel cementation were studied. The samples with interferentionally coloured oxide film on the surface had deeper carbonated layer than those without film. The kinetics of carbonation process and the mechanism proposed for this phenomenon are given.

  10. Investigation on the surface characterization of Ga-faced GaN after chemical-mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Hua [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Pan, Guoshun, E-mail: pangs@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Zhou, Yan; Shi, Xiaolei; Zou, Chunli; Zhang, Suman [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Shenzhen Key Laboratory of Micro/nano Manufacturing, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-05-30

    Highlights: • Tiny-sized nanoparticles were introduced in GaN CMP to realize a good surface. • The relationship between surface characterization and abrasive size was conducted. • An atomic step-terrace structure was achieved on GaN surface after CMP. • Pt/C catalyst nanoparticles were used in GaN CMP to get a higher MRR. - Abstract: The relationship between the surface characterization after chemical mechanical polishing (CMP) and the size of the silica (SiO{sub 2}) abrasive used for CMP of gallium nitride (GaN) substrates was investigated in detail. Atomic force microscope was used for measuring the surface morphology, pit feature, pit depth distribution, and atomic step-terrace structure. With the decrease of SiO{sub 2} abrasive size, the pit depth reduced and the atomic step-terrace structure became more whole with smaller damage area, resulting in smaller roughness. For tiny-sized SiO{sub 2} abrasive, an almost complete atomic step-terrace structure with 0.0523 nm roughness was achieved. On the other hand, in order to acquire higher removal, Pt/C nanoparticle was employed as a catalyst in CMP slurry. The result indicates that when Pt/C catalyst content was reached to 1.0 ppm, material removal rate was increased by 47.69% compared to that by none of the catalyst, and besides, the pit depth reduced and the surface atomic step-terrace structure was not destroyed. The Pt/C nanoparticle is proved to be the promising catalyst to the surface preparation of super-hard and inert materials with high efficiency and good surface.

  11. Preliminary evaluation of microstructure and mechanical properties on low activation ferritic steels

    International Nuclear Information System (INIS)

    Hsu, C.Y.; Lechtenberg, T.A.

    1985-01-01

    Radioactive waste disposal has become a primary concern for the selection of materials for the structural components for fusion reactors. One way to minimize this potential environmental problem is to use structural materials in which the induced radioactivity decays quickly to levels that allow for near-surface disposal under 10CFR61 rules. The primary objective of this work is to develop low activation ferritic steels that exhibit mechanical and physical properties approximately equivalent to the HT-9 and 9Cr-1Mo steels, but which only contain elements that would permit near-surface disposal under 10CFR61 after exposure to fusion neutrons. A preliminary evaluation of the microstructure and mechanical properties of a 9Cr-2.5W-0.3V-0.15C (GA3X) low activation ferritic steel has been performed. An optimum heat treatment condition has been defined for GA3X steel. The properties and microstructure of the quenched and tempered specimens were characterized via hardness measurement and optical metallographic observation. The hot-microhardness and ductility parameter measurements were used to estimate the tensile properties at elevated temperatures. The estimated tensile strengths of GA3X steel at elevated temperatures are comparable to both 9Cr-1Mo and the modified 9Cr-1Mo steels. These preliminary results are encouraging in that they suggest that suitable low activation alloys can be successfully produced in this ferritic alloy class

  12. Characterization of the Micro-shell Surface Using Holographic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandras, F.; Hermerel, C.; Choux, A.; Merillot, P.; Pin, G.; Jeannot, L. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)

    2009-05-15

    To characterize the shape, the quality, and the roughness of micro-shells, typically used technologies are scanning electron microscopy, scanning interferometric microscopy, or atomic force microscopy. One of the drawbacks of these techniques is that they are generally slow because of their scanning process. Digital holographic microscopy technology is an innovation that can offer ability adapted to these studies. It captures holograms instead of intensity images, as done by conventional microscopes. The holograms are then digitally interpreted (10 per second) to reconstruct a double image, one for the intensity and another one for the phase. Using a rotation axis, the bump counting for the complete micro-shell surface is possible with a very high speed. Using an image stitching software, mapping can be done in a few minutes. Wavelets such as 'Mexican hat' are used to model the bumps. Each bump can then be characterized on the map by its position, diameter, and height. (authors)

  13. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  14. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    Science.gov (United States)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  15. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    International Nuclear Information System (INIS)

    Li, P; Xie, J; Cheng, J; Wu, K K

    2014-01-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25–80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface. (paper)

  16. Anisotropic wetting properties on a precision-ground micro-V-grooved Si surface related to their micro-characterized variables

    Science.gov (United States)

    Li, P.; Xie, J.; Cheng, J.; Wu, K. K.

    2014-07-01

    Micro-characterized variables are proposed to precisely characterize a micro-V-grooved Si surface through the 3D measured topography rather than the designed one. In this study, level and gradient micro-grooved surfaces with depth of 25-80 µm were precisely and smoothly fabricated using a new micro-grinding process rather than laser machining and chemical etching. The objective is to investigate how these accurate micro-characterized variables systematically influence anisotropic wetting and droplet self-movement on such regular micro-structured surfaces without surface chemical modification. First, the anisotropic wetting, droplet sliding, pinning effect and droplet impact were experimentally investigated; then, theoretical anisotropic wetting models were constructed to predict and design the anisotropic wetting. The experiments show that the level micro-V-grooved surface produces the anisotropic wetting and pinning effects. It not only approximates superhydrophobicity but also produces high surface free energy. Moreover, the gradient micro-V-grooved surface with large pitch may lead to much easier droplet sliding than the level one along the micro-groove. The droplet self-movement trend increases with increasing the micro-groove gradient and micro-V-groove ratio. The micro-groove pitch and depth also influence the droplet impact. Theoretical analyses show that the wetting anisotropy and the droplet anisotropy both reach their largest value and disappear for a sharp micro-groove top when the micro-V-groove ratio is equal to 0.70 and 2.58, respectively, which may change the wetting between the composite state and the non-composite state. It is confirmed that the wetting behavior may be designed and predicted by the accurate micro-characterized variables of a regular micro-structured surface.

  17. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  18. Characterizing water surface elevation under different flow conditions for the upcoming SWOT mission

    Science.gov (United States)

    Domeneghetti, A.; Schumann, G. J.-P.; Frasson, R. P. M.; Wei, R.; Pavelsky, T. M.; Castellarin, A.; Brath, A.; Durand, M. T.

    2018-06-01

    The Surface Water and Ocean Topography satellite mission (SWOT), scheduled for launch in 2021, will deliver two-dimensional observations of water surface heights for lakes, rivers wider than 100 m and oceans. Even though the scientific literature has highlighted several fields of application for the expected products, detailed simulations of the SWOT radar performance for a realistic river scenario have not been presented in the literature. Understanding the error of the most fundamental "raw" SWOT hydrology product is important in order to have a greater awareness about strengths and limits of the forthcoming satellite observations. This study focuses on a reach (∼140 km in length) of the middle-lower portion of the Po River, in Northern Italy, and, to date, represents one of the few real-case analyses of the spatial patterns in water surface elevation accuracy expected from SWOT. The river stretch is characterized by a main channel varying from 100 to 500 m in width and a large floodplain (up to 5 km) delimited by a system of major embankments. The simulation of the water surface along the Po River for different flow conditions (high, low and mean annual flows) is performed with inputs from a quasi-2D model implemented using detailed topographic and bathymetric information (LiDAR, 2 m resolution). By employing a simulator that mimics many SWOT satellite sensor characteristics and generates proxies of the remotely sensed hydrometric data, this study characterizes the spatial observations potentially provided by SWOT. We evaluate SWOT performance under different hydraulic conditions and assess possible effects of river embankments, river width, river topography and distance from the satellite ground track. Despite analyzing errors from the raw radar pixel cloud, which receives minimal processing, the present study highlights the promising potential of this Ka-band interferometer for measuring water surface elevations, with mean elevation errors of 0.1 cm and 21

  19. Surface mineralization and characterization of tobacco mosaic virus biotemplated nanoparticles

    Science.gov (United States)

    Freer, Alexander S.

    The genetically engineered tobacco mosaic virus (TMV) has been utilized as a biotemplate in the formation of nanoparticles with the intent of furthering the understanding of the biotemplated nanoparticles formed in the absence of an external reducing agent. Specifically, the work aims to provide better knowledge of the final particle characteristics and how these properties could be altered to better fit the need of functional devices. Three achievements have been accomplished including a method for controlling final particle size, characterizing the resistivity of palladium coated TMV, and the application of TMV as an additive in nanometric calcium carbonate synthesis. Until the last 5 years, formation of metal nanoparticles on the surface of TMV has always occurred with the addition of an external reducing agent. The surface functionalities of genetically engineered TMV allow for the reduction of palladium in the absence of an external reducing agent. This process has been furthered to understand how palladium concentration affects the final coating uniformity and thickness. By confirming an ideal ratio of palladium and TMV concentrations, a uniform coat of palladium is formed around the viral nanorod. Altering the number of palladium coating cycles at these concentrations allows for a controllable average diameter of the final nanorods. The average particle diameter was determined by small angle x-ray scattering (SAXS) analysis by comparing the experimental results to the model of scattering by an infinitely long cylinder. The SAXS results were confirmed through transmission electron microscopy images of individual Pd-TMV nanorods. Secondly, methodologies to determine the electrical resistivity of the genetically engineered TMV biotemplated palladium nanoparticles were created to provide valuable previously missing information. Two fairly common nanoelectronic characterization techniques were combined to create the novel approach to obtain the desired

  20. The Chameleon Effect: characterization challenges due to the variability of nanoparticles and their surfaces of nanoparticles and their surfaces

    Science.gov (United States)

    Baer, Donald R.

    2018-05-01

    Nanoparticles in a variety of forms are increasing important in fundamental research, technological and medical applications, and environmental or toxicology studies. Physical and chemical drivers that lead to multiple types of particle instabilities complicate both the ability to produce, appropriately characterize, and consistently deliver well-defined particles, frequently leading to inconsistencies and conflicts in the published literature. This perspective suggests that provenance information, beyond that often recorded or reported, and application of a set of core characterization methods, including a surface sensitive technique, consistently applied at critical times can serve as tools in the effort minimize reproducibility issues.

  1. PNIPAAm-grafted thermoresponsive microcarriers: Surface-initiated ATRP synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Çakmak, Soner [Nanotechnology and Nanomedicine Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey); Çakmak, Anıl S. [Bioengineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey); Gümüşderelioğlu, Menemşe, E-mail: menemse@hacettepe.edu.tr [Nanotechnology and Nanomedicine Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey); Bioengineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey); Chemical Engineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey)

    2013-07-01

    In this study, we developed novel thermoresponsive microcarriers as a powerful tool for cell culture and tissue engineering applications. For this purpose, two types of commercially available spherical microparticles (approximately 100 μm in diameter), dextran-based Sephadex® and vinyl acetate-based VA-OH (Biosynth®), were used and themoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted to the beads' surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP). Initially, hydroxyl groups of microbeads were reacted with 2-bromopropionyl bromide to form ATRP macroinitiator. Then, NIPAAm was successfully polymerized from the initiator attached microbeads by ATRP with CuBr/2,2′-dipyridyl, catalyst complex. Furthermore, grafted and ungrafted microbeads were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscope (SEM), atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA). The results of characterization studies confirmed that PNIPAAm was successfully grafted onto both dextran and vinyl acetate-based beads by means of ATRP reaction and thus, grafted microbeads gained thermoresponsive characteristics which will be evaluated for cell harvesting in further studies. Highlights: • PNIPAAm was grafted to the hydroxyl group carrying polymer beads by SI-ATRP. • Dex-g-PNIPAAm and VA-OH-g-PNIPAAm beads exhibited thermoresponsive characteristics. • They are appropriate candidates for microcarrier-facilitated cell cultures.

  2. PNIPAAm-grafted thermoresponsive microcarriers: Surface-initiated ATRP synthesis and characterization

    International Nuclear Information System (INIS)

    Çakmak, Soner; Çakmak, Anıl S.; Gümüşderelioğlu, Menemşe

    2013-01-01

    In this study, we developed novel thermoresponsive microcarriers as a powerful tool for cell culture and tissue engineering applications. For this purpose, two types of commercially available spherical microparticles (approximately 100 μm in diameter), dextran-based Sephadex® and vinyl acetate-based VA-OH (Biosynth®), were used and themoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted to the beads' surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP). Initially, hydroxyl groups of microbeads were reacted with 2-bromopropionyl bromide to form ATRP macroinitiator. Then, NIPAAm was successfully polymerized from the initiator attached microbeads by ATRP with CuBr/2,2′-dipyridyl, catalyst complex. Furthermore, grafted and ungrafted microbeads were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscope (SEM), atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA). The results of characterization studies confirmed that PNIPAAm was successfully grafted onto both dextran and vinyl acetate-based beads by means of ATRP reaction and thus, grafted microbeads gained thermoresponsive characteristics which will be evaluated for cell harvesting in further studies. Highlights: • PNIPAAm was grafted to the hydroxyl group carrying polymer beads by SI-ATRP. • Dex-g-PNIPAAm and VA-OH-g-PNIPAAm beads exhibited thermoresponsive characteristics. • They are appropriate candidates for microcarrier-facilitated cell cultures

  3. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  4. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    International Nuclear Information System (INIS)

    Dhillon, Shweta; Kant, Rama

    2013-01-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  5. Surface characterization after subaperture reactive ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Arnold, Thomas; Rauschenbach, Bernd [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Leipzig (Germany)

    2010-07-01

    In usual ion beam etching processes using inert gas (Ar, Xe, Kr..) the material removal is determined by physical sputtering effects on the surface. The admixture of suitable gases (CF{sub 4}+O{sub 2}) into the glow discharge of the ion beam source leads to the generation of reactive particles, which are accelerated towards the substrate where they enhance the sputtering process by formation of volatile chemical reaction products. During the last two decades research in Reactive Ion Beam Etching (RIBE) has been done using a broad beam ion source which allows the treatment of smaller samples (diameter sample < diameter beam). Our goal was to apply a sub-aperture Kaufman-type ion source in combination with an applicative movement of the sample with respect to the source, which enables us to etch areas larger than the typical lateral dimensions of the ion beam. Concerning this matter, the etching behavior in the beam periphery plays a decisive role and has to be investigated. We use interferometry to characterize the final surface topography and XPS measurements to analyze the chemical composition of the samples after RIBE.

  6. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers

    International Nuclear Information System (INIS)

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A. Umran; Ottaviani, Maria Francesca

    2016-01-01

    Highlights: • Differently carcinogenic zeolite fibers were investigated combining physico-chemical methods. • For the first time, zeolite fibers were studied by means of the EPR technique using different spin probes. • The structural properties and the adsorption capability are function of different types and distributions of adsorption sites. • The interacting ability of erionite is higher than that of other fibrous zeolites. • The surface interacting properties may be related with the carcinogenicity of the zeolite fibers. - Abstract: Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si–O–Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity.

  7. Note: Radio frequency surface impedance characterization system for superconducting samples at 7.5 GHz.

    Science.gov (United States)

    Xiao, B P; Reece, C E; Phillips, H L; Geng, R L; Wang, H; Marhauser, F; Kelley, M J

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample.

  8. Micro and nanostructural characterization of surfaces and interfaces of Portland cement mortars using atomic force microscopy

    International Nuclear Information System (INIS)

    Barreto, M.F.O.; Brandao, P.R.G.

    2014-01-01

    The characterization of Portland cement mortars is very important in the study the interfaces and surfaces that make up the system grout/ceramic block. In this sense, scanning electron microscopy and energy-dispersive (X-ray) spectrometer are important tools in investigating the morphology and chemical aspects. However, more detailed topographic information can be necessary in the characterization process. In this work, the aim was to characterize topographically surfaces and interfaces of mortars applied onto ceramic blocks. This has been accomplished by using the atomic force microscope (AFM) - MFP-3D-SA Asylum Research. To date, the results obtained from this research show that the characterization of cementitious materials with the help of AFM has an important contribution in the investigation and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2, ettringite and calcium carbonate by providing morphological and micro topographical data, which are extremely important and reliable for the understanding of cementitious materials. (author)

  9. Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant

    Directory of Open Access Journals (Sweden)

    Ravikumar Ramakrishnaiah

    2017-05-01

    Full Text Available The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic™ and Magics™, the designed implant was directly manufactured by layering technique using ARCAM A2™ electron beam melting system by employing medical grade Ti–6Al–4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration.

  10. Characterization and anti-settlement aspects of surface micro-structures from Cancer pagurus

    International Nuclear Information System (INIS)

    Sullivan, T; Regan, F; McGuinness, K; Connor, N E O’

    2014-01-01

    Tuning surface and material properties to inhibit or prevent settlement and attachment of microorganisms is of interest for applications such as antifouling technologies. Here, optimization of nano- and microscale structures on immersed surfaces can be utilized to improve cell removal while reducing adhesion strength and the likelihood of initial cellular attachment. Engineered surfaces capable of controlling cellular behaviour under natural conditions are challenging to design due to the diversity of attaching cell types in environments such as marine waters, where many variations in cell shape, size and adhesion strategy exist. Nevertheless, understanding interactions between a cell and a potential substrate for adhesion, including topographically driven settlement cues, offers a route to designing surfaces capable of controlling cell settlement. Biomimetic design of artificial surfaces, based upon microscale features from natural surfaces, can be utilized as model surfaces to understand cell–surface interactions. The microscale surface features of the carapace from the crustacean Cancer pagurus has been previously found to influence the rate of attachment of particular organisms when compared to smooth controls. However, the nature of microscale topographic features from C. pagurus have not been examined in sufficient detail to allow design of biomimetic surfaces. In this work, the spatial distribution, chemical composition, size and shape descriptors of microscale surface features from C. pagurus are characterized in detail for the first time. Additionally, the influence of topography from C. pagurus on the settlement of marine diatoms is examined under field conditions. (paper)

  11. A coupled mechanical-hydrological investigation of crystalline rocks: Annual technical progress report, proposed test matrix, and preliminary results

    International Nuclear Information System (INIS)

    Bastian, R.J.; Voss, C.F.; Apted, M.J.; Shotwell, L.R.

    1988-02-01

    This report reviews the Fracture Flow Behavior in Rock Study being performed at the Pacific Northwest Laboratory. The study's objective is to determine the feasibility of predicting mechanical-hydrological behavior of natural rock fractures by accurately characterizing fracture surface topography and mineralization. A laboratory-scale facility is currently being used to ensure optimum control of variables. Devising a technique to study small-scale samples is the first step to understanding the complex coupled processes encountered in geomechanics and hydrology. The major accomplishments during fiscal year 1987 were initial development of the innovative testing method, identification of appropriate specimens, substantial renovation to the facility, completion of several sets of experiments, and procurement of hardware components for a laser-imaging device used to characterize fracture surfaces. A complete set of preliminary results and findings is presented in this report. These results, gathered from a basalt core with a natural fracture, have demonstrated that the methodology is valid, and definite trends in the data are readily apparent. 10 refs., 14 figs., 1 tab

  12. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    Science.gov (United States)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  13. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    Science.gov (United States)

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  14. Preliminary In Vivo Experiments on Adhesion of Geckos

    OpenAIRE

    Lepore, E.; Brianza, S.; Antoniolli, F.; Buono, M.; Carpinteri, A.; Pugno, N.

    2008-01-01

    We performed preliminary experiments on the adhesion of a Tokay gecko on surfaces with different roughness, with or without particles with significant different granulometry, before/after or during the moult. The results were analyzed using the Weibull statistics.

  15. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias [ed.

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  16. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  17. Chapter 8:Surface Characterization

    Science.gov (United States)

    Mandla A. Tshabalala; Joseph Jakes; Mark R. VanLandingham; Shaoxia Wang; Jouko. Peltonen

    2013-01-01

    Surface properties of wood play an important role when wood is used or processed into different commodities such as siding, joinery, textiles, paper, sorption media, or wood composites. Thus, for example, the quality and durability of a wood coating are determined by the surface properties of the wood and the coating. The same is true for wood composites where the...

  18. Site characterization field manual for near surface geologic disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    McCray, J.G.; Nowatzki, E.A.

    1985-01-01

    This field manual has been developed to aid states and regions to do a detailed characterization of a proposed near-surface low-level waste disposal site. The field manual is directed at planners, staff personnel and experts in one discipline to acquaint them with the requirements of other disciplines involved in site characterization. While it can provide a good review, it is not designed to tell experts how to do their job within their own discipline

  19. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    Science.gov (United States)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  20. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  1. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    Science.gov (United States)

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.

  2. Preliminary In Vivo Experiments on Adhesion of Geckos

    Directory of Open Access Journals (Sweden)

    E. Lepore

    2008-01-01

    Full Text Available We performed preliminary experiments on the adhesion of a Tokay gecko on surfaces with different roughness, with or without particles with significant different granulometry, before/after or during the moult. The results were analyzed using the Weibull statistics.

  3. Migration characterization of Ga and In adatoms on dielectric surface in selective MOVPE

    International Nuclear Information System (INIS)

    Chen Wei-Jie; Han Xiao-Biao; Lin Jia-Li; Hu Guo-Heng; Liu Ming-Gang; Yang Yi-Bin; Chen Jie; Wu Zhi-Sheng; Zhang Bai-Jun; Liu Yang

    2015-01-01

    Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO 2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned SiO 2 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface. (paper)

  4. Characterization of the Human Proteomic Response to Hydrocodone: A Preliminary Study

    Science.gov (United States)

    2014-05-01

    Bjork, S.J. Grant , Does traumatic brain injury increase risk for substance abuse?, J Neurotrauma (2009). [13] D.P. Graham, A.L. Cardon , An update on...Preliminary Study” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0126 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lt Col Vikhyat Bebarta, MD 5d. PROJECT

  5. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  6. Surface parameter characterization of surface vibrations in linear chains

    International Nuclear Information System (INIS)

    Majlis, N.; Selzer, S.; Puszkarski, H.; Diep-The-Hung

    1982-12-01

    We consider the vibrations of a linear monatomic chain with a complex surface potential defined by the surface pinning parameter a=Aesup(-i psi). It is found that in the case of a semi-infinite chain a is connected with the surface vibration wave number k=s+it by the exact relations: s=psi, t=lnA. We also show that the solutions found can be regarded as approximate ones (in the limit L>>1) for surface vibrations of a finite chain consisting of L atoms. (author)

  7. Characterization of ion beam induced nanostructures

    International Nuclear Information System (INIS)

    Ghatak, J.; Satpati, B.; Umananda, M.; Kabiraj, D.; Som, T.; Dev, B.N.; Akimoto, K.; Ito, K.; Emoto, T.; Satyam, P.V.

    2006-01-01

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au 2+ and C 2+ ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au 2+ ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed

  8. A New Silver Complex with Ofloxacin – Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rusu Aura

    2016-06-01

    Full Text Available Objective: Silver complexes of antibacterial quinolones have the potential advantage of combining the antibacterial activity of silver and fluoroquinolones. The objective of our study was the preparation and the preliminary physico-chemical characterization of a silver complex with ofloxacin.

  9. Multi-scale characterization of surface blistering morphology of helium irradiated W thin films

    International Nuclear Information System (INIS)

    Yang, J.J.; Zhu, H.L.; Wan, Q.; Peng, M.J.; Ran, G.; Tang, J.; Yang, Y.Y.; Liao, J.L.; Liu, N.

    2015-01-01

    Highlights: • Multi-scale blistering morphology of He irradiated W film was studied. • This complex morphology was first characterized by wavelet transform approach. - Abstract: Surface blistering morphologies of W thin films irradiated by 30 keV He ion beam were studied quantitatively. It was found that the blistering morphology strongly depends on He fluence. For lower He fluence, the accumulation and growth of He bubbles induce the intrinsic surface blisters with mono-modal size distribution feature. When the He fluence is higher, the film surface morphology exhibits a multi-scale property, including two kinds of surface blisters with different characteristic sizes. In addition to the intrinsic He blisters, film/substrate interface delamination also induces large-sized surface blisters. A strategy based on wavelet transform approach was proposed to distinguish and extract the multi-scale surface blistering morphologies. Then the density, the lateral size and the height of these different blisters were estimated quantitatively, and the effect of He fluence on these geometrical parameters was investigated. Our method could provide a potential tool to describe the irradiation induced surface damage morphology with a multi-scale property

  10. Characterization of internal surface finishing of tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Loureiro, N.V; Juarez, G; Bianchi, D; Flores, A; Vizcaino, P

    2012-01-01

    One of the factors that ensure the good behavior of the fuel claddings of the nuclear power reactors is the internal surface quality. In the present work has been carried out a study of the internal surface of the tube after a cold rolling process developed in the Departamento de Tecnologia de Aleaciones de Circonio and applied by FAE-SA and PPFAE-CNEA in each rolling stage to obtain the fuel claddings for the reactor CAREM 25. The inner surface has been observed by scanning electron microscopy, SEM, being the objective of this study to verify not only the good internal surface but also infer about how starting from tubes of different initial diameter reduction the quality of the final product will be affected. The manufacturing process of the tubes for this new fuel went through modifications during the development, adding intermediate chemical pickling stages in order to improve the internal surface quality of the final product. From determinations made with ultrasound, the defects charts obtained made it possible to compare the observed signals more relevant and the micrographs in these areas in order to characterize possible defects (author)

  11. Characterization of uranium in surface-waters collected at the Rocky Flats Facility

    International Nuclear Information System (INIS)

    Efurd, D.W.; Rokop, D.J.; Aguilar, R.D.; Roensch, F.R.; Perrin, R.E.; Banar, J.C.

    1994-01-01

    The Rocky Flats Plant (RFP) is a Department of Energy (DOE) facility where plutonium and uranium components were manufactured for nuclear weapons. During plant operations radioactivity was inadvertently released into the environment. This study was initiated to characterize the uranium present in surface-waters at RFP. Three drainage basins and natural ephemeral streams transverse RFP. The Woman Creek drainage basin traverses and drains the southern portion of the site. The Rock Creek drainage basin drains the northwestern portion of the plant complex. The Walnut Creek drainage basin traverses the western, northern, and northeastern portions of the RFP site. Dams, detention ponds, diversion structures, and ditches have been constructed at RFP to control the release of plant discharges and surface (storm water) runoff. The ponds located downstream of the plant complex on North Walnut Creek are designated A-1 through A-4. Ponds on South Walnut Creek are designated B-1 through B-5. The ponds in the Woman Creek drainage basin are designated C-1 and C-2. Water samples were collected from each pond and the uranium was characterized by TIMS measurement techniques

  12. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    Science.gov (United States)

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  13. Works give characterization and relocation to radioactive waste in the INEA facilities at Colombia

    International Nuclear Information System (INIS)

    Jova, L.; Prendes, M.; Benitez, J.C.; Infante, P.; Barreto, G.; Torres, C.

    1998-01-01

    The present work described the activities developed for the preliminary characterization the stored bundles, based on their chemical physical characteristics, contained radionuclides and value the dose rate in the surface, the approaches used for their identification and registration, the tasks give radiological evaluation the facilities and the objects, as well as the technical solutions applied with the purpose give to reduce the levels dose rate after having relocated the bundle. Special attention you toasts to the implementation the basic recommendations radiological protection for this work

  14. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xincheng [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Jiang Jianchun, E-mail: lhs_ac2011@yahoo.cn [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China); Sun Kang; Xie Xinping; Hu Yiming [Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Key Lab. of Biomass Energy and Material, Jiangsu Province, Suojin wucun 16, Nanjing 210042 (China)

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  15. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  16. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    Science.gov (United States)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  17. Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application

    Science.gov (United States)

    Kind, Martin; Wöll, Christof

    2009-07-01

    Organic surfaces play a major role in materials science. Most surfaces that we touch in our daily lives are made from organic materials, e.g., vegetables, fruit, skin, wood, and textiles made from natural fibers. In the context of biology, organic surfaces play a prominent role too, proteins docking onto cell surfaces are a good example. To better understand the characteristics of organic surfaces, including physico-chemical properties like wettability or chemical reactivities and physical properties like friction and lubrication, a structurally well-defined model system that can be investigated with numerous analytical techniques is desirable. In the last two decades, one particular system, self-assembled monolayers or SAMs, have demonstrated their suitability for this purpose. In particular, organothiols consisting of an organic molecule with an attached SH-group are well suited to fabricating structurally well-defined adlayers of monolayer thickness on gold substrates using a simple preparation procedure. These ultrathin monolayers expose an organic surface with properties that can be tailored by varying the type of organothiol employed. After a short introduction into the preparation of SAMs, this article provides an overview of the possibilities and limitations of organic surfaces exposed by Au-thiolate SAMs. Applications are as diverse as the metallization of organic surfaces, a fundamental problem in materials science, and the fabrication of surfaces that resist the adsorption of proteins. In addition to a number of different case studies, we will also discuss the most powerful analytical techniques needed to characterize these important model systems.

  18. Impacts of Continuous Electron Beam Accelerator Facility operations on groundwater and surface water: Appendix 9

    International Nuclear Information System (INIS)

    Lee, D.W.

    1986-04-01

    The operation of the proposed Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, is expected to result in the activation and subsequent contamination of water resources in the vicinity of the accelerator. Since the proposed site is located in the headwaters of the watershed supplying Big Bethel Reservoir, concern has been expressed about possible contamination of water resources used for consumption. Data characterizing the surface water and groundwater regime in the site area are limited. A preliminary geotechnical investigation of the site has been completed (LAW 1985). This investigation concluded that groundwater flow is generally towards the southeast at an estimated velocity of 2.5 m/y. This conclusion is based on groundwater and soil boring data and is very preliminary in nature. This analysis makes use of the data and conclusions developed during the preliminary geotechnical investigation to provide an upper-bound assessment of radioactive contamination from CEBAF operations. A site water balance was prepared to describe the behavior of the hydrologic environment that is in close agreement with the observed data. The transport of contamination in the groundwater regime is assessed using a one-dimensional model. The groundwater model includes the mechanisms of groundwater flow, groundwater recharge, radioactive decay, and groundwater activation. The model formulation results in a closed-form, exact, analytic solution of the concentration of contamination in the groundwater. The groundwater solution is used to provide a source term for a surface-water analysis. The surface-water and groundwater models are prepared for steady state conditions such that they represent conservative evaluations of CEBAF operations

  19. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer

    Science.gov (United States)

    Walton, Brian M.; Jackson, George W.; Deutz, Nicolaas; Cote, Gerard

    2017-07-01

    A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids.

  20. A preliminary survey of M. hyopneumoniae virulence factors based on comparative genomic analysis

    Directory of Open Access Journals (Sweden)

    Henrique Bunselmeyer Ferreira

    2007-01-01

    Full Text Available Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP, a major problem for the pig industry. The mechanisms of M. hyopneumoniae pathogenicity allow to predict the existence of several classes of virulence factors, whose study has been essentially restricted to the characterization of adhesion-related and major antigenic proteins. The now available complete sequences of the genomes of two pathogenic and one non-pathogenic strain of M. hyopneumoniae allowed to use a comparative genomics approach to putatively identify virulence genes. In this preliminary survey, we were able to identify 118 CDSs encoding putative virulence factors, based on specific criteria ranging from predicted cell surface location or variation between strains to previous functional studies showing antigenicity or involvement in host-pathogen interaction. This survey is expected to serve as a first step towards the functional characterization of new virulence genes/proteins that will be important not only for a better comprehension of M. hyopneumoniae biology, but also for the development of new and improved protocols for PEP vaccination, diagnosis and treatment.

  1. Surface Characterization of a Paper Web at the Wet End

    International Nuclear Information System (INIS)

    Abidi, B.R.; Goddard, J.S.; Sari-Sarraf, H.

    1999-01-01

    We present an algorithm for the detection and representation of structures and non-uniformities on the surface of a paper web at the wet end (slurry). This image processing/analysis algorithm is developed as part of a complete on-line web characterization system. Images of the slurry, carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. The images have very poor contrast and contain noise from a variety of sources. Those sources include the acquisition system itself, the lighting, the vibrations of the moving table being imaged, and the scattering water from the same table's movement. After many steps of enhancement, conventional edge detection methods were still inconclusive and were discarded. The facet model algorithm, is applied to the images and is found successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image is computed based on the general appearance and characteristics of the structures in question. Morphological operators are applied to detect and segment regions of interest. Those regions are then filtered according to their size, elongation, and orientation.Their bounding rectangles are computed and superimposed on the original image. Real time implementation of this algorithm for on-line use is also addressed in this paper. The algorithm is tested on over 500 images of slurry and is found to detect nonuniformities on all 500 images. Locating and characterizing all different size structures is also achieved on all 500 images of the web

  2. Surface and subsurface characterization of uranium contamination at the Fernald environmental management site

    International Nuclear Information System (INIS)

    Schilk, A.J.; Perkins, R.W.; Abel, K.H.; Brodzinski, R.L.

    1993-04-01

    The past operations of uranium production and support facilities at several Department of Energy (DOE) sites have occasionally resulted in the local contamination of some surface and subsurface soils, and the three-dimensional distribution of the uranium at these sites must be thoroughly characterized before any effective remedial protocols can be established. To this end, Pacific Northwest Laboratory (PNL) has been tasked by the DOE's Office of Technology Development with adapting, developing, and demonstrating technologies for the measurement of uranium in surface and subsurface soils at the Fernald Uranium in Soils Integrated Demonstration site. These studies are detailed in this report

  3. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  4. Characterization of Emissions and Residues from Simulations of the Deepwater Horizon Surface Oil Burns

    Science.gov (United States)

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent...

  5. Contribution of multi-temporal remote sensing images to characterize landslide slip surface ‒ Application to the La Clapière landslide (France

    Directory of Open Access Journals (Sweden)

    B. Casson

    2005-01-01

    Full Text Available Landslide activity is partly controlled by the geometry of the slip surface. This activity is traduced at the surface by displacements and topographic variations. Consequently, multi-temporal remote sensing images can be used in order to characterize the geometry of landslide slip surface and its spatial and temporal evolution. Differential Digital Elevation Models (DEMs are obtained by subtracting two DEMs of different years. A method of multi-temporal images correlation allows to generate displacement maps that can be interpreted in terms of velocity and direction of movements. These data are then used to characterize qualitatively the geometry of the slip surface of the la Clapière landslide (French Southern Alps. Distribution of displacement vectors and of topographic variations are in accordance with a curved slip surface, characterizing a preferential rotational behaviour of this landslide. On the other hand, a spatial and temporal evolution of the geometry of the slip surface is pointed out. Indeed, a propagation of the slip surface under the Iglière bar, in the W part of the landslide, is suspected and can be linked to the acceleration of the landslide in 1987. This study shows the high potential of multi-temporal remote sensing images for slip surface characterization. Although this method could not replace in situ investigations, it can really help to well distribute geophysical profiles or boreholes on unstable areas.

  6. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL; Meyer III, Harry M [ORNL; Howe, Jane Y [ORNL; Meisner, Roberta Ann [ORNL; Payzant, E Andrew [ORNL; Lance, Michael J [ORNL; Yoon, Steve [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.; Wood III, David L [ORNL

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  7. Surface Characterization and Electrochemical Oxidation of Metal Doped Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmook; Kim, Jandee; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Trivalent element in UO{sub 2} matrix makes the oxygen vacancy from loss of oxygen for charge compensation. Tetravalent element alters lattice parameter of UO{sub 2} due to diameter difference between the tetravalent element and replaced U. These structural changes have significant effect on not only relevant fuel performance but also the kinetics of fuel oxidation. Park and Olander explained the stabilization of Ln (III)-doped UO{sub 2} against oxidation based on oxygen potential calculations. In this work, we have been investigated the effect of Gd{sup 3+} and Th{sup 4+} doping on the UO{sub 2} structure with Raman spectroscopy and X-ray diffraction to characterize the surface structure of nuclear fuel material. For Gd doped UO{sub 2}, its electrochemical oxidation behaviors are also investigated. The Gd and Th doped uranium dioxide solid solution pellets with various doping level were investigated by XRD, Raman spectroscopy, SEM, electrochemical experiments to investigate surface structure and electro chemical oxidation behaviors. The lattice parameter evaluated from XRD spectra indicated the formation of solid solutions. Raman spectra showed the existence of the oxygen vacancy. SEM images showed the grain structure on the surface of Gd doped uranium dioxide depending on doping level and oxygen-to-metal ratio.

  8. N and Cr ion implantation of natural ruby surfaces and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India); Magudapathy, P.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Nayak, B.B.; Mishra, B.K. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India)

    2016-04-15

    Highlights: • Cr and N ion implantation on natural rubies of low aesthetic quality. • Cr-ion implantation improves colour tone from red to deep red (pigeon eye red). • N-ion implantation at fluence of 3 × 10{sup 17} causes blue coloration on surface. • Certain extent of amorphization is observed in the case of N-ion implantation. - Abstract: Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV–Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 10{sup 17} N-ions/cm{sup 2} fluence, formation of colour centres (F{sup +}, F{sub 2}, F{sub 2}{sup +} and F{sub 2}{sup 2+}) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  9. Preliminary radiological assessments of near-surface low-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Nancarrow, D.J.

    1988-08-01

    This report summarises preliminary assessments of post-closure radiological impact of LLW repositories at four sites previously under investigation by UK Nirex Ltd. The objectives of the assessments were: to demonstrate a methodology for site specific assessments, to identify important information requirements for detailed assessments; to identify methodological and research requirements. Doses and risks due to groundwater pathways, human intrusion, gaseous release and natural environmental change are estimated. (author)

  10. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.

    Science.gov (United States)

    Zhong, Z Y; Jiang, Y D

    2006-10-15

    In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.

  11. Near-surface processing on AlGaN/GaN heterostructures: a nanoscale electrical and structural characterization

    Directory of Open Access Journals (Sweden)

    Greco Giuseppe

    2011-01-01

    Full Text Available Abstract The effects of near-surface processing on the properties of AlGaN/GaN heterostructures were studied, combining conventional electrical characterization on high-electron mobility transistors (HEMTs, with advanced characterization techniques with nanometer scale resolution, i.e., transmission electron microscopy, atomic force microscopy (AFM and conductive atomic force microscopy (C-AFM. In particular, a CHF3-based plasma process in the gate region resulted in a shift of the threshold voltage in HEMT devices towards less negative values. Two-dimensional current maps acquired by C-AFM on the sample surface allowed us to monitor the local electrical modifications induced by the plasma fluorine incorporated in the material. The results are compared with a recently introduced gate control processing: the local rapid thermal oxidation process of the AlGaN layer. By this process, a controlled thin oxide layer on surface of AlGaN can be reliably introduced while the resistance of the layer below increase locally.

  12. Near-surface processing on AlGaN/GaN heterostructures: a nanoscale electrical and structural characterization.

    Science.gov (United States)

    Greco, Giuseppe; Giannazzo, Filippo; Frazzetto, Alessia; Raineri, Vito; Roccaforte, Fabrizio

    2011-02-11

    The effects of near-surface processing on the properties of AlGaN/GaN heterostructures were studied, combining conventional electrical characterization on high-electron mobility transistors (HEMTs), with advanced characterization techniques with nanometer scale resolution, i.e., transmission electron microscopy, atomic force microscopy (AFM) and conductive atomic force microscopy (C-AFM). In particular, a CHF3-based plasma process in the gate region resulted in a shift of the threshold voltage in HEMT devices towards less negative values. Two-dimensional current maps acquired by C-AFM on the sample surface allowed us to monitor the local electrical modifications induced by the plasma fluorine incorporated in the material.The results are compared with a recently introduced gate control processing: the local rapid thermal oxidation process of the AlGaN layer. By this process, a controlled thin oxide layer on surface of AlGaN can be reliably introduced while the resistance of the layer below increase locally.

  13. Purification, crystallization and preliminary X-ray characterization of a haemagglutinin from the seeds of Jatropha curcas

    International Nuclear Information System (INIS)

    Nair, Divya N.; Suresh, C. G.; Singh, Desh Deepak

    2011-01-01

    A novel haemagglutinin from Jatropha curcas seeds is purified and crystallized. X-ray diffraction data collected from the rod-shaped crystals were processed in the orthorhombic space group P2 1 2 1 2 1 and the crystals diffracted to 2.8 Å resolution at 103 K. The plant Jatropha curcas (Euphorbiaceae) is an important source of biofuel from the inedible oil present in its toxic seeds. The toxicity arises from the presence of curcin, a ribosome-inactivating protein showing haemagglutination activity. In this communication, the purification, crystallization and preliminary X-ray characterization are reported of a small protein isolated from J. curcas seeds with a molecular mass of ∼10 kDa that agglutinates rabbit erythrocytes. The protein was crystallized using the hanging-drop vapour-diffusion method and also by the microbatch method in 72-well HLA plates, using PEG 8000 as the precipitant in both conditions. X-ray diffraction data collected from the rod-shaped crystals were processed in the orthorhombic space group P2 1 2 1 2 1 . The crystals diffracted to 2.8 Å resolution at 103 K

  14. Electronic and structural characterizations of unreconstructed {l_brace}0001{r_brace} surfaces and the growth of graphene overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, Konstantin

    2009-06-03

    The present work is focused on the characterization of the clean unreconstructed SiC{l_brace}0001{r_brace} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  15. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    International Nuclear Information System (INIS)

    Jiang Jingkun; Oberdoerster, Guenter; Biswas, Pratim

    2009-01-01

    Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO 2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO 2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO 2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO 2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO 2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.

  16. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  17. Surface characterization of Nb samples electropolished with real superconducting rf accelerator cavities

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2010-12-01

    Full Text Available We report the results of surface characterizations of niobium (Nb samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris, and the beam pipe. Auger electron spectroscopy was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive x ray for elemental analysis was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S were found covering the samples nonuniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  18. Preliminary characterization of dose in personnel of interventional radiology; Caracterizacao preliminar da dose em profissionais de radiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Godolfim, Laura Larre; Anes, Mauricio; Bacelar, Alexandre; Lykawka, Rochelle [Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, RS (Brazil)

    2016-07-01

    Exposure to X-rays of Interventional Radiology professionals (IR) impacts in the high dose rate received by these individuals, and there are reports of biological effects of this professional activity. Therefore, it is fomented greater control over the doses received by these workers. This research intends to characterize the doses received by the professionals during IR procedures. We evaluated the doses of radiologists, anesthesiologists and nursing staff of the Hospital de Clinicas de Porto Alegre, through measures with dosimeters of the OSL type, distributed in up to six regions of the body of these professionals. Until now were accompanied 33 cholangiography procedures and 29 embolization procedures. As a preliminary result, it was possible to identify a wide variation between doses of the professionals of the same function in each procedure. In overview, the dose of the professionals presented in descending order as a radiologist 1> radiologist 2 > anesthetist > nursing. (author)

  19. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    International Nuclear Information System (INIS)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-01-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids. (topical review)

  20. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Directory of Open Access Journals (Sweden)

    Hidehiro Kamiya and Motoyuki Iijima

    2010-01-01

    Full Text Available Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM. Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  1. Site characterization report for the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-11-01

    This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues

  2. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Paladini, F.; Picca, R.A.; Sportelli, M.C.; Cioffi, N.; Sannino, A.; Pollini, M.

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag 2 O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  3. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bryce W.; Linman, Matthew J.; Linley, Kamara S.; Hare, Christopher D. [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Cheng Quan, E-mail: quan.cheng@ucr.ed [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2010-06-01

    Thin organic films with desirable redox properties have long been sought in biosensor research. We report here the development of a polymer thin film interface with well-defined hierarchical nanostructure and electrochemical behavior, and its characterization by electrochemical surface plasmon resonance (ESPR) spectroscopy. The nano-architecture build-up is monitored in real time with SPR, while the redox response is characterized by cyclic voltammetry in the same flow cell. The multilayer assembly is built on a self-assembled monolayer (SAM) of 1:1 (molar ratio) 11-ferrocenyl-1-undecanethiolate (FUT) and mercaptoundecanoic acid (MUA), and constructed using a layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrenesulfonate) (PSS). Electron transfer (ET) on the mixed surface and the effect of the layer structures on ET are systematically studied. Under careful control, multiple layers can be deposited onto the 1:1 FUT/MUA SAM that presents unobstructed redox chemistry, indicating a highly ordered, extensively porous structure obtained under this condition. The use of SPR to trace the minute change during the electrochemical process offers neat characterization of local environment at the interface, in particular double layer region, allowing for better control over the redox functionality of the multilayers. The 1:1 SAM has a surface coverage of 4.1 +- 0.3 x 10{sup -10} mol cm{sup -2} for ferrocene molecules and demonstrates unperturbed electrochemistry activity even in the presence of a 13 nm polymer film adhered to the electrode surface. This thin layer possesses some desirable properties similar to those on a SAM while presenting approx15 nm exceedingly porous structure for high loading capacity. The high porosity allows perchlorate to freely partition into the film, leading to high current density that is useful for sensitive electrochemical measurements.

  4. Preliminary Study on Hybrid Computational Phantom for Radiation Dosimetry Based on Subdivision Surface

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Choi, Sang Hyoun; Cho, Sung Koo; Kim, Chan Hyeong

    2007-01-01

    The anthropomorphic computational phantoms are classified into two groups. One group is the stylized phantoms, or MIRD phantoms, which are based on mathematical representations of the anatomical structures. The shapes and positions of the organs and tissues in these phantoms can be adjusted by changing the coefficients of the equations in use. The other group is the voxel phantoms, which are based on tomographic images of a real person such as CT, MR and serially sectioned color slice images from a cadaver. Obviously, the voxel phantoms represent the anatomical structures of a human body much more realistically than the stylized phantoms. A realistic representation of anatomical structure is very important for an accurate calculation of radiation dose in the human body. Consequently, the ICRP recently has decided to use the voxel phantoms for the forthcoming update of the dose conversion coefficients. However, the voxel phantoms also have some limitations: (1) The topology and dimensions of the organs and tissues in a voxel model are extremely difficult to change, and (2) The thin organs, such as oral mucosa and skin, cannot be realistically modeled unless the voxel resolution is prohibitively high. Recently, a new approach has been implemented by several investigators. The investigators converted their voxel phantoms to hybrid computational phantoms based on NURBS (Non-Uniform Rational B-Splines) surface, which is smooth and deformable. It is claimed that these new phantoms have the flexibility of the stylized phantom along with the realistic representations of the anatomical structures. The topology and dimensions of the anatomical structures can be easily changed as necessary. Thin organs can be modeled without affecting computational speed or memory requirement. The hybrid phantoms can be also used for 4-D Monte Carlo simulations. In this preliminary study, the external shape of a voxel phantom (i.e., skin), HDRK-Man, was converted to a hybrid computational

  5. Surface characterization of hydrophobic core-shell QDs using NMR techniques

    Science.gov (United States)

    Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi

    2018-02-01

    Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.

  6. Thiolated poly(ɛ-caprolactone) macroligand with vacant coordination sites on gold substrate: Synthesis and surface characterization

    Science.gov (United States)

    Farah, Abdiaziz A.; Zheng, Susan H.; Morin, Sylvie; Bensebaa, Farid; Pietro, William J.

    2007-04-01

    Surface-confined telechelic poly(ɛ-caprolactone) macroligand with two distinct functional groups per polymeric chain has been synthesized and characterized. The molecular microstructure of the macroligand with regard to the properties of the end-capped functionalities and with those on surface substrate has been studied by solution and surface analytical methods (i.e., X-ray photoelectron spectroscopy (XPS), grazing angle reflectance-Fourier transform IR spectroscopy (GA-FTIR), water contact angle measurements, and atomic force microscopy (AFM)) to elucidate the structure and properties of such multifunctional polymer on gold (1 1 1) substrate.

  7. Waste Volume Reduction Using Surface Characterization and Decontamination By Laser Ablation

    International Nuclear Information System (INIS)

    Pellin, Michael J.; Savina, Michael R.; Reed, Claude B.; Zhiyue, Xu; Yong, Wang

    2000-01-01

    The U.S. Department of Energy's nuclear complex, a nation-wide system of facilities for research and production of nuclear materials and weapons, contains large amounts of radioactively contaminated concrete[1]. This material must be disposed of prior to the decommissioning of the various sites. Often the radioactive contaminants in concrete occupy only the surface and near-surface (∼3-6 mm deep) regions of the material. Since many of the structures such as walls and floors are 30 cm or more thick, it makes environmental and economic sense to try to remove and store only the thin contaminated layer rather than to treat the entire structure as waste. Current mechanical removal methods, known as scabbling, are slow and labor intensive, suffer from dust control problems, and expose workers to radiation fields. Improved removal methods are thus in demand[2-5]. Prior to decontamination, the surface must be characterized to determine the types and amounts of contaminants present i n order to decide on an appropriate cleaning strategy. Contamination occurs via exposure to air and water-borne radionuclides and by neutron activation. The radionuclides of greatest concern are (in order of abundance) [1]: 137Cs and 134Cs, 238U, 60Co, and 90Sr, followed by 3H, radioactive iodine, and a variety of Eu isotopes and transuranics. A system capable of on- line analysis is valuable since operators can determine the type of contaminants in real time and make more efficient use of costly sampling and characterization techniques. Likewise, the removed waste itself must be analyzed to insure that proper storage and monitoring techniques are used. The chemical speciation of radionuclides in concrete is largely unknown. Concrete is a complex material comprising many distinct chemical and physical phases on a variety of size scales[6-8]. Most studies of radionuclides in cements and concrete are for the most part restricted to phenomenological treatments of diffusion of ion s, particularly

  8. The Chameleon Effect: characterization challenges due to the variability of nanoparticles and their surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.

    2018-05-07

    Nanoparticles in a variety of forms are of increasing importance in fundamental research, technological and medical applications, and environmental or toxicology studies. Physical and chemical drivers that lead to multiple types of particle instabilities complicate both the ability to produce and consistently deliver well defined particles and their appropriate characterization, frequently leading to inconsistencies and conflicts in the published literature. This perspective suggests that provenance information, beyond that often recorded or reported, and application of a set of core characterization methods, including a surface sensitive technique, consistently applied at critical times can serve as tools in the effort minimize reproducibility issues.

  9. The Chameleon Effect: Characterization Challenges Due to the Variability of Nanoparticles and Their Surfaces

    Directory of Open Access Journals (Sweden)

    Donald R. Baer

    2018-05-01

    Full Text Available Nanoparticles in a variety of forms are increasing important in fundamental research, technological and medical applications, and environmental or toxicology studies. Physical and chemical drivers that lead to multiple types of particle instabilities complicate both the ability to produce, appropriately characterize, and consistently deliver well-defined particles, frequently leading to inconsistencies, and conflicts in the published literature. This perspective suggests that provenance information, beyond that often recorded or reported, and application of a set of core characterization methods, including a surface sensitive technique, consistently applied at critical times can serve as tools in the effort minimize reproducibility issues.

  10. Repercussion of noni mouthwash on surface characterization of Nickel-Titanium archwire

    Directory of Open Access Journals (Sweden)

    Dhivya Dilipkumar

    2017-01-01

    Full Text Available Objective: Maintaining oral hygiene is very important during orthodontic therapy mouthwashes are prescribed as an adjunct to improve patient's oral hygiene. Commercially available mouthwashes e.g. Chlorhexidine, Listerine, fluoride containing mouthwashes have shown to alter the surface characteristics of orthodontic wires. Hence the purpose of the study was to evaluate the effect of Noni mouthwash on surface quality and compositional changes of Nickel Titanium orthodontic wires. Materials and Methods: In this in vitro study pre-formed 0.014 inch NiTi arch wire was used. The study comprised of two samples, one control and one test sample which were 25mm in length. Control sample was stored at room temperature without any manipulation while test sample was immersed in Noni mouthwash solution for 1.5 hours, after which the test specimen was removed from the mouthwash solution and rinsed with distilled water. Both control and test samples were sent for scanning electron microscopy analysis, to qualitatively characterize the topography of the wire surface. Electron dispersion spectrum analysis was done to evaluate the various components of both the wires. Results: No significant difference in the average surface roughness for both wire samples was observed. There was no significant difference seen in the composition of wire after immersion in Noni mouthwash. Conclusion: Noni mouthwash did not have significant influence on the surface roughness or altered the composition of the Ni-Ti wire. Hence Noni mouthwash may be prescribed as a natural, non-destructive prophylactic agent for orthodontic patients.

  11. Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane-based polyurethanes

    Directory of Open Access Journals (Sweden)

    Pergal Marija V.

    2014-01-01

    Full Text Available Segmented polyurethanes based on poly(dimethylsiloxane, currently used for biomedical applications, have sub-optimal biocompatibility which reduces their efficacy. Improving the endothelial cell attachment and blood-contacting properties of PDMS-based copolymers would substantially improve their clinical applications. We have studied the surface properties and in vitro biocompatibility of two series of segmented poly(urethane-dimethylsiloxanes (SPU-PDMS based on hydroxypropyl- and hydroxyethoxypropyl- terminated PDMS with potential applications in blood-contacting medical devices. SPU-PDMS copolymers were characterized by contact angle measurements, surface free energy determination (calculated using the van Oss-Chaudhury-Good and Owens-Wendt methods, and atomic force microscopy. The biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact assay, before and after pre-treatment of copolymers with multicomponent protein mixture, as well as by a competitive blood-protein adsorption assay. The obtained results suggested good blood compatibility of synthesized copolymers. All copolymers exhibited good resistance to fibrinogen adsorption and all favored albumin adsorption. Copolymers based on hydroxyethoxypropyl-PDMS had lower hydrophobicity, higher surface free energy, and better microphase separation in comparison with hydroxypropyl-PDMS-based copolymers, which promoted better endothelial cell attachment and growth on the surface of these polymers as compared to hydroxypropyl-PDMS-based copolymers. The results showed that SPU-PDMS copolymers display good surface properties, depending on the type of soft PDMS segments, which can be tailored for biomedical application requirements such as biomedical devices for short- and long-term uses. [Projekat Ministarstva nauke Republike Srbije, br. 172062

  12. Preliminary spectroscopic characterization of PEGylated mucin, a ...

    African Journals Online (AJOL)

    The matrices were characterized with respect to compatibility using the Fourier transform infrared (FT-IR) spectroscopy. Results of the qualitative tests performed on the snail mucin showed that carbohydrates, proteins and trace amounts of fats were present; the extracted mucin was light-brownish in colour, with a pleasant ...

  13. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs.

    Science.gov (United States)

    Bernal, Dolores; Trelis, Maria; Montaner, Sergio; Cantalapiedra, Fernando; Galiano, Alicia; Hackenberg, Michael; Marcilla, Antonio

    2014-06-13

    With the aim of characterizing the molecules involved in the interaction of Dicrocoelium dendriticum adults and the host, we have performed proteomic analyses of the external surface of the parasite using the currently available datasets including the transcriptome of the related species Echinostoma caproni. We have identified 182 parasite proteins on the outermost surface of D. dendriticum. The presence of exosome-like vesicles in the ESP of D. dendriticum and their components has also been characterized. Using proteomic approaches, we have characterized 84 proteins in these vesicles. Interestingly, we have detected miRNA in D. dendriticum exosomes, thus representing the first report of miRNA in helminth exosomes. In order to identify potential targets for intervention against parasitic helminths, we have analyzed the surface of the parasitic helminth Dicrocoelium dendriticum. Along with the proteomic analyses of the outermost layer of the parasite, our work describes the molecular characterization of the exosomes of D. dendriticum. Our proteomic data confirm the improvement of protein identification from "non-model organisms" like helminths, when using different search engines against a combination of available databases. In addition, this work represents the first report of miRNAs in parasitic helminth exosomes. These vesicles can pack specific proteins and RNAs providing stability and resistance to RNAse digestion in body fluids, and provide a way to regulate host-parasite interplay. The present data should provide a solid foundation for the development of novel methods to control this non-model organism and related parasites. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    Science.gov (United States)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  15. Modelled and Observed Diurnal SST Signals: "SSTDV:R.EX.-IM.A.M." Project Preliminary Results

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob; LeBorgne, Pierre

    2013-01-01

    This study presents some of the preliminary results from the ESA Support To Science Element (STSE) funded project on the Diurnal Variability of the Sea Surface Temperature, regarding its Regional Extend and Implications in Atmospheric Modelling (SSTDV:R.EX.–IM.A.M.). During this phase of the proj......This study presents some of the preliminary results from the ESA Support To Science Element (STSE) funded project on the Diurnal Variability of the Sea Surface Temperature, regarding its Regional Extend and Implications in Atmospheric Modelling (SSTDV:R.EX.–IM.A.M.). During this phase...

  16. 3D, chemical and electrochemical characterization of blasted TI6Al4V surfaces: Its influence on the corrosion behaviour

    International Nuclear Information System (INIS)

    Barranco, V.; Escudero, M.L.; Garcia-Alonso, M.C.

    2007-01-01

    The blasting process to increase the roughness of the surface of metallic biomaterials is widely used. As a consequence, one can produce a renewed surface with different topography and chemical composition compared to the original one, which can alter the general corrosion behaviour of the samples. With this idea, the aim of this work is not only the topographical and compositional characterization of blasted surfaces of Ti6Al4V alloy but mainly its influence on the corrosion behaviour of these modified surfaces. The surfaces of Ti6Al4V alloys were blasted with SiO 2 /ZrO 2 and Al 2 O 3 particles of different size in order to obtain different roughnesses. To carry out the microstructural and topographical characterization of the blasted surfaces, the scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX), the contact profilometry method and the 3D characterization by means of stereo-Fe-SEM have been used. By means of stereo-Fe-SEM, the roughness and the real surface area of the rough surfaces have been calculated. The microstructural, topographical and compositional results have been correlated with the corrosion behaviour of the samples immersed in Hank's solution and studied by means of electrochemical impedance spectroscopy (EIS). The blasting process alters topographical and chemically the surface of the samples. These modifications induce to an increase in the capacitance values of the roughened samples due to the prevalence of the effect of electrochemically active areas of Ti6Al4V surface over the effect of the presence of Al 2 O 3 and ZrO 2 particles on the blasted surfaces. However, the general corrosion behaviour of the samples is not drastically changed

  17. Characterization for DRX and FTIR of the surface of UWMWPE for critical applications

    International Nuclear Information System (INIS)

    Medeiros, Keila M. de; Araujo, E.M.; Lira, H.L.; Patricio, Aline C.L.; Lima, Carlos A.P. de

    2009-01-01

    Biomaterials is the result of the application of the science of the materials to the medicine, understands a new and important spectrum of the knowledge - Science of Biomaterials. The principal aspects that determine the acting of a bio material in the human body are three: biocompatibility, mechanical properties and degradation. This work had the objective to modify and to oxidate the surface of ultra-high molecular weight polyethylene (UHMWPE). It was utilized for this modification water sandpapers and for oxidation the hydrogen peroxide (H 2 O 2 ). The surface of UHMWPE it was modified with water sandpapers of numbers 180, 600 and 1200 mesh and oxidated with the H 2 O 2 in different concentrations of 35 and 60%. The samples already with its modified surfaces had been submitted to the characterization using itself the following techniques: diffraction de ray-X and Fourier transform infra-red spectroscopy. The physical modification (sanded) and chemistry (H 2 O 2 ) of the surface of UHMWPE was important because it looks for improving the interaction techniques of the implants with the bone. (author)

  18. Transient space-time surface waves characterization using Gabor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-11-01

    Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.

  19. Preliminary characterization of residual biomass from Hibiscus ...

    African Journals Online (AJOL)

    Hibiscus sabdariffa calyces are mainly used for different agro-food and beverages applications. The residual biomass generated contains various useful substances that were extracted and characterized. It contained 23% (w/w) soluble pectic material, a food additive, extracted with hot acidified water (80°C, pH = 1.5) and ...

  20. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    -condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for

  1. A novel full scale experimental characterization of wind turbine aero-acoustic noise sources - preliminary results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2016-01-01

    of the blade and the noise on the ground in a distance of about one rotor diameter. In total six surface microphones were used to measure the SP at the leading edge (LE) and trailing edge (TE) of the blade. In parallel noise was measured by eight microphones placed on plates on the ground around the turbine......The paper describes a novel full scale experiment on a 500 kW wind turbine with the main objective to characterize the aero-acoustic noise sources. The idea behind the instrumentation is to study the link and correlation between the surface pressure (SP) fluctuations in the boundary layer...... in equidistant angles on a circle with a radius of about one rotor diameter. The data were analyzed in segments of 2.2 s which is the time for one rotor revolution. The spectra for the TE microphones on the suction side of the blade show a characteristic roll-off pattern around a frequency of 600-700 Hz...

  2. Characterization and analysis of sub-micron surface roughness of injection moulded microfluidic systems using White Light Interferometry

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Surface topography is of great importance in polymer micro fluidics, therefore the replication capability of the process and the surface quality of the tool has to be suitably optimized. In this paper, optical profilometry (white light interferometry, WLI) is implemented for topographical...... characterization of polymer surfaces. In particular the study considers replication performance of injection moulding applied for the realization of microfluidic systems for blood analysis. Parts were produced by means of a series of statistically designed injection moulding experiments. Three process parameters...

  3. Deposition and Characterization of Thin Films on Metallic Substrates

    Science.gov (United States)

    Gatica, Jorge E.

    2005-01-01

    A CVD method was successfully developed to produce conversion coatings on aluminum alloys surfaces with reproducible results with a variety of precursors. A well defined protocol to prepare the precursor solutions formulated in a previous research was extended to other additives. It was demonstrated that solutions prepared following such a protocol could be used to systematically generate protective coatings onto aluminum surfaces. Experiments with a variety of formulations revealed that a refined deposition protocol yields reproducible conversion coatings of controlled composition. A preliminary correlation between solution formulations and successful precursors was derived. Coatings were tested for adhesion properties enhancement for commercial paints. A standard testing method was followed and clear trends were identified. Only one precursors was tested systematically. Anticipated work on other precursors should allow a better characterization of the effect of intermetallics on the production of conversion/protective coatings on metals and ceramics. The significance of this work was the practical demonstration that chemical vapor deposition (CVD) techniques can be used to systematically generate protective/conversion coating on non-ferrous surfaces. In order to become an effective approach to replace chromate-based pre- treatment processes, namely in the aerospace or automobile industry, the process parameters must be defined more precisely. Moreover, the feasibility of scale-up designs necessitates a more comprehensive characterization of the fluid flow, transport phenomena, and chemical kinetics interacting in the process. Kinetic characterization showed a significantly different effect of magnesium-based precursors when compared to iron-based precursors. Future work will concentrate on refining the process through computer simulations and further experimental studies on the effect of other transition metals to induce deposition of conversion/protective films

  4. Statistical characterization of global Sea Surface Salinity for SMOS level 3 and 4 products

    Science.gov (United States)

    Gourrion, J.; Aretxabaleta, A. L.; Ballabrera, J.; Mourre, B.

    2009-04-01

    scales. Unfortunately, its sparse spatio-temporal sampling allows only an incomplete description of higher frequency variability. At this point, hindcasts from operational ocean prediction systems appear as a potential source for the characterization of high frequency SSS variance and spatial correlations. Preliminary validation of model outputs is performed. This work is part of the effort conducted at the SMOS Barcelona Expert Center (http://www.smos-bec.icm.csic.es) aiming at contributing to the ground segment of the SMOS mission.

  5. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  6. Modification and characterization of the AISI 410 martensitic stainless steels surface

    International Nuclear Information System (INIS)

    Bincoleto, A.V.L.; Nascente, P.A.P.

    2010-01-01

    Steam turbines are used in the generation of more than half the electric energy produced in the world nowadays. It is important the study which aims to improve the efficiency by means of the optimization of leaks and of the aerodynamic profiles, as well as to maintain the integrity of the components. The martensitic stainless steels are widely employed due to the combination of their good mechanical properties with higher corrosion resistance. However, their lower wear resistance and their poor tribological behavior limit their use, since they decrease the component life time. In order to evaluate the improvement in the performance of the AISI 410 stainless steel, several process of surface modification were employed. Five samples were produced: the first one was not treated, the second one received liquid nitriding, the third, gas nitriding, the forth, thermal aspersion of tungsten carbide, and the fifth, boronizing. The samples were characterized by optical microscopy, surface microhardness, and X-ray diffractometry. (author)

  7. Development of an atomic clock on an atom chip: Optimisation of the coherence time and preliminary characterisation

    International Nuclear Information System (INIS)

    Lacroute, Clement

    2010-01-01

    We describe the construction and preliminary characterization of an atomic clock on an atom chip. A sample of magnetically trapped 87 Rb atoms is cooled below 1 μK, close to Bose- Einstein condensation temperature. The trapped states |F = 1; m F = -1> and |F = 2;m F = 1> define our two-photon clock transition. Atoms are trapped around a field B0 = 3.23 G, where the clock frequency is first-order insensitive to magnetic field fluctuations. We have designed an atom chip that includes a microwave coplanar waveguide which drives the 6.835 GHz transition. The whole clock cycle is performed in the vicinity of the chip surface, making the physics package compact (5 cm) 3 . We first describe the experimental setup of the clock, and the optical bench that has been developed and characterized during this thesis. We then give the results obtained for atom cooling, which led to obtaining a 3 10 4 atoms Bose-Einstein condensate. We finally present the results obtained by Ramsey spectroscopy of the clock transition. We measure coherence times exceeding 10 seconds with our setup, dominated by atom losses. A preliminary measurement shows that the clock relative frequency stability is of 6 10 -12 at 1 s, limited by technical noise. Our goal is to reach a stability in the low 10 -13 at 1 s, i.e. better than commercial clocks and competitive with today's best compact clocks. (author)

  8. Surface Characterization of Impurities in Superconducting Niobium for Radio Frequency (RF) Cavities used in Particle Accelerators

    Science.gov (United States)

    Maheshwari, Prateek

    Niobium (Nb) is the material of choice for Superconducting Radio Frequency (SRF) Cavities used in particle accelerators owing to its high critical temperature (Tc = 9.2 K) and critical magnetic field (≈ 200mT). However, niobium tends to harbor interstitial impurities such as H, C, O and N, which are detrimental to cavity performance. Since the magnetic field penetration depth (lambda) of niobium is 40nm, it is important to characterize these impurities using surface characterization techniques. Also, it is known that certain heat treatments improve cavity efficiency via interstitial impurity removal from the surface of niobium. Thus, a systematic study on the effect of these heat treatments on the surface impurity levels is needed. In this work, surface analysis of both heat treated and non heat treated (120°C-1400°C) large grain (single crystal) bulk niobium samples was performed using secondary ion mass spectrometry (SIMS) and Transmission Electron Microscopy (TEM). Impurity levels were compared on the surface using SIMS after various types of heat treatments expected to improve cavity performance, and the effect of these heat treatments on the surface impurities were examined. SIMS characterization of ion implanted standards of C, N, O, D showed that quantification of C, N and O impurities in Nb is achievable and indicated that H is very mobile in Nb. It was hence determined that quantification of H in Nb is not possible using SIMS due to its high diffusivity in Nb. However, a comparative study of the high temperature heat treated (600°C-1400°C) and non heat treated (control) samples revealed that hydrogen levels decreased by upto a factor of 100. This is attributed to the dissociation of the niobium surface oxide layer, which acts as a passivating film on the surface, and subsequent desorption of hydrogen. Reformation of this oxide layer on cool down disallows any re-absorption of hydrogen, indicating that the oxide acts as a surface barrier for

  9. Nanoscale surface characterization of aqueous copper corrosion: Effects of immersion interval and orthophosphate concentration

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Stephanie L. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); United States Environmental Protection Agency, National Risk Management Research Laboratory (NRMRL), Water Supply and Water Resource Division (WSWRD), Cincinnati, OH 45268 (United States); Sprunger, Phillip T. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Center for Advanced Microstructures and Devices, Synchrotron Radiation Facility of Louisiana State University, Baton Rouge, LA 70803 (United States); Kizilkaya, Orhan [Center for Advanced Microstructures and Devices, Synchrotron Radiation Facility of Louisiana State University, Baton Rouge, LA 70803 (United States); Lytle, Darren A. [United States Environmental Protection Agency, National Risk Management Research Laboratory (NRMRL), Water Supply and Water Resource Division (WSWRD), Cincinnati, OH 45268 (United States); Garno, Jayne C., E-mail: jgarno@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2013-11-15

    Morphology changes for copper surfaces exposed to different water parameters were investigated at the nanoscale with atomic force microscopy (AFM), as influenced by changes in pH and the levels of orthophosphate ions. Synthetic water samples were designed to mimic physiological chemistries for drinking water, both with and without addition of orthophosphate over a pH range 6.5–9. Copper surfaces treated with orthophosphate as a corrosion inhibitor after 6 and 24 h were evaluated. Tapping mode AFM images revealed dosing of the water with 6 mg/L of orthophosphate was beneficial in retarding the growth of copper by-products. The chemical composition and oxidation state of the surface deposits were characterized with X-ray diffraction (XRD), near edge X-ray absorption fine structure (NEXAFS) spectroscopy and Fourier transform infrared spectroscopy (FTIR).

  10. The MELiSSA GreenMOSS Study: Preliminary Design Considerations for a Greenhouse Module on the Lunar Surface

    Science.gov (United States)

    Lobascio, Cesare; Paille, Christel; Lamantea, Matteo Maria; Boscheri, Giorgio; Rossetti, Vittorio

    Extended human presence on an extraterrestrial planetary surface will be made possible by the development of life support systems affordable in the long term. The key elements to support the goal will be the maximization of closure of air and water cycles, as well as the development of cost-effective and reliable hardware, including a careful strategic effort toward reduction of spare parts and consumables. Regenerative life support systems likely represent the final step toward long term sustainability of a space crew, allowing in situ food production and regeneration of organic waste. Referring to the MELiSSA loop, a key element for food production is the Higher Plant Compartment. The paper focuses on the preliminary design of a Greenhouse at the lunar South Pole, as performed within the “Greenhouse Module for Space System” (GreenMOSS) study, under a contract from the European Space Agency. The greenhouse is in support to a relatively small crew for provision of an energetic food complement. Resources necessary for the greenhouse such as water, carbon dioxide and nitrogen are assumed available, as required. The relevant mass and energy balances for incoming resources should be part of future studies, and should help integrate this element with the interfacing MELISSA compartments. Net oxygen production and harvested crop biomass from the greenhouse system will be quantified. This work presents the results of the two major trade-offs performed as part of this study: artificial vs natural illumination and monocrop vs multicrop solutions. Comparisons among possible design solutions were driven by the ALiSSE metric as far as practicable within this preliminary stage, considering mass and power parameters. Finally, the paper presents the mission duration threshold for determining the convenience of the designed solution with respect to other resources provision strategies

  11. Characterization of poly(Sodium Styrene Sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces

    Science.gov (United States)

    Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.

    2011-01-01

    Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821

  12. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    Science.gov (United States)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  13. A possible experiment at LEUTL to characterize surface roughness Wakefield effects

    International Nuclear Information System (INIS)

    Biedron, S.G.; Dattoli, G.; Fawley, W.M.; Freund, H.P.; Huang, Zhirong; Lewellen, J.W.; Milton, S.V.; Nuhn, H.D.

    2001-01-01

    Wakefield effects due to internal vacuum chamber roughness may increase the electron beam energy spread and so have become an immediate concern for future x-ray free-electron laser (FEL) project developments such as the SLAC Linac Coherent Light Source (LCLS) and the DESY TESLA x-ray FEL. We describe a possible experiment to characterize the effects of surface roughness on an FEL driven by self-amplified spontaneous emission (SASE) operation. Although the specific system described is not completely identical to the above-proposed projects, much useful scaling information could be obtained and applied to shorter wavelength systems

  14. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    International Nuclear Information System (INIS)

    Herde, Petra; Blankenfeldt, Wulf

    2006-01-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution

  15. The purification, crystallization and preliminary structural characterization of human MAWDBP, a member of the phenazine biosynthesis-like protein family

    Energy Technology Data Exchange (ETDEWEB)

    Herde, Petra; Blankenfeldt, Wulf, E-mail: wulf.blankenfeldt@mpi-dortmund.mpg.de [Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)

    2006-06-01

    The purification, crystallization and preliminary structural characterization of human MAWD-binding protein (MAWDBP) are described. MAWDBP is the only representative of the phenazine biosynthesis-like protein family in the human genome. Its expression is elevated in several disease processes, including insulin resistance, folate deficiency and hypotension, and it may also be involved in carcinogenesis. The exact molecular function of MAWDBP is unknown. Native and seleno-l-methionine-labelled MAWDBP were expressed in Escherichia coli and crystallized at room temperature from precipitants containing 10 mM KF, 14%(w/v) PEG 3350 and 0.1 M sodium citrate pH 5.4. Crystals belong to space group H32, with unit-cell parameters a = b = 187, c = 241 Å, indicative of three to five monomers per asymmetric unit. Crystals were cryoprotected with 15%(v/v) glycerol and data have been collected to 2.7 Å resolution.

  16. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    International Nuclear Information System (INIS)

    Contreras R, A.; Arganis J, C. R.; Aguilar T, J. A.; Medina A, A. L.

    2010-10-01

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  17. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    Science.gov (United States)

    Kinser, Christopher Reagan

    This dissertation examines the modification and characterization of hydrogen-terminated silicon surfaces in organic liquids. Conductive atomic force microscope (cAFM) lithography is used to fabricate structures with sub-100 nm line width on H:Si(111) in n-alkanes, 1-alkenes, and 1-alkanes. Nanopatterning is accomplished by applying a positive (n-alkanes and 1-alkenes) or a negative (1-alkanes) voltage pulse to the silicon substrate with the cAFM tip connected to ground. The chemical and kinetic behavior of the patterned features is characterized using AFM, lateral force microscopy, time-of-flight secondary ion mass spectroscopy (TOF SIMS), and chemical etching. Features patterned in hexadecane, 1-octadecene, and undecylenic acid methyl ester exhibited chemical and kinetic behavior consistent with AFM field induced oxidation. The oxide features are formed due to capillary condensation of a water meniscus at the AFM tip-sample junction. A space-charge limited growth model is proposed to explain the observed growth kinetics. Surface modifications produced in the presence of neat 1-dodecyne and 1-octadecyne exhibited a reduced lateral force compared to the background H:Si(111) substrate and were resistant to a hydrofluoric acid etch, characteristics which indicate that the patterned features are not due to field induced oxidation and which are consistent with the presence of the methyl-terminated 1-alkyne bound directly to the silicon surface through silicon-carbon bonds. In addition to the cAFM patterned surfaces, full monolayers of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromoethyl ester (SAM-2) were grown on H:Si(111) substrates using ultraviolet light. The structure and chemistry of the monolayers were characterized using AFM, TOF SIMS, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). These combined analyses provide evidence that SAM-1 and SAM-2 form dense monolayers

  18. Characterization of the rock joint surface. A contribution to DECOVALEX II Task 3 'Constitutive relationships of rock joints'

    International Nuclear Information System (INIS)

    Vuopio, J.; Poellae, J.

    1997-12-01

    In order to understand the effects of spent fuel on the hydraulical behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulical properties of the fractures. The roughness of a fracture surface governs the dilatation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics

  19. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Colton; Dorsey, Alison; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish

    2016-08-01

    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  20. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor

    International Nuclear Information System (INIS)

    Mutlu, Selma; Coekeliler, Dilek; Shard, Alex; Goktas, Hilal; Ozansoy, Berna; Mutlu, Mehmet

    2008-01-01

    This paper describes a method for the modification of quartz crystal surfaces to be used as a transducer in biosensors that allow recognition and quantification of certain biomolecules (antibodies, enzymes, proteins, etc). Quartz crystal sensors were modified by a plasma based electron beam generator in order to detect the level of the toxin histamine within biological liquids (blood, serum) and food (wine, cheese, fish etc.). Cysteamine and ethylenediamine were used as precursors in the plasma. After each modification step, the layers on the quartz crystal were characterized by frequency measurements. Modified surfaces were also characterized by contact angle, X-ray photoelectron spectroscopy and atomic force microscopy to determine the physical and chemical characteristics of the surfaces after each modification. Finally, the performance of the sensors were tested by the response to histamine via frequency shifts. The frequency shifts of the sensors prepared by plasma polymerization of ethylenediamine and cysteamine were approximately 3230 Hz and 5630 Hz, respectively, whereas the frequency change of the unmodified crystal surface was around 575 Hz

  1. Preliminary assessment of Miramar Petrochemical Harbor as PAH source to Guajará bay (Belém-PA-Brazil surface sediments

    Directory of Open Access Journals (Sweden)

    Silvana do Socorro Veloso Sodré

    Full Text Available Abstract A preliminary study on a petrochemical harbor as a potential source of polycyclic aromatic hydrocarbons (PAH to surface sediments of Guajará bay, located in Belém City, Pará State, Brazil, over the last 10 years is presented here. The 16 priority USEPA PAH were identified and quantified. Surface sediment samples, collected at 5 sites in the bay, near Miramar Petrochemical Harbor (TEMIR, were extracted and analyzed by high performance liquid chromatography with a diode array detector. Total PAH concentration ranged from 533.0 to 3123.3 ng g-1 dry weight with a mean concentration of 1091.9 ng g-1. The most contaminated places were those where muddy sediments were found with highest concentrations of organic matter. The priority PAH with low molecular weight represented 54.4% of the total abundance and indicate that the main source of contamination of the sediments was petrogenic, indicative of the relevant contribution of the petrochemical harbor activity to the input of PAH to Guajará bay. However, pyrolytic PAH coming from fuel combustion, household waste combustion and untreated sewage discharge are also potential contamination sources to this environment.

  2. Characterization of as-grown and adsorbate-covered N-polar InN surfaces using in situ photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Eisenhardt, Anja; Himmerlich, Marcel; Krischok, Stefan

    2012-01-01

    The surface electronic properties and adsorption behaviour of as-grown and oxidized N-polar InN films are characterized by photoelectron spectroscopy (XPS, UPS). The epitaxial growth of the InN layers was performed by plasma-assisted molecular beam epitaxy on GaN/6H-SiC(000-1). After growth and in situ characterization the InN surfaces were exposed to molecular oxygen to evaluate the adsorption behaviour of O 2 on N-polar InN and to study its impact on the surface electronic properties of the III-nitride material. The results are compared with studies on In-polar InN on GaN/sapphire templates. The as-grown N-polar InN surface exhibits a pronounced surface state at a binding energy of ∝1.6 eV. The valence band minimum lies about 0.8-1.0 eV below the surface Fermi level. Additionally, the XPS core level binding energies for InN(000-1) are reduced compared to InN(0001) films, indicating different surface band bending for clean N-polar and In-polar InN, respectively. The interaction of molecular oxygen with the InN(000-1) surface leads to a downward band bending by 0.1 eV compared to the initial state. Additional adsorption of species from the residual gas of the UHV chamber increases the surface downward band bending. Furthermore two pronounced oxygen related states with an energy distance of ∝5 eV could be detected in the valence band region. The adsorbed oxygen results in an additional component in the N1s core level spectra, which is interpreted as formation of NO x bonds. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Characterization of thermomechanical damage on tungsten surfaces during long-duration plasma transients

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David, E-mail: david.rivera.ucla@gmail.com; Crosby, Tamer; Sheng, Andrew; Ghoniem, Nasr M.

    2014-12-15

    A new experimental facility constructed at UCLA for the simulation of high heat flux effects on plasma-facing materials is described. The High Energy Flux Test Facility (HEFTY) is equipped with a Praxair model SG-100 plasma gun, which is nominally rated at 80 kW of continuous operation, of which approximately 30 kW reaches the target due to thermal losses. The gun is used to impart high intermittent heat flux to metal samples mounted within a cylindrical chamber. The system is capable of delivering an instantaneous heat flux in the range of 30–300 MW/m{sup 2}, depending on sample proximity to the gun. The duration of the plasma heat flux is in the range of 1–1000 s, making it ideal for studies of mild plasma transients of relatively long duration. Tungsten and tungsten-copper alloy metal samples are tested in these transient heat flux conditions, and the surface is characterized for damage evaluation using optical, SEM, XRD, and micro-fabrication techniques. Results from a Finite Element (FE) thermo-elastoplasticity model indicate that during the heat-up phase of a plasma transient pulse, the majority of the sample surface is under compressive stresses leading to plastic deformation of the surface. Upon sample cooling, the recovered elastic strain of cooler parts of the sample exceeds that from parts that deformed plastically, resulting in a tensile surface self-stress (residual surface stress). The intensity of the residual tensile surface stress is experimentally correlated with the onset of complex surface fracture morphology on the tungsten surface, and extending below the surface region. Micro-compression mechanical tests of W micro-pillars show that the material has significant plasticity, failing by a “barreling” mode before plasma exposure, and by normal dislocation slip and localized shear after plasma exposure. Ongoing modeling of the complex thermo-fracture process, coupled with elasto-plasticity is based on a phase field approach for distributed

  4. Surface topography and morphology characterization of PIII irradiated silicon surface

    International Nuclear Information System (INIS)

    Sharma, Satinder K.; Barthwal, Sumit

    2008-01-01

    The effect of plasma immersion ion implantation (PIII) treatment on silicon surfaces was investigated by micro-Raman and atomic force microscopy (AFM) technique. The surface damage was given by the implantation of carbon, nitrogen, oxygen and argon ions using an inductively coupled plasma (ICP) source at low pressure. AFM studies show that surface topography of the PIII treated silicon wafers depend on the physical and chemical nature of the implanted species. Micro-Raman spectra indicate that the significant reduction of intensity of Raman peak after PIII treatment. Plasma immersion ion implantation is a non-line-of-sight ion implantation method, which allows 3D treatment of materials. Therefore, PIII based surface modification and plasma immersion ion deposition (PIID) coatings are applied in a wide range of situations.

  5. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  6. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  7. Preliminary topical report on comparison reactor disassembly calculations

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1975-11-01

    Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2-POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherent in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident

  8. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  10. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    Science.gov (United States)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  11. Characterization of surface modifications by white light interferometry: applications in ion sputtering, laser ablation, and tribology experiments.

    Science.gov (United States)

    Baryshev, Sergey V; Erck, Robert A; Moore, Jerry F; Zinovev, Alexander V; Tripa, C Emil; Veryovkin, Igor V

    2013-02-27

    In materials science and engineering it is often necessary to obtain quantitative measurements of surface topography with micrometer lateral resolution. From the measured surface, 3D topographic maps can be subsequently analyzed using a variety of software packages to extract the information that is needed. In this article we describe how white light interferometry, and optical profilometry (OP) in general, combined with generic surface analysis software, can be used for materials science and engineering tasks. In this article, a number of applications of white light interferometry for investigation of surface modifications in mass spectrometry, and wear phenomena in tribology and lubrication are demonstrated. We characterize the products of the interaction of semiconductors and metals with energetic ions (sputtering), and laser irradiation (ablation), as well as ex situ measurements of wear of tribological test specimens. Specifically, we will discuss: i. Aspects of traditional ion sputtering-based mass spectrometry such as sputtering rates/yields measurements on Si and Cu and subsequent time-to-depth conversion. ii. Results of quantitative characterization of the interaction of femtosecond laser irradiation with a semiconductor surface. These results are important for applications such as ablation mass spectrometry, where the quantities of evaporated material can be studied and controlled via pulse duration and energy per pulse. Thus, by determining the crater geometry one can define depth and lateral resolution versus experimental setup conditions. iii. Measurements of surface roughness parameters in two dimensions, and quantitative measurements of the surface wear that occur as a result of friction and wear tests. Some inherent drawbacks, possible artifacts, and uncertainty assessments of the white light interferometry approach will be discussed and explained.

  12. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    Full Text Available Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological

  13. Characterisation of surface roughness for ultra-precision freeform surfaces

    International Nuclear Information System (INIS)

    Li Huifen; Cheung, C F; Lee, W B; To, S; Jiang, X Q

    2005-01-01

    Ultra-precision freeform surfaces are widely used in many advanced optics applications which demand for having surface roughness down to nanometer range. Although a lot of research work has been reported on the study of surface generation, reconstruction and surface characterization such as MOTIF and fractal analysis, most of them are focused on axial symmetric surfaces such as aspheric surfaces. Relative little research work has been found in the characterization of surface roughness in ultra-precision freeform surfaces. In this paper, a novel Robust Gaussian Filtering (RGF) method is proposed for the characterisation of surface roughness for ultra-precision freeform surfaces with known mathematic model or a cloud of discrete points. A series of computer simulation and measurement experiments were conducted to verify the capability of the proposed method. The experimental results were found to agree well with the theoretical results

  14. ZTI: Preliminary characterization of an ignition class reversed-field pinch

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Werley, K.A.

    1990-01-01

    A preliminary cost-optimized conceptual design of an intermediate-step, ignition-class RFP device (ZTI) for the study of alpha-particle physics in a DT plasma is reported. The ZTI design reflects potentially significant cost savings relative to similar ignition-class tokamaks for device parameters that reside on the path to a viable commercial RFP reactor. Reductions in both device costs and number of steps to commercialization portend a significantly reduced development cost for fusion. The methodology and result and coupling realistic physics, engineering, and cost models through a multi-dimensional optimizer are reported for ZTI, which is a device that would follow the 2--4 MA ZTH on a approx-gt 1996--98 timescale. 15 refs., 7 figs., 2 tabs

  15. Surface and microstructural characterization of commercial breeder reactor candidate alloys exposed to 7000C sodium

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Brehm, W.F.

    1979-03-01

    Sodium compatibility screening tests were performed on several commercial austenitic alloys at 700 0 C for 2000 hours for applications as breeder reactor fuel cladding. The sodium-exposed surfaces were characterized by Optical Metallography, Scanning Electron Microscopy (SEM) and Electron Probe Micro Analysis (EPMA). Sodium exposure generally resulted in the depletion of Ni, Cr, Ti, Si, Mn and Nb, and enrichment of Fe and Mo at the surface. The average thickness of the depleted zone was 5 μm. The alloys can be divided into three groups based on corrosion rate, and each group has its own characteristic surface structure. Grain-orientation dependent striations were seen in alloys with low corrosion rates, while alloys with intermediate corrosion rates displayed micron-size nodes enriched with Fe and Mo. The high corrosion rate alloys exhibited scale-like formations on the surface with irregularly shaped holes. In addition, the data importantly point out that a ferrite layer will form at the sodium-exposed surface of these austenitic alloys after prolonged exposure

  16. Preliminary Assessment of Potential Avian Interactions at Four Proposed Wind Energy Facilities on Vandenberg Air Force Base, California

    Energy Technology Data Exchange (ETDEWEB)

    2004-08-01

    The United States Air Force (USAF) is investigating whether to install wind turbines to provide a supplemental source of electricity at Vandenberg Air Force Base (VAFB) near Lompoc, California. As part of that investigation, VAFB sought assistance from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to provide a preliminary characterization of the potential risk to wildlife resources (mainly birds and bats) from wind turbine installations. With wind power development expanding throughout North America and Europe, concerns have surfaced over the number of bird fatalities associated with wind turbines. Guidelines developed for the wind industry by the National Wind Coordinating Committee (NWCC) recommend assessing potential impacts to birds, bats, and other potentially sensitive resources before construction. The primary purpose of an assessment is to identify potential conflicts with sensitive resources, to assist developers with identifying their permitting needs, and to develop strategies to avoid impacts or to mitigate their effects. This report provides a preliminary (Phase I) biological assessment of potential impacts to birds and bats that might result from construction and operation of the proposed wind energy facilities on VAFB.

  17. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.

    Science.gov (United States)

    Beuming, Thijs; Che, Ye; Abel, Robert; Kim, Byungchan; Shanmugasundaram, Veerabahu; Sherman, Woody

    2012-03-01

    Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts. Copyright © 2011 Wiley Periodicals, Inc.

  18. Production and characterization of surface-active compounds from Gordonia amicalis

    Directory of Open Access Journals (Sweden)

    Ani Beatriz Jackisch-Matsuura

    2014-02-01

    Full Text Available Two methods were used to make crude preparations of surface-active compounds (SACs produced by Gordonia amicalis grown on the medium containing 1% diesel oil. Using a 2:1 (v/v solution of chloroform:methanol for extraction, Type I SACs were isolated and shown to produce oil in water (O/W emulsions. Type II SACs were isolated by precipitation with ammonium sulfate and produced predominantly water in oil emulsions (W/O. The crude Type I and II preparations were able to produce a significant reduction in the surface tension of water; however, the crude Type II preparation had 10-25 fold higher emulsification activity than the Type I preparation. Both SAC preparations were analyzed by the TLC and each produced two distinct bands with Rf 0.44 and 0.62 and Rf 0.52 and 0.62, respectively. The partially purified SACs were characterized by the ESI(+-MS, FT-IR and NMR. In each one of these fractions, a mixture of 10 oligomers was found consisting of a series of compounds, with masses from 502 to 899, differing in molecular mass by a repeating unit of 44 Daltons. The mass spectra of these compounds did not appear to match other known biosurfactants and could represent a novel class of these compounds.

  19. Further investigation of surface velocity measurements for material characterization in laser shockwave experiments

    Science.gov (United States)

    Smith, James A.; Lacy, Jeffrey M.; Scott, Clark L.; Benefiel, Bradley C.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin

    2018-04-01

    As part of the U.S. High Performance Research Reactor program, a laser shock test system is being developed by the Idaho National Laboratory (INL) to characterize interface strength in innovative plate fuel for research reactors around the world. The INL has been working with National Research Council Canada (NRC) on this project for the last five years. One of the concerns is the difficulty of calibrating and standardizing the laser shock technique. A recent analytical study and testing support the use of the Hugoniot Elastic Limit (HEL) in materials as a robust and simple benchmark to compare stresses generated by different laser shock systems. Using a non-contact laser velocimeter based on a solid Fabry-Perot etalon, the systems at NRC and INL show that the back-surface velocity reached at the HEL is consistent, and independent of the laser power used. In this work, the laser velocimeter of the NRC system is tested against a fast rotating wheel to verify accuracy and determine best operating conditions. A round robin test between the two laser shock systems on plates of different aluminum alloys is presented that shows the consistent characterization of the aluminum alloys based on the HEL velocities as well as determines the bias between the systems. The effects of setup parameters on other characteristics of the back-surface velocity trace and corresponding stress wave are also discussed.

  20. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  1. Surface characterization and biodegradation behavior of magnesium implanted poly(L-lactide/caprolactone) films

    Science.gov (United States)

    Sokullu, Emel; Ersoy, Fulya; Yalçın, Eyyup; Öztarhan, Ahmet

    2017-11-01

    Biopolymers are great source for medical applications such as drug delivery, wound patch, artificial tissue studies etc., food packaging, cosmetic applications etc. due to their biocompatibility and biodegradability. Particularly, the biodegradation ability of a biomaterial makes it even advantageous for the applications. The more tunable the biodegradation rate the more desired the biopolymers. There are many ways to tune degradation rate including surface modification. In this study ion implantation method applied to biopolymer surface to determine its effect on biodegradation rate. In this study, surface modification of poly(L-lactide/caprolactone) copolymer film is practiced via Mg-ion-implantation using a MEVVA ion source. Mg ions were implanted at a fluence of 1 × 1015 ions/cm2 and ion energy of 30 keV. Surface characterization of Mg-ion-implanted samples is examined using Atomic Force Microscopy, Raman spectroscopy, contact angle measurement and FT-IR Spectroscopy. These analyses showed that the surface become more hydrophilic and rougher after the ion implantation process which is advantageous for cell attachment on medical studies. The in vitro enzymatic degradation of Mg-implanted samples was investigated in Lipase PS containing enzyme solution. Enzymatic degradation rate was examined by mass loss calculation and it is shown that Mg-implanted samples lost more than 30% of their weight while control samples lost around 20% of their weight at the end of the 16 weeks. The evaluation of the results confirmed that Mg-ion-implantation on poly(L-lactide/caprolactone) films make the surface rougher and more hydrophilic and changes the organic structure on the surface. On the other hand, ion implantation has increased the biodegradation rate.

  2. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, Mirabela, E-mail: mirabela.rusu@gmail.com; Wang, Haibo; Madabhushi, Anant [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Golden, Thea; Gow, Andrew [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-08-15

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  3. Framework for 3D histologic reconstruction and fusion with in vivo MRI: Preliminary results of characterizing pulmonary inflammation in a mouse model

    International Nuclear Information System (INIS)

    Rusu, Mirabela; Wang, Haibo; Madabhushi, Anant; Golden, Thea; Gow, Andrew

    2015-01-01

    Purpose: Pulmonary inflammation is associated with a variety of diseases. Assessing pulmonary inflammation on in vivo imaging may facilitate the early detection and treatment of lung diseases. Although routinely used in thoracic imaging, computed tomography has thus far not been compellingly shown to characterize inflammation in vivo. Alternatively, magnetic resonance imaging (MRI) is a nonionizing radiation technique to better visualize and characterize pulmonary tissue. Prior to routine adoption of MRI for early characterization of inflammation in humans, a rigorous and quantitative characterization of the utility of MRI to identify inflammation is required. Such characterization may be achieved by considering ex vivo histology as the ground truth, since it enables the definitive spatial assessment of inflammation. In this study, the authors introduce a novel framework to integrate 2D histology, ex vivo and in vivo imaging to enable the mapping of the extent of disease from ex vivo histology onto in vivo imaging, with the goal of facilitating computerized feature analysis and interrogation of disease appearance on in vivo imaging. The authors’ framework was evaluated in a preclinical preliminary study aimed to identify computer extracted features on in vivo MRI associated with chronic pulmonary inflammation. Methods: The authors’ image analytics framework first involves reconstructing the histologic volume in 3D from individual histology slices. Second, the authors map the disease ground truth onto in vivo MRI via coregistration with 3D histology using the ex vivo lung MRI as a conduit. Finally, computerized feature analysis of the disease extent is performed to identify candidate in vivo imaging signatures of disease presence and extent. Results: The authors evaluated the framework by assessing the quality of the 3D histology reconstruction and the histology—MRI fusion, in the context of an initial use case involving characterization of chronic

  4. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  5. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    International Nuclear Information System (INIS)

    Chan, Kwai S.

    2015-01-01

    Rectangular plates of Ti–6Al–4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti–6Al–4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%–75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm. (paper)

  6. Surface characterization of IM7/5260 composites by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Satomi; Lee, Moon-Hwan; Lin, Kuen Y.; Ohuchi, Fumio S.

    2001-01-01

    Surfaces of high-performance carbon fiber/bismeleimide (BMI) composites (IM7/5260) have been characterized by x-ray photoelectron spectroscopy. An experimental technique to separately examine the chemical natures of the carbon fibers and BMI resin in the composite form was developed. This technique uses a flood gun to establish differential charging conditions on the BMI resin. The binding energies from the BMI resin were shifted by an amount of voltage applied to the flood gun, whereas those from the carbon fibers were uniquely determined due to their electrically conducting nature. By adding external bias voltage to the sample, the binding energies for conducting fibers were further shifted from those of the BMI resin, thereby separating the IM7 phase completely from the BMI phase in the binding energy scale, allowing independent measurement of the chemical changes associated with those peaks. Using this technique, the effects of thermal aging and surface plasma treatment on the IM7/5260 composite were studied

  7. Dynamical speckles in watery surfaces

    International Nuclear Information System (INIS)

    Llovera-Gonzalez, J.J.; Moreno-Yeras, A.; Garcia-Diaz, M.; Alvarez-Salgado, Y.

    2009-01-01

    Recovery of watery surfaces with monolayer of surfactant substances is of interest in diverse technological applications. The format ion and study of molecular monolayer deposited in these surfaces require the application of measurements techniques that allow evaluating the recovery grade locally without modifying practically the studied surface. In this paper the preliminary results obtained by the authors it plows exposed applying the technique of dynamic speckle interferometry in watery surfaces and their consideration like to possible resource to measure the grade of local recovery of these surfaces on the it bases that the speckles pattern dog reveal the dynamics of evaporation that takes place in the same ones. (Author)

  8. Characterization of the surface and interfacial properties of the lamina splendens

    Science.gov (United States)

    Rexwinkle, Joe T.; Hunt, Heather K.; Pfeiffer, Ferris M.

    2017-06-01

    Joint disease affects approximately 52.5 million patients in the United States alone, costing 80.8 billion USD in direct healthcare costs. The development of treatment programs for joint disease and trauma requires accurate assessment of articular cartilage degradation. The articular cartilage is the interfacial tissue between articulating surfaces, such as bones, and acts as low-friction interfaces. Damage to the lamina splendens, which is the articular cartilage's topmost layer, is an early indicator of joint degradation caused by injury or disease. By gaining comprehensive knowledge on the lamina splendens, particularly its structure and interfacial properties, researchers could enhance the accuracy of human and animal biomechanical models, as well as develop appropriate biomimetic materials for replacing damaged articular cartilage, thereby leading to rational treatment programs for joint disease and injury. Previous studies that utilize light, electron, and force microscopy techniques have found that the lamina splendens is composed of collagen fibers oriented parallel to the cartilage surface and encased in a proteoglycan matrix. Such orientation maximizes wear resistance and proteoglycan retention while promoting the passage of nutrients and synovial fluid. Although the structure of the lamina splendens has been explored in the literature, the low-friction interface of this tissue remains only partially characterized. Various functional models are currently available for the interface, such as pure boundary lubrication, thin films exuded under pressure, and sheets of trapped proteins. Recent studies suggest that each of these lubrication models has certain advantages over one another. Further research is needed to fully model the interface of this tissue. In this review, we summarize the methods for characterizing the lamina splendens and the results of each method. This paper aims to serve as a resource for existing studies to date and a roadmap of the

  9. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    International Nuclear Information System (INIS)

    Pepe, G.P.; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R.

    2004-01-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2 K are also presented and discussed

  10. Preliminary findings of the effect of surface finish and coatings on PuO2 contamination hold-up and ease of decontamination in aqueous and non-aqueous media

    International Nuclear Information System (INIS)

    Dalton, J.T.; Chamberlain, H.E.; Turner, A.D.; Dawson, R.K.

    1984-11-01

    The application of temporary and permanent coatings for the reduction of α-activity hold-up and increased ease of decontamination has been reviewed and a variety of surface treatments and coatings identified as being worthy of investigation. A range of specimens have been prepared with hard coatings and smooth surfaces. A number of adhesive films, paints and lacquers have been applied to mild and stainless steel substrates. In order to compare the different surfaces, a standard contamination technique using a mechanical wiper has been developed to reproducibly contaminate the materials with PuO 2 . A standard decontamination test using water/Decon 75 or Arklone X is being used to compare the ease of decontamination. Preliminary experiments have shown that the smoothest surface finishes have the lowest activity hold-up and are more easily cleaned. Due to the superior level of micro-smoothness attainable on metals, these showed a significantly lower activity retention than the organic coatings examined to date. A comparison of the relative efficiency of cleaning in Decon 75 and Arklone X showed that generally speaking metal surfaces were cleaned equally well by both media, while the unaged organic surfaces were decontaminated more thoroughly in Arklone X, though the differences were somewhat marginal. (author)

  11. Surface and interfacial structural characterization of MBE grown Si/Ge multilayers

    International Nuclear Information System (INIS)

    Saha, Biswajit; Sharma, Manjula; Sarma, Abhisakh; Rath, Ashutosh; Satyam, P.V.; Chakraborty, Purushottam; Sanyal, Milan K.

    2009-01-01

    Si/Ge multilayer structures have been grown by solid source molecular beam epitaxy (MBE) on Si (1 1 1) and (1 0 0) substrates and were characterized by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), high-depth-resolution secondary ion mass spectroscopy (SIMS) and cross-section high-resolution transmission electron microscopy (HRTEM). A reasonably good agreement has been obtained for layer thickness, interfacial structure and diffusion between SIMS and HRTEM measurements. Epitaxial growth and crystalline nature of the individual layer have been probed using cross-sectional HRTEM and XRD measurements. Surface and interface morphological studies by AFM and HRTEM show island-like growth of both Si and Ge nanostructures.

  12. Electrical characterization of chemically modified YBa2Cu3O7-x surfaces

    International Nuclear Information System (INIS)

    Hunt, B.D.; Foote, M.C.; Vasquez, R.P.

    1990-01-01

    Results on electrical characterization of YBa 2 Cu 3 O 7-x thin-film surfaces treated with a Br/ethanol chemical etch are presented. Electrical measurements of YBa 2 Cu 3 O 7-x /Au/Nb device structures fabricated using polycrystalline, post-annealed YBa 2 Cu 3 O 7-x films with Br-etched surfaces, show improvements of approximately one or two orders of magnitude in current densities and resistivities (resistance-area products) relative to unetched devices. The existence of supercurrents in these structures has been confirmed by observation of the ac Josephson effect, and by magnetic field and temperature studies of the critical currents. The Br-etch process has produced 10x10 μm 2 devices with critical current densities greater than 400 A/cm 2 and resistivities as low as 4x10 -7 Ω cm 2

  13. Readiness to proceed: Characterization planning basis

    International Nuclear Information System (INIS)

    Adams, M.R.

    1998-01-01

    This report summarizes characterization requirements, data availability, and data acquisition plans in support of the Phase 1 Waste Feed Readiness to Proceed Mid-Level Logic. It summarizes characterization requirements for the following program planning documents: Waste Feed Readiness Mid-Level Logic and Decomposition (in development); Master blue print (not available); Tank Waste Remediation System (TWRS) Operations and Utilization Plan and Privatization Contract; Enabling assumptions (not available); Privatization low-activity waste (LAW) Data Quality Objective (DQO); Privatization high-level waste (HLW) DQO (draft); Problem-specific DQOs (in development); Interface control documents (draft). Section 2.0 defines the primary objectives for this report, Section 3.0 discusses the scope and assumptions, and Section 4.0 identifies general characterization needs and analyte-specific characterization needs or potential needs included in program documents and charts. Section 4.0 also shows the analyses that have been conducted, and the archive samples that are available for additional analyses. Section 5.0 discusses current plans for obtaining additional samples and analyses to meet readiness-to-proceed requirements. Section 6.0 summarizes sampling needs based on preliminary requirements and discusses other potential characterization needs. Many requirements documents are preliminary. In many cases, problem-specific DQOs have not been drafted, and only general assumptions about the document contents could be obtained from the authors. As a result, the readiness-to-proceed characterization requirements provided in this document are evolving and may change

  14. Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals

    Science.gov (United States)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2014-08-01

    Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.

  15. Radiolabeling, characterization and preliminary studies of 90Y-octreotate

    International Nuclear Information System (INIS)

    Klementyeva, O.E.; Bruskin, A.B.; Larenkov, A.A.; Kodina, G.E.; Korsunsky, V.N.

    2015-01-01

    Full text of publication follows. Introduction: Overexpression of the somatostatin receptors in neuroendocrine tumors has become the molecular basis for the use of somatostatin analogues in diagnosis and therapy for these neoplasms. The high energy (maximum 2.2 MeV) and penetration range (R 95 5.7 mm) of β-particles from 90 Y are advantageous, with a direct killing of somatostatin receptor positive cells and a crossfire effect which hits nearby receptor-negative tumour cells [Ref. 1]. Aim: the investigation of the reaction conditions for the preparation of 90 Y-Octreotate and its in vitro characterization. Materials and methods: DOTA-Octreotate (Farm-Syntez Ltd.) and 88 YCl 3 (V/O Isotop) were used without purification. 88 Y-Octreotate was prepared in acetate buffer solution and its radiochemical purity was controlled by ITLC. In-vitro experiments were carried out with melanoma B16. Studies of internalization were performed as described in [Ref. 2]. Results: the maximal accumulation in the cells was observed after 90 min from the beginning of incubation and was about 3.9%. In our experiments, we found high level of internalization of the surface-bound 88 Y-Octreotate into B16 cells. Maximal internalization level was 80% after 60 min of incubation. Conclusion: the optimal conditions for effective labeling (> 95%) of DOTA-Octreotate were found. The results obtained using the gamma-emitting 88 Y, provide a basis for in vivo research 90 Y octreotate as radiotherapeutic agent. References: [Ref. 1] Bodei, L.; Pepe, G.; Paganelli, G.; Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors with somatostatin analogues. Eur. Rev. Med. Pharmacol. Sci., 2010; v. 14: 347-351. [Ref. 2] Garcia Garayoa E., Allemann-Tannahill L., et al. In vitro and in vivo evaluation of new radiolabeled neurotensin (8-13) analogs with high affinity for NT1 receptors. Nucl. Med. Biol. 2001; 28: 75-84. (authors)

  16. Study of the possibilities of using nuclear methods for characterizing the surface region of glasses

    International Nuclear Information System (INIS)

    Hsiung, P.

    1983-01-01

    Following a review of the different methods used for the analysis of surfaces, we give a detailed description of charged particle elastic backscattering and the experimental devices. We then apply this method to the study of the lixiviation of borosilicate glasses in aqueous media and to the characterization of two heavy elements, cerium and thorium and their possible interaction in simple borosilicates [fr

  17. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  18. Characterizing boundary layer height using surface and column measurements of NO2 and formaldehyde

    Science.gov (United States)

    Valin, L.; Szykman, J.; Long, R.; Whitehill, A.; Williams, D. J.; Knepp, T. N.; Crawford, J. H.; Al-Saadi, J. A.; Judd, L.; Brown, S.; Matichuk, R.; Tonnesen, G.; Appel, W.; Hogrefe, C.; Abuhassan, N.; Cede, A.; Spinei, E.; Herman, J. R.; Swap, R.; Cohen, R. C.; Fried, A.; Weinheimer, A. J.

    2017-12-01

    The rate of vertical mixing near the surface determines the rate of human exposure to emitted pollutants and also influences the rate at which ozone and particulate matter are formed. To characterize the variability of atmospheric composition near the surface and above, the EPA Office of Research and Development has deployed instruments to measure surface and column concentrations of NO2, an emitted species, and formaldehyde (HCHO) during KORUS-AQ (May - June 2016, Seoul, Korea), UWFPS (Jan-Feb 2016, Salt Lake City) and LMOS (May - June, 2017, Lake Michigan). We compare the mixed layer height determined by aerosol backscatter profiles to a value determined by dividing the NO2 and HCHO column density (molecule cm-2) by its surface concentration (molecule cm-3), using linear regression to remove influence of layers aloft (y-intercept), such as subtraction of the stratospheric NO2 column. We evaluate our findings by using aircraft soundings of NO2 and HCHO and discuss the implications with respect to photochemical transport modeling results from CMAQ and space-based satellite retrievals. Finally we discuss an overall strategy to make these measurements part of routine monitoring at Photochemical Assessment Monitoring System locations (PAMS).

  19. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  20. A preliminary characterisation of recovered uranium produced by MDR

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Davison, J.; Marsh, G.

    1997-10-01

    The CANFLEX-RU fuel to be developed for the future should be verified if it has any major problems in RU handling techniques and related technology development. For this purpose, a preliminary R and D efforts on the RU handling characteristics were executed by joint effort with BNFL in following area. 1) preparation of RU powder by the MDR process 2) Compaction and sintering characteristics of RU powder 3) required special process for the production of CANFLEX-RU fuel 4) characterization of fission product residue composition in the RU powder 5) radiological characterization of RU powder and sintered pellets. Physical characterization of RU UO 2 powder and pellet produced by the MDR process were similar with those of NU UO 2 powder and pellet. The density of RU pellets, however, were higher than those of NU pellets and RU pellets showed little higher values in pore size distributions. RU contained only negligibly low concentrations of fission products and actinides. Especially, the Cs-137 content in the powder (before sintering) were undetectable and therefore would not contaminate the sintering furnace. RU pellet showed higher impurity levels, especially in the Ni content. Radioactivity on the RU powder showed about twice higher value at the surface than those of NU, but showed drastic reduction by distance and became similar at the 1 meter distance. RU pellets showed close coincidence between NU and RU at any distance. This result could be used close coincidence between NU and RU at any distance. This result could be used as a basis of the feasibility assessment on the development of CANFLEX-RU. Through basic research works on the improvement of CANFLEX-RU fabrication processes, compatibility with CANFLEX-NU fabrication process will be evaluated and analysed. (author). 4 refs

  1. A preliminary characterisation of recovered uranium produced by MDR

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk Il [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Davison, J.; Marsh, G. [British Nuclear Forum, London (United Kingdom)

    1997-10-01

    The CANFLEX-RU fuel to be developed for the future should be verified if it has any major problems in RU handling techniques and related technology development. For this purpose, a preliminary R and D efforts on the RU handling characteristics were executed by joint effort with BNFL in following area. 1) preparation of RU powder by the MDR process 2) Compaction and sintering characteristics of RU powder 3) required special process for the production of CANFLEX-RU fuel 4) characterization of fission product residue composition in the RU powder 5) radiological characterization of RU powder and sintered pellets. Physical characterization of RU UO{sub 2} powder and pellet produced by the MDR process were similar with those of NU UO{sub 2} powder and pellet. The density of RU pellets, however, were higher than those of NU pellets and RU pellets showed little higher values in pore size distributions. RU contained only negligibly low concentrations of fission products and actinides. Especially, the Cs-137 content in the powder (before sintering) were undetectable and therefore would not contaminate the sintering furnace. RU pellet showed higher impurity levels, especially in the Ni content. Radioactivity on the RU powder showed about twice higher value at the surface than those of NU, but showed drastic reduction by distance and became similar at the 1 meter distance. RU pellets showed close coincidence between NU and RU at any distance. This result could be used close coincidence between NU and RU at any distance. This result could be used as a basis of the feasibility assessment on the development of CANFLEX-RU. Through basic research works on the improvement of CANFLEX-RU fabrication processes, compatibility with CANFLEX-NU fabrication process will be evaluated and analysed. (author). 4 refs.

  2. The Mobile Surface Contamination Monitor II environmental radiological characterization utilizing GPS/GIS technologies

    International Nuclear Information System (INIS)

    Wendling, M.A.

    1993-05-01

    Time, cost, and most importantly quality of data are the three factors to measure the success of field radiological characterizations. The application of coupling radiation detection instrumentation to a GPS receiver has dramatically increased the data quality achievable compared to traditional environmental radiological survey methods. Improvements in verifying adequate spatial coverage of an area while collecting data and at,the same time reducing field time requirements can be realized. Data acquired during the recent implementation of the Mobile Surface Contamination Monitor 11 (MSCM-11) will be presented to demonstrate the advantages of this system over traditional radiological survey methods. The comparison will include time and manpower requirements. Linking the complimentary GPS, GIS and radiation detection technologies on a mobile tractor based platform has provided a tool to provide radiological characterization data faster, cheaper, and better to assist in the Environmental Restoration Mission of the Hanford Site

  3. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  4. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    Science.gov (United States)

    Chow, Gabriel

    Thin films represent a critical sector of modern engineering that strives to produce functional coatings at the smallest possible length scales. They appear most commonly in semiconductors where they form the foundation of all electronic circuits, but exist in many other areas to provide mechanical, electrical, chemical, and optical properties. The mechanical characterization of thin films has been a continued challenge due foremost to the length scales involved. However, emerging thin films focusing on materials with significant porosity, complex morphologies, and nanostructured surfaces produce additional difficulties towards mechanical analysis. Nanoindentation has been the dominant thin film mechanical characterization technique for the last decade because of the quick results, wide range of sample applicability, and ease of sample preparation. However, the traditional nanoindentation technique encounters difficulties for thin porous films. For such materials, alternative means of analysis are desirable and the lesser known laser-induced surface acoustic wave technique (LiSAW) shows great potential in this area. This dissertation focuses on studying thin, porous, and nanostructured films by nanoindentation and LiSAW techniques in an effort to directly correlate the two methodologies and to test the limits and applicabilities of each technique on challenging media. The LiSAW technique is particularly useful for thin porous films because unlike indentation, the substrate is properly accounted for in the wave motion analysis and no plastic deformation is necessary. Additionally, the use of lasers for surface acoustic wave generation and detection allows the technique to be fully non-contact. This is desirable in the measurement of thin, delicate, and porous films where physical sample probing may not be feasible. The LiSAW technique is also valuable in overcoming nanoscale roughness, particularly for films that cannot be mechanically polished, since typical SAW

  5. Double-chain phospholipid end-capped polyurethanes: Synthesis, characterization and platelet adhesion study

    International Nuclear Information System (INIS)

    Tan Dongsheng; Zhang Xiaoqing; Li Jiehua; Tan Hong; Fu Qiang

    2012-01-01

    A novel phospholipid containing double chains and phosphotidylcholine polar head groups, 2-(10-(2-aminoethylamino)-10-oxodecanamido)-3-(decyloxy)-3-oxopropyl phosphorylcholine (ADDPC), was synthesized and characterized. Two kinds of double-chain phospholipid end-capped polyurethanes with different soft segments were prepared. The structure of prepared polyurethanes was characterized by X-ray photoelectron spectroscopic (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometry and atomic force microscope (AFM), which indicated that the double-chain phospholipids enriched onto the top surface of the prepared polyurethane films. The preliminary evaluation of blood compatibility showed that these novel phospholipid end-capped polyurethanes could suppress platelet adhesion and activation effectively. This property did not depend on the chemical structure of polyurethanes. In addition, according to tensile test results, the phospholipid polyurethanes kept good mechanical properties in comparison with original polyurethanes. It is suggested that double-chain phospholipid end-caption has good potential for achieving both hemocompatibility and good mechanical properties simultaneously for polyurethanes.

  6. Contribution of the characterization of radioactive surfaces after sodium corrosion

    International Nuclear Information System (INIS)

    Menken, G.; Holl, M.

    1978-01-01

    Since 1972 INTERATOM is performing sodium mass and activity transfer investigations in an SNR-corrosion mockup loop which allows to study the transport of activated corrosion products in the primary heat transfer system of a sodium cooled reactor. The loop simulates the temperature and flow conditions and the materials combination of the SNR 300. The mass transfer examinations were aimed at the determination of the following: the linear corrosion and deposition rates; the selective corrosion of the alloying elements; the transfer of activated corrosion products. The results of a number of corrosion runs will be used in the following contribution to characterize the contaminated and corroded surface layers of reactor components. The loop reached a total operation time of 12300 h while the cold trap temperature was changed between 105 deg. C and 165 deg. C in successive runs

  7. Interaction of phosphorylcholine with fibronectin coatings: Surface characterization and biological performances

    Energy Technology Data Exchange (ETDEWEB)

    Montaño-Machado, Vanessa, E-mail: vanessa.montano-machado.1@ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); Noël, Céline, E-mail: celine.noel@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Chevallier, Pascale, E-mail: pascale.chevallier@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Turgeon, Stéphane, E-mail: stephane.turgeon@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Houssiau, Laurent, E-mail: laurent.houssiau@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Pauthe, Emmanuel, E-mail: emmanuel.pauthe@u-cergy.fr [ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); and others

    2017-02-28

    Highlights: • Fibronectin/phosphorylcholine coatings on plasma deposited fluorocarbon films were created. • The effect of several coating techniques on the surface biological performances was evaluated. • XPS, DWCA, immunostaining and ToF-SIMS (imaging and depth profiling) techniques were applied. • Potential for cardiovascular applications was showed by endothelial cell and blood interactions. - Abstract: Coating medical devices with several bioactive molecules is an interesting approach to achieve specific biological targets upon the interaction of the biomaterial with the living environment. In this work, a fluorocarbon polymer (CF{sub x}) was first deposited by plasma treatment on stainless steel (SS) substrate and thereafter, coatings containing fibronectin (FN) and phosphorylcholine (PRC) were created for cardiovascular applications. These two biomolecules were chosen to promote endothelialization and to avoid thrombus formation, respectively. Adsorption and grafting techniques were applied – and combined – to accomplish 4 different coatings containing both molecules. However, big challenge was found to characterize a small molecule (PRC: 184 g/mol) interacting with a protein (FN: 450 kD). For the first time XPS, dynamic water contact angle, immunostaining and ToF-SIMS (imaging and depth profiling) analyses were combined to accomplish the characterization of such a coating. The most encouraging biological performances were obtained for samples where FN was grafted to the CF{sub x} film followed by the adsorption of PRC: proliferation of endothelial cells and hemocompatibility properties were observed. Promising coatings for cardiovascular applications were developed. The relevance of characterizing the coatings with high sensitive techniques and the further correlation with their biological performances were evidenced.

  8. Fabrication and characterization of DLC coated microdimples on hip prosthesis heads.

    Science.gov (United States)

    Choudhury, Dipankar; Ay Ching, Hee; Mamat, Azuddin Bin; Cizek, Jan; Abu Osman, Noor Azuan; Vrbka, Martin; Hartl, Martin; Krupka, Ivan

    2015-07-01

    Diamond like carbon (DLC) is applied as a thin film onto substrates to obtain desired surface properties such as increased hardness and corrosion resistance, and decreased friction and wear rate. Microdimple is an advanced surface modification technique enhancing the tribological performance. In this study, DLC coated microdimples were fabricated on hip prosthesis heads and their mechanical, material and surface properties were characterized. An Electro discharge machining (EDM) oriented microdrilling was utilized to fabricate a defined microdimple array (diameter of 300 µm, depth of 70 µm, and pitch of 900 µm) on stainless steel (SS) hip prosthesis heads. The dimpled surfaces were then coated by hydrogenated amorphous carbon (a-C:H) and tetrahedral amorphous carbon (Ta-C) layers by using a magnetron sputtering technology. A preliminary tribology test was conducted on these fabricated surfaces against a ceramic ball in simulated hip joint conditions. It was found that the fabricated dimples were perpendicular to the spherical surfaces and no cutting-tools wear debris was detected inside the individual dimples. The a-C:H and Ta-C coatings increased the hardness at both the dimple edges and the nondimpled region. The tribology test showed a significant reduction in friction coefficient for coated surfaces regardless of microdimple arrays: the lowest friction coefficient was found for the a-C:H samples (µ = 0.084), followed by Ta-C (µ = 0.119), as compared to the SS surface (µ = 0.248). © 2014 Wiley Periodicals, Inc.

  9. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan

    2010-09-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  10. Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays

    KAUST Repository

    Chen, Longquan; Xiao, Zhiyong; Chan, Philip C H; Lee, Yi-Kuen

    2010-01-01

    Superhydrophobic nano-flower surfaces were fabricated using MEMS technology and microwave plasma-enhanced chemical vapor deposition (MPCVD) of carbon nanotubes on silicon micro-post array surfaces. The nano-flower structures can be readily formed within 1-2 min on the micro-post arrays with the spacing ranging from 25 to 30 μm. The petals of the nano-flowers consisted of clusters of multi-wall carbon nanotubes. Patterned nano-flower structures were characterized using various microscopy techniques. After MPCVD, the apparent contact angle (160 ± 0.2°), abbreviated as ACA (defined as the measured angle between the apparent solid surface and the tangent to the liquid-fluid interface), of the nano-flower surfaces increased by 139% compared with that of the silicon micro-post arrays. The measured ACA of the nano-flower surface is consistent with the predicted ACA from a modified Cassie-Baxter equation. A high-speed CCD camera was used to study droplet impact dynamics on various micro/nanostructured surfaces. Both static testing (ACA and sliding angle) and droplet impact dynamics demonstrated that, among seven different micro/nanostructured surfaces, the nano-flower surfaces are the most robust superhydrophobic surfaces. © 2010 IOP Publishing Ltd.

  11. Preliminary radar systems analysis for Venus orbiter missions

    Science.gov (United States)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  12. SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results

    Science.gov (United States)

    Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.

    2009-12-01

    We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in

  13. Using the Geminids to Characterize the Surface Response of an Airless Body to Meteoroid Bombardment

    Science.gov (United States)

    Szalay, J.; Pokorny, P.; Jenniskens, P. M. M.; Horanyi, M.

    2017-12-01

    All airless bodies in the solar system are exposed to the continual bombardment by interplanetary meteoroids. These impacts can eject orders of magnitude more mass than the primary impactors, sustaining bound and/or unbound ejecta clouds that vary both spatially and temporally from changes in impactor fluxes. The dust environment in the vicinity of an airless body provides both a scientific resource and a hazard for exploration. Characterizing the spatial and temporal variability of the dust environment of airless planetary bodies provides a novel way to understand their meteoroid environment by effectively using these objects as large surface area meteoroid detectors. Additionally, were a dust detector with chemical sensing capability to be flown near such a body, it would be able to directly measure the composition of the body without requiring the mission design complexity involved in landing and sampling surface material. Paramount to understanding the current and future impact ejecta measurements is a sufficient understanding of the impact ejecta processes at the surface. In this presentation, we focus on data taken by the Lunar Dust Experiment (LDEX), an impact ionization dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, designed to measure impact ejecta around the Moon. We use the Geminids meteoroid shower as a well constrained input function, and via comparison to existing ground-based measurements of this shower, to "calibrate" the response of the lunar surface to meteoroid bombardment. Understanding the response of the lunar surface to meteoroid bombardment can by extension allow us to better understand the ejecta response at other regolith airless bodies in the solar system. Future missions equipped with dust detectors sent to the Moon, large Near Earth Asteroids, the Martian moons Phobos and Deimos, or many other airless bodies in the solar system would greatly improve our knowledge of their local meteoroid

  14. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  15. Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device.

    Science.gov (United States)

    Liu, Linlin; Wang, Qiong; Yang, Zhong; Wang, Wangang; Hu, Ning; Luo, Hongyan; Liao, Yanjian; Zheng, Xiaolin; Yang, Jun

    2015-04-01

    Surface topographies of lipid films have an important significance in the analysis of the preparation of giant unilamellar vesicles (GUVs). In order to achieve accurately high-throughput and rapidly analysis of surface topographies of lipid films, a homemade SPR imaging device is constructed based on the classical Kretschmann configuration and an angle interrogation manner. A mathematical model is developed to accurately describe the shift including the light path in different conditions and the change of the illumination point on the CCD camera, and thus a SPR curve for each sampling point can also be achieved, based on this calculation method. The experiment results show that the topographies of lipid films formed in distinct experimental conditions can be accurately characterized, and the measuring resolution of the thickness lipid film may reach 0.05 nm. Compared with existing SPRi devices, which realize detection by monitoring the change of the reflective-light intensity, this new SPRi system can achieve the change of the resonance angle on the entire sensing surface. Thus, it has higher detection accuracy as the traditional angle-interrogation SPR sensor, with much wider detectable range of refractive index. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optical characterization of nanoporous AAO sensor substrate

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  17. Presentation of preliminary studies relative to the long duration disposal of medium level and long lived (MLLL) wastes

    International Nuclear Information System (INIS)

    Leroy, C.; Moreau, A.; Fayette, L.; Bellon, M.; Templier, J.C.; Macias, R.M.; Porcher, J.B.; Rey, F.; Hollender, F.; Girard, J.P.

    2002-01-01

    In the contract of objectives signed in 2001 with the government, the French atomic energy commission (CEA) committed itself to supply reports of preliminary studies about long duration disposal concepts for medium level and long lived radioactive wastes. This document makes the synthesis of the preliminary studies carried out in 2001 and 2002 by exploring simultaneously the surface and subsurface disposal concepts. The studies deal with the design of a facility with a long service life. Four hypotheses have been retained for the preliminary studies: a secular lifetime (typically 100 to 300 years), a single and new site for all waste packages (no existing facility available), two confinement barriers, an envelope-type site with specific characteristics (seismicity, climate conditions, airplane crash..). These preliminary studies show the existence of solutions for each option: with and without storage containers in both type (surface and subsurface) of facilities. They outline the necessity of studying more thoroughly some technical points. This instruction will be performed for the concepts retained after a multi-criteria analysis. (J.S.)

  18. Tissue characterization using magnetic resonance elastography: preliminary results

    International Nuclear Information System (INIS)

    Kruse, S.A.; Smith, J.A.; Lawrence, A.J.; Dresner, M.A.; Manduca, A.; Greenleaf, J.F.; Ehman, R.L.

    2000-01-01

    The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for non-invasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves. (author)

  19. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments

    Directory of Open Access Journals (Sweden)

    Jianguang Wen

    2018-02-01

    Full Text Available Rugged terrain, including mountains, hills, and some high lands are typical land surfaces around the world. As a physical parameter for characterizing the anisotropic reflectance of the land surface, the importance of the bidirectional reflectance distribution function (BRDF has been gradually recognized in the remote sensing community, and great efforts have been dedicated to build BRDF models over various terrain types. However, on rugged terrain, the topography intensely affects the shape and magnitude of the BRDF and creates challenges in modeling the BRDF. In this paper, after a brief introduction of the theoretical background of the BRDF over rugged terrain, the status of estimating land surface BRDF properties over rugged terrain is comprehensively reviewed from a historical perspective and summarized in two categories: BRDFs describing solo slopes and those describing composite slopes. The discussion focuses on land surface reflectance retrieval over mountainous areas, the difference in solo slope and composite slope BRDF models, and suggested future research to improve the accuracy of BRDFs derived with remote sensing satellites.

  20. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    International Nuclear Information System (INIS)

    Mayr, Lukas; Klötzer, Bernhard; Penner, Simon; Rameshan, Raffael; Rameshan, Christoph

    2014-01-01

    An ultra-high vacuum (UHV) setup for “real” and “inverse” model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, “magic angle”) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown

  1. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    Science.gov (United States)

    Mayr, Lukas; Rameshan, Raffael; Klötzer, Bernhard; Penner, Simon; Rameshan, Christoph

    2014-05-01

    An ultra-high vacuum (UHV) setup for "real" and "inverse" model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, "magic angle") and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  2. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  3. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  4. Control and characterization of textured, hydrophobic ionomer surfaces

    Science.gov (United States)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  5. Method and apparatus for surface characterization and process control utilizing radiation from desorbed particles

    International Nuclear Information System (INIS)

    Feldman, L.C.; Kraus, J.S.; Tolk, N.H.; Traum, M.M.; Tully, J.C.

    1983-01-01

    Emission of characteristic electromagnetic radiation in the infrared, visible, or UV from excited particles, typically ions, molecules, or neutral atoms, desorbed from solid surfaces by an incident beam of low-momentum probe radiation has been observed. Disclosed is a method for characterizing solid surfaces based on the observed effect, with low-momentum probe radiation consisting of electrons or photons. Further disclosed is a method for controlling manufacturing processes that is also based on the observed effect. The latter method can, for instance, be advantageously applied in integrated circuit-, integrated optics-, and magnetic bubble device manufacture. Specific examples of applications of the method are registering of masks, control of a direct-writing processing beam, end-point detection in etching, and control of a processing beam for laser- or electron-beam annealing or ion implantation

  6. Validation of a new device to quantify groundwater-surface water exchange

    Science.gov (United States)

    Cremeans, Mackenzie M.; Devlin, J. F.

    2017-11-01

    Distributions of flow across the groundwater-surface water interface should be expected to be as complex as the geologic deposits associated with stream or lake beds and their underlying aquifers. In these environments, the conventional Darcy-based method of characterizing flow systems (near streams) has significant limitations, including reliance on parameters with high uncertainties (e.g., hydraulic conductivity), the common use of drilled wells in the case of streambank investigations, and potentially lengthy measurement times for aquifer characterization and water level measurements. Less logistically demanding tools for quantifying exchanges across streambeds have been developed and include drive-point mini-piezometers, seepage meters, and temperature profiling tools. This project adds to that toolbox by introducing the Streambed Point Velocity Probe (SBPVP), a reusable tool designed to quantify groundwater-surface water interactions (GWSWI) at the interface with high density sampling, which can effectively, rapidly, and accurately complement conventional methods. The SBPVP is a direct push device that measures in situ water velocities at the GWSWI with a small-scale tracer test on the probe surface. Tracer tests do not rely on hydraulic conductivity or gradient information, nor do they require long equilibration times. Laboratory testing indicated that the SBPVP has an average accuracy of ± 3% and an average precision of ± 2%. Preliminary field testing, conducted in the Grindsted Å in Jutland, Denmark, yielded promising agreement between groundwater fluxes determined by conventional methods and those estimated from the SBPVP tests executed at similar scales. These results suggest the SBPVP is a viable tool to quantify groundwater-surface water interactions in high definition in sandy streambeds.

  7. Radioiodination of surface proteins of bull spermatozoa and their characterization by sodium dodecyl sulphate-polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Vierula, M.

    1980-01-01

    Surface proteins of ejaculated bull spermatozoa were radioiodinated using Ma 125 I, solubilized and characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The electron microscopic autoradiographs showed that the labelling was equally distributed to all parts of the spermatozoon and restricted to the sperm surface. The electrophoresis of solubilized radioactivity revealed 6 radioactive fractions with approximate molecular weights of 67 000-69 000, 47 000-50 000, 34 000-37 000, 25 000-28 000 and 14 000-16 000. The 6th fraction probably represented labelled lipids. The electrophoresis of radioiodinated seminal plasma proteins revealed only 2 radioactive protein peaks which coincided with the sperm surface protein fractions IV and V. (author)

  8. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    International Nuclear Information System (INIS)

    Cicmil, Nenad

    2008-01-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N 5 ,N 10 -methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å

  9. IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides.

    Science.gov (United States)

    Kosmulski, Marek

    2012-01-01

    The numerical values of points of zero charge (PZC, obtained by potentiometric titration) and of isoelectric points (IEP) of various materials reported in the literature have been analyzed. In sets of results reported for the same chemical compound (corresponding to certain chemical formula and crystallographic structure), the IEP are relatively consistent. In contrast, in materials other than metal oxides, the sets of PZC are inconsistent. In view of the inconsistence in the sets of PZC and of the discrepancies between PZC and IEP reported for the same material, it seems that IEP is more suitable than PZC as the unique number characterizing the pH-dependent surface charging of materials other than metal oxides. The present approach is opposite to the usual approach, in which the PZC and IEP are considered as two equally important parameters characterizing the pH-dependent surface charging of materials other than metal oxides. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Characterization of (1 1 1) surface tailored Pt nanoparticles by electrochemistry and X-ray powder diffraction

    International Nuclear Information System (INIS)

    Beyerlein, K.R.; Solla-Gullon, J.; Herrero, E.; Garnier, E.; Pailloux, F.; Leoni, M.; Scardi, P.; Snyder, R.L.; Aldaz, A.; Feliu, J.M.

    2010-01-01

    Platinum nanoparticles with a mean size of 8.7 nm were synthesized by a salt reduction reaction having polyhedron shapes with preferential (1 1 1) surfaces. In situ electrochemical characterization of nanoparticles was performed which confirmed the existence of mostly (1 1 1) surface sites in the sample. The effect of this surface in the electrooxidation of CO was measured. Debye Function Analysis (DFA) and Whole Powder Pattern Modelling (WPPM) of the measured X-ray diffraction pattern were carried out to obtain statistical information on the particle size and shape present in the sample. Both analyses determined that the octahedron particle shape was the most abundant which was also consistent with TEM observations. The existence of a small percentage of single twinned particles was determined by DFA, WPPM, as well as analysis of HRTEM images.

  11. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  12. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.

    Science.gov (United States)

    Fatisson, Julien; Quevedo, Ivan R; Wilkinson, Kevin J; Tufenkji, Nathalie

    2012-03-01

    The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Ethanol adsorption on the {10(1)over-bar4} calcite surface

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Stipp, Susan Louise Svane; Hassenkam, Tue

    2008-01-01

    Preliminary atomic force microscopy investigations of the {10 (1) over bar4} calcite Surface cleaved in ethanol indicate a different surface behaviour than that of the {10 (1) over bar4} surface cleaved in air. The results are consistent with recent theoretical studies and suggest strong ordering...

  14. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    Science.gov (United States)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  15. NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides

    International Nuclear Information System (INIS)

    Barb, Adam W.; Freedberg, Darón I.; Battistel, Marcos D.; Prestegard, James H.

    2011-01-01

    Few solution NMR pulse sequences exist that are explicitly designed to characterize carbohydrates (glycans). This is despite the essential role carbohydrate motifs play in cell–cell communication, microbial pathogenesis, autoimmune disease progression and cancer metastasis, and despite that fact that glycans, often shed to extra-cellular fluids, can be diagnostic of disease. Here we present a suite of two dimensional coherence experiments to measure three different correlations (H3–C2, H3–C1, and C1–C2) on sialic acids, a group of nine-carbon carbohydrates found on eukaryotic cell surfaces that often play a key role in disease processes. The chemical shifts of the H3, C2, and C1 nuclei of sialic acids are sensitive to carbohydrate linkage, linkage conformation, and ionization state of the C1 carboxylate. The experiments reported include rigorous filter elements to enable detection and characterization of isotopically labeled sialic acids with high sensitivity in living cells and crude isolates with minimal interference from unwanted signals arising from the ∼1% 13 C-natural abundance of cellular metabolites. Application is illustrated with detection of sialic acids on living cells, in unpurified mixtures, and at the terminus of the N-glycan on the 55 kDa immunoglobulin G Fc.

  16. An eddy covariance system to characterize the atmospheric surface layer and turbulent latent heat fluxes over a debris-covered Himalayan glacier.

    Science.gov (United States)

    Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael

    2017-04-01

    Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.

  17. Current practices in corrosion, surface characterization, and nickel leach testing of cardiovascular metallic implants.

    Science.gov (United States)

    Nagaraja, Srinidhi; Di Prima, Matthew; Saylor, David; Takai, Erica

    2017-08-01

    In an effort to better understand current test practices and improve nonclinical testing of cardiovascular metallic implants, the Food and Drug Administration (FDA) held a public workshop on Cardiovascular Metallic Implants: corrosion, surface characterization, and nickel leaching. The following topics were discussed: (1) methods used for corrosion assessments, surface characterization techniques, and nickel leach testing of metallic cardiovascular implant devices, (2) the limitations of each of these in vitro tests in predicting in vivo performance, (3) the need, utility, and circumstances when each test should be considered, and (4) the potential testing paradigms, including acceptance criteria for each test. In addition to the above topics, best practices for these various tests were discussed, and knowledge gaps were identified. Prior to the workshop, discussants had the option to provide feedback and information on issues relating to each of the topics via a voluntary preworkshop assignment. During the workshop, the pooled responses were presented and a panel of experts discussed the results. This article summarizes the proceedings of this workshop and background information provided by workshop participants. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. J Biomed Mater Res Part B: Appl Biomater, 105B: 1330-1341, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  18. Modeling and evaluating of surface roughness prediction in micro-grinding on soda-lime glass considering tool characterization

    Science.gov (United States)

    Cheng, Jun; Gong, Yadong; Wang, Jinsheng

    2013-11-01

    The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion

  19. Preliminary structural characterization of human SOUL, a haem-binding protein

    International Nuclear Information System (INIS)

    Freire, Filipe; Romão, Maria João; Macedo, Anjos L.; Aveiro, Susana S.; Goodfellow, Brian J.; Carvalho, Ana Luísa

    2009-01-01

    This manuscript describes the overexpression, purification and crystallization of human SOUL protein (hSOUL). hSOUL is a 23 kDa haem-binding protein that was first identified as the PP23 protein isolated from human full-term placenta. Human SOUL (hSOUL) is a 23 kDa haem-binding protein that was first identified as the PP 23 protein isolated from human full-term placentas. Here, the overexpression, purification and crystallization of hSOUL are reported. The crystals belonged to space group P6 4 22, with unit-cell parameters a = b = 145, c = 60 Å and one protein molecule in the asymmetric unit. X-ray diffraction data were collected to 3.5 Å resolution at the ESRF. A preliminary model of the three-dimensional structure of hSOUL was obtained by molecular replacement using the structures of murine p22HBP, obtained by solution NMR, as search models

  20. 3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes

    Science.gov (United States)

    Sredar, Nripun; Ivers, Kevin M.; Queener, Hope M.; Zouridakis, George; Porter, Jason

    2013-01-01

    En face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images. Following 3D transformation of the anterior laminar surface in 11 normal eyes, mean pore area increased by 5.1 ± 2.0% with a minimal change in pore elongation (mean change = 0.0 ± 0.2%). These small changes were due to the relatively flat laminar surfaces inherent in normal eyes (mean radius of curvature = 3.0 ± 0.5 mm). The mean increase in pore area was larger following 3D transformation in 4 glaucomatous eyes (16.2 ± 6.0%) due to their more steeply curved laminar surfaces (mean radius of curvature = 1.3 ± 0.1 mm), while the change in pore elongation was comparable to that in normal eyes (−0.2 ± 2.0%). This 3D transformation and tessellation method can be used to better characterize and track 3D changes in laminar pore and surface geometries in glaucoma. PMID:23847739

  1. Surface rheology of saponin adsorption layers.

    Science.gov (United States)

    Stanimirova, R; Marinova, K; Tcholakova, S; Denkov, N D; Stoyanov, S; Pelan, E

    2011-10-18

    Extracts of the Quillaja saponaria tree contain natural surfactant molecules called saponins that very efficiently stabilize foams and emulsions. Therefore, such extracts are widely used in several technologies. In addition, saponins have demonstrated nontrivial bioactivity and are currently used as essential ingredients in vaccines, food supplements, and other health products. Previous preliminary studies showed that saponins have some peculiar surface properties, such as a very high surface modulus, that may have an important impact on the mechanisms of foam and emulsion stabilization. Here we present a detailed characterization of the main surface properties of highly purified aqueous extracts of Quillaja saponins. Surface tension isotherms showed that the purified Quillaja saponins behave as nonionic surfactants with a relatively high cmc (0.025 wt %). The saponin adsorption isotherm is described well by the Volmer equation, with an area per molecule of close to 1 nm(2). By comparing this area to the molecular dimensions, we deduce that the hydrophobic triterpenoid rings of the saponin molecules lie parallel to the air-water interface, with the hydrophilic glucoside tails protruding into the aqueous phase. Upon small deformation, the saponin adsorption layers exhibit a very high surface dilatational elasticity (280 ± 30 mN/m), a much lower shear elasticity (26 ± 15 mN/m), and a negligible true dilatational surface viscosity. The measured dilatational elasticity is in very good agreement with the theoretical predictions of the Volmer adsorption model (260 mN/m). The measured characteristic adsorption time of the saponin molecules is 4 to 5 orders of magnitude longer than that predicted theoretically for diffusion-controlled adsorption, which means that the saponin adsorption is barrier-controlled around and above the cmc. The perturbed saponin layers relax toward equilibrium in a complex manner, with several relaxation times, the longest of them being around 3

  2. Optical Characterization of Nanostructured Surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft

    Micro- and nanostructured surfaces are interesting due to the unique properties they add to the bulk material. One example is structural colors, where the interaction between surface structures and visible light produce bright color effects without the use of paints or dyes. Several research groups...... modeling to evaluate the dimensions of subwavelength gratings, by correlating the reflected light measured from the structures with a database of simulations. A new method is developed and termed color scatterometry, since compared to typical spectroscopic scatterometry, which evaluates the full reflection...... spectrum; the new method only evaluates the color of the reflected light using a standard RGB color camera. Color scatterometry provides the combined advantages of spectroscopic scatterometry, which provides fast evaluations, and imaging scatterometry that provides an overview image from which small...

  3. Seismic signal in Olkiluoto. Preliminary comparison of underground and surface recordings

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-02-01

    Seismic hazard studies in Finland relate to nuclear power plant sites on the Earth's surface. The impact of seismic waves is different on structures on the surface than underground. The purpose of this study is to approximate how ground motions recorded in the ONKALO compare with those on the surface above the ONKALO. Broadband seismometers were installed on the surface and at the depth of 400 m inside the ONKALO in November 2013. The operation time of the seismometers was about nine months. The analysed signals included background noise, teleseismic earthquakes, regional earthquake, local explosions and explosions from the ONKALO site. The studies in Olkiluoto demonstrated that, in general, there is a de-amplification of ground motions in the ONKALO relative to those on the surface, or there is no significant difference between the recordings. The result is likely associated with the type of the seismic source and the relatively shallow depth (400 m) of the underground station. Observed relative amplification related only to nearfield events: the recorded velocity amplitudes on the surface were 2 - 10 times larger than underground. One opposite relation was found in the study: the vertical component of the velocity amplitude of a regional earthquake seems to be about three times larger in ONKALO than on the surface between frequencies 50 Hz and 80 Hz. Definite conclusions concerning amplification or de-amplification cannot be based on the result of this study. In practice, any set of recordings cannot give a comprehensive description of the possible variations, like how the wavefield reflected from the surface interacts with the wavefield coming towards the surface. Numerical modeling is suggested for further studies of this subject. (orig.)

  4. Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; E. C. Sullivan; F. A. Spane; D. H. Bacon; G. Hund; P. D. Thorne; C. J. Thompson; S. P. Reidel; F. S. Colwell

    2009-12-01

    The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling of Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow

  5. Structural characterization of humic-like substances with conventional and surface-enhanced spectroscopic techniques

    Science.gov (United States)

    Carletti, Paolo; Roldán, Maria Lorena; Francioso, Ornella; Nardi, Serenella; Sanchez-Cortes, Santiago

    2010-10-01

    Emission-excitation, synchronous fluorescence spectroscopy and surface-enhanced Raman scattering (SERS) combined with surface-enhanced fluorescence (SEF) were applied to aqueous solutions of a humic-like substance (HLS) extracted from earthworm faeces. All measurements were acquired in a wide range of pH (4-12) and analysed by the linear regression analysis. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectra were also acquired to assist in the structural characterization of this HLS. The emission and excitation spectra allowed the identification of two main fluorophores in the analysed sample. Moreover, a close correlation between fluorescence intensities of each fluorophore with pH variation was observed. SERS and SEF, in agreement with the fluorescence spectroscopy, showed that the HLS at low pH values exists in an aggregated and coiled molecular structure while it is dispersed and uncoiled at alkaline conditions. The obtained spectra also evidenced that different conditions modify the functional groups exposed to the surrounding aqueous environment.

  6. Surface characterization of polyethylene terephthalate/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Moradian, Siamak [Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Rashidi, Abosaeed [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohamad-Esmail [Department of Textile, Islamic Azad University, Yazd Branch, Yazd (Iran, Islamic Republic of)

    2010-02-15

    Poly(ethylene terephthalate) (PET) based nanocomposites containing hydrophilic (i.e. Aerosil 200 or Aerosil TT 600) or hydrophobic (i.e. Aerosil R 972) nano-silica were prepared by melt compounding. Influence of nano-silica type on surface properties of the resultant nanocomposites was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). The possible interaction between nano-silica particles and PET functional groups at bulk and surface were elucidated by transmission FTIR and FTIR-ATR spectroscopy, respectively. AFM studies of the resultant nanocomposites showed increased surface roughness compared to pure PET. Contact angle measurements of the resultant PET composites demonstrated that the wettability of such composites depends on surface treatment of the particular nano-silica particles used. SEM images illustrated that hydrophilic nano-silica particles tended to migrate to the surface of the PET matrix.

  7. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    Science.gov (United States)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  8. Structuring a cost-effective site characterization

    International Nuclear Information System (INIS)

    Berven, B.A.; Little, C.A.; Swaja, R.E.

    1990-01-01

    Successful chemical and radiological site characterizations are complex activities which require meticulously detailed planning. Each layer of investigation is based upon previously generated information about the site. Baseline historical, physical, geological, and regulatory information is prerequisite for preliminary studies at a site. Preliminary studies then provide samples and measurements which define the identity of potential contaminants and define boundaries around the area to be investigated. The goal of a full site characterization is to accurately determine the extent and magnitude of contaminants and carefully define the site conditions such that the future movements of site contaminants can be assessed for potential exposure to human occupants and/or environmental impacts. Critical to this process is the selection of appropriate measurement and sampling methodology, selection and use of appropriate instrumentation and management/interpretation of site information. Site investigations require optimization between the need of information to maximize the understanding of site conditions and the cost of acquiring that information. 5 refs., 1 tab

  9. Site characterization and validation. Stage 2 - Preliminary predictions

    International Nuclear Information System (INIS)

    Olsson, O.; Black, J.H.; Gale, J.E.; Holmes, D.C.

    1989-05-01

    The Site Characterization and Validation (SCV) project is designed to assess how well we can characterize a volume of rock prior to using it as a repository. The programme of work focuses on the validation of the techniques used in site characterization. The SCV project contains 5 stages of work arranged in two 'cycles' of data-gathering, prediction, and validation. The first stage of work has included drilling of 6 boreholes (N2, N3, N4, W1, W2 and V3) and measurements of geology, fracture characteristics, stess, single borehole geophysical logging, radar, seismics and hydrogeology. The rock at the SCV site is granite with small lithological variations. Based essentially on radar and seismic results 5 'fracture zones' have been identified, named GA, GB, GC, GH and GI. They all extend acroos the entire SCV site. They aer basically in in two groups (GA, GB, GC and GH, GI). The first group are aligned N40 degree E with a dip of 35 degree to the south. The second group are aligned approximately N10 degree W dipping 60 degree E. From the stochastic analysis of the joint data it was possible to identify three main fracture orientation clusters. The orientation of two of these clusters agree roughly with orientation of the main features. Cluster B has roughly the same orientation as GH and GI, while features GA, GB and GC have an orientation similar to the more loosely defined cluster C. The orientation of the third cluster (A) is northwest with a dip to northeast. It is found that 94% of all measured hydraulic transmissivity is accounted for by 4% of the tested rock, not all of this 'concentrated' transmissivity is with the major features defined by geophysics. When the hydraulic connections across the site are examied they show that there are several welldefined zones which permit rapid transmission of hydraulic signals. These are essentially from the northeast to the southwest. (66 figs., 21 tabs., 33 refs.)

  10. Characterization by ion beams of surfaces and interfaces of alternative materials for future microelectronic devices

    International Nuclear Information System (INIS)

    Krug, C.; Stedile, F.C.; Radtke, C.; Rosa, E.B.O. da; Morais, J.; Freire, F.L.; Baumvol, I.J.R.

    2003-01-01

    We present the potential use of ion beam techniques such as nuclear reactions, channelling Rutherford backscattering spectrometry, and low energy ion scattering in the characterization of the surface and interface of materials thought to be possible substitutes to Si (like SiC, for example) and to SiO 2 films (like Al 2 O 3 films, for example) in microelectronic devices. With narrow nuclear reaction resonance profiling the depth distribution of light elements such as Al and O in the films can be obtained non-destructively and with subnanometric depth resolution, allowing one to follow the mobility of each species under thermal treatments, for instance. Thinning of an amorphous layer at the surface of single-crystalline samples can be determined using channelling of He + ions and detection of the scattered light particles. Finally, the use of He + ions in the 1 keV range allows elemental analysis of the first monolayer at the sample surface

  11. Surface and body waves from surface and underground explosions

    International Nuclear Information System (INIS)

    Kusubov, A.S.

    1976-06-01

    The characteristics of surface and ground waves were recorded for surface and underground explosions up to 100 tons and 40 kt in magnitude, respectively, and a preliminary analysis of these results is presented. The experiments were conducted at NTS in the Yucca Flats, Nevada. Ground motions were detected with triaxial geophones along seismic lines extending up to 16 miles from the point of explosions. A comparison of Rayleigh waves generated by surface and underground explosions in the same lake bed is presented indicating a very different behavior of surface and ground waves from the two types of explosions. The magnitude of the transverse wave for surface shots was smaller by a factor of two than its longitudinal counterpart. The dependence of apparent periods on the blast energy was not apparent at a fixed distance from the explosions. Changes in the apparent period with distance for both types of explosion are compared indicating a strong layering effect of the lake bed. The ground motion study was complimented by excavation of cavities generated by the explosions

  12. Preliminary surface analysis of etched, bleached, and normal bovine enamel

    International Nuclear Information System (INIS)

    Ruse, N.D.; Smith, D.C.; Torneck, C.D.; Titley, K.C.

    1990-01-01

    X-ray photoelectron spectroscopic (XPS) and secondary ion-mass spectroscopic (SIMS) analyses were performed on unground un-pumiced, unground pumiced, and ground labial enamel surfaces of young bovine incisors exposed to four different treatments: (1) immersion in 35% H2O2 for 60 min; (2) immersion in 37% H3PO4 for 60 s; (3) immersion in 35% H2O2 for 60 min, in distilled water for two min, and in 37% H3PO4 for 60 s; (4) immersion in 37% H3PO4 for 60 s, in distilled water for two min, and in 35% H2O2 for 60 min. Untreated unground un-pumiced, unground pumiced, and ground enamel surfaces, as well as synthetic hydroxyapatite surfaces, served as controls for intra-tooth evaluations of the effects of different treatments. The analyses indicated that exposure to 35% H2O2 alone, besides increasing the nitrogen content, produced no other significant change in the elemental composition of any of the enamel surfaces investigated. Exposure to 37% H3PO4, however, produced a marked decrease in calcium (Ca) and phosphorus (P) concentrations and an increase in carbon (C) and nitrogen (N) concentrations in unground un-pumiced specimens only, and a decrease in C concentration in ground specimens. These results suggest that the reported decrease in the adhesive bond strength of resin to 35% H2O2-treated enamel is not caused by a change in the elemental composition of treated enamel surfaces. They also suggest that an organic-rich layer, unaffected by acid-etching, may be present on the unground un-pumiced surface of young bovine incisors. This layer can be removed by thorough pumicing or by grinding. An awareness of its presence is important when young bovine teeth are used in a model system for evaluation of resin adhesiveness

  13. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  14. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  15. Polyamide desalination membrane characterization and surface modification to enhance fouling resistance.

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul M. (Univeristy of Texas at Austin, Austin, TX); Freeman, Benny D. (Univeristy of Texas at Austin, Austin, TX); Van Wagner, Elizabeth M. (Univeristy of Texas at Austin, Austin, TX); Hickner, Michael A. (Pennsylvania State University, University Park, PA); Altman, Susan Jeanne

    2010-08-01

    The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterization of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved

  16. Defining resilience: A preliminary integrative literature review

    Science.gov (United States)

    Wilt, Bonnie; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    The term “resilience” is ubiquitous in technical literature; it appears in numerous forms, such as resilience, resiliency, or resilient, and each use may have a different definition depending on the interpretation of the writer. This creates difficulties in understanding what is meant by ‘resilience’ in any given use case, especially in discussions of interdisciplinary research. To better understand this problem, this research constructs a preliminary integrative literature review to map different definitions, applications and calculation methods of resilience invoked within critical infrastructure applications. The preliminary review uses a State-of-the-Art Matrix (SAM) analysis to characterize differences in definition across disciplines and between regions. Qualifying the various usages of resilience will produce a greater precision in the literature and a deeper insight into types of data required for its evaluation, particularly with respect to critical infrastructure calculations and how such data may be analyzed. Results from this SAM analysis will create a framework of key concepts as part of the most common applications for “resilient critical infrastructure” modeling.

  17. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: Preparation, surface characterization, and in vitro drug release studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Annemarie; Mani, Gopinath, E-mail: Gopinath.Mani@usd.edu

    2013-08-15

    Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel – PAT) and an endothelial cell promoting agent (nitric oxide – NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.

  18. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: Preparation, surface characterization, and in vitro drug release studies

    International Nuclear Information System (INIS)

    Gallo, Annemarie; Mani, Gopinath

    2013-01-01

    Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel – PAT) and an endothelial cell promoting agent (nitric oxide – NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.

  19. Surface Characterization of Nb Samples Electro-polished Together With Real Superconducting Radio-frequency Accelerator Cavities

    International Nuclear Information System (INIS)

    Zhao, Xin; Geng, Rong-Li; Tyagi, P.V.; Hayano, Hitoshi; Kato, Shigeki; Nishiwaki, Michiru; Saeki, Takayuki; Sawabe, Motoaki

    2010-01-01

    We report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granules with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.

  20. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  1. Extreme UV and X-ray scattering measurements from a rough LiF crystal surface characterized by electron micrography

    DEFF Research Database (Denmark)

    Alehyane; Arbaoui; Barchewitz

    1989-01-01

    XUV and X-ray scattering by a LiF crystal is measured. The angular distribution of the scattered radiation (ADSR) reveals characteristic features, side peaks or asymmetry. The surface of the sample is statistically characterized by a microdensitometer analysis of electron micrographs resolving th...

  2. 43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.

    Science.gov (United States)

    2010-10-01

    ... pathways. (1) The authorized official shall make a preliminary identification of potential exposure... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as appropriate, direct contact, surface water, ground water, air, food chains, and particulate movement. (b...

  3. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    International Nuclear Information System (INIS)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-01-01

    Graphical abstract: - Abstract: We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES

  4. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    Science.gov (United States)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-12-01

    We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES.

  5. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  6. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    Science.gov (United States)

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  7. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    Science.gov (United States)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  8. Extraction of agar from Gelidium sesquipedale (Rhodopyta) and surface characterization of agar based films.

    Science.gov (United States)

    Guerrero, P; Etxabide, A; Leceta, I; Peñalba, M; de la Caba, K

    2014-01-01

    The chemical structure of the agar obtained from Gelidium sesquipedale (Rhodophyta) has been determined by (13)C nuclear magnetic resonance ((13)C NMR) and Fourier transform infrared spectroscopy (FTIR). Agar (AG) films with different amounts of soy protein isolate (SPI) were prepared using a thermo-moulding method, and transparent and hydrophobic films were obtained and characterized. FTIR analysis provided a detailed description of the binding groups present in the films, such as carboxylic, hydroxyl and sulfonate groups, while the surface composition was examined using X-ray photoelectron spectroscopy (XPS). The changes observed by FTIR and XPS spectra suggested interactions between functional groups of agar and SPI. This is a novel approach to the characterization of agar-based films and provides knowledge about the compatibility of agar and soy protein for further investigation of the functional properties of biodegradable films based on these biopolymers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Preliminary Site Characterization Report, Rulsion Site, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  10. Naphtha interaction with bitumen and clays : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Afara, M.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation described a preliminary study conducted to characterize naphtha interactions with bitumen and clays. Coarse tailings, fluid-fine tailings, and froth treatment tailings are produced as a result of surface mine oil sands operations. Solvents are used to produce the bitumens, but the actual fraction of the solvent that evaporates and contributes to VOCs from tailing ponds is poorly understood. This study examined the interactions between the solvent, bitumen and mineral components in froth treatment tails. The study was conducted with aim of quantifying the VOC or solvent escaping from the froth treatment tailings. Samples containing bitumen, clay, a bitumen-clay mixture, or MFT were spiked with 3000 ppm of solvent. The amount of naphtha released was monitored by gas chromatography, mass spectrometry, and flame ionization detection of the evolved gases. The results were expressed as a percentage of the total hydrocarbon peak area of the sample versus a control. Results of the study showed that the naphtha interacted more strongly with the bitumen than with kaolinite and the clay minerals from the oil sands. Although initial solvent evaporation was reduced in the presence of bitumens and clays, long-term solvent releases will need to be quantified. tabs., figs.

  11. Preliminary assessment of risk of ozone impacts to maize (Zea mays) in Southern Africa

    CSIR Research Space (South Africa)

    Van Tienhoven, AM

    2006-03-01

    Full Text Available Surface ozone concentrations in southern Africa exceed air quality guidelines set to protect agricultural crops. This paper addresses a knowledge gap by performing a preliminary assessment of potential ozone impacts on vegetation in southern African...

  12. Surface Modification, Characterization and Photocatalytic Performance of Nano-Sized Titania Modified with Silver and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Neetu Divya

    2009-12-01

    Full Text Available In many textile industries dyes are used as coloring agents. Advanced oxidation processes are used for degrading or removing color from dye baths. Catalysts play a key role in these industries for the treatment of water. Solid catalysts are usually composed of metals that form supports onto the surface and create metal particles with high surface areas. TiO2 composites containing transition metal ions (silver and/or bentonite clay were prepared. Photocatalytic efficiencies have been investigated for the degradation of Orange G an azo dye. Various analytical techniques were used to characterize the surface properties of nano-sized titania modified using silver and/or bentonite clay. Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray diffraction (XRD and FTIR analyses showed that TiO2 (10 ± 2 nm and Ag (2 to 3 nm particles were supported on the surface of the bentonite clay and the size was in the range of 100 ± 2 nm. The modified catalysts P-25 TiO2/Bentonite/Ag and P-25 TiO2/Ag were found to be very active for the photocatalytic decomposition of Orange G. The percent decolorization in 60 min was 98% with both P-25 TiO2/Ag and P-25 TiO2/Bentonite/Ag modified catalysts. Whereas mineralization achieved in 9 hr were 68% and 71% with P-25 TiO2/Bentonite/Ag and P-25 TiO2/Ag catalyst respectively. © 2009 BCREC UNDIP. All rights reserved[Received: 30 October 2009, Revised: 20 November 2009, Accepted: 21 November 2009][How to Cite: N. Divya, A. Bansal, A. K. Jana. (2009. Surface Modification, Characterization and Photocatalytic Performance of Nano-Sized Titania Modified with Silver and Bentonite Clay. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 43-53.  doi:10.9767/bcrec.4.2.1249.43-53][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.2.1249.43-53 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/1249

  13. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua, E-mail: xuc0374@hotmail.com [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-05-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  14. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    International Nuclear Information System (INIS)

    Li, Peipei; Chen, Xinhua; Yang, Guangbin; Yu, Laigui; Zhang, Pingyu

    2014-01-01

    Graphical abstract: A lotus-leaf-like hierarchical structure was successfully created on Al foil by a facile three-step solution–immersion method. As-obtained etched-immersed Al/STA rough surface contains interconnected convex–concave micro-structure and uniformly distributed nano-sheets that endow the surface with excellent superhydrophobicity (WCA: 164.2°; WSA: below 5°). Besides, the as-prepared etched-immersed Al/STA superhydrophobic surface on Al foil exhibits good friction-reducing ability and stable superhydrophobicity. - Highlights: • A stable superhydrophobic surface was created on aluminum foil by a facile three-step solution–immersion method. • A lotus-leaf-like hierarchical structure consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets has been constructed on the aluminum surface. • The superhydrophobic surfaces on aluminum substrate showing effective friction-reducing performance and self-cleaning ability. - Abstract: A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution–immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex–concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding

  15. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    images used for mapping the vegetation cover types and other land cover types in Egypt. The mapping ranges from 1 km resolution to 30 m resolution. The aim is to provide satellite image mapping with land surface characteristics relevant for roughness mapping.......Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  16. A dielectric matrix calculation of the surface-plasmon energy for the silicon (100) surface

    International Nuclear Information System (INIS)

    Forsyth, A.J.; Smith, A.E.; Josefsson, T.W.

    1996-01-01

    Full text: As an extension of previous work, we present preliminary calculations for the dielectric properties of the silicon (100) surface. In particular, the |q|→0 and |q|=2π/a(1,0,0) surface loss function, and corresponding surface plasmon energies have been calculated within a simple model for the silicon surface. The results have been obtained from the Adler and Wiser dielectric matrix (DM). The bandstructure used for the calculation was based on the highly successful empirical pseudopotential method of Cohen and Chelikovsky. We have used a 59 plane wave basis for the bandstructure, and have chosen a DM size of 59 x 59. Results are compared and contrasted with volume plasmon calculations, free electron calculations and experiment

  17. Preliminary studies of consolidation of wall paintings: synthesis and characterisation of nanolime

    Directory of Open Access Journals (Sweden)

    Penka I. Girginova

    2016-01-01

    Full Text Available In this publication, we report the synthesis and characterization of calcium and magnesium hydroxides nanoparticles for consolidation of mural paintings. Some preliminary results are discussed. This research is the initial part of our ongoing project which aims to develop new synthetic strategies towards novel and innovative materials for preservation and restoration of old renders.

  18. Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft

    Science.gov (United States)

    Hayes, J.; Pierson, W. J.; Cardone, V. J.

    1975-01-01

    The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.

  19. Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space

    OpenAIRE

    Önder, Mehmet

    2012-01-01

    In this study we give definitions and characterizations of transversal surfaces of timelike ruled surfaces. We study some special cases such as the striction curve is a geodesic, an asymptotic line or a line of curvature. Moreover, we obtain developable conditions for transversal surfaces of a timelike ruled surface.

  20. MR imaging of brain surface structures

    International Nuclear Information System (INIS)

    Katada, Kazuhiro; Anno, Hirofumi; Takesita, Gen; Koga, Sukehiko; Kanno, Tetuo; Sakakibara, Tatuo; Yamada, Kazuhiro; Suzuki, Hirokazu; Saito, Sigeki.

    1989-01-01

    An imaging technique that permits direct and non-invasive visualization of brain surface structures was proposed. This technique (Surface anatomy scanning, SAS) consists of long TE-long TR spin echo sequence, thick slice and surface coil. Initial clinical trials in 31 patients with various cerebral pathology showed excellent visualization of sulci, gyri and major cortical veins on the lateral surface of the brain together with cortical and subcortical lesions. Our preliminary results indicate that the SAS is an effective method for the diagnosis and localization of cortical and subcortical pathology, and the possible application of SAS to the surgical and the radiation therapy planning is sugessted. (author)

  1. Surface characterization of lignocellulosics for composite manufacture

    Science.gov (United States)

    Iyer, Ananth V.

    The objectives of this research were to form moisture resistant wheat strawboards, either by altering the straw surface characteristics or by changing the chemistry of the polymeric 4, 4' diphenylmethane diisocyanate (PMDI)-based matrix and interface. Part I compared the surface characteristics of wheat, barley, oat, rice, kenaf, hemp and softwood particles. All cereal straws had two surfaces: epidermis and brittle-pith unlike one heterogeneous type observed for bast fibers and softwood particles. The epidermis of cereal straws was not wet by water or aqueous binders, whereas the pith surface allowed the penetration of water, but was not readily wetted by aqueous binders. Between the different surface treatments evaluated for wheat straw in Part II, NaOH selectively peeled-off the epidermis and pith layers. The treated straw particles were formable into strawboards using aqueous phenol-formaldehyde, urea-formaldehyde, and duroplastic acrylic acid binders with good internal bond strength (IBS) and adequate water resistance. In Part III it was shown that, decreasing straw particle sizes and bleaching worsened the mechanical properties of strawboards, but the moisture absorption properties of bleached strawboards were lower than the unbleached ones. Layering of straw particles in strawboards did not seem to affect their mechanical or moisture absorption properties. Part IV showed that the pith surface of wheat straw was fractured on curing with PMDI, providing hollow microcrevices for water accumulation. Furthermore, the cured PMDI formed a network polyurea/polyuretonimine/polycarbodiimide/polyisocyanurate polymer on straw surfaces whose properties dictated the properties of strawboards. Among the different mono-, bi-, and tri-functional alcohols, amines and carboxylic acids evaluated in Part V as H-donor substitutes to moisture for reaction with PMDI on straw surfaces, ethylene glycol, resorcinol, glycerin and citric acid provided IBS values greater than the ANSI

  2. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    Science.gov (United States)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  3. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    Science.gov (United States)

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  4. Isolation and Characterization of Surface and Subsurface Bacteria in Seawater of Mantanani Island, Kota Belud, Sabah by Direct and Enrichment Techniques

    International Nuclear Information System (INIS)

    Benard, L D; Tuah, P M; Suadin, E G; Jamian, N

    2015-01-01

    The distribution of hydrocarbon-utilizing bacterial may vary between surface and subsurface of the seawater. One of the identified contributors is the Total Petroleum Hydrocarbon. The isolation and characterization of bacteria using Direct and Enrichment techniques helps in identifying dominant bacterial populations in seawater of Mantanani Island, Kota Belud, Sabah, potential of further investigation as hydrocarbon degrader. Crude oil (5% v/v) was added as the carbon source for bacteria in Enrichment technique. For surface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 2.60 × 10 7 CFU/mL and 3.84 × 10 6 CFU/mL respectively. Meanwhile, for subsurface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 5.21 × 10 6 CFU/mL and 8.99 × 10 7 CFU/mL respectively. Dominant species in surface seawater were characterized as Marinobacter hydrocarbonoclasticus-RMSF-C1 and RMSF-C2 and Alcanivorax borkumensis-RMSF-C3, RMSF-C4 and RMSF-C5. As for subsurface seawater, dominant species were characterized as Pseudomonas luteola-SSBR-W1, Burkholderia cepacia-SSBR-C1, Rhizobium radiobacter- SSBR-C3 and Leuconostoc-cremois -SSBR-C4. (paper)

  5. Advanced surface characterization of silver nanocluster segregation in Ag-TiCN bioactive coatings by RBS, GDOES, and ARXPS.

    Science.gov (United States)

    Escobar Galindo, R; Manninen, N K; Palacio, C; Carvalho, S

    2013-07-01

    Surface modification by means of wear protective and antibacterial coatings represents, nowadays, a crucial challenge in the biomaterials field in order to enhance the lifetime of bio-devices. It is possible to tailor the properties of the material by using an appropriate combination of high wear resistance (e.g., nitride or carbide coatings) and biocide agents (e.g., noble metals as silver) to fulfill its final application. This behavior is controlled at last by the outmost surface of the coating. Therefore, the analytical characterization of these new materials requires high-resolution analytical techniques able to provide information about surface and depth composition down to the nanometric level. Among these techniques are Rutherford backscattering spectrometry (RBS), glow discharge optical emission spectroscopy (GDOES), and angle resolved X-ray photoelectron spectroscopy (ARXPS). In this work, we present a comparative RBS-GDOES-ARXPS study of the surface characterization of Ag-TiCN coatings with Ag/Ti atomic ratios varying from 0 to 1.49, deposited at room temperature and 200 °C. RBS analysis allowed a precise quantification of the silver content along the coating with a non-uniform Ag depth distribution for the samples with higher Ag content. GDOES surface profiling revealed that the samples with higher Ag content as well as the samples deposited at 200 °C showed an ultrathin (1-10 nm) Ag-rich layer on the coating surface followed by a silver depletion zone (20-30 nm), being the thickness of both layers enhanced with Ag content and deposition temperature. ARXPS analysis confirmed these observations after applying general algorithm involving regularization in addition to singular value decomposition techniques to obtain the concentration depth profiles. Finally, ARXPS measurements were used to provide further information on the surface morphology of the samples obtaining an excellent agreement with SEM observations when a growth model of silver islands with

  6. Leachate characterization and assessment of surface and ...

    African Journals Online (AJOL)

    The environment can be impacted negatively by leachates from these dumpsites if not properly managed. This study aimed at assessing the characteristics of municipal solid waste leachate and its contamination potential on surface and groundwater. Leachate, groundwater and surface water samples were collected from ...

  7. Crystallization and preliminary X-ray crystallographic characterization of TrmFO, a folate-dependent tRNA methyltransferase from Thermotoga maritima

    Energy Technology Data Exchange (ETDEWEB)

    Cicmil, Nenad, E-mail: cicmil@uiuc.edu [Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2008-03-01

    T. maritima TrmFO was overexpressed, purified and crystallized. A diffraction data set was collected to a resolution of 2.6 Å. TrmFO, previously classified as GID, is a methyltransferase that catalyzes the formation of 5-methyluridine or ribothymidine (T) at position 54 in tRNA in some Gram-positive bacteria. To date, TrmFO is the only characterized tRNA methyltransferase that does not use S-adenosylmethionine as the methyl-group donor. Instead, the donor of the methyl group is N{sup 5},N{sup 10}-methylenetetrahydrofolate. The crystallization and preliminary X-ray crystallographic studies of TrmFO are reported here. The recombinant protein, cloned from Thermotoga maritima genomic DNA, was overproduced in Esherichia coli and crystallized in 25%(v/v) PEG 4000, 100 mM NaCl and sodium citrate buffer pH 5.0 at 291 K using the hanging-drop vapor-diffusion method. The plate-shaped crystals diffracted to 2.6 Å and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 79.94, b = 92.46, c = 127.20 Å.

  8. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    International Nuclear Information System (INIS)

    Nakamura, M.; Ogawa, H.; Tsunematsu, T.

    1990-01-01

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with 125 I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24 degrees C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind 125 I-MNSF. 125 I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF

  9. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    In this study, rail and highway routes which may be used for shipments of high-level nuclear waste to a proposed repository at Yucca Mountain, Nevada are characterized. This characterization facilitates three types of impact analysis: comparative study, limited worst-case assessment, and more sophisticated probabilistic risk assessment techniques. Data for relative and absolute impact measures are provided to support comparisons of routes based on selected characteristics. A worst-case scenario assessment is included to determine potentially critical and most likely places for accidents or incidents to occur. The assessment facilitated by the data in this study is limited because impact measures are restricted to the identification of potential areas or persons affected. No attempt is made to quantify the magnitude of these impacts. Most likely locations for accidents to occur are determined relative to other locations within the scope of this study. Independent factors and historical trends used to identify these likely locations are only proxies for accident probability

  10. Characterization of respirable mine dust and diesel particulate matter

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2015-11-01

    Full Text Available This paper presents the preliminary outcomes to develop and optimize methods to characterize DPM and respirable dust samples for the following: Crystalline compounds Common mineral analyses Particle size distribution Elemental Carbon (EC...

  11. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  12. Feature Detection, Characterization and Confirmation Methodology: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Apps, John; Doughty, Christine; Gwatney, Hope; Onishi, Celia Tiemi; Trautz, Robert; Tsang, Chin-Fu

    2007-03-01

    . Many of the technologies on the list were in fact used during the characterization of Yucca Mountain and elsewhere by LBNL personnel. The study also includes emerging technologies and identifies the need to develop better estimation of important parameters for repository siting. Notable emerging technologies include 3-D seismic and satellite-based remote sensing and wireless micro electro mechanical systems (MEMS) sensors. They enable cost-effective and ubiquitous monitoring to be applied for site characterization. We list and classify the types of uncertainties involved in site characterization. Uncertainties can exist in all aspects of site characterization: data, interpretation, conceptualization, and modeling. We use the Swedish program to exemplify such uncertainties. We also devote a chapter on geochemical issues regarding the interaction between groundwater and natural and engineered barrier materials. A recommendation has been made to take advantage of the recent advancement in geochemical modeling capabilities in natural systems. Although it is not of immediate relevance at the preliminary investigation stage, it serves as a good reminder that geochemical investigation efforts should not be overlooked at any stage in the repository program. We construct a synthetic preliminary-investigation site based on an extensive data set available from a geoscientific project in Japan, which we use as a 'real' site to evaluate uncertainties resulting from hydrogeological modeling and examine strategies for characterizing a new site. We plan various preliminary-investigation configurations and conduct preliminary numerical investigations at the synthetic site. We construct a model of the 'real' site for each PI configuration, make predictions of particle travel times, and compare against the 'real' data obtained from the 'real' model. We conclude that drilling as many as nine boreholes does not necessarily improve the understanding

  13. Feature Detection, Characterization and Confirmation Methodology: Final Report

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Apps, John; Doughty, Christine; Gwatney, Hope; Onishi, Celia Tiemi; Trautz, Robert; Tsang, Chin-Fu

    2007-01-01

    technologies on the list were in fact used during the characterization of Yucca Mountain and elsewhere by LBNL personnel. The study also includes emerging technologies and identifies the need to develop better estimation of important parameters for repository siting. Notable emerging technologies include 3-D seismic and satellite-based remote sensing and wireless micro electro mechanical systems (MEMS) sensors. They enable cost-effective and ubiquitous monitoring to be applied for site characterization. We list and classify the types of uncertainties involved in site characterization. Uncertainties can exist in all aspects of site characterization: data, interpretation, conceptualization, and modeling. We use the Swedish program to exemplify such uncertainties. We also devote a chapter on geochemical issues regarding the interaction between groundwater and natural and engineered barrier materials. A recommendation has been made to take advantage of the recent advancement in geochemical modeling capabilities in natural systems. Although it is not of immediate relevance at the preliminary investigation stage, it serves as a good reminder that geochemical investigation efforts should not be overlooked at any stage in the repository program. We construct a synthetic preliminary-investigation site based on an extensive data set available from a geoscientific project in Japan, which we use as a 'real' site to evaluate uncertainties resulting from hydrogeological modeling and examine strategies for characterizing a new site. We plan various preliminary-investigation configurations and conduct preliminary numerical investigations at the synthetic site. We construct a model of the 'real' site for each PI configuration, make predictions of particle travel times, and compare against the 'real' data obtained from the 'real' model. We conclude that drilling as many as nine boreholes does not necessarily improve the understanding of the site compared to drilling as few as three boreholes

  14. Surface, interface and thin film characterization of nano-materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Kobayashi, Keisuke

    2005-01-01

    From the results of studies in the nanotechnology support project of the Ministry of Education, Culture, Sports, Science and Technology of Japan, several investigations on the surface, interface and thin film characterization of nano-materials are described; (1) the MgB 2 thin film by X-ray diffraction, (2) the magnetism of the Pt thin film on a Co film by X-ray magnetic circular dichroism measurement, (3) the structure and physical properties of oxygen molecules absorbed in a micro hole of the cheleted polymer crystal by the direct observation in X-ray powder diffraction, and (4) the thin film gate insulator with a large dielectric constant, thermally treated HfO 2 /SiO 2 /Si, by X-ray photoelectron spectroscopy. (M.H.)

  15. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  16. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    Science.gov (United States)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  17. Fatigue crack growth from handling surface anomalies in a nickel based superalloy at high temperature

    Directory of Open Access Journals (Sweden)

    Gourdin Stéphane

    2014-01-01

    Full Text Available Aircraft engine manufacturers have to demonstrate that handling surface anomalies in sensitive areas of discs are not critical for in-service life of a component. Currently, the models used consider anomalies as long cracks propagating from the first cycle, which introduces a certain degree of conservatism when calculating the fatigue life of surface flaws. Preliminary studies have shown that the first stages of crack propagation from surface anomalies are responsible for the conservative results. Thus, the aim of the study is to characterize the crack propagation from typical surface anomalies and to establish a new crack growth model, which can account for the micro-propagation stage. To separate the effects of the geometry of the anomalies and the residual stress state after introduction of the surface flaws, two V-type anomalies are studied: scratches and dents. Different studies have shown that the residual stresses beneath the anomalies seem to control the fatigue life of samples exhibiting scratches and dents. In order to monitor the crack micro-propagation, a direct current potential drop technique, coupled with heat tints is used during fatigue tests at elevated temperature. Thermal treatments releasing the residual stresses are also used to decouple the effect of crack morphology and residual stresses.

  18. A preliminary neutron crystallographic study of thaumatin

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  19. Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques

    Directory of Open Access Journals (Sweden)

    Yeonhee Lee

    2013-05-01

    Full Text Available Time-of-flight secondary ion mass spectrometry (TOF-SIMS and X-ray photoelectron spectroscopy (XPS are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric.

  20. Characterization of Natural Dyes and Traditional Korean Silk Fabric by Surface Analytical Techniques

    Science.gov (United States)

    Lee, Jihye; Kang, Min Hwa; Lee, Kang-Bong; Lee, Yeonhee

    2013-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) are well established surface techniques that provide both elemental and organic information from several monolayers of a sample surface, while also allowing depth profiling or image mapping to be carried out. The static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric and biological materials. In this work, TOF-SIMS, XPS and Fourier Transform Infrared (FTIR) measurements were used to characterize commercial natural dyes and traditional silk fabric dyed with plant extracts dyes avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. Silk textiles dyed with plant extracts were then analyzed for chemical and functional group identification of their dye components and mordants. TOF-SIMS spectra for the dyed silk fabric showed element ions from metallic mordants, specific fragment ions and molecular ions from plant-extracted dyes. The results of TOF-SIMS, XPS and FTIR are very useful as a reference database for comparison with data about traditional Korean silk fabric and to provide an understanding of traditional dyeing materials. Therefore, this study shows that surface techniques are useful for micro-destructive analysis of plant-extracted dyes and Korean dyed silk fabric. PMID:28809257

  1. A waveless free surface flow past a submerged triangular obstacle in presence of surface tension

    Directory of Open Access Journals (Sweden)

    Hakima Sekhri

    2016-07-01

    Full Text Available We consider the Free surface flows passing a submerged triangular obstacle at the bottom of a channel. The problem is characterized by a nonlinear boundary condition on the surface of unknown configuration. The analytical exact solutions for these problems are not known. Following Dias and Vanden Broeck [6], we computed numerically the solutions via a series truncation method. These solutions depend on two parameters: the Weber number $\\alpha$ characterizing the strength of the surface tension and the angle $\\beta$ at the base characterizing the shape of the apex. Although free surface flows with surface tension admit capillary waves, it is found that solution exist only for values of the Weber number greater than $\\alpha_0$ for different configurations of the triangular obstacle.

  2. A preliminary assessment of the Titan planetary boundary layer

    Science.gov (United States)

    Allison, Michael

    1992-01-01

    Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.

  3. Initial characterization of the ATR [Advanced Test Reactor] Large Gamma Facility

    International Nuclear Information System (INIS)

    Schnitzler, B.G.; Rogers, J.W.

    1986-05-01

    Radiation fields in the ATR Large Gamma Facility test volume are characterized. The preliminary characterization efforts described in this report include total dose rate measurements in the facility, development of a simple methodology for calculating radiation fields from the ATR fuel element power histories, and a comparison of the measured and calculated values

  4. Preliminary Hazard Classification for the Remediation of the 100-B/C Area Remaining Sites (Confirmatory Sampling Effort)

    International Nuclear Information System (INIS)

    Routt, T.M.

    2000-01-01

    This document provides the preliminary hazard classification for the sampling and characterization activities to be conducted at the 100-B/C confirmatory sampling effort sites in support of remedial design and eventual remediation of these sites

  5. Surface characterization for high purity Fe-Cr alloys

    International Nuclear Information System (INIS)

    Iwai, H.; Oiwa, R.; Takaki, S.; Abiko, K.

    1995-01-01

    Fe-50mass%Cr was prepared in a cold crucible furnace with induction heating, then refined by floating-zone melting (FZM). The chemistries on the surface before and after FZM were compared by XPS measurement. C and O were observed on top surfaces both before and after as a hydrocarbon, carbonyl group and carboxyl group which are adsorbed chemical components. The other impurities were observed on the surface in both cases; however, the number and level of impurities on the surface after FZM were much larger than those on the surface before FZM; these adhered to the surface during sample preparation for XPS measurement. It is concluded that sample preparation introduces contamination which affects the detection limit of chemical analytical instruments. Sn was only observed on the top surface after FZM. It was segregated Sn which was contained in chromium as a starting material. It must be eliminated before starting. From XPS depth profiling results, it was concluded that 0.2 nm thickness of carbon such as hydrocarbon and organic components are adsorbed on the 1 nm thickness of oxide layer. Below the oxide layer, a lack of Cr was observed down to a depth of 6 nm. (orig.)

  6. Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions

    Directory of Open Access Journals (Sweden)

    Jamal Rostami

    2015-06-01

    Full Text Available Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface. Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed.

  7. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Energy Technology Data Exchange (ETDEWEB)

    Razavizadeh, Mahmoud; Jamshidi, Masoud, E-mail: mjamshidi@iust.ac.ir

    2016-08-30

    Highlights: • In this research UV-irradiated PET fabric was chemically modified. • The fabric at first carboxylated under UV irradiation using glutaric anhydride, then it was grafted using isocyanate (i.e. MDI). • The surface of the fabric was characterized before and after each treating satge. • The composite samples were prepared and tested for T-Peel test. The surfaces of the fabrics were surface characterized to understand. - Abstract: Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  8. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    International Nuclear Information System (INIS)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-01-01

    Highlights: • In this research UV-irradiated PET fabric was chemically modified. • The fabric at first carboxylated under UV irradiation using glutaric anhydride, then it was grafted using isocyanate (i.e. MDI). • The surface of the fabric was characterized before and after each treating satge. • The composite samples were prepared and tested for T-Peel test. The surfaces of the fabrics were surface characterized to understand. - Abstract: Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  9. Materials characterization techniques

    National Research Council Canada - National Science Library

    Zhang, Sam; Li, L; Kumar, Ashok

    2009-01-01

    "With an emphasis on practical applications and real-world case studies, Materials Characterization Techniques presents the principles of widely used advanced surface and structural characterization...

  10. Preliminary assessment report for Kent National Guard Facility (Installation 53065), 24410 Military Road, Kent, Washington

    International Nuclear Information System (INIS)

    Ketels, P.; Aggarwal, P.; Rose, C.M.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Washington Army National Guard property in Kent, Washington. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment

  11. Characterization and surface treatment effects on topography of a glass-infiltrated alumina/zirconia-reinforced ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Donassollo, Tiago A; Demarco, Flávio F; Barrett, Allyson A; Mecholsky, John J

    2007-06-01

    Characterize the microstructure, composition and some physical properties of a glass-infiltrated alumina/zirconia-reinforced ceramic (IZ) and the effect of surface treatment on topography. IZ ceramic specimens were fabricated according to ISO6872 instructions and polished through 1 microm alumina abrasive. Quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), backscattered imaging (BSI), electron dispersive spectroscopy (EDS) and stereology. The elastic modulus (E) and Poisson's ratio (nu) were determined using ultrasonic waves, and the density (rho) using a helium pycnometer. The following ceramic surface treatments were used: AP-as-polished; HF-etching with 9.5% hydrofluoric acid for 90 s; SB-sandblasting with 25 microm aluminum oxide particles for 15s and SC-blasting with 30 microm aluminum oxide particles modified by silica (silica coating) for 15s. An optical profilometer was used to examine the surface roughness (Ra) and SEM-EDS were used to measure the amount of silica after all treatments. The IZ mean property values were as follows: rho=4.45+/-0.01 g/cm(3); nu=0.26 and E=245 GPa. Mean Ra values were similar for AP- and HF-treated IZ but significantly increased after either SC or SB treatment (psurface concentration of Si(K) increased 76% after SC treatment. HF is an inadequate surface treatment for bonding resins to IZ ceramic. Treating IZ with either SB or SC produced greater Ra values and the SC showed a significant increase in the surface concentration of silica, which may enhance bonding to resin via silane coupling.

  12. Biologic impact on the coastal belt of the province of Venice (Italy, Northern Adriatic Sea): preliminary analysis for the characterization of the bathing water profile.

    Science.gov (United States)

    Ostoich, Marco; Aimo, Emilia; Fassina, Daniel; Barbaro, Jvan; Vazzoler, Marina; Soccorso, Corrado; Rossi, Chiara

    2011-02-01

    This paper presents a preliminary study of the water profile with reference to microbiological parameters, required by Directive 2006/07/EC (European Community 2006) concerning the management of bathing water quality, in the coastal belt of the Province of Venice (Italy, Northern Adriatic Sea). A historical database has been implemented with monitoring data for the period 2000-2006 (data on rivers, bathing and marine coastal waters and on the characterization of Wastewater Treatment Plant (WWTP) discharges) from the institutional activity of Veneto Regional Environmental Prevention and Protection Agency (ARPAV). An integrated areal analysis for the microbiological investigation of homogeneous stretches along the coast of the Province of Venice was performed for a preliminary characterization of the bathing water profile considering water quality status and existing pressure sources. ARPAV is the institutional body responsible for environmental monitoring and control activities. Data were produced from monitoring and controls made available by the Regional Environmental Informative System and extracted and elaborated for the period of interest (2000-2006). Sampling and analysis of microbiological parameters were executed following the official Italian methods in accordance with international procedures (APHA et al. 1998). For the purpose of this study, the coast was divided into eight stretches, which were considered to be homogeneous according to their physical and geographical characteristics. An ANOVA statistical assessment has been performed on stretches I, V and VIII. From the integrated areal analysis of microbiological parameters in the homogeneous stretches along the coast of all the investigated matrices, high mean levels of faecal contamination were found in some cases. The most critical situation amongst the stretches evaluated is to be found in stretch VIII-Ca' Roman, Sottomarina and Isola Verde shores (Southern part of the Province). These results can

  13. Physical and chemical characterization of surfaces of nitrogen implanted steels

    International Nuclear Information System (INIS)

    Moncoffre, N.

    1986-01-01

    The studied steels are of industrial type (42CD4, 100C6, Z200C13). Very often, the low carbon steel XCO6 has been used as a reference material. The aim of the research is to understand and to explain the mechanisms of wear resistance to improvement. A good characterization of the implanted layer is thus necessary. It implies to establish the distribution profiles of the implanted ions to identify the chemical and structural state of the phases created during implantation as a function of various implantation parameters (dose, temperature). Temperature is the particularly parameter. Its influence is put in evidence both during implantation and during annealings under vacuum. Nitrogen distribution profiles are performed thanks to the non destructive 15 N(p,αγ) 12 C nuclear reaction. The chemical state of the Fe-N phases formed by implantation is determined using first Electron Conversion Moessbauer Spectroscopy and secondly, as a complement, using grazing angle X ray diffraction. The detected compounds are ε-nitrides, ε-carbonitrides, (N) - martensite and α-Fe 16 N 2 whose evolution is carefully followed versus temperature. The diffraction technique reveals a texture of the implanted layer. This preferentiel orientation is found to be temperature dependent but dose independent. The carbon presence at the surface is studied as a function of implantation conditions (vacuum, temperature, dose). Carbon profiling is obtained using α backscattering ( 12 C(α,α') reaction at 5,7 MeV). Thus is achieved a complete characterization of the implanted zone whose evolution as a function of implantation parameters (especially temperature) is correlated with tribological results [fr

  14. ‘Action’ on structured freeform surfaces

    Science.gov (United States)

    Whitehouse, David J.

    2018-06-01

    Surfaces are becoming more complex partly due to the more complicated function required of them and partly due to the introduction of different manufacturing processes. These have thrown into relief the need to consider new ways of measuring and characterizing such surfaces and more importantly to make such characterization more relevant by tying together the geometry and the function more closely. The surfaces which have freeform and structure have been chosen to be a carrier for this investigation because so far there has been little work carried out in this neglected but potentially important area. This necessitates the development of a strategy for their characterization. In this article, some ways have been found of identifying possible strategies for tackling this characterization problem but also linking this characterization to performance and manufacture, based in part on the principles of least action and on the way that nature has evolved to solve the marriage of flexible freeform geometry, structure and function. Recommendations are made for the most suitable surface parameter to use which satisfies the requirement for characterizing structured freeform surfaces as well as utilizing ‘Action’ to predict functionality.

  15. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    Science.gov (United States)

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under

  16. Surface characterization of superconductive Nd1Ba2Cu3Oy thin films using scanning probe microscopes

    International Nuclear Information System (INIS)

    Ting, W.; Badaye, M.; Itti, R.; Morishita, T.; Koshizuka, N.; Tanaka, S.

    1996-01-01

    Recently, superconductive Nd 1 Ba 2 Cu 3 O y (Nd123) thin films with high superconducting transition temperature (T c ) have been successfully fabricated at the authors institute employing the standard laser ablation method. In this paper, they report parts of the results of surface characterization of the Nd123 thin films using an ultrahigh vacuum scanning tunneling microscope/spectroscopy (UHV-STM/STS) and an atomic force microscope (AFM) system operated in air. Clear spiral pattern is observed on the surfaces of Nd123 thin films by STM and AFM, suggesting that films are formed by two-dimensional island growth mode at the final growing stage. Contour plots of the spirals show that the step heights of the spirals are not always the integer or half integer numbers of the c-axis parameter of the structure. This implies that the surface natural termination layer of the films may not be unique. Surface atomic images of the as-prepared Nd123 thin films are obtained employing both STM and AFM. STS measurements show that most of the surfaces are semiconductive, or sometimes even metallic. The results of STS measurements together with the fact that they are able to see the surface atomic images using scanning probe microscopes suggest that exposure to air does not cause serious degradation to the as-prepared surfaces of Nd123 thin films

  17. Morphological, Chemical Surface, and Diffusive Transport Characterizations of a Nanoporous Alumina Membrane

    Directory of Open Access Journals (Sweden)

    María I. Vázquez

    2015-12-01

    Full Text Available Synthesis of a nanoporous alumina membrane (NPAM by the two-step anodization method and its morphological and chemical surface characterization by analyzing Scanning Electron Microscopy (SEM micrographs and X-Ray Photoelectron Spectroscopy (XPS spectra is reported. Influence of electrical and diffusive effects on the NaCl transport across the membrane nanopores is determined from salt diffusion measurements performed with a wide range of NaCl concentrations, which allows the estimation of characteristic electrochemical membrane parameters such as the NaCl diffusion coefficient and the concentration of fixed charges in the membrane, by using an appropriated model and the membrane geometrical parameters (porosity and pore length. These results indicate a reduction of ~70% in the value of the NaCl diffusion coefficient through the membrane pores with respect to solution. The transport number of ions in the membrane pores (Na+ and Cl−, respectively were determined from concentration potential measurements, and the effect of concentration-polarization at the membrane surfaces was also considered by comparing concentration potential values obtained with stirred solutions (550 rpm and without stirring. From both kinds of results, a value higher than 0.05 M NaCl for the feed solution seems to be necessary to neglect the contribution of electrical interactions in the diffusive transport.

  18. Site characterization report for the basalt waste isolation project. Volume III

    International Nuclear Information System (INIS)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 3 contains chapters 13 through 19: site issues and plans; geoengineering and repository design issues and plans; waste package and site geochemistry issues and plans; performance-assessment issues and plans; site characterization program; quality assurance; and identification of alternate sites

  19. Preliminary studies of epoxidized palm oil as sizing chemical for carbon fibers

    International Nuclear Information System (INIS)

    Salleh, S.N.M.; Ubaidillah, E.A.E.; Abidin, M.F.Z.

    2010-01-01

    Epoxidized palm oil is derived from palm oil through chemical reaction with peracetic acid. Preliminary studies to coat carbon fibers have shown promising result towards applying natural product in carbon fibre composites. Mechanical studies of sized carbon fibers with epoxidized palm oil showed significant increase in tensile and interfacial shear strength. Surface morphology of sized or coated carbon fibers with epoxidized palm oil reveals clear increase in root means square-roughness (RMS). This indicates the change of the surface topography due to sized or coated carbon fibers with epoxidized palm oil. (author)

  20. Characterization of the Eimeria maxima sporozoite surface protein IMP1.

    Science.gov (United States)

    Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P

    2015-07-30

    The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection. Published by Elsevier B.V.