A Preliminary Study on 1D Numerical Experiment of Water Debris Flow in Gully
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In order to improve and enhance the numerical modeling methods and its application on debris flow problems,a preliminary study has been proposed in accordance with the corrected water-sediment numerical model on the premise of revised resistance and sediment capacity equations.Firstly,an overview the recent re- search achievements on numerical simulation of debris flow has been conducted,the results shown that a gener- al numerical model for debris flow can not be existed at all because the complex rheol...
Bozzoli, F.; Cattani, L.; Rainieri, S.; Zachár, A.
2015-11-01
In the last years, the attention of heat transfer equipments manufacturers turned toward helically coiled-tube heat exchangers, especially with regards to applications for viscous and/or particulate products. The recent progress achieved in numerical simulation motivated many research groups to develop numerical models for this kind of apparatuses. These models, intended both to improve the knowledge of the fundamental heat transfer mechanisms in curved geometries and to support the industrial design of this kind of apparatuses, are usually validated throughout the comparison with either theoretical or experimental evidences by considering average heat transfer performances. However, this approach doesn't guarantee that the validated models are able to reproduce local effects in details, which are so important in this kind of non-standard geometries. In the present paper a numerical model of convective heat transfer in coiled tubes for laminar flow regime was formulated and discussed. Its goodness was checked throughout the comparison with the latest experimental outcomes of Bozzoli et al. [1] in terms of convective heat flux distribution along the boundary of the duct, by ensuring the effectiveness of the model also in the description of local behaviours. Although the present paper reports only preliminary results of this simulation/validation process, it could be of interest for the research community because it proposes a novel approach that could be useful to validate many numerical models for nonstandard geometries.
Preliminary results from a numerical study on the appendix gap losses in a Stirling engine
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove
2005-01-01
been included directly into a one dimensional Stirling engine model. Practical aspects of the method, such as handling the moving wall in the gap while achieving an energy conserving model formulation and handling discontinuous derivatives in the equations, are discussed. A study on the convergence......Analytical expressions for the losses in the displacer clearance gap, a.k.a. the appendix gap, have been refined during the last decades. But most real life Stirling engines violate the assumptions behind these expressions and hence the expressions may not be applicable. In this study the gap has...... of the spatial discretisation in the gap showed that a relatively coarse discretisation was adequate for studying the appendix gap losses and showed significant variations in the axial wall temperature gradients along the gap. A parameter study on the size of the displacer clearance gap was performed...
Preliminary results from a numerical study on the appendix gap losses in a Stirling engine
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove
2005-01-01
with different algorithms for computing the heat transfer in the gap. The results showed higher losses for small gap sizes but smaller losses for large gap sizes when compared to analytical expressions for the appendix gap losses. The appendix gap losses were found to influence both the heat intake and work......Analytical expressions for the losses in the displacer clearance gap, a.k.a. the appendix gap, have been refined during the last decades. But most real life Stirling engines violate the assumptions behind these expressions and hence the expressions may not be applicable. In this study the gap has...... been included directly into a one dimensional Stirling engine model. Practical aspects of the method, such as handling the moving wall in the gap while achieving an energy conserving model formulation and handling discontinuous derivatives in the equations, are discussed. A study on the convergence...
Numerical simulation of bubble transport in a bifurcating microchannel: a preliminary study.
Poornima, J; Vengadesan, S
2012-08-01
In this paper, we present the computational fluid dynamics (CFD) simulations of bubble transport in a first generation bifurcating microchannel. In the present study, the human arteriole is modeled as a two-dimensional (2D) rectangular bifurcating microchannel. The microchannel is filled with blood and a single perfluorocarbon (PFC) bubble is introduced in the parent channel. The simulations are carried out to identify the lodging and dislodging pressures for two nondimensional bubble sizes, L(d) (ratio of the dimensional bubble length to the parent tube diameter), that is for L(d) = 1 and L(d) = 2. Subsequently, the bubble transport and splitting behavior due to the presence of symmetry and asymmetry in the daughter channels of the microchannel is studied for these bubble sizes. The splitting behavior of the bubble under the effect of gravity is also assessed and reported here. For the symmetric bifurcation model, the splitting ratio (SR) (ratio of bubble volume in bottom daughter channel to bubble volume in top daughter channel), of the bubble was found to be 1. For the asymmetric model, the splitting ratio was found to be less than 1. The loss in the bubble volume in the asymmetric model was attributed to surface tension effects and the resistance offered by the flow, which led to the bubble sticking and sliding along the walls of the channel. With the increase in roll angle, Φ (angle which the plane makes with the horizontal to study the effects of gravity), there was a decline in the splitting ratio.
Preliminary 2D numerical modeling of common granular problems
Wyser, Emmanuel; Jaboyedoff, Michel
2017-04-01
Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical
Chueh, Chih-Che; Wang, Pao K.; Hashino, Tempei
2017-01-01
The flow fields and dynamic motions of conical graupel of diameters 0.5-5 mm falling in air of 800 h Pa and - 8 °C are studied by solving the transient Navier-Stokes equations numerically for flow past the conical graupel and the body dynamics equations representing the 6-degrees-of-freedom motion that determines the position and orientation of the graupel in response to the hydrodynamic force of the flow fields. The shape of conical graupel made through a simple but practical existing mathematical equation allows us to have an uneven mass distribution, which is generally believed to have great influence on ice particles' orientations while falling when inertial force becomes increasingly dominant over other effects. The simulated motions include vertical fall, lateral translation, sailing, rotation and pendulum swing. The computed flow fields are characterized in terms of streamtrace patterns as well as the vorticity magnitude fields, and the corresponding motions of the conical graupel is physically featured by looking upon the graupel surface distributions of pressure coefficient, torques contributed by both pressure as well as viscous effects. Tumbling doesn't occur when an initial orientation of the graupel is either 20° or 160° about Y axis, and the torque contributed by the pressure effect is dominant over that contributed by the viscous effect.
Sun, Yuchun; Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Wang, Yong
2015-07-01
A three-axis numerically controlled picosecond laser was used to ablate dentin to investigate the quantitative relationships among the number of additive pulse layers in two-dimensional scans starting from the focal plane, step size along the normal of the focal plane (focal plane normal), and ablation depth error. A method to control the ablation depth error, suitable to control stepping along the focal plane normal, was preliminarily established. Twenty-four freshly removed mandibular first molars were cut transversely along the long axis of the crown and prepared as 48 tooth sample slices with approximately flat surfaces. Forty-two slices were used in the first section. The picosecond laser was 1,064 nm in wavelength, 3 W in power, and 10 kHz in repetition frequency. For a varying number (n = 5-70) of focal plane additive pulse layers (14 groups, three repetitions each), two-dimensional scanning and ablation were performed on the dentin regions of the tooth sample slices, which were fixed on the focal plane. The ablation depth, d, was measured, and the quantitative function between n and d was established. Six slices were used in the second section. The function was used to calculate and set the timing of stepwise increments, and the single-step size along the focal plane normal was d micrometer after ablation of n layers (n = 5-50; 10 groups, six repetitions each). Each sample underwent three-dimensional scanning and ablation to produce 2 × 2-mm square cavities. The difference, e, between the measured cavity depth and theoretical value was calculated, along with the difference, e 1, between the measured average ablation depth of a single-step along the focal plane normal and theoretical value. Values of n and d corresponding to the minimum values of e and e 1, respectively, were obtained. In two-dimensional ablation, d was largest (720.61 μm) when n = 65 and smallest when n = 5 (45.00 μm). Linear regression yielded the quantitative
Institute of Scientific and Technical Information of China (English)
ZHAO Xiang; HUANG KaMa; YAN LiPing; YAO Yuan
2009-01-01
The nonlinear process of microwave heating chemical reaction is studied by means of numerical simulation. Especially, the variation of temperature in terms of space and time, as well as the hotspot and thermal runaway phenomena are discussed. Suppose the heated object is a cylinder and the inci-dent electromagnetic (EM) wave is plane wave, the problem turns out to be a coupling calculation of 2D multi-physical fields. The integral equation of EM field is solved using the method of moment (MoM) and the thermal conduction equation is solved using a semi-analysis method. Moreover, a method to determine the equivalent complex permittivity of reactant under the heating is presented in order to perform the calculation. The numerical results for water and a dummy chemical reaction (A) show that the hotspot is a ubiquitous phenomenon in microwave heating process. When the radius of the heated object is small, the highest temperature occurs somewhere inside the object due to the concentration of the EM wave. While the radius increases to a certain degree, the highest temperature occurs some-where close to the surface due to the skin effect, and the whole high temperature area shows cres-cant-shaped. That is in accordance with basic physical principles, if the radius is kept the same in the heating process, the hotspot position of water does not change, while that of reaction A with several radius values varies. For either water or A, the thermal runaway phenomenon in which small difference of radius results in large difference of highest temperature, occurs easily when the radius is small. On the contrary, it is not evident when the radius is large. Moreover, it is notable that the highest tern-perature in water shows oscillating decreasing trend with the increase of radius, but in reaction A al-most decreases monotonously. Further study should be performed to determine if this difference is only an occasional occurrence.
Energy Technology Data Exchange (ETDEWEB)
Yamada, T.
1978-01-01
Cooling ponds receive large amounts of waste heat from industrial sources and release the heat to the atmosphere. These large area sources of warm and moist air may have significant inadvertent effects. This paper is a preliminary step in the development of a method for estimating the perturbations in the atmosphere produced by a cooling pond. A three-dimensional numerical model based on turbulence second-moment closure equations and Gaussian cloud relations has been developed. A simplified version of the model, in which only turbulent energy and length-scale equations are solved prognostically, is used. Numerical simulations are conducted using as boundary conditions the data from a cooling pond study conducted in northern Illinois during the winter of 1976-1977. Preliminary analyses of these simulations indicate that formation of clouds over a cooling pond is sensitive to the moisture content in the ambient atmosphere.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The nonlinear process of microwave heating chemical reaction is studied by means of numerical simulation. Especially,the variation of temperature in terms of space and time,as well as the hotspot and thermal runaway phenomena are discussed. Suppose the heated object is a cylinder and the incident electromagnetic(EM) wave is plane wave,the problem turns out to be a coupling calculation of 2D multi-physical fields. The integral equation of EM field is solved using the method of moment(MoM) and the thermal conduction equation is solved using a semi-analysis method. Moreover,a method to determine the equivalent complex permittivity of reactant under the heating is presented in order to perform the calculation. The numerical results for water and a dummy chemical reaction(A) show that the hotspot is a ubiquitous phenomenon in microwave heating process. When the radius of the heated object is small,the highest temperature occurs somewhere inside the object due to the concentration of the EM wave. While the radius increases to a certain degree,the highest temperature occurs somewhere close to the surface due to the skin effect,and the whole high temperature area shows crescent-shaped. That is in accordance with basic physical principles. If the radius is kept the same in the heating process,the hotspot position of water does not change,while that of reaction A with several radius values varies. For either water or A,the thermal runaway phenomenon in which small difference of radius results in large difference of highest temperature,occurs easily when the radius is small. On the contrary,it is not evident when the radius is large. Moreover,it is notable that the highest temperature in water shows oscillating decreasing trend with the increase of radius,but in reaction A almost decreases monotonously. Further study should be performed to determine if this difference is only an occasional occurrence.
Muhammadiyah: A Preliminary Study
Directory of Open Access Journals (Sweden)
Azyumardi Azra
2014-03-01
Full Text Available This article is a collection of Bibliography reviewer that discuss Muhammadiyah. The following are some of the bibliography were reviewed:A.R. Sukrianta dan Abdul Munir Malkhan, Perkembangan Pemikiran Muhammadiyah dari Masa ke Masa: Menyambut Muktamar ke-41, (Yogyakarta: Dua Dimensi, 1985.A.R. Sukriyanto dan Abdul Munir Mulkhan, Pergumulan Pemikiran dalam Muhammadiyah, (Yogyakarta: Sipress, 1990.Ruslan Abdul Gani. et.al., Cita dan Citra Muhammadiyah, (Jakarta: Pustaka Panjimas, 1985.M.T. Arifin, Gagasan Pembaharuan Muhammadiyah, (Jakarta: Pustaka Jaya, 1987.M.T. Arifin, Muhammadiyah: Potret yang Berubah, (Surakarta: Institut Gelanggang Pemikiran Filsafat Sosial Budaya dan Kependidikan, 1990.M. Yusron Asrofie, Kiyai Haji Ahmad Dahlan, Pemikiran dan Kepemimpinannya, (Yogyakarta: Yogyakarta Offset, 1983.Fathurrahman Djamil, Ijtihad Muhammadiyah dalam Masalah-masalah Fiqh Kontemporer, (Jakarta: Doctoral Dissertation the State Institute of Islamic Studies (IAIN, 1994.Yunahar Ilyas. et.al., Muhammadiyah dan NU: Reorientasi Wawasan Keislaman, (Yogyakarta: LPPI UMY, LKPSM NU, & PP al-Muhsin, 1993.Musthafa kamal, Chusnan Yusuf, dan Rosyad Sholeh, Muhammadiyah sebagai Gerakan Islam, (Yogyakarta: Penerbit Persatuan, 1976.M. Rusli Karim, Muhammadiyah dalam Kritik dan Komentar, (Jakarta: Rajawali, 1986.Arbiyah Lubis, Pemikiran Muhammadiyah dan Muhammad Abduh: Suatu Studi Perbandingan, (Jakarta: Doctoral Dissertation the State Institute of Islamic Studies (IAIN, 1989.Abdul Munir Mulkhan, Pemikiran K.H. Ahmad Dahlan dan Muhammadiyah dalam Perspektif Perubahan Sosial, (Jakarta: Bumi Aksara, 1990.Abdul Munir Mulkhan, Pak AR Menjawab 245 Permasalahan dalam Islam, (Yogyakarta: Sipress, 1990.M. Din Syamsuddin, Muhammadiyah Kini dan Esok, (Jakarta: Pustaka Panjimas, 1990.H.S. Prodjokusumo, Melestarikan Muhammadiyah, (Jakarta: Pimpinan Pusat Muhammadiyah, 1985.Yusuf Abdullah Puar, Perjuangan dan Pengabdian Muhammadiyah, (Jakarta: Pustaka Antara, 1989.Sahlan Rosidi
Maloney, J A; Derbenev, Ya S; Afanasev, A; Johnson, R P; Ankenbrandt, C A; Yoshikawa, C; Yonehara, K; Neuffer, D; Erdelyi, B
2014-01-01
Muon colliders have been proposed for the next generation of particle accelerators that study high-energy physics at the energy and intensity frontiers. In this paper we study a possible implementation of muon ionization cooling, Parametric-resonance Ionization Cooling (PIC), in the twin helix channel. The resonant cooling method of PIC offers the potential to reduce emittance beyond that achievable with ionization cooling with ordinary magnetic focusing. We examine optimization of a variety of parameters, study the nonlinear dynamics in the twin helix channel and consider possible methods of aberration correction.
Numerical Studies of Quantum Turbulence
Tsubota, Makoto; Fujimoto, Kazuya; Yui, Satoshi
2017-09-01
We review numerical studies of quantum turbulence. Quantum turbulence is currently one of the most important problems in low temperature physics and is actively studied for superfluid helium and atomic Bose-Einstein condensates. A key aspect of quantum turbulence is the dynamics of condensates and quantized vortices. The dynamics of quantized vortices in superfluid helium are described by the vortex filament model, while the dynamics of condensates are described by the Gross-Pitaevskii model. Both of these models are nonlinear, and the quantum turbulent states of interest are far from equilibrium. Hence, numerical studies have been indispensable for studying quantum turbulence. In fact, numerical studies have contributed to revealing the various problems of quantum turbulence. This article reviews the recent developments in numerical studies of quantum turbulence. We start with the motivation and the basics of quantum turbulence and invite readers to the frontier of this research. Though there are many important topics in the quantum turbulence of superfluid helium, this article focuses on inhomogeneous quantum turbulence in a channel, which has been motivated by recent visualization experiments. Atomic Bose-Einstein condensates are a modern issue in quantum turbulence, and this article reviews a variety of topics in the quantum turbulence of condensates, e.g., two-dimensional quantum turbulence, weak wave turbulence, turbulence in a spinor condensate, some of which have not been addressed in superfluid helium and paves the novel way for quantum turbulence researches. Finally, we discuss open problems.
Institute of Scientific and Technical Information of China (English)
邓志辉; 胡勐乾; 周斌; 陆远忠; 陶京玲; 马晓静; 姜辉; 李红
2011-01-01
With the advances in simulation techniques and understanding of geodynamic processes, numerical simulation is likely to play an increasingly important role in the research of seismic hazard analysis and earthquake prediction. In this paper,on the basis of the paper "A preliminary study on the application of numerical simulation methods to earthquake prediction research ( I ) " , the possible application of uncoordinated deformation analysis, Coulomb stress changes and earthquake probability modeling to the study of earthquake prediction is further discussed.When rock deforms from the elastic into the yield stage, the system is in a critical unstable state, the rock movement may deviate from the normal track and become complicated. The study results show that,before Wenan earthquake( Ms 5. 1 ) on July 4,2006, GPS velocity was well consistent with the numerical simulation speed in most areas of North China, while there were some differences in some regions, especially in the northeast of the North China Plain block, where big inconsistency in movement characteristics occurred, resulting perhaps from the preparation of Wenan earthquake.Research on earthquakes triggered by Coulomb stress change is a focus problem now. Numerical simulation may play an important role in the analysis of Coulomb stress changes. By constructing three-dimensional dynamic model, the effect of various factors on the value and distribution of Coulomb stress change can be simulated, and more realistic results can be obtained. By numerical simulation of Coulomb stress changes to seismic activities beneath Sichuan Zipingpu reservoirs, it is found that with the increase of reservoir water storage time,the pore pressure diffusion in the effective additional stress field will be gradually expanded to the range of more than 10km underground. The regional effective additional stress field and seismic activities show different characteristics in several typical regions.The United States Southern
Alaska gold rush trails study: Preliminary draft
US Fish and Wildlife Service, Department of the Interior — Preliminary study draft, with maps, of seven gold rush trails in Alaska, to determine suitability for inclusion in the National Scenic Trails system and their...
Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results
Energy Technology Data Exchange (ETDEWEB)
Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young
2007-12-15
A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.
Thermal energy storage in aquifiers: preliminary information
Energy Technology Data Exchange (ETDEWEB)
Allen, R.D.
1979-12-01
Topics discussed include: conceptual designs; numerical modelling; field experiments; relevant technical information; feasibility studies; preliminary aquifer selection considerations; and preliminary design and operating considerations. (TFD)
A numerical study of planar discharge motion
Directory of Open Access Journals (Sweden)
Benkhaldoun F.
2014-06-01
Full Text Available Presented paper describes a numerical study of discharge plasma motion. This non-stationary phenomenon with steep gradients and sharp peaks in unknowns is described as a coupled problem of convection-diffusion equation with source term for electron, ion densities and Poisson’s equation for electric potential. The numerical method is 2nd order of accuracy in space and time and it uses dynamical adaptation of unstructured triangular mesh. Results of numerical studies included size of computational domain, type of boundary conditions and numerical convergence test are presented.
Preliminary Study on Airlift Membran—Bioreactor
Institute of Scientific and Technical Information of China (English)
XUNong; XINGWeihong; 等
2002-01-01
A new type of membrane bioreactor named “airlift membrane-bioreactor”is discussed.For municipal wastewater reclamation,the preliminary study on airlift membrane-bioreactor shows its good performance such as high flux and lower energy consumption.The airlift membrane-bioreactor is potentially applicable in bioengineering and environmental protection fields.
Numerical study of one swirling flame
DEFF Research Database (Denmark)
Yang, Yang; Kær, Søren Knudsen; Yin, Chungen
This paper presents numerical study of one of Sydney swirl flames. Good agreements gained between numerical results and the experimental data. Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods show different flow patterns in isothermal and reacting case. The influence...
Spiral 2: preliminary design study
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-11-15
The scientific council of GANIL asked to perform a comparative study on the production methods based on gamma induced fission and rapid-neutron induced fission concerning the nature and the intensity of the neutron-rich products. The production rate expected should be around 10{sup 13} fissions per second. The study should include the implantation and the costs of the concerned accelerators. The scientific committee recommended also to study the possibility to re-inject the radioactive beams of SPIRAL-II in the cyclotrons available at GANIL in order to give access to an energy range from 1.7 to 100 MeV/nucleon. For that purpose, some study groups have been formed to evaluate the possibility of such a project in the different components: physics case, target-ion sources, drivers, post-acceleration and general infrastructure. The organization of the project study is given at the end of this report. The following report presents an overview of the study. Particularly the total costs have been assessed according to 3 options for the driver: 38.0*10{sup 6} euros for a 40 MeV deuteron linac, 18.7*10{sup 6} euros for a 45 MeV electron linac, and 29.1*10{sup 6} euros for a 80 MeV deuteron cyclotron.
Institutional Repositories in India: A preliminary study
2011-01-01
This preliminary study investigates various aspects of institutional repositories (IR’s) developed in India. The present study has identified the existence of 16 functional IRs some of which were not registered in any of the directories such as ROAR, Open DOAR. The study explores the timeline involved in planning, pilot testing, to system implementation of IR, exploratory activities conducted before implementing IR, its anticipated benefits.
Worker Motivation Study: Preliminary Analysis.
Fulton, Margaret A.
Since the Hawthorne Studies gave birth to the human relations approach to management, employee motivation, defined as an intervening variable(s) that accounts for factors within an individual that arouse, maintain, and channel behavior toward a goal, has been of much interest. An attempt was made to replicate the factor structure of the Wherry and…
Institute of Scientific and Technical Information of China (English)
郝晓峰; 刘文金; 李贤军; 吕建雄; 孙德林; 陈新义
2014-01-01
Numerical simulation of heat transfer mechanism during Catalpa ovata wood steam explosion pretreatment was studied by taking into account the effects of internal moisture, moist air and solid wood frame materials on heat transfer. One-dimensional heat transfer mathematical model was established based on Fourier law, the numerical calculation program for this model was compiled based on Finite Difference Scheme and Formula Translator Fortran, and the accuracy of this model was validated by the experiments. The results show that, this model can more accurately reflect the Catalpa ovate wood steam explosion process, and quantitively analyze the variation of temperature and pressure with time in tested wood.%针对梓木蒸汽爆破过程中传热机理的数值模拟进行研究。考虑木材内部水分、湿空气与固相骨架物质的对传热的影响，基于傅里叶导热定律，建立一维梓木爆破过程中传热数学模型，利用有限差分数学思想结合Fortran语言编写该模型数值计算程序，并通过实验验证了模型的准确性。结果表明该模型可以较为准确的反应梓木蒸汽爆破过程中的加热过程，能够定量分析板材内的温度、压力随时间变化的规律。
preliminary study of American legal culture
Institute of Scientific and Technical Information of China (English)
周杨
2016-01-01
This thesis is a preliminary study of American legal culture. Nowadays more and more scholars see the importance of legal culture and do studies on it. The author selects a number of American legal TV plays and movies; analyzes their topics, main characters, and plots; then finds out why United States adopt the legal system; what kind of legal culture it has; and how the legal culture is reflected in those movies and TV plays. The author hopes this thesis can work not only as an insight into the American legal culture, but also a source of reference for china to improve its legal system.
Numerical study of fractional nonlinear Schrodinger equations
Klein, Christian
2014-10-08
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.
Study of Cardiac Defibrillation Through Numerical Simulations
Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.
Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.
Numerical Study of Planar GPR Antenna Measurements
DEFF Research Database (Denmark)
Meincke, Peter; Hansen, Thorkild
2004-01-01
The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...
Numerical Study of Planar GPR Antenna Measurements
DEFF Research Database (Denmark)
Meincke, Peter; Hansen, Thorkild
2004-01-01
The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...
Numerical Study of Phase Transition in Thermoviscoelasticity
Institute of Scientific and Technical Information of China (English)
ShaoqingTANG
1997-01-01
We study the spatially periodic problem of thermoviscoelasticity with nonmonotone structure relations.By pseudo-spectral method.we demosnstrate numerically phase transitions for certain symmetric initial data.Without symmetry,the simulations show that a translation occurs for the phase boundary.
Results of preliminary Microwave Multi-Applications Payload (MMAP) study
1975-01-01
A preliminary feasibility study of the microwave multi-applications payload (MMAP) system for the Spacelab has been carried out. The initial objectives of this study have been to determine the minimum equipment requirements of the MMAP and the feasibility of placing the numerous large aperture antennas in the Spacelab. The study was begun by reviewing the experimental objectives and techniques and determining areas of commonality. Emphasis was given to the determination of common RF equipment requirements. These requirementers were considered after agreement among the experiments had been reached on limiting the number of frequencies to be used in the system. This was done so that the number of antennas, transmitters, and receivers could be minimized. The electronics system block diagram and the antenna configurations were considered in some details. It was concluded that the MMAP is feasible and can be an economical method of achieving a large number of experimental goals.
A preliminary neutron crystallographic study of thaumatin
Energy Technology Data Exchange (ETDEWEB)
Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)
2008-05-01
Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.
Preliminary study of radium-contaminated soils
Energy Technology Data Exchange (ETDEWEB)
Healy, J.W.; Rodgers, J.C.
1978-10-01
A preliminary study was made of the potential radiation exposures to people from radium-226 contamination in the soil in order to provide guidance on limits to be applied in decontaminating land. Pathways included were inhalation of radium from resuspension; ingestion of radium with foods; external gamma radiation from radium daughters; inhalation of radon and daughter, both in the open air and in houses; and the intake of /sup 210/Pb and /sup 210/Po from both inhalation and ingestion. The depth of the contaminated layer is of importance for external exposure and especially for radon emanation. The most limiting pathway was found to be emanation of the radon into buildings with limiting values comparable to those found naturally in many areas.
Numerical Study of Electric Field Enhanced Combustion
Han, Jie
2016-12-26
Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions
Preliminary design and parametric study of 1400 m partially earth-anchored cable-stayed bridge
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The preliminary design and parametric study of 1400 m partially earth-anchored cable-stayed bridge are described. Static per-formance of this new type of bridge is discussed. Compared with fully self-anchored cable-stayed bridge, its advantages in fin-ished state are summarized. Based on numerical calculation, effects of several structural parameters on static performance are presented.
Impromptu Speaking and Interpretation Studies: A Preliminary Study
Heinz, Michael
2013-01-01
The purpose of this preliminary study was to look at forensics-based competition events and determine what, if any, impact they could have on the language learning and public speaking skills of interpreters in training. This paper details the nature of the impromptu and extemporaneous speaking events in forensics competitions and introduces a…
Impromptu Speaking and Interpretation Studies: A Preliminary Study
Heinz, Michael
2013-01-01
The purpose of this preliminary study was to look at forensics-based competition events and determine what, if any, impact they could have on the language learning and public speaking skills of interpreters in training. This paper details the nature of the impromptu and extemporaneous speaking events in forensics competitions and introduces a…
Numerical Study of Tip Vortex Flows
Dacles-Mariani, Jennifer; Hafez, Mohamed
1998-01-01
This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.
Preliminary numerical investigation of bandwidth effects on CBET using the LPSE-CBET code
Bates, Jason; Myatt, Jason; Shaw, John; Weaver, James; Obenschain, Keith; Lehmberg, Robert; Obenschain, Steve
2016-10-01
Cross beam energy transfer (CBET) is a significant energy-loss mechanism for direct-drive implosions on the OMEGA laser facility. Recently, a working group that includes participants from the Laboratory for Laser Energetics (LLE) at the University of Rochester and the U.S. Naval Research Laboratory (NRL) was formed to investigate strategies for ameliorating the deleterious effects of CBET. As part of this collaboration, the wave-based code LPSE-CBET developed at LLE has been made available to researchers at NRL and is being used to study the feasibility of suppressing CBET through the enhancement of laser bandwidth by stimulated rotational Raman scattering (SRRS). In this poster, we present some preliminary results on this subject. In particular, we discuss initial efforts to evaluate mitigation levels of 4 discrete Stokes lines from SRRS in air and compare our findings with ray-based simulation results of wavelength shifted (-6Å ,0, +6Å) driver-lines on OMEGA. Work Supported by DoE/NNSA.
Numerical Study of Suspension Plasma Spraying
Farrokhpanah, Amirsaman; Mostaghimi, Javad
2016-01-01
A numerical study of suspension plasma spraying (SPS) is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for particles as they travel towards the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate are investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power are studied. Additionally, effect of injector parameters like injection location, flow rate, and angle are examined. The model used in current study takes high temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, s...
Preliminary study natural gas; Foerstudie naturgas
Energy Technology Data Exchange (ETDEWEB)
Lamnevik, Stefan; Carlsson, Tomas; Dyhr, Kurt
2000-09-01
FOA has carried out a preliminary study on natural gas for the Swedish National Energy Administration. To use natural gas as an energy source could be one step towards use of carbon-free fuels such as hydrogen. Natural gas, consisting mainly of methane, is the hydrocarbon with the highest hydrogen content. It has a high heat of combustion, 55 MJ/kg, and a low emission of carbon dioxide, 2.8 kg/kg fuel or 0.051 kg/MJ. The carbon dioxide emission per energy unit is twice as high for coal, 75% higher for wood fuels, and 27% higher for fuel oils. The Swedish natural gas network starts at Malmoe and ends at Hyltebruk. The natural gas used is imported from Denmark by Sydgas AB. It would be possible in the future to get connections to the Russian and the Norwegian networks and also to import LNG by ship and store it to buffer the different consumption demands during summer and winter. Natural gas is non-toxic but can be suffocating due to too low oxygen content at high concentrations. Combustion with an inadequate air supply will form toxic carbon monoxide like other carbonaceous fuels. Natural gas/air mixtures may explode like other gaseous fuels. The gas is lighter than air and is therefore dispersed better than heavier gases like LPG. Natural gas is difficult to detonate unlike other gases.
Numerical study of a magnesium hydride tank
Delhomme, Baptiste; de Rango, Patricia; Marty, Philippe
2012-11-01
Hydrogen storage in metal hydride tanks (MHT) is a very promising solution. Several experimental tanks, studied by different teams, have already proved the feasibility and the interesting performances of this solution. However, in much cases, an optimization of tank geometry is still needed in order to perform fast hydrogen loading. The development of efficient numerical tools is a key issue for MHT design and optimization. We propose a simple model representing a metal hydride tank exchanging its heat of reaction with a thermal fluid flow. In this model, the radial and axial discretisations have been decoupled by using Matlab® one-dimensional tools. Calculations are compared to experimental results obtained in a previous study. A good agreement is found for the loading case. The discharging case shows some discrepancies, which are discussed in this paper.
Numerical study of airflow over breaking waves
Yang, Zixuan; Shen, Lian
2016-11-01
We present direct numerical simulation (DNS) results on airflow over breaking waves. Air and water are simulated as a coherent system. The initial condition for the simulation is a fully-developed turbulent airflow over strongly-forced steep waves. The airflow is driven by a shear stress at the top. The effects of the initial wave steepness and wave age are studied systematically. Because wave breaking is an unsteady process, we use ensemble averaging of a large number of runs to obtain turbulent statistics. Simulation results show that the airflow above does not see the wave trough during wave breaking. Vortex structures at different stages of wave breaking are analyzed based on a linear stochastic estimation method. It is found that the wave breaking alters the pattern of vortex structures.
Numerical Study of Corrosion Crack Opening
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan
2008-01-01
for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...... is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...
Energy Technology Data Exchange (ETDEWEB)
Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)
2005-05-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific
Numerical Study of Suspension Plasma Spraying
Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad
2017-01-01
A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.
An experimental and numerical study of wind turbine seismic behavior
Prowell, I.
2011-01-01
This dissertation presents an experimental and numerical investigation into the seismic response of modern wind turbines. Currently, no consensus exists in the industry and there is significant interest in improving prediction of the behavior of wind turbines simultaneously subjected to wind, earthquake, and operational excitation. To this end, an experimental program was planned in order to evaluate seismic loading of wind turbines. In 2004, a preliminary shake table test of a 65-kW utility ...
A Numerical Study of Quantization-Based Integrators
Directory of Open Access Journals (Sweden)
Barros Fernando
2014-01-01
Full Text Available Adaptive step size solvers are nowadays considered fundamental to achieve efficient ODE integration. While, traditionally, ODE solvers have been designed based on discrete time machines, new approaches based on discrete event systems have been proposed. Quantization provides an efficient integration technique based on signal threshold crossing, leading to independent and modular solvers communicating through discrete events. These solvers can benefit from the large body of knowledge on discrete event simulation techniques, like parallelization, to obtain efficient numerical integration. In this paper we introduce new solvers based on quantization and adaptive sampling techniques. Preliminary numerical results comparing these solvers are presented.
Trzaska, S.; Moron, V.; Fontaine, B.
1996-10-01
This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO) phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns) were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST) patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP) climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder) than the long-term mean in the southern hemisphere (northern hemisphere)]. Atlantic SSTAs may also play a significant role. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->
Roadway Automobile Stability. A Numerical Study
Nikolov, Svetoslav; Nedev, Valentin; Bachvarov, Stefan
2008-01-01
A mathematical model of the roadway automobile motion is numerically analyzed. This model is intended to describe the roadway automobile stability. A previous paper [6] described the model in detail and the general method of qualitative analysis. In the present paper, we continue the discussion of stability by numerical simulations and the specific question we attempted to answer is: which parameter(s) of automobile geometry and quality of the roadway can serve as a reliable predictor(s) for ...
NUMERICAL STUDIES OF WEAKLY STOCHASTIC MAGNETIC RECONNECTION
Directory of Open Access Journals (Sweden)
G. Kowal
2009-01-01
Full Text Available We study the e ects of turbulence on magnetic reconnection using three-dimensional numerical simulations.This is the rst attempt to test the model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999, which assumes the presence of weak, small-scale magnetic eld structure near the current sheet. This a ects the rate of reconnection by reducing the transverse scale for reconnection ows and by allowing many independent ux reconnection events to occur simultaneously. We performed a number of simulations to test the dependencies of the reconnection speed, de ned as the ratio of the in ow velocity to the Alfv n speed, on the turbulence power, the injection scale and resistivity. Our results show that turbulence signi cantly a ects the topology of magnetic eld near the di usion region and increases the thickness of the out ow region. We con rm the predictions of the Lazarian & Vishniac model. In particular, we report the growth of the reconnection speed proportional to V 2 l , where Vl is the amplitude of velocity at the injection scale. It depends on the injection scale linj as (linj=L2=3, where L is the size of the system, which is somewhat faster but still roughly consistent with the theoretical expectations. We also show that for 3D reconnection the Ohmic resistivity is important in the local reconnection events only, and the global reconnection rate in the presence of turbulence does not depend on it.
Numerical studies of superfluids and superconductors
Winiecki, T
2001-01-01
superconducting wire subject to an external magnetic field. We observe the motion of flux lines, and hence dissipation, due to the Lorentz force. We measure the V - I curve which is analogous to the drag force in a superfluid. With the introduction of impurities, flux lines become pinned which gives rise to an increased critical current. In this thesis we demonstrate the power of the Gross-Pitaevskii and the time-dependent Ginzburg-Landau equations by numerically solving them for various fundamental problems related to superfluidity and superconductivity. We start by studying the motion of a massive object through a quantum fluid modelled by the Gross-Pitaevskii equation. Below a critical velocity, the object does not exchange momentum or energy with the fluid. This is a manifestation of its superfluid nature. We discuss the effect of applying a constant force to the object and show that for small forces a vortex ring is created to which the object becomes attached. For a larger force the object detaches from...
Preliminaries toward studying resonant extraction from the Debuncher
Energy Technology Data Exchange (ETDEWEB)
Michelotti, Leo; Johnstone, John; /Fermilab
2009-06-01
A recent proposal to detect {mu} {yields} e direct conversion at Fermilab asks for slow extraction of protons from the antiproton source, specifically from the Debuncher. [1] A third-integer resonance originally was considered for this, partly because of the Debuncher's three-fold symmetry and partly because its operational horizontal tune, {nu}{sub x} {approx} 9.765, is already within 0.1 of {nu}{sub x} = 29/3. Using a half integer resonance, {nu}{sub x} = 19/2, though not part of the original proposal, has been suggested more recently because (a) Fermilab has had a good deal of experience with half-integer extraction from the Tevatron, the Main Injector and the erstwhile Main Ring, and (b) for reasons we shall examine later, it depopulates the entire bunch without an abort at the end. This memo presents considerations preliminary to studying both possibilities. It is meant only as a starting point for investigations to be carried out in the future. The working constraints and assumptions have oscillated between two extremes: (1) making minimal changes in the antiproton source to minimize cost and (2) building another machine in the same tunnel. In this memo we adopt an attitude aligned more toward the first. The assumed parameters are listed in Table 1. A few are not (easily) subject to change, such as those related to the beam's momentum and revolution frequency and the acceptance of the debuncher. Two resonance exemplars are presented in the next section, with an explanation of the analytic and semi-analytic calculations that can be done for each. Section 3 contains preliminary numerical work that was done to validate the exemplars within the context of extraction from the Debuncher. A final section contains a summary. Following the bibliography, appendices contain (a) a qualitative, conceptual discussion of extraction for the novice, (b) a telegraphic review of the perturbative incantations used to filter the exemplars as principal resonances of
A biogeographic study of intermountain leeches : Preliminary report
US Fish and Wildlife Service, Department of the Interior — Preliminary report for a five year study on leeches in the intermountain west. This work began out of curiosity to determine what, besides fishes, occurred in the...
Numerical studies of solar chromospheric jets
Iijima, Haruhisa
2016-03-01
The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the
Preliminary Study of Realistic Blast Impact on Cultured Brain Slices
2015-04-01
hippocampal slice samples to better understand blast-induced brain damage. 15. SUBJECT TERMS RDX spheres , organotypic cultures of hippocampus, small...Preliminary Study of Realistic Blast Impact on Cultured Brain Slices by Thuvan Piehler, Rohan Banton, Lars Piehler, Richard Benjamin, Ray...Aberdeen Proving Ground, MD 21005-5066 ARL-TR-7197 April 2015 Preliminary Study of Realistic Blast Impact on Cultured Brain Slices Thuvan
Experimental and Numerical Study of Damaged Cantilever
DEFF Research Database (Denmark)
Rytter, A.; Krawczuk, M.; Kirkegaard, Poul Henning
2000-01-01
The introduction of a crack in a steel structure will cause a local change in the stiffness and damping capacity. The change in stiffness will lead to a change of some of the natural frequencies of the structure and a discontinuity in the associated mode shapes. This paper contains a presentation...... of the results from experimental and numerical tests with hollow section cantileves containing fatigue cracks. Two different finite-element (FE) models have been used to estimate the modal parameters numerically. The first FE model consists of beam elements. The second FE model consists of traditional...
Parametrical Numerical Study on Breakwater SSG Application
DEFF Research Database (Denmark)
Margheritini, Lucia; Kofoed, Jens Peter
The report presents numerical investigations on the performance of the SSG concept for different tide and wave conditions towards different levels of discretization to an optimal solution. Benefit of extra reservoir utilization and reservoir length has also been investigated. The report must be c...
Amorphous track models: A numerical comparison study
DEFF Research Database (Denmark)
Greilich, Steffen; Grzanka, L.; Bassler, N.;
2010-01-01
We present an open-source code library for amorphous track modelling which is suppose to faciliate the application and numerical comparability as well as serve as a frame-work for the implementation of new models. We show an example of using the library indicating the choice of submodels has a si...
Preliminary assessment of numerical data requirements TA-73 landfill Los Alamos, New Mexico
Energy Technology Data Exchange (ETDEWEB)
1993-11-19
A numerical model, TOUGH2, was selected for describing liquid- and gas-phase flow in the unsaturated tuff underlying the TA-73 landfill. The model was selected primarily for its ability to simulate the significant mechanisms that may affect transport of contaminants through the vadose zone at the TA-73 landfill, including non-isothermal flow through fractured media. TOUGH2 is the best documented, verified, and validated model capable of performing the required simulations. The sensitivity analyses that were performed and describes in this report identified the input parameters that the selected numerical model is most sensitive to. The input parameters analyzed were saturated hydraulic conductivity, van Genuchten {alpha} and n, residual and saturated moisture contents, infiltration rate, fracture spacing and permeability, atmospheric pressure, and temperature. The sensitivity analyses were performed using a model grid that was designed to incorporate the regions in the landfill vicinity where contaminant transport is likely to occur and where the physical processes affecting flow and transport are the most dynamic. The sensitivity analyses performed suggest that the model is quite sensitive to a number of input parameters, including saturated hydraulic conductivity, the van Genuchten parameters {alpha} and n (for both the tuff matrix and fractures), fracture density and aperture, and atmospheric pressure. The results indicate that additional site-specific hydraulic properties and fracture data should be obtained before attempting to perform predictive, numerical simulations of gas- and liquid-phase flow beneath the landfill.
THEORETICAL STUDY OF THREE-DIMENSIONAL NUMERICAL MANIFOLD METHOD
Institute of Scientific and Technical Information of China (English)
LUO Shao-ming; ZHANG Xiang-wei; L(U) Wen-ge; JIANG Dong-ru
2005-01-01
The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.
Combustion Behaviour of Pulverised Wood - Numerical and Experimental Studies. Part 1 Numerical Study
Energy Technology Data Exchange (ETDEWEB)
Elfasakhany, A.; Xue-Song Bai [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering
2002-12-01
This report describes a theoretical/numerical investigation of the particle motion and the particle drying, pyrolysis, oxidation of volatile and char in a pulverised biofuel (wood) flame. This work, along with the experimental measurement of a pulverised wood flame in a vertical furnace at TPS, is supported by the Swedish Energy Agency, STEM. The fundamental combustion process of a pulverised wood flame with determined size distribution and anisotropy character is studied. Comprehensive submodels are studied and some models not available in the literature are developed. The submodels are integrated to a CFD code, previously developed at LTH. The numerical code is used to simulate the experimental flame carried out at TPS (as sub-task 2 within the project). The sub-models describe the drying, devolatilization, char formation of wood particles, and the oxidation reaction of char and the gas phase volatile. At the present stage, the attention is focused on the understanding and modelling of non-spherical particle dynamics and the drying, pyrolysis, and oxidation of volatile and char. Validation of the sub-models against the experimental data is presented and discussed in this study. The influence of different factors on the pulverised wood flame in the TPS vertical furnace is investigated. This includes shape of the particles, the effect of volatile release, as well as the orientation of the particles on the motion of the particles. The effect of particle size on the flame structure (distribution of species and temperature along the axis of the furnace) is also studied. The numerical simulation is in close agreement with the TPS experimental data in the concentrations of species O{sub 2}, CO{sub 2} as well as temperature. Some discrepancy between the model simulations and measurements is observed, which suggests that further improvement in our understanding and modeling the pulverised wood flame is needed.
Numerical Studies and Equipment Development for Single Point Incremental Forming
Marabuto, S. R.; Sena, J. I. V.; Afonso, D.; Martins, M. A. B. E.; Coelho, R. M.; Ferreira, J. A. F.; Valente, R. A. F.; de Sousa, R. J. Alves
2011-05-01
This paper summarizes the achievements obtained so far in the context of a research project carried out at the University of Aveiro, Portugal on both numerical and experimental viewpoints concerning Single Point Incremental Forming (SPIF). On the experimental side, the general guidelines on the development of a new SPIF machine are detailed. The innovation features are related to the choice of a six-degrees-of-freedom, parallel kinematics machine, with a high payload, to broad the range of materials to be tested, and allowing for a higher flexibility on tool-path generation. On the numerical side, preliminary results on simulation of SPIF processes resorting to an innovative solid-shell finite element are presented. The final target is an accurate and fast simulation of SPIF processes by means of numerical methods. Accuracy is obtained through the use of a finite element accounting for three-dimensional stress and strain fields. The developed formulation allows for an unlimited number of integration points through its thickness direction, which promotes accuracy without loss of CPU efficiency. Preliminary results and designs are shown and discussions over the obtained solutions are provided in order to further improve the research framework.
Directory of Open Access Journals (Sweden)
M. Boumaza
2015-07-01
Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.
Platform for dynamic tests: preliminary studies, design and construction
Directory of Open Access Journals (Sweden)
J. E. Campuzano
Full Text Available This paper is about the design and construction of a platform for dynamic tests especially with people jumping, walking, etc. Initially it was tried to find out projects already implemented in platforms and dynamic tests and to study the loads produced by movement of people on slabs and the structural response to these loads. The limits established by different standards have been also studied for these dynamic responses, taking into account the ultimate limit state, as well as the structure in service, since the human body is very sensitive to structural vibrations. Parametric studies were performed considering various configurations of slabs (different spans, thicknesses and conditions of support have been done, looking for a configuration that could have natural frequency close to the frequencies of the human loads. The slab should have dimensions compatible with the available physical space, fundamental frequency below 5 Hz and maximum immediate deflection compatible with the indications of the Brazilian standard NBR6118: 2007. Based on these criteria was chosen a rectangular structure consists of a solid reinforced concrete rectangular slab studded in two opposite edges of steel beams with shear connectors type U. The other two edges are free. The steel beams supporting the slab, in turn, are supported on eight metal profiles (two in each corner of the slab that are supported on two to two short columns of steel profile H. Profiles U in steel are welded to four columns, forming a horizontal frame. Numerical analysis of the dynamic test platform have been performed for free and forced vibration, for obtaining the natural frequencies and corresponding vibration modes, considering the self-weight of the structure and the load that simulates people's weight. After obtaining a structural configuration that fulfilled the stipulated requirements, the design of the slab taking into account the recommendations of the Brazilian standard NBR6118: 2007
Numerical Studies of the Gauss Lattice Problem
Keller, H.B.
1997-01-01
The difference between the number of lattice points N(R) that lie in x^2 + y^2 ≤ R^2 and the area of that circle, d(R) = N(R) - πR^2, can be bounded by |d(R)| ≤ KR^θ. Gauss showed that this holds for θ = 1, but the least value for which it holds is an open problem in number theory. We have sought numerical evidence by tabulating N(R) up to R ≈ 55,000. From the convex hull bounding log |d(R)| versus log R we obtain the bound θ ≤ 0.575, which is significantly better than the best analyti...
Directory of Open Access Journals (Sweden)
Toni Eger
2015-12-01
Full Text Available The present paper analyzes numerically the entropy generation induced by forced convection in a canonical configuration. The configuration itself includes two well known fluid dynamic problems: (1 an external flow (flow around a cylinder, Kármán flow; and (2 an internal flow (flow between two concentric rotating cylinders, Couette flow. In many daily engineering issues (e.g., cooling of electric machines, a combination of these problems occurs and has to be investigated. Using the canonical configuration, the fields of entropy generation are analyzed in this work for a constant wall heat flux but varying two key parameters (Reynolds numbers Re∞ and Re0. The entropy generation due to conduction shows an absolute minimum around Re0 = 10,000. The same minima can be found by a detailed analysis of the temperature profile. Thus, entropy generation seems to be a suitable indicator for optimizing heat exchange processes and delivers a large amount of information concerning fluid and heat transport.
Numerical studies of Phi^2-Oscillatons
Alcubierre, M; Guzman, F S; Matos, T; Núñez, D; Urena-Lopez, L A; Alcubierre, Miguel; Becerril, Ricardo; Matos, Tonatiuh; Nunez, Dario
2003-01-01
We present an exhaustive analysis of the numerical evolution of the Einstein-Klein-Gordon equations for the case of a real scalar field endowed with a quadratic self-interaction potential. The self-gravitating equilibrium configurations are called oscillatons and are close relatives of boson stars, their complex counterparts. Unlike boson stars, for which the oscillations of the two components of the complex scalar field are such that the spacetime geometry remains static, oscillatons give rise to a geometry that is time-dependent and oscillatory in nature. However, they can still be classified into stable (S-branch) and unstable (U-branch) cases. We have found that S-oscillatons are indeed stable configurations under small perturbations and typically migrate to other S-profiles when perturbed strongly. On the other hand, U-oscillatons are intrinsically unstable: they migrate to the S-branch if their mass is decreased and collapse to black holes if their mass is increased even by a small amount. The S-oscilla...
Numerical study of a helicon gas discharge
Batishchev, Oleg; Molvig, Kim
2001-06-01
Plasma sources based on the helicon gas discharge are widely used in industry [1] due to their high efficiency. We investigate performance of a particular helicon plasma sources designed for the VASIMR [2] plasma thruster. Specifically we are interested in the VX-10 configuration [3] operating with hydrogen or helium plasmas. Firstly, we use our zero-dimensional model to characterize plasma condition and composition [4]. Next we couple it to one-dimensional hybrid model [5] for a rarified gas flow in the system feeding pipe - quartz tube of the helicon. We perform numerical analysis of plasma source operation in different regimes. Results are compared and used to explain experimental data [3]. Finally, we'll discuss more detailed fully kinetic models for the gas and plasma species evolution in the helicon discharge with parameters typical to that of the VASIMR plasma thruster. [1] M.A. Lieberman and A.J.Lihtenberg, , 'Principles of plasma discharges and materials processing', Wiley, NY, 1994; [2] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [3] J. Squire et al., Bull. APS 45 (7) 130, 2000; [4] O.Batishchev and Kim Molvig, AIAA technical paper 2000-3754, 2000; [5] O.Batishchev and Kim Molvig, AIAA technical paper 2001-0963, 2001.
Modular endoprosthesis for mandibular reconstruction: a preliminary animal study.
Lee, S.; Goh, B.T.; Tideman, H.; Stoelinga, P.J.W.
2008-01-01
The use of a mandibular modular endoprosthesis after segmental resection of part of the body of the mandible was studied. This preliminary study was carried out on four pigs and four monkeys. The devices were made of a titanium alloy and were cemented in the prepared medullary spaces with polymethyl
Numerical study of fluid motion in bioreactor with two mixers
Energy Technology Data Exchange (ETDEWEB)
Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)
2015-10-28
Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.
Numerical and Experimental Studies of a Light-Weight Auxetic Cellular Vibration Isolation Base
Directory of Open Access Journals (Sweden)
Xiang-Wen Zhang
2016-01-01
Full Text Available This paper presents a preliminary study of the dynamic performance of a novel light-weight auxetic (negative Poisson’s ratio cellular vibration isolation base constituted by reentrant hexagonal honeycombs. Numerical and experimental analyses were conducted to reveal the effects of Poisson’s ratio (cell angle and relative density (cell thickness of these reentrant honeycombs on the dynamic performance of this novel base and to propose design guidelines for the best use of the auxetic cellular vibration isolation system. By doing numerical analysis, we found that, by decreasing the relative density of reentrant honeycombs and increasing Poisson’s ratio of them, excellent vibration isolation performance of the auxetic cellular base will be achieved. This analysis was followed by static, modal, and frequency response tests, which verified the results of the numerical analysis.
A New Silver Complex with Ofloxacin – Preliminary Study
Directory of Open Access Journals (Sweden)
Rusu Aura
2016-06-01
Full Text Available Objective: Silver complexes of antibacterial quinolones have the potential advantage of combining the antibacterial activity of silver and fluoroquinolones. The objective of our study was the preparation and the preliminary physico-chemical characterization of a silver complex with ofloxacin.
Preliminary Design Study of a Hybrid Airship for Flight Research
Browning, R. G. E.
1981-01-01
The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.
Vertical infraclavicular brachial plexus block in children: a preliminary study.
Jose Maria, B. de; Tielens, L.K.P.
2004-01-01
BACKGROUND: Brachial plexus blockade is a well-established technique in upper limb surgery. Among the infraclavicular approaches, the vertical infraclavicular brachial plexus (VIP) block is easy to perform and has a large spectrum of nerve blockade. The aim of this preliminary study was to determine
Preliminary study on chicken feather protein-based wood adhesives
Zehui Jiang; Daochun Qin; Chung-Yun Hse; Monlin Kuo; Zhaohui Luo; Ge Wang; Yan Yu
2008-01-01
The objective of this preliminary study was to partially replace phenol in the synthesis of phenol-formaldehyde resin with feather protein. Feather proteinâbased resins, which contained one part feather protein and two parts phenol, were formulated under the conditions of two feather protein hydrolysis methods (with and without presence of phenol during...
Preliminary study to AP mine neutralisation by EFP impact
Meulman, J.H.
2004-01-01
A preliminary study has been conducted into the response of anti-personnel mines at the impact of an Explosively Formed Projectile (EFP). The objective was to obtain a low order reaction (preferably a deflagration) to minimise collateral damage. Further the method should be capable to neutralise min
Ai, Yuhui; Lange, Rebecca A
2008-03-01
A rigorous analysis of the torsional modes in both a cylindrical wave guide and the associated static viscous fluid field has been conducted from the solid and the fluid wave equations and the coupled boundary conditions. As a result, two acoustic viscometer models, along with four independent equations connecting the density and the viscosity of the fluid with the attenuation and the phase velocity of the torsional wave in the wave guide, have been developed. The analysis shows that the product of the viscosity and the density of the fluid can be measured from the end reflection coefficient of the torsional wave in the wave guide and that both the viscosity and the density can be determined simultaneously from either the phase velocity or the attenuation of the torsional wave in a single cylindrical wave guide. For the simultaneous measurements of the viscosity and the density, the independent equations have to be solved numerically, for example, using Matlab (The MathWorks, Natick, MA), given either the attenuation or the phase velocity in the wave guide that is surrounded by the fluid. To demonstrate the technical feasibility, numerical simulations have been conducted to discern viscosity, phase velocity, and density, all versus attenuation, at different frequencies, and with variable dimension of a molybdenum rod, so that both the advantages and the disadvantages of the simultaneous measurements can be explored. In the end, to test the two models, preliminary experiments on two viscous standards were conducted at 23 degrees C, and good agreements have been achieved between the viscosities measured from both models and for both standards.
A Numeric Study on Chaotic Dislocation Emission
Institute of Scientific and Technical Information of China (English)
HonglaiTan; WeiYang
1996-01-01
Crack tip atom-string model is devised to study non-linear features of dislocation emission processes under mode II loads.Dynamic analysis shows that the atom motion at the crack tip changes from periodic to chaotic as the stress intensity factor increases.Study on the dislocation emission band reveals the phenomenon of cloud-like drifting of the dislocation core ahead of the crack tip.
Numerical studies of helical CMF generators
Energy Technology Data Exchange (ETDEWEB)
Freeman, J.R.; McGlaun, J.M.; Thompson, S.L.; Cnare, E.C.
1979-01-01
The COMAG-III code has been used to model the dynamic behavior of a small CMF generator having a helical coil. The results have been compared with experiments which employed light pipe diagnostics of the explosive timing together with flash radiography to time correlate the mechanical behavior with the previously reported electrical output. The code has also been used to study and compare the importance of various loss mechanisms in these generators including ohmic heating and the flux lost be the switching action of the armature. A parameter study in which the injection current was varied is described. The possible importance of electrical breakdown is also discussed.
Preliminary toxicological study of Irganox 1010
Energy Technology Data Exchange (ETDEWEB)
Drake, G.A.; London, J.E.; Smith, D.M.; Thomas, R.G.
1979-10-01
Acute oral LD/sub 50/30/ values for mice and rats receiving Irganox 1010 were found to be greater than 5 g/kg. According to classical guidelines, this material would be considered slightly toxic or practically nontoxic in both species. Skin applicaton studies in rabbits showed the material to be nonirritating. Eye irritation studies, also in the rabbit, showed that Irganox 1010 was a mild but transitory irritant. The sensitizaton study in guinea pigs did not show the material to be deleterious.
Preliminary toxicological study of Silastic 386 catalyst
Energy Technology Data Exchange (ETDEWEB)
Smith, D.M.; Drake, G.A.; Holland, L.M.; Jackson, D.E.; London, J.E.; Prine, J.R.; Thomas, R.G.
1978-06-01
The calculated acute oral LD/sub 50//sup 30/ values for Silastic 386 catalyst were 1225 mg/kg in mice and 4350 mg/kg in rats. According to classical guidelines, the compound would be slightly to moderately toxic in both species. Skin application studies in the rabbit demonstrated the compound to be mildly irritating. The eye irritation study disclosed the compound to be a severe irritant causing conjunctivitis, photophobia, corneal edema, corneal ulceration, anterior uveitis, and keratitis. The sensitization study in the guinea pig did not show Silastic 386 catalyst to be deleterious in this regard.
Energy Technology Data Exchange (ETDEWEB)
Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)
2005-02-01
objective of this study is to support the development of a preliminary Site Description of the Simpevarp area on a regional-scale based on the available data of August 2004 (Data Freeze S1.2) and the previous Site Description. A more specific objective of this study is to assess the role of known and unknown hydrogeological conditions for the present-day distribution of saline groundwater in the Simpevarp area on a regional-scale. An improved understanding of the paleo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale as well as predictions of future hydrogeological conditions. Other key objectives were to identify the model domain required to simulate regional flow and solute transport at the Simpevarp area and to incorporate a new geological model of the deformation zones produced for Version S1.2.Another difference with Version S1.1 is the increased effort invested in conditioning the hydrogeological property models to the fracture boremap and hydraulic data. A new methodology was developed for interpreting the discrete fracture network (DFN) by integrating the geological description of the DFN (GeoDFN) with the hydraulic test data from Posiva Flow-Log and Pipe-String System double-packer techniques to produce a conditioned Hydro-DFN model. This was done in a systematic way that addressed uncertainties associated with the assumptions made in interpreting the data, such as the relationship between fracture transmissivity and length. Consistent hydraulic data was only available for three boreholes, and therefore only relatively simplistic models were proposed as there isn't sufficient data to justify extrapolating the DFN away from the boreholes based on rock domain, for example. Significantly, a far greater quantity of hydro-geochemical data was available for calibration in the
Pallozzi, V.; Di Carlo, A.; Zaza, F.; Villarini, M.; Carlini, M.; Bocci, E.
2016-06-01
Biomass gasification represents a suitable choice for global environmental impact reduction, but more efforts on the process efficiency need to be conducted in order to enhance the use of this technology. Studies on inputs and outputs of the process, as well as measurements and controls of syngas composition and correlated organic and inorganic impurities, are crucial points for the optimization of the entire process: models of the system and sensing devices are, thus, very attractive for this purpose. In particular, perovskite based chemoresistive sensors could represent a promising technology, since their simplicity in function, relatively low cost and direct high temperature operation. The aim of this work is to develop a steam fluidized bed biomass gasifier model, for the prediction of the process gas composition, and new perovskite compounds, LaFeO3 based, as sensing material of chemoresistive sensors for syngas composition and impurities measurements. Chemometric analysis on the combustion synthesis via citrate-nitrate technique of LaFeO3 was also performed, in order to evaluate the relationship between synthesis conditions and perovskite materials and, thus, sensor properties. Performance of different sensors will be tested, in next works, with the support of the developed gasifier model.
Diesel engine emission deterioration - a preliminary study
CSIR Research Space (South Africa)
Pretorius, Cecilia J
2016-04-01
Full Text Available The objective of this study was to find a parameter in diesel and oil analysis of underground mining vehicles that can be correlated with personal diesel particulate matter (DPM) exposure and used as part of an engine maintenance programme. A number...
Preliminary study of pur-revetment's application
Gu, D.; Verhagen, H.J.; Van de Ven, M.
2008-01-01
PUR-revetment is a newly developed method for hydraulic application. Its structure is similar to that of open stone asphalt revetment, but the crushed stones are glued by polyurethane (PUR) instead of bitumen. To study the feasibility of applying PUR-revetment, a research based on the comparisons be
Caregivers with Visual Impairments: A Preliminary Study
Fuhr, Patti; Martinez, Bethany; Williams, Michael
2008-01-01
Persons who are elderly, visually impaired, and primary caregivers for ailing or disabled spouses or significant others are a unique population that has not been studied previously. By definition, "informal caregivers" are family members or friends who provide unpaid day-to-day assistance with activities of daily living and are familiar with the…
Study of numerical errors in direct numerical simulation and large eddy simulation
Institute of Scientific and Technical Information of China (English)
YANG Xiao-long; FU Song
2008-01-01
By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.
Preliminary Study of Performance of TTA Resin
Institute of Scientific and Technical Information of China (English)
HUANG; Kun; MAO; Guo-shu
2013-01-01
TTA(thenoyl trifluoroacetone)extraction can effectively remove large amounts of uranium in the analysis of trace neptunium in the presence of large amounts of uranium.While it is not conducive to achieve the automation of the rapid analysis of neptunium with the TTA solution,the TTA resin was prepared and its properties were studied in this work.TTA resin in this work was a kind of mixture combining styrene-divinylbenzene skeleton with TTA
Numerical study of insect free hovering flight
Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team
2012-11-01
In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.
Numerical study of transient nonlinear harbor resonance
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
It is generally accepted that nonlinear wave-wave interactions play an important role in harbor resonance. Nevertheless it is not clear how waves take part in those interactions. The aim of this paper is to investigate those processes for a rectangular harbor at transient phases. Long-period oscillations excited by bichromatic waves are simulated by the Boussinesq model. The simulations start from calm conditions for the purpose of studying the response process. The internal wavemaker stops working after the oscillations have reached a quasi-steady state, and it is used to simulate the damp process. In order to analyze temporary features of wave-wave interactions in different states, the wavelet-based bispectrum is employed. The influence of the short wave frequencies on long-period oscillations is investigated, and reasons are tried to be given from nonlinear triad interactions between different wave components and the interaction of short waves and the bay entrance. Finally, the response time and the damp time are estimated by a simple method.
Microwave Influence in Fungi a Preliminary Study
Energy Technology Data Exchange (ETDEWEB)
Manoliu, A. I.; Tufescu, F. M.; Oprica, L.; Olteanu, Z.; Creanga, D. E.
2004-07-01
The behavior of two cellulolytic fungus species under the influence of low intensity microwaves was studied: Chaetomium globosum and Alternaria alternata. Enzyme activity of dehydrogenase complex was investigated by spectrophotometric method in order to real the effect of relatively short daily exposure times. Inhibitory effect was noticed for malate dehydrogenase and succinate dehydrogenase in both fungi while differentiated influence was revealed in alpha ceto glutarate dehydrogenase (inhibitory in Chaetomium globosum but stimulatory in Alternaria alternata). Isocitrate dehydrogenase activity was significantly stimulated in both fungi for 3 hours exposure time. (Author) 15 refs.
[Preliminary study on the pharmacological action spicatus].
Gai, H; Shou, Y; Wang, J; Li, L
1997-01-01
In this report the pharmacological action of Spicatus was studied. The results insicated that it had diureric, antibiotic and anti-inflammatory effects, yet had Iittle toxic side-effect. It had significant inhibitory effect on crofon oil-caused mice ear swell. It also had marked diuretic effect in orcinary rats, but had Iittie effect on uric pH the rats. It exhibited certain inhibition of Staphycoloccus aureus, Eschrichia coli and Pseudomonas aeruginosa in vitro. The maximum tolerable dose test in mice showed no marked toxic effect, LD50 > 80 g/kg.
A preliminary ultrasound study of velar fronting
Wodzinski, Sylvie M.; Frisch, Stefan A.
2003-10-01
The purpose of this study is to (1) evaluate the effectiveness of ultrasound imaging to measure velar consonant closure location, and (2) conduct a thorough study of velar fronting by measuring several productions of velar stops in the context of every English vowel. Word onset velar stops were measured in both words (CV or CVC) and nonwords (VCV) within a carrier phrase. Other coarticulatory influences were minimized by using words with no coda or labial coda consonants (e.g., ``Say a gap again,'' ``Say /oIkoI/ again''). Measurements were made at the point of maximal closure. Closure location was measured using the radial angle from the center of the ultrasound probe to the center of the velar closure. Pilot data for one subject has been analyzed to date. Closure location appears consistent across all central and back vowels. For front vowels, the degree of fronting of the velar appears to be correlated with the frontness of the vowel. Measures of closure location for diphthongs followed the back vowel pattern in the word targets. For nonwords, the closure location was influenced by the preceding diphthong offset quality and the following diphthong onset quality. Theoretical implications for the phonetics/phonology interface will be discussed.
FEM numerical model study of electrosurgical dispersive electrode design parameters.
Pearce, John A
2015-01-01
Electrosurgical dispersive electrodes must safely carry the surgical current in monopolar procedures, such as those used in cutting, coagulation and radio frequency ablation (RFA). Of these, RFA represents the most stringent design constraint since ablation currents are often more than 1 to 2 Arms (continuous) for several minutes depending on the size of the lesion desired and local heat transfer conditions at the applicator electrode. This stands in contrast to standard surgical activations, which are intermittent, and usually less than 1 Arms, but for several seconds at a time. Dispersive electrode temperature rise is also critically determined by the sub-surface skin anatomy, thicknesses of the subcutaneous and supra-muscular fat, etc. Currently, we lack fundamental engineering design criteria that provide an estimating framework for preliminary designs of these electrodes. The lack of a fundamental design framework means that a large number of experiments must be conducted in order to establish a reasonable design. Previously, an attempt to correlate maximum temperatures in experimental work with the average current density-time product failed to yield a good match. This paper develops and applies a new measure of an electrode stress parameter that correlates well with both the previous experimental data and with numerical models of other electrode shapes. The finite element method (FEM) model work was calibrated against experimental RF lesions in porcine skin to establish the fundamental principle underlying dispersive electrode performance. The results can be used in preliminary electrode design calculations, experiment series design and performance evaluation.
Preliminary study of disc hydrodynamic polishing.
Li, Yan; Lin, Bin; Zhang, XiaoFeng; Liu, PengFei
2016-10-01
In this paper, a developed polishing method based on elastic emission machining and Jules Verne-a variation on fluid jet polishing-is presented. This method is named disc hydrodynamic polishing (DHDP). A computational fluid dynamics (CFD)-based model that consists of a CFD model and an erosion model is introduced to predict the surface roughness obtained by DHDP. The performance of DHDP is studied by experiments. The slurry used in the experiments comprises 95% deionized water and 5% cerium oxide particles. Fused-silica glass is chosen as the workpiece. After the experiments, an ultrasmooth surface without cracks is obtained. The simulation results principally coincide with the experimental results. The experimental results show that the actual roughness is slightly less than the prediction and smaller particles are more favorable for obtaining a better surface roughness.
A Preliminary Study of Fake Fingerprints
Directory of Open Access Journals (Sweden)
Qinghai Gao
2014-11-01
Full Text Available Fingerprint is a widely used biometrics. Its extensive usage motivates imposter to fabricate fake fingerprints. Vitality detection has been proposed to prevent counterfeit finger attack. Currently the detection can be done either during the process of acquiring fingerprint image or by comparing multiple sequentially acquired images. It is an ongoing research problem to detect whether a given fingerprint image is obtained from a real or a fake fingertip. In this paper we look into the differences between real and fake fingerprints as the first step to approach this problem. Specifically, we study the effects of different imaging sensors on the sizes of templates and on the matching scores between real and fake fingerprints. We also compare the fake fingerprints made from different materials. Experiments are carried out with two publicly available fingerprint databases and the findings are reported.
Helicopter pilot back pain: a preliminary study.
Shanahan, D F; Reading, T E
1984-02-01
Because of the high prevalence of back pain experienced by U.S. Army helicopter pilots, a study was conducted to ascertain the feasibility of reproducing these symptoms in the laboratory. A mock-up of a UH-1H seat and control configuration was mounted to a multi-axis vibration simulator (MAVS). Eleven subjects were tested on the apparatus for two 120-min periods. During one period, the MAVS was programmed to reproduce vibrations recorded from a UH-1H in cruise flight. The subjects received no vibration during the other test period. All subjects reported back pain which they described as identical to the pain they experience during flight, during one or more of their test periods. There was no statistical difference between the vibration and nonvibration test conditions (p greater than 0.05) in terms of time of onset of pain or intensity of pain as measured by a visual analog scale. It appears the vibration at the frequencies and amplitudes tested plays little or no role in the etiology of the back symptoms reported by these pilots. It is proposed that the primary etiological factor for these symptoms is the poor posture pilots are obliged to assume for extended periods while operating helicopters.
Kamiya, Tetsu; Toyama, Yoshio; Michiwaki, Yukihiro; Kikuchi, Takahiro
2013-01-01
The aim of the present study was to evaluate the possibility of numerical simulation of the swallowing process using a moving particle simulation (MPS) method, which defined the food bolus as a number of particles in a fluid, a solid, and an elastic body. In order to verify the accuracy of the simulation results, a simple water bolus falling model was solved using the three-dimensional (3D) MPS method. We also examined the simplified swallowing simulation using a two-dimensional (2D) MPS method to confirm the interactions between the liquid, solid, elastic bolus, and organ structure. In a comparison of the 3D MPS simulation and experiments, the falling time of the water bolus and the configuration of the interface between the liquid and air corresponded exactly to the experimental measurements and the visualization images. The results showed that the accuracy of the 3D MPS simulation was qualitatively high for the simple falling model. Based on the results of the simplified swallowing simulation using the 2D MPS method, each bolus, defined as a liquid, solid, and elastic body, exhibited different behavior when the organs were transformed forcedly. This confirmed that the MPS method could be used for coupled simulations of the fluid, the solid, the elastic body, and the organ structures. The results suggested that the MPS method could be used to develop a numerical simulator of the swallowing process.
Esophageal clearance scintigraphy in, diabetic patients; A preliminary study
Energy Technology Data Exchange (ETDEWEB)
Karayalcin, B.; Karayalcin, U.; Aburano, Tamio; Nakajima, Kenichi; Hisada, Kinichi; Morise, Toshio; Okada, Toshihide; Takeda, Ryoyu (Kanazawa Univ. (Japan). School of Medicine)
1992-05-01
The aim of this preliminary study was to evaluate the predictive value of esophageal clearance scintigraphy (ECS) in the diagnosis of esophageal autonomic neuropathy in diabetic patients without any esophageal symptoms. A single swallon ECS was performed in 12 diabetic patients and 15 normal volunteers, and esophageal transit time (ETT) and esophageal (Es) T 1/2 values were calculated. ETT and Es 1/2 were found to be significantly prolonged in the diabetic group (p<0.01 and p<0.05, respectively). In this preliminary study, our results strongly suggest that ECS may be an important noninvasive diagnostic tool in the evaluation of diabetic patients with asymptomatic esophageal autonomic neuropathy. (author).
Deproteinated palm kernel cake-derived oligosaccharides: A preliminary study
Fan, Suet Pin; Chia, Chin Hua; Fang, Zhen; Zakaria, Sarani; Chee, Kah Leong
2014-09-01
Preliminary study on microwave-assisted hydrolysis of deproteinated palm kernel cake (DPKC) to produce oligosaccharides using succinic acid was performed. Three important factors, i.e., temperature, acid concentration and reaction time, were selected to carry out the hydrolysis processes. Results showed that the highest yield of DPKC-derived oligosaccharides can be obtained at a parameter 170 °C, 0.2 N SA and 20 min of reaction time.
Numerical and physical model study of a vertical slot fishway
Directory of Open Access Journals (Sweden)
Bombač Martin
2014-06-01
Full Text Available This paper presents the results of an experimental and numerical study of a vertical slot fishway (VSF. A 2-D depth-averaged shallow water numerical model PCFLOW2D coupled with three different turbulent models (constant eddy viscosity, Smagorinsky and k - ε was used. A detailed analysis of numerical parameters needed for a correct simulation of the phenomenon was carried out. Besides the velocity field, attention was paid to important hydraulic parameters such as maximum velocity in the slot region and energy dissipation rate ε in order to evaluate the performance of VSF. A scaled physical hydraulic model was built to ensure reliable experimental data for the validation of the numerical model. Simulations of variant configurations of VSF showed that even small changes in geometry can produce more fishfriendly flow characteristics in pools. The present study indicates that the PCFLOW2D program is an appropriate tool to meet the main demands of the VSF design.
Tree STEM Reconstruction Using Vertical Fisheye Images: a Preliminary Study
Berveglieri, A.; Tommaselli, A. M. G.
2016-06-01
A preliminary study was conducted to assess a tree stem reconstruction technique with panoramic images taken with fisheye lenses. The concept is similar to the Structure from Motion (SfM) technique, but the acquisition and data preparation rely on fisheye cameras to generate a vertical image sequence with height variations of the camera station. Each vertical image is rectified to four vertical planes, producing horizontal lateral views. The stems in the lateral view are rectified to the same scale in the image sequence to facilitate image matching. Using bundle adjustment, the stems are reconstructed, enabling later measurement and extraction of several attributes. The 3D reconstruction was performed with the proposed technique and compared with SfM. The preliminary results showed that the stems were correctly reconstructed by using the lateral virtual images generated from the vertical fisheye images and with the advantage of using fewer images and taken from one single station.
TREE STEM RECONSTRUCTION USING VERTICAL FISHEYE IMAGES: A PRELIMINARY STUDY
Directory of Open Access Journals (Sweden)
A. Berveglieri
2016-06-01
Full Text Available A preliminary study was conducted to assess a tree stem reconstruction technique with panoramic images taken with fisheye lenses. The concept is similar to the Structure from Motion (SfM technique, but the acquisition and data preparation rely on fisheye cameras to generate a vertical image sequence with height variations of the camera station. Each vertical image is rectified to four vertical planes, producing horizontal lateral views. The stems in the lateral view are rectified to the same scale in the image sequence to facilitate image matching. Using bundle adjustment, the stems are reconstructed, enabling later measurement and extraction of several attributes. The 3D reconstruction was performed with the proposed technique and compared with SfM. The preliminary results showed that the stems were correctly reconstructed by using the lateral virtual images generated from the vertical fisheye images and with the advantage of using fewer images and taken from one single station.
Numerical Study on Saltwater Instrusion in a Heterogeneous Stratified Aquifer
2000-01-01
In a costal aquifer, saltwater intrusion is frequently observed due to an excess exploitation. There are many researches focused on the saltwater intrusion. However, there are few researches, which take into consideration the mixing processes in a stratified heterogeneous aquifer. In the present study, a laboratory experiment and numerical simulation are made in order to understand the phenomena in a stratified heterogeneous aquifer. The result of the numerical analysis agrees well with the m...
Numerical study of scars in a chaotic billiard
Li, B
1997-01-01
We study numerically the scaling properties of scars in stadium billiard. Using the semiclassical criterion, we have searched systematically the scars of the same type through a very wide range, from ground state to as high as the 1 millionth state. We have analyzed the integrated probability density along the periodic orbit. The numerical results confirm that the average intensity of certain types of scars is independent of $\\hbar$ rather than scales with (1989).
The Adriatic response to the bora forcing. A numerical study
Energy Technology Data Exchange (ETDEWEB)
Rachev, N. [Sofia Univ., Sofia (Bulgaria). Dept. of Meteorology and Geophysics; Purini, R. [Consiglio Nazionale delle Ricerche, Istituto Talassografico, Trieste (Italy)
2001-04-01
This paper deals with the bora wind effect on the Adriatic Sea circulation as simulated by a 3-D numerical code (the DieCAST model). The main result of this forcing is the formation of intense upwelling along the eastern coast in agreement with previous theoretical studies and observations. Different numerical experiments are discussed for various boundary and initial conditions to evaluate their influence on both circulation and upwelling patterns.
Online gaming dependency: a preliminary study in China.
Peng, Wei; Liu, Ming
2010-06-01
Based on theories and previous studies on problematic Internet use, we propose a model to better understand the contributors to and consequences of online gaming dependency. A preliminary study was conducted through a survey of online gamers in China. The results of path analysis found that maladaptive cognitions, shyness, and depression are positively related to online gaming dependency. Online gaming dependency was also positively related to different types of negative life outcomes. The findings of this study have implications for the prevention and treatment of addictive online gaming.
Numerical study of three-dimensional free surface dynamics
Institute of Scientific and Technical Information of China (English)
Baozeng Yue; Zhaolin Wang
2006-01-01
The dynamic problem of three-dimensional free surface is numerically studied in this paper.The ALE (Arbitrary Lagrange-Euler) kinematic description is introduced into the control equation system.The ALE description method is used to track free surface.Accurate formulations for calculating the normal vector on the free surface are presented.The discrete numerical equations by finite element method are developed by Galerkin weighted residual method.The boundary condition about free-surface tension is represented in the form of weak integration that can be computed by a differential geometry method derived in the present paper.The effect of contact angle is incorporated in the numerical algorithm.Furthermore, the numerical computations are performed and the comparison between computational and analytical results validated the effectiveness of the method.The results of this paper provide a fundamental understandings of the dynamics of liquid free surfaces,in which the surface tension and contact angle boundary conditions are taken into account.Finally,numerical simulation of largescale amplitude sloshing of liquid in a cylindrical container is performed and a numerical analysis of the effect of an annular ring-shaped rigid damping baffle on liquid sloshing oscillations in a cylindrical tank is also carried out.
Modeling and Testing of EVs - Preliminary Study and Laboratory Development
DEFF Research Database (Denmark)
Yang, Guang-Ya; Marra, Francesco; Nielsen, Arne Hejde
2010-01-01
impact at different geographical areas, as well as driving and charging patterns. Electric circuit model is deployed in this work to represent the electrical properties of a lithium-ion battery. This paper reports the preliminary modeling and validation work based on manufacturer data sheet and realistic......Electric vehicles (EVs) are expected to play a key role in the future energy management system to stabilize both supply and consumption with the presence of high penetration of renewable generation. A reasonably accurate model of battery is a key element for the study of EVs behavior and the grid...... tests, followed by the suggestions towards a feasible battery model for further studies....
Photodynamic therapy of port wine stain: preliminary clinical studies
Nelson, J. Stuart
1993-07-01
The broad, long term objective of this work is the development of Photodynamic Therapy (PDT) for application in the clinical management of patients with port wine stain (PWS). PDT involves the use of an exogenous drug which is concentrated in a targeted tissue. When irradiated at wavelengths specifically absorbed by the drug, selective destruction of the targeted tissue, without the production of heat, occurs. The results of this preliminary study demonstrate in human PWS patients that a photosensitizer, such as PHOTOFRINR, activated by red light at the appropriate therapeutic wavelength, can cause destruction of subsurface blood vessels in the skin with a high degree of specificity, and further study appears warranted.
Numerical study of dynamic phase transitions in shock tube
Institute of Scientific and Technical Information of China (English)
WANG Ping; TANG Shao-qiang
2007-01-01
Shock tube problem of a van der Waals fluid with a relaxation model was investigated. In the limit of relaxation parameter tending towards zero, this model yields a specific Riemann solver. Relaxing and relaxed schemes were derived. For an incident shock in a fixed tube, numerical simulations show convergence toward the Riemann solution in one space dimension. Impact of parameters was studied theoretically and numerically. For certain initial shock profiles, nonclassical reflecting wave was observed. In two space dimensions, the effect of curved wave fronts was studied, and some interesting wave patterns were exposed.
Numerical study of free-fall arches in hopper flows
Lin, P.; Zhang, S.; Qi, J.; Xing, Y. M.; Yang, L.
2015-01-01
Beverloo's law describes the flow rate of grains discharging from hoppers, where the assumption of a free-fall arch (FFA) is very useful in understanding the physical picture of this process. The FFA has been observed in previous experiments but a clear systematic study of the FFA is still necessary. In this paper, dense granular flow in hoppers was studied by numerical simulations, in attempts to explore the free-fall region and its boundary. Generally, the numerical simulation results support the free-fall arch assumption, although the statistical description of the FFA is not exactly equivalent to its strict definition.
Comparative study of variational chaos indicators and ODEs' numerical integrators
Darriba, Luciano A; Cincotta, Pablo M; Giordano, Claudia M
2012-01-01
The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indi...
Preliminary study on rockfall for Al Gayah site in Yemen
Institute of Scientific and Technical Information of China (English)
Aref M. O. Al-Jabali; WANG Xi-kui
2004-01-01
Studying the landslide and rockfall in Yemen still in its preliminary stage. Al Gayah rockfall site is a chronic problem as many other areas in the Republic of Yemen. The present authors have tried to highlight, and find best solution for this problem for the first time. Field work, collecting data and laboratory test for many rock samples such physical properties, chemical for major elements and thin section have been carried out. The physical properties performed according to ASTM, and then the result have been gotten and discussed.
MOLECULAR IDENTIFICATION AND GENOTYPING OF CIAUSCOLO AUTOCHTHONOUS MICROFLORA: PRELIMINARY STUDY
Directory of Open Access Journals (Sweden)
A. Petruzzelli
2011-01-01
Full Text Available The present study reports the results of a preliminary characterization of the bacterial population of Ciauscolo, a typical Italian fermented sausage, traditionally manufactured in Marche region. The bacterial community involved in Ciauscolo fermentation was investigated using both molecular and culturebased methods. The estimation of genotypic intra-species variation of the autochthonous bacteria isolated was also evaluated by using randomly amplified polymorphic DNA (RAPD analysis and unweighted pairgroup method with arithmetic averages (UPGMA cluster analysis. Our findings revealed an high diversity of the autochthonous bacterial population investigated, both at species and strain level.
Preliminary Studies on Chlorimuron Degradation in Soil by Effective Microogranisms
Institute of Scientific and Technical Information of China (English)
LIU Yaguang
2006-01-01
A wheat (Triticum aestivum L.) bioassay method was used for preliminary determination of chlorimuron degradation in soil by EM (effective microorganisms). Under the conditions of this study, chlorimuron half-life was greater than 30-50 days in soil containing different initial concentrations of chlorimuron. After adding EM, chlorimuron degradation half-life ranged from 10-15 days, which was about 15-30 days shorter than without EM. Chlorimuron phate and urea enhanced the ability of EM to degrade chlorimuron, but brown sugar had no significant effect.
Experimental, theoretical, and numerical studies of small scale combustion
Xu, Bo
Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number
NUMERICAL STUDY OF THE ABNORMAL TRACK OF TYPHOON MAGGIE
Institute of Scientific and Technical Information of China (English)
ZHANG Zhong-feng; LIU Qi-han; TUO Rui-fang
2006-01-01
Typhoon Maggie (1999) interacted with another tropical depression system and moved along a west-southwest track that is somewhat abnormal during its pre-landing stage. Two numerical experiments are carried out in this paper to study the effect of the interaction on the track of typhoon Maggie using the mesoscale numerical weather prediction model system with a tropical cyclone bogusing scheme developed by Center for Coastal and Atmospheric Research, the Hong Kong University of Science and Technology. Results show that the cyclone system interacting with Maggie is the main factor for the abnormal track of Maggie.
A Numerical/Experimental Study of Nitinol Actuator Springs
Auricchio, Ferdinando; Scalet, Giulia; Urbano, Marco
2014-07-01
This study deals with the numerical modeling, simulation and experimental analysis of shape-memory alloy (SMA) helicoidal springs. An experimental campaign is conducted on both SMA straight wires and helicoidal springs that experienced the same annealing process. Then, we use such experimental results to investigate three phenomenological constitutive models able to represent SMA macroscopic behavior. In particular, after the identification of all the material parameters from experimental results on SMA wires, we inspect the thermo-mechanical behavior of SMA helicoidal springs by comparing numerical predictions to experimental data. Finally, we discuss models capabilities and some aspects characterizing SMA material behavior.
Corporate Social Disclosures in Southeast Asia: A Preliminary Study
Directory of Open Access Journals (Sweden)
Juniati Gunawan
2012-12-01
Full Text Available The issue of Corporate Social Disclosure (CSD has been growing remarkably both in business and academic world. Inevitably, this topic is also exposed in Southeast Asia, a big region that plays important role in global economic issue. Applying a content analysis method, this paper aims to provide preliminary findings in CSD practices throughout the companies‟ annual reports in 2007 and 2008 for countries located in Southeast Asia. Samples were selected for listed and unlisted various type of industries, based on the information availability internet searching. The sample collection and the subjectivity during the content analysis process are the limitations in conducting this study. In general, the results show that „human resources‟ are the main information disclosed, while in contrast, „energy‟ is the main least issue disclosed in the annual reports. However, the findings need to be interpreted with considerations since there are limited in samples. Basically, the outcomes support the major prior studies and enhancing the discussion of CSD conducting in developing countries, while at the same time describing some countries which obtained very limited in exposures. To respond the vast increasing issues of CSD practice, this preliminary study has provided a basis to see the role of every country in CSR reporting and how they could support the sustainability development globally.
Numerical and Experimental Study of Pump Sump Flows
Directory of Open Access Journals (Sweden)
Wei-Liang Chuang
2014-01-01
Full Text Available The present study analyzes pump sump flows with various discharges and gate submergence. Investigations using a three-dimensional large eddy simulation model and an acoustic Doppler velocimeter are performed. Flow patterns and velocity profiles in the approaching flow are shown to describe the flow features caused by various discharges and gate submergence. The variation of a large-scale spanwise vortex behind a sluice gate is examined and discussed. The suction effect on approaching flow near the pipe column is examined using numerical modeling. To gain more understanding of the vortices variation, a comparison between time-averaged and instantaneous flow patterns is numerically conducted. Additionally, swirl angle, a widely used index for evaluating pump efficiency, is experimentally and numerically examined under various flow conditions. The results indicate that the pump becomes less efficient with increasing discharge and gate submergence. The fluctuation of the free surface over the pump sump is also discussed.
Interdisciplinary Study of Numerical Methods and Power Plants Engineering
Directory of Open Access Journals (Sweden)
Ioana OPRIS
2014-08-01
Full Text Available The development of technology, electronics and computing opened the way for a cross-disciplinary research that brings benefits by combining the achievements of different fields. To prepare the students for their future interdisciplinary approach,aninterdisciplinary teaching is adopted. This ensures their progress in knowledge, understanding and ability to navigate through different fields. Aiming these results, the Universities introduce new interdisciplinary courses which explore complex problems by studying subjects from different domains. The paper presents a problem encountered in designingpower plants. The method of solvingthe problem isused to explain the numerical methods and to exercise programming.The goal of understanding a numerical algorithm that solves a linear system of equations is achieved by using the knowledge of heat transfer to design the regenerative circuit of a thermal power plant. In this way, the outcomes from the prior courses (mathematics and physics are used to explain a new subject (numerical methods and to advance future ones (power plants.
Experimental and numerical study of an autonomous flap
Bernhammer, L.O.; Navalkar, S.T.; Sodja, J.; De Breuker, R.; Karpel, M.
2015-01-01
This paper presents the experimental and numerical study of an autonomous load alleviation concept using trailing edge flaps. The flaps are autonomous units, which for instance can be used for gust load alleviation. The unit is self-powered and self-actuated through trailing edge tabs which are moun
Numerical Studies of Homogenization under a Fast Cellular Flow
Iyer, Gautam
2012-09-13
We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.
Numerical analysis of electro-osmosis consolidation: a case study
Yuan, J.; Hicks, M.A.
2015-01-01
A numerical model for the design and analysis of electro-osmosis consolidation in soft clay is used to study a well-documented full-scale field test. The large-strain model, which considers coupled electro-osmosis flow, hydraulic flow and electric density flow in a deformable elasto-plastic porous m
A numerical study of cyclic behaviour of polar ice sheets
Oerlemans, J.
1983-01-01
Possible cyclic behaviour of polar ice sheets is studied with a numerical ice-flow model. The model includes a calculation of bedrock adjustment and temperature field in the ice sheet. Basal water is traced and affects ice-mass discharge. Relaxation oscillations occur only for low ice-accumulation r
A numerical study of cyclic behaviour of polar ice sheets
Oerlemans, J.
1983-01-01
Possible cyclic behaviour of polar ice sheets is studied with a numerical ice-flow model. The model includes a calculation of bedrock adjustment and temperature field in the ice sheet. Basal water is traced and affects ice-mass discharge. Relaxation oscillations occur only for low ice-accumulation r
Experimental and numerical study of pulsating transversal jets
Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.
2015-06-01
Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.
OPTICAL-PROPERTIES OF DISORDERED MOLECULAR AGGREGATES - A NUMERICAL STUDY
FIDDER, H; KNOESTER, J; WIERSMA, DA
1991-01-01
We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly
Optical properties of disordered molecular aggregates : A numerical study
Fidder, Henk; Knoester, Jasper; Wiersma, Douwe A.
1991-01-01
We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly
Preliminary design study of the TMT Telescope structure system: overview
Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry
2014-07-01
We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the
Nevada potential repository preliminary transportation strategy Study 2. Volume 1
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-02-01
The objectives of this study were to build on the findings of the Nevada Potential Repository Preliminary Transportation Strategy Study 1 (CRWMS M&O 1995b), and to provide additional information for input to the repository environmental impact statement (EIS) process. In addition, this study supported the future selection of a preferred rail corridor and/or heavy haul route based on defensible data, methods, and analyses. Study research did not consider proposed legislation. Planning was conducted according to the Civilian Radioactive Waste Management Program Plan (DOE 1994a). The specific objectives of Study 2 were to: eliminate or reduce data gaps, inconsistencies, and uncertainties, and strengthen the analysis performed in Study 1; develop a preliminary list of rail route evaluation criteria that could be used to solicit input from stakeholders during scoping meetings. The evaluation criteria will be revised based on comments received during scoping; restrict and refine the width of the four rail corridors identified in Study 1 to five miles or less, based on land use constraints and engineering criteria identified and established in Study 2; evaluate national-level effects of routing spent nuclear fuel and high-level waste to the four identified branch lines, including the effects of routing through or avoiding Las Vegas; continue to gather published land use information and environmental data to support the repository EIS; continue to evaluate heavy haul truck transport over three existing routes as an alternative to rail and provide sufficient information to support the repository EIS process; and evaluate secondary uses for rail (passenger use, repository construction, shared use).
Energy Technology Data Exchange (ETDEWEB)
Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander
2005-10-01
This report constitutes the third deliverable of LBNLs contracted role in the FERMI {at} Elettra Technical Optimization study. It describes proposed R&D activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac.
Biofouling in forward osmosis systems: An experimental and numerical study
Bucs, Szilard
2016-09-20
This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling. © 2016 Elsevier Ltd
Numerical study of acoustic modes in ducted shear flow
Vilenski, Gregory G.; Rienstra, Sjoerd W.
2007-11-01
The propagation of small-amplitude modes in an inviscid but sheared mean flow inside a duct is studied numerically. For isentropic flow in a circular duct with zero swirl and constant mean flow density the pressure modes are described in terms of the eigenvalue problem for the Pridmore-Brown equation. Since for sufficiently high Helmholtz and wavenumbers, which are of great interest for applications, the field equation is inherently stiff, special care is taken to insure the stability of the numerical algorithm designed to tackle this problem. The accuracy of the method is checked against the well-known analytical solution for uniform flow. The numerical method is shown to be consistent with the analytical predictions at least for Helmholtz numbers up to 100 and circumferential wavenumbers as large as 50, typical Mach numbers being up to 0.65. In order to gain further insight into the possible structure of the modal solutions and to obtain an independent verification of the robustness of the numerical scheme, comparison to the asymptotic solution of the problem based on the WKB method is performed. The asymptotic solution is also used as a benchmark for computations with high Helmholtz numbers, where numerical solutions of other authors are not available. The bulk of the analysis concentrates on the influence of the wall lining. The proposed numerical procedure is adapted in order to include Ingard-Myers boundary conditions. In parallel with this, the WKB solution is used to check the numerical predictions of the typical behaviour of the axial wavenumber in the complex plane, when the wall impedance varies in the complex plane. Numerical analysis of the problem with zero mean flow at the wall and acoustic lining shows that the use of Ingard-Myers condition in combination with an appropriate slip-stream approximation instead of the actual no-slip mean flow profile gives valid results in the limit of vanishing boundary-layer thickness, although the boundary layer
A PRELIMINARY STUDY OF STEREOSELECTIVITY OF MEFLOQUINE ENANTIOMERS IN RAT
Directory of Open Access Journals (Sweden)
E. Souri.
1998-08-01
Full Text Available Stereoselectivity of mefloquine enantiomers were studied in rats after oral administration of a single 50mg/Kg dose of the racemate. Pharmacokinetic parameters of (+-(RS-MFQ in blood and plasma showed no significant difference. The concentration, AUC , CLIF and VdlF of (+-(RS-enantiomerin blood were significantly higher than those for the (--(SR-enantiomer. Tlie results obtained from this study showed a reverse stereoselectivity of MFQ as compared with what reported for human. A very low amount of enantiomers excreted in urine and the excretion was not stereoselective. A preliminary study in different blood fractions showed that the accumulation of MFQ enantiomers in blood cells is stereoselective with a tendency of ( + -(RS-enatiomer for leukocytes and (--(SR-enantiomer for erythrocytes.
NUMERICAL STUDY OF FORWARD SMOLDERING COMBUSTION (in Spanish)
Rein, Guillermo; Torero, Jose Luis; Ellzey, Janet L.
2002-01-01
(in English) Abstract This paper presents the results from the numerical study of the forward smoldering combustion process. The study is based on the transient model developed at University of Texas at Austin but extended with some modifications. In the model, the equations of conservation of energy and mass are solved. The chemistry is represented by a simplified scheme which consists of three reactions. Equations are discretized in space and solved in time. Neither thermal nor che...
Numerical Study on Cryogenic Coflowing Jets under Transcritical Conditions
Tani, Hiroumi; Teramoto, Susumu; Okamoto, Koji; Yamanishi, Nobuhiro
2012-11-01
A numerical and experimental study is presented on cryogenic coflowing jets under transcritical conditions for a better understanding of the propellant mixing in supercritical-pressure rocket engines. The major concerns are dominant flow structures in the mixing of cryogenic coflowing jets under transcritical conditions. Experimentally, in advance of detailed numerical simulations, cryogenic nitrogen/gaseous nitrogen coaxial jets were visualized by the backlighting photography technique. It was observed that a dense nitrogen core has a shear-layer instability near the injector exit and eventually breaks up into large lumps which dissolve and fade away downstream. In numerical simulations, LES technique was employed for more detailed discussion on the flow structures. LES of a cryogenic nitrogen/gaseous nitrogen coflowing plane jet was conducted with the same density and velocity ratios of inner/outer jets as the experiments. As observed in the experiments, the shear-layer instability in the inner mixing layers is predominant near the injector exit. After roll-up and paring, the shear-layer instability waves become large-scale vortices. They cause coherent vortex structures which become dominant in the downstream and break the dense core into lumps. Strouhal numbers of the shear-layer instability and the dense lump shedding in the numerical simulations were comparable to those measured in the experiments, respectively.
Preliminary Studies for Three Experiments at Treiman-Yang Criterion
Kres, I. V.; Kondratyev, V. N.; Cherubini, S.; Spitaleri, C.
2016-05-01
Nuclear reactions with three bodies in their final state may proceed through different reaction mechanisms. The Feynman graph technique has been widely used to describe such reactions. However, it is very difficult in general to select the graphs that dominate in given process. The Treiman-Yang criterion is one of the most powerful experimental tests for verifying the pole approximation prediction when describing a quasi-free reaction mechanism. We propose the theoretical study of the H2(B10, α Be7)ns, H1(B11, α1α2)αs, He3(Be9, α1α2)αs reactions at different energies. The preliminary study helps to check the existence of a QF channel by using the TY creterion.
Recurrent laryngeal nerve histopathology in spastic dysphonia: a preliminary study.
Dedo, H H; Izdebski, K; Townsend, J J
1977-01-01
Spastic dysphonia is a severe voice disorder ordinarily described as psychogenic. Organic-neurologic changes secondary to central or peripheral nervous system involvement have also been postulated and led recently to the surgical treatment of spastic dysphonia by unilateral section of the recurrent laryngeal nerve (RLN). This study reports the histologic findings from these resections of the RLN from patients with an average 9.5 years duration of spastic dysphonia. Thirty percent of the RLNs examined demonstrated significant abnormalities as compared to age-matched controls. Although no reactive changes were noted by light microscopy, groups of fibers which did not stain for myelin or axons were found in RLNs from patients with spastic dysphonia. A preliminary ultrastructural study of these areas in one RLN revealed sheets of unmyelinated axons. These findings suggest an organic basis for spastic dysphonia at least in some patients.
First Breath prenatal smoking cessation pilot study: preliminary findings.
Jehn, Lisette; Lokker, Nicole; Matitz, Debra; Christiansen, Bruce
2003-01-01
Despite the many dangers associated with smoking during pregnancy, it remains a salient public health problem for Wisconsin women. The First Breath pilot program was developed in an attempt to reduce rates of smoking during pregnancy among low-income women. Preliminary results suggest that the First Breath counseling-based approach is effective, with a quit rate of 43.8% among First Breath enrollees at 1 month postpartum. Women receiving First Breath cessation counseling also had higher quit rates at every measurement period versus women in a comparison group who were receiving whatever cessation care was available in their county in the absence of First Breath. The First Breath pilot study has demonstrated success in helping pregnant women quit smoking and in creating a model for integration of cessation services into prenatal health care service provision. It is through this success that First Breath is expanding beyond the pilot study stage to a statewide program in 2003.
Precessing jets and molecular outflows a 3-D numerical study
Cliffe, J A; Frank, Adam
1996-01-01
We present 3-D numerical hydrodynamical simulations of precessing supersonic heavy jets to explore how well they serve as a model for generating molecular outflows from Young Stellar Objects. The dynamics are studied with a number of high resolution simulations on a Cartesian grid (128x128x128 zones) using a high order finite difference method. A range of cone angles and precession rates were included in the study. Two higher resolution runs (256x256x256 zones) were made for comparison in order to confirm numerical convergence of global flow characteristics. Morphological, kinematical and dynamical characteristics of precessing jets are described and compared to important properties of straight jets and also to observations of YSOs. In order to examine the robustness of precessing jets as a mean to produce molecular outflows around Young Stellar Objects, ``synthetic observations'' of the momentum distributions of the simulated precessing jets are compared to observations of molecular outflows. It is found tha...
Numerical studies of entangled PPT states in composite quantum systems
Leinaas, Jon Magne; Sollid, Per Oyvind
2010-01-01
We report here on the results of numerical searches for PPT states with specified ranks for density matrices and their partial transpose. The study includes several bipartite quantum systems of low dimensions. For a series of ranks extremal PPT states are found. The results are listed in tables and charted in diagrams. Comparison of the results for systems of different dimensions reveal several regularities. We discuss lower and upper bounds on the ranks of extremal PPT states.
Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study
Burt, G.; Samsonov, S. V.; Ronald, K.; Denisov, G. G.; Young, A. R.; Bratman, V. L.; Phelps, A. D.; Cross, A. W.; Konoplev, I. V.; He, W.; Thomson, J.; Whyte, C. G.
2004-10-01
Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared.
APPLICATION OF NUMERICAL SIMULATION TO STUDY ON THERMAL CONDUCTION
Institute of Scientific and Technical Information of China (English)
C. Zhu; Z. Xu; D.E. Wu
2004-01-01
In this paper, using computer simulation and mathematic experiment method to solve the simplified one dimensional thermal conduction equation and to obtain the temperature distribution in a metal bar when its one end was heated. According to principle of hot expansion, a holograph of temperature distribution in the bar by laser holotechnique was taken. The results of numerical simulation and experiments are in good agreement and a new method for study on thermal conduction by laser holo-technique was found.
Numerical study of Cosmic Ray Diffusion in MHD turbulence
Beresnyak, A.; Yan, H.; Lazarian, A.
2010-01-01
We study diffusion of Cosmic Rays (CRs) in turbulent magnetic fields using test particle simulations. Electromagnetic fields are produced in direct numerical MHD simulations of turbulence and used as an input for particle tracing, particle feedback on turbulence being ignored. Statistical transport coefficients from the test particle runs are compared with earlier analytical predictions. We find qualitative correspondence between them in various aspects of CR diffusion. In the incompressible ...
Numerical study of a steel sub-frame in fire
Santiago, Aldina; Da Silva, Luís Simões; Real, Paulo Vila; Veljkovic, Milan, ed. lit.
2008-01-01
Steel framed buildings are generally designed with "simple" shear-resisting connections, and lateral forces are resisted by vertical bracing and shear walls. When a beam is considered then the effects of the longitudinal restraints by the adjacent structure and the rotational restraint by the connections has to be taken into account. Because of structural interaction, the beam behaviour at elevated temperature is rather complex. This paper presents a numerical parametric study of a structural...
Numerical study of reservoir cooling by means of peltier effect
Farias, Rodrigo Martins; Santos, Elizaldo Domingues dos; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira
2008-01-01
The present work studies numerically and experimentally the water cooling process by means of natural convection inside a closed reservoir. The cooling process is performed by Peltier or Thermoelectric effect. The purpose here is to obtain the thermal gradient inside the reservoir and to search for the best point where the coldest water can be extracted from the reservoir, which can be considered a geometric optimization of the device thermal design. The analyzed flow is incompressible, lamin...
NUMERICAL STUDY ON TUNNELING SPLITTING IN BIAIXAL SPIN SYSTEMS
Institute of Scientific and Technical Information of China (English)
CHEN ZHI-DE; ZHANG SHU-QUN
2000-01-01
Numerical study on tunneling splitting in biaxial spin systems is done by performing diagonalization of the Hamilton operator.It is found that the calculated energy splitting agrees quantitatively with theoretical prediction of instanton method.Our result shows that both the instanton method and the large spin limit work well for the total spin around 10.By including the fourth-order term in Hamiltonian,experimental observation can be re-covered quantitatively.
Experimental and numerical study on fragmentation of steel projectiles
Directory of Open Access Journals (Sweden)
Hopperstad O.S.
2012-08-01
Full Text Available A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.
Primate phylogeny studied by comparative determinant analysis. A preliminary report.
Bauer, K
1993-01-01
In this preliminary report the divergence times for the major primate groups are given, calculated from a study by comparative determinant analysis of 69 proteins (equaling 0.1% of the whole genetic information). With an origin of the primate order set at 80 million years before present, the ages of the last common ancestors (LCAs) of man and the major primate groups obtained this way are as follows: Pan troglodytes 5.2; Gorilla gorilla 7.4; Pongo pygmaeus 19.2; Hylobates lar 20.3; Old World monkeys 31.4; Lagothrix lagotricha 46.0; Cebus albifrons 59.5; three lemur species 67.0, and Galago crassicaudatus 73.3 million years. The LCA results and the approach are shortly discussed. A full account of this extended investigation including results on nonprimate mammals and on the determinant structures and the immunologically derived evolutionary rates of the proteins analyzed will be published elsewhere.
PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER
Institute of Scientific and Technical Information of China (English)
Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat
2012-01-01
A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3％) on the surface.
Proscriptive Bayesian Programming and Maximum Entropy: a Preliminary Study
Koike, Carla Cavalcante
2008-11-01
Some problems found in robotics systems, as avoiding obstacles, can be better described using proscriptive commands, where only prohibited actions are indicated in contrast to prescriptive situations, which demands that a specific command be specified. An interesting question arises regarding the possibility to learn automatically if proscriptive commands are suitable and which parametric function could be better applied. Lately, a great variety of problems in robotics domain are object of researches using probabilistic methods, including the use of Maximum Entropy in automatic learning for robot control systems. This works presents a preliminary study on automatic learning of proscriptive robot control using maximum entropy and using Bayesian Programming. It is verified whether Maximum entropy and related methods can favour proscriptive commands in an obstacle avoidance task executed by a mobile robot.
Mathematical modeling of normal pharyngeal bolus transport: a preliminary study.
Chang, M W; Rosendall, B; Finlayson, B A
1998-07-01
Dysphagia (difficulty in swallowing) is a common clinical symptom associated with many diseases, such as stroke, multiple sclerosis, neuromuscular diseases, and cancer. Its complications include choking, aspiration, malnutrition, cachexia, and dehydration. The goal in dysphagia management is to provide adequate nutrition and hydration while minimizing the risk of choking and aspiration. It is important to advance the individual toward oral feeding in a timely manner to enhance the recovery of swallowing function and preserve the quality of life. Current clinical assessments of dysphagia are limited in providing adequate guidelines for oral feeding. Mathematical modeling of the fluid dynamics of pharyngeal bolus transport provides a unique opportunity for studying the physiology and pathophysiology of swallowing. Finite element analysis (FEA) is a special case of computational fluid dynamics (CFD). In CFD, the flow of a fluid in a space is modeled by covering the space with a grid and predicting how the fluid moves from grid point to grid point. FEA is capable of solving problems with complex geometries and free surfaces. A preliminary pharyngeal model has been constructed using FEA. This model incorporates literature-reported, normal, anatomical data with time-dependent pharyngeal/upper esophageal sphincter (UES) wall motion obtained from videofluorography (VFG). This time-dependent wall motion can be implemented as a moving boundary condition in the model. Clinical kinematic data can be digitized from VFG studies to construct and test the mathematical model. The preliminary model demonstrates the feasibility of modeling pharyngeal bolus transport, which, to our knowledge, has not been attempted before. This model also addresses the need and the potential for CFD in understanding the physiology and pathophysiology of the pharyngeal phase of swallowing. Improvements of the model are underway. Combining the model with individualized clinical data should potentially
Numerical simulations of Kelvin-Helmholtz instability: a two-dimensional parametric study
Tian, Chunlin
2016-01-01
Using two-dimensional simulations, we numerically explore the dependences of Kelvin-Helmholtz instability upon various physical parameters, including viscosity, width of sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirm that the linear coupling between magnetic field and Kelvin-Helmholtz modes is negligible if the magnetic field is weak enough. The morphological behaviour suggests that the multi-vortex coalescence might be driven by the underlying wave-wave interaction. Based on these results, we make a preliminary discussion about seve...
An experimental and numerical study of water jet cleaning process
Guha, Anirban; Balachandar, Ram
2010-01-01
In this paper, we have experimentally, numerically and theoretically investigated the water jet cleaning process. Very high speed water jets (~80-200 m/s) are used in such cleaning operations. These jets diffuse in the surrounding atmosphere by the process of air entrainment and this contributes to the spreading of the jet and subsequent decay of pressure. Estimation of this pressure decay and subsequent placement of the cleaning object is of paramount importance in manufacturing and material processing industries. Also, the pressure distribution on the cleaning surface needs to be assessed in order to understand and optimize the material removal process. Experimental study is performed to understand the pressure characteristics. A Semi-empirical model for capturing the air entrainment has been added to the commercial CFD package FLUENT. The simulation results are validated against ours as well as previous experimental findings. The numerical results have shown that the optimal stand-off distance in cleaning ...
Numerical studies towards practical large-eddy simulation
Institute of Scientific and Technical Information of China (English)
J. Boudet; J. Caro; L. Shao; E. Lévêque
2007-01-01
Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra.Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine.
Numerical study of the laminar shock boundary layer interaction
Katzer, E.
1985-02-01
The interaction of an oblique shock wave with a laminar boundary layer on an adiabatic flat plate was analyzed numerically with solutions of the two dimensional Navier-Stokes equations using McCormack's explicit finite volume method. The agreement between numerical calculations and experimental results is good. Local and global properties of the interaction region are discussed regarding shock strength, separation bubble length using a similarity law, and separation environment. The asymetrical structure inside the separation bubble produces an asymetrical shape of the wall shear stress distribution. The calculation speed was increased by algorithm vectorization on a CRAY 1S supercomputer. Further investigations for determination of a similarity law in interaction with turbulent boundary layer, of the physical mechanisms of the laminar interaction, and for study of the wall temperature transfer are recommended.
A numerical study of natural convection in eccentric spherical annuli
Gallegos, Angel; Malaga, Carlos
2016-11-01
A fluid between two spheres, concentric or not, at different temperatures will flow in the presence of a constant gravitational force. Although there is no possible hydrostatic state, energy transport is dominated by diffusion if temperature difference between the spheres is small enough. By the use of a full three-dimensional thermal lattice Boltzmann model we study the transition between the conductive, the steady convective, and the unsteady convective regimes. We use the concentric case to validate the results by comparing with experiments and numerical simulations found in the literature, and then we extend our numerical experiments to the eccentric case to observe the general behavior of the different regimes. We analyze the energy transport characterized by the relation between Nusselt and Rayleigh numbers as well as the arising flow patterns. This work was partially supported by UNAM-DGAPA-PAPIIT Grant Number IN115216.
Numerical Relativity as a Tool for Studying the Early Universe
Directory of Open Access Journals (Sweden)
David Garrison
2014-01-01
Full Text Available Numerical simulations are becoming a more effective tool for conducting detailed investigations into the evolution of our universe. In this paper, we show how the framework of numerical relativity can be used for studying cosmological models. The author is working to develop a large-scale simulation of the dynamical processes in the early universe. These take into account interactions of dark matter, scalar perturbations, gravitational waves, magnetic fields, and turbulent plasma. The code described in this report is a GRMHD code based on the Cactus framework and is structured to utilize one of several different differencing methods chosen at run-time. It is being developed and tested on the University of Houston’s Maxwell cluster.
Numerical and experimental study of rotating jet flows
Shin, Seungwon; Che, Zhizhao; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir
2015-11-01
Rotating jets are investigated through experimental measurements and numerical simulations. The experiments are performed on a rotating jet rig and the effects of a range of parameters controlling the liquid jet are investigated, e.g. jet flow rate, rotation speed, jet diameter, etc. Different regimes of the jet morphology are identified, and the dependence on several dimensionless numbers is studied, e.g. Reynolds number, Weber number, etc. The breakup process of droplets is visualized through high speed imaging. Full three-dimensional direct numerical simulations are performed using BLUE, a massively parallel two-phase flow code. The novel interface algorithms in BLUE track the gas-liquid interface through a wide dynamic range including ligament formation, break up and rupture. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Numerical Relativity as a tool for studying the Early Universe
Garrison, David
2012-01-01
Numerical simulations are becoming a more effective tool for conducting detailed investigations into the evolution of our universe. In this article, we show how the framework of numerical relativity can be used for studying cosmological models. The author is working to develop a large-scale simulation of the dynamical processes in the early universe. These take into account interactions of dark matter, scalar perturbations, gravitational waves, magnetic fields and a dynamic plasma. The code described in this report is a GRMHD code based on the Cactus framework and is structured to utilize one of several different differencing methods chosen at run-time. It is being developed and tested on the Texas Learning and Computation Center's Xanadu Cluster.
Numerical study on multiphase flows induced by wall adhesion
Energy Technology Data Exchange (ETDEWEB)
Myong, Hyon Kook [Kookmin Univ., Seoul (Korea, Republic of)
2012-07-15
The present paper presents a numerical study on multiphase flows induced by wall adhesion. The continuum surface force (CSF) model with the wall adhesion boundary condition model is used for calculating the surface tension force; this model is implemented in an in house solution code (PowerCFD). The present method (code) employs an unstructured cell centered method based on a conservative pressure based finite volume method with a volume capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. The effects of wall adhesion are then numerically simulated by using the present method for a shallow pool of water located at the bottom of a cylindrical tank with no external forces such as gravity. Two different cases are computed, one it which the water wets the wall and one in which the water does not wet the wall. It is found that the present method efficiently simulates the surface tension dominant multiphase flows induced by wall adhesion.
Analytical and Numerical Studies of Sloshing in Tanks
Energy Technology Data Exchange (ETDEWEB)
Solaas, F.
1995-12-31
For oil cargo ship tanks and liquid natural gas carriers, the dimensions of the tanks are often such that the highest resonant sloshing periods and the ship motions are in the same period range, which may cause violent resonant sloshing of the liquid. In this doctoral thesis, linear and non-linear analytical potential theory solutions of the sloshing problem are studied for a two-dimensional rectangular tank and a vertical circular cylindrical tank, using perturbation technique for the non-linear case. The tank is forced to oscillate harmonically with small amplitudes of sway with frequency in the vicinity of the lowest natural frequency of the fluid inside the tank. The method is extended to other tank shapes using a combined analytical and numerical method. A boundary element numerical method is used to determine the eigenfunctions and eigenvalues of the problem. These are used in the non-linear analytical free surface conditions, and the velocity potential and free surface elevation for each boundary value problem in the perturbation scheme are determined by the boundary element method. Both the analytical method and the combined analytical and numerical method are restricted to tanks with vertical walls in the free surface. The suitability of a commercial programme, FLOW-3D, to estimate sloshing is studied. It solves the Navier-Stokes equations by the finite difference method. The free surface as function of time is traced using the fractional volume of fluid method. 59 refs., 54 figs., 37 tabs.
A numerical study on liquid charging inside electrostatic atomizers
Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad
2016-11-01
The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.
A Study of Eddy Viscosity Coefficient in Numerical Tidal Simulation
Institute of Scientific and Technical Information of China (English)
陈永平; 雷智益
2001-01-01
Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of theBoussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly.A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (AH). The computed result shows that AH has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near thespur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical modelrespectively to study the effect of vertical eddy viscosity coefficient (AV). The computed result shows that the absolute value of AV is inversely proportional to that of horizontal velocity, and the vertical gradient value of AV determines the ver-tical distribution of horizontal velocity. The distribution form of AV is theoretically recommended as a parabolic type, ofwhich the maximum value appears at 0.5 H.
Numerical Study of U-beam Inertial Separator
Institute of Scientific and Technical Information of China (English)
L.H. Chen; J.R. Fan; K.F. Cen
2001-01-01
A detailed parametric study is conducted on three-dimensional gas-solid multiphase flow characteristics in inertial separators via numerical simulation. The carrier phase is treated in the Eulerian frame, the particles are tracked in the Lagrangian frame, and particle-wall collision and particle-particle collision are considered. The inertial separators are made out of U-beam tube, arranged staggered .The separator has good performance for large particles and its compact structures make it easy to manufacture and install. The simulation is carried out in different inflow rate and provide the pressure losses in the separators, velocity field of gas phase, the trajectories of particles and the separation efficiency of separators. The result from this study not only shows the multiphase flow-dynamic characteristics of the separators, but also gives the relationship among the efficiency, structure and pressure losses of the separator. The comparison between the numerical simulation result and experimental data demonstrate the reliability of the numerical simulation.
Prescription-event monitoring. A preliminary study of benoxaprofen and fenbufen.
Inman, W H
1984-01-01
Prescription-Event Monitoring (PEM) has been established at the Drug Surveillance Research Unit of the University of Southampton as a low-cost technique for ascertaining the pattern of events, whether drug-related or not, in large general practice cohorts. The reporting of "events" without the need for an opinion about the probability that they may be adverse drug reactions (ADRs) removes much of the uncertainty inherent in voluntary ADR reporting systems. Numerators (adverse events) and denominators (the number of prescriptions), enable estimates of incidence to be derived from the data. Where related drugs are studied concurrently, differences in the pattern of events may signal important differences in their safety or efficacy . A successful large-scale preliminary exercise involving nearly 9 000 doctors and 16 000 patients is described.
Numerical studies of transverse curvature effects on transonic flow stability
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Numerical study of forced convective heat transfer around airships
Dai, Qiumin; Fang, Xiande
2016-02-01
Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.
A Numerical Study on Wave-Mud Interaction
Institute of Scientific and Technical Information of China (English)
ZHANG Dao-hua; NG Chiu-on
2006-01-01
Presented in this paper is a numerical study on the interaction of progressive waves propagating in a body of water overlying a layer of viscous fluid mud on the bottom, with emphasis placed on the induced oscillatory motion of the water-mud interface. The fully nonlinear Navier-Stokes equations with the complete set of viscous boundary conditions are solved numerically by a finite difference method that is based on a time-dependent boundary-fitted curvilinear coordinate system, for the simulation of wave motion in the two-layer viscous fluid system. Waves of moderate wavelength are generated in the upper water layer by a numerical flap-type wavemaker. The dynamic pressure due to the surface wave is transmitted downward onto the lower layer, generating wave motion on the interface. On mimicking some reported experimental conditions, the ratio of interfacial to surface wave amplitudes is evaluated and the results are found to compare more favorably with the experimental data than the prediction by a linear theory.
Theoretical and Numerical Study of Nonlinear Phononic Crystals
Guerder, Pierre-Yves
This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.
Preliminary studies on the optimization of countermeasures for agricultural areas
Energy Technology Data Exchange (ETDEWEB)
Rochedo, Elaine R.R.; Igreja, Eduardo; Barboza, Adriana E., E-mail: elainerochedo@gmail.com, E-mail: eduigreja@gmail.com, E-mail: adrianaebarboza@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Silva, Diogo N.G. da; Guimaraes, Jean R.D., E-mail: diogons@gmail.com, E-mail: jeanrdg@biof.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Biofisica Carlos Chagas Filho; Wasserman, Maria Angelica V., E-mail: mwasserman@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Perez, Daniel V. [Centro Nacional de Pesquisa de Solos (EMBRAPA), Rio de Janeiro, RJ (Brazil)
2015-07-01
The assessment of remediation measures for rural areas is more complex than that for urban ones, due to the influence of large number of variables associated with climate, diet, farming practices and the type of soil. Thus, it is not possible to perform generic studies applicable to all types of area. Specific studies and surveys should be made in the areas most likely to contamination from a nuclear accident. Preliminary studies demonstrated that the different soil types in Brazil is more relevant to the ingestion dose than the regional differences in diets. Other studies have described the prioritization of areas and products for detailed survey on soil types and remediation procedures, for an accident at the NPP in Angra dos Reis, based on radiological and economic aspects. The most relevant product was milk, due to both its relevance to the intake and the loss of income for the counties. The contribution of milk to dose depends on the season of the year when the accident occurs, mainly due to the relative contribution of other items of the diet. The timing of the application of the countermeasure has an important effect on the dose reduction that can be achieved. For I-131, protective measures must be considered within the emergency phase in order to be effective. The main action on reducing ingestion doses is the removal of food items from diet, while providing clean food to the population. (author)
Comparative numerical and experimental study of two combined wind and wave energy concepts
Directory of Open Access Journals (Sweden)
Zhen Gao
2016-01-01
Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the
Numerical and experimental studies of droplet-gas flow
Energy Technology Data Exchange (ETDEWEB)
Joesang, Aage Ingebret
2002-07-01
This thesis considers droplet-gas flow by the use of numerical methods and experimental verification. A commercial vane separator was studied both numerical and by experiment. In addition some efforts are put into the numerical analysis of cyclones. The experimental part contains detailed measurements of the flow field between a pair of vanes in a vane separator and droplet size measurements. LDA (Laser Doppler Anemometry) was used to measure the velocity in two dimensions and corresponding turbulence quantities. The results from the LDA measurements are considered to be of high quality and are compared to numerical results obtained from a CFD (Computational Fluid Dynamics) analysis. The simulation showed good agreement between the numerical and experimental results. Combinations of different turbulence models; the standard k-epsilon model and the Reynold Stress Mode, different schemes; first order and higher order scheme and different near wall treatment of the turbulence; the Law of the wall and the Two-Layer Zonal model were used in the simulations. The Reynold Stress Model together with a higher order scheme performed rather poorly. The recirculation in parts of the separator was overpredicted in this case. For the other cases the overall predictions are satisfactory. PDA (Phase Doppler Anemometry) measurements were used to study the changes in the droplet size distribution through the vane separator. The PDA measurements show that smaller droplets are found at the outlet than present at the inlet. In the literature there exists different mechanisms for explaining the re-entrainment and generation of new droplets. The re-entrainments mechanisms are divided into four groups where droplet-droplet interaction, droplet break-up, splashing of impinging droplet and re-entrainment from the film are defined as the groups of re-entrainment mechanisms. Models for these groups are found in the literature and these models are tested for re-entrainment using the operational
Numerical study of Q-ball formation in gravity mediation
Energy Technology Data Exchange (ETDEWEB)
Hiramatsu, Takashi; Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takahashi, Fuminobu, E-mail: hiramatz@icrr.u-tokyo.ac.jp, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the universe, The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan)
2010-06-01
We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q{sup 3D}{sub peak} ≅ 1.9 × 10{sup −2}(|Φ{sub in}|/m){sup 2}, which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past.
Density matrix renormalization group numerical study of the kagome antiferromagnet.
Jiang, H C; Weng, Z Y; Sheng, D N
2008-09-12
We numerically study the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice using the density-matrix renormalization group method. We find that the ground state is a magnetically disordered spin liquid, characterized by an exponential decay of spin-spin correlation function in real space and a magnetic structure factor showing system-size independent peaks at commensurate magnetic wave vectors. We obtain a spin triplet excitation gap DeltaE(S=1)=0.055+/-0.005 by extrapolation based on the large size results, and confirm the presence of gapless singlet excitations. The physical nature of such an exotic spin liquid is also discussed.
Numerical studies on divertor plasmas in helical systems
Energy Technology Data Exchange (ETDEWEB)
Ueda, Noriaki (Mitsubishi Atomic Power Industries, Inc., Tokyo (Japan)); Itoh, Kimitaka; Itoh, Sanae
1989-12-01
Scrape-off layer and divertor plasmas in helical systems are studied by using the two-dimensional (2D) numerical simulation code. Unified edge divertor analysis code (UEDA code) is applied to the straight helical model of torsatron/helical heliotron configurations. 2D profiles of plasma parameter, neutrals and impurities are obtained. Erosion rate and neutral back flow rate to the core plasma are also evaluated. Various shapes of the buffle plate are examined from the view point of the establishment of 'dense-cold divertor plasma' by which we can avoid the damage of the target plate. (author).
Preliminary studies to determine the shelf life of HEPA filters
Energy Technology Data Exchange (ETDEWEB)
Gilbert, H.; Fretthold, J.K.; Rainer, F. [Lawrence Livermore National Laboratory, CA (United States)] [and others
1995-02-01
We have completed a preliminary study using filter media tests and filter qualification tests to investigate the effect of shelf-life on HEPA filter performance. Our media studies showed that the tensile strength decreased with age, but the data were not sufficient to establish a shelf-life. Thermogravimetric analyses demonstrated that one manufacturer had media with low tensile strength due to insufficient binder. The filter qualification tests (heated air and overpressure) conducted on different aged filters showed that filter age is not the primary factor affecting filter performance; materials and the construction design have a greater effect. An unexpected finding of our study was that sub-standard HEPA filters have been installed in DOE facilities despite existing regulations and filter qualification tests. We found that the filter with low tensile strength failed the overpressure test. The same filter had passed the heated air test, but left the filter so structurally weak, it was prone to blow-out. We recommend that DOE initiate a filter qualification program to prevent this occurrence.
Caligula-Christ: Preliminary Study of a Parallel
Directory of Open Access Journals (Sweden)
Lorene M. Birden
2010-01-01
Full Text Available Caligula, at the very beginning of the Albert Camus play, conceives a very ambitious project; to surpass the gods and take their place in his empire, in order to decree impossibility. Camus has, however, gone a step further in developing the god-image of his main character through the incorporation of much Christian imagery into the scenes. This aspect of the play seems not to have been noticed by Camus scholars; there is no in-depth study of the use of this imagery. However, Camus scholar Patricia Johnson and the members of the Société des études camusiennes have noted the usefulness of the analysis presented here and the absence of it in previous research. This study, designated as “preliminary,” attempts to prompt further analyses of the question and offers different approaches. It proceeds by intertextual study of Caligula and the gospels (here referred to in Revised Standard Version and brings out aspects of the emperor’s intentions that expose a combination of perversion and similarity in relation to deity. It briefly outlines the sources of this parallel and the reasons for creating it, then details the parallels that show first the reversal of the image of Jesus, then the striking consonance. It ends with interpretations of the parallels and concludes with commentaries on the use of irony to create them.
Energy Technology Data Exchange (ETDEWEB)
Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Stigsson, Martin; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)
2004-12-01
SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden, Forsmark and Simpevarp. The investigations started in 2002 and have been planned since the late 1990s. The work presented here investigates the possibility of using hydrogeochemical measurements in deep boreholes to reduce parameter uncertainty in a regional modelling of groundwater flow in fractured rock. The work was conducted with the aim of improving the palaeohydrogeological understanding of the Simpevarp area and to give recommendations to the preparations of the next version of the Preliminary Site Description (1.2). The study is based on a large number of numerical simulations of transient variable density groundwater flow through a strongly heterogeneous and anisotropic medium. The simulations were conducted with the computer code DarcyTools, the development of which has been funded by SKB. DarcyTools is a flexible porous media code specifically designed to treat groundwater flow and salt transport in sparsely fractured crystalline rock and it is noted that some of the features presented in this report are still under development or subjected to testing and verification. The simulations reveal the sensitivity of the results to different hydrogeological modelling assumptions, e.g. the sensitivity to the initial groundwater conditions at 10,000 BC, the size of the model domain and boundary conditions, and the hydraulic properties of deterministically and stochastically modelled deformation zones. The outcome of these simulations was compared with measured salinities and calculated relative proportions of different water types (mixing proportions) from measurements in two deep core drilled boreholes in the Laxemar subarea. In addition to the flow simulations, the statistics of flow related transport parameters were calculated for particle flowpaths from repository depth to ground surface for two subareas within the
Numerical Studies On Bubble Pump With Alternate Working Fluids
Directory of Open Access Journals (Sweden)
L. Bruno Augustin
2013-10-01
Full Text Available The importance of energy conservation in the context of growing global population and dwindling fossil fuel resources cannot be overemphasized. Energy can be conserved by using it more efficiently. The energy spent for an application should be of the correct amount and type. It would make more sense to spend heat energy for heating rather than the high grade electricity as most of the electric power in the world is generated from driving heat engines, for which heat is supplied from the combustion of fossil fuels. At the same time, depletion of these conventional resources also poses a serious problem in meeting energy requirements. In this paper, the bubble pump, which is an integral part of diffusion- absorption refrigeration system, has been investigated numerically .A thermally driven bubble pump, which can be powered by solar thermal energy, is used to lift the liquid. The bubble pump runs on solar energy and reduces the amount of energy spent by replacing the compressor in conventional vapour absorption refrigeration system. As a result of the absence of any mechanical moving part, the refrigerator is silent and very reliable in addition to an economical and environmental friendly device. The concept of such a pump is already in existence but optimization studies are yet to be extensively investigated. This paper deals with the comparison of various parameters of the bubble pump using water and Nonane as the working fluid. Numerical simulation of the bubble pump is carried out using simple numerical equations which assume slug flow in the bubble pump. The mass flow rate, the sensible heating time and position of heating element are varied and the effect it has on diameter of the pipe, pumping ratio and the heat required is studied for both the working fluids
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-12-15
A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive
A Preliminary Study on Gender Differences in Studying Systems Analysis and Design
Lee, Fion S. L.; Wong, Kelvin C. K.
2017-01-01
Systems analysis and design is a crucial task in system development and is included in a typical information systems programme as a core course. This paper presented a preliminary study on gender differences in studying a systems analysis and design course of an undergraduate programme. Results indicated that male students outperformed female…
Wastewater characterization of IPEN facilities - a preliminary study
Energy Technology Data Exchange (ETDEWEB)
Monteiro, Lucilena R.; Goncalves, Cristina; Terazan, Wagner R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: lrmonteiro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
As part of IPEN's Environmental Monitoring Program, wastewater sample collection and analysis was implemented on a daily basis. CQMA- Centro de Quimica e Meio Ambiente was responsible for the determination of total, fixed and volatile solids, pH, metals (as Al, Sb, Ba, Cd, Pb, Co, Cu, Cr, Hg, Mo, Ni, Ag, Na, Zn, Ca, Mg, Be, Sn, Li, K, Sr, Ti and V), semimetals (As, B, Se and Si) and anions (such as chloride, nitrate, sulfate and fluoride). The results were compared to the legal values established by the Sao Paulo State regulation 8,468/76, which defines the maximum permitted values for most of the studied substances in wastewater, aiming its releasing in public wastewater treatment system. The evaluation of this parameters concentration on Ipen's effluent implies that 50% of the wastewater corresponds to organic matter due to the sanitary load and inorganic macro elements, mainly as sodium, potassium, calcium. The only parameter not found in accordance with Brazilian legislation was pH in four out of the one hundred and seven samples collected throughout 2009 (2.8% of the samples analyzed). This preliminary study showed the effluents generated at Ipen's facility is characterized by the presence of organic matter and macro elements, commonly found in sanitary wastewater and it is in compliance with Sao Paulo regulations. (author)
Effects of gamma radiation on bee venom: preliminary studies
Energy Technology Data Exchange (ETDEWEB)
Costa, H.; Boni-Mitake, M.; Souza, C.F.; Rogero, J.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia
1999-11-01
Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. several works utilizing ionizing radiation showed that it is able to modify protein structures, and successfully detoxify snake venoms toxins, although maintaining its immunological properties. The main objective of this paper was to study the effects of gamma radiation on bee venom, regarding some biochemical and toxicological aspects. Africanized Apis melllifera whole venom (2 mg/ml) in 0.15 M Na Cl solution was irradiated with 2 kGy in a {sup 60} Co source. Preliminary studies has been carried out in order to identify some biochemical changes after irradiation. Concerning this, irradiated and native venom were submitted to a molecular exclusion chromatography (Sephadex G-100), UV absorption spectrum and protein concentration analysis. It could be seen that irradiated bee venom spectrum presented differences when compared to native bee venom, suggesting that some structural alterations has occurred. Protein concentration and chromatography profiles were not changes after irradiation. In order to evaluate the toxicity a lethality assay (L D{sub 50}) has been performed with both venoms, and irradiated venom showed to be less toxic than native one. (author) 23 refs., 3 figs., 1 tab.
Thulium-170-labeled microparticles for local radiotherapy: preliminary studies.
Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A; Pillai, Maroor R A; Balogh, Lajos
2014-10-01
The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints. (170)Tm was produced by irradiation of natural thulium oxide target. 170Tm-labeled microparticles were synthesized with high yield and radionuclidic purity (> 99%) along with excellent in vitro stability by following a simple process. Particle sizes and morphology of the radiolabeled particles were examined by light microscope, dynamic light scattering, and transmission electron microscope and found to be of stable spherical morphology within the range of 1.4-3.2 μm. The preparation was injected into the knee joints of healthy Beagle dogs intraarticularly for biological studies. Serial whole-body and regional images were taken by single-photon-emission computed tomography (SPECT) and SPECT-CT cameras up to 9 months postadministration, which showed very low leakage (< 8% of I.D.) of the instilled particles. The majority of leaked radiocolloid particles were found in inguinal lymph nodes during the 9 months of follow-up. All the animals tolerated the treatment well; the compound did not show any possible radiotoxicological effect. These preliminary studies showed that 170Tm-labeled microparticles could be a promising nontoxic and effective radiopharmaceutical for RSV applications or later local antitumor therapy.
A Preliminary Study of Bryophytes in Enggano Island, Bengkulu, Indonesia
Directory of Open Access Journals (Sweden)
Ainun Nadhifah
2016-09-01
Full Text Available Enggano Island is one of the outer islands that belongs to the Province of Bengkulu. Furthermore, there is very limited information about the diversity of bryophyte from Sumatera, especially in lowland forest, Enggano Island. The aim of this research was to provide the initial information related to the diversity of bryophytes in Enggano. The research was conducted in six forests i.e. primary, secondary and degraded forests. The results showed that 32 number of collection from 14 families, 21 genera, and 32 species were identified. Leceuneaceae was common family for liverworts while the mosses family was dominated by Hypnaceae. None of the hornworts were found in this study. Some species identified (Taxyphyllum sp., Vesicularia sp., Riccardia sp., and Thuidium sp. have the potential benefit and biological activity. Two genera were new records to Sumatra, Gongylanthus, and Symphyogyna. Moreover, Gongylanthus sp. and Symphyogyna sp. have important records related to the habitat.How to CiteNadhifah, A., & Surya, M. I. (2016. A Preliminary Study of Bryophytes in Enggano Island, Bengkulu, Indonesia. Biosaintifika: Journal of Biology & Biology Education, 8(2, 201-205.
Preliminary Study of the Gravimetric Local Geoid Model in Jordan:
Directory of Open Access Journals (Sweden)
A. Al-Zoubi
2007-06-01
Full Text Available Recently, there is an increased interest in studying and defining the Local and Regional Geoid Model worldwide, due to its importance in geodetic and geophysics applications. The use of the Global Positioning System (GPS is internationally growing, yet the lack of any Geoid Model for Jordan has limited the use of GPS for geodetic applications. Therefore, this work aims to present the preliminary results that we propose for The Gravimetric Jordanian Geoid Model (GeoJordan. The model is created using gravimetric data and the GravSoft program. The validation of this model is done by using GPS measurements and precise leveling at Amman area. However, a comparison between the Global Geopotential Models OSU91A and EGM96 showed great discrepancies through the presented results. Also, presenting the approach used to obtain the orthometric height from GPS ellipsoidal height measurements. Nevertheless, the error margin; obtained in this initial study of the GeoJordan after fitting the data with GPS/leveling measurement; is about (10cm, in tested area whereas the standard error of the created model is about (40cm.
Numerical Study of Pyrolysis of Biomass in Fluidized Beds
Bellan, Josette; Lathouwers, Danny
2003-01-01
A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.
Rawat, A.; Aucan, J.; Ardhuin, F.
2012-12-01
All sea level variations of the order of 1 cm at scales under 30 km are of great interest for the future Surface Water Ocean Topography (SWOT) satellite mission. That satellite should provide high-resolution maps of the sea surface height for analysis of meso to sub-mesoscale currents, but that will require a filtering of all gravity wave motions in the data. Free infragravity waves (FIGWs) are generated and radiate offshore when swells and/or wind seas and their associated bound infragravity waves impact exposed coastlines. Free infragravity waves have dominant periods comprised between 1 and 10 minutes and horizontal wavelengths of up to tens of kilometers. Given the length scales of the infragravity waves wavelength and amplitude, the infragravity wave field will can a significant fraction the signal measured by the future SWOT mission. In this study, we analyze the data from recovered bottom pressure recorders of the Deep-ocean Assessment and Reporting of Tsunami (DART) program. This analysis includes data spanning several years between 2006 and 2010, from stations at different latitudes in the North and South Pacific, the North Atlantic, the Gulf of Mexico and the Caribbean Sea. We present and discuss the following conclusions: (1) The amplitude of free infragravity waves can reach several centimeters, higher than the precision sought for the SWOT mission. (2) The free infragravity signal is higher in the Eastern North Pacific than in the Western North Pacific, possibly due to smaller incident swell and seas impacting the nearby coastlines. (3) Free infragravity waves are higher in the North Pacific than in the North Atlantic, possibly owing to different average continental shelves configurations in the two basins. (4) There is a clear seasonal cycle at the high latitudes North Atlantic and Pacific stations that is much less pronounced or absent at the tropical stations, consistent with the generation mechanism of free infragravity waves. Our numerical model
Experimental and numerical study of open-air active cooling
Al-Fifi, Salman Amsari
The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed
ECG response of koalas to tourists proximity: a preliminary study.
Directory of Open Access Journals (Sweden)
Yan Ropert-Coudert
Full Text Available Koalas operate on a tight energy budget and, thus, may not always display behavioral avoidance reaction when placed in a stressful condition. We investigated the physiological response of captive koalas Phascolarctos cinereus in a conservation centre to the presence of tourists walking through their habitat. We compared, using animal-attached data-recorders, the electrocardiogram activity of female koalas in contact with tourists and in a human-free area. One of the koalas in the tourist zone presented elevated heart rate values and variability throughout the recording period. The remaining female in the exhibit area showed a higher field resting heart rates during the daytime than that in the isolated area. In the evening, heart rate profiles changed drastically and both the koalas in the exhibit and in the tourist-free zones displayed similar field resting heart rates, which were lower than those during the day. In parallel, the autonomic nervous systems of these two individuals evolved from sympathetic-dominant during the day to parasympathetic-dominant in the evening. Our results report ECG of free-living koalas for the first time. Although they are preliminary due to the difficulty of having sufficient samples of animals of the same sex and age, our results stress out the importance of studies investigating the physiological reaction of animals to tourists.
Textual appropriation in engineering master's theses: a preliminary study.
Eckel, Edward J
2011-09-01
In the thesis literature review, an engineering graduate student is expected to place original research in the context of previous work by other researchers. However, for some students, particularly those for whom English is a second language, the literature review may be a mixture of original writing and verbatim source text appropriated without quotations. Such problematic use of source material leaves students vulnerable to an accusation of plagiarism, which carries severe consequences. Is such textual appropriation common in engineering master's writing? Furthermore, what, if anything, can be concluded when two texts have been found to have textual material in common? Do existing definitions of plagiarism provide a sufficient framework for determining if an instance of copying is transgressive or not? In a preliminary attempt to answer these questions, text strings from a random sample of 100 engineering master's theses from the ProQuest Dissertations and Theses database were searched for appropriated verbatim source text using the Google search engine. The results suggest that textual borrowing may indeed be a common feature of the master's engineering literature review, raising questions about the ability of graduate students to synthesize the literature. The study also illustrates the difficulties of making a determination of plagiarism based on simple textual similarity. A context-specific approach is recommended when dealing with any instance of apparent copying.
Benharroch, Daniel; Prinsloo, Isebrand; Gopas, Jacob; Lazarev, Irena
2016-01-01
A role for lymphangiogenesis in metastatic breast and prostate cancers has been suggested recently. The relevance of lymphangiogenesis in cancer as a rule, and more specifically in classical Hodgkin lymphoma, is poorly understood in comparison with that of angiogenesis. In a preliminary (pilot) study we have investigated the role of lymphatic vessels growth in 19 cases of classical Hodgkin lymphoma stained with the D2-40 (podoplanin) antibody. In each case, three lymphatic vessels hot spots were scrutinized twice. Of the 57 hot spots thus identified, we chose 15 at random for photography, microvessel counting and image analysis. We determined the mean perimeter, surface area, major axis length and complexity factor for each hot spot and correlated them with clinical and biological features of classical Hodgkin lymphoma. No correlations were found with clinical features. No associations were noted with the standard immuno-markers of classical Hodgkin lymphoma. However, significant inverse correlations were shown with pRb, BAX and IκB-α expression. The mean lymphatic major axis length was inversely correlated with the complexity factor. Last, we carried out an additional clinicopathological correlation of the expression of pRb, BAX and IκB-α in a cohort of classical Hodgkin lymphoma patients previously published. PMID:27877228
Studying the anthropogenic radionuclides in Puerto Rico: Preliminary Result
Ithier-Guzmán, W.; Pyrtle, A. J.; Smoak, J.
2004-12-01
Local introduction of anthropogenic radionuclides to Puerto Rico's terrestrial and aquatic environments began in 1962 as a result of US government-sponsored research activities. Some of the earlier experiments examined the effects of radiation in tropical rainforests and the potential of superheated boiling nuclear reactor technology. More recent activities involved the use of depleted uranium during military exercises on Vieques. While the presence of radionuclides in Puerto Rico is documented, little research has been done to assess the environmental impact of this anthropogenic material. After entering Puerto Rico's environment, it is likely that some radionuclides are transported away from initial introduction sites. It is important that the distributions and behavior of radionuclides in Puerto Rico be determined. As such an investigation of this material throughout Puerto Rico was initiated. Sediment Cs-137 and Pb-210 activities, as well as ancillary geochemistry data are presented. These preliminary findings will be utilized as part of an ongoing study to determine radionuclide distributions and behaviors, with respect to aquatic geochemistry and dominant transport processes.
Preliminary Design Study of the Hollow Electron Lens for LHC
Perini, Diego; CERN. Geneva. ATS Department
2017-01-01
A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of superconducting solenoids. The first step of the design is the definition of the magnetic fields that drive the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB® tool is presented. The influence of the main geometrical and electrical parameters are analysed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the preliminary design of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar ...
Preliminary Study on Diverse Carbon Utilization by Transformant Aspergillus niger
Directory of Open Access Journals (Sweden)
S. H. Mohammad
2012-01-01
Full Text Available Aspergillus niger have been widely recognized as producer of metabolites and reported as good expression hosts for homologous and heterologous proteins. For recombinant expression systems, nature of metabolite production would change when the expression host system is modified via plasmid development. In order to study the diversity of carbon utilization of transformant A.niger and their relation to specific carbon sources that could trigger mannanase production, a new screening system was introduced using Biolog technique to evaluate the growth of the transformant performed on 95 carbon sources. As a result, the transformed A.niger were found able to utilize dextrin and other 27 carbohydrates with majority preferred carbohydrates were identified as monosaccharide, oligosaccharides and some sugar alcohols as the best chosen carbon sources for growth. The relative simplicity and global carbon sources underlying in the biolog system for screening of carbon source make it as a useful tool for the preliminary screening and identification of carbon sources in order to select the best carbon source for medium development.
Calibration Study and Preliminary Results of PRad Experiment
Levillain, Maxime; PRad Collaboration
2016-09-01
The latest measurements of the proton radius through muonic hydrogen Lamb shift show a discrepancy of 7 σ from a global analysis of standard hydrogen Lamb shift and elastic ep -scattering. In order to understand this proton radius puzzle, the PRad experiment successfully took in last June some elastic ep -scattering data at very low Q2 (2 .10-4 to 10-1 GeV2) with very accurate angle and energy measurements to minimize the systematic uncertainties. Before measuring the cross-sections that will be used to extract the electromagnetic form factor GE(Q2) and the proton radius, a very careful calibration of the electromagnetic calorimeter (HyCal) must be performed to get a good energy resolution and separate ep -events from M øller events especially at low angle. We will present an extended study of the electromagnetic calorimeter calibration of this experiment as well as some preliminary results on ep - and ee -scattering processes extracted from the data. The PRad experiment is supported in part by NSF MRI Award PHY-1229153.
A preliminary study looking at parental emotions following cochlear implantation.
Anagnostou, Flora; Graham, John; Crocker, Susan
2007-06-01
This preliminary research investigated the emotions of parents with cochlear implanted children. The object for the research was first to compare four emotions engendered in parents of deaf children before and after cochlear implantation. Second, to monitor changes in these emotions during a period of up to four years after implantation. Third, to see whether any of the emotions studied was significantly more prominent than the others, and fifth to identify any differences in emotions that were related to the gender of parents. A self-report questionnaire was given to 112 participants of whom 53 replied. There were equal groups of parents in two categories, those with children up to two years after implantation, and those two to four years after implantation. The responses were interpreted using parametric statistics. The results highlight that grief is the strongest emotional condition that parents experience before and up to two years after implantation, alongside family adjustments. Parents of the up to two years after implantation group generally have stronger feelings and are less satisfied than parents in the over two years implanted group. Finally, fathers use denial more than mothers. Considerations for future research and implications for paediatric cochlear implant teams will be discussed.
ECG response of koalas to tourists proximity: a preliminary study.
Ropert-Coudert, Yan; Brooks, Lisa; Yamamoto, Maki; Kato, Akiko
2009-10-12
Koalas operate on a tight energy budget and, thus, may not always display behavioral avoidance reaction when placed in a stressful condition. We investigated the physiological response of captive koalas Phascolarctos cinereus in a conservation centre to the presence of tourists walking through their habitat. We compared, using animal-attached data-recorders, the electrocardiogram activity of female koalas in contact with tourists and in a human-free area. One of the koalas in the tourist zone presented elevated heart rate values and variability throughout the recording period. The remaining female in the exhibit area showed a higher field resting heart rates during the daytime than that in the isolated area. In the evening, heart rate profiles changed drastically and both the koalas in the exhibit and in the tourist-free zones displayed similar field resting heart rates, which were lower than those during the day. In parallel, the autonomic nervous systems of these two individuals evolved from sympathetic-dominant during the day to parasympathetic-dominant in the evening. Our results report ECG of free-living koalas for the first time. Although they are preliminary due to the difficulty of having sufficient samples of animals of the same sex and age, our results stress out the importance of studies investigating the physiological reaction of animals to tourists.
VEGF Expression in Patellar Tendinopathy: A Preliminary Study
Lian, Øystein; Bahr, Roald; Hart, David A.; Duronio, Vincent
2008-01-01
Vascular function and angiogenesis are regulated by vascular endothelial growth factor-A (VEGF). The purpose of this preliminary study was to address the following questions: Is VEGF expression in the patellar tendon more prevalent in patients with patellar tendinopathy than in individuals with normal, pain-free patellar tendons? Which cell populations express VEGF in normal and tendinopathic tendon? Is there a difference in symptom duration between VEGF+ and VEGF− tendons? We collected patellar tendon tissue from 22 patients undergoing open débridement of the patellar tendon and from 10 patients undergoing intramedullary nailing of the tibia. VEGF expression was assessed immunohistochemically. Relevant inflammatory and repair cell types were immunolabeled. VEGF expression was absent from control tendons, but was present in a subset of patients with histopathological evidence of angiofibroblastic tendinosis. VEGF was expressed in the intimal layer of tendon vessels, but was absent in other cell types. Patients demonstrating VEGF expression in the patellar tendon had a shorter symptom duration (12 ± 7.8 months) than patients with no detectable VEGF (32.8 ± 23.5 months). VEGF may contribute to the vascular hyperplasia that is a cardinal feature of symptomatic tendinosis, particularly in cases with more recent onset. PMID:18459027
Bio-Contamination Control for Spacesuit Garments - A Preliminary Study
Rhodes, Richard; Korona, Adam; Orndoff, Evelyn; Ott, Mark; Poritz, Darwin
2010-01-01
This paper outlines a preliminary study to review, test, and improve upon the current state of spacesuit bio-contamination control. The study includes an evaluation of current and advanced suit materials, ground and on-orbit cleaning methods, and microbial test and analysis methods. The first aspect of this study was to identify potential anti-microbial textiles and cleaning agents, and to review current microbial test methods. The anti-microbial cleaning agent and textile market survey included a review of current commercial-off-the-shelf (COTS) products that could potentially be used as future space flight hardware. This review included replacements for any of the softgood layers that may become contaminated during an extravehicular activity (EVA), including the pressure bladder, liquid cooling garment, and ancillary comfort undergarment. After a series of COTS anti-microbial textiles and clean ing agents were identified, a series of four tests were conducted: (1) a stacked configuration test that was conducted in order to review how bio-contamination would propagate through the various suit layers, (2) a individual materials test that evaluated how well each softgood layer either promoted or repressed growth, (3) a cleaning agent test that evaluated the efficacy on each of the baseline bladders, and (4) an evaluation of various COTS anti-microbial textiles. All antimicrobial COTS materials tested appeared to control bacteria colony forming unit (CFU) growth better than the Thermal Comfort Undergarment (TCU) and ACES Liquid Cooling Garment (LCG)/EMU Liquid Cooling Ventilation Garment (LCVG) materials currently in use. However, a comparison of fungi CFU growth in COTS to current suit materials appeared to vary per material. All cleaning agents tested in this study appeared to inhibit the level of bacteria and fungi growth to acceptable levels for short duration tests. While several trends can be obtained from the current analysis, a series of test improvements are
Numerical study of a high-speed miniature centrifugal compressor
Li, Xiaoyi
A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the
NUMERICAL STUDY OF THE PITCHING MOTIONS OF SUPERCAVITATING VEHICLES
Institute of Scientific and Technical Information of China (English)
YU Kai-ping; ZHANG Guang; ZHOU Jing-jun; ZOU Wang; LI Zhen-wang
2012-01-01
The pitching motions of supercavitating vehicles could not be avoided due to the lost water buoyancy.In order to have some insight for the design of the supercavitating vehicles,the fixed frequency and free pitching motions are investigated.A numerical predicting method based on the relative motion principle and the non-inertia coordinate system is proposed to simulate the free pitching motions of supercavitating vehicles in the longitudinal plane.Homogeneous and two fluid multiphase models are used to predict the natural and the ventilated supercavitating flows.In the fixed frequency pitching motions,a variety of working conditions are considered,including the pitching angular velocities and the supercavity scales and the results are found to be consistent with the available experimental results in literature.The mesh deformation technology controlled by the moment of momentum equation is adopted to study the free pitching motions and finally to obtain the planing states proposed by Savchenko.The numerical method is validated for predicting the pitching motions of supercavitating vehicles and is found to enjoy better calculation efficiency as comparing with the mesh regeneration technology.
Experimental and numerical FSI study of compliant hydrofoils
Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y.
2015-06-01
A propulsion system based on tandem hydrofoils is studied experimentally and numerically. An experimental measurement system is developed to extract hydrodynamic loads on the foils and capture their twisting deformation during operation. The measured data allowed us to assess the efficiency of the propulsion system as a function of travel speed and stroke frequency. The numerical simulation of the propulsion system is also presented and involves 3D, full-scale fluid-structure interaction (FSI) computation of a single (forward) foil. The foil is modeled as a combination of the isogeometric rotation-free Kirchhoff-Love shell and bending-stabilized cable, while the hydrodynamics makes use of the finite-element-based arbitrary Lagrangian-Eulerian variational multiscale formulation. The large added mass is handled through a quasi-direct FSI coupling technique. The measurement data collected is used in the validation of the FSI simulation, and excellent agreement is achieved between the predicted and measured hydrodynamic loads and foil twisting motion.
Numerical and analytic study of problems of photonic crystals theory
Kunyansky, Leonid Arkadievich
1998-11-01
Theory of classical waves in periodic high contrast photonic and acoustic media leads to the following spectral problem:-/Delta u = /lambda/varepsilon u,where ɛ(x) is a periodic function (dielectric constant) which assumes a large value ɛ near a periodic graph Σ in IR2 and is equal to 1 otherwise. In this thesis we conduct numerical and analytical study of this problem. The high contrast asymptotics for the second problem naturally leads to pseudo-differential operators of the Dirichlet-to-Neumann type on graphs and on more general structures. We have discovered several new spectral effects for these operators. Among them 'almost discreteness' of the spectrum in the case of a disconnected graph and existence of 'almost localized' waves in some connected purely periodic structures. Numerical results of the above problems is carried out in this work using an algorithm closely related to the family of the indirect boundary element methods. The results of this research were presented at AMS Meetings in Columbia, MO (November, 1996), Corvallis, OR (April, 1997), Albuquerque, NM (November, 1997), Louisville, KY (March, 1998), and Conference on Applied Mathematics, Edmond, OK (February, 1998). They are also partially described in the forthcoming publication (34).
Numerical Study of Unsteady Flow in Centrifugal Cold Compressor
Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing
In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.
Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies
Energy Technology Data Exchange (ETDEWEB)
Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.
Experimental and Numerical Study of Twin Underexpanded Impinging Jets
Institute of Scientific and Technical Information of China (English)
Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa
2003-01-01
In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0～6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.
Numerical studies of dynamo action in a turbulent shear flow
Singh, Nishant K
2013-01-01
We perform numerical experiments to study the shear dynamo problem where we look for the growth of large-scale magnetic field due to non-helical stirring at small scales in a background linear shear flow, in previously unexplored parameter regimes. We demonstrate the large-scale dynamo action in the limit when the fluid Reynolds number (Re) is below unity whereas the magnetic Reynolds number (Rem) is above unity; the exponential growth rate scales linearly with shear, which is consistent with earlier numerical works. The limit of low Re is particularly interesting, as seeing the dynamo action in this limit would provide enough motivation for further theoretical investigations, which may focus the attention to this analytically more tractable limit of Re 1. We also perform simulations in the limits when, (i) both (Re, Rem) 1 & Rem < 1, and compute all components of the turbulent transport coefficients (\\alpha_{ij} and \\eta_{ij}) using the test-field method. A reasonably good agreement is seen between ...
Numerical Study of Urban Canyon Microclimate Related to Geometrical Parameters
Directory of Open Access Journals (Sweden)
Andrea de Lieto Vollaro
2014-11-01
Full Text Available In this study a microclimate analysis on a particular urban configuration: the—street canyon—has been carried out. The analysis, conducted by performing numerical simulations using the finite volumes commercial code ANSYS-Fluent, shows the flow field in an urban environment, taking into account three different aspect ratios (H/W. This analysis can be helpful in the study on urban microclimate and on the heat exchanges with the buildings. Fluid-dynamic fields on vertical planes within the canyon, have been evaluated. The results show the importance of the geometrical configuration, in relation to the ratio between the height (H of the buildings and the width (W of the road. This is a very important subject from the point of view of “Smart Cities”, considering the urban canyon as a subsystem of a larger one (the city, which is affected by climate changes.
A numerical study on dynamics of spray jets
Indian Academy of Sciences (India)
Avick Sinha; Sridhar Balasubramanian; Shivasubramanian Gopalakrishnan
2015-05-01
The study of flow characteristics of spray jets in an injector nozzle, solgel process is very critical for scientific studies. In this communication, we report results from a numerical modeling of spray jet dynamics and its breakup. The nature of instability depends on the density of the jet fluid and the ambient fluid and also on the velocity of the jet. The present work is motivated by the lack of quantitative measurement to explain the nature of instability of a vertically descending jet into a stagnant medium. In order to capture the sharp gradient between the interfaces, modified Volume of Fluid, using an extra compression term is used. The velocity profiles and spread angle are measured to quantitatively explain the mixing and growth of the instability in such complex multiphase flows.
Progress in preliminary studies at Ottana Solar Facility
Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.
2016-05-01
The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.
A preliminary magnetic study of Sawa lake sediments, Southern Iraq
Ameen, Nawrass
2016-04-01
A preliminary magnetic study combined with chemical analyses was carried out in Sawa Lake in Al-Muthanna province, southern Iraq, about 22 km south west of Samawa city (31°18'48.80"N, 45°0'25.25"E). The lake is about 4.74 km length, 1.75 km width and 5.5 m height, it is surrounded by a salt rim which is higher than the lake water by about 2.8 m and sea water by about 18.5 m (Naqash et al., 1977 in Hassan, 2007). The lake is an elongated closed basin with no surface water available to it, it may be fed by groundwater of the Euphrates and Dammam aquifers through system of joints and cracks. This study aims to investigate the concentrations of selected heavy metals as pollutants and magnetic susceptibility (MS) and other magnetic properties of sediment samples from fifty sites collected from the bottom of the lake, the study area lies in an industrial area. The results show spatial variations of MS with mean value of about 4.58 x 10-8 m3 kg-1. Scanning electron microscopy and magnetic mineralogy parameters indicate the dominance of soft magnetic phase like magnetite and presence of hard magnetic phase like hematite. Spatial variations of MS combined with the concentrations of heavy metals suggests the efficiency of magnetic methods as effective, inexpensive and non-time consuming method to outlining the heavy metal pollution. References: Hassan W.F., 2007. The Physio-chemical characteristic of Sawa lake water in Samawa city-Iraq. Marine Mesopotamica, 22(2), 167-179.
Asymptotic and numerical studies of a differential-delay system
Semak, Matthew Richard
A singularly-perturbed differential-delay equation is studied the form of which is seen in various fields. Relaxation effects are combined with nonlinear driving from the past in this system. Having an infinite dimensional phase space, this flow is capable of very interesting behavior. Among the rich aspects of the dynamics of such a relation, period doubling can be observed as parameters are varied. Rigorous proofs concerning the existence of such periodic solutions can be found in the literature. Attention is given to the (first) Hopf bifurcation as the periodic structure is born. Key questions concern the limit of fast relaxation. In this limit, one can analytically understand the development of the periodic solution in the neighborhood of the bifurcation along with the frequency shift which is encountered. This limit also reveals the underlying mapping structure present. In the model studied, this is the logistic map the behavior of which is well-known. Convergence of periodic solutions to the mapping's square wave involves central issues in this work. An analogue to Gibb's phenomenon presents itself as the mapping structure is approached for a certain range of parameters. Transition layers also exist and, together with the latter, present a challenge to various computational approaches. A highly accurate and efficient spectral numerical technique is introduced to properly resolve such behavior in the limit studied. This scheme is used to measure the period's dependence on the relaxation rate in this region of parameter space. Also, numerically assisted asymptotic analysis develops relations for the layers. Moreover, regimes of parameter values have been identified for which there exist extremely long-lived transient states of arbitrarily complex form. Finally, initial interval states are designed which lead to specific long-lived multi-layer patterns of significant complexity. Layer-layer interactions are considered concerning the formation and lifetime of
A Preliminary Feasibility Study On Seismic Monitoring Of Polymer Flooding
Nguyen, P. K.; Park, C.; Lim, B.; Nam, M.
2012-12-01
Polymer flooding using water with soluble polymers is an enhanced oil recovery technique, which intends to maximize oil-recovery sweep efficiency by minimizing fingering effects and as a result creating a smooth flood front; polymer flooding decreases the flow rates within high permeability zone while enhances those of lower permeabilities. Understanding of fluid fronts and saturations is critical to not only optimizing polymer flooding but also monitoring the efficiency. Polymer flooding monitoring can be made in single well scale with high-resolution wireline logging, in inter-well scale with tomography, and in reservoir scale with surface survey. For reservoir scale monitoring, this study makes a preliminary feasibility study based on constructing rock physics models (RPMs), which can bridge variations in reservoir parameters to the changes in seismic responses. For constructing RPMs, we change reservoir parameters with consideration of polymer flooding to a reservoir. Time-lapse seismic data for corresponding RPMs are simulated using a time-domain staggered-finite-difference modeling with implementation of a boundary condition of conventional perfect match layer. Analysis on time-lapse seismic data with respect to the changes in fluid front and saturation can give an insight on feasibility of surface seismic survey to polymer flooding. Acknowledgements: This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2012T100201588). Myung Jin Nam was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0014684).
Nevada potential repository preliminary transportation strategy: Study 1
Energy Technology Data Exchange (ETDEWEB)
None,
1995-04-01
Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated.
Electrosurgical tissue resection: a numerical and experimental study
Protsenko, Dmitry E.; Pearce, John A.
2003-06-01
The optimization of electrosurgical procedures requires a rigorous understanding of the electrical, thermal, mechanical and chemical events accompanying the ablation process. Modeling is indispensable and is needed to further advance this technology. This study introduces a novel tissue electrosurgical ablation model based on interstitial vapor nucleation and expansion. The model describes interstitial vapor nucleation and bubble growth using a homogeneous nulceation theory and Rayleigh equation. Electrosurgical incisions were made on beef muscle while equivalent electrical circuit patameters were monitored as a function of power settings and scalpel geometries. Thermal damage was measured using light and polarization microscopy. Results were compared with predictions produced by a numerical simulation, which modeled the tissue and electrosurgical scalpel interaction as a function of power settings and scalpel geometry.
Numerical and Experimental Study of Friction Loss in Hydrostatic Motor
DEFF Research Database (Denmark)
Sørensen, Rasmus Mørk; Hansen, Michael R.; Mouritsen, Ole Ø.
2012-01-01
. This is done by means of additional pressure volumes that in uence the stator de ection. These pressures are referred to as compensation pressures and the main emphasis is on friction or torque loss modeling of the motor as a function of the compensation pressures and the high and low pressures related...... to the load torque. The torque loss modeling is identied as a Stribeck curve which depends on gap height. The asperity friction is decreasing exponentially with an increase in gap height. The parameters of the torque loss model are based on prototype measurements that include the structural de ections......This paper presents a numerical and experimental study of the losses in a hydrostatic motor principle. The motor is designed so that the structural de ections and lubricating regimes between moving surfaces and, subsequently, the leakage and friction losses, can be controlled during operation...
NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling
1986-01-01
This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...
Numerical Studies on Fire-induced Thermal Plumes
Institute of Scientific and Technical Information of China (English)
Junmei LI; Yanfeng LI; Wan Ki CHOW; Huairong HUANG
2005-01-01
Most of the expressions describing fire plumes reported in the literature are known to be based on experiments.Due to different experimental methods, the geometry of the fire sources, fuel types and surrounding conditions, it is difficult to derive a comprehensive picture of a plume with its temperature and velocity fields on the basis of existing theoretical work. Computational Fluid Dynamics (CFD), which is regarded as a practical engineering tool in fire engineering by the experts, is sure to be able to give more details of the plume behavior under various situations. Aerodynamics for thermally-induced plumes will be studied numerically with CFD. Four typical axisymmetric plume equations will be assessed in this paper, and investigations will be useful for fire engineers in designing smoke management systems in an affordable fashion. This is a critical point in implementing engineering performance-based fire code.
Numerical Study of the Sedimentation of Spheroidal Particles
Ardekani, Mehdi Niazi; Breugem, Wim-Paul; Brandt, Luca
2016-01-01
The gravity-driven motion of rigid particles in a viscous fluid is relevant in many natural and industrial processes, yet this has mainly been investigated for spherical particles. We therefore consider the sedimentation of non-spherical (spheroidal) isolated and particle pairs in a viscous fluid via numerical simulations using the Immersed Boundary Method. The simulations performed here show that the critical Galileo number for the onset of secondary motions decreases as the spheroid aspect ratio departs from 1. Above this critical threshold, oblate particles perform a zigzagging motion whereas prolate particles rotate around the vertical axis while having their broad side facing the falling direction. Instabilities of the vortices in the wake follow when farther increasing the Galileo number. We also study the drafting-kissing-tumbling associated with the settling of particle pairs. We find that the interaction time increases significantly for non-spherical particles and, more interestingly, spheroidal part...
Homogenisation of linear electromagnetic materials. Theoretical and numerical studies
MacKay, T G
2001-01-01
of the real and imaginary parts of the constitutive dyadics do not coincide, is demonstrated. Additionally, orthorhombic biaxial structures are presented which can arise even though the distinguished axes of the component phases are non-orthogonal. Secondly, the strong-property-fluctuation theory (SPFT) is developed for bianisotropic materials, under the bilocal approximation. The SPFT represents a major advance over traditional approaches to homogenisation, such as provided by the Maxwell Garnett and Bruggeman formalisms, by accommodating a more comprehensive description of the distributional statistics of the component phases. In particular, the SPFT takes account of scattering losses and in its zero-order implementation the SPFT reduces to the Bruggeman homogenisation formalism. Detailed numerical studies are presented which highlight the role of the correlation length, as well as the component phase topology and orientation diversity. Also, the choice of covariance function is demonstrated to exert only a...
Preliminary study on radio-chemo-induced oral mucositis and low level laser therapy
Merigo, Elisabetta; Fontana, Matteo; Fornaini, Carlo; Clini, Fabio; Cella, Luigi; Vescovi, Paolo; Oppici, Aldo
2012-09-01
Background: Oral mucositis remains one of the most common and troubling side effects of antineoplastic radiation and drug therapy: its incidence in onco-hematological radio-chemotreated patients is variable between 50 and 100% and its impact on this populations is directly linked with the experience of intense pain causing reduction and modification of therapy regimens, decreased survival rates and increased cost of care. Purpose: Aim of this study is the preliminary evaluation of a Low Level Laser therapy (LLLT) protocol on healing process of oral mucositis and on pain and quality of life of patients experiencing this dramatic side-effect. Materials and methods: Patients were evaluated and treated at the Unita` Operativa Semplice Dipartimentale di Odontostomatologia e Chirurgia Maxillo-Facciale of the Hospital of Piacenza were they were treated for primary disease with protocols of chemotherapy and/or radiotherapy. LLLT protocol was performed with a diode laser (808 nm -XD Smile - Fotona -Slovenia) on a two weeks-6 treatments schedule with power of 0.5 W and application of 30 seconds. Mucositis grading was scored on the basis of WHO classification by two blind operators at each treatment and at 1 and 2 weeks after treatment. Pain and capability of deglutition were described by patients by means questionnaires based on Visual Analogue Scale, Numerical Rating Scale and Quality of Life. Results: A relevant improvement of healing of oral mucositis, in terms of reduction of grading score, and of pain, swallowing discomfort and quality of life was recorded. Discussion and conclusion: Results of this preliminary study are encouraging for the realization of larger studies focused on the application of LLLT protocols in management of radio-chemotreated patients with oral mucositis.
A numerical study of fundamental shock noise mechanisms. Ph.D. Thesis - Cornell Univ.
Meadows, Kristine R.
1995-01-01
The results of this thesis demonstrate that direct numerical simulation can predict sound generation in unsteady aerodynamic flows containing shock waves. Shock waves can be significant sources of sound in high speed jet flows, on helicopter blades, and in supersonic combustion inlets. Direct computation of sound permits the prediction of noise levels in the preliminary design stage and can be used as a tool to focus experimental studies, thereby reducing cost and increasing the probability of a successfully quiet product in less time. This thesis reveals and investigates two mechanisms fundamental to sound generation by shocked flows: shock motion and shock deformation. Shock motion is modeled by the interaction of a sound wave with a shock. During the interaction, the shock wave begins to move and the sound pressure is amplified as the wave passes through the shock. The numerical approach presented in this thesis is validated by the comparison of results obtained in a quasi-one dimensional simulation with linear theory. Analysis of the perturbation energy demonstrated for the first time that acoustic energy is generated by the interaction. Shock deformation is investigated by the numerical simulation of a ring vortex interacting with a shock. This interaction models the passage of turbulent structures through the shock wave. The simulation demonstrates that both acoustic waves and contact surfaces are generated downstream during the interaction. Analysis demonstrates that the acoustic wave spreads cylindrically, that the sound intensity is highly directional, and that the sound pressure level increases significantly with increasing shock strength. The effect of shock strength on sound pressure level is consistent with experimental observations of shock noise, indicating that the interaction of a ring vortex with a shock wave correctly models a dominant mechanism of shock noise generation.
A Preliminary Study on Cathodic Prevention in Reinforced Mortar
Koleva, D.A.; Van Breugel, K.; Mol, J.M.C.; De Wit, J.H.W.
2010-01-01
This work presents the preliminary tests on the performance of cathodic prevention (CPre) in reinforced mortar, subjected to aggressive (10% NaCl environment). Cathodic prevention is an electrochemical technique for minimizing, actually "preventing" any eventual corrosion of the steel bars in reinfo
Technology User Groups and Early Childhood Education: A Preliminary Study
Parette, Howard P.; Hourcade, Jack J.; Blum, Craig; Watts, Emily H.; Stoner, Julia B.; Wojcik, Brian W.; Chrismore, Shannon B.
2013-01-01
This article presents a preliminary examination of the potential of Technology User Groups as a professional development venue for early childhood education professionals in developing operational and functional competence in using hardware and software components of a Technology toolkit. Technology user groups are composed of varying numbers of…
Orofacial Muscle Activity of Children Who Stutter: A Preliminary Study.
Kelly, Ellen M.; And Others
1995-01-01
This preliminary investigation of stuttering development and maturation of speech motor processes recorded the electromyographic activity of the orofacial muscles of nine children who stuttered. Results suggest that the emergence of tremor-like instabilities in the speech motor processes of stuttering children may coincide with aspects of general…
Orofacial Muscle Activity of Children Who Stutter: A Preliminary Study.
Kelly, Ellen M.; And Others
1995-01-01
This preliminary investigation of stuttering development and maturation of speech motor processes recorded the electromyographic activity of the orofacial muscles of nine children who stuttered. Results suggest that the emergence of tremor-like instabilities in the speech motor processes of stuttering children may coincide with aspects of general…
Finite element modelling of the tricuspid valve: A preliminary study.
Stevanella, Marco; Votta, Emiliano; Lemma, Massimo; Antona, Carlo; Redaelli, Alberto
2010-12-01
The incomplete efficacy of current surgical repair procedures of the tricuspid valve (TV) demands a deeper comprehension of the physiological TV biomechanics. To this purpose, computational models can provide quantitative insight into TV biomechanical response and allow analysing the role of each TV substructure. We present here a three-dimensional finite element model of the tricuspid valve that takes into account most of its peculiar features. Experimental measurements were performed on human and porcine valves to obtain a more detailed TV anatomical framework. To overcome the complete lack of information on leaflets mechanical properties, we performed a sensitivity analysis on the parameters of the adopted non-linear hyperelastic constitutive model, hypothesizing three different parameter sets for three significant collagen fibre distributions. Results showed that leaflets' motion and maximum principal stress distribution were almost insensitive to the different material parameters considered. Highest stresses (about 100kPa) were located near the annulus of the anterior and septal leaflets, while the posterior leaflet experienced lower stresses (about 55kPa); stresses at the commissures were nearly zero. Conversely, changes in constitutive parameters deeply affected leaflets' strains magnitude, but not their overall pattern. Strains computed assuming that TV leaflets tissue are reinforced by a sparse and loosely arranged network of collagen fibres fitted best experimental data, thus suggesting that this may be the actual microstructure of TV leaflets. In a long-term perspective, this preliminary study aims at providing a starting point for the development of a predictive tool to quantitatively evaluate TV diseases and surgical repair procedures.
Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies
Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.
2006-05-01
above parameters were varied one at a time to study their effects on roxarsone adsorption. Desorption studies were carried out using 125 mg/L phosphorous at predetermined interval of time. In addition to analyzing for total As by an ICP-MS, aqueous speciation of As was performed using a coupled HPLC-ICP-MS system. Preliminary studies show significant roxarsone adsorption capacity of the WTRs.
Preliminary study for small animal preclinical hadrontherapy facility
Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.
2017-02-01
Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and
Issues in the study of floating universal numeric quantifiers
R. Cirillo
2010-01-01
In the Germanic and Romance languages (among others) a universal quantifier can combine with a numeral and form a floating quantifier. I refer to these quantifiers as universal numeric quantifiers or simply ∀NumQ. The following examples from Dutch and Romanian demonstrate this phenomenon: The aim of
US Fish and Wildlife Service, Department of the Interior — A preliminary summary of a study of contaminants in waterbirds and in the western grasslands of Merced County. The purpose of this study was two-fold: 1) to...
Preliminary study of diffusion effects in Fricke gel dosimeters
Energy Technology Data Exchange (ETDEWEB)
Quiroga, A. [Centro de Investigacion y Estudios de Matematica de Cordoba, Oficina 318 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: aiquiroga@famaf.unc.edu [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)
2014-08-15
Diffusion of ferric ions in ferrous sulfate (Fricke) gels represents one of the main drawbacks of some radiation detectors, like Fricke gel dosimeters. In practice, this disadvantage can be overcome by prompt dosimeter analysis, constraining strongly the time between irradiation and analysis. Due to required integral accuracy levels, special dedicated protocols are implemented with the aim of minimizing signal blurring due to diffusion effects. This work presents dedicated analytic modelling and numerical calculations of diffusion coefficients in Fricke gel radiation sensitive material. Samples are optically analysed by means of visible light transmission measurements capturing images with a Ccd camera provided with a monochromatic 585 nm filter corresponding to the X O-infused Fricke solution absorbance peak. Dose distributions in Fricke gels are suitably delivered in order to assess specific initial conditions further studied by periodical sample image acquisitions. In a first analytic approach, experimental data are fit with linear models in order to achieve a value for the diffusion coefficient. The second approach to the problem consists on a group of computational algorithms based on inverse problem formulation, along with suitable 2D diffusion model capable of estimating diffusion coefficients by fitting the obtained algorithm numerical solutions with the corresponding experimental data. Comparisons are performed by introducing an appropriate functional in order to analyse both experimental and numerical values. Solutions to second order diffusion equation are calculated in the framework of a dedicated method that incorporates Finite Element Method. Moreover, optimised solutions can be attained by gradient type minimisation algorithms. Knowledge about diffusion coefficient for Fricke gel radiation detector might be helpful in accounting for effects regarding elapsed time between dosimeter irradiation and further analysis. Hence, corrections might be included
Numerical and asymptotic studies of delay differential equations
Adhikari, Mohit Hemchandra
Two classes of differential delay equations exhibiting diverse phenomena are studied. The first one is a singularly perturbed delay differential equation which is used to model selected physical systems involving feedback where relaxation effects are combined with nonlinear driving from the past. In the limit of fast relaxation, the differential equation reduces to a difference equation or a map, due to the presence of the delay. A basic question in this field is how the behavior of the map is reflected in the behavior of the solutions of the delay differential equation. In this work, a generic logistic form is used for the underlying map and the above question is studied in the first period-doubling regime of the map. Using an efficient numerical algorithm, the shape and the period of the corresponding asymptotically stable periodic solution is studied first, for various values of the delay. In the limit of large delay, these solutions resemble square-waves of period close to twice the value of the delay, with sharp transition layers joining flat plateau-like regions. A Poincare-Lindstedt method involving a two-parameter perturbation expansion is applied to solve equations representing these layers and accurate expressions for the shape and the period of these solutions, in terms of Jacobi elliptic functions, are obtained. A similar approach is used to obtain leading order expressions for sub-harmonic solutions of shorter periods, but it is shown that while they are extremely long-lived for large values of delay, they eventually decay to the fundamental solutions mentioned above. The spectral algorithm used for the numerical integration is tested by comparing its accuracy and efficiency in obtaining stiff solutions of linear delay equations, with that of a current state-of-the-art time-stepping algorithm for integrating delay equations. Effect of delay on the synchronization of two nerve impulses traveling along two parallel nerve fibers, is the second question
Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)
2015-12-15
In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.
Numerical study of heat transfer characteristics in BOG heat exchanger
Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin
2016-12-01
In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.
[Peritoneal equilibration test: Conventional versus adapted. Preliminary study].
Zaloszyc, Ariane; Schmitt, Claus Peter; Schaefer, Betti; Doutey, Armelle; Terzic, Joëlle; Menouer, Soraya; Higel, Laetitia; Fischbach, Michel
2017-02-01
Conventional automated peritoneal dialysis (APD) is prescribed as a repetition of cycles with the same dwell time and the same fill volume. Water and sodium balance remains a common problem among patients on peritoneal dialysis. More recently, adapted automated peritoneal dialysis was described, as a combination of short dwells with a low volume, in order to enhance ultrafiltration, followed by long dwells with a large fill volume to favor solute removal. We performed a preliminary crossover study on 4 patients. The total amount of dialysate was the same, i.e. 2L/m(2) as well as the total duration of the test, i.e. 150 minutes. The conventional test was made with two identical cycles, each cycle had a fill volume of 1L/m(2) and a duration of 75 minutes, while the adapted test was performed with one short cycle, i.e. 30 minutes with a low fill volume, i.e. 0.6L/m(2), followed by a long cycle, i.e. 120 minutes, with a large fill volume, i.e. 1.4L/m(2). Sodium extraction was improved by 29.3mmol/m(2) (169%) in the adapted test in comparison to the conventional test. Ultrafiltration was enhanced by 159mL/m(2) (128%) in the adapted test compared to the conventional one. Glucose absorption was decreased by 35% in the adapted test in comparison to the conventional test and osmotic conductance was also improved. In conclusion, adapted dialysis may allow for a better volume and sodium balance, since we observed an improvement in sodium extraction and ultrafiltration. This pre-study authorizes an improvement of the European Pediatric Study's protocol on Adapted APD, already started and which will continue in the next months. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Numerical Study of Unsteady Cavitating Flows around a Hydrofoil
Directory of Open Access Journals (Sweden)
Ahmed Bel Hadj Taher
2017-01-01
Full Text Available In this paper, we report the results of a numerical investigation on unsteady cavitating flows around a circular leading edge (CLE hydrofoil. The objective of this study is to properly predict the appearance of cavitation pocket, its development and its detachment causing adverse effects on industrial systems such as microscopic plastic deformations at the solid walls. For this reason it is very important to study the influence of turbulence models on simulation results. We present a closing of the hydrodynamic equation system by a transport equation of an active scalar (volume fraction of the vapor phase with a source terms. The Computational Fluid Dynamics (CFD code used is ANSYS CFX. Before comparing the capability of the different turbulent models to predict unsteady behavior of cavitating flow along the hydrofoil, the study of the influence of the mesh resolution was performed in cavitating condition. This investigation was performed, on CLE hydrofoil, by monitoring the influence of for progressively finer meshes on the values of the drag CD and lift CL coefficients. Moreover, a study of the influence of the normal dimensionless distance to the wall (y+ was carried out on the hydrofoil surface. For the unsteady flow, a comparison of different turbulence models with the experiment leads to study the interaction of these models with the vapor pocket (detachment and collapse of vapor pocket. Two turbulence models were tested in this study: modified k-ε model and large eddy simulation (LES. In the present work, the predictions of velocity and pressure evolutions in the vicinity of the hydrofoil are compared to experimental data.
Numerical study on onset of gas entrainment from free surface
Energy Technology Data Exchange (ETDEWEB)
Tomoaki Kunugi [Department of Nuclear engineering, Kyoto University, Yoshida Sakyou-ku Kyoto (Japan); Toshiki Ezure; Takaaki Sa ka; Kei Ito [Japan Nuclear Cycle Development Institute, 4002 Narita-cho, O-arai-cho Higashi-ibaraki-gun, 311- 1393 (Japan)
2005-07-01
Full text of publication follows: A fast breeder nuclear reactor (FBR) has an important role for closing a fuel cycle system in fission nuclear reactor systems. The liquid sodium cooling system of a latest compact FBR concept consists of two loops connected to a heat exchanger (HEX) and a pool-typed reactor vessel with the upper core structures (UCS). The high temperature sodium coolant comes from the reactor core to the vessel and flows through the hot legs towards the HEX. In order to design the compact FBR, it is necessary to clarify a criterion of a cover-gas entrainment from the coolant free surface of the vessel to the HEX through the hot leg. The surface velocity of the coolant in the vessel is considered as one of the key parameters of the gas entrainment phenomena: bubble entrained by free surface vortex, entraining bubbles caused by supercritical flows and gas entrainment by wave breaking. However, there is no clear quantitative explanation and criterion regarding the on-set condition of gas entrainment from the free surface until today. In the present study, numerical simulation of the gas entrainment and the bubble transport from free surface to the hot leg regarding the bubble entrainment due to the supercritical surface flows have been performed by means of the Multi-interface and Advection and Reconstruction Solver (MARS) and the numerical results are compared with that of the small scale fundamental experiments. The final goal of this study is to establish the evaluation procedure and criterion of these phenomena. Experiment performed by Moriya was chosen as the reference data for this comparison study. The test section consisted of an open-upped rectangular box with the inlet and outlet nozzles located at bottom of the box and almost a half height of the test section was filled with water. Resulting from these simulations, the gas entrainment phenomena were observed for both cases at certain flow conditions. In two-dimensional simulations, we found
Numerical Study of the Simplest String Bit Model
Chen, Gaoli
2016-01-01
String bit models provide a possible method to formulate string as a discrete chain of point-like string bits. When the bit number $M$ is large, a chain behaves as a continuous string. We study the simplest case that has only one bosonic bit and one fermionic bit. The creation and annihilation operators are adjoint representations of $U\\left(N\\right)$ color group. We show that the supersymmetry reduces the parameter number of a Hamiltonian from seven to three and, at $N=\\infty$, ensures continuous energy spectrum, which implies the emergence of one spatial dimension. The Hamiltonian $H_{0}$ is constructed so that in large $N$ limit it produces a worldsheet spectrum with one grassmann worldsheet field. We concentrate on numerical study of the model in finite $N$. For the Hamiltonian $H_{0}$, we find that the would-be ground energy states disappear at $N=\\left(M-1\\right)/2$ for odd $M\\leq11$. Such a simple pattern is spoiled if $H$ has an additional term $\\xi\\Delta H$ which does not affect the result of $N=\\inf...
Numerical and experimental study of an Archimedean Screw Generator
Dellinger, G.; Garambois, P.-A.; Dufresne, M.; Terfous, A.; Vazquez, J.; Ghenaim, A.
2016-11-01
Finding new, safe and renewable energy is becoming more and more of a priority with global warming. One solution that is gaining popularity is the Archimedean Screw Generator (ASG). This kind of hydroelectric plant allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology, there are few references dealing with their design and performance optimization. The present contribution proposes to investigate experimentally and numerically the ASG performances. The experimental study is performed for various flow conditions and a laboratory scale screw device installed at the fluid mechanics laboratory of the INSA of Strasbourg. The first results show that the screw efficiencies are higher than 80% for various hydraulic conditions. In order to study the structure of 3D turbulent flows and energy losses in a screw, the 3D Navier Stokes equations are solved with the k-w SST turbulence model. The exact geometry of the laboratory-scale screw was used in these simulations. Interestingly, the modeled values of efficiency are in fairly good agreement with experimental results while any friction coefficient is involved.
Numerical study of pair creation by ultraintense lasers
Nakashima, K
2002-01-01
Now that intensity of lasers has reached 10 sup 2 sup 0 W/cm sup 2 , electron-positron pairs can be created by the irradiation of such ultraintense lasers on a thin gold foil. The energy of electrons produced by ultraintense lasers reaches more than several tens of MeV. Such high energy electrons become a source for creating electron-positron pairs via interaction with nuclei. There are a few processes that create electron-positron pairs in this situation. Two processes, call the trident process and the Bethe-Heitler process, are considered in this study. A numerical simulation code based on a relativistic Fokker-Planck equation is developed for studying the hot electron transport. The equation is solved by assuming one-dimensional real space and two-dimensional momentum space with axial symmetry. It is found that the total positron yield increases logarithmically with the increase of the laser intensity, and the resultant energy distribution of the created positron is found to have a peak near the energy of ...
Numerical study of Wavy Blade Section for Wind Turbines
Kobæk, C. M.; Hansen, M. O. L.
2016-09-01
The Wavy Blade concept is inspired by the unique flipper of a humpback whale, characterized by the tubercles located at the leading edge. It has been suggested that this shape may have been a result of a natural selection process, since this flipper under some circumstances can produce higher lift than a flipper having a smooth trailing edge and thus could be potentially beneficial when catching food. A thorough literature study of the Wavy Blade concept is made and followed by CFD computations of two wavy blade geometries and a comparison with their baseline S809 airfoil at conditions more relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate that the results may very well depend on the actual airfoil geometry and perhaps also the Reynolds number, and future studies are necessary in order to illuminate this further.
Study on numerical simulation of nodular graphite iron microstructure formation
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.
Numerical study of the stopping of aura during migraine
Directory of Open Access Journals (Sweden)
Moussa A.
2010-12-01
Full Text Available This work is devoted to the study of migraine with aura in the human brain. Following [6], we class migraine as a propagation of a wave of depolarization through the cells. The mathematical model used, based on a reaction-diffusion equation, is briefly presented. The equation is considered in a duct containing a bend, in order to model one of the numerous circumvolutions of the brain. For a wide set of parameters, one can establish the existence of a critical radius below which the wave stops. The approximation scheme used for the simulations is first described and then a numerical study is realized, precising the dependence of the critical radius with respect to the different parameters of the model. Ce travail est consacré à l’étude de l’évolution d’une migraine avec aura dans le cerveau humain. Suivant [6], nous assimilons la migraine à une onde de dépolarisation attaquant les cellules du cerveau. Le modèle mathématique retenu, basé sur une équation de réaction-diffusion, est brièvement rappelé. Le domaine d’espace utilisé est constitué d’un conduit présentant un coude, afin de représenter l’une des nombreuses circonvolutions cérébrales. Pour une importante classe de paramètres, il est possible de mettre en évidence l’existence d’un rayon critique au delà duquel le front d’onde n’arrive pas à dépasser le coude. Après une description du schéma d’approximation utilisé, une étude numérique a été réalisée, visant à préciser la dépendance du rayon critique en fonction des différents paramètres du modèle.
Preliminary experimental study of a carbon fiber array cathode
Li, An-kun; Fan, Yu-wei
2016-08-01
The preliminary experimental results of a carbon fiber array cathode for the magnetically insulated transmission line oscillator (MILO) operations are reported. When the diode voltage and diode current were 480 kV and 44 kA, respectively, high-power microwaves with a peak power of about 3 GW and a pulse duration of about 60 ns were obtained in a MILO device with the carbon fiber array cathode. The preliminary experimental results show that the shot-to-shot reproducibility of the diode current and the microwave power is stable until 700 shots. No obvious damage or deterioration can be observed in the carbon fiber surface morphology after 700 shots. Moreover, the cathode performance has no observable deterioration after 700 shots. In conclusion, the maintain-free lifetime of the carbon fiber array cathode is more than 700 shots. In this way, this carbon fiber array cathode offers a potential replacement for the existing velvet cathode.
Preliminary Studies on Pulsed Electric Field Breakdown of Lead Azide
1976-10-01
1/2 OS CO ton NO. S3L TECHNICAL REPORT 4991 PRELIMINARY SUJDfES ON PULSED ELECTRIC FIELD BREAKDOWN OF LEAD AZIDE L AVRAMI M. BUMS D. DOWNS...Introduction Background A. Contact Effects B. Pulsed Electric Field Measurements Experimental A. Contact Effects B. Pulsed Electric Fields Discussion...B. Pulsed Electric Field Measurements The application of pulsed electric fields to lead azide does not exactly simulate the conditions experienced
A numerical study of momentum and forced convection heat transfer ...
African Journals Online (AJOL)
temperature fields, axial velocity profiles, local and average Nusselt numbers, and skin frictions were ... Key words: Finite volume method - Turbulent flow - Forced convection - Waved baffles. .... numerical simulations are conducted in a two-.
NUMERICAL STUDY OF SOLITARY WAVE FISSION OVER AN UNDERWATER STEP
Institute of Scientific and Technical Information of China (English)
LU Ji; YU Xi-ping
2008-01-01
Solitary wave fission over an underwater step is numerically investigated. The numerical model is based on the enhanced Boussinesq equations, which appropriately represent both the nonlinearity and dispersivity of surface water waves. The finite difference method defined on the staggered grid in space with an implicit scheme for time stepping is employed for the numerical solution of the governing equations. It is demonstrated that Boussinesq type equations, though they are vertically integrated, can describe the details of the solitary wave fission process with very good accuracy. Numerical results of the reflected and transmitting wave heights, the number of solitons emitted from the transmitting wave and their amplitudes all agree very well with the analytical solution derived from KdV equation by virtue of a linear long wave approximation in the vicinity of the underwater step.
PRELIMINARY STUDY OF FISH CULTURE IN ABANDONED SAND MINING POOL
Directory of Open Access Journals (Sweden)
Bambang Gunadi
2006-12-01
Full Text Available One of main problems in freshwater aquaculture development in Indonesia, especially in Java, is unavailability of developing zone. It is important to find an underutilized area that meets for industrial scale freshwater aquaculture, i.e. sufficient water supply, wide area, and located in one area or zone. The abandoned mining (sand, tin, etc. pools distributed along the country might be the potential area for freshwater aquaculture business. For example, there are at least 13 water pools with total surface area of 250 ha at 15 km side of Citarum River in Karawang District (West Java Province. This study was conducted to obtain preliminary data about the prospect and potency of fish culture (tilapia, clariid catfish, and ‘patin’ catfish in abandoned sand-mining pools in Karawang District. Mini floating net cages of 1 x 1 x 1.5 m3 size were used for culturing fish, i.e. patin catfish (Pangasianodon hypophthalmus, nile tilapia (Oreochromis niloticus, and clariid catfish (Clarias gariepinus, separately. Patin catfish were stocked at a size of 2 g with a density of 300 fish per cage, tilapia were stocked at a size of 6 g with a density of 400 fish per cage, while the clariid catfish were stocked at a size of 1.4 g with a density of 980 fish per cage. A floating commercial feed (30%—32% protein, 3%—5% fat was used at a daily rate of 9% biomass weight at the beginning and reduced gradually to 3% at the final culture period. Observed data showed that patin catfish grew from the initial size of 2.08 g to the final size 299.59 g in 5 months, nile tilapia grew from individual initial size of 5.92 g to the final size of 247.12 g in 14 weeks, and clariid catfish grew from initial size of 1.39 g to the final size of 73.10 g in 8 weeks. These three species were technically prospective for aquaculture development in the abandoned sand-mining pools.
Numerical Analysis of Piles in Layered Soils: A Parametric Study
Directory of Open Access Journals (Sweden)
Ravi Kumar Reddy C
2015-04-01
Full Text Available In this paper, numerical analysis of a pile-soil interaction problem is presented considering the parameters influencing the axial load-deformation behavior of the pile embedded in a layered soil medium. The analysis is demonstrated with parametric solutions of a pile with underlain model soil strata under the axial force. An attempt is made to ascertain the extent of influence of elastic properties of the pile, geometry of the pile, end conditions of the pile and the elastic properties of the underlain soil strata on the response of the piles under axial loads lying in a model soil layers in terms of the settlement of the pile and the internal deformation of the pile. The study revealed that the increase in modulus of elasticity of pile improves the settlement resistance of the pile, increase in the ratio of cross sectional dimensions causes decrease in the top deformations of the pile, the settlement of the pile reduced to a great extent when the cross section of the pile adopted is non circular instead of circular and increase in the elastic modulii of top and bottom layers of soil has decreased the settlement of the pile to a great extent, but elastic modulus of soil layers other than top and bottom has got negligible influence on the settlement of the pile.
Dissipative two-electron transfer: A numerical renormalization group study
Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Nitzan, Abraham
2008-07-01
We investigate nonequilibrium two-electron transfer in a model redox system represented by a two-site extended Hubbard model and embedded in a dissipative environment. The influence of the electron-electron interactions and the coupling to a dissipative bosonic bath on the electron transfer is studied in different temperature regimes. At high temperatures, Marcus transfer rates are evaluated, and at low temperatures, we calculate equilibrium and nonequilibrium population probabilities of the donor and acceptor with the nonperturbative numerical renormalization group approach. We obtain the nonequilibrium dynamics of the system prepared in an initial state of two electrons at the donor site and identify conditions under which the electron transfer involves one concerted two-electron step or two sequential single-electron steps. The rates of the sequential transfer depend nonmonotonically on the difference between the intersite and on-site Coulomb interaction, which become renormalized in the presence of the bosonic bath. If this difference is much larger than the hopping matrix element, the temperature as well as the reorganization energy, simultaneous transfer of both electrons between donor and acceptor can be observed.
A Numerical Study on System Performance of Groundwater Heat Pumps
Directory of Open Access Journals (Sweden)
Jin Sang Kim
2015-12-01
Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.
Numerical study on the perception-based network formation model
Jo, Hang-Hyun
2015-01-01
In order to understand the evolution of social networks in terms of perception-based strategic link formation, we numerically study a perception-based network formation model. Here each individual is assumed to have his/her own perception of the actual network, and use it to decide whether to create a link to other individual. An individual with the least perception accuracy can benefit from updating his/her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. The initial actual network and initial perceptions are modeled by Erd\\H{o}s-R\\'enyi random networks but with different linking probabilities. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. The effect of initial conditions on the complexity o...
Numerical study of flame structure in the mild combustion regime
Directory of Open Access Journals (Sweden)
Mardani Amir
2015-01-01
Full Text Available In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.
Numerical study of viscous starting flow past a flat plate
Xu, Ling
2014-01-01
Viscous flow past a finite plate which is impulsively started in direction normal to itself is studied numerically using a high order mixed finite difference and semi-Lagrangian scheme. The goal is to resolve details of the vorticity generation at early times, and to determine the effect of viscosity on flow quantities such as the core trajectory and vorticity, and the shed circulation. Vorticity contours, streaklines and streamlines are presented for a range of Reynolds numbers $Re \\in [250, 2000]$ and a range of times $t \\in[0. 0002, 5]$. At early times, most of the vorticity is attached to the plate. The paper proposes a definition for the shed circulation at early as well as late times, and shows that it indeed represents vorticity that separates from the plate without reattaching. The contribution of viscous diffusion to the circulation shedding rate is found to be significant, but, interestingly, to depend only slightly on the value of the Reynolds number. The shed circulation and the vortex core trajec...
A Numerical study of Flow through Sigmoid Duct
Directory of Open Access Journals (Sweden)
Prasanta K.Sinha
2015-11-01
Full Text Available Curved diffusers are an integral component of the gas turbine engines of high-speed aircraft. These facilitate effective operation of the combustor by reducing the total pressure loss. The performance characteristics of these diffusers depend on their geometry and the inlet conditions. In the present investigation the distribution of mean velocity, static pressure and total pressure are experimentally studied on a S-shape Diffusing Duct of 45°/45° angle of turn with an area ratio of 1.65 aspect ratio 3.95 keeping inlet width 55 mm with centre line length 460 mm. The experimental results then were numerically validated with the help of Fluent. The velocity distribution shows that generation of secondary motion in the form of counter rotating vortices within the 1st half of the diffuser. The secondary motion changes their sense of rotation after the inflexion plane of the test diffuser. The maximum values of the mass average static Pressure recovery and total pressure loss are 36% and 13% compared to the predicted results of 39% and 11% respectively, which shows a good agreement between the experimental and predicted results.
Numerical study of asymmetric driven reconnection at dayside magnetopause
Institute of Scientific and Technical Information of China (English)
金曙平; 沈俊太; 郝蕾; 胡先鹏
2000-01-01
A two-dimensional compressible MHD code has been used to numerically study the asymmetric driven reconnection processes in the vicinity of the magnetopause. The initial magnetic field configuration is assumed to be in a mechanical equilibrium state. The cases with identical temperatures ( Tm0/ Ts0 = 1 .0) and four different ratios of magnetic field strength ( Q = Bm0/Bs0 = 1.0, 1.5, 2.0, 2.5), and the case with Tm0/ Ts0 = 2.0 and O = 1.5 are investigated ( Bm0, Tm0 and B, Ts0 are the initial magnetic strength and temperature outside the current sheet on the magnetosphere and the mag-netosheath, respectively ). When the magnetic field on the magnetosheath side is set as southward, a recurrent formation of multiple magnetic bubbles with various scales occurs under the action of the inward plasma flow imposed at the left and right boundaries. In the simulation, some bubbles coalesce into a bigger one and then it is convected out of the simulation domain; the others are convected through the top boundary all
Numerical Study of Natural Convection in Vertical Enclosures Utilizing Nanofluid
Directory of Open Access Journals (Sweden)
M. Alipanah
2014-01-01
Full Text Available Enhancement of buoyancy-driven convection heat transfer within vertical cavities containing nanofluids subjected to different side wall temperatures and various aspect ratios is investigated. The computations are based on an iterative, finitevolume numerical procedure (SIMPLE that incorporates the Boussinesq approximation to simulate the buoyancy term. With the base fluid being water, three different nanoparticles (Cu, TiO2, and Al2O3 are considered as the nanofluids. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number, Raf = 105–107 and the volumetric fraction of nanoparticle between 0 and 5 percent. The results are presented for different length-to-height ratios varying from 0.1 to 1.0. The comparisons show that the mean Nusselt numbers and velocity magnitudes increase with volume fraction for the whole range of the Rayleigh numbers. The predictions show a noticeable heat transfer enhancement compared to pure fluid. It is also found that the heat transfer enhancement utilizing nanofluid is more pronounced at low aspect ratios than high aspect ratios. Moreover, the results depict that the addition of nanoparticles to the pure fluid has more effects at lower Rayleigh numbers.
Numerical study of a downslope windstorm in Northwestern Greece
Koletsis, I.; Lagouvardos, K.; Kotroni, V.; Bartzokas, A.
2009-10-01
This paper describes the leeside wind storm of 25-26 March 1998, the most intense wind storm of the last decade in Northwestern Greece. This wind storm produced wind gusts of ˜ 30 m s - 1 that resulted in tree uprooting, roof damaging, electric power network disruption and flooding in the lake-side areas of Ioannina city in Northwestern Greece. With the aim to identify the role of Mountain Mitsikeli near the city of Ioannina on the windstorm and to investigate the physical mechanisms responsible for such orographically induced weather events, numerical simulations with MM5 model have been performed. The model results showed that a resolution of 2-km resolution is necessary in order to reproduce the localized character of the wind storm. The analysis revealed that a synergistic combination of the cross-barrier northeasterly flow, the stable layer above the mountain top and the presence of a critical level, led to the intensification of the lee side winds during the studied wind event. Sensitivity experiments with modified topography, further supported the important role of mountain Mitsikeli that stands as an isolated obstacle, on the modification of the wind field during the observed windstorm.
Numerical studies of the Zaitsev (Robin Hood ) model
Fox, Perry; Cwilich, Gabriel; Buldyrev, Sergey; Zypman, Fredy
2008-03-01
The Zaitsev[1] model of depinning of interfaces has been widely used to discuss motion of dislocations, low temperature flux creep, and more recently dry friction. The properties of this model have been discussed theoretically in one dimension, and numerically verified with precision in the isotropic case. We are studying here the effect of anisotropy in the distribution of the ``mass'' among the neighbors in the updating of the sites, which is known to modify the critical exponents of the model in one dimension. We have considered the validity of the scaling laws in higher dimensions, which might be relevant for the case of friction [2], by computing several of the exponents of the model for the avalanche size distribution, average avalanche size, avalanche fractal dimension and distribution of jumps between extremal sites of activity. The much richer space of parameters of anisotropy in two dimensions has been explored. [1] S.I. Zaitsev , Physica A189, 411 (1992). [2] S. Buldyrev, J. Ferrante and F. Zypman Phys. Rev E64, 066110, (2006)
Impact of coronary tortuosity on coronary pressure: numerical simulation study.
Directory of Open Access Journals (Sweden)
Yang Li
Full Text Available BACKGROUND: Coronary tortuosity (CT is a common coronary angiographic finding. Whether CT leads to an apparent reduction in coronary pressure distal to the tortuous segment of the coronary artery is still unknown. The purpose of this study is to determine the impact of CT on coronary pressure distribution by numerical simulation. METHODS: 21 idealized models were created to investigate the influence of coronary tortuosity angle (CTA and coronary tortuosity number (CTN on coronary pressure distribution. A 2D incompressible Newtonian flow was assumed and the computational simulation was performed using finite volume method. CTA of 30°, 60°, 90°, 120° and CTN of 0, 1, 2, 3, 4, 5 were discussed under both steady and pulsatile conditions, and the changes of outlet pressure and inlet velocity during the cardiac cycle were considered. RESULTS: Coronary pressure distribution was affected both by CTA and CTN. We found that the pressure drop between the start and the end of the CT segment decreased with CTA, and the length of the CT segment also declined with CTA. An increase in CTN resulted in an increase in the pressure drop. CONCLUSIONS: Compared to no-CT, CT can results in more decrease of coronary blood pressure in dependence on the severity of tortuosity and severe CT may cause myocardial ischemia.
Energy Technology Data Exchange (ETDEWEB)
Anheier, Norman C.; Qiao, Hong (Amy); Berglin, Eric J.; Hatchell, Brian K.
2013-12-26
This summary report examines an in-vessel optical access concept intended to support standoff optical instrumentation, control and human-machine interface (ICHMI) systems for future advanced small modular reactor (AdvSMR) applications. Optical-based measurement and sensing systems for AdvSMR applications have several key benefits over traditional instrumentation and control systems used to monitor reactor process parameters, such as temperature, flow rate, pressure, and coolant chemistry (Anheier et al. 2013). Direct and continuous visualization of the in-vessel components can be maintained using external cameras. Many optical sensing techniques can be performed remotely using open optical beam path configurations. Not only are in-vessel cables eliminated by these configurations, but also sensitive optical monitoring components (e.g., electronics, lasers, detectors, and cameras) can be placed outside the reactor vessel in the instrument vault, containment building, or other locations where temperatures and radiation levels are much lower. However, the extreme AdvSMR environment present challenges for optical access designs and optical materials. Optical access is not provided in any commercial nuclear power plant or featured in any reactor design, although successful implementation of optical access has been demonstrated in test reactors (Arkani and Gharib 2009). This report outlines the key engineering considerations for an AdvSMR optical access concept. Strict American Society of Mechanical Engineers (ASME) construction codes must be followed for any U.S. nuclear facility component (ASME 2013); however, the scope of this study is to evaluate the preliminary engineering issues for this concept, rather than developing a nuclear-qualified design. In addition, this study does not consider accident design requirements. In-vessel optical access using a standpipe viewport concept serves as a test case to explore the engineering challenges and performance requirements
Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios
Wang, Yi-Min; Lee, Shiann-Jong
2015-04-01
Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. Recent study indicated that there is about 40 km of the fault trace extended to the marine area offshore northern Taiwan. Combining the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers which implies that this fault has potential to produce a big earthquake. In this study, we analyze several Sanchiao fault earthquake scenarios based on the recipe for predicting strong ground motion. The characterized source parameters include fault length, rupture area, seismic moment, asperity, and slip pattern on the fault plane. According to the assumption of the characterized source model, Sanchiao fault has been inferred to have the potential to produce an earthquake with moment magnitude (Mw) larger than 7.0. Three-dimensional seismic simulation results based upon spectral-element method (SEM) indicate that peak ground acceleration (PGA) is significantly stronger along the fault trace. The basin effect also plays an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. Among all rupture scenarios, the rupture propagated from north to south is the most serious one. Owing to the rupture directivity as well as the basin effects, large PGA (>1g) was observed in the Taipei basin, especially in the northwest side. The results of these scenario earthquake simulations will provide important physically-based numerical data for earthquake mitigation and seismic hazard assessment.
Energy Technology Data Exchange (ETDEWEB)
Li, Cheng [State Nuclear Power Technology Research, Beijing (China). Development Center; State Nuclear Power Research Institute, Beijing (China); Yang, Lin; Zhao, Wei; Zhou, Shan; Du, Wangfang; Gao, Zhan; Li, Honegsen [State Nuclear Power Technology Research, Beijing (China). Development Center
2017-05-15
For larger containments and higher operation parameters, characteristics of the outside cooling of the PCCS are very important for the analysis on the containment integrity. A preliminary analysis was made and a four-step experimental method was used to numerically analyze the falling water film evaporation for the advanced passive containment. Then, the water flow stability along the outside wall of the containment was studied. The results fit well with those correlations without airflow when the air velocity is less than 5.0 m/s. However, when the air velocity is larger than 5.0 m/s, the influence of the air velocity on the water film will appear and the mean water film thickness will be thicker. Based on the prototype operation parameters, experimental studies were carried and the results were compared with the Dittus-Boelter correlation within the operation ranges. A modification factor was proposed for the conservative application of this correlation for nuclear safety analysis.
Planning Genomic Study in an Animal Model of Depression: a Preliminary Report
Directory of Open Access Journals (Sweden)
Sara Farhang
2011-09-01
Full Text Available Introduction: Interaction of several genes is responsible for psychiatric diseases such as depression. Despite the numerous microarray studies in this field, findings are controversial and hard to conclude. Methods: Male Wistar rats were randomly selected to receive Chronic Mild Stress model for 4 weeks. Different aspects of depression were measured by forced swimming test, open field trial and sucrose preference tests in the experience group and controls. Results: Sucrose was preferred by 40% of CMS group and 80% of controls (p=0.025. Twenty percent of CMS group and 80% of controls were “active” (p=0.001. Last escape was at minute 238 for CMS group and minute 245 for controls and controls had more escape efforts. Conclusion: This paper is a preliminary report of a genomic study on animal model of depression which tries to achieve reliable results by a joint of clinical view with recent techniques. Predicted challenges in this procedure and the solutions as well as the limitations may be helpful for future researches.
Numerical study of emergency cryogenics gas relief into confined spaces
CERN. Geneva
2016-01-01
The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.
A Preliminary Study of Surface Temperature Cold Bias in COAMPS
Energy Technology Data Exchange (ETDEWEB)
Chin, H-N S; Leach, M J; Sugiyama, G A; Aluzzi, F J
2001-04-27
It is well recognized that the model predictability is more or less hampered by the imperfect representations of atmospheric state and model physics. Therefore, it is a common problem for any numerical models to exhibit some sorts of biases in the prediction. In this study, the emphasis is focused on the cold bias of surface temperature forecast in Naval Research Laboratory's three-dimensional mesoscale model, COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System). Based on the comparison with the ground station data, there were two types of ground temperature cold biases identified in LLNL (Lawrence Livermore National Laboratory) operational forecasts of COAMPS over the California and Nevada regions during the 1999 winter and the 2000 spring. The first type of cold bias appears at high elevation regions covered by snow, and its magnitude can be as large as 30 F - 40 F lower than observed. The second type of cold bias mainly exists in the snow-free clear-sky regions, where the surface temperature is above the freezing point, and its magnitude can be up to 5 F - 10 F lower than observed. These cold biases can affect the low-level stratification, and even the diurnal variation of winds in the mountain regions, and therefore impact the atmospheric dispersion forecast. The main objective of this study is to explore the causes of such cold bias, and to further the improvement of the forecast performance in COAMPS. A series of experiments are performed to gauge the sensitivity of the model forecast due to the physics changes and large-scale data with various horizontal and vertical resolutions.
Combustion behaviour of pulverised wood - Numerical and experimental studies
Energy Technology Data Exchange (ETDEWEB)
Lixin Tao [TPS Termiska Processer AB, Nykoeping (Sweden)
2002-05-01
This report presents the experimental results achieved in an on-going project financed by STEM (Energimyndigheten) within the research program 'Gasification and combustion of solid fuels', during the first phase of the project (2001-03-05 to 2002-03-05). The project is a collaboration project between LTH and TPS on combined numerical modelling/experimental investigation on combustion of pulverised wood. Particularly TPS carry out the experimental investigation in a laboratory vertical furnace. During the project, the experimental rig has been developed. The experimental furnace has an inner diameter of 0.25 m and a height of 4 m. A pulverised wood flame is established using an axial burner that is installed on the top of the furnace. Experimental study on a selected pulverised wood with determined size distribution and anisotropy character has been carried out in this furnace. During the experiment, the wall temperatures of the furnace were continuously measured using 8 thermocouples of type K that are installed on the wall with a spacing about 0.5 m. The gas temperatures in the furnace were monitored using 5 fixed suction pyrometers that are placed along the centre of the furnace. At the bottom of the furnace, a fixed gas-sampling probe was installed. The flue gas concentrations were continuously monitored with on-line gas analysers. The extent of combustion was measured through the analysis of sampled gaseous products and condensable solid products. A movable liquid quench probe was used to carry out the gas and solid sampling through a number of sampling holes that are opened along the furnace wall. The quench liquor used is an alkaline water solution containing a small amount of a detergent to dissolve HCN and tar. The quench liquor and solid samples were separated and collected in a knockout pot. The gas was filtered and passed through two bubblers with acidic solution to collect NH{sub 3}. The gas concentrations were then analysed with on-line gas
Numerical Study of a Cold Particle Submitted to Mixed Convection
Le Bot, Cédric
2011-05-01
During material forming process (metal, glass, polymer), one stage is the solidification of the material, from a bulk melt part. Occurrence of solid particles in the melt material may alter the properties of the final product, as aggregation of particles potentially induces a local weakness (bad shape, mechanical or thermal properties, for example). Considering one particle, a wide range of thermal and dynamic phenomena can be observed: a particle settling is mainly due to Archimedes forces. Free convection due to gravity effects can increase the fluid flow (which is defined as an assisting flow) or may limit it (defined as an opposing flow). A high fluid-particle relative velocity also implies forced convection. The competition between the two thermal phenomena (so-called mixed convection) widely influences the particle transport. Many works have studied the fluid velocity field induced by a cylinder or a spherical particle in a isothermal medium, and have highlighted transitions of flow regime (a laminar flow at low velocity, a deviation in the particle transport at a moderate velocity and various flow structures at a high velocity). Some studies have taken into account heat transfer between the particle and the fluid, and focused on the thermal effects upon the particle fluid velocity. Experiments are difficult (or impossible) to lead, since some materials (like metals for example) do not allow visualizing the particle in the melt fluid. We propose in the present study to carry out the numerical 3D-simulation of a cold particle submitted to a fluid flow, in order to link the fluid-particle thermal transfer and the fluid flow properties. A volume of fluid method is used, on a fixed Cartesian grid to determine the particle transport, the fluid flow and heat transfers in both the fluid and the particle. The domain must be large enough to avoid wall effects. The mixed convection is quantified by the Richardson number (Ri). The aim of this paper will consist in
Preliminary study of superconducting bulk magnets for Maglev
Fujimoto, Hiroyuki; Kamijo, Hiroki
Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.
Numerical study of a confined slot impinging jet with nanofluids.
Manca, Oronzio; Mesolella, Paolo; Nardini, Sergio; Ricci, Daniele
2011-03-01
Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the values calculated in the case of
Numerical study of a confined slot impinging jet with nanofluids
Directory of Open Access Journals (Sweden)
Manca Oronzio
2011-01-01
Full Text Available Abstract Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4
Numerical study of asymmetric driven reconnection at dayside magnetopause
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A two-dimensional compressible MHD code has been used to numerically study the asymmetric driven reconnection processes in the vicinity of the magnetopause. The initial magnetic field configuration is assumed to be in a mechanical equilibrium state. The cases with identical temperatures (Tm0/Ts0=1.0) and four different ratios of magnetic field strength (Q=Bm0/Bs0=1.0, 1.5, 2.0, 2.5), and the case with Tm0/Ts0=2.0 and Q=1.5 are investigated (Bm0, Tm0 and Bs0, Ts0 are the initial magnetic strength and temperature outside the current sheet on the magnetosphere and the magnetosheath, respectively ). When the magnetic field on the magnetosheath side is set as southward, a recurrent formation of multiple magnetic bubbles with various scales occurs under the action of the inward plasma flow imposed at the left and right boundaries. In the simulation, some bubbles coalesce into a bigger one and then it is convected out of the simulation domain; the others are convected through the top boundary all alone. Thus, the plasmoid events with different scales and different time intervals take place intermittently and the impulsive features of magnetic reconnection are clearly shown. The multiple magnetic islands are all high-temperature and large-density regions in comparison with the ambient environment. The bipolar signatures or fluctuant variations of normal magnetic field component are generated by the formation of multiple magnetic islands. This result is similar to the FTEs signature.
Numerical study on drop formation through a micro nozzle
Energy Technology Data Exchange (ETDEWEB)
Kim, Sung Il; Son, Gi Hun [Sogang Univ., Seoul (Korea, Republic of)
2005-02-01
The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation.
A numerical study of the turbulent Ekman layer
Coleman, G. N.; Ferziger, J. H.; Spalart, P. R.
1990-01-01
The three-dimensional time-dependent turbulent flow in a neutrally stratified Ekman layer over a smooth flat surface was numerically simulated by directly solving the Navier-Stokes equations. Issues addressed using the direct numerical simulation (DNS) fields include the presence or absence of large-scale coherent structures ('longitudinal' or 'roll' vortices) in neutrally stratified Ekman-layer turbulence, the effects of the horizontal component of the angular velocity vector (i.e., latitude), and implications for models of the PBL. Experimental and DNS profiles are compared.
Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.
Zhang, Yu; You, Xuqun; Zhu, Rongjuan
2016-07-01
Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space.
Numerical and Experimental Study of Electromagnetically Driven Vortical Flows
Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.
2009-01-01
The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is focus
Numerical study of agglomerate abrasion in a tumbling mixer
Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort
2014-01-01
A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using th
Numerical and experimental study of hydrostatic displacement machine
DEFF Research Database (Denmark)
Sørensen, Rasmus Mørk; Hansen, Michael; Mouritsen, Ole Ø.
2012-01-01
distribution across both end faces. The fluid pressure is combined with structural calculations in a fluid structural interaction simulation, which evaluates the influence of structural deflections on the gaps and the leakage flow. The numerical work is validated by prototype tests. Both deflections...
NUMERICAL STUDY ON MIXED CONVECTIVE FLOW IN A SOLAR COLLECTOR
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In a solar energy heat collector forced convection and free convection will occur concurrently. In this paper, the mixed convective flow was investigated. The dimensionless equation was derived and the results was verified by experiments. The numerical solution shows that error is less than 5% if the effect of free convection is ignored.
A numerical study of mixed parabolic-gradient systems
Verwer, J.G.; Sommeijer, B.P.
2000-01-01
This paper is concerned with the numerical solution of parabolic equations coupled to gradient equations. The gradient equations are ordinary differential equations whose solutions define positions of particles in the spatial domain of the parabolic equations. The vector field of the gradient equati
A numerical study of unstable Hele-Shaw flow
DEFF Research Database (Denmark)
Hansen, Erik Bent; Rasmussen, Henning
1999-01-01
A numerical procedure which is based on an integral equation for the normal velocity at the interface is developed for the unstable flow with surface tension in a Hele-Shaw cell. The procedure has been validated by comparing solutions obtained by it with published results. It has also been applie...
A preliminary study of biodegradable waste as sorbent material for oil-spill cleanup.
Idris, J; Eyu, G D; Mansor, A M; Ahmad, Z; Chukwuekezie, C S
2014-01-01
Oil spill constitutes a major source of fresh and seawater pollution as a result of accidental discharge from tankers, marine engines, and underwater pipes. Therefore, the need for cost-effective and environmental friendly sorbent materials for oil spill cleanup cannot be overemphasized. The present work focuses on the preliminary study of empty palm fruit bunch fibre as a promising sorbent material. The morphology of the unmodified empty palm fruit bunch, EPFB fibre, was examined using an optical microcopy, scanning electron microcopy coupled with EDX and X-ray diffraction. The effects of oil volume, fibre weight, and time on oil absorption of EPFB fibre were evaluated with new engine oil from the model oil. The results show that EPFB fibre consists of numerous micro pores, hydrophobic, and partially crystalline and amorphous with approximately 13.5% carbon. The oil absorbency of the fibre increased with the increase in oil volume, immersion time, and fibre weight. However, sorption capacity decreased beyond 3 g in 100 mL. Additionally unmodified EPFB fibre showed optimum oil sorption efficiency of approximately 2.8 g/g within three days of immersion time.
A Preliminary Study of Biodegradable Waste as Sorbent Material for Oil-Spill Cleanup
Directory of Open Access Journals (Sweden)
J. Idris
2014-01-01
Full Text Available Oil spill constitutes a major source of fresh and seawater pollution as a result of accidental discharge from tankers, marine engines, and underwater pipes. Therefore, the need for cost-effective and environmental friendly sorbent materials for oil spill cleanup cannot be overemphasized. The present work focuses on the preliminary study of empty palm fruit bunch fibre as a promising sorbent material. The morphology of the unmodified empty palm fruit bunch, EPFB fibre, was examined using an optical microcopy, scanning electron microcopy coupled with EDX and X-ray diffraction. The effects of oil volume, fibre weight, and time on oil absorption of EPFB fibre were evaluated with new engine oil from the model oil. The results show that EPFB fibre consists of numerous micro pores, hydrophobic, and partially crystalline and amorphous with approximately 13.5% carbon. The oil absorbency of the fibre increased with the increase in oil volume, immersion time, and fibre weight. However, sorption capacity decreased beyond 3 g in 100 mL. Additionally unmodified EPFB fibre showed optimum oil sorption efficiency of approximately 2.8 g/g within three days of immersion time.
A Study on Numerical Simulation of Core-Shooting Process
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In order to evaluate the main factors influencing the core-shooting process and to optimize the design of core boxes, the fluid-particle (air-sand) model has been built based on the two-phase flow theory. The fluid phase, air, and the particulate phase, sand granules, have been treated as a continuum. By using this model, it is possible to simulate the flow and compaction behavior of sand particles during the core-shooting process. To benchmark the calculated results, the shooting process has been recorded with a digital high speed camera, and the inlet condition of sand particles has also been achieved by using the camera. The preliminary results have showed that the calculation is in agreement with the testing results.
A Preliminary Case Study for Rectenna Sites in Indonesia
Purwanto, Y.; Collins, P.
2004-12-01
Electricity power generation using alternative energy sources in Indonesia has become an important policy. Until now, the contribution from alternative energy sources (especially from renewable energy sources) is very small, only about 1% of the total energy supply. It is expected that in the next 10 years this contribution will be raised to 20%. The development of renewable energy sources is primarily performed in remote areas, that are poor in infrastructure facilities. This is considered to be a good policy since there are many such remote areas in Indonesia that need development programs. The existence of Solar Power Satellite system will open a new horizon in alternative energy supply, including Indonesia, because of its higher efficiency compared to conventional terrestrial solar cells, with almost no influence from either climate or solar position. Like other countries in the world, Indonesia, although one of the largest mineral energy producers in the world (i.e. oil, coal, and natural gas), still gives attention to energy diversification programs, including solar energy utilization. SPS, being based on solar energy, could be a good choice. The Indonesian archipelago consists of thousands of islands (more than 13,000) and is the equatorial country with the longest equatorial extent (more than 5000 km). This condition is very good for energy reception from the SPS 2000 pilot plant since the energy transmitting system (spacetenna) will orbit above the equator. Along the equator there could be placed more than four receiving stations (rectenna), especially in remote areas. Thus, it is very important to consider the involvement of Indonesia in SPS energy reception research. This paper describes a preliminary study of the development possibilities in SPS energy reception in Indonesia. To define the rectenna sites and physical development aspect, this study considers some major aspects: environmental, technical, social, and economic aspects. Environmental aspects
Semi Active Control of Civil Structures, Analytical and Numerical Studies
Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.
numerical example of the parallel R-L piezoelectric vibration shunt control simulated with MATLAB® is presented. An analytical study of the resistor-inductor (R-L) passive piezoelectric vibration shunt control of a cantilever beam was undertaken. The modal and strain analyses were performed by varying the material properties and geometric configurations of the piezoelectric transducer in relation to the structure in order to maximize the mechanical strain produced in the piezoelectric transducer.
A numerical study of self-gravitating protoplanetary disks
Institute of Scientific and Technical Information of China (English)
Kazem Faghei
2012-01-01
The effect of self-gravity on protoplanetary disks is investigated.The mechanisms of angular momentum transport and energy dissipation are assumed to be the viscosity due to turbulence in the accretion disk.The energy equation is considered in a situation where the released energy by viscosity dissipation is balanced with cooling processes.The viscosity is obtained by equality of dissipation and cooling functions,and is used to derive the angular momentum equation.The cooling rate of the flow is calculated by a prescription,du/dt =-u/τcool,where u and τcool are the internal energy and cooling timescale,respectively.The ratio of local cooling to dynamical timescales Ωτcool is assumed to be a constant and also a function of the local temperature.The solutions for protoplanetary disks show that in the case of Ωτcool =constant,the disk does not exhibit any gravitational instability over small radii for a typical mass accretion rate,M =10-6M☉ yr-1,but when choosing Ωτcool to be a function of temperature,gravitational instability can occur for this value of mass accretion rate or even less in small radii.Also,by studying the viscosity parameter α,we find that the strength of turbulence in the inner part of self-gravitating protoplanetary disks is very low.These results are qualitatively consistent with direct numerical simulations of protoplanetary disks.Also,in the case of cooling with temperature dependence,the effect of physical parameters on the structure of the disk is investigated.These solutions demonstrate that disk thickness and the Toomre parameter decrease by adding the ratio of disk mass to central object mass.However,the disk thickness and the Toomre parameter increase by adding mass accretion rate.Furthermore,for typical input parameters such as mass accretion rate 10-6M☉ yr-1,the ratio of the specific heat γ =5/3 and the ratio of disk mass to central object mass q =0.1,gravitational instability can occur over the whole radius of the disk
Preliminary studies of Pliocene speleothems from the Nullarbor Plain, southwest Australia
Sellman, Safana; Drysdale, Russell; Woodhead, Jon; Hellstrom, John
2015-04-01
The Pliocene (~2.58-5.33 Ma) is an important time interval for study of the Earth's climate system due to its potential as an analogue for future climates. However, there is a significant lack of terrestrial archives of palaeoclimate information for this period, and even fewer reliable estimates of palaeotemperature. There is also a distinct lack of data from Southern Hemisphere locations. This project is part of a larger study that aims to address these gaps by providing palaeohydrological and palaeotemperature reconstructions for the Pliocene using speleothems obtained from caves beneath the Nullarbor Plain, southern Australia. While to date, studies have largely focused on broad scale features for the entire Pliocene, this project will provide high-resolution records for specific time intervals (i.e. individual stalagmite growth periods) within this time frame. This research will provide a unique dataset of Pliocene climate that will have practical applications in informing the next generation of climate models future climate change. U-Pb dating of numerous Nullarbor speleothems shows that their growth spans from the late Miocene, through the Pliocene, and into the Pleistocene (Woodhead et al. in prep). A preliminary high-resolution study of two stalagmites (BT and M2) from Matilda Cave, both dated using the U-Pb method, will be presented. Stable isotope and fluid inclusion analyses were undertaken on both stalagmites. Modern rainfall samples from the region will be used to isotopically fingerprint dominant sources of modern precipitation, providing a basis on which to interpret conditions at the time of speleothem deposition. The presence of fluid inclusions suitable for analysis appears to be variable both spatially within the cave, and temporally. Thus sample BT provided water contents consistently too low for accurate fluid inclusion analyses, while sample M2 provided utilisable water contents during some growth periods but not in others. While the
Numerical study on pulse trapping in birefringent photonic crystal fibers
Institute of Scientific and Technical Information of China (English)
YAO Yan-yan; LI Shu-guang; FU Bo; ZHANG Lei; ZHANG Mei-yan
2011-01-01
Using an adaptive split-step Fourier method, the coupled nonlinear Schrodinger equations have been numerically solved in this paper. The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic crystal fibers is investigated numerically. It is found that the phenomenon of pulse trapping occurs when the incident pulse is deviating from the principal axis of the fiber with some angle. Owing to the bireffingence effect, the incident pulse can be regarded as twoorthogonal polarized pulses. The phenomenon of pulse trapping occurs because of the cross phase modulation (XPM) between the two components. As a result, the bandwidth of the supercontinuum (SC) decreases compared with the case that the incident pulse is input along the principal axis. When the polarization direction of the incident pulse is parallel to the fast axis, the bandwidth of the supercontinuum is maximaL
Numerical study on hygroscopic material drying in packed bed
Directory of Open Access Journals (Sweden)
M. Stakić
2011-06-01
Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.
Experimental and numerical study of short pulse effects in FELs
Khodyachykh, S; Genz, H; Hessler, C; Richter, A; Asgekar, V
2004-01-01
We report the experimental and numerical investigations of the influence of short pulse effects occurring in FELs in different operational regimes for electron bunch lengths which are of the order of the slippage distance. Several observables such as the small signal gain, the macropulse power and the spectral distribution of the FEL radiation were determined experimentally within the constraints of the stable focus regime at the infrared FEL at the S- DALINAC and for the limit cycle regime at the Dutch near infrared FEL FELIX. The experimental findings were compared to predictions of numerical simulations based on the 1D time dependent code FEL1D-OSC. The agreement between experiment and simulation is good. Furthermore, the simulations reveal a chaotic behavior of the macropulses for specific values of the slippage as well as period-doubling, two effects that are predicted to show up in the spectral distribution.
Experimental and numerical study of short pulse effects in FELs
Khodyachykh, S.; Brunken, M.; Genz, H.; Hessler, C.; Richter, A.; Asgekar, V.
2004-09-01
We report the experimental and numerical investigations of the influence of short pulse effects occurring in FELs in different operational regimes for electron bunch lengths which are of the order of the slippage distance. Several observables such as the small signal gain, the macropulse power and the spectral distribution of the FEL radiation were determined experimentally within the constraints of the stable focus regime at the infrared FEL at the S-DALINAC and for the limit cycle regime at the Dutch near infrared FEL FELIX. The experimental findings were compared to predictions of numerical simulations based on the 1D time dependent code FEL1D-OSC. The agreement between experiment and simulation is good. Furthermore, the simulations reveal a chaotic behavior of the macropulses for specific values of the slippage as well as period-doubling, two effects that are predicted to show up in the spectral distribution.
Numerical and experimental study of spray dynamics. DYNASP programme
Energy Technology Data Exchange (ETDEWEB)
Caroli, C. [ENEA Casaccia (Italy); Magnaud, J.P.; Coche, J.C.; Cornet, P.
1997-12-31
The DYNASP program supported by the IPSN for investigating the dynamical interactions between the water droplets and the gas in case of spray in the reactor containment is described. Air flows were induced in closed chamber by 500{mu}m diameter glass micro-beads jets using several mass fluxes. LDA measurements of the gas and particle velocities and turbulence level are given. Large regions of recirculating air were detected characterized by high air velocities and turbulence levels. A numerical model developed in parallel as part of the TONUS code is also described and comparison of the computed results with experimental data is given. Satisfactory agreement between experimental and numerical data is observed. (author)
Numerical Study of FRP Reinforced Concrete Slabs at Elevated Temperature
Directory of Open Access Journals (Sweden)
Masoud Adelzadeh
2014-02-01
Full Text Available One-way glass fibre reinforced polymer (GFRP reinforced concrete slabs at elevated temperatures are investigated through numerical modeling. Serviceability and strength requirements of ACI-440.1R are considered for the design of the slabs. Diagrams to determine fire endurance of slabs by employing “strength domain” failure criterion are presented. Comparisons between the existing “temperature domain” method with the more representative “strength domain” method show that the “temperature domain” method is conservative. Additionally, a method to increase the fire endurance of slabs by placing FRP reinforcement in two layers is investigated numerically. The amount of fire endurance gained by placing FRP in two layers increases as the thickness of slab increases.
Experimental and numerical study on ice resistance for icebreaking vessels
Directory of Open Access Journals (Sweden)
Hu Jian
2015-05-01
Full Text Available Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship’s resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.
Numerical Wave Flume Study on Wave Motion Around Submerged Plates
Institute of Scientific and Technical Information of China (English)
齐鹏; 侯一筠
2003-01-01
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Key Issues Review: Numerical studies of turbulence in stars
Arnett, W David
2016-01-01
The numerical simulation of turbulence in stars has led to a rich set of possibilities regarding stellar pulsations, asteroseismology, thermonuclear yields, and formation of neutron stars and black holes. The breaking of symmetry by turbulent flow grows in amplitude as collapse is approached, which insures that the conditions at the onset of collapse are not spherical. This lack of spherical symmetry has important implications for the mechanism of explosion and ejected nucleosynthesis products. Numerical resolution of several different types of three--dimensional (3D) stellar simulations are compared; it is suggested that core collapse simulations may be under-resolved. New physical effects which appear in 3D are summarized. Connections between simulations of progenitor explosion and observations of supernova remnants (SNR) are discussed. Present treatment of boundaries, for mixing regions during He--burning, requires revision.
Preliminary study on the RF tuning of CSNS DTL
Yin, Xue-Jun; Li, A.-Hong; Xiao, Yong-Chuang; Chen, Qiang; Liu, Hua-Chang; Gong, Ke-Yun; Fu, Shi-Nian
2014-02-01
In the R&D of the CSNS Drift Tube Linac (DTL), the first unit tank with 28 drift tubes has been developed. The axial accelerating field is ramped from 2.2 MV/m to 3.1 MV/m in this tank. The required field flatness is less than ±2% with the standard deviation of 1% for the beam dynamics; the field stability should be less than 1% for machine stable operation. After successful alignment, RF tuning was carried out focusing on the field profile measurement. Four slug tuners and eleven post couplers were applied in this procedure. The ramped field and required stability had been achieved by fine adjustment of the slug tuners and post couplers. In this paper, the preliminary tuning results are presented and discussed.
Preliminary Study on the RF tuning of CSNS DTL
Yin, Xuejun; Xiao, Yongchuang; Chen, Qiang; Liu, Huachang; Gong, Keyun; Fu, Shinan
2013-01-01
In the R&D of the CSNS Drift Tube Linac (DTL), the first unit tank with 28 drift tubes has been developed. The axial accelerating field is ramped from 2.2MV/m to 3.1MV/m in this tank. The required field flatness is less than 2 % with the standard deviation of 1 % for the beam dynamics. And the field stability should be less than 1% for machine stable operation. After the successful alignment, the RF tuning was carried out focusing on the field profile measurement. Four slug tuners and 11 post couplers were applied in this procedure. The ramped filed and required stability had been achieved by fine adjustment of the slug tuners and post couplers. In this paper, the preliminary tuning results are presented and discussed.
Numerical study on thermodynamic characteristics of rotational supercavitating evaporator
Li, Q.; Zheng, Z. Y.; Li, F. C.; Kulagin, V. A.
2016-05-01
Rotational Supercavitating Evaporator (RSCE) has been proposed as a new technology for seawater desalination. However, thermodynamic characteristics of rotational supercavitation are still vacant. In this paper, numerical simulations are conducted on the supercavitating flows around a 3D rotating blade of RSCE with different rotational speeds and extraction pressures. Energy effect is taken into consideration in the simulation and thermodynamic characteristics of rotational supercavitation are obtained. Rotational supercavitation has a larger convective heat transfer coefficient than the boiling on a heated wall.
A numerical study of natural convection in a narrow annulus
Energy Technology Data Exchange (ETDEWEB)
Sahai, V.
1991-12-01
Various numerical models were used to predict the natural convection of a solidifying liquid metal in a narrow annulus. Previous work in this area do not consider the temperature variation that exists in the fluid and the resulting heat conduction in the solid mold material. The finite element fluid dynamics code FIDAP was sued to solve these models. The results indicate that the natural convective effects are small. 6 refs.
Numerical study of n-pentane separation using adsorption column
Adriano da Silva; Viviana Cocco Mariani; Antônio Augusto Ulson de Souza; Selene Maria de Arruda Guelli Ulson Souza
2005-01-01
This work simulated numerically the n-pentane separation of a mixture of iso-pentane, n-pentane and nitrogen, using an adsorption column with zeolite 5A. The mathematical model equations of the mass and heat transfer in the adsorption column are presented, as well as the boundary and initials conditions, beyond some hypotheses and considerations. The Volume Finite Method was used in the discretization of the equations to get the system of algebraic equations and posterior development of the c...
Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
A numerical study of natural convection in a narrow annulus
Sahai, V.
1991-12-01
Various numerical models were used to predict the natural convection of a solidifying liquid metal in a narrow annulus. Previous work in this area does not consider the temperature variation that exists in the fluid and the resulting heat conduction in the solid mold material. The finite element fluid dynamics code FIDAP was used to solve these models. The results indicate that the natural convective effects are small.
Optimal Constrained Layer Damping of Beams: Experimental and Numerical Studies
Directory of Open Access Journals (Sweden)
J.-L. Marcelin
1995-01-01
Full Text Available This article deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. The design variables are the dimensions and locations of the viscoelastic layers and the objective function is the maximum damping factor. The discrete design variable optimization problem is solved using a genetic algorithm. Numerical results for minimum and maximum damping are compared to experimental results. This is done for a various number of materials and beams.
Lift augmentation via spanwise tip blowing - A numerical study
Childs, R. E.
1986-01-01
Numerical simulations of a low aspect ratio wing with and without a spanwise directed jet issuing from the wing tip have been performed. The results show that the tip vortex is displaced outward and upward by the blowing. This gives rise to a local lift augmentation mechanism, vortex lift caused by the vortex core being above the wing, and a global mechanism, the reduction of induced velocities due to greater apparent spin.
Preliminary experimental study of liquid lithium water interaction
Energy Technology Data Exchange (ETDEWEB)
You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn
2015-10-15
Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.
Key issues review: numerical studies of turbulence in stars
Arnett, W. David; Meakin, Casey
2016-10-01
Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.
Numerical studies of pair creation in counterpropagating laser fields
Energy Technology Data Exchange (ETDEWEB)
Ruf, Matthias
2009-05-27
Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)
Numerical studies of pair creation in counterpropagating laser fields
Energy Technology Data Exchange (ETDEWEB)
Ruf, Matthias
2009-05-27
Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)
Black hole free energy during charged collapse: a numerical study
Beauchesne, Hugues
2012-01-01
We perform a numerical investigation of the thermodynamics during the collapse of a charged (complex) scalar field to a Reissner-Nordstr\\"om (RN) black hole in isotropic coordinates. Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the total Lagrangian approaches the Helmholtz free energy F= E-TS of a Schwarzschild black hole at late times of the collapse (where E is the black hole mass, T the temperature and S the entropy). The relevant thermodynamic potential for the RN black hole is the Gibbs free energy G=E-TS-$\\Phi_H$ Q where Q is the charge and $\\Phi_H$ the electrostatic potential at the outer horizon. In charged collapse, there is a large outgoing matter wave which prevents the exterior from settling quickly to a static state. However, the interior region is not affected significantly by the wave. We find numerically that the interior contribution to the Gibbs free energy is entirely gravitational and accumulates in a thin shell just inside the h...
Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study
DEFF Research Database (Denmark)
Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil
2016-01-01
was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... classification, and had length/thickness (L/T) aspect ratios of 2.00 and 1.82, respectively. The particles were characterized with X-ray micro-computed tomography, coupled with spherical harmonic analysis to mathematically describe the full 3-D shape of the particles, while the rheological performance...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...
Localized fluidization in granular materials: Theoretical and numerical study
Montellà, E. P.; Toraldo, M.; Chareyre, B.; Sibille, L.
2016-11-01
We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.
Localized fluidization in granular materials: Theoretical and numerical study.
Montellà, E P; Toraldo, M; Chareyre, B; Sibille, L
2016-11-01
We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.
A Comparative Numerical Study on GEM, MHSP and MSGC
Bhattacharya, Purba; Majumdar, Nayana; Bhattacharya, Sudeb
2012-01-01
In this work we have concentrated on the detailed understanding of the physical processes occurring in those variants of Micro Pattern Gas Detectors that share micro hole and micro strip geometry. Here, we will present numerical results obtained using the simulation framework, recently developed especially for MPGDs that combines packages such as GARFIELD, neBEM, MAGBOLTZ and HEED. Using this framework, we have estimated quantitatively and qualitatively, some of the important and fundamental characteristics of these MPGDs such as detector gain, transparency, efficiency and their operational dependence on different detector parameters. The estimates have been compared with available experimental and simulation data and an encouraging agreement has been observed.
Numerical study of Wavy Blade Section for Wind Turbines
DEFF Research Database (Denmark)
Kobæk, C. M.; Hansen, Martin Otto Laver
2016-01-01
relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical...... results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate...
Numerical study of particle capture efficiency in fibrous filter
Directory of Open Access Journals (Sweden)
Fan Jianhua
2017-01-01
Full Text Available Numerical simulations are performed for transport and deposition of particles over a fixed obstacle in a fluid flow. The effect of particle size and Stokes number on the particle capture efficiency is investigated using two methods. The first one is one-way coupling combining Lattice Boltzmann (LB method with Lagrangian point-like approach. The second one is two-way coupling based on the coupling between Lattice Boltzmann method and discrete element (DE method, which consider the particle influence on the fluid. Then the single fiber collection efficiency characterized by Stokes number (St are simulated by LB-DE methods. Results show that two-way coupling method is more appropriate in our case for particles larger than 8 μm. A good agreement has also been observed between our simulation results and existing correlations for single fiber collection efficiency. The numerical simulations presented in this work are useful to understand the particle transport and deposition and to predict the capture efficiency.
Numerical study of particle capture efficiency in fibrous filter
Fan, Jianhua; Lominé, Franck; Hellou, Mustapha
2017-06-01
Numerical simulations are performed for transport and deposition of particles over a fixed obstacle in a fluid flow. The effect of particle size and Stokes number on the particle capture efficiency is investigated using two methods. The first one is one-way coupling combining Lattice Boltzmann (LB) method with Lagrangian point-like approach. The second one is two-way coupling based on the coupling between Lattice Boltzmann method and discrete element (DE) method, which consider the particle influence on the fluid. Then the single fiber collection efficiency characterized by Stokes number (St) are simulated by LB-DE methods. Results show that two-way coupling method is more appropriate in our case for particles larger than 8 μm. A good agreement has also been observed between our simulation results and existing correlations for single fiber collection efficiency. The numerical simulations presented in this work are useful to understand the particle transport and deposition and to predict the capture efficiency.
Numerical Study of Passive Catalytic Recombiner for Hydrogen Mitigation
Directory of Open Access Journals (Sweden)
Pavan K Sharma
2010-10-01
Full Text Available A significant amount of hydrogen is expected to be released within the containment of a water cooled power reactor after a severe accident. To reduce the risk of deflagration/detonation various means for hydrogen control have been adopted all over the world. Passive catalytic recombiner with vertical flat catalytic plate is one of such hydrogen mitigating device. Passive catalytic recombiners are designed for the removal of hydrogen generated in order to limit the impact of possible hydrogen combustion. Inside a passive catalytic recombiner, numerous thin steel sheets coated with catalyst material are vertically arranged at the bottom opening of a sheet metal housing forming parallel flow channels for the surrounding gas atmosphere. Already below conventional flammability limits, hydrogen and oxygen react exothermally on the catalytic surfaces forming harmless steam. Detailed numerical simulations and experiments are required for an in-depth knowledge of such plate type catalytic recombiners. Specific finite volume based in-house CFD code has been developed to model and analyse the working of these recombiner. The code has been used to simulate the recombiner device used in the Gx-test series of Battelle-Model Containment (B-MC experiments. The present paper briefly describes the working principle of such passive catalytic recombiner and salient feature of the CFD model developed at Bhabha Atomic Research Centre (BARC. Finally results of the calculations and comparison with existing data are discussed.
Multivariate numerical integration via fluctuationlessness theorem: Case study
Baykara, N. A.; Gürvit, Ercan
2017-01-01
In this work we come up with the statement of the Fluctuationlessness theorem recently conjectured and proven by M. Demiralp and its application to numerical integration of univariate functions by restructuring the Taylor expansion with explicit remainder term. The Fluctuationlessness theorem is stated. Following this step an orthonormal basis set is formed and the necessary formulae for calculating the coefficients of the three term recursion formula are constructed. Then for multivariate numerical integration, instead of dealing with a single formula for multiple remainder terms, a new approach that is already mentioned for bivariate functions is taken into consideration. At every step of a multivariate integration one variable is considered and the others are held constant. In such a way, this gives us the possibility to get rid of the complexity of calculations. The trivariate case is taken into account and its generalization is step by step explained. At the final stage implementations are done for some trivariate functions and the results are tabulated together with the implementation times.
A PRELIMINARY STUDY OF EXPERT SYSTEM FOR MINING UNDER STRUCTURES
Institute of Scientific and Technical Information of China (English)
吴侃; 何国清; 曹立明
1991-01-01
The expert system MUST (Mining Under Structures) shown in this paper and established by the authors is a preliminary expert system to solve the policy-making problems formining under structures by means of computers instead of humanbeing. Based on the experience of relative experts,the authors established a knowledge base about the minings under structures ,researched into reasonable method to simulate thinking processes of human experts when they are solvin8 the problems, established the network of an expert system and named it'MUST system'MUST system uses the method of the structural system analysis approach. A kind of methods of Turbo Prolog and Fortran 77 language alternations is designed to meet the needs of exchange information within the MUST system. Based on this kind of methods MUST system has been constructed and realised on IBM-PC computer. For verifying the correctness. suitability and reliablity of MUST system,some practical examples of minings under structures were tentatively solved using MUST system ,whose results are satisfactory.
The Myres Hill remote sensing intercomparison study: preliminary results
Clive, P. J. M.; Chindurza, I.; Ravey, I.; Bass, J.; Boyle, R. J.; Jones, P.; Lang, S. J.; Bradley, S.; Hay, L.; Oldroyd, A.; Stickland, M.
2008-05-01
Two remote sensing techniques (SODAR and LIDAR) have been developed for measuring wind speed and turbulence from ground level up to altitudes of 300 m or higher. Although originally developed in the defence sector, these techniques are now generating considerable interest in the renewable energy and meteorological sectors. Despite the benefits of these instruments they are not yet generally accepted for due diligence measurements by wind energy developers and financial institutions. There is a requirement for a series of independent assessments of these new metrology techniques, comparing their measurements with the approved cup-type anemometer readings. This is being addressed at TUV NEL's Myres Hill wind turbine test site in a measurement programme supported by the DIUS National Measurement Systems Measurement for Innovators scheme and a consortium of 21 industrial collaborators. Data from SODAR and LIDAR systems are being compared with results from cup-type anemometers mounted at different heights on an 80m meteorological mast. An ultrasonic sensor is also mounted on the mast. The objective of the test programme is to assess the effectiveness of SODAR and LIDAR wind speed measurement techniques under different operating regimes and atmospheric conditions. Results from the measurements will provide definitive data on the performance of the remote wind speed sensing techniques under test on complex terrain typical of many wind farm sites. Preliminary measurements based on data acquired during the initial measurement campaign are presented.
Preliminary study of a dispersed fringe type sensing system
Institute of Scientific and Technical Information of China (English)
Yong Zhang; Gen-Rong Liu; Yue-Fei Wang; Ye-Ping Li; Ya-Jun Zhang; Liang Zhang
2009-01-01
Telescopes with large aspherical primary mirrors collect more light and are therefore sought after by astronomers. Instead of using a single large one-piece mirror, smaller segments can be assembled into a useable telescopic primary. Because the seg-ments must fit together to create the effect of a single mirror, segmented optics present unique challenges to the fabrication and testing that are absent in monolithic optics. A dispersed fringe sensor (DFS) using a broadband point source is an efficient method for cophasing and is also highly automated and robust. Unlike the widely adopted Shack-Hartmann Wavefront sensor and curvature wavefront sensor with edge sensors for cali-bration of relative pistons, DFS can estimate the piston between segments by only using the spectrum formed by the transmissive grating's dispersion, and therefore can replace the edge sensors, which are difficult to calibrate. We introduce the theory of the DFS and Dispersed Hartmann Sensor (DHS) for further utilization of the coarse phasing method of DFS. According to the theory, we bring out the preliminary system design of the cophas-ing experimental system based on DFS and DHS which is now established in our institute. Finally, a summary is reached.
Preliminary study on mechanics-based rainfall kinetic energy
Directory of Open Access Journals (Sweden)
Yuan Jiuqin Ms.
2014-09-01
Full Text Available A raindrop impact power observation system was employed to observe the real-time raindrop impact power during a rainfall event and to analyze the corresponding rainfall characteristics. The experiments were conducted at different simulated rainfall intensities. As rainfall intensity increased, the observed impact power increased linearly indicating the power observation system would be satisfactory for characterizing rainfall erosivity. Momentum is the product of mass and velocity (Momentum=MV, which is related to the observed impact power value. Since there is no significant difference between momentum and impact power, observed impact power can represent momentum for different rainfall intensities. The relationship between momentum and the observed impact power provides a convenient way to calculate rainfall kinetic energy. The value of rainfall kinetic energy based on the observed impact power was higher than the classic rainfall kinetic energy. The rainfall impact power based kinetic energy and the classic rainfall kinetic energy showed linear correlation, which indicates that the raindrop impact power observation system can characterize rainfall kinetic energy. The article establishes a preliminary way to calculate rainfall kinetic energy by using the real-time observed momentum, providing a foundation for replacing the traditional methods for estimating kinetic energy of rainstorms.
Sherwin, Catherine M. T.; Ngamprasertwong, Pornswan; Sadhasivam, Senthilkumar; Vinks, Alexander A.
2017-01-01
Multiple blood samples are generally required for measurement of pharmacokinetic (PK) parameters. D-optimal design is a popular and frequently used approach for determination of sampling time points in order to minimize the number of samples, while optimizing the estimation of PK parameters. Optimal design utilizing ADAPT (v5, BSR, University of Southern California, Los Angeles) developed a sparse sampling strategy to determine measurement of propofol in pregnant sheep. Propofal was administered as supplemental anesthetic agent to inhalation anesthesia to mimic anesthesia for open fetal surgery. In our preliminary study, propofol 3 mg/kg was given as a bolus to the ewe, followed by propofol infusion at rate 450 mcg/kg/min for 60 minutes, then decreased to 75 mcg/kg/min for 90 more minutes and then ceased. A three compartment model described the PK parameters with the fetus assumed as the third compartment. Initially, sampling times were chosen from thirteen time points as previously stated in the literature. Using priori propofol PK estimates, the final 9 sample time points were proposed in an optimal design with a change in infusion rate occurring between 65 and 75 minutes and sampling proposed at 5, 15, 25, 65, 75, 100, 110, 150, and 180 minutes. D-optimal design optimized the number and timing of samplings, which led to a reduction of cost and man power in the study protocol while preserving the ability to estimate propofol PK parameters in the maternal and fetal sheep model. Initial evaluation of samples collected from three sheep using the optimal design strategy confirmed the performance of the design in obtaining effective PK parameter estimates. PMID:24219004
A Numerical Study of Comet Mcnaught over a Wide Range of Heliocentric Distances
Shou, Yinsi; Combi, M. R.; Rubin, M.; Toth, G.
2012-10-01
A numerical study of Comet McNaught over a wide range of heliocentric distances Yinsi Shou, Michael R. Combi, Martin Rubin, Gabor Toth The Comet C/2006 P1 (McNaught) has a small perihelion distance (0.17 AU) and had a very high production rate during its passage close to the Sun in January and February of 2007. During that period, it was monitored by both ground- and space-based observatories, which provided substantial information about the comet. In early February, the Ulysses spacecraft encountered its ion tail and gave clues to the surrounding solar wind conditions and to the cometary environment. Therefore, Comet McNaught is an ideal object to study the cometary structures under extreme conditions and the solar wind-comet interaction over a wide range of heliocentric distances. A numerical study of Comet McNaught combining two models is conducted. First, a single species magnetohydrodynamics (MHD) [Gombosi et al. (1996, JGR 101, 15233)] simulation is performed using a set of ‘observed’ comet parameters as input. Then a chemistry model [Häberli et al. (1997, Icarus 130, 373)] extracts the streamlines from the MHD model and calculates the densities of different species accounting for photo-dissociation, photo-ionization, electron recombination, ion-molecule and charge-exchange reactions. The MHD results are able to give the diamagnetic cavity sizes and shock distances at various heliocentric distances while the chemistry model better resolves the distribution of the major chemical species in the cometary plasma environment. The combination of the two models allows us to obtain detailed information on the chemical composition of a much wider range of atoms and molecules compared to multi-species or multi-fluid MHD models and at much lower computational expense. Some preliminary results are presented and discussed. This work has been partially supported by grant AST-0707283 from the NSF Planetary Astronomy program and NASA Planetary Atmospheres program grant
NUMERICAL STUDY OF 3D EXPLOSION BUBBLES ADJACENT TO STRUCTURES
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The bejavior of a bubble near a rigid structure was considered by using the local surface fitting method and the "jet prediction" method. The convergence difficulty caused by the abnormality of the elements was overcome. The flow was numerically simulated by using the boundary-integral method on the assumption that the water was inviscid and incompressible, and the bubble gas obeyed the isoentropic rule. The evolution of the bubble was investigated by means of the mixed Euler-Lagrange method, and the Runge-Kutta method. The important behavior of the bubble, such as migration and jetting, was analyzed in several examples. And the solution of one period of the explosion bubble was obtained.
Supersymmetric Theory of Stochastic ABC Model: A Numerical Study
Ovchinnikov, Igor V; Ensslin, Torsten A; Wang, Kang L
2016-01-01
In this paper, we investigate numerically the stochastic ABC model, a toy model in the theory of astrophysical kinematic dynamos, within the recently proposed supersymmetric theory of stochastics (STS). STS characterises stochastic differential equations (SDEs) by the spectrum of the stochastic evolution operator (SEO) on elements of the exterior algebra or differentials forms over the system's phase space, X. STS can thereby classify SDEs as chaotic or non-chaotic by identifying the phenomenon of stochastic chaos with the spontaneously broken topological supersymmetry that all SDEs possess. We demonstrate the following three properties of the SEO, deduced previously analytically and from physical arguments: the SEO spectra for zeroth and top degree forms never break topological supersymmetry, all SDEs possesses pseudo-time-reversal symmetry, and each de Rahm cohomology class provides one supersymmetric eigenstate. Our results also suggests that the SEO spectra for forms of complementary degrees, i.e., k and ...
Experimental and numerical study of micro deep drawing
Directory of Open Access Journals (Sweden)
Luo Liang
2015-01-01
Full Text Available Micro forming is a key technology for an industrial miniaturisation trend, and micro deep drawing (MDD is a typical micro forming method. It has great advantages comparing to other micro manufacturing methods, such as net forming ability, mass production potential, high product quality and complex 3D metal products fabrication capacity. Meanwhile, it is facing difficulties, for example the so-called size effects, once scaled down to micro scale. To investigate and to solve the problems in MDD, a combined micro blanking-drawing machine is employed and an explicit-implicit micro deep drawing model with a voronoi blank model is developed. Through heat treatment different grain sizes can be obtained, which affect material's properties and, consequently, the drawing process parameters, as well as produced cups' quality. Further, a voronoi model can provide detailed material information in simulation, and numerical simulation results are in accordance with experimental results.
Theoretical and numerical studies on morphological transitions in crack growth
Mühle, V
1999-01-01
This paper investigates the formation of crack patterns in stationary and transient temperature fields analytically with linear elastic fracture mechanics and numerically with the finite elements method (FEM). In particular, we consider the experimental situation of a narrow thin strip of hot glass slowly lowered into cold water, with temperature difference and velocity as variable parameters. The parameter regions of no crack, one straight crack and one oscillating crack are determined. The type of phase transition related to the borderline between straight and oscillating crack is characterized. The theoretical results are compared with those of other Similar investigations and comparisons are done for the propagation of multiple cracks. Quenching of a wide thin strip leads to a hierarchy of cracks whose scaling properties are analyzed. Without any fitting, theory and experiment agree surprisingly well.
Numerical studies of identification in nonlinear distributed parameter systems
Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.
1989-01-01
An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.
Numerical study of fracture arrest on snow cover
Directory of Open Access Journals (Sweden)
B. Frigo
2010-10-01
Full Text Available Under the hypothesis of a perfectly brittle phenomenon, avalanche triggering can be investigated numerically by means of Linear Elastic Fracture Mechanics (LEFM. Since, however, the real phenomenon is intrinsically dynamical, another aspect to investigate is represented by dynamic fracture propagation. In this paper, we model dynamic crack propagation into a dry snow slab and we investigate the possibility to arrest the crack propagation through the presence of weak zones distributed along the extension of the snow slope. Assuming that the weak layer is almost collapsed, we simulate the efficiency of artificial voids in the slab to arrest fracture propagation, into the framework of Dynamical Fracture Mechanics. We put forward here a new philosophy for the use of artificial discontinuities (void into the snowpack able to perform as crack arresters distributed along the snow slope area: the target is to split a large avalanche slab into smaller slabs, causing small avalanches to propagate with less catastrophic effects.
Numerical model study of radio frequency vessel sealing thermodynamics
Pearce, John
2015-03-01
Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.
Numerical study on rainfall infiltration in rock-soil slop
Institute of Scientific and Technical Information of China (English)
LIU; Yuewu; LIU; Qingquan; CHEN; Huixin; GONG; Xin; ZHANG
2005-01-01
A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.
Numerical study on aerodynamic heat of hypersonic flight
Directory of Open Access Journals (Sweden)
Huang Haiming
2016-01-01
Full Text Available Accurate prediction of the shock wave has a significant effect on the development of space transportation vehicle or exploration missions. Taking Lobb sphere as the example, the aerodynamic heat of hypersonic flight in different Mach numbers is simulated by the finite volume method. Chemical reactions and non-equilibrium heat are taken into account in this paper, where convective flux of the space term adopts the Roe format, and discretization of the time term is achieved by backward Euler algorithm. The numerical results reveal that thick mesh can lead to accurate prediction, and the thickness of the shock wave decreases as grid number increases. Furthermore, most of kinetic energy converts into internal energy crossing the shock wave.
Study on the numerical simulation of batch sieving process
Institute of Scientific and Technical Information of China (English)
JIAO Hong-guang; MA Jiao; ZHAO Yue-min; CHEN Lun-jian
2006-01-01
Screening was widely used in many sectors of industry. However, it is rather incomplete to the cognition of the sieving process for us due to the daedal separation process involving interactions of thousands of particulates. To address this problem, two dimensional numerical simulation of batch sieving process was performed by adopting advanced discrete element method (DEM), which is one of the highly nonlinear digitized dynamic simulative methods and can be used to reveal the quantitative change from particle dimension level. DEM simulation results show that the jam phenomena of sieve-plate apertures of the "blinding particles" in the screen feed can be demonstrated vividly and results also reveal that the velocity of particle moving on the screen plate will vary along with the screen length. This conclusion will be helpful to the design and operation of screen.
Numerical study for MHD peristaltic flow in a rotating frame.
Hayat, T; Zahir, Hina; Tanveer, Anum; Alsaedi, A
2016-12-01
The aim of present investigation is to model and analyze the magnetohydrodynamic (MHD) peristaltic transport of Prandtl fluid in a channel with flexible walls. The whole system consisting of fluid and channel are in a rotating frame of reference with uniform angular velocity. Viscous dissipation in thermal equation is not ignored. The channel boundaries satisfy the convective conditions in terms of temperature. The arising complicated problems are reduced in solvable form using large wavelength and small Reynolds number assumptions. Numerical solution for axial and secondary velocities, temperature and heat transfer coefficient are presented. Main emphasis is given to the outcome of rotation and material parameters of Prandtl fluid on the physical quantities of interest.
Numerical Study of Mechanism of U-shaped Vortex Formation
Lu, Ping; Liu, Chaoqun
2014-01-01
This paper illustrates the mechanism of U-shaped vortex formation which is found both by experiment and DNS. The main goal of this paper is to explain how the U-shaped vortex is formed and further develops. According to the results obtained by our direct numerical simulation with high order accuracy, the U-shaped vortex is part of the coherent vortex structure and is actually the tertiary streamwise vortices induced by the secondary vortices. The new finding is quite different from existing theories which describe that the U-shaped vortex is newly formed as the head of young turbulence spot and finally break down to small pieces. In addition, we find that the U-shaped vortex has the same vorticity sign as the original {\\lambda}-shaped vortex tube legs and serves as a second neck to supply vorticity to the ringlike vortex when the original vortex tube is stretched and multiple rings are generated.
Numerical study on deformation and failure of reinforced sand
Institute of Scientific and Technical Information of China (English)
PENG Fang-le; LI Jian-zhong; Tatsuoka Fumio
2005-01-01
In order to investigate the deformation and failure of reinforced sand, and the reinforcing mechanism of flexible and rigid reinforcement, a set of plane strain compression tests of dense Toyoura reinforced sand with planar reinforcement of a wide range of stiffness were analysed by a nonlinear finite element method. The analysis was incorporated into an energy-based elasto-plastic constitutive model for sand to develop a stress path-independent work-hardening parameter based on the modified plastic strain energy concept. Numerical results indicate that the global stress-strain relations of sand specimens are reinforced by using relatively flexible and rigid reinforcement, and an unreinforced sand specimen can be reasonably simulated by the current finite element method. It is also found that the reinforcing mechanism and progressive failure with a development of shear bands in reinforced sand can be reasonably examined by the finite element method.
Numerical models for the phenomenological study of flameless combustion
Directory of Open Access Journals (Sweden)
Bernardo Argemiro Herrera Múnera
2010-07-01
Full Text Available Flameless combustion is a technique which offers environmental advantages such as lower than 100 ppm NOx and CO emis- sions due to below 200 K temperature gradients. Flameless combustion also supplies higher than 70% energy efficiency. Knowledge of the phenomena in this combustion regime has been facilitated by using numerical simulation. This paper reviewed the specialised literature about the most commonly used turbulence, combustion, heat transfer and NOx formation models in modelling flameless combustion with CFD codes. The review concluded that the k-ε standard model is the most used for turbu- lence. Finite rate/eddy dissipation with modified constants and eddy dissipation concept models are suitable for combustion reac- tions, discrete ordinates and weighted sum gray gas (WSGG models are used for radiation and thermal, prompt and N2O inter- mediate models are used for NOx.
A Numerical and Experimental Study of Local Exhaust Capture Efficiency
DEFF Research Database (Denmark)
Madsen, U.; Breum, N. O.; Nielsen, Peter Vilhelm
1993-01-01
Direct capture efficiency of a local exhaust system is defined by introducing an imaginary control box surrounding the contaminant source and the exhaust opening. The imaginary box makes it possible to distinguish between contaminants directly captured and those that escape. Two methods for estim......Direct capture efficiency of a local exhaust system is defined by introducing an imaginary control box surrounding the contaminant source and the exhaust opening. The imaginary box makes it possible to distinguish between contaminants directly captured and those that escape. Two methods...... for estimation of direct capture efficiency are given: (1) a numerical method based on the time-averaged Navier-Stokes equations for turbulent flows; and (2) a field method based on a representative background concentration. Direct capture efficiency is sensitive to the size of the control box, whereas its...
Numerical studies of the nonlinear properties of composites
Zhang, X.; Stroud, D.
1994-01-01
Using both numerical and analytical techniques, we investigate various ways to enhance the cubic nonlinear susceptibility χe of a composite material. We start from the exact relation χe =tsumipiχii,lin/ E40, where χi and pi are the cubic nonlinear susceptibility and volume fraction of the ith component, E0 is the applied electric field, and i,lin is the expectation value of the electric field in the ith component, calculated in the linear limit where χi=0. In our numerical work, we represent the composite by a random resistor or impedance network, calculating the electric-field distributions by a generalized transfer-matrix algorithm. Under certain conditions, we find that χe is greatly enhanced near the percolation threshold. We also find a large enhancement for a linear fractal in a nonlinear host. In a random Drude metal-insulator composite χe is hugely enhanced especially near frequencies which correspond to the surface-plasmon resonance spectrum of the composite. At zero frequency, the random composite results are reasonably well described by a nonlinear effective-medium approximation. The finite-frequency enhancement shows very strong reproducible structure which is nearly undetectable in the linear response of the composite, and which may possibly be described by a generalized nonlinear effective-medium approximation. The fractal results agree qualitatively with a nonlinear differential effective-medium approximation. Finally, we consider a suspension of coated spheres embedded in a host. If the coating is nonlinear, we show that χe/χcoat>>1 near the surface-plasmon resonance frequency of the core particle.
A Preliminary Study of Seismicity at Ceboruco, Volcano, Nayarit, Mexico
Sanchez, J. J.; Nunez-Cornu, F. J.; Suarez-Plascencia, C.; Trejo-Gomez, E.
2007-12-01
Ceboruco Volcano is located northwestern of Tepic-Zacoalco graben (Jalisco, Mexico). Its volcanic activity can be divided in four eruptive cycles differentiated by their volcano explosivity index (VEI) and chemical variations as well. As a result of andesitic effusive activity, during the first cycle the "paleo-Ceboruco" edifice was constructed. The end of this cycle is defined by a plinian eruption (VEI is estimated between 3 and 4) which occurred some 1020 years ago and formed the external caldera. During the second cycle an andesitic dome extruded in the interior of the caldera. The dome, called Dos Equis, collapsed and formed the internal caldera. The third cycle is represented by andesitic lava flows which partially cover the northern and south-southwestern part of the edifice. The last cycle is represented by historic andesitic lava flows located in the southwestern flank of the volcano. In February 2003 as part of an agreement with Nayarit Civil Defense a seismic station was installed in the SW flank of the volcano. The station is equipped with a Marslite (lennartz) digitizer with a 3DLe 1Hz. seismic sensor. Detection system is based on a STA/LTA recording algorithm. More than 2000 small earthquakes have been attributed to various local sources, and some of this earthquakes are possibly located beneath Ceboruco volcano. A preliminary classification separates high frequency and low frequency seismic events. The sources of high frequency earthquakes appear to be distributed as evidenced from waveforms variety and changing S-P arrivals separations. The low frequency seismic events also show varying signatures and some of them exhibit extended coda, including some monochromatic character.
A preliminary experimental study on virtual sound barrier system
Zou, Haishan; Qiu, Xiaojun; Lu, Jing; Niu, Feng
2007-10-01
Virtual sound barrier (VSB) is an array of loudspeakers and microphones forming an acoustic barrier, which creates a quiet zone without blocking air and light. A 16-channel cylindrical VSB system has been developed and its feasibility is verified by both numerical simulations and experiments. Experimental results in a normal room show that it can create a quiet zone larger than the size of a human head in the low-middle frequency, with a total sound pressure level reduction of more than 10 dB in the quiet zone. The control performance of the system with respect to the frequency, the distribution of the error sensors and the control sources are discussed.
Numerical Study of Negative-Refractive Index Ferrite Waveguide
Directory of Open Access Journals (Sweden)
Mohammed O. Sid-Ahmed
2012-03-01
Full Text Available Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and permittivity of the structure are both simultaneously negative. The frequency band corresponding to this transmission can be tuned by changing the applied magnetic fields. The obtained results are in agreement with the law of conservation of energy. Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and
The effect of parental involvement in CBT of anxious children: Preliminary results from a RCT study
DEFF Research Database (Denmark)
Esbjørn, Barbara Hoff; Breinholst, Sonja; Reinholdt-Dunne, Marie Louise;
2011-01-01
Esbjørn, B. H., Breinholst, S., Reinholdt-Dunne, M. L., & Leth, I. (2011). The effect of parental involvement in CBT of anxious children: Preliminary results from a RCT study. Poster accepted for the Association for Behavioral and Cognitive Therapies, Toronto, Canada.......Esbjørn, B. H., Breinholst, S., Reinholdt-Dunne, M. L., & Leth, I. (2011). The effect of parental involvement in CBT of anxious children: Preliminary results from a RCT study. Poster accepted for the Association for Behavioral and Cognitive Therapies, Toronto, Canada....
Numerical and experimental study of transferred arcs in argon
Energy Technology Data Exchange (ETDEWEB)
Bini, R [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Monno, M [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Boulos, M I [Centre de Recherche en Energie, Plasma et Electrochimie (CREPE), Department de Genie Chimique Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, J1K1R2 (Canada)
2006-08-07
The bidimensional model of the electric arc is enhanced with the plasma-electrodes interaction to predict the properties and the energy distribution of an argon arc operating with current intensities between 100 and 200 A and electrode gaps of 10 and 20 mm. An adaptive numerical insulation is applied to the cathode, to properly simulate its thermionic emission mechanism and overcome the dependence on empirical distributions of the current density at its tip. The numerical results are quantitatively compared with the data obtained from calorimetric and spectroscopical measurements, performed on a device which generates a transferred arc between a water cooled copper anode and a thoriated tungsten cathode enclosed in a stainless steel chamber. The calculation of the heat fluxes towards the electrodes permits to determine the amount of power delivered to each component of the arc system (the anode, the cathode assembly and the chamber) and to evaluate the overall efficiency of the process for different configurations. The agreement between theory and data, over the range of parameters investigated, is sensible both in the temperature profiles and in the energy distributions. In such configurations, the conduction from the hot gas is the most relevant term in the overall heat transferred to the anode, but it is the electron transfer which rules the heat transfer in the arc attachment zone. The arc attachment radius is also dependent on the process parameters and increases with the arc current (from approximately 5 mm at 100 A to 7 mm at 200 A) and the arc length. However the maximum heat flux reached on the axis decreases increasing the gap between the electrodes, although more power is delivered to the anode due to the radial spreading of the plasma. A 10 mm 200 A argon arc releases to the anode about 2.6 kW, which corresponds to 75% of the total arc power available. If the arc is extended to 20 mm the power transferred rises by nearly 350 W, but the overall
Dry powder segregation and flowability: Experimental and numerical studies
Ely, David R.
Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability
Numerical study of n-pentane separation using adsorption column
Directory of Open Access Journals (Sweden)
Adriano da Silva
2005-06-01
Full Text Available This work simulated numerically the n-pentane separation of a mixture of iso-pentane, n-pentane and nitrogen, using an adsorption column with zeolite 5A. The mathematical model equations of the mass and heat transfer in the adsorption column are presented, as well as the boundary and initials conditions, beyond some hypotheses and considerations. The Volume Finite Method was used in the discretization of the equations to get the system of algebraic equations and posterior development of the computational algorithm. The numerical results using the Differencing Central (CDS and Upwind (UDS interpolations were compared with experimental results found in the literature. The influence of the partial pressure in the adsorption column performance was also analyzed.Neste trabalho é simulada numericamente a separação de n-pentano de uma mistura contendo iso-pentano, n-pentano em uma corrente de nitrogênio (inerte, em uma coluna de adsorção de leito fixo empacotada com zeólita 5A. São apresentadas as equações do modelo matemático da transferência de calor e massa na coluna de adsorção, bem como suas condições de contorno e iniciais, além de algumas hipóteses e considerações. Utiliza-se o Método de Volumes Finitos para discretizar as equações e obter um sistema de equações algébricas aproximadas e posterior desenvolvimento do algoritmo computacional. Os resultados numéricos utilizando as interpolações Diferença Central (CDS e Upwind (UDS são comparados com resultados experimentais obtidos na separação do n-pentano encontrados na literatura. A influência da pressão parcial no desempenho da coluna de adsorção de leito fixo também é analisada.
Numerical study of large-N phase transition of smeared Wilson loops in 4D pure YM theory
Lohmayer, Robert
2011-01-01
In Euclidean four-dimensional SU(N) pure gauge theory, eigenvalue distributions of Wilson loop parallel transport matrices around closed spacetime curves show non-analytic behavior (a 'large-N phase transition') at a critical size of the curve. We focus mainly on an observable composed of traces of the Wilson loop operator in all totally antisymmetric representations, which is regularized with the help of smearing. By studying sequences of square Wilson loops on a hypercubic lattice with standard Wilson action, it is shown that this observable has a nontrivial continuum limit as a function of the physical size of the loop. We furthermore present (preliminary) numerical results confirming that, for large N, the N dependence in the critical regime is governed by the universal exponents 1/2 and 3/4 as expected (Burgers universality).
Battery energy storage: A preliminary assessment of national benefits (the Gateway Benefits Study)
Energy Technology Data Exchange (ETDEWEB)
Akhil, A. [Sandia National Labs., Albuquerque, NM (United States); Zaininger, H. [Zaininger Engineering Co., San Jose, CA (United States); Hurwitch, J.; Badin, J. [Energetics, Inc., Columbia, MD (United States)
1993-12-01
Preliminary estimates of national benefits from electric utility applications of battery energy storage through the year 2010 are presented along with a discussion of the particular applications studied. The estimates in this report were based on planning information reported to DOE by electric utilities across the United States. Future studies are planned to refine these estimates as more application-specific information becomes available.
Numerical Study of Cavitation in Francis Turbine of a Small Hydro Power Plant
Pankaj Gohil; Rajeshwer Saini
2016-01-01
Cavitation is undesirable phenomena and more prone in reaction turbines. It is one of the challenges in any hydro power plant which cause vibration, degradation of performance and the damage to the hydraulic turbine components. Under the present study, an attempt has been made to carry out a numerical analysis to investigate the cavitation effect in a Francis turbine. Three dimensional numerical study approach of unsteady and SST turbulence model are considered for the numerical a...
Global and Arctic climate engineering: numerical model studies.
Caldeira, Ken; Wood, Lowell
2008-11-13
We perform numerical simulations of the atmosphere, sea ice and upper ocean to examine possible effects of diminishing incoming solar radiation, insolation, on the climate system. We simulate both global and Arctic climate engineering in idealized scenarios in which insolation is diminished above the top of the atmosphere. We consider the Arctic scenarios because climate change is manifesting most strongly there. Our results indicate that, while such simple insolation modulation is unlikely to perfectly reverse the effects of greenhouse gas warming, over a broad range of measures considering both temperature and water, an engineered high CO2 climate can be made much more similar to the low CO2 climate than would be a high CO2 climate in the absence of such engineering. At high latitudes, there is less sunlight deflected per unit albedo change but climate system feedbacks operate more powerfully there. These two effects largely cancel each other, making the global mean temperature response per unit top-of-atmosphere albedo change relatively insensitive to latitude. Implementing insolation modulation appears to be feasible.
Numerical Studies of Disordered Tight-Binding Hamiltonians
Scalettar, R. T.
2007-06-01
These are notes used for a set of lectures delivered at the Vietri summer school on Condensed Matter Physics in Fall 2006. They concern the general problem of the interplay of interactions and disorder in two dimensional electronic systems, as realized in the specific context of Quantum Monte Carlo simulations of the Anderson-Hubbard Hamiltonian. I wish to thank the organizers of this school for their hospitality during my visit, and their work in general in providing this educational opportunity for students over the years. It is a pleasure also to acknowledge the collaborators together with whom I have learned much of the physics and numerics presented in these notes: Zhaojun Bai, Andrew Baldwin, George Batrouni, Karim Bouadim, Wenbin Chen, Peter Denteneer, Fred Hébert, Norman Paris, Matt Schram, Nandini Trivedi, Martin Ulmke, Ichitaro Yamazaki and Gergely Zimanyi. This work was supported by the National Science Foundation (NSF-DMR-0312261 and NSF-ITR-0313390), and China Special Funds for Major State Basic Research Projects under contract 2005CB321700.
A numerical study of two interacting coronal mass ejections
Directory of Open Access Journals (Sweden)
J. M. Schmidt
2004-06-01
Full Text Available The interaction in the solar wind between two coronal mass ejections (CMEs is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.
A numerical study of interactions and stellar bars
Martinez-Valpuesta, Inma; Aguerri, J. Alfonso L.; González-García, A. César; Dalla Vecchia, Claudio; Stringer, Martin
2017-01-01
For several decades, it has been known that stellar bars in disc galaxies can be triggered by interactions, or by internal processes such as dynamical instabilities. In this work, we explore the differences between these two mechanisms using numerical simulations. We perform two groups of simulations based on isolated galaxies, one group in which a bar develops naturally, and another group in which the bar could not develop in isolation. The rest of the simulations recreate 1:1 coplanar fly-by interactions computed with the impulse approximation. The orbits we use for the interactions represent the fly-bys in groups or clusters of different masses accordingly to the velocity of the encounter. In the analysis, we focus on bars' amplitude, size, pattern speed and their rotation parameter, R=R_{CR}/R_{bar}. The latter is used to define fast (R1.4). Compared with equivalent isolated galaxies, we find that bars affected or triggered by interactions: (i) remain in the slow regime for longer, (ii) are more boxy in face-on views and (iii) they host kinematically hotter discs. Within this set of simulations, we do not see strong differences between retrograde or prograde fly-bys. We also show that slow interactions can trigger bar formation.
Numerical studies of {phi}{sup 2}-oscillations
Energy Technology Data Exchange (ETDEWEB)
Alcubierre, Miguel [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70-543, 04510 Mexico, DF (Mexico); Becerril, Ricardo [Instituto de Fisica y Matematicas, Universidad Michoacana, Edif. C-3, Ciudad Universitaria 58040, Morelia, Michoacan (Mexico); Guzman, F Siddhartha [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Matos, Tonatiuh [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Nunez, Dario [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70-543, 04510 Mexico, DF (Mexico); Urena-Lopez, L Arturo [Astronomy Centre, University of Sussex, Brighton BN1 9QJ (United Kingdom)
2003-07-07
We present an exhaustive analysis of the numerical evolution of the Einstein-Klein-Gordon equations for the case of a real scalar field endowed with a quadratic self-interaction potential. The self-gravitating equilibrium configurations are called oscillations and are closely related to boson stars, their complex counterparts. Unlike boson stars, for which the oscillations of the two components of the complex scalar field are such that the spacetime geometry remains static, oscillations give rise to a geometry that is time dependent and oscillatory in nature. However, they can still be classified into stable(S-branch) and unstable (U-branch) cases. We have found that S-oscillations are indeed stable configurations under small perturbations and typically migrate to other S-profiles when perturbed strongly. On the other hand, U-oscillations are intrinsically unstable: they migrate to the S-branch if their mass is decreased and collapse to black holes if their mass is increased even by a small amount. The S-oscillations can also be made to collapse to black holes if enough mass is added to them, but such collapse can be efficiently prevented by the gravitational cooling mechanism in the case of diluted oscillations.
A numerical study of interactions and stellar bars
Martinez-Valpuesta, Inma; González-García, A César; Vecchia, Claudio Dalla; Stringer, Martin
2016-01-01
For several decades it has been known that stellar bars in disc galaxies can be triggered by interactions, or by internal processes such as dynamical instabilities. In this work, we explore the differences between these two mechanisms using numerical simulations. We perform two groups of simulations based on isolated galaxies, one group in which a bar develops naturally, and another group in which the bar could not develop in isolation. The rest of the simulations recreate 1:1 coplanar fly-by interactions computed with the impulse approximation. The orbits we use for the interactions represent the fly-bys in groups or clusters of different masses accordingly to the velocity of the encounter. In the analysis we focus on bars' amplitude, size, pattern speed and their rotation parameter, ${\\cal R}=R_{CR}/R_{bar}$. The latter is used to define fast (${\\cal R}1.4$). Compared with equivalent isolated galaxies we find that bars affected or triggered by interactions: (i) remain in the slow regime for longer; (ii) are...
a Numerical Study of Precipitation Processes in Stable Orographic Storms
Oolman, Larry David
A numerical model has been developed to retrieve the microphysical and precipitation process of clouds utilizing the kinematic fields obtained from Doppler radar. This model uses parameterized bulk microphysics in which the water condensate is divided into three classes: cloud water, rain, and snow. The model was applied to a deep, stable orographic storm over the Sierra Nevada. The simulations indicated that these storms precipitate with a 90% efficiency. The time scale for a parcel to traverse the barrier is sufficiently long for precipitation processes to be effective. Modifying parameters in the model merely shifts the relative importance of various processes and has little effect on the precipitation efficiency. Only by shortening the parcel transit time, such as by increasing the wind velocity, does the precipitation efficiency decrease. The predicted ice particle spectra from the model agree quite well with the actual spectra from the Wyoming King Air aircraft through most of the interior of the cloud. The spectra does not agree as well near the cloud edges. Entrainment, which was not included in the model, may be an important process in these regions.
Numerical Study of Stratified Charge Combustion in Wave Rotors
Nalim, M. Razi
1997-01-01
A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.
Numerical study on small scale vertical axis wind turbine
Directory of Open Access Journals (Sweden)
Parra-Santos Teresa
2016-01-01
Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.
A numerical study of aerosol effects on electrification of thunderstorms
Tan, Y. B.; Shi, Z.; Chen, Z. L.; Peng, L.; Yang, Y.; Guo, X. F.; Chen, H. R.
2017-02-01
Numerical simulations are performed to investigate the effect of aerosol on microphysical and electrification in thunderstorm clouds. A two-dimensional (2-D) cumulus model with electrification scheme including non-inductive and inductive charge separation is used. The concentration of aerosol particles with distribution fitted by superimposing three log-normal distributions rises from 50 to 10,000 cm-3. The results show that the response of charge separation rate to the increase of aerosol concentration is nonmonotonic. When aerosol concentration is changed from 50 to 1000 cm-3, a stronger formation of cloud droplet, graupel and ice crystal results in increasing charge separation via non-inductive and inductive mechanism. However, in the range of 1000-3000 cm-3, vapor competition arises in the decrease of ice crystal mixing ratio and the reduction of ice crystals size leads to a slightly decrease in non-inductive charge rate, while inductive charging rate has no significant change in magnitude. Above aerosol concentration of 3000 cm-3, the magnitude of charging rate which keeps steady is insensitive to the increase in aerosol concentration. The results also suggest that non-inductive charge separation between ice crystal and graupel contributes to the main upper positive charge region and the middle negative charge region. Inductive graupel-cloud droplet charge separation, on the other hand, is found to play an important role in the development of lower charge region.
Numerical Study on Hydrodynamic Performance of Bionic Caudal Fin
Directory of Open Access Journals (Sweden)
Kai Zhou
2016-01-01
Full Text Available In this work, numerical simulations are conducted to reveal the hydrodynamic mechanism of caudal fin propulsion. In the modeling of a bionic caudal fin, a universal kinematics model with three degrees of freedom is adopted and the flexible deformation in the spanwise direction is considered. Navier-Stokes equations are used to solve the unsteady fluid flow and dynamic mesh method is applied to track the locomotion. The force coefficients, torque coefficient, and flow field characteristics are extracted and analyzed. Then the thrust efficiency is calculated. In order to verify validity and feasibility of the algorithm, hydrodynamic performance of flapping foil is analyzed. The present results of flapping foil compare well with those in experimental researches. After that, the influences of amplitude of angle of attack, amplitude of heave motion, Strouhal number, and spanwise flexibility are analyzed. The results show that, the performance can be improved by adjusting the motion and flexibility parameters. The spanwise flexibility of caudal fin can increase thrust force with high propulsive efficiency.
Preliminary X-ray Results From A Multiple Balloon Campaign to Study Relativistic Electron Loss
Sample, J. G.; Kokorowski, M.; Millan, R. M.; McCarthy, M.; Holzworth, R. H.; Bering, E. A.; Parks, G. K.; Woodger, L.; Reddell, B. D.; Lay, E.; Pulupa, M.; Bale, S.; O'Brien, T. P.; Blake, J. B.; Lin, R. P.; Moraal, H.; Stoker, P.; Hughes, A. R.; Collier Cameron, A.; Smith, D. M.
2005-05-01
The MINIS balloon campaign was successfully conducted in January 2005 to investigate relativistic electron loss mechanisms. Quantifying and understanding losses is an integral part of understanding the variability of relativistic electrons in the radiation belts. Balloon-based experiments directly measure precipitation and thus provide a method for quantifying losses, while the nearly stationary platform allows for the separation of temporal and spatial variations. A new class of precipitation event, characterized by extremely hard spectra, short durations, and complex temporal structure, occurring in the evening to midnight sector, was discovered by the INTERBOA balloon in 1996 and studied further by the MAXIS balloon in 2000. The MINIS campaign provided the first opportunities for multi-point measurements of electron precipitation up to MeV energies, including simultaneous measurements at different longitudes and at near-conjugate locations. Two balloons, each carrying an X-ray spectrometer for measuring the bremsstrahlung produced as electrons precipitate into the atmosphere, were launched from Churchill, Manitoba at 0850 UT on 21 January 2005 and 0140 UT on 25 January 2005. Four balloons, each carrying an X-ray spectrometer, a Z-axis search coil magnetometer, and a 3-axis electric field instrument providing DC electric field and VLF measurements in 3 frequency bands, were launched from the South African Antarctic Station (SANAE IV). The Southern launches took place at 1400 UT on 17 January, 1309 UT on 19 January, 2115 UT on 20 January, and 0950 UT on 24 January 24 2005. In this paper, we present the preliminary results from the MINIS North and South X-ray data. The first and second Southern payloads observed a rarely-seen phenomenon: gamma-ray line emission from nuclear interactions of solar protons in the Earth's atmosphere. When the solar particles abated, there were numerous opportunities for simultaneous observations of MeV precipitation from multiple
Agus, M.; Mascia, M. L.; Fastame, M. C.; Napoleone, V.; Porru, A. M.; Siddu, F.; Lucangeli, D.; Penna, M. P.
2016-11-01
The aim of this study was to verify the efficacy of two pencil-and-paper trainings empowering numerical and visuo-spatial abilities in Italian five-year-old kindergarteners. Specifically, the trainings were respectively carried out by the curricular teacher or by an external trainer. The former received a specific training in order to use the psychoeducational programmes with her pupils, whereas the latter received a specific education about the role of numerical and visuo-spatial abilities for school achievement and she was also trained to use psychoeducational trainings in kindergarten schools. At pre-test and post-test nonverbal functions and numeracy knowledge were assessed through a battery of standardized tests. The results show that both the numerical psychoeducational programme and the visuo-spatial one are useful tools to enhance mathematical achievements in kindergarteners. However, when the trainings were proposed by the external trainer, the efficacy of the psychoeducational programmes was more significant. These outcomes seem to be related both to the expertise and the novelty effect of the external trainer on the classroom.
Preliminary study: Moisture-polymer interaction. Stuby objectives
Wen, L. C.
1985-06-01
The problems associated with mathematically modeling water-module interaction phenomena, including sorption and desorption, diffusion, and permeation are discussed. With reliable analytical models, an extensive materials data base, and solar radiation surface meteorological observations (SOLMET) weather data, predicting module lifetimes in realistic environments can become a practical reality. The status of the present techniques of simulating the various transport mechanisms was reported. The Dent model (a modified Brunauer-Emmet-Teller) approach represented polyvinyl butyral (PVB) sorption data. A 100-layer material model and Fick's diffusion model gave diffusivity values exhibiting adequate agreement with those measured for PVB. Diffusivity of PVB is concentration dependent, decreasing as the water content in PVB increases. The temperature dependence of diffusion in PVB is well modeled by the Arrhenius rate equation. Equilibrium conductivity and leakage current data are well represented by Hearle's model for bulk ionic conductivity. A nodal network analysis using the Systems Improved Numerical Differencing Analyzer (SINDA) Thermal Analyzer gave reasonable correlation with measurable data. It is concluded that realistic lifetime predictions seem to be feasible.
Cosmic ray detection based measurement systems: a preliminary study
Bodini, I.; Bonomi, G.; Cambiaghi, D.; Magalini, A.; Zenoni, A.
2007-11-01
Cosmic rays, mostly composed of high energy muons, continuously hit the Earth's surface (at sea level the rate is about 10 000 m-2 min-1). Various technologies are adopted for their detection and are widespread in the field of particle and nuclear physics. In this paper, cosmic ray muon detection techniques are assessed for measurement applications in engineering, where these methods could be suitable for several applications, with specific reference to situations where environmental conditions are weakly controlled and/or where the parts to be measured are hardly accessible. Since cosmic ray showering phenomena show statistical nature, the Monte Carlo technique has been adopted to numerically simulate a particular application, where a set of muon detectors are employed for alignment measurements on an industrial press. An analysis has been performed to estimate the expected measurement uncertainty and system resolution, which result to be strongly dependent on the dimensions and geometry of the set-up, on the presence of materials interposed between detectors and, ultimately, on the elapsed time available for the data taking.
Numerical study of surface water waves generated by mass movement
Energy Technology Data Exchange (ETDEWEB)
Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)
2013-10-01
In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity
NUMERICAL STUDY ON THE PURIFICATION PERFORMANCE OF RIVERBANK
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
During the rain time, the runoff infiltrates into the riverbank through the collecting gutter and slope surface. The city runoff is generally polluted by organic, oil, heavy metal particulates, etc. The pollutants moving with the water through the riverbank experience advection, dispersion, diffusion, adsorption, biochemical reaction and plant uptaking processes. In this article, a mathematical model was developed to simulate the performance of pollutant removal of the riverbank. The model took those main mechanisms into account. The modified Richards equation was used in simulating flow field. The mass balance law was employed in deriving the equation for pollutant transport, where the diffusion and dispersion were described with the Fick-type law, the adsorption was macroscopically expressed as form isotherm, and the bio-chemical degradation process was assumed to follow the Monod kinetics. The NH3-N and TP were considered in the present model. The mathematical model was descritized with a finite element numerical model, which was applied to two types of model riverbanks. In the model test, the hydraulic loading was assumed to have the intermittent pattern simulating the storm runoff of certain return period, and the values of the rainfall runoff and concentrations of the NH3-N and TP were taken from the model test. The computed overall removal rates for the NH3-N and TP in 6 cases are in the range of 88%-98%, 87%-97%, respectively. The differences between the computed and tested overall removal rates for the NH3-N and TP are less than 5%. The time-varying oscillation pattern of the concentrations of the NH3-N and TP were rationally simulated, which shows that the model presented in this article can be used to assess the purification performance of the riverbank constructed with sand or soil.
Numerical study of jet noise radiated by turbulent coherent structures
Energy Technology Data Exchange (ETDEWEB)
Bastin, F.
1995-08-01
a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)
Numerical study of surface water waves generated by mass movement
Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa
2013-10-01
In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45° slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly\\vadjust{\
A numerical study of ionospheric profiles for mid-latitudes
Directory of Open Access Journals (Sweden)
S.-R. Zhang
Full Text Available This paper presents a numerical model and results for the mid-latitude ionospheric profile below the peak of the F_{2}-layer. The basis of the model is the solving of equations for four ionic species O^{+}, NO^{+}, O^{+}_{2} and N^{+}_{2}, as well as the meta-stable O^{+}(^{2}D and O^{+}(^{2}P. Diffusion and wind-induced drifts and 21 photo-chemical reactions are also taken into account. Neutral atmospheric density and temperature are derived from the MSIS86 model and solar extreme ultraviolate irradiance from the EUV91 model. In an effort to obtain a more realistic ionospheric profile, the key point at foF_{2} and hmF_{2} is fitted from the simulation to observations. The model also utilizes the vertical drifts derived from ionosonde data with the help of the Servo model. It is shown that the ionospheric height of peak can be reproduced more accurately under the derived vertical drifts from the Servo theory than with the HWM90 model. Results from the simulation are given for Wuchang (30.5°N, 114.4°E and Wakkanai (45.6°N, 141.7°E, showing the profile changes with season and solar activity, and the E-F valley structure (the depth and the width. This simulation also reveals the importance of meta-stable ions and dynamical transport processes on the formation of the F_{1}-ledge and F_{1}-F_{2} valley.
Assisted Sonication vs Conventional Transesterification Numerical Simulation and Sensitivity Study
Janajreh, Isam; Noorul Hussain, Mohammed; El Samad, Tala
2015-10-01
Transeterification is known as slow reaction that can take over several hours to complete as the two immiscible liquid reactants combine to form biodiesel and the less favorable glycerol. The quest of finding the perfect catalyst, optimal operational conditions, and reactor configuration to accelerate the reaction in mere few minutes that ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction is a key enabler for the development of a continuous processing that otherwise is fairly costly and low throughput using conventional method. The reaction kinetics of sonication assisted as inferred by several authors is several time faster and this work implements these rates in a high fidelity numerical simulation model. This flow model is based on Navier-Stokes equations coupled with energy equation for non-isothermal flow and the transport equations of the multiple reactive species. The model is initially validated against experimental data from previous work of the authors using an annular reactor configuration. Following the validation, comparison of the reaction rate is shown to gain more insight to the distribution of the reaction and its attained rates. The two models (conventional and sonication) then compared on the basis of their sensitivity to the methane to oil molar ratio as the most pronounced process parameter. Both the exit reactor yield and the distribution of the species are evaluated with favorable yield under sonication process. These results pave the way to build a more robust process intensified reactor having an integrated selective heterogeneous catalyst to steer the reaction. This can avoid the downstream cleaning processes, cutting reaction time, and render economic benefit to the process.
Energy Technology Data Exchange (ETDEWEB)
McCauley, E.W.; Holman, G.S.
1980-04-21
In response to a request from the Water Reactor Safety Research Division of the US NRC, a preliminary study is provided which identifies key features and consideration involved in planning a comprehensive in-plant Safety Relief Valve experimental program for a Mark III containment design. The report provides identification of program objectives, measurement system requirements, and some details quantifying expected system response. In addition, a preliminary test matrix is outlined which involves a supporting philosophy intended to enhance the usefulness of the experimental results for all members of the program team: experimentalists, analysts, and plant operator.
NUMERICAL STUDY OF THE INFLUENCE OF SURFACE ROUGHNESS OF CYLINDER ON FLOW STRUCTURE
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper, the influence of surface roughness on flow structure was numerically studied.An adaptive numerical method, the fast vortex method was employed.A mathematical roughness, which comes from the no-slip condition of vortex method, was introduced.The numerical results indicate that the roughness has appreciable influence on the flow structure.The vortex shedding could be controlled if the forward multi-layer boundary condition is exerted.
Energy Technology Data Exchange (ETDEWEB)
Kako, T.; Watanabe, T. [eds.
1999-04-01
This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)
A Preliminary Study of the Western Zhou Building Foundations at Yuntang in Fufeng, Shaanxi
Institute of Scientific and Technical Information of China (English)
徐良高; 王巍; 丁晓雷
2003-01-01
From autumn 1999 through the year 2000, Zhouyuan Archaeological Team excavated a set of Western Zhou building foundations, which was well preserved and uniquely designed. It is significantly valuable for the research on the ritual system of the Western Zhou Dynasty. We here by try to make a preliminary study on its structure and function with reference of historical literature.
Timmerman, H.; Groot, J.F. de; Hulzebos, H.J.; Knikker, R. de; Kerkkamp, H.E.M.; Meeteren, N.L. van
2011-01-01
The aim of this pilot study is to determine the feasibility and preliminary effectiveness of an individually designed preoperative therapeutic exercise program (PreTEP), in patients recently diagnosed with cancer and awaiting elective surgery. The purpose is to improve their physical fitness levels
Preliminary results of a feasibility study for a hard x-ray Kirkpatrick-Baez telescope
DEFF Research Database (Denmark)
Joensen, Karsten D.; Gorenstein, Paul; Wood, James L.
1994-01-01
the preliminary results of a feasibility study of a multifocus Kirkpatrick-Baez telescope. We conclude that high quality multilayers can be performed on relevant thin large flat substrate with adequate uniformity, and that existing deposition chambers can produce the multilayers at a rate of 0.42 m2 per day, so...
Directory of Open Access Journals (Sweden)
Hongwei Wang
2015-01-01
Conclusions: The preliminary study supports the view that computer assisted pedicle screw fixation using spinal robot is feasible and the robot can decrease the intraoperative fluoroscopy time during the minimally invasive pedicle screw fixation surgery. As spine robotic surgery is still in its infancy, further research in this field is worthwhile especially the accuracy of spine robot system should be improved.
Montenij, Leonard J.; de Vries, Wiebe; Schwarte, Lothar; Bierens, Joost J. L. M.
2011-01-01
Aim: Immediate delivery of oxygen is the most important treatment for victims of drowning at the rescue site. Monitoring oxygen saturation with pulse oximetry is potentially useful, but its use may be limited by poor peripheral perfusion due to hypothermia. This preliminary study explores the feasib
Correlates of Cigarette Smoking among Male Chinese College Students in China--A Preliminary Study
Li, Kaigang; Kay, Noy S.
2009-01-01
The main purpose of this preliminary study was to examine the association between four constructs of the Health Belief Model (HBM) (i.e. perceived severity of smoking-related health problems, perceived susceptibility to smoking-health related problems, perceived barriers to non-smoking and perceived benefits of non-smoking) and cigarette smoking …
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
Timmerman, H.; Groot, J.F. de; Hulzebos, H.J.; Knikker, R. de; Kerkkamp, H.E.M.; Meeteren, N.L.U. van
2011-01-01
The aim of this pilot study is to determine the feasibility and preliminary effectiveness of an individually designed preoperative therapeutic exercise program (PreTEP), in patients recently diagnosed with cancer and awaiting elective surgery. The purpose is to improve their physical fitness levels
Occupational Therapy in the Context of Head Start: A Preliminary Survey Study
Bowyer, Patricia; Moore, Cary C.; Thom, Carly
2016-01-01
This preliminary, descriptive study yields information on the utilization of occupational therapy services within Head Start programs. Participants completed an Internet-based survey of 25 questions pertaining to the understanding, scope, and utilization of occupational therapy services. Surveys were completed by 35 respondents nationwide. A total…
Yanguas, Inigo
2010-01-01
The present preliminary study empirically investigated Spanish heritage language (HL) speakers in Spanish for native speakers (SNS) college courses. It focused on their attitudes and motivation to improve their HL and on their varying linguistic competences in that language. A well-established second language acquisition (SLA) motivational model…
Cheung, J.; Halbertsma, J.P.; Veldhuizen, A.G.; Sluiter, W.J.; Maurits, N.M.; Cool, J.C.; van Horn, J.R.
2005-01-01
The paraspinal muscles have been implicated as a major causative factor in the progression of idiopathic scoliosis. Therefore, the objectives of this preliminary study were to measure the electromyographic activity (EMG) of the paraspinal muscles to determine its relationship to progression of the s
Roessingh, Hetty; Elgie, Susan
2009-01-01
This article reports on the preliminary findings of a two-staged empirical study aimed at gaining insights into the variables salient in the early language and literacy development of young English language learners (ELL). Increasingly, young ELL, whether foreign-born or Canadian-born, arrive at school with little developed English-language…
Nd:YAG laser treatment of herpes and aphthous ulcers: a preliminary study
Parkins, Frederick M.; O'Toole, Thomas J.; Yancey, John M.
2000-06-01
Previously herpes labialis and recurrent aphthous ulcers have not been successfully treated. A preliminary study with a pulsed Nd:YAG laser evaluated the results with a protocol of four minute non-contact exposures for both types of lesions. Most patients experienced relief of symptoms. The progress of herpes lesion was halted and aphthous lesions became desensitized.
School Library Support of Health Education in China: A Preliminary Study
Liu, Geoffrey Z.; Zhang, Wuhong
2008-01-01
This preliminary study investigates the current situation of school library support of K-12 health education in China. A survey of 42 school librarians and 115 K-12 teachers from selected schools was conducted to find out their views about school library's role in school health education and their current practice of library use in health…
Preliminary Study on the Determination of ~(235)U and ~(239)Pu Using Delayed Neutron Counting Method
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The preliminary study on the fast measurements of 235U and 239Pu in samples containing 235U, 239Pu and 235U-239Pu mixture using delayed neutron counting method is introduced. All samples were irradiated for 30 s using the 30 kW Miniature Neutron
Comparison of Brain Activity during Drawing and Clay Sculpting: A Preliminary qEEG Study
Kruk, Kerry A.; Aravich, Paul F.; Deaver, Sarah P.; deBeus, Roger
2014-01-01
A preliminary experimental study examined brain wave frequency patterns of female participants (N = 14) engaged in two different art making conditions: clay sculpting and drawing. After controlling for nonspecific effects of movement, quantitative electroencephalographic (qEEG) recordings were made of the bilateral medial frontal cortex and…
Preliminary Study of m(b) Bias at Selected Soviet Seismic Stations.
1986-03-21
8217-R66 395 PRELIMINARY STUDY OF M(B) BIRS AT SELECTED SOVIET 1/1 SEISMIC STRTIONS(U) SCIENCE APPLICATIONS INTERNATIONAL CORP ARLINGTON VR A S RYRLL...earthquakes in each source region was not given in the ,.t 1980 paper, but in the earlier work it ranged from 35 events for Asia and the Mediter - ranean to
Directory of Open Access Journals (Sweden)
Lucy Yosita
2006-01-01
Full Text Available This writing is a preliminary study to condition of primary education facilities in Indonesia, and then comparing these with theories as well as various relevant cases aimed to know the problem more obviously. Basically, there is difference between primary education facilities in Indonesia with those in developed countries. Meanwhile on the other hand, the condition as well as the completion of education facility is actually as the main factor contributes to address the purpose of learning process. If building design, interior and also site plan were dynamic in form, space, colour and tools, those would be probably more stimulate activity and influence into the growth of students. However, lastly, it is still required further analysis, as an example analysis to student's behaviour in spaces of learning environment, more detail and within enough time, not only at indoor but also at outdoor.
Experimental and Numerical Studies of Atmosphere Water Interactions
Bou-Zeid, Elie
2011-07-04
Understanding and quantifying the interaction of the atmosphere with underlying water surfaces is of great importance for a wide range of scientific fields such as water resources management, climate studies of ocean-atmosphere exchange, and regional weat
Modern and ancient micrometeorites: Experimental and numerical studies
Briani, Giacomo
2010-01-01
Micrometeorites are sub-millimetric extraterrestrial samples, which dominate the flux of extraterrestrial matter entering the Earth atmosphere. Every micrometeorite is altered by the interaction with the atmosphere. However, they can be found embedded in larger meteorites, in which case they are called microxenoliths. Microxenoliths are ancient micrometeorites, and they allow the study of past epochs of the Solar System, not accessible by studying micrometeorites. New microxenoliths have been...
Time resolved breast transillumination: analytical, numerical and experimental study
Haller, Emmanuel B. de
1993-01-01
This work is mainly dedicated to the study of light transport through biological tissues and particularly the propagation of a light pulse. This study does not take into account the nonlinear properties of biological tissues. Different approaches were planned and then compared in order to understand and describe the physical phenomenon as well as possible. The analytical approach based on the Boltzmann transport equation gives satisfactory results for the qualitative description of the transm...
Time resolved breast transillumination: analytical, numerical and experimental study
Haller, Emmanuel B. de; Depeursinge, Christian
2007-01-01
This work is mainly dedicated to the study of light transport through biological tissues and particularly the propagation of a light pulse. This study does not take into account the nonlinear properties of biological tissues. Different approaches were planned and then compared in order to understand and describe the physical phenomenon as well as possible. The analytical approach based on the Boltzmann transport equation gives satisfactory results for the qualitative description of the transm...
PHARMACOGNOSTICAL AND PRELIMINARY PHYTOCHEMICAL STUDIES OF CASSIA SOPHERA LINN.
Directory of Open Access Journals (Sweden)
Chavan Chetan
2011-02-01
Full Text Available Pharmacognostical parameters for the all three parts of Cassia sophera L were studied with the aim of drawing the pharmacopoeial standards for this species. Macroscopical and microscopical characters, physicochemical constants, extractive values of dry powder and its reaction after treatment with chemical reagents were studied. The determination of these characters will aid future investigators in their Pharmacological analyses of this species.
Personality Study of Hawaii Japanese Nonagenarians: Preliminary Findings. Technical Report.
Izutsu, Satoru; Rose, Charles L.
As part of a larger study of the demographics, family, household, health, diet, activity, functioning, and mental ability of older Japanese people living in Hawaii which will be compared to similar studies conducted in Japan, personality data were obtained from 101 noninstitutionalized Japanese with an average age of 92 years, residing in Hawaii.…
Preliminary studies on some aspects of Kikuyu food habits
Hoorweg, J.C.; Niemeijer, R.
1980-01-01
Description of a research project. The studies cover general aspects of Kikuyu food habits such as foods presently in use, the classification of foods and food preferences for children. The emphasises is on the methods employed in these studies which can also be used elsewhere to obtain information
Modeling and Testing of EVs - Preliminary Study and Laboratory Development
DEFF Research Database (Denmark)
Yang, Guang-Ya; Marra, Francesco; Nielsen, Arne Hejde;
2010-01-01
Electric vehicles (EVs) are expected to play a key role in the future energy management system to stabilize both supply and consumption with the presence of high penetration of renewable generation. A reasonably accurate model of battery is a key element for the study of EVs behavior and the grid...... tests, followed by the suggestions towards a feasible battery model for further studies....
Localization in random bipartite graphs: Numerical and empirical study
Slanina, František
2017-05-01
We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.
STUDY AND NUMERICAL SIMULATION OF SOLAR SYSTEM FOR AIR HEATING
Directory of Open Access Journals (Sweden)
M. Ghodbane
2016-01-01
Full Text Available The use of solar energy in sunny countries, is an effective outil for compensate the lack in the energy, their benefits are not related only to its economic benefits but especially for the environmental protection, so we must find solutions to the problems of pollution. This work is a theoretical study of a solar flat plate collector ; air is used as the heat transfer fluid. In this study, we established in first step the calculation of solar radiation in various sites in Algeria (Adrar, El Oued, Bechar, Biskra and Tamanrasset. The second step is the parameters influence study of the sites and climate on the performance of our collector. The results obtained are encouraging for the use of this type in the heating in the winter, also it can be used in different kinds of drying.
Preliminary toxicological study of Sylgard 184 curing agent
Energy Technology Data Exchange (ETDEWEB)
Smith, D.M.; London, J.E.; Drake, G.A.; Thomas, R.G.
1978-06-01
The acute oral LD/sub 50//sup 30/ values for mice and rats receiving Sylgard 184 curing agent were greater than 5 g/kg. According to classical guidelines, the compound would be considered slightly toxic or practically nontoxic in both species. Skin application studies in the rabbit demonstrated the compound to be mildly irritating. Eye irritation studies, also in the rabbit, showed that Sylgard 184 curing agent was a mild but transitory irritant. The sensitization study in guinea pigs did not show the resin to be deleterious.
Preliminary toxicological study of Sylgard 184 encapsulating resin
Energy Technology Data Exchange (ETDEWEB)
Smith, D.M.; Drake, G.A.; London, J.E.; Thomas, R.G.
1978-06-01
The acute oral LD/sub 50//sup 30/ values for Sylgard 184 encapsulating resin in mice and rats were greater than 5 g/kg. According to classical guidelines, the compound would be considered slightly toxic or practically nontoxic in both species. Skin application studies in the rabbit demonstrated this material to be mildly irritating. Eye irritation studies, also in the rabbit, showed that Sylgard 184 encapsulating resin was a mild but transitory irritant. The sensitization study in guinea pigs did not show the resin to be deleterious in this regard.
Hydrogen Gas Retention and Release from WTP Vessels: Summary of Preliminary Studies
Energy Technology Data Exchange (ETDEWEB)
Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bontha, Jagannadha R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney, Lenna A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rassat, Scot D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Boeringa, Gregory K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buchmiller, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chun, Jaehun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Karri, Naveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Huidong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tran, Diana N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-07-01
The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release from Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design
Some numerical studies of the evolution of generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M.; Kugler, W.
2007-11-15
We study the evolution behavior of generalized parton distributions at small longitudinal momentum fraction. Particular attention is paid to the ratio of a generalized parton distribution and its forward limit, to the mixing between quarks and gluons, and to the dependence on the squared momentum transfer t. (orig.)
Numerical Modeling and Combustion Studies of Scram Jet Simulation
2014-12-01
2 ˆ̄ρ| ˆ̃S|2. (3.37) Similar to the above treatment , since this relation corresponds to three (diagonal components of stress matrix) equations, an...towards the study of more complicated flame structures. The mass stoichiometric ratio defined as [42] ( YO YF ) st = ν ′ OMO ν ′ FMF = s (5.33) and the
Numerical study of bipolar coordinate Jeffery-Hamel flow
Matyas, Alpar; Nagy, Botond
2017-07-01
In this paper we report the bipolar coordinate formulation of Jeffery-Hamel (JH) flow and study vorticity-stream function, bipolar coordinate JH and conventional JH solutions. It is shown that our derived equation can intrinsically describe the flow behavior in curved geometries and it gives improved results as compared to conventional JH theory.
Ostracism among Gifted Adolescents: A Preliminary Study in Turkey
Directory of Open Access Journals (Sweden)
Uzeyir Ogurlu
2015-11-01
Full Text Available Ostracism has an influence on psychological and social functioning. The aim of this study is to examine ostracism among gifted students, with regard to gender and grade levels. Also, the relationship between ostracism and intelligence level was investigated. The study was conducted in a gifted education center, with 94 gifted students who were attending middle school (grades 5-8. The Ostracism Experience Scale for Adolescents and Wechsler Intelligence Scale for Children – Revised Form were employed as data collection tools. According to the findings obtained from the study, it is concluded that ostracism did not differ in terms of gender among gifted students. Besides, being socially excluded may be higher in 8th grades than 6th and 7th grades. Also in the study, a positive correlation was found between intelligence level and ostracism. Discussion and suggestions were also provided based on the results.
A preliminary study on limnological stock assessment, productivity ...
African Journals Online (AJOL)
use
productivity and potential fish yield of Omi Dam,. Nigeria ... the world over through growing populations, intensification of .... The concentration of organic substances in water and ... The mean dissolved oxygen recorded in this study is 5.12.
Features and Functions of Journals: A Preliminary Study
Directory of Open Access Journals (Sweden)
Bambang Yudi Cahyono
1997-01-01
Full Text Available Abstract: This study is intended to describe the features and functions of journals written by EFL learners. The features described include the contents and organization of the journals. The functions examined in this study include sense of purpose and sense of audience in writing. The subjects of the study were students of the first semester who took English intensive course at the English Department of IKIP MALANG. The results of content analysis indicate that journals that the students write contain various themes. Analysis on paragraph organization indicates that paragraphs in the journals generally show adequate development. This study also shows that the student journals reflect sense of purpose and sense of audience in writing.
A PRELIMINARY STUDY OF CERVICOVAGINAL PEROXIDASES AS INDICATORS FOR OVULATION
Institute of Scientific and Technical Information of China (English)
XIANGHong-Fa; HANZi-Yan; LIANGZang-Guang; XIESu-Xiang
1989-01-01
There were many studies using cervicovaginal peroxidases to predict ovulation. Some resuits suggested that cervieovaginal peroxidases are reliable indicators for ovulation; but others did not. The present study was designed to determine whether the change patterns of ccrvicovaginal guaiacul peroxidase activity in fertile period of Chinese women can also be served as a basis for development of a technique to predict ovulation time in natural family planning.
Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics
Sparber, Christof
2010-01-01
We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.
Comparative numerical studies of ion traps with integrated optical cavities
Podoliak, Nina; Keller, Matthias; Horak, Peter
2016-01-01
We study a range of radio-frequency ion trap geometries and investigate the effect of integrating dielectric cavity mirrors on their trapping potential. We aim to identify ion trap and cavity configurations that are best suited for achieving small cavity volumes and thus large ion-photon coupling as required for scalable quantum information networks. In particular, we investigate the trapping potential distortions caused by the dielectric material of the cavity mirrors for different mirror orientations with respect to the trapping electrodes, as well as for mirror misalignment. We also analyze the effect of the mirror material properties such as dielectric constants and surface conductivity, and study the effect of surface charges on the mirrors. The smallest trapping potential distortions are found if the cavities are aligned along the major symmetry axis of the electrode geometries. These cavity configurations also appear to be the most stable with respect to any mirror misalignment.
Numerical study on the interaction between supercavitation and turbulence
Liu, Han; Xiao, Zuoli; Shen, Lian
2016-11-01
Supercavitation uses a bubble of gas inside a liquid large enough to encompass an object travelling through the liquid so that the skin friction on the object can be greatly reduced and high speed can be obtained. In this study, computational fluid dynamics is used to investigate the interaction between supercavitation and turbulence. The study builds on an in-house simulation code that uses the coupled level set and volume of fluid method to accurately capture the interface between the water and gas phases. A ventilated disk cavitator is used for the bubble generation, and it is modelled by a sharp interface immersed boundary method. Turbulence in the incoming flow is generated by a grid of small spheres upstream. Based on the simulation data, the influence of turbulence on the supercavitation and the underlying mechanisms are analyzed.
Damping of nonlinear standing kink oscillations: a numerical study
Magyar, N
2016-01-01
We aim to study the standing fundamental kink mode of coronal loops in the nonlinear regime, investigating the changes in energy evolution in the cross-section and oscillation amplitude of the loop which are related to nonlinear effects, in particular to the development of the Kelvin-Helmholtz instability (KHI). We run idea, high-resolution three-dimensional (3D) magnetohydrodynamics (MHD) simulations, studying the influence of the initial velocity amplitude and the inhomogeneous layer thickness. We model the coronal loop as a straight, homogeneous magnetic flux tube with an outer inhomogeneous layer, embedded in a straight, homogeneous magnetic field. We find that, for low amplitudes which do not allow for the KHI to develop during the simulated time, the damping time agrees with the theory of resonant absorption. However, for higher amplitudes, the presence of KHI around the oscillating loop can alter the loop's evolution, resulting in a significantly faster damping than predicted by the linear theory in so...
A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters
Energy Technology Data Exchange (ETDEWEB)
Jin, Doo Hwa; Lee, Sang Wook [University of Ulsan, Ulsan (Korea, Republic of)
2017-06-15
In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.
EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF FLUORIDE IN SAND
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-mei; SU Bao-yu
2006-01-01
The transport and transformation of fluoride in sand were studied by using soil tank test under the condition of saturated water in this article. Based on the analysis of the laboratory experiments, the rules of fluorine transportation and transformation were simulated in sand by solving the advection-diffusion equation. Through comparison between computed results and observed data , it is shown that the established model and determined parameters could be used to simulate the fluoride transport in sand.
Numerical Study on Breaking Criteria for Solitary Waves
Institute of Scientific and Technical Information of China (English)
Chung-ren CHOU; Ruey-syan SHIH; John Z. YIM
2003-01-01
Studies of the breaking criteria for solitary waves on a slope are presented in this paper. The boundary element method is used to model the processes of shoaling and breaking of solitary waves on various slopes. Empirical formulae that can be used to characterize the breaking of solitary waves are presented. These include the breaking index, the wave height, the water depth, and the maximum particle velocity at the point of breaking. Comparisons with the results of other researches are given.
Numerical Study of Transition of an Annular Lift Fan Aircraft
Directory of Open Access Journals (Sweden)
Yun Jiang
2016-09-01
Full Text Available The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can eliminate the oscillations. The characteristics of momentum drag of the single-stage fans in transition are similar to that of the two-stage fans, but with the peak of drag lowered from 0.63 to 0.4 of the aircraft weight. The strategy to start transition from a negative angle of attack −21° further reduces the peak of drag to 0.29 of the weight. The strategy also reduces the peak of pitching torque, which needs upward extra thrusts of 0.39 of the weight to eliminate. The peak of rolling moment in transition needs differential upward thrusts of 0.04 of the weight to eliminate. The requirements for extra thrusts in transition lead to a total thrust–weight ratio of 0.7, which makes the aircraft more efficient for high speed cruise flight (higher than 0.7 Ma.
Numerical study of polaron problem in the adiabatic limit
Marsiglio, Frank; Li, Zhou; Blois, Cindy; Baillie, Devin
2010-03-01
We study the polaron problem in a one dimensional chain and on a two dimensional square lattice. The models we have used are the Holstein model and the Su-Schrieffer-Heeger (SSH) model. By a variational procedure based on the Lanczos method, we are able to examine the polaron problem in the limit when the mass of the ion is very large, i.e. close to the adiabatic limit. It is known that for the Holstein model there is no phase transition [1] for any nonzero phonon energy. It is also known that for the one dimensional Holstein or SSH model there will be long range order [2] (e.g. dimerization) in the adiabatic limit at half-filling. It is then interesting to study the long range order on a two dimensional square lattice in and away from the adiabatic limit. Moreover, recent progress for the single polaron near an impurity (disorder) [3] make it an interesting problem for studying bond length disorder which can change the hopping energy in a specific direction in the Holstein model. Reference: [1] H. Lowen, Phys.Rev.B 37, 8661 (1988) [2] J.E.Hirsch and E. Frandkin, Phys. Rev. Lett. 49, 402 (1982) [3]A.S.Mishchenko et.al Phys.Rev.B 79(2009) 180301(R)
Numerical Study of Single Well Vapor Extraction Process
Directory of Open Access Journals (Sweden)
Milad Rahnema
2016-01-01
Full Text Available Vapor extraction (Vapex is an emerging technology to produce heavy oil and bitumen from subsurface formations. Single well (SW Vapex technique uses the same concept of Vapex process but only with one horizontal well. In this process solvent is injected from the toe of the horizontal well with oil production at the heel section. The main advantage of SW-Vapex process lies in the economic saving and applicability in problematic reservoirs, where drilling of two horizontal wells is impractical. The performance of SW-Vapex seems to be comparable with dual horizontal Vapex process using proper optimization schemes. This study is grouped into two sections: (i a screening study of early time operating performance of SW-Vapex and (ii a sensitivity analysis of the effect of the reservoir and well completion parameters. Simulation results show that solvent injection rate can be optimized to improve oil production rate. Higher injection rates may not necessarily lead to increase in production. This study confirms that SW-Vapex process is very ineffective in reservoirs with high oil viscosity (more than 1,500 cp and thin formations (less than 10 m.
Anaerobic culture by Total Air Barrier: A preliminary study
Directory of Open Access Journals (Sweden)
Soma Sarkar
2010-03-01
Full Text Available BackgroundFor study with obligate anaerobes, inoculated platescontaining suitable reduced media need handling andincubation under strict anaerobic condition. Instead ofensuring a confined oxygen free chamber for placing seededplates, same purpose may be achieved by creating total airbarrier to the surface.MethodUpper moist surface of freshly prepared anaerobic media inPetri plates were intimately covered with very thintransparent bacteriological inert sterile polyester sheets.Stock culture of Bacteroides fragilis, ATCC 23745 andClostridium sporogenes, ATCC 11437 were grown in cookedmeat broth and then sub-cultured on respective plates, afterlifting the cover sheets. Sheets were again covered andincubated at 37oC ordinary incubator. To performantimicrobial susceptibility test, similarly covered seededplates with well inoculums were inverted en-block afterstripping sides with the help of a spatula. Now antibiotic diskswere placed on upper bare surfaces. After short pre-diffusion,plates were incubated keeping inoculated surface below.Same study was performed by conventional method usingGaspak.ResultsGood growths were noted in both sets of the study;however discrete colonies appeared more flat in nature intest set. Almost identical zones of inhibition were noted inboth sets of sensitivity study. Seven days old growths incovered blood agar plates were found viable when subculturedin cooked meat broths.ConclusionIsolation, identification and susceptibility study for mostclinically important obligate anaerobes may be performedby simple barrier method after appropriatestandardization.
Blastocyst cryopreservation using solid surface vitrification: A preliminary study
Directory of Open Access Journals (Sweden)
Mohan S Kamath
2011-01-01
Full Text Available Objective: The objective was to evaluate the effectiveness of a blastocyst cryopreservation program using solid surface vitrification. Setting: This study took place in a university teaching hospital. Study Design: Retrospective observational study. Materials and Methods: Women undergoing frozen embryo transfer cycles over a 4-year period between 2006 and 2010 were studied. The cryopreservation policy followed was a vitrification protocol performed at the blastocyst stage, using a solid surface (nonimmersion method. The post-thaw survival rate, implantation rate, clinical pregnancy rate, live birth rate, and neonatal outcome were recorded. Results: Eighty-one women underwent 86 frozen embryo transfer cycles. Of the 240 blastocysts warmed, 204 survived giving a cryosurvival rate of 85% (204/240. The clinical pregnancy, implantation, miscarriage, ongoing pregnancy, and live birth rates per transfer were 47%, 29%, 12%, 16%, and 23% respectively. Of the 20 live births, there were 16 singletons and 4 twins. Eleven boys and 13 girls were delivered with no major or minor abnormality detected. Conclusion(s: The blastocyst vitrification protocol using the solid surface method is effective with results comparable to fresh blastocyst transfers. While retaining the rapid cooling effect, the nonimmersion technique eliminates the risk of contamination and disease transmission. Larger studies with long-term follow-up data would further confirm the efficacy and safety of this method of vitrification.
[Omeprazole: a new treatment for paranasal sinus polyps in Widal syndrome. Preliminary study].
Serra, J; Piñas, J; Arnaiz, J A; Quesada, P; Naches, S; Lorente, J; Carne, X
1998-05-01
A preliminary report is made of the potential therapeutic effect of omeprazol in reducing nasosinusal polyps. This study is based on the empirical observation of nasal airflow improvement in patients suffering from nasosinusal polyposis after administering omeprazol. Different phases of the study suggested that patients with Widal's syndrome benefited the most. Based on the results of this study, we have undertaken a randomized, parallel, double-blind, placebo-controlled clinical trial.
Assessing interpersonal aspects of schizoid personality disorder: preliminary validation studies.
Kosson, David S; Blackburn, Ronald; Byrnes, Katherine A; Park, Sohee; Logan, Caroline; Donnelly, John P
2008-03-01
In 2 studies, we examined the reliability and validity of an interpersonal measure of schizoid personality disorder (SZPD) based on nonverbal behaviors and interpersonal interactions occurring during interviews. A total of 556 male jail inmates in the United States participated in Study 1; 175 mentally disordered offenders in maximum security hospitals in the United Kingdom participated in Study 2. Across both samples, scores on the Interpersonal Measure of Schizoid Personality Disorder (IM-SZ) exhibited adequate reliability and patterns of correlations with other measures consistent with expectations. The scale displayed patterns of relatively specific correlations with interview and self-report measures of SZPD. In addition, the IM-SZ correlated in an expected manner with features of psychopathy and antisocial personality and with independent ratings of interpersonal behavior. We address implications for assessment of personality disorder.
Preliminary toxicological study of Sylgard 184 encapsulating resin: curing agent
Energy Technology Data Exchange (ETDEWEB)
Smith, D.M.; Drake, G.A.; London, J.E.; Thomas, R.G.
1978-06-01
The acute oral LD/sub 50//sup 30/ values for Sylgard 184 (100 parts encapsulating resin plus 10 parts curing agent) were greater than 5 g/kg in rats and mice. According to classical guidelines, the mixture would be considered slightly toxic or practically nontoxic in both species. Skin application studies in the rabbit demonstrated the mixture to be mildly irritating. Eye irritation tests, also in the rabbit, showed the Sylgard 184 mixture to be a mild but transitory irritant. The sensitization study in the guinea pig demonstrated the mixture to be a very mild sensitizer in two of six animals.
Preliminary studies for the LHCb vertex detector vacuum system
Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo
2000-01-01
We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.
Design and Numerical Parametric Study of Fractal Heat Exchanger
Huang, Zhiwei; Ling, Jiazhen; Hwang, Yunho; Aute, Vikrant; Radermacher, Reinhard
2016-01-01
Air-to-refrigerant heat exchangers are a main component in air-conditioning and heat pump systems and are therefore a topic of major research focus. Such heat exchangers, mainly made of fin-and-tube and microchannels, use fins to augment the heat transfer area of the air-side. Recently it has been shown that finless designs using â‰¤ 1 mm hydraulic diameter bare tubes can deliver better air-side heat transfer performance than conventional heat exchangers. In current study, a novel air-to-refr...
Optimized interpolations and nonlinearity in numerical studies of woodwind instruments
Skouroupathis, A
2005-01-01
We study the impedance spectra of woodwind instruments with arbitrary axisymmetric geometry. We perform piecewise interpolations of the instruments' profile, using interpolating functions amenable to analytic solutions of the Webster equation. Our algorithm optimizes on the choice of such functions, while ensuring compatibility of wavefronts at the joining points. Employing a standard mathematical model of a single-reed mouthpiece as well as the time-domain reflection function, which we derive from our impedance results, we solve the Schumacher equation for the pressure evolution in time. We make analytic checks that, despite the nonlinearity in the reed model and in the evolution equation, solutions are unique and singularity-free.
A Numerical Study of Directional Solidification and Melting in Microgravity
Chen, P. Y. P.; Timchenko, V.; Leonardi E.; deVahlDavis, G.; deGroh, H. C., III
1998-01-01
A computational model is presented for the study of the solidification and melting of a pure substance and of a binary alloy. The enthalpy method has been used, and incorporated into a commercial CFD code. Three examples of the use of the model are described: the three-dimensional solidification of a pure substance (succinonitrile), the results of which are compared with experiment; an example of the solidification of a bismuth-tin alloy; and a simulation of a solidification and melting experiment done in space known as the MEPHISTO program.
The effect of chemotherapy on rat brain PET: preliminary study
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Su; Kim, Il Han; Yu, A Ram; Park, Ji Ae; Woo, Sang Keun; Kim, Jong Guk; Cheon, Gi Jeong; Kim, Byeong Il; Choi, Chang Woon; Lim, Sang Moo; Kim, Hee Joung; Kim, Kyeong Min [Korea Institute Radiological and Medical Science, Seoul (Korea, Republic of)
2010-10-15
Chemotherapy was widely used for the therapy of cancer patients. When chemotherapy was performed, transient cognitive memory problem was occurred. This cognitive problem in brain was called as chemobrain. In this study, we have developed rat model for chemobrain. Cerebral glucose metabolism after chemotherapy was assessed using animal PET and voxel based statistical analysis method
Preliminary studies of inhibitions in Aspergillus flavus with extracts of ...
African Journals Online (AJOL)
Administrator
of lichens on the growth of lower Phycomycetes and. Neurospora ... have indicated the possible use of plant as well as lichen extracts in the control of plant diseases. The extraction, ... under light microscope (*400 objective) for the emergence of germ tube. .... artificial fungicide develop, this study has shown that extracts of ...
Psychiatric morbidity in oral lichen planus: A preliminary study
Directory of Open Access Journals (Sweden)
Abhishek Ranjan Pati
2014-01-01
Full Text Available Objective: To study the clinical types and association of psychological factors in patients with Oral Lichen Planus (OLP. Materials and Methods: An analytical age- and sex-matched study involved 30 patients with oral lichen planus (group 1 and 30 control subjects (group 2. We applied the following psychometric tests to both groups: General Health Questionnaire (GHQ and Hospital Anxiety and Depression Scale (HADS. Results: The patients with OLP were found to exhibit statistically significant higher anxiety, insomnia, and social dysfunction with the tests that were used (GHQ 24 and HADS than the control group (P > 0.05. The study group likewise exhibited greater depression and somatic symptoms. The mean total of the GHQ and HAD scores were found to be higher in the study group than in the controls (P > 0.05. Among the various types of OLP, patients with the erosive type had higher mean scores for anxiety and insomnia, social dysfunction and depression. Conclusion: In most patients psychiatric morbidity was strongly associated with OLP, which could support its role in the etiopathogenesis of the disease. The higher scores of the General Health Questionnaire and Hospital Anxiety and Depression Scale gave an insight into the hypothesis that psychological factors are associated with the causation of OLP.
Buffalo Harbor Study. Preliminary Feasibility Report. Volume I. Main Report.
1983-04-01
the Buffalo Ornithological Society . Although these groups are not planning agencies, they represent an important trend in land use planning. The groups...Buffalo Historical Society , 1902. Wilson , Carroll L. Coal: Bridge to the Future, Report of the World Coal Study. Cambridge: Ballinger Publishing Company... Wilson , 1980) PLANNING CONSTRAINTS Federal policy on multiobjective planning, derived from both legislative and executive authorities, establishes and
Burnout among Special Education Administrators: A Preliminary Study
Carter, Susan J.
2011-01-01
Research on the extent of stress and burnout among special education administrators is not as well developed as research on the extent of stress and burnout among teachers. This study utilized the Maslach Burnout Inventory to determine levels of stress and burnout among administrators of special education. Results indicated administrators of…
Preliminary study Malaa. Final report; Foerstudie Malaa. Slutrapport
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-03-01
Factors of importance for a possible localization of a deep nuclear waste repository at Malaa in northern Sweden are mapped in this study. The geologic structures in the area have been reviewed, mostly from already existing knowledge. Existing infrastructure and necessary improvements are discussed, as well as land use and environment, employment and other social effects. 47 refs, 41 figs, 8 tabs.
Violence Prevention in Middle School: A Preliminary Study
KIllam, Wendy K.; Roland, Catherine B.; Weber, Bill
2014-01-01
Violence in schools continues reflecting violence within society. There is a growing need for violence prevention programs within the schools that provide students with the skills needed to cope with interpersonal and relationship is-sues effectively. This study was conducted at a middle school and there were 345 middle school students (6th to 8th…
Preliminary studies in the genus Entoloma in Tasmania - I
Gates, Genevieve M.; Noordeloos, Machiel
2007-01-01
This paper describes 33 new species of Entoloma from wet and dry forests in Tasmania, Australia, based on 8 years of intensive collecting, description and study of the Entoloma mycota. As such it is a precursor to a monographic treatment of the Entolomataceae of Tasmania, to be published in the next few years.
Preliminary studies in the genus Entoloma in Tasmania - I
Gates, Genevieve M.; Noordeloos, Machiel
2007-01-01
This paper describes 33 new species of Entoloma from wet and dry forests in Tasmania, Australia, based on 8 years of intensive collecting, description and study of the Entoloma mycota. As such it is a precursor to a monographic treatment of the Entolomataceae of Tasmania, to be published in the next
Study and Preliminary Analysis of Test of Aerosol Migration Mechanism
Institute of Scientific and Technical Information of China (English)
CHEN; Lin-lin; SUN; Xue-ting; WEI; Yan-song
2015-01-01
TAMM(test of aerosol migration mechanism)is one of the important aspects of Studies on Migration Mechanism of the Source Term under Severe Accident,which is a significant research of the National Large Advanced PWR Research Program.The main task researches the
ENDOPHYTIC FUNGI FROM JATROPHA CURCUS: A PRELIMINARY STUDY
Directory of Open Access Journals (Sweden)
Santosh Kumar Singh
2013-04-01
Full Text Available Fungal endophytes are ubiquitously reported from the living tissues of healthy plant parts from every host studied so far. These microbes attributed significantly in upraising the caliber of the host to counteract against the different stresses and herbivores, and also some times to improve the host fitness. This study presenting here the endophytic mycoflora of Jatropha curcus, which remain less explored. A total of eighteen species of fungi were isolated from leaf, stem, and roots of Jatropha curcus. The root was heavily colonized by the genera like Alternaria, Cladosporium, and Aspergillus spp. The leaf tissues however showed somewhat greater diversity of endophytic colonization. Drechslera, Curvularia, Bipolaris, Alternaria, and Aspergillus sp. were dominant in to the leaf tissues with strong presence of an unidentified genus. The species richness as well as frequency of colonization of endophytic fungi was more pronounced in the leaf tissues rather than the root and stem. This study reaffirms the fact that endophytes are host and tissues specific. In this regard, the endophytic fungi received in this study, may represent a unique source of one or more of the interesting and useful bioactive compounds similar to those of vinca alkaloid group.
Radioisotope study of Eustachian tube. A preliminary report
Energy Technology Data Exchange (ETDEWEB)
De Rossi, G.; Campioni, P.; Vaccaro, A.
1988-08-01
Radioisotope studies of Eustachian tube are suggested in the preoperative phase of tympanoplasty, in order to assess tubal drainage and secretion. The use of gamma camera fitted to a computer allowed the AA, to calculate some semi-quantitative parameters for an exact assessment of the radioactivity transit from the tympanic cass up to the pharyngeal cavity, throughout the Eustachian tube.
A Preliminary Study on Bucket Foundations under Transient Lateral Loading
DEFF Research Database (Denmark)
Foglia, Aligi; Ibsen, Lars Bo; Nielsen, Søren Kjær;
2013-01-01
This study aims at investigating the behaviour of monopod bucket foundations through a physical model. The foundation is installed in dense water-saturated sand and is subjected to lateral load applied at different rates. The different loading rates allow for exploring the patterns of response of...
preliminary multidomain modelling and simulation study of a ...
African Journals Online (AJOL)
user
Renewable energy sources have gained much attention due to the recent energy crisis and ... system for the most energy capture for this case study to be a rotor speed of 5.5rad/s at a height of 10m. .... Thesis, Faculty of California Polytechnic.
Functional Communication Training in Rett Syndrome: A Preliminary Study
Byiers, Breanne J.; Dimian, Adele; Symons, Frank J.
2014-01-01
Rett syndrome (RTT) is associated with a range of serious neurodevelopmental consequences including severe communicative impairments. Currently, no evidence-based communication interventions exist for the population (Sigafoos et al., 2009). The purpose of the current study was to examine the effectiveness of functional assessment (FA) and…
From Numbers to Action: A Preliminary Study of Retention.
Greenlee, Shelia Parker; Greenlee, Harry
This study examined retention at Christopher Newport University (CNU) in Newport News, Virginia, focusing on the demographic characteristics of those students who left the university as well as the reasons why they left. A total of 159 students who had attended CNU during the 1994-95 academic year but who did not re-enroll in the fall of 1995 were…
A numerical parametric study on hydrofoil interaction in tandem
Kemal, Omer
2015-01-01
Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid
A numerical parametric study on hydrofoil interaction in tandem
Directory of Open Access Journals (Sweden)
Kemal Omer
2015-01-01
Full Text Available Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM. RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid
A numerical parametric study on hydrofoil interaction in tandem
Directory of Open Access Journals (Sweden)
Omer Kemal Kinaci
2015-01-01
Full Text Available Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM. RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.
Numerical simulation study on air quality in aircraft cabins.
Zhao, Yingjie; Dai, Bingrong; Yu, Qi; Si, Haiqing; Yu, Gang
2017-06-01
Air pollution is one of the main factors that affect the air quality in aircraft cabins, and the use of different air supply modes could influence the distribution of air pollutants in cabins. Based on the traditional ceiling air supply mode used on the B737NG, this study investigated another 3 different kinds of air supply modes for comparison: luggage rack air supply mode, joint mode combining ceiling and luggage rack air supply, and joint mode combining ceiling and individual air supply. Under the above 4 air supply modes, the air velocity, temperature and distribution of air pollutants in a cabin full of passengers were studied using computational fluid dynamics (CFD), and carbon dioxide (CO2) and formaldehyde were selected as 2 kinds of representative air pollutants. The simulation results show that the joint mode combining ceiling and individual air supply can create a more uniform distribution of air velocity and temperature, has a better effect on the removal of CO2 and formaldehyde, and can provide better air quality in cabins than the other 3 modes. Copyright © 2016. Published by Elsevier B.V.
Numerical studies of liners for magnetized target fusion (MTF)
Faehl, R J; Sheehey, P T; Lindemuth, I R
1999-01-01
Summary form only given. Magnetized target fusion (MTF) requires the fast compression of hot, dense plasmas by a conducting liner. We have used two-dimensional MHD calculations to study the electromagnetic implosion of metallic liners driven by realistic current waveforms. Parametric studies have indicated that the liner should reach velocities of 3-20 km/s, depending on the magnetic field configuration, and reach convergence ratios (initial radius divided by final radius) of at least 10. These parameters are accessible with large capacitor bank power supplies such as SHIVA or ATLAS, or with magnetic flux compression generators. One issue with the high currents that are required to implode the liner is that Ohmic heating will melt or vaporize the outer part of the liner. Calculations have shown that this is a realistic concern. We are currently addressing questions of liner instability and flux diffusion under MTF conditions. Another issue is that the magnetic fields needed to inhibit thermal losses to the wa...
A numerical study of gas transport in human lung models
Lin, Ching-Long; Hoffman, Eric A.
2005-04-01
Stable Xenon (Xe) gas has been used as an imaging agent for decades in its radioactive form, is chemically inert, and has been used as a ventilation tracer in its non radioactive form during computerized tomography (CT) imaging. Magnetic resonance imaging (MRI) using hyperpolarized Helium (He) gas and Xe has also emerged as a powerful tool to study regional lung structure and function. However, the present state of knowledge regarding intra-bronchial Xe and He transport properties is incomplete. As the use of these gases rapidly advances, it has become critically important to understand the nature of their transport properties and to, in the process, better understand the role of gas density in general in determining regional distribution of respiratory gases. In this paper, we applied the custom developed characteristic-Galerkin finite element method, which solves the three-dimensional (3D) incompressible variable-density Navier-Stokes equations, to study the transport of Xe and He in the CT-based human lung geometries, especially emulating the washin and washout processes. The realistic lung geometries are segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-064368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The simulation results show that the gas transport process depends on the gas density and the body posture. The implications of these results on the difference between washin and washout time constants are discussed.
Experimental study and numerical simulation of evacuation from a dormitory
Lei, Wenjun; Li, Angui; Gao, Ran; Zhou, Ning; Mei, Sen; Tian, Zhenguo
2012-11-01
The evacuation process of students from a dormitory is investigated by both experiment and modeling. We investigate the video record of pedestrian movement in a dormitory, and find some typical characteristics of evacuation, including continuous pedestrian flow, mass behavior and so on. Based on the experimental observation, we found that simulation results considering pre-movement time are closer to the experimental results. With the model considering pre-movement time, we simulate the evacuation process and compare the simulation results with the experimental results, and find that they agree with each other closely. The crowd massing phenomenon is conducted in this paper. It is found that different crowd massing phenomena will emerge due to different desired velocities. The crowd massing phenomenon could be more serious with the increase of the desired velocity. In this study, we also found the faster-is-slower effect. When the positive effect produced by increasing the desired velocity is not sufficient for making up for its negative effect, the phenomenon of the greater the desired velocity the longer the time required for evacuation will emerge. From the video record, it can be observed that the mass behavior is obvious during the evacuation process. And the mass phenomenon could also be found in simulation. The results obtained from our study are also suitable to all these buildings in which both living and resting areas occupy the majority space, such as dormitories, residential buildings, hotels (restaurants) and so on.
Phase conjugation of gap solitons: A numerical study
Indian Academy of Sciences (India)
V S C Manga Rao; S Dutta Gupta
2003-09-01
We study the effect of a nearby phase-conjugate mirror (PCM) on the gap soliton of a Kerr non-linear periodic structure. We show that phase conjugation of the gap soliton (in the sense of replication of the amplitude proﬁle in the reverse direction) is possible under the condition of PCM reﬂectivity approaching unity. This is in contrast with the results for linear structures, where the wave proﬁles can be conjugated for arbitrary values of the PCM reﬂectivity. The sensitivity of the conjugation of the gap solitons to PCM reﬂectivity is ascribed to the ﬁne balance of non-linearity with dispersion, necessary for their existence.
One-dimensional long-range percolation: A numerical study
Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A.
2017-07-01
In this paper we study bond percolation on a one-dimensional chain with power-law bond probability C /rd +σ , where r is the distance length between distinct sites and d =1 . We introduce and test an order-N Monte Carlo algorithm and we determine as a function of σ the critical value Cc at which percolation occurs. The critical exponents in the range 0 introduction of a suitably defined effective dimension deff relating the long-range model with a short-range one in dimension deff. We finally present a formulation of our algorithm for bond percolation on general graphs, with order N efficiency on a large class of graphs including short-range percolation and translationally invariant long-range models in any spatial dimension d with σ >0 .
Study of coal and gas outbursts by numerical modeling approach
Institute of Scientific and Technical Information of China (English)
LI Sheng; ZHANG Hong-wei
2007-01-01
During mining or road-way development, the distribution of stress and coal pore pressure in the coal face and rib around the new opening will change, under certain conditions, dynamic failure of coal in the form of an outburst can occur. In the modeling studies presented in this paper, an outburst was considered to consist of three distinct stages:preinitiation, initiation and post-initiation, which takes into account the major processes and mechanisms that can influence both outburst-proneness and post-initiation outburst behavior. The model has been applied to simulate the effects of mechanisms in the coal matrix, coal strength, coal damage, geological structures on outbursts. The model constructed using the FLAC software, which were undertaken to research the effects on outbursts of coal strength pressure gradient, and other factors.
Numerical and Analytical Study of Bladder-Collapse Flow
Directory of Open Access Journals (Sweden)
M. Tziannaros
2012-01-01
Full Text Available Understanding and quantifying more of the workings of the human bladder motivates the present industry-supported study. The bladder performance in terms of the urinary velocities produced tends to be dominated by the internal fluid dynamics involved, in the sense that the bladder wall moves in a body-prescribed way. The enclosed urine flow responds to this wall movement, and there is relatively little feedback on the wall movement. Combined computational work and special-configuration analysis are applied over a range of configurations including computational and analytical results for the circle and sphere as basic cases; models of more realistic bladder shapes; the end stage of the micturition process where the bladder is relatively squashed down near the urethral sphincter and localised peak speeds arise. The combination of approaches above can be extended to allow for interaction between wall shape and flow properties such as internal pressure if necessary.
Numerical Study on the Bifurcation of the North Equatorial Current
Institute of Scientific and Technical Information of China (English)
LIU Yulong; WANG Qi; SONG Jun; ZHU Xiande; GONG Xiaoqing; WU Fang
2011-01-01
A 1.5-layer reduced-gravity model forced by wind stress is used to study the bifurcations of the North Equatorial Current (NEC).The authors found that after removing the Ekman drift,the modelled circulations can serve well as a proxy of the SODA circulations on the σθ=25.0kgm-3 potential density surface based on available long-term reanalysis wind stress data.The modelled results show that the location of the western boundary bifurcation of the NEC depends on both zonal averaged and local zero wind stress curl latitude.The effects of the anomalous wind stress curl added in different areas are also investigated and it is found that they can change the strength of the Mindanao Eddy (ME),and then influence the interior pathway.
Numerical study of unitary fermions in one spatial dimension
Endres, Michael G
2013-01-01
I perform lattice Monte Carlo studies of universal four-component fermion systems in one spatial dimension. Continuum few-body observables (i.e., ground state energies and integrated contact densities) are determined for both unpolarized and polarized systems of up to eight fermions confined to a harmonic trap. Estimates of the continuum energies for four and five trapped fermions show agreement with exact analytic calculations to within approximately one percent statistical uncertainties. Continuum many-body observables are determined for unpolarized systems of up to 88 fermions confined to a finite box, and 56 fermions confined to a harmonic trap. Results are reported for universal quantities such as the Bertsch parameter, defined as the energy of the untrapped many-body system in units of the corresponding free-gas energy, and its subleading correction at large but finite scattering length. Two independent estimates of these quantities are obtained from thermodynamic limit extrapolations of continuum extra...
Numerical study of solid particle erosion in butterfly valve
Liu, Bo; Zhao, Jiangang; Qian, Jianhua
2017-07-01
In the actual operation of butterfly valve, the butterfly valve is found severe erosion wear. A solid particle erosion analysis of butterfly valve based on the erosion theory is researched in this study. A CFD model has been built to simulate the flow erosion. Different parameters of butterfly valve including inlet velocity, particle mass fraction and solid particle diameter are separately analysed. The results show that erosion rate increase with the increase of inlet velocity, particle mass fraction and solid particle diameter. The peak erosion rate is up to 4.63E-5 (kg/m2/s) and erosion of valve disc mainly occurs around the upstream edge and the cylinder face.
Experimental and Numerical Study of Snuber in Hydrogen Compressor
Directory of Open Access Journals (Sweden)
M. Shiddiqur Rahman
2012-10-01
Full Text Available In hydrogen production, transportation and delivery system, compression is one of the most important issues. There develop inherently pressure pulsation in reciprocating hydrogen compressing system. An experiment has been conducted to investigate the performance of snubber as pulsation damper used in reciprocating compression system. CFD analysis is applied to get the pressure values at different parts of this snubber. Regression equations are also developed for amplitude at input and output of the snubber. A comparative study of pressure and amplitude by experiment, regression equation and CFD model are performed for 35, 40 and 45 Hz motor frequency. These models results are varied by 3.975%, 3.516% and 3.787% from the experiment for those motor frequencies. The pressure losses in the snubber are also found almost similar values by the regression equation i.e. 0.026%, 0.033% and 0.018% deviations.
A NUMERICAL STUDY ON VORTEX RINGS WITH SWIRLHu
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A finite difference scheme in cylindrical coordinates was used to study the three-dimensional (3D) motion of a vortex ring with swirl and the passage interaction between two vortex rings. For the 3D evolution of a single thin ring, the azimuthal perturbation modes grow linearly in the early stage. According to their growth rates, two bands of growing waves, which correspond to the first and the second radial mode respectively, can be observed. The result is similar to the prediction of short wave instability theory for swirl-free vortex rings. For the passage process between two rings, results show that the azimuthal velocity is in inverse proportion to radius while the azimuthal vorticity is in proportion to radius during the interaction.
Numerical study of domain coarsening in anisotropic stripe patterns.
Boyer, Denis
2004-06-01
We study the coarsening of two-dimensional smectic polycrystals characterized by grains of oblique stripes with only two possible orientations. For this purpose, an anisotropic Swift-Hohenberg equation is solved. For quenches close enough to the onset of stripe formation, the average domain size increases with time as t(1/2). Further from onset, anisotropic pinning forces similar to Peierls stresses in solid crystals slow down defects, and growth becomes anisotropic. In a wide range of quench depths, dislocation arrays remain mobile and dislocation density roughly decays as t(-1/3), while chevron boundaries are totally pinned. We discuss some agreements and disagreements found with recent experimental results on the coarsening of anisotropic electroconvection patterns.
Dissociation and fantasy proneness in psychiatric patients: a preliminary study.
Merckelbach, Harald; à Campo, Joost; Hardy, Solange; Giesbrecht, Timo
2005-01-01
Nonclinical studies found that dissociative experiences are intimately linked to a trait known as fantasy proneness. We examined the links among dissociative symptoms, fantasy proneness, and impulsivity in psychiatric outpatients. Our sample consisted of 22 patients with schizophrenia, 20 patients with a diagnosis of borderline personality disorder, and 19 patients with a major depressive disorder. For the whole sample, levels of dissociation were found to be related to fantasy proneness and impulsivity. There were group differences in dissociative symptoms, with patients with borderline personality disorder reporting more such symptoms than patients with either schizophrenia or major depressive disorder. The overlap between dissociation and fantasy proneness may have important ramifications for studies addressing comorbid phenomena of dissociative symptoms.
Preliminary study of radioactive waste disposal in the vadose zone
Energy Technology Data Exchange (ETDEWEB)
1978-09-01
To investigate the characteristics of the vadose zone with respect to radioactive waste disposal, the mechanics of unsaturated flow in arid regions and the geohydrology of four areas with a deep water table were studied. The studies indicated that (1) arid sites with a water table deeper than 200 m can be found in at least three distinct geologic settings in the western United States, (2) the physics of unsaturated flow in soils and rock with interstitial porosity at low water contents, particularly under thermal gradients, is not yet completely understood, and (3) under certain conditions unsaturated flow can be so slow that analytic modeling of an unflawed repository is unnecessary to prove effective containment.
Cetaceans and fisheries in Kenya coastal waters: a preliminary study.
Omondi, E.
1995-01-01
Of all marine resources characteristic of the Kenyan coast, marine mammals are least studied singly or in association with other resources. In this paper, available records on cetacean catches by district between 1978-1991 inclusive were used to assess the status and trend of their fishery, distribution, and interaction with sharks, clupeids and tuna landings. Spartial and temporal variations in takes were evident. The Mombasa district led in total catch (62.2 tons) while the Tana River distr...
Protocol Development and Preliminary Toxicity Study of CBRN Nanomaterials
2013-12-05
Schlager, and S.M. Hussain. 2009. Cyrstal Structure Mediates Mode of Cell Death in TiO2. Nanotoxicity. J Nanopart Res. 11(6):1361-1374. Cao, C.J., K...Mouse Keratinocytes. J Nanopart Res. 11:15-24. Toxicology Study No. 87-XE-0EJ5-11 (FY12 Continuation) B-1 Appendix B - Figures 10 - 1 . 0 0 10 - 0 . 7 5
V. PRELIMINARY STUDY ON ISOZYMES OF SHOREA JAVANICA
Directory of Open Access Journals (Sweden)
U. JUNIARTI and M. I. J. UMBOH
1987-01-01
Full Text Available The detection of genetic variability in natural or man-made populations/ plantations is useful in both basic and applied biology. In addition to the various facets of studies on Shorea javanica already initiated by Torquebiau (1984 and alongside with his recommendations on focus for future research, a study on the genetic aspects of the species should be given important considerations. As the trees are tapped for resin, an important forest product, the genetic basis of the production as well as the range of variation in amount of resin production among t he trees must be known. Coupled with this is a thorough investigation on the differences in pest resistance/susceptability among the trees and their genetic basis. While the assumption (Torquebiau 1984 that trees in natural forest areas are-rarely attacked by diseases because of mycorrhizal fungi is interesting, its confirmation is necessary. If this is true, problems would arise when plants are introduced into a new plantation site as experienced by the Forest Research Institute (Ardikoesuma 1954. Thus, we need to look for pest resistant plants i.e. those that can remain healthy even in the absence of mycorrhizae. The above studies on possible genetic variation could give vital information for development of forest plantations of the species and for breeding and tree improvement strategies. By knowing the extent of genetic variation in natural population or in plantations one could be guided to maintain or increase the genetic base in these areas. Biochemical characters such as isozyme banding patterns have been useful in several areas of plant biology, population genetics, evolution and breeding. Isozymes are detected by starch gel electrophoresis and when their genetic control is established, they could be genetic markers in analyzing variation in morphological or physiological characters. The present study is an attempt to detect the isozymes in leaves, seeds and cotyledons of Shorea
A preliminary metagenomic study of puer tea during pile fermentation.
Lyu, Changyong; Chen, Chaoyin; Ge, Feng; Liu, Diqiu; Zhao, Shenglan; Chen, Dan
2013-10-01
Up to now, there has been no report on the taxonomic and functional analysis of the microbial community in fermenting puer tea by pyrosequencing. In this study, metagenomic pyrosequencing was first used in fermenting puer tea to delineate a relatively comprehensive overview of the microbial taxonomy while also preliminarily characterising the functional ontologies of microbial genes present in puer tea pile fermentation. A total of 251 738 pyrosequencing reads (9197 contigs and 145 402 singletons) were generated by pyrosequencing. Taxonomic analysis revealed three dominant bacterial phyla, Actinobacteria (30.08%), Proteobacteria (24.47%) and Firmicutes (20.23%), and one dominant eukaryotic phylum, Ascomycota (15.21%) [corrected]. A total of 58 664 hits were categorised into 28 functional subsystems based on the SEED database. Moreover, two categories, 'metabolism of terpenoids and polyketides' and 'biosynthesis of other secondary metabolites', were selectively analysed and 69 enzyme genes were presented in 16 pathways. The dominant microbes of puer tea fermentation were bacteria in the present study, and yeasts rather than moulds accounted for the overwhelming majority of Eukaryota. The analysis of functional genes and metabolic pathways will be helpful for further study of the mechanism of puer tea fermentation at molecular level. © 2013 Society of Chemical Industry.
Ramadan fasting: Evidence or expert opinion? Results of preliminary studies
Directory of Open Access Journals (Sweden)
Maryam Kazemi
2013-12-01
Full Text Available Each year, over a billion Muslims fast worldwide during the month of Ramadan. Through this religious practice, not only will one have spiritual growth, but can improve his/her diet, which is of pivotal importance in this month. Conversely, the available evidence regarding the health benefits of Ramadan fasting is scarce and highly contentious. Although Islam exempts patients from fasting, many of them fast conceivably and their clinical condition is prone to deteriorate. This is due to the persistent gap between current expert knowledge and conclusive, strong evidence regarding the pathophysiologic and metabolic alterations by fasting, and the consensus that healthcare professionals should reach, in order to manage various patient groups during this month. In this review, we summarize the results of our initial studies regarding the effects of Ramadan fasting on some clinical conditions including alterations of body composition. We also go through the important clinical results of patients who have had previous history of cardiovascular disease, type 2 diabetes, asthma and renal colic. Our studies have presented some evidence in favor of Ramadan fasting and encourage those with mentioned diseases to consult their physicians and follow medical and scientific recommendations. We attempt to present some relevant evidence clarify future scopes in this area of study, and provide suggestions for future investigations.
Preliminary Study of Mental Retardation in Rovira (Tolima, Colombia
Directory of Open Access Journals (Sweden)
Luis Gustavo Celis
2008-07-01
Full Text Available limitationsin performance, significant deficiencyin intelligence and adaptative behavior, causingclinical and social disability. Most patients withmental retardation in Colombia do not receiveclinical genetics evaluation. The aims of thepresent study are to evaluate and characterizea group of patients with mental retardationfrom the population of Rovira. The presentstudy included twenty five patients with mentalretardation from Rovira (Tolima whichwere studied by clinical examination, metabolicscreening (ferric chloride, nitrosonaphtol,silver nitroprusiate, dinitrophenylhydrazineand benedict and cytogenetics (G-Bandingkariotype. Pesticide detection was perfomedby random sampling of water and tomatoes intwenty different places of water distribution,the center of the town and crop fields. A familywith three affected sibs (two females, onemale with mental retardation was identified,suggesting a genetic component. Metabolicscreening was negative and karyotypes werenormal. The analyses performed for organophosphateswere positive in 100% of the samples.Carbamates were positive in 60% of thewater source and 100% of tomato samples. Allthe samples tested were negative for organochlorides.Further studies as molecular fragile-X test, will be performed.
Ramadan fasting: Evidence or expert opinion? Results of preliminary studies
Directory of Open Access Journals (Sweden)
1Maryam Kazemi
2013-11-01
Full Text Available Each year, over a billion Muslims fast worldwide during the month of Ramadan. Through this religious practice, not only will one have spiritual growth, but can improve his/her diet, which is of pivotal importance in this month. Conversely, the available evidence regarding the health benefits of Ramadan fasting is scarce and highly contentious. Although Islam exempts patients from fasting, many of them fast conceivably and their clinical condition is prone to deteriorate. This is due to the persistent gap between current expert knowledge and conclusive, strong evidence regarding the pathophysiologic and metabolic alterations by fasting, and the consensus that healthcare professionals should reach, in order to manage various patient groups during this month. In this review, we summarize the results of our initial studies regarding the effects of Ramadan fasting on some clinical conditions including alterations of body composition. We also go through the important clinical results of patients who have had previous history of cardiovascular disease, type 2 diabetes, asthma and renal colic. Our studies have presented some evidence in favor of Ramadan fasting and encourage those with mentioned diseases to consult their physicians and follow medical and scientific recommendations. We attempt to present some relevant evidence clarify future scopes in this area of study, and provide suggestions for future investigations.
Motor Empathy in Individuals With Psychopathic Traits: A Preliminary Study.
Khvatskaya, Yelena; Lenzenweger, Mark F
2016-10-01
The present laboratory study examined motor empathy in male and female individuals, who were either high or low on psychopathic traits, drawn from a nonclinical university population. Past findings suggest that psychopathic individuals are impaired in affective empathy, but findings on impairments in cognitive empathy are mixed. Research on motor empathy in psychopathy is scarce. The authors hypothesized that individuals high on psychopathic traits would have deficient motor empathy (similar to affective empathy) related to valenced emotion stimuli because of the automatic nature of motor empathy. Potential participants completed the Psychopathic Personality Inventory-Revised (PPI-R). Participants were chosen for the study on the basis of their PPI-R scores. All participants viewed photographic images drawn from a well-established set of stimuli (the International Affective Picture System) and were video recorded while doing so. Intensity for eight emotions (anger, contempt, disgust, fear, sad, joy, surprise, and neutral) in participants' facial expressions was measured objectively using an automated program, the Computer Expression Recognition Toolbox. Individuals high on psychopathic traits as compared with low PPI-R scorers displayed significantly less emotional congruence when viewing negative images. The study results suggest that deficits in motor empathy related to psychopathic trait levels are relatively restricted to negative emotions.
Preliminary studies on cryopreservation of snakehead (Channa striata) embryos.
Mohd Sharifuddin, M; Siti Azizah, M N
2014-08-01
This paper reports the findings of the ongoing studies on cryopreservation of the snakehead, Channa striata embryos. The specific objective of this study was to collect data on the sensitivity of C. striata embryo hatching rate to low temperatures at two different developmental stages in the presence of four different cryoprotectants. Embryos at morula and heartbeat stages were selected and incubated in 1M dimethyl sulfoxide (Me2SO), 1M ethylene glycol (EG), 1M methanol (MeOH) and 0.1M sucrose solutions at different temperatures for a period of time. Embryos were kept at 24 °C (control), 15 °C, 4 °C and -2 °C for 5 min, 1h and 3h. Following these treatments, the embryos were then transferred into a 24 °C water bath until hatch to evaluate the hatching rate. The results showed that there was a significant decrease of hatching rate in both developmental stages following exposure to 4 °C and -2 °C at 1h and 3h exposure in each treatment. Heartbeat stage was more tolerant against chilling at -2 °C for 3h exposure in Me2SO followed by MeOH, sucrose and EG. Further studies will be conducted to find the best method to preserve embryos for long term storage.
A Preliminary Study of 3D Printing on Rock Mechanics
Jiang, Chao; Zhao, Gao-Feng
2015-05-01
3D printing is an innovative manufacturing technology that enables the printing of objects through the accumulation of successive layers. This study explores the potential application of this 3D printing technology for rock mechanics. Polylactic acid (PLA) was used as the printing material, and the specimens were constructed with a "3D Touch" printer that employs fused deposition modelling (FDM) technology. Unconfined compressive strength (UCS) tests and direct tensile strength (DTS) tests were performed to determine the Young's modulus ( E) and Poisson's ratio ( υ) for these specimens. The experimental results revealed that the PLA specimens exhibited elastic to brittle behaviour in the DTS tests and exhibited elastic to plastic behaviour in the UCS tests. The influence of structural changes in the mechanical response of the printed specimen was investigated; the results indicated that the mechanical response is highly influenced by the input structures, e.g., granular structure, and lattice structure. Unfortunately, our study has demonstrated that the FDM 3D printing with PLA is unsuitable for the direct simulation of rock. However, the ability for 3D printing on manufactured rock remains appealing for researchers of rock mechanics. Additional studies should focus on the development of an appropriate substitution for the printing material (brittle and stiff) and modification of the printing technology (to print 3D grains with arbitrary shapes).
Mukha Mo: A Preliminary Study on Filipino Facial Expressions
Directory of Open Access Journals (Sweden)
Richard Jonathan O. Taduran
2012-12-01
Full Text Available This study tested the universality hypothesis on facial expression judgment by applying cross-cultural agreement tests on Filipinos. The Facial Action Coding System constructed by Ekman and Friesen (1976 was used as basis for creating stimuli photos that 101 college student observers were madeto identify. Contextualization for each emotion was also solicited from subjects to provide qualitative bases for their judgments. The results showed that for five of the six emotions studied, excepting fear, the majority of the observers judged the expressions as predicted. The judgment of happiness supplied the strongest evidence for universality, having the highest correctness rate and inter-observer agreement. There was also high agreement among observersand between Filipinos and other cultures about the most intense and second most intense emotion signaled by each stimulus for these five emotions. Difficulty with the recognition of fear, as well as its common association with the emotion of sadness, has been found. Such findings shall serve as baseline data for the study of facial expressions in the Philippines.
Effects of Omeprazole on Iron Absorption: Preliminary Study
Directory of Open Access Journals (Sweden)
Mahmut Yaşar Çeliker
2013-09-01
Full Text Available Objective: Increasing numbers of pediatric and adult patients are being treated with proton pump inhibitors (PPIs. PPIs are known to inhibit gastric acid secretion. Nonheme iron requires gastric acid for conversion to the ferrous form for absorption. Ninety percent of dietary and 100% of oral iron therapy is in the nonheme form. To the best of our knowledge, the effect of PPIs on iron absorption has not been studied in humans. Our study assessed the relationship between omeprazole therapy and iron absorption in healthy subjects. Materials and Methods: We recruited 9 healthy volunteers between June 2010 and March 2011. Subjects with chronic illness, anemia, or use of PPI therapy were excluded. Serum iron concentrations were measured 1, 2, and 3 h after the ingestion of iron (control group. The measurements were repeated on a subsequent visit after 4 daily oral administrations of omeprazole at a dose of 40 mg (treatment group. Results: One female and 8 male volunteers were enrolled in the study with a mean age of 33 years. There was no statistical difference detected between baseline, 1-h, 2-h, and 3-h iron levels between control and treatment groups. Conclusion: Administration of omeprazole for a short duration does not affect absorption of orally administered iron in healthy individuals.
Numerical study of heat pipe application in heat recovery systems
Energy Technology Data Exchange (ETDEWEB)
Song Lin; Broadbent, John; McGlen, Ryan [Thermacore Europe, Ashington (United Kingdom)
2005-01-01
Heat pipes are two-phase heat transfer devices with extremely high effective thermal conductivity. They can be cylindrical or planar in structure. Heat pipes can be embedded in a metal cooling plate, which is attached to the heat source, and can also be assembled with a fin stack for fluid heat transfer. Due to the high heat transport capacity, heat exchangers with heat pipes have become much smaller than traditional heat exchangers in handling high heat fluxes. With the working fluid in a heat pipe, heat can be absorbed on the evaporator region and transported to the condenser region where the vapour condenses releasing the heat to the cooling media. Heat pipe technology has found increasing applications in enhancing the thermal performance of heat exchangers in microelectronics, energy and other industrial sectors. Utilisation of a heat pipe fin stack in the drying cycle of domestic appliances for heat recovery may lead to a significant energy saving in the domestic sector. However, the design of the heat pipe heat exchanger will meet a number of challenges. This paper presents a design method by using CFD simulation of the dehumidification process with heat pipe heat exchangers. The strategies of simulating the process with heat pipes are presented. The calculated results show that the method can be further used to optimise the design of the heat pipe fin stack. The study suggests that CFD modelling is able to predict thermal performance of the dehumidification solution with heat pipe heat exchangers. (Author)
Nanoparticles in dilute solution : A numerical study of rotational diffusion
Energy Technology Data Exchange (ETDEWEB)
Evensen, Tom Richard
2008-06-15
This thesis is dedicated to Brownian dynamics simulations of rotational diffusion. A rotation dynamics engine has been implemented and tested. This engine will in the future be integrated as a part of a complete Brownian dynamics simulation tool. The special case, when translational motion can be ignored, has thoroughly been studied. Two choices of generalized coordinates describing angular orientation of the particles are used. The Euler angles, which constitute the classical choice, and the Cartesian components of the rotation vector, which was recently introduced as an alternative, are being compared with regards to computational efficiency. Results from both equilibrium and non-equilibrium simulations are presented. The consistency of two new algorithms is demonstrated on systems of free rigid particles with arbitrary surface topographies. The algorithms make use of only the principal values of the rotational mobility tensor, assuming the corresponding principal axes coincide with the body-fixed coordinate system. These three scalars contain all information about the particle surface topography relevant for rotational diffusion. The calculation of the mobility tensor can be performed in a pre-calculation step, which makes the algorithm itself highly efficient. Both choices of generalized coordinates correctly reproduce theoretical predictions, but we have found that the algorithm using the Cartesian components of the rotation vector as generalized coordinates outperform its counterpart using the Euler angles by up to a factor 1000 in extreme cases. The reason for this improvement is that the algorithm using the Cartesian components of the rotation vector is free of singularities. (Author). refs. figs
Study of inhomogeneities in turbid media: experimental and numerical results
Carbone, N. A.; di Rocco, Héctor O.; Iriarte, Daniela I.; Pomarico, Juan A.; Ranea-Sandoval, Héctor F.; Pardini, Pamela; Waks-Serra, M. Victoria
2011-08-01
Near Infrared diffuse transmission of light through tissue is a tool for noninvasive imaging for diagnostic purposes. Most of the research has been focused over breast cancer imaging; however, major efforts have been done in cerebral tomography and topography imaging, as well as small animal organs imaging systems. In this work, we investigate the transmitted light profiles when scattering and absorbing cylindrical inhomogeneities are submerged at different depths inside slabs of turbid media. We analyze the transilluminance profiles when the phantom is scanned using both, CW and time resolved detection. The study of the spatial profiles obtained with CW light, shows an apparently contradictory effect when the absorption coefficient of the inclusion is higher than that of the bulk. In this case, the intensity profiles displays a peak of higher intensity where the inclusion is located, as it would be expected for a less absorbing inclusion. The experiments were compared and analyzed with a theoretical model for cylindrical inclusions and Monte Carlo simulations implemented in a Graphic Processing Unit (GPU).
Numerical studies of a plasma diode with external forcing
Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.
2012-08-01
With reference to laboratory Q-machine studies we analyze the dynamics of a plasma diode under external forcing. Assuming a strong axial magnetic field, the problem is analyzed in one spatial dimension by a particle-in-cell code. The cathode is assumed to be operated in electron rich conditions, supplying an abundance of electrons. We compare different forcing schemes with the results obtained by solving the van der Pol equation. In one method of forcing we apply an oscillation in addition to the DC end plate bias and consider both amplitude and frequency variations. An alternative method of perturbation consists of modelling an absorbing grid at some internal position. Also in this case we can have a constant frequency with varying amplitude or alternatively an oscillation with chirped frequency but constant amplitude. We find that the overall features of the forced van der Pol equation are recovered, but the details in the plasma response need more attention to the harmonic responses, requiring extensions of the model equation. The analysis is extended by introducing collisional effects, where we emphasize charge exchange collisions of ions, since these processes usually have the largest cross sections and give significant modifications of the diode performance. In particular we find a reduction in oscillator frequency, although a linear scaling of the oscillation time with the system length remains also in this case.
Numerical study on passive convective mass transfer enhancement
Aravind, G. P.; Muhammed Rafi, K. M.; Deepu, M.
2017-04-01
Passive mixing mechanisms are widely used for heat and mass transfer enhancement. Vortices generated in flowfield lead to gradients that favour convective mass transfer. Computations on enhancement of convective mass transfer of sublimating solid fuel by baroclinic torque generated vortices in the wake of a swept ramp placed in high speed flow is presented here. Advection Upstream Splitting Method (AUSM) based computational scheme employed in the present study, to solve compressible turbulent flow field involving species transport, could capture the complex flow features resulted by vortex boundary layer and shock boundary layer interactions. Convective mass transfer is found to get improved in regions near boundary layer by horseshoe vortex and further transported to other regions by counter rotating vortex pair. Vortices resulted by flow expansion near aft wall of wedge and recompression wave-boundary layer interactions also promotes convective mass transport. Extensive computations have been carried out to reveal the role of vortices dominance at various lateral sweep angles in promotion of convective mass transfer in turbulent boundary layer.
Experimental and numerical studies of micro PEM fuel cell
Institute of Scientific and Technical Information of China (English)
Rong-Gui Peng; Chen-Chung Chung; Chiun-Hsun Chen
2011-01-01
A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500μm.A theoretical analysis is performed in this study for a novel MEMS-based design of a micro PEMFC.The model consists of the conservation equations of mass,momentum,species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code.The polarization curves of simulation are well correlated with experimental data.Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature,current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min).Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4 V operating voltage.Model predictions are well within those known for experimentalmechanism phenomena.
Numerical study of unsteady starting characteristics of a hypersonic inlet
Institute of Scientific and Technical Information of China (English)
Wang Weixing; Guo Rongwei
2013-01-01
The impulse and self starting characteristics of a mixed-compression hypersonic inlet designed at Mach number of 6.5 are studied by applying the unsteady computational fluid dynamics (CFD) method.The full Navier-Stokes equations are solved with the assumption of viscous perfect gas model,and the shear-stress transport (SST) k-ω two-equation Reynolds averaged NavierStokes (RANS) model is used for turbulence modeling.Results indicate that during impulse starting,the flow field is divided into three zones with different aerodynamic parameters by primary shock and upstream-facing shock.The separation bubble on the shoulder of ramp undergoes a generating,growing,swallowing and disappearing process in sequence.But a separation bubble at the entrance of inlet exists until the freestream velocity is accelerated to the starting Mach number during self starting.The mass flux distribution of flow field is non-uniform because of the interaction between shock and boundary layer,so that the mass flow rate at throat is unsteady during impulse starting.The duration of impulse starting process increases almost linearly with the decrease of fleestream Mach number but rises abruptly when the freestream Mach number approaches the starting Mach number.The accelerating performance of booster almost has no influence on the self starting ability of hypersonic inlet.
Histological Subgroups in Classic Kaposi Sarcoma: A Preliminary Study
Directory of Open Access Journals (Sweden)
Nilüfer Onak Kandemir
2010-06-01
Full Text Available Background and Design: Kaposi sarcomas (KS are vascular tumors with a low malignant potential which include overlapping infectious, immunologic, and neoplastic processes. Recently, many histological subtypes have been defined. Material and Method: In the present study, 151 cutaneous classic KS lesions in 56 patients were retrospectively evaluated with regard to histological subtypes. Determination of the subtypes was based on the predominant histopathological component in the lesion. We examined changes in epidermis and dermis along with intratumoral inflammatory response characteristics in the lesions. By defining histopathological variants of the cases, differences regarding subtypes were investigated. Results: Cases that bear the ordinary characteristics of KS and those that can not be classified otherwise, comprised 82..8% of the study group. Twenty-six cases showed consistency with the subtypes outlined in the literature in terms of their histopathological properties. The most common histological subtype was the lymphangiectatic variant in 7.3% of the cases. Bullous (2.6%, lymphangioma like (2.6%, intravascular (2%, and pyogenic granuloma like (2% variants were less common. The most uncommon histological subtype was micronodular (0.6% type. Lymphangiectatic, bullous, intravascular, and pyogenic granuloma like variants were frequently observed in the nodular stage of KSs. Lympangioma like changes were seen to be present in the early KS lesions. Lymphangiectatic type was oftenly associated with bullous component, whereas pyogenic granuloma like type demonstrated superficial ulceration and intense inflammatory response. Lymphangioma like and intravascular types exhibited a characteristic appearance, while other variants were accompanied by components belonging to different subtypes. Conclusion: In KS, histopathological subtypes can develop as a result of different pathological processes. The next stage of the current study, which is one of the
A preliminary study of dengue infection in Brunei.
Osman, Osmali; Fong, Mun Yik; Devi, Shamala
2007-07-01
The purpose of this study was to examine the extent of dengue infection in Brunei and to determine the predominant serotype circulating in the country. The study generated useful epidemiological data on dengue infection in Brunei. A total of 271 samples from patients suspected of having dengue infections were selected and analyzed. All patients were seen in clinics and hospitals in Brunei. The samples were collected from April 2005 to April 2006 and transported to the WHO Collaborating Centre for Arbovirus Reference and Research, University of Malaya, Malaysia. The following tests were used to achieve the objectives: in-house IgM-capture enzyme-linked immunosorbent assay, virus isolation in mosquito albopictus cell line (C6/36), and viral RNA detection and serotyping by reverse transcriptase-polymerase chain reaction (RT-PCR). The results show that 45 people were positive for dengue-specific IgM (27 males and 18 females), while RT-PCR detected dengue viral RNA in 12 patients, 3 identified as DEN-1 and 9 as DEN-2. Dengue virus was isolated from 6 patients using the C6/36 cell line; 3 were DEN-2 isolates and 3 were DEN-1 isolates. These data show that dengue virus is circulating in Brunei and the predominant infecting serotype for that period was DEN-2 followed by DEN-1. This study is the first to report the detection and isolation of dengue virus from Brunei using RT-PCR and culture in the C6/36 albopictus mosquito cell line.
A preliminary study on spatial unmasking of virtual separated sources
Institute of Scientific and Technical Information of China (English)
XIE ZhiWen; JIN Jing
2008-01-01
An experimental method with headphone virtual reproduction is proposed and a series of experiments to study forward masking effect when the masker and the masked signal are spatially separated in azimuth are conducted. Then, the masking thresholds are compared with those when the masker and the masked signal source are at the same place. The results show that, although both the thresholds of 0°and±30° sound images increase with the sound pressure level (SPL) of the masker, spatial unmasking may be really observed. The maximum unmasking is as large as 15 dB. This spatial unmasking effect is mainly attributed to better-ear con-tribution.
A preliminary study on spatial unmasking of virtual separated sources
Institute of Scientific and Technical Information of China (English)
2008-01-01
An experimental method with headphone virtual reproduction is proposed and a series of experiments to study forward masking effect when the masker and the masked signal are spatially separated in azimuth are conducted. Then, the masking thresholds are compared with those when the masker and the masked signal source are at the same place. The results show that, although both the thresholds of 0° and ±30° sound images increase with the sound pressure level (SPL) of the masker, spatial unmasking may be really observed. The maximum unmasking is as large as 15 dB. This spatial unmasking effect is mainly attributed to better-ear contribution.
ARSENIC DEGRADATION BY Pseudomonas aeruginosa FOR WATER BIOREMEDIATION. PRELIMINARY STUDY
Directory of Open Access Journals (Sweden)
Esther E. Pellizzari
2015-03-01
Full Text Available The aim of this study was to investigate the arsenic resistance in pure cultivations of Pseudomonas aeruginosa isolated from Presidencia Roque Sáenz Peña groundwater (Chaco province, and evaluate the possibility of its use to remove arsenic from groundwater. Strains were immobilized in natural stone and cultivated in salts broth and 1 mgAs/L. The arsenic resistance and biofilm formation were observed, obtaining interaction between cells, rock and arsenic. Arsenic removal was evaluated during 3 months and its final percentage of the experiment was 60%.
A Preliminary Study on Bucket Foundations under Transient Lateral Loading
DEFF Research Database (Denmark)
Foglia, Aligi; Ibsen, Lars Bo; Nielsen, Søren Kjær;
2013-01-01
This study aims at investigating the behaviour of monopod bucket foundations through a physical model. The foundation is installed in dense water-saturated sand and is subjected to lateral load applied at different rates. The different loading rates allow for exploring the patterns of response...... of bucket foundations in different drainage conditions. Particular focus is given to the rapid loading response of the foundation (simulating a 50 year wave or emergency stop of a wind turbine). Important knowledge on the pore pressure development within and around the foundation during loading is achieved....