WorldWideScience

Sample records for preliminary design tools

  1. Status of Preliminary Design on the Assembly Tools for ITER Tokamak Machine

    International Nuclear Information System (INIS)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin; Moon, Jae Hwan; Kim, Byung Seok; Lee, Jae Hyuk; Shaw, Robert

    2012-01-01

    The ITER Tokamak device is principally composed of nine 40 .deg. sectors. Each 40 .deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils (TFC) and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard vacuum vessel thermal shields. Based on the design description document and final report prepared by the ITER organization (IO) and conceptual design, Korea has carried out the preliminary design of these assembly tools. The assembly strategy and relevant tools for the 40 .deg. sector sub-assembly and sector assembly at in-pit should be developed to satisfy the basic assembly requirements of the ITER Tokamak machine. Assembly strategy, preliminary design of the sector sub-assembly and assembly tools are described in this paper

  2. Preliminary Design Through Graphs: A Tool for Automatic Layout Distribution

    Directory of Open Access Journals (Sweden)

    Carlo Biagini

    2015-02-01

    Full Text Available Diagrams are essential in the preliminary stages of design for understanding distributive aspects and assisting the decision-making process. By drawing a schematic graph, designers can visualize in a synthetic way the relationships between many aspects: functions and spaces, distribution of layouts, space adjacency, influence of traffic flows within a facility layout, and so on. This process can be automated through the use of modern Information and Communication Technologies tools (ICT that allow the designers to manage a large quantity of information. The work that we will present is part of an on-going research project into how modern parametric software influences decision-making on the basis of automatic and optimized layout distribution. The method involves two phases: the first aims to define the ontological relation between spaces, with particular reference to a specific building typology (rules of aggregation of spaces; the second entails the implementation of these rules through the use of specialist software. The generation of ontological relations begins with the collection of data from historical manuals and analyses of case studies. These analyses aim to generate a “relationship matrix” based on preferences of space adjacency. The phase of implementing the previously defined rules is based on the use of Grasshopper to analyse and visualize different layout configurations. The layout is generated by simulating a process involving the collision of spheres, which represents specific functions of the design program. The spheres are attracted or rejected as a function of the relationships matrix, as defined above. The layout thus obtained will remain in a sort of abstract state independent of information about the exterior form, but will still provide a useful tool for the decision-making process. In addition, preliminary results gathered through the analysis of case studies will be presented. These results provide a good variety

  3. Life cycle analysis in preliminary design stages

    OpenAIRE

    Agudelo , Lina-Maria; Mejía-Gutiérrez , Ricardo; Nadeau , Jean-Pierre; PAILHES , Jérôme

    2014-01-01

    International audience; In a design process the product is decomposed into systems along the disciplinary lines. Each stage has its own goals and constraints that must be satisfied and has control over a subset of design variables that describe the overall system. When using different tools to initiate a product life cycle, including the environment and impacts, its noticeable that there is a gap in tools that linked the stages of preliminary design and the stages of materialization. Differen...

  4. Altitude Compensating Nozzle Design Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch vehicle subsystem preliminary design tools that are fast, accurate, and seamlessly integrated into an electronic design and optimization environment have...

  5. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant

    International Nuclear Information System (INIS)

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-01-01

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage.

  6. ASTROS: A multidisciplinary automated structural design tool

    Science.gov (United States)

    Neill, D. J.

    1989-01-01

    ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.

  7. NSLS-II Preliminary Design Report

    International Nuclear Information System (INIS)

    Dierker, S.

    2007-01-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES and H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the

  8. NSLS-II Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility

  9. BIPS-FS preliminary design, miscellaneous notes

    International Nuclear Information System (INIS)

    1976-01-01

    A compendium of flight system preliminary design internal memos and progress report extracts for the Brayton Isotope Power System Preliminary Design Review to be held July 20, 21, and 22, 1975 is presented. The purpose is to bring together those published items which relate only to the preliminary design of the Flight System, Task 2 of Phase I. This preliminary design effort was required to ensure that the Ground Demonstration System will represent the Flight System as closely as possible

  10. Exploratory shaft facility preliminary designs - Permian Basin

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Permian Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Permian Basin, Texas. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references, 13 tables

  11. Tool for assessing eco-efficiency in urban planning and design

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, P., Email: pekka.lahti@vtt.fi

    2012-06-15

    The goal of this project was to develop a fast, comprehensive and user-friendly eco-efficiency estimation method for urban development. A preliminary study concluded that urban planners, designers and architects lack a practical and comprehensive tool for the overall assessment of community-level ecological performance. The report on the tool itself concluded findings concerning the needs of urban planners and designers in the City of Helsinki, which were transferred to the structure and contents of the assessment tool. The project continues the development efforts during the next couple of years, integrating 14 partners. (orig.)

  12. Preliminary design report for the prototypical fuel rod consolidation system

    International Nuclear Information System (INIS)

    Rosa, J.M.

    1986-01-01

    This report documents NUTECH's preliminary design of a dry, spent fuel rod consolidation system. This preliminary design is the result of Phase I of a planned four phase project. The present report on this project provides a considerable amount of detail for a preliminary design effort. The design and all of its details are described in this Preliminary Design Report (PDR). The NUTECH dry rod consolidation system described herein is remotely operated. It provides for automatic operation, but with operator hold points between key steps in the process. The operator has the ability to switch to a manual operation mode at any point in the process. The system is directed by the operator using an executive computer which controls and coordinates the operation of the in-cell equipment. The operator monitors the process using an in-cell closed circuit television (CCTV) system with audio output and equipment status displays on the computer monitor. The in-cell mechanical equipment consists of the following: (1) two overhead cranes with manipulators; (2) a multi-degree of freedom fuel handling table and its clamping equipment; (3) a fuel assembly end fitting removal station and its tools; (4) a consolidator (which pulls rods, assembles the consolidated bundle and loads the canister); (5) a canister end cap welder and weld inspection system; (6) decontamination systems; and (7) the CCTV and microphone systems

  13. Preliminary design county plan Zeeland

    International Nuclear Information System (INIS)

    1987-01-01

    The preliminary design 'Streekplan Zeeland' (Country plan Zeeland, with regard to the location of additional nuclear power plants in Zeeland, the Netherlands) has passed through a consultation and participation round. Thereupon 132 reactions have been received. These have been incorporated and answered in two notes. This proposal deals with the principal points of the preliminary design and treats also the remarks of the committees Environmental (town and country) Planning (RO), Provincial (town and country) Planning Committee (PPC) and Association of Communities of Zeeland (VZG), on the reply notes. The preliminary design with the modifications, collected in appendix 3, is proposed to be the starting point in the drawing-up of the design-country-plan. This design subsequently will pass the formal country-plan procedure. (author). 1 fig

  14. Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    Science.gov (United States)

    French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory

    2005-01-01

    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.

  15. A Generative Computer Model for Preliminary Design of Mass Housing

    Directory of Open Access Journals (Sweden)

    Ahmet Emre DİNÇER

    2014-05-01

    Full Text Available Today, we live in what we call the “Information Age”, an age in which information technologies are constantly being renewed and developed. Out of this has emerged a new approach called “Computational Design” or “Digital Design”. In addition to significantly influencing all fields of engineering, this approach has come to play a similar role in all stages of the design process in the architectural field. In providing solutions for analytical problems in design such as cost estimate, circulation systems evaluation and environmental effects, which are similar to engineering problems, this approach is being used in the evaluation, representation and presentation of traditionally designed buildings. With developments in software and hardware technology, it has evolved as the studies based on design of architectural products and production implementations with digital tools used for preliminary design stages. This paper presents a digital model which may be used in the preliminary stage of mass housing design with Cellular Automata, one of generative design systems based on computational design approaches. This computational model, developed by scripts of 3Ds Max software, has been implemented on a site plan design of mass housing, floor plan organizations made by user preferences and facade designs. By using the developed computer model, many alternative housing types could be rapidly produced. The interactive design tool of this computational model allows the user to transfer dimensional and functional housing preferences by means of the interface prepared for model. The results of the study are discussed in the light of innovative architectural approaches.

  16. Preliminary design report: Prototypical Spent Fuel Consolidation Equipment Demonstration Project: Phase 1

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Mitchell, J.L.; Winkler, C.J.

    1986-12-01

    This document describes the Westinghouse Preliminary Design for the Prototypical Consolidation Demonstration Project per Department of Energy (DOE) Contract No. DE-AC07-86ID12649 and under direction of the DOE Idaho Operations Office. The preliminary design is the first step to providing the Department of Energy with a fully qualified, licensable, cost-effective spent fuel rod consolidation system. The design was developed using proven technologies and equipment to create an innovative approach to previous rod consolidation concepts. These innovations will better enable the Westinghouse system to: consolidate fuel rods in a precise, fully-controlled, accountable manner; package all rods from two PWR fuel assemblies or from four BWR fuel assemblies in one 8.5 inch square consolidated rods canister; meet all functional requirements; operate with all fuel types common to the US commercial nuclear industry with minimal tooling changeouts; and meet consolidation production process rates, while maintaining operator and public health and safety. This Preliminary Design Report provides both detailed descriptions of the equipment required to perform the rod consolidation process and the supporting analyses to validate the design

  17. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  18. Exploratory shaft facility preliminary designs - Paradox Basin. Technical report

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Paradox Basin, is to provide a description of the preliminary design for an Exploratory Shaft Facility in the Paradox Basin, Utah. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling Method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers is included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description, and Construction Cost Estimate. 30 references

  19. JacketSE: An Offshore Wind Turbine Jacket Sizing Tool; Theory Manual and Sample Usage with Preliminary Validation

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-08

    This manual summarizes the theory and preliminary verifications of the JacketSE module, which is an offshore jacket sizing tool that is part of the Wind-Plant Integrated System Design & Engineering Model toolbox. JacketSE is based on a finite-element formulation and on user-prescribed inputs and design standards' criteria (constraints). The physics are highly simplified, with a primary focus on satisfying ultimate limit states and modal performance requirements. Preliminary validation work included comparing industry data and verification against ANSYS, a commercial finite-element analysis package. The results are encouraging, and future improvements to the code are recommended in this manual.

  20. Space reactor preliminary mechanical design

    International Nuclear Information System (INIS)

    Meier, K.L.

    1983-01-01

    An analysis was performed on the SABRE reactor space power system to determine the effect of the number and size of heat pipes on the design parameters of the nuclear subsystem. Small numbers of thin walled heat pipes were found to give a lower subsystem mass, but excessive fuel swelling resulted. The SP-100 preliminary design uses 120 heat pipes because of acceptable fuel swelling and a minimum nuclear subsystem mass of 1875 kg. Salient features of the reactor preliminary design are: individual fuel modules, ZrO 2 block core mounts, bolted collar fuel module restraints, and a BeO central plug

  1. Status of Design and Manufacturing of ITER 1st batch Assembly Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jin Ho; Nam, Kyoun Go; Chung, Si Kun; Ha, Min Su [ITER Korea National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Geun Hong [ITER Organization, St Paul lez Durance (France)

    2016-05-15

    The ITER tokamak assembly tools are purpose-built and specially designed to complete the ITER tokamak machine which includes; Vacuum Vessel (VV), VV Thermal Shield (VVTS), Toroidal Field Coil (TFC) and other components contained in the cryostat. KODA has carried out the preliminary and final design of these assembly tools. This paper shows that the current status, first quarter of the 2016, including manufacturing of ITER 1st batch assembly tools and briefly summarized the design process through design work of Sector Sub-assembly Tool (SSAT) that is most important tool representing ITER 1st batch assembly tools. KODA (Korea Domestic Agency) should provide 128 kinds of the purpose-built assembly tools for ITER Tokamak machine, and the ITER 1st batch assembly tools are split into 3 groups. The FDR for Group A was performed in December 2014, and design of SSAT has been verified by FE analysis and engineering calculation using EN cords. The SSAT is now under manufacturing phase to meet the ITER milestone. After factory acceptance test of SSAT on end of 2016, the 1st SSAT will be delivered and arrived in ITER site on second quarter of the 2017.

  2. Health impact assessment in planning: Development of the design for health HIA tools

    International Nuclear Information System (INIS)

    Forsyth, Ann; Slotterback, Carissa Schively; Krizek, Kevin J.

    2010-01-01

    How can planners more systematically incorporate health concerns into practical planning processes? This paper describes a suite of health impact assessment tools (HIAs) developed specifically for planning practice. Taking an evidence-based approach the tools are designed to fit into existing planning activities. The tools include: a short audit tool, the Preliminary Checklist; a structured participatory workshop, the Rapid HIA; an intermediate health impact assessment, the Threshold Analysis; and a set of Plan Review Checklists. This description provides a basis for future work including assessing tool validity, refining specific tools, and creating alternatives.

  3. Exploratory shaft facility preliminary designs - Gulf Interior Region salt domes

    International Nuclear Information System (INIS)

    1983-09-01

    The purpose of the Preliminary Design Report, Gulf Interior Region, is to provide a description of the preliminary design for an Exploratory Shaft Facility on the Richton Dome, Mississippi. This issue of the report describes the preliminary design for constructing the exploratory shaft using the Large Hole Drilling method of construction and outlines the preliminary design and estimates of probable construction cost. The Preliminary Design Report is prepared to complement and summarize other documents that comprise the design at the preliminary stage of completion, December 1982. Other design documents include drawings, cost estimates and schedules. The preliminary design drawing package, which includes the construction schedule drawing, depicts the descriptions in this report. For reference, a list of the drawing titles and corresponding numbers are included in the Appendix. The report is divided into three principal sections: Design Basis, Facility Description and Construction Cost Estimate

  4. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    Science.gov (United States)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  5. Intuitive Tools for the Design and Analysis of Communication Payloads for Satellites

    Science.gov (United States)

    Culver, Michael R.; Soong, Christine; Warner, Joseph D.

    2014-01-01

    In an effort to make future communications satellite payload design more efficient and accessible, two tools were created with intuitive graphical user interfaces (GUIs). The first tool allows payload designers to graphically design their payload by using simple drag and drop of payload components onto a design area within the program. Information about each picked component is pulled from a database of common space-qualified communication components sold by commerical companies. Once a design is completed, various reports can be generated, such as the Master Equipment List. The second tool is a link budget calculator designed specifically for ease of use. Other features of this tool include being able to access a database of NASA ground based apertures for near Earth and Deep Space communication, the Tracking and Data Relay Satellite System (TDRSS) base apertures, and information about the solar system relevant to link budget calculations. The link budget tool allows for over 50 different combinations of user inputs, eliminating the need for multiple spreadsheets and the user errors associated with using them. Both of the aforementioned tools increase the productivity of space communication systems designers, and have the colloquial latitude to allow non-communication experts to design preliminary communication payloads.

  6. Mechanical System Analysis/Design Tool (MSAT) Quick Guide

    Science.gov (United States)

    Lee, HauHua; Kolb, Mark; Madelone, Jack

    1998-01-01

    MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.

  7. Ship design methodologies of preliminary design

    CERN Document Server

    Papanikolaou, Apostolos

    2014-01-01

    This book deals with ship design and in particular with methodologies of the preliminary design of ships. The book is complemented by a basic bibliography and five appendices with useful updated charts for the selection of the main dimensions and other basic characteristics of different types of ships (Appendix A), the determination of hull form  from the data of systematic hull form series (Appendix B), the detailed description of the relational method for the preliminary estimation of ship weights (Appendix C), a brief review of the historical evolution of shipbuilding science and technology from the prehistoric era to date (Appendix D) and finally a historical review of regulatory developments of ship's damage stability to date (Appendix E).  The book can be used as textbook for ship design courses or as additional reading for university or college students of naval architecture courses and related disciplines; it may also serve as a reference book for naval architects, practicing engineers of rel...

  8. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.

    Science.gov (United States)

    Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen

    2016-08-09

    A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.

  9. Preliminary design report for the NAC combined transport cask

    International Nuclear Information System (INIS)

    1990-04-01

    Nuclear Assurance Corporation (NAC) is under contract to the United States Department of Energy (DOE) to design, license, develop and test models, and fabricate a prototype cask transportation system for nuclear spent fuel. The design of this combined transport (rail/barge) transportation system has been divided into two phases, a preliminary design phase and a final design phase. This Preliminary Design Package (PDP) describes the NAC Combined Transport Cask (NAC-CTC), the results of work completed during the preliminary design phase and identifies the additional detailed analyses, which will be performed during final design. Preliminary analytical results are presented in the appropriate sections and supplemented by summaries of procedures and assumptions for performing the additional detailed analyses of the final design. 60 refs., 1 fig., 2 tabs

  10. From the Paper to the Tablet: On the Design of an AR-Based Tool for the Inspection of Pre-Fab Buildings. Preliminary Results of the SIRAE Project

    Science.gov (United States)

    Fernández, Marcos; Poza, Montse

    2018-01-01

    Energy-efficient Buildings (EeB) are demanded in today’s constructions, fulfilling the requirements for green cities. Pre-fab buildings, which are modularly fully-built in factories, are a good example of this. Although this kind of building is quite new, the in situ inspection is documented using traditional tools, mainly based on paper annotations. Thus, the inspection process is not taking advantage of new technologies. In this paper, we present the preliminary results of the SIRAE project that aims to provide an Augmented Reality (AR) tool that can seamlessly aid in the regular processes of pre-fab building inspections to detect and eliminate the possible existing quality and energy efficiency deviations. In this regards, we show a description of the current inspection process and how an interactive tool can be designed and adapted to it. Our first results show the design and implementation of our tool, which is highly interactive and involves AR visualizations and 3D data-gathering, allowing the inspectors to quickly manage it without altering the way the inspection process is done. First trials on a real environment show that the tool is promising for massive inspection processes. PMID:29671799

  11. From the Paper to the Tablet: On the Design of an AR-Based Tool for the Inspection of Pre-Fab Buildings. Preliminary Results of the SIRAE Project.

    Science.gov (United States)

    Portalés, Cristina; Casas, Sergio; Gimeno, Jesús; Fernández, Marcos; Poza, Montse

    2018-04-19

    Energy-efficient Buildings (EeB) are demanded in today’s constructions, fulfilling the requirements for green cities. Pre-fab buildings, which are modularly fully-built in factories, are a good example of this. Although this kind of building is quite new, the in situ inspection is documented using traditional tools, mainly based on paper annotations. Thus, the inspection process is not taking advantage of new technologies. In this paper, we present the preliminary results of the SIRAE project that aims to provide an Augmented Reality (AR) tool that can seamlessly aid in the regular processes of pre-fab building inspections to detect and eliminate the possible existing quality and energy efficiency deviations. In this regards, we show a description of the current inspection process and how an interactive tool can be designed and adapted to it. Our first results show the design and implementation of our tool, which is highly interactive and involves AR visualizations and 3D data-gathering, allowing the inspectors to quickly manage it without altering the way the inspection process is done. First trials on a real environment show that the tool is promising for massive inspection processes.

  12. Preliminary I&C Design for LORELEI

    International Nuclear Information System (INIS)

    Korotkin, S.; Kaufman, Y.; Guttmann, E. B.; Levy, S.; Amidan, D.; Gdalyho, B.; Cahana, T.; Ellenbogen, A.; Arad, M.; Weiss, Y.; Sasson, A.; Ferry, L.; Bourrelly, F.; Cohen, Y.

    2014-01-01

    This document summarizes the preliminary I&C design for LORELEI experiment The preliminary design deals with considerations regarding appropriate safety and service instrumentation. The determined closed loop control rules for temperature and position will be implemented in the detailed design. The Computer Aided Operator Decisions System (CAODS) will be used for prediction of hot spot temperature and thickness of oxidation layer using Baker-Just correlation. The proposed hybrid simulation system comprising of both virtual and real hardware will be in-cooperated for LORELEI verification. It will perform both integration cold tests for a partial hardware loop and virtual tests for the final I&C design

  13. Useful design tools?

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole

    2005-01-01

    vague and contested concept of sustainability into concrete concepts and building projects. It describes a typology of tools: process tools, impact assessment tools, multi-criteria tools and tools for monitoring. It includes a Danish paradigmatic case study of stakeholder participation in the planning...... of a new sustainable settlement. The use of design tools is discussed in relation to innovation and stakeholder participation, and it is stressed that the usefulness of design tools is context dependent....

  14. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  15. Preliminary design data package. Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-25

    The design requirements, design philosophy, method and assumptions, and preliminary computer-aided design of the Near-Term Hybrid Vehicle including its electric and heat power units, control equipment, transmission system, body, and overall vehicle characteristics are presented. (LCL)

  16. Preliminary designs: passive solar manufactured housing. Technical status report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-12

    The criteria established to guide the development of the preliminary designs are listed. Three preliminary designs incorporating direct gain and/or sunspace are presented. Costs, drawings, and supporting calculations are included. (MHR)

  17. Preliminary bridge design navigation tool for novices

    OpenAIRE

    Boulanger, Sylvie

    1997-01-01

    The motivation of the thesis comes from the frustrations of young engineers confronted with real design problems. The inspiration of the thesis evolved from observations of bridge designers and analyses of bridge design competitions. Not only do designers adopt more than one strategy during design, they rarely perform a fixed sequence of tasks. Not only do designers consider more than one criterion during design, their priorities shift during the determination of parameters. The choice of tas...

  18. Preliminary bridge design navigation tool for novices

    OpenAIRE

    Boulanger, Sylvie; Hirt, Manfred A.

    2008-01-01

    The motivation of the thesis comes from the frustrations of young engineers confronted with real design problems. The inspiration of the thesis evolved from observations of bridge designers and analyses of bridge design competitions. Not only do designers adopt more than one strategy during design, they rarely perform a fixed sequence of tasks. Not only do designers consider more than one criterion during design, their priorities shift during the determination of parameters. The choice of tas...

  19. A knowledge-based design framework for airplane conceptual and preliminary design

    Science.gov (United States)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  20. Preliminary design of a coffee harvester

    Directory of Open Access Journals (Sweden)

    Raphael Magalhães Gomes Moreira

    2016-10-01

    Full Text Available Design of an agricultural machine is a highly complex process due to interactions between the operator, machine, and environment. Mountain coffee plantations constitute an economic sector that requires huge investments for the development of agricultural machinery to improve the harvesting and post-harvesting processes and to overcome the scarcity of work forces in the fields. The aim of this study was to develop a preliminary design for a virtual prototype of a coffee fruit harvester. In this study, a project methodology was applied and adapted for the development of the following steps: project planning, informational design, conceptual design, and preliminary design. The construction of a morphological matrix made it possible to obtain a list of different mechanisms with specific functions. The union between these mechanisms resulted in variants, which were weighed to attribute scores for each selected criterion. From each designated proposal, two variants with the best scores were selected and this permitted the preparation of the preliminary design of both variants. The archetype was divided in two parts, namely the hydraulically articulated arms and the harvesting system that consisted of the vibration mechanism and the detachment mechanism. The proposed innovation involves the use of parallel rods, which were fixed in a plane and rectangular metal sheet. In this step, dimensions including a maximum length of 4.7 m, a minimum length of 3.3 m, and a total height of 2.15 m were identified based on the functioning of the harvester in relation to the coupling point of the tractor.

  1. Development of tools to manage the operational monitoring and pre-design of the NPP-LV cycle

    International Nuclear Information System (INIS)

    Perusquia, R.; Arredondo S, C.; Hernandez M, J. L.; Montes T, J. L.; Castillo M, A.; Ortiz S, J. J.

    2015-09-01

    This paper presents the development of tools to facilitate the management so much, the operational monitoring of boiling water reactors (BWR) of the nuclear power plant of Laguna Verde (NPP-LV) through independent codes, and how to carry out the static calculations corresponding to process of optimized pre-design of the reference cycle next to current cycle. The progress and preliminary results obtained with the program SACal, developed at Instituto Nacional de Investigaciones Nucleares (ININ), central tool to achieve provide a management platform of the operational monitoring and pre-design of NPP-LV cycle are also described. The reached preliminary advances directed to get an Analysis center and automated design of fuel assembly cells are also presented, which together with centers or similar modules related with the fuel reloads form the key part to meet the targets set for the realization of a Management Platform of Nuclear Fuel of the NPP-LV. (Author)

  2. Design mentoring tool.

    Science.gov (United States)

    2011-01-01

    In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers : mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves se...

  3. KALIMER fuel system preliminary design description

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B.O.; Nam, C.; Paek, S.K.

    1998-10-01

    This document provides general design concepts, design basis, preliminary design specification and design technologies which are needed for designing the fuel/non-fuel rods and assembly ducts of the KALIMER fuel system. The core of LMFBR consists of driver fuel assembly, blanket assembly, reflector assembly, shielding assembly, control assembly and GEM (Gas Expansion Module) as well as USS, dummy assembly, detector assembly. These core components must be designed to withstand the high temperature, high flux for a long irradiation exposure time. Due to the high temperature and high flux, irradiation creep and swelling as well as thermal-mechanical deformation are occurred at the fuel/non-fuel system and cause the deformations of materials and the geometric deflections at fuel/non-fuel rods, assembly ducts and components. In order to overcome these intricate phenomena through the engineering design, the design basis including theoretical analysis methodologies and design considerations, material characteristics of fuel system, and the specifications and drawings of fuel/non-fuel rods and assembly ducts, respectively, are presented. This document is preliminary design description which is produced in the conceptual design stage, and does not present the detailed and finalized design data which can be for the manufacturing. (author). 22 refs

  4. Inverse design-momentum, a method for the preliminary design of horizontal axis wind turbines

    International Nuclear Information System (INIS)

    Battisti, L; Soraperra, G; Fedrizzi, R; Zanne, L

    2007-01-01

    Wind turbine rotor prediction methods based on generalized momentum theory BEM routinely used in industry and vortex wake methods demand the use of airfoil tabulated data and geometrical specifications such as the blade spanwise chord distribution. They belong to the category of 'direct design' methods. When, on the other hand, the geometry is deduced from some design objective, we refer to 'inverse design' methods. This paper presents a method for the preliminary design of wind turbine rotors based on an inverse design approach. For this purpose, a generalized theory was developed without using classical tools such as BEM. Instead, it uses a simplified meridional flow analysis of axial turbomachines and is based on the assumption that knowing the vortex distribution and appropriate boundary conditions is tantamount to knowing the velocity distribution. The simple conservation properties of the vortex components consistently cope with the forces and specific work exchange expressions through the rotor. The method allows for rotor arbitrarily radial load distribution and includes the wake rotation and expansion. Radial pressure gradient is considered in the wake. The capability of the model is demonstrated first by a comparison with the classical actuator disk theory in investigating the consistency of the flow field, then the model is used to predict the blade planform of a commercial wind turbine. Based on these validations, the authors postulate the use of a different vortex distribution (i.e. not-uniform loading) for blade design and discuss the effect of such choices on blade chord and twist, force distribution and power coefficient. In addition to the method's straightforward application to the pre-design phase, the model clearly shows the link between blade geometry and performance allowing quick preliminary evaluation of non uniform loading on blade structural characteristics

  5. Preliminary seismic design of dynamically coupled structural systems

    International Nuclear Information System (INIS)

    Pal, N.; Dalcher, A.W.; Gluck, R.

    1977-01-01

    In this paper, the analysis criteria for coupling and decoupling, which are most commonly used in nuclear design practice, are briefly reviewed and a procedure outlined and demonstrated with examples. Next, a criterion judged to be practical for preliminary seismic design purposes is defined. Subsequently, a technique compatible with this criterion is suggested. A few examples are presented to test the proposed procedure for preliminary seismic design purposes. Limitations of the procedure are also discussed and finally, the more important conclusions are summarized

  6. Preliminary Opto-Mechanical Design for the X2000 Transceiver

    Science.gov (United States)

    Hemmati, H.; Page, N. A.

    2000-01-01

    Preliminary optical design and mechanical conceptual design for a 30 cm aperture transceiver are described. A common aperture is used for both transmit and receive. Special attention was given to off-axis and scattered light rejection and isolation of the receive channel from the transmit channel. Requirements, details of the design and preliminary performance analysis of the transceiver are provided.

  7. Assembly tool design

    International Nuclear Information System (INIS)

    Kanamori, Naokazu; Nakahira, Masataka; Ohkawa, Yoshinao; Tada, Eisuke; Seki, Masahiro

    1996-06-01

    The reactor core of the International Thermonuclear Experimental Reactor (ITER) is assembled with a number of large and asymmetric components within a tight tolerance in order to assure the structural integrity for various loads and to provide the tritium confinement. In addition, the assembly procedure should be compatible with remote operation since the core structures will be activated by 14-MeV neutrons once it starts operation and thus personal access will be prohibited. Accordingly, the assembly procedure and tool design are quite essential and should be designed from the beginning to facilitate remote operation. According to the ITER Design Task Agreement, the Japan Atomic Energy Research Institute (JAERI) has performed design study to develop the assembly procedures and associated tool design for the ITER tokamak assembly. This report describes outlines of the assembly tools and the remaining issues obtained in this design study. (author)

  8. Hybrid design tools for conceptual design and design engineering processes: bridging the design gap: towards an intuitive design tool

    NARCIS (Netherlands)

    Wendrich, Robert E.

    2016-01-01

    Hybrid Design Tools; Representation; Computational Synthesis. Non-linear, non-explicit, non-standard thinking and ambiguity in design tools has a great impact on enhancement of creativity during ideation and conceptualization. Tacit-tangible representation based on a mere idiosyncratic and

  9. Computational Design Tools for Integrated Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2010-01-01

    In an architectural conceptual sketching process, where an architect is working with the initial ideas for a design, the process is characterized by three phases: sketching, evaluation and modification. Basically the architect needs to address three areas in the conceptual sketching phase......: aesthetical, functional and technical requirements. The aim of the present paper is to address the problem of a vague or not existing link between digital conceptual design tools used by architects and designers and engineering analysis and simulation tools. Based on an analysis of the architectural design...... process different digital design methods are related to tasks in an integrated design process....

  10. OOTW Force Design Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  11. Design review report for the hydrogen interlock preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-01-01

    This report documents the completion of a preliminary design review for the hydrogen interlock. The hydrogen interlock, a proposed addition to the Rotary Mode Core Sampling (RMCS) system portable exhauster, is intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  12. Developing a Physiotherapy-Specific Preliminary Clinical Decision-Making Tool for Oxygen Titration: A Modified Delphi Study

    Science.gov (United States)

    Duong, Michelle; Bertin, Kendra; Henry, Renee; Singh, Deepti; Timmins, Nolla; Brooks, Dina; Mathur, Sunita

    2014-01-01

    ABSTRACT Purpose: To develop and evaluate a preliminary clinical decision-making tool (CDMT) to assist physiotherapists in titrating oxygen for acutely ill adults in Ontario. Methods: A panel of 14 experienced cardiorespiratory physiotherapists was recruited. Factors relating to oxygen titration were identified using a modified Delphi technique. Four rounds of questionnaires were conducted, during which the goals were to (1) generate factors, (2) reduce factors and debate contentious factors, (3) finalize factors and develop the preliminary CDMT, and (4) evaluate the usability of the tool in a clinical context. Results: The panel reached consensus on a total of 89 factors, which were compiled to create the preliminary CDMT. The global tool reached consensus for sensibility, receiving a mean score of 6/7 on a 7-point Likert-type scale (1=unacceptable; 7=excellent). Five of the nine individual components of evaluation of the tool achieved scores ≥6.0; the remaining four had mean scores between 5.4 and 5.9. Conclusion: This study produced a preliminary CDMT for oxygen titration, which the panel agreed was highly comprehensible and globally sensible. Further research is necessary to evaluate the sensibility and applicability of the tool in a clinical setting. PMID:25125782

  13. Integration of numerical analysis tools for automated numerical optimization of a transportation package design

    International Nuclear Information System (INIS)

    Witkowski, W.R.; Eldred, M.S.; Harding, D.C.

    1994-01-01

    The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package's components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed

  14. Examination of the low frequency limit for helicopter noise data in the Federal Aviation Administration's Aviation Environmental Design Tool and Integrated Noise Model

    Science.gov (United States)

    2010-04-19

    The Federal Aviation Administration (FAA) aircraft noise modeling tools Aviation Environmental Design Tool (AEDTc) and Integrated Noise Model (INM) do not currently consider noise below 50 Hz in their computations. This paper describes a preliminary ...

  15. Design of Contactlessly Powered and Piezoelectrically Actuated Tools for Non-Resonant Vibration Assisted Milling

    Directory of Open Access Journals (Sweden)

    Martin Silge

    2018-04-01

    Full Text Available This contribution presents a novel design approach for vibration assisted machining (VAM. A lot of research has already been done regarding the influence of superimposed vibrations during a milling process, but there is almost no information about how to design a VAM tool where the tool is actually rotating. The proposed system consists of a piezoelectric actuator for vibration excitation, an inductive contactless energy transfer system and an electronic circuit for powering the actuated tool. The main benefit of transferring the required power without mechanical contact is that the maximum spindle speed is no longer restricted by friction of slip rings. A detailed model is shown that enables for preliminary estimation of the system’s response to different excitation signals. Experimental data are provided to validate the model. Finally, some parts are shown that have been manufactured using the contactlessly actuated milling tool.

  16. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of this document includes the LWT cask with fuel baskets, impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. The results of the tradeoff studies and evaluations that were performed during the preliminary design are presented in Appendix A to this report. 51 figs., 17 tabs

  17. Preliminary Design Study of the Hollow Electron Lens for LHC

    CERN Document Server

    Perini, Diego; CERN. Geneva. ATS Department

    2017-01-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field generated by a set of superconducting solenoids. The first step of the design is the definition of the magnetic fields that drive the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB® tool is presented. The influence of the main geometrical and electrical parameters are analysed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the preliminary design of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar ...

  18. OMEGA Upgrade preliminary design

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1989-10-01

    The OMEGA laser system at the Laboratory for Laser Energetics of the University of Rochester is the only major facility in the United States capable of conducting fully diagnosed, direct-drive, spherical implosion experiments. As such, it serves as the national Laser Users Facility, benefiting scientists throughout the country. The University's participation in the National Inertial Confinement Fusion (ICF) program underwent review by a group of experts under the auspices of the National Academy of Sciences (the Happer Committee) in 1985. The Happer Committee recommended that the OMEGA laser be upgraded in energy to 30 kJ. To this end, Congress appropriated $4,000,000 for the preliminary design of the OMEGA Upgrade, spread across FY88 and FY89. This document describes the preliminary design of the OMEGA Upgrade. The proposed enhancements to the existing OMEGA facility will result in a 30-kHJ, 351-nm, 60-beam direct-drive system, with a versatile pulse-shaping facility and a 1%--2% uniformity of target drive. The Upgrade will allow scientists to explore the ignition-scaling regime, and to study target behavior that is hydrodynamically equivalent to that of targets appropriate for a laboratory microfusion facility (LMF). In addition, it will be possible to perform critical interaction experiments with large-scale-length uniformly irradiated plasmas

  19. KALIMER preliminary conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report.

  20. KALIMER preliminary conceptual design report

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kim, Y. J.; Kim, Y. G. and others

    2000-08-01

    This report, which summarizes the result of preliminary conceptual design activities during Phase 1, follows the format of safety analysis report. The purpose of publishing this report is to gather all of the design information developed so far in a systematic way so that KALIMER designers have a common source of the consistent design information necessary for their future design activities. This report will be revised and updated as design changes occur and more detailed design specification is developed during Phase 2. Chapter 1 describes the KALIMER Project. Chapter 2 includes the top level design requirements of KALIMER and general plant description. Chapter 3 summarizes the design of structures, components, equipment and systems. Specific systems and safety analysis results are described in the remaining chapters. Appendix on the HCDA evaluation is attached at the end of this report

  1. Preliminary design package for prototype solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

  2. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    Science.gov (United States)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  3. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    Science.gov (United States)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  4. Safety performance of preliminary KALIMER conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong [Korea atomic Energy Resarch Inst., Taejon (Korea)

    1999-07-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  5. Safety performance of preliminary KALIMER conceptual design

    International Nuclear Information System (INIS)

    Hahn Dohee; Kim Kyoungdoo; Kwon Youngmin; Chang Wonpyo; Suk Soodong

    1999-01-01

    The Korea Atomic Energy Research Institute (KAERI) is developing KALIMER (Korea Advanced Liquid Metal Reactor), which is a sodium cooled, 150 MWe pool-type reactor. The safety design of KALIMER emphasizes accident prevention by using passive processes, which can be accomplished by the safety design objectives including the utilization of inherent safety features. In order to assess the effectiveness of the inherent safety features in achieving the safety design objectives, a preliminary evaluation of ATWS performance for the KALIMER design has been performed with SSC-K code, which is a modified version of SSC-L code. KAERI's modification of the code includes development of reactivity feedback models for the core and a pool model for KALIMER reactor vessel. This paper describes the models for control rod driveline expansion, gas expansion module and the thermal hydraulic model for reactor pool and the results of preliminary analyses for unprotected loss of flow and loss o heat sink. (author)

  6. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  7. Preliminary conceptual design and analysis on KALIMER reactor structures

    International Nuclear Information System (INIS)

    Kim, Jong Bum

    1996-10-01

    The objectives of this study are to perform preliminary conceptual design and structural analyses for KALIMER (Korea Advanced Liquid Metal Reactor) reactor structures to assess the design feasibility and to identify detailed analysis requirements. KALIMER thermal hydraulic system analysis results and neutronic analysis results are not available at present, only-limited preliminary structural analyses have been performed with the assumptions on the thermal loads. The responses of reactor vessel and reactor internal structures were based on the temperature difference of core inlet and outlet and on engineering judgments. Thermal stresses from the assumed temperatures were calculated using ANSYS code through parametric finite element heat transfer and elastic stress analyses. While, based on the results of preliminary conceptual design and structural analyses, the ASME Code limits for the reactor structures were satisfied for the pressure boundary, the needs for inelastic analyses were indicated for evaluation of design adequacy of the support barrel and the thermal liner. To reduce thermal striping effects in the bottom are of UIS due to up-flowing sodium form reactor core, installation of Inconel-718 liner to the bottom area was proposed, and to mitigate thermal shock loads, additional stainless steel liner was also suggested. The design feasibilities of these were validated through simplified preliminary analyses. In conceptual design phase, the implementation of these results will be made for the design of the reactor structures and the reactor internal structures in conjunction with the thermal hydraulic, neutronic, and seismic analyses results. 4 tabs., 24 figs., 4 refs. (Author)

  8. Preliminary study of an expert system for mechanical design of a pressure vessel

    International Nuclear Information System (INIS)

    Kasmuri, N.H.; Md Som, A.

    2006-01-01

    This paper describes a preliminary study of an expert system for mechanical design of a pressure vessel. The system supports the framework for the conceptual mechanical design from the initial stages within the design procedures. ASME Boiler and Pressure Vessel Code Section VIII Division 1 were applied as a design rule. The proposed methodology facilitates the development of knowledge base acquisition, knowledge base construction and the prototype implementation. This study characterizes a knowledge base (procedure) of mechanical design of a pressure vessel subjected to internal pressure including all design parameters; i.e. temperature, shell thickness, selection of materials of constructions, stress analysis procedure, support and ancillary items. The rationalization of the mechanical design is shown in the form of a schematic flow diagram. A Kappa PC expert system shell is used as a tool to develop the prototype software. It provides graphical representation for creating objects, hierarchies and rules for knowledge base used in pressure vessel design. (Author)

  9. Versator divertor experiment: preliminary designs

    International Nuclear Information System (INIS)

    Wan, A.S.; Yang, T.F.

    1984-08-01

    The emergence of magnetic divertors as an impurity control and ash removal mechanism for future tokamak reactors bring on the need for further experimental verification of the divertor merits and their ability to operate at reactor relevant conditions, such as with auxiliary heating. This paper presents preliminary designs of a bundle and a poloidal divertor for Versator II, which can operate in conjunction with the existing 150 kW of LHRF heating or LH current drive. The bundle divertor option also features a new divertor configuration which should improve the engineering and physics results of the DITE experiment. Further design optimization in both physics and engineering designs are currently under way

  10. Design tools

    Science.gov (United States)

    Anton TenWolde; Mark T. Bomberg

    2009-01-01

    Overall, despite the lack of exact input data, the use of design tools, including models, is much superior to the simple following of rules of thumbs, and a moisture analysis should be standard procedure for any building envelope design. Exceptions can only be made for buildings in the same climate, similar occupancy, and similar envelope construction. This chapter...

  11. Design for Motivation: Evaluation of a Design Tool

    OpenAIRE

    Chasanidou, Dimitra

    2018-01-01

    Design for motivation constitutes a design practice that focuses on the activation of human motives to perform an action. There is an increasing need to design motivational and engaging mechanisms for voluntary systems, such as innovation platforms, where user participation is a key target. When designing for motivation, a challenge of the early design phases is the selection of appropriate design tool and strategy. The current work presents a design tool, namely DEMO (DEsign for MOtivation),...

  12. SASD-tools for program design

    International Nuclear Information System (INIS)

    Gather, K.S.

    1989-01-01

    An overview of Structured Analysis Structured Design (SASD) methodology is given. Some emphasis is put on the time needed to start in a HEP environment with software design methodologies, and on the motivation for SASD. The need for tools is indicated, and examples of their usefulness in analysis and design steps are discussed. Limitations of certain design methods are indicated and additional tools are briefly discussed. Criteria for the selection of tools to be used in large systems design are discussed, and some attention is given to implications for management structures. (orig.)

  13. Preliminary S-CO_2 Compressor Design for Micro Modular Reactor

    International Nuclear Information System (INIS)

    Lee, Jekyoung; Cho, Seong Kuk; Kim, Seong Gu; Lee, Jeong Ik

    2016-01-01

    Due to economic benefit of S-CO_2 Brayton cycle which is came from high efficiency and compactness, active research is currently conducted by various research groups and various approaches are suggested to take benefits of S-CO_2 Brayton cycle. KAIST research team also has been working on advanced concept for application of S-CO_2 Brayton cycle to nuclear system and Micro Modular Reactor (MMR) concept was suggested. The preliminary compressor design of S-CO_2 compressor for MMR system was carried out to observe feasibility of compressor design. Preliminary S-CO_2 compressor design for MMR system was successfully conducted and some issues are discovered from the design study. From the previous work done by Cho, conceptual design for MMR system was provided. Thus, further preliminary design should be carried out to obtain feasible S-CO_2 compressor design for MMR system. KAIST_TMD which is turbomachinery in-house code for real gases including S-CO_2 is continuously updated and currently it has 3D geometry construction and design optimization capability

  14. Multi-Disciplinary Design Optimization Using WAVE

    Science.gov (United States)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to

  15. Aberrations in preliminary design of ITER divertor impurity influx monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: kitazawa.siniti@jaea.go.jp [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Ogawa, Hiroaki [Naka Fusion Institute, Japan Atomic Energy Agency, JAEA, Naka 311-0193 (Japan); Katsunuma, Atsushi; Kitazawa, Daisuke [Core Technology Center, Nikon Corporation, Yokohama 244-8533 (Japan); Ohmori, Keisuke [Customized Products Business Unit, Nikon Corporation, Mito 310-0843 (Japan)

    2015-12-15

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  16. Aberrations in preliminary design of ITER divertor impurity influx monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki; Katsunuma, Atsushi; Kitazawa, Daisuke; Ohmori, Keisuke

    2015-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • The spot diagrams were suppressed within the core of receiving fiber. • The aberration of DIM is suppressed in the preliminary design. - Abstract: Divertor impurity influx monitor for ITER (DIM) is a diagnostic system that observes light from nuclear fusion plasma directly. This system is affected by various aberrations because it observes light from the fan-array chord near the divertor in the ultraviolet–near infrared wavelength range. The aberrations should be suppressed to the extent possible to observe the light with very high spatial resolution. In the preliminary design of DIM, spot diagrams were suppressed within the core of the receiving fiber's cross section, and the resulting spatial resolutions satisfied the design requirements.

  17. New Conceptual Design Tools

    DEFF Research Database (Denmark)

    Pugnale, Alberto; Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2010-01-01

    hand, the main software houses are trying to introduce powerful and effective user-friendly applications in the world of building designers, that are more and more able to fit their specific requirements; on the other hand, some groups of expert users with a basic programming knowledge seem to deal......This paper aims to discuss recent approaches in using more and more frequently computer tools as supports for the conceptual design phase of the architectural project. The present state-of-the-art about software as conceptual design tool could be summarized in two parallel tendencies. On the one...... with the problem of software as conceptual design tool by means of 'scripting', in other words by self-developing codes able to solve specific and well defined design problems. Starting with a brief historical recall and the discussion of relevant researches and practical experiences, this paper investigates...

  18. A Framework for IT-based Design Tools

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    The thesis presents a new apprach to develop design tools that can be integrated, bypresenting a framework consisting of a set of guidelines for design tools, an integration andcommunication scheme, and a set of design tool schemes.This framework has been based onanalysis of requirements to integ...... to integrated design enviornments, and analysis of engineeringdesign and design problem solving methods. And the developed framework has been testedby applying it to development of prototype design tools for realistic design scenarios.......The thesis presents a new apprach to develop design tools that can be integrated, bypresenting a framework consisting of a set of guidelines for design tools, an integration andcommunication scheme, and a set of design tool schemes.This framework has been based onanalysis of requirements...

  19. Learning Design Tools

    NARCIS (Netherlands)

    Griffiths, David; Blat, Josep; Garcia, Rocío; Vogten, Hubert; Kwong, KL

    2005-01-01

    Griffiths, D., Blat, J., Garcia, R., Vogten, H. & Kwong, KL. (2005). Learning Design Tools. In: Koper, R. & Tattersall, C., Learning Design: A Handbook on Modelling and Delivering Networked Education and Training (pp. 109-136). Berlin-Heidelberg: Springer Verlag.

  20. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  1. Preliminary Design Analysis of a HGD for the NHDD Program at Korea

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, H. Y.; Lee, S. B.; Kim, Y. W.

    2007-01-01

    Korea Atomic Energy Research Institute is in the process of carrying out a Nuclear Hydrogen Development and Demonstration (NHDD) Program by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. A coaxial double-tube Hot Gas Duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger for the NHDD program. Recently, a preliminary design evaluation for the hot gas duct of the NHDD program was carried out. These preliminary design activities include a decision on the geometric dimensions, a strength evaluation, an appropriate material selection, and identifying the design code for the HGD. In this study, a preliminary strength evaluation for the HGD of the NHDD program has been undertaken based on the HTR-10 design concepts. Also, a preliminary evaluation of the creep-fatigue damage for a high temperature HGD structure has been carried out according to the draft code case for Alloy 617. Preliminary strength evaluation results for the HGD showed that the geometric dimensions of the proposed HGD would be acceptable for the design requirements

  2. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  3. EPR design tools. Integrated data processing tools

    International Nuclear Information System (INIS)

    Kern, R.

    1997-01-01

    In all technical areas, planning and design have been supported by electronic data processing for many years. New data processing tools had to be developed for the European Pressurized Water Reactor (EPR). The work to be performed was split between KWU and Framatome and laid down in the Basic Design contract. The entire plant was reduced to a logical data structure; the circuit diagrams and flowsheets of the systems were drafted, the central data pool was established, the outlines of building structures were defined, the layout of plant components was planned, and the electrical systems were documented. Also building construction engineering was supported by data processing. The tasks laid down in the Basic Design were completed as so-called milestones. Additional data processing tools also based on the central data pool are required for the phases following after the Basic Design phase, i.e Basic Design Optimization; Detailed Design; Management; Construction, and Commissioning. (orig.) [de

  4. Developing a Parametric Urban Design Tool

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2014-01-01

    Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...... for a level of detailing which is high enough to facilitate an understan- ding of the generic qualities of proposed designs. Starting from a brief overview of parametric design, this paper presents initial findings from the development of a parametric urban design tool with regard to developing a structural...... logic which is flexible and expandable. It then moves on to outline and discuss further development work. Finally, it offers a brief reflection on the potentials and shortcomings of the software – CityEngine – which is used for developing the parametric urban design tool....

  5. Design mentoring tool : [technical summary].

    Science.gov (United States)

    2011-01-01

    In 2004 a design engineer on-line mentoring tool was developed and implemented The purpose of the tool was to assist senior engineers mentoring new engineers to the INDOT design process and improve their technical competency. This approach saves seni...

  6. Preliminary System Design of the SWRL Financial System.

    Science.gov (United States)

    Ikeda, Masumi

    The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…

  7. Design for Motivation: Evaluation of a Design Tool

    Directory of Open Access Journals (Sweden)

    Dimitra Chasanidou

    2018-02-01

    Full Text Available Design for motivation constitutes a design practice that focuses on the activation of human motives to perform an action. There is an increasing need to design motivational and engaging mechanisms for voluntary systems, such as innovation platforms, where user participation is a key target. When designing for motivation, a challenge of the early design phases is the selection of appropriate design tool and strategy. The current work presents a design tool, namely DEMO (DEsign for MOtivation, and evaluates its design process. The tool provides multidisciplinary teams with a user-centred, structured method to ideate and ultimately develop a consistent design plan to engage the users of innovation platforms. The evaluation study analysed the tool’s contribution to the design of motivational innovation platforms, utilising three data collection methods: a protocol analysis, interviews and questionnaires. The results discuss the experiences of 32 users with the development of motivation concepts, the group and the user activities, as well as their creativity aspects. Structured processes and the use of artefacts were found to be productive practices in the early design phases. The results also highlight the importance of multidisciplinary and user-centred teams that can enhance collaboration and communication during the design processes.

  8. Design of tool monitor simulator

    International Nuclear Information System (INIS)

    Yao Yonggang; Deng Changming; Zhang Jia; Meng Dan; Zhang Lu; Wang Zhi'ai; Shen Yang

    2011-01-01

    It is based on tool monitor in Qinshan Nuclear Power Plant for the object of study, and manufacture a tool monitor simulator. The device is designed to automatically emulate-monitor the contamination level of objects for training students. Once if the tool monitor reports the contamination, the students can handle properly. The brief introduction of main function and system design of the simulator are presented in the paper. (authors)

  9. A preliminary conceptual design study for Korean fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Kim, Hyoung Chan; Oh, Sangjun; Lee, Young Seok; Yeom, Jun Ho; Im, Kihak; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Kessel, Charles; Brown, Thomas; Titus, Peter [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2013-10-15

    Highlights: ► Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. ► Present design guidelines and requirements of Korean DEMO reactor. ► Present a preliminary design of TF (toroidal field) and CS (central solenoid) magnet. ► Present a preliminary result of the radial build scheme of Korean DEMO reactor. -- Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy, so called fast-track approach. Korean strategy for fusion energy can be regarded as a fast-track approach and one special concept discussed in this paper is a two-stage development plan. At first, a steady-state Korean DEMO Reactor (K-DEMO) is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). The major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. By using high performance Nb{sub 3}Sn-based superconducting cable currently available, high magnetic field at the plasma center above 8 T can be achieved. A design concept for TF magnets and radial builds for the K-DEMO considering a vertical maintenance scheme, are presented together with preliminary design parameters.

  10. Ocean thermal energy conversion power system development-I. Preliminary design report. Volume 3. Appendixes D, E, and F. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume includes the appendices: D) system equipment (hardware breakdown structure; 10-MW hardware listing; list of support and maintenance equipment, tools and spare parts; sacrificial anodes; M.A.N. brush; and Alclad 3004 data); E) heat exchanger supporting data (analyses/configuration, contract tooling, manufacturing plan, specification, and evaporator ammonia liquid distribution system); and F) rotating machinery (performance characteristics, radial inflow turbine; item descriptions; weight calculation-rotor; producibility analysis; long lead-time items; spares; support equipment; non recurring costs; performance characteristics-axial flow turbine; Worthington pump data; and American M.A.N. Corporation data). Also included is attachment 1 to the phase I final report which presents details of the system modeling; design, materials considerations, and systems analysis of the baseline module; system cost analysis; and supporting data. (WHK)

  11. Design of the ITER Tokamak Assembly Tools

    International Nuclear Information System (INIS)

    Park, Hyunki; Her, Namil; Kim, Byungchul; Im, Kihak; Jung, Kijung; Lee, Jaehyuk; Im, Kisuk

    2006-01-01

    ITER (International Thermonuclear Experimental Reactor) Procurement allocation among the seven Parties, EU, JA, CN, IN , KO, RF and US had been decided in Dec. 2005. ITER Tokamak assembly tools is one of the nine components allocated to Korea for the construction of the ITER. Assembly tools except measurement and common tools are supplied to assemble the ITER Tokamak and classified into 9 groups according to components to be assembled. Among the 9 groups of assembly tools, large-sized Sector Sub-assembly Tools and Sector Assembly Tools are used at the first stage of ITER Tokamak construction and need to be designed faster than seven other assembly tools. ITER IT (International Team) proposed Korea to accomplish ITA (ITER Transitional Arrangements) Task on detailed design, manufacturing feasibility and contract specification of specific, large sized tools such as Upending Tool, Lifting Tool, Sector Sub-assembly Tool and Sector Assembly Tool in Oct. 2004. Based on the concept design by ITER IT, Korea carried out ITA Task on detailed design of large-sized and specific Sector Sub-assembly and Sector Assembly Tools until Mar. 2006. The Sector Sub-assembly Tools mainly consist of the Upending, Lifting, Vacuum Vessel Support and Bracing, and Sector Sub-assembly Tool, among which the design of three tools are herein. The Sector Assembly Tools mainly consist of the Toroidal Field (TF) Gravity Support Assembly, Sector In-pit Assembly, TF Coil Assembly, Vacuum Vessel (VV) Welding and Vacuum Vessel Thermal Shield (TS) Assembly Tool, among which the design of Sector In-pit Assembly Tool is described herein

  12. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  13. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  14. Practical Recommendations for the Preliminary Design Analysis of ...

    African Journals Online (AJOL)

    Interior-to-exterior shear ratios for equal and unequal bay frames, as well as column inflection points were obtained to serve as practical aids for preliminary analysis/design of fixed-feet multistory sway frames. Equal and unequal bay five story frames were analysed to show the validity of the recommended design ...

  15. Preliminary 2D design study for A ampersand PCT

    International Nuclear Information System (INIS)

    Keto, E.; Azevedo, S.; Roberson, P.

    1995-03-01

    Lawrence Livermore National Laboratory is currently designing and constructing a tomographic scanner to obtain the most accurate possible assays of radioactivity in barrels of nuclear waste in a limited amount of time. This study demonstrates a method to explore different designs using laboratory experiments and numerical simulations. In particular, we examine the trade-off between spatial resolution and signal-to-noise. The simulations are conducted in two dimensions as a preliminary study for three dimensional imaging. We find that the optimal design is entirely dependent on the expected source sizes and activities. For nuclear waste barrels, preliminary results indicate that collimators with widths of 1 to 3 inch and aspect ratios of 5:1 to 10:1 should perform well. This type of study will be repeated in 3D in more detail to optimize the final design

  16. Preliminary core design of IRIS-50

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Franceschini, Fausto

    2009-01-01

    IRIS-50 is a small, 50 MWe, advanced PWR with integral primary system. It evolved employing the same design principles as the well known medium size (335 MWe) IRIS. These principles include the 'safety-by-design' philosophy, simple and robust design, and deployment flexibility. The 50 MWe design addresses the needs of specific applications (e.g., power generation in small regional grids, water desalination and biodiesel production at remote locations, autonomous power source for special applications, etc.). Such applications may favor or even require longer refueling cycles, or may have some other specific requirements. Impact of these requirements on the core design and refueling strategy is discussed in the paper. Trade-off between the cycle length and other relevant parameters is addressed. A preliminary core design is presented, together with the core main reactor physics performance parameters. (author)

  17. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1984-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II. Since the actively cooled limiter blade is the component in direct contact with the plasma edge, and thus subject to the severe plasma environment, most preliminary design efforts have concentrated on analysis of the blade. The screening process which led to the recommended preliminary design consisting of a dispersion strenghthened copper or OFHC copper cover plate over an austenitic stainless steel base plate is discussed. A 1 to 3 mm thick low atomic number coating consisting of a graded plasma-sprayed Silicon Carbide-Aluminium composite is recommended subject to further experiment and evaluation. Thermal-hydraulic and stress analyses of the limiter blade are also discussed. (orig.)

  18. Production engineering jig and tool design

    CERN Document Server

    Jones, E J H

    1972-01-01

    Production Engineering: Jig and Tool Design focuses on jig and tool design as part of production engineering and covers topics ranging from inspection and gauging to multiple and consecutive tooling, tool calculation and development of form tools, deep-hole boring, and grinding-wheel form-crushing. Air and oil operated fixtures, negative rake machining, and the economics of jig and fixture practice are also discussed. This text is comprised of 22 chapters; the first of which provides an overview of the function and organization of the jig and tool department. Attention then turns to the subjec

  19. Preliminary design package for solar collector and solar pump

    Science.gov (United States)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  20. Preliminary design of bellows for the DNB beam source by EJMA and FE linear analysis

    International Nuclear Information System (INIS)

    Trapasiya, Shobhit; Muvvala, Venkata Nagaraju; Rambilas, P.; Gangadharan, Roopesh; Rotti, Chandramouli; Chakraborty, Arun Kumar; Sharma, Dheeraj Kumar

    2015-01-01

    In piping system, U-shaped Bellows are widely used among flexible elements. In general, bellows are typically design for Fatigue behavior according to the EJMA standard based on empirically generated fatigue curves. The present work proposes a methodology in the design of bellows by design by analyses and validates its design by EJMA standard. A linear FE approach is chosen to in line with the EJMA standard. The proposed methodology is benchmarked with the available literatures. The same practice is implemented in the preliminary design of a U-shaped bellows in the water line circuits of DNB beam source. DNB Beam Source is a negative ion source-based neutral beam generator for ITER operates at 100KV. The beam divergence (intrinsic) and magnetic fields from ITER torus causes deflection of beams. This calls for beam optic alignment, which are assured by BS Movement mechanism system. To accomplish the above movement requirements, bellows, which is a stringent of its kind (± 22 mm axial, ± 45 mm lateral within 400mm available space with single ply), is designed between the beam source and possible rigid interface-cooling lines coming from HVB. The paper describes right from conceptual stage to preliminary design. Optimization tools are adopted in the selecting bellow dimensions using MATLAB. At the end a coordinated approach between FE based assessment (in ANSYS) and widely applied code, EJMA is implemented for the validation of design and found FE approach is a very conservative than later in the present case. (author)

  1. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.

    Science.gov (United States)

    Lee, Ciaran M; Davis, Timothy H; Bao, Gang

    2018-04-01

    What is the topic of this review? In this review, we analyse the performance of recently described tools for CRISPR/Cas9 guide RNA design, in particular, design tools that predict CRISPR/Cas9 activity. What advances does it highlight? Recently, many tools designed to predict CRISPR/Cas9 activity have been reported. However, the majority of these tools lack experimental validation. Our analyses indicate that these tools have poor predictive power. Our preliminary results suggest that target site accessibility should be considered in order to develop better guide RNA design tools with improved predictive power. The recent adaptation of the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system for targeted genome engineering has led to its widespread application in many fields worldwide. In order to gain a better understanding of the design rules of CRISPR/Cas9 systems, several groups have carried out large library-based screens leading to some insight into sequence preferences among highly active target sites. To facilitate CRISPR/Cas9 design, these studies have spawned a plethora of guide RNA (gRNA) design tools with algorithms based solely on direct or indirect sequence features. Here, we demonstrate that the predictive power of these tools is poor, suggesting that sequence features alone cannot accurately inform the cutting efficiency of a particular CRISPR/Cas9 gRNA design. Furthermore, we demonstrate that DNA target site accessibility influences the activity of CRISPR/Cas9. With further optimization, we hypothesize that it will be possible to increase the predictive power of gRNA design tools by including both sequence and target site accessibility metrics. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  2. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    Science.gov (United States)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  3. Preliminary design study of a steady state tokamak device

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)

    1992-09-01

    Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)

  4. Design of parametric software tools

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits; Mullins, Michael

    2011-01-01

    The studies investigate the field of evidence-based design used in architectural design practice and propose a method using 2D/3D CAD applications to: 1) enhance integration of evidence-based design knowledge in architectural design phases with a focus on lighting and interior design and 2) assess...... fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify...... the operations and functions of the design method. To evaluate the prototype potentials, surveys with architectural and healthcare design companies are conducted. Evaluation is done by the administration of questionnaires being part of the development of the tools. The results show that architects, designers...

  5. EXPLOSION POTENTIAL ASSESSMENT OF HEAT EXCHANGER NETWORK AT THE PRELIMINARY DESIGN STAGE

    Directory of Open Access Journals (Sweden)

    MOHSIN PASHA

    2016-07-01

    Full Text Available The failure of Shell and Tube Heat Exchangers (STHE is being extensively observed in the chemical process industries. This failure can cause enormous production loss and have a potential of dangerous consequences such as an explosion, fire and toxic release scenarios. There is an urgent need for assessing the explosion potential of shell and tube heat exchanger at the preliminary design stage. In current work, inherent safety index based approach is used to resolve the highlighted issue. Inherent Safety Index for Shell and Tube Heat Exchanger (ISISTHE is a newly developed index for assessing the inherent safety level of a STHE at the preliminary design stage. This index is composed of preliminary design variables and integrated with the process design simulator (Aspen HYSYS. Process information can easily be transferred from process design simulator to MS Excel spreadsheet owing to this integration. This index could potentially facilitate the design engineer to analyse the worst heat exchanger in the heat exchanger network. Typical heat exchanger network of the steam reforming process is presented as a case study and the worst heat exchanger of this network has been identified. It is inferred from this analysis that shell and tube heat exchangers possess high operating pressure, corrected mean temperature difference (CMTD and flammability and reactive potential needs to be critically analysed at the preliminary design stage.

  6. Sewage Solids Irradiator Transportation System (SSITS) cask: preliminary design description

    International Nuclear Information System (INIS)

    Eakes, R.G.; Kempka, S.N.; Lamoreaux, G.H.; Sutherland, S.H.

    1983-02-01

    The preliminary design of the Sewage Solids Irradiator Transportation System (SSITS) Cask is presented in this document. The SSITS cask is to be used for the transport of radioactive cesium chloride and strontium fluoride capsules which are of use in irradiators or as heat sources. The SSITS cask is approximately 1.4 m in diameter, 1.3 m high, weighs roughly 9 t, provides 33 cm of steel shielding, and can dissipate up to 5.2 kW of decay heat. The cask design criteria are identified and a description of the cask design and operation is provided. Detailed analyses of the design were performed to demonstrate licensability of the cask by the Nuclear Regulatory Commission (NRC). Results of the analyses indicate that the preliminary design is in compliance with the pertinent regulatory requirements for licensing of a radioactive material transportation container

  7. Business System Planning Project, Preliminary System Design

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time

  8. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    Science.gov (United States)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  9. Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems

    Science.gov (United States)

    Koch, Patrick Nathan

    Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.

  10. A preliminary design and structural analysis on the central column for supporting the full 40 .deg. Sectors at tokamak in pit

    International Nuclear Information System (INIS)

    Nam, Kyoungo; Park, Hyun Ki; Kim, Dong Jin; Moon, Jaeh Wan; Kim, Byung Seok; Watson, Emma; Shaw, Robert

    2012-01-01

    The ITER Tokamak machine is composed of nine 40 .deg. sectors shaped of torus. Each 40.deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard VVTS. The VV/TFC/VVTS 40 .deg. sectors are sub assembled at assembly building respectively at sector sub assembly tool and then nine sub assembled 40 .deg. sectors are finally assembled at in-pit of Tokamak building. ITER sector assembly tools are the purpose built assembly tools to assemble nine 40 .deg. sectors into the complete ITER Tokamak machine at Tokamak in pit. Based on the design description document, final report prepared by the ITER organization (IO) and tooling requirements, Korea has carried out the conceptual and preliminary design of these assembly tools. Especially, the central column is the main tool, which is composed of some hollow cylinders, to support full nine 40 .deg. sectors at Tokamak in pit. Configuration and structural analysis of the central column are presented

  11. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  12. Daylight prediction techniques in energy design tools

    Energy Technology Data Exchange (ETDEWEB)

    Milne, M.; Zurick, J. [California Univ., Los Angeles, Dept. of Architecture, CA (United States)

    1998-09-01

    Four different whole-building energy design tool systems that calculate energy savings from daylighting and that display annual performance on an-hour-by-hour basis, have been tested. The nature of design tools, the sources of hourly outdoor illuminance data, the ways of predicting indoor illumination, the assumptions of each tool, and the resulting energy savings of the design tools tested are discussed. The tests were carried out with the essential criteria for evaluating whole-building daylighting and energy design tools in mind. These have been identified as user confidence, accuracy, response time, and the amount of detail. Results of the tests, all four of them run on a single elementary school classroom for the sake of comparability, were provided. 9 refs., 2 figs.

  13. Preliminary design study of the TMT Telescope structure system: overview

    Science.gov (United States)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  14. IRISS '98: The Intranet as a Learning Tool: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    K. J. Garland

    1998-01-01

    Full Text Available Using the World Wide Web (WWW as an interactive educative tool is still a relatively new concept, and little is known of its impact on learning when it is used as a dynamic learning tool. Despite this the use of educational internet sites, in the form of virtual classrooms and courses, appears to be increasing rapidly. Thus, it is important that their ability to facilitate learning is evaluated. We present the findings of a preliminary study which examined the amount, type and quality of leaning of an undergraduate indroductory history course when presented to three different groups of participants. All participants received four regularly spaced 30 minute study and repeated test sessions over an eight day period. A final test of new questions was also administered at the end of the study. Results showed that the amount of historical knowledge acquired by the end of the study was greatest for those paticpants who learnt using traditional methods, and that over the four test sessions this group consistently outperformed both computer groups. Moreover, the way in which knowledge was acquired was qualitatively different in the groups with the traditional group exhibiting more 'Know' responses while the Intranet group exhibited more 'Remember' responses. Finally, using useability questionnaires, we found that participants preferred learning via traditional methods to screen and Intranet presentations, and that participants who had learnt using computers felt that their learning experience had suffered. These findings have important implications for educators, and others who wish to use the Internet as a training tool, and we discuss our findings through the evaluation of the different presentational media used, specific Intranet design criteria and general usability factors, which, we suggest, are of paramount importance.

  15. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhou, E-mail: zhaozhou@swip.ac.cn; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-02-15

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li{sub 4}SiO{sub 4} pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  16. Preliminary verification of structure design for CN HCCB TBM with 1 × 4 configuration

    International Nuclear Information System (INIS)

    Zhao, Zhou; Zhou, Bing; Wang, Qijie; Cao, Qixiang; Feng, Kaiming; Wang, Xiaoyu; Zhang, Guoshu

    2016-01-01

    Highlights: • A new and simplification structural design scheme with 1 × 4 configuration is proposed for CN HCCB TBM. • The detail conceptual structural design for 1 × 4 TBM is completed. • The preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis for 1 × 4 TBM had been carried out. - Abstract: Based on the conceptual design of CN HCCB TBM with 1 × 4 configuration, the preliminary hydraulic analysis, thermo-hydraulic analysis and structural analysis had been carried out for it. Hydraulic and thermo-hydraulic analyses show that the coolant manifold system could meet the fluid design requirement preliminarily and the temperature of RAFMs structural parts, Be and Li_4SiO_4 pebble beds are within the allowable range, and no zone shows a stress higher than the allowable limit in the preliminary structural analysis. These results indicate the design for CN HCCB TBM with 1 × 4 configuration is preliminary reasonable.

  17. Analytical Tools for Space Suit Design

    Science.gov (United States)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  18. Preliminary Design Concept for a Reactor-internal CRDM

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Jong Wook; Kim, Tae Wan; Choi, Suhn; Kim, Keung Koo

    2013-01-01

    A rod ejection accident may cause severer result in SMRs because SMRs have relatively high control rod reactivity worth compared with commercial nuclear reactors. Because this accident would be perfectly excluded by adopting a reactor-internal CRDM (Control Rod Drive Mechanism), many SMRs accept this concept. The first concept was provided by JAERI with the MRX reactor which uses an electric motor with a ball screw driveline. Babcock and Wilcox introduced the concept in an mPower reactor that adopts an electric motor with a roller screw driveline and hydraulic system, and Westinghouse Electric Co. proposes an internal Control Rod Drive in its SMR with an electric motor with a latch mechanism. In addition, several other applications have been reported thus far. The reactor-internal CRDM concept is now widely adopted in many SMR designs, and this concept may also be applied in an evolutionary reactor development. So the preliminary study is conducted based on the SMART CRDM design. A preliminary design concept for a reactor-internal CRDM was proposed and evaluated through an electromagnetic analysis. It was found that there is an optimum design for the motor housing, and the results may contribute to the realization a reactor-internal CRDM for an evolutionary reactor development. More detailed analysis results will be reported later

  19. A preliminary study on the relevancy of sustainable building design ...

    African Journals Online (AJOL)

    This preliminary study aims to explore the relationship between sustainable building design paradigms and commercial property depreciation, to assist in the understanding of sustainable building design impact towards commercial building value and rental de employs the qualitative method and analyses valuers' current ...

  20. Preliminary seismic design cost-benefit assessment of the tuff repository waste-handling facilities

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Abrahamson, N.; Hadjian, A.H.

    1989-02-01

    This report presents a preliminary assessment of the costs and benefits associated with changes in the seismic design basis of waste-handling facilities. The objectives of the study are to understand the capability of the current seismic design of the waste-handling facilities to mitigate seismic hazards, evaluate how different design levels and design measures might be used toward mitigating seismic hazards, assess the costs and benefits of alternative seismic design levels, and develop recommendations for possible modifications to the seismic design basis. This preliminary assessment is based primarily on expert judgment solicited in an interdisciplinary workshop environment. The estimated costs for individual attributes and the assumptions underlying these cost estimates (seismic hazard levels, fragilities, radioactive-release scenarios, etc.) are subject to large uncertainties, which are generally identified but not treated explicitly in this preliminary analysis. The major conclusions of the report do not appear to be very sensitive to these uncertainties. 41 refs., 51 figs., 35 tabs

  1. Preliminary design studies for the DESCARTES and CIDER codes

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.

    1992-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) project is developing several computer codes to model the release and transport of radionuclides into the environment. This preliminary design addresses two of these codes: Dynamic Estimates of Concentrations and Radionuclides in Terrestrial Environments (DESCARTES) and Calculation of Individual Doses from Environmental Radionuclides (CIDER). The DESCARTES code will be used to estimate the concentration of radionuclides in environmental pathways, given the output of the air transport code HATCHET. The CIDER code will use information provided by DESCARTES to estimate the dose received by an individual. This document reports on preliminary design work performed by the code development team to determine if the requirements could be met for Descartes and CIDER. The document contains three major sections: (i) a data flow diagram and discussion for DESCARTES, (ii) a data flow diagram and discussion for CIDER, and (iii) a series of brief statements regarding the design approach required to address each code requirement

  2. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  3. Preliminary design of smart fuel

    International Nuclear Information System (INIS)

    Kim, Y.; Ha, D.; Park, S.; Nahm, K.; Lee, K.; Kim, J.

    2007-01-01

    SMART (System-integrated Modular Advanced Reactor) is a novel light water rector with a modular, integral primary system configuration. This concept has been developing a 660 MWt by Korean Nuclear Power Industry Group with KAERI. SMART is being developed for use as an energy source for small-scale power generation and seawater desalination. Although the design of SMART is based on the current pressurized water reactor technology, new technologies such as enhanced safety, and passive safety have been applied, and system simplification and modularization, innovations in manufacturing and installation technologies have been implemented culminating in a design that has enhanced safety and economy, and is environment -friendly. In this paper described the preliminary design of the nuclear Fuel for this SMART, the design concept and the characteristics of SMART Fuel. In specially this paper describe the optimization of grid span adjustment to improve the thermal performance of the SMART Fuel as well as to improve the seismic resistance performance of the SMART Fuel, it is not easy to improve the both performance simultaneously because of design parameter of each performance inversely proportional. SMART Fuel enable to extra-long extended fuel cycle length and resistance of proliferation, enhanced safety, improved economics and reduced nuclear waste

  4. Preliminary design for a maglev development facility

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. (Argonne National Lab., IL (United States)); Zhang, Z.Y. (Polytechnic Univ., Brooklyn, NY (United States)); Myers, G.; Cvercko, A. (Sterling Engineering, Westchester, IL (United States)); Williams, J.R. (Alfred Benesch and Co., Chicago, IL (United States))

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  5. Report on design rules of μ-tools for hybrid tooling

    DEFF Research Database (Denmark)

    Esmoris, Jose Ignacio; Azcarate, S.; Tosello, Guido

    2011-01-01

    -effectively, especially for micro injection moulding. This particular deliverable has the objective to present the design rules for high performance μ-tools and inserts manufacture based on the new standard manufacturing process chains established during the WP 2.2 work. In particular, the achievable features, surfaces......Tooling is one of the critical stages of the process chain for polymer micro products manufacture and in particular for the COTECH process chain. Therefore, within the scope of SP2 “Tooling”, the WP 2.2 “New tool-making solutions for μ-IM and HE” is designed to investigate, develop and standardize...

  6. Design of the ITER tokamak assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyunki [National Fusion Research Institute, 52 Eoeun-Dong, Yuseong-Gu, Daejon 305-333 (Korea, Republic of)], E-mail: hkpark@nfri.re.kr; Lee, Jaehyuk; Kim, Taehyung [SFA Engineering Corp., 42-7 Palyong-dong, Changwon-si, Gyeongsangnam-do 641-847 (Korea, Republic of); Song, Yunju [National Fusion Research Institute, 52 Eoeun-Dong, Yuseong-Gu, Daejon 305-333 (Korea, Republic of); Im, Kihak [ITER Organization, CEA Cadarasche, 13108 Saint Paul-lez-Durance (France); Kim, Byungchul; Lee, Hyeongon; Jung, Ki-Jung [National Fusion Research Institute, 52 Eoeun-Dong, Yuseong-Gu, Daejon 305-333 (Korea, Republic of)

    2008-12-15

    ITER tokamak assembly is mainly composed of lower cryostat activities, sector sub-assembly, sector assembly, in-vessel activities and ex-vessel activities. The main tools for sector sub-assembly procedures consists of upending tool, sector lifting tool, vacuum vessel support and bracing tool and sector sub-assembly tool. Conceptual design of assembly tools for sector sub-assembly procedures is described herein. The basic structure for upending tool has been developed under the assumption that upending is performed with crane which will be installed in Tokamak building. Sector lifting tool is designed to adjust the position of a sector to minimize the difference between the center of the tokamak building crane and the center of gravity of the sector. Sector sub-assembly tool is composed of special frame for the fine adjustment of position control with 6 degrees of freedom. The design of VV support and bracing tool for four kinds of VV 40 deg. sectors has been developed. Also, structural analysis for upending tool, sector sub-assembly tool has been studied using ANSYS for the situation of an applied load with the same dead weight multiplied by 3/4. The results of structural analyses for these tools were below the allowable values.

  7. Potential and limitations of environmental design with LCA tools

    Directory of Open Access Journals (Sweden)

    Alexander Hollberg

    2017-10-01

    Full Text Available The built environment has a very high impact on the environment. Architects can largely define the environmental impact a building will cause throughout its lifetime through its design. Especially the choice of material and the type of construction can be influenced in early design stages. To quantify the environmental impact, tools for Life Cycle Assessment (LCA are used. This paper discusses the results of four case studies of applying four different novel LCA tools in four different academic courses at different universities. The results show that the success of applying LCA tools highly depends on the point of time during the design process and the design strategy the student pursues. If the right tool is used at the right moment and matches the design strategy, it can help to improve the architectural quality and reduce environmental impacts. In most cases however, the time of application did not fit, resulting in additional effort for applying the LCA tool. In consequence, the architectural elaboration of the design and the improvement of environmental performance compete against each other. Either the architectural quality suffers or the tool is employed late and the environmental performance cannot be improved. Even if the point in time of the tool application is right, the success depends highly on the design strategy. The number of tools is growing and there is an adequate tool available for each design stage. The design strategy has to match the tool and this requires a willingness to adapt the design approach. The issue of environmental design shifted from a lack of adequate tools to the lack of adequate design approaches. Tools can be easily taught in seminars. Environmental design strategies, however, have to be included in design studios and developed throughout the entire design phase to become part of architectural education.

  8. Design tools and materials in creative work

    DEFF Research Database (Denmark)

    Hansen, Nicolai Brodersen; Dalsgaard, Peter; Halskov, Kim

    2017-01-01

    -oriented perspectives, we wish to examine the potentials and limitations in current uses of design tools and materials, and discuss and explore when and how we can introduce ones. Participation in the workshop requires participants to document and analyse central themes in a case, and the resulting material will serve......This workshop aims to examine and discuss the role and nature of design tools and materials in creative work, and to explore how novel tools can meaningfully combine existing and novel tools to support and augment creative work. By exploring and combining methodological, theoretical, and design...

  9. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    Science.gov (United States)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  10. Performance and Sizing Tool for Quadrotor Biplane Tailsitter UAS

    Science.gov (United States)

    Strom, Eric

    The Quadrotor-Biplane-Tailsitter (QBT) configuration is the basis for a mechanically simplistic rotorcraft capable of both long-range, high-speed cruise as well as hovering flight. This work presents the development and validation of a set of preliminary design tools built specifically for this aircraft to enable its further development, including: a QBT weight model, preliminary sizing framework, and vehicle analysis tools. The preliminary sizing tool presented here shows the advantage afforded by QBT designs in missions with aggressive cruise requirements, such as offshore wind turbine inspections, wherein transition from a quadcopter configuration to a QBT allows for a 5:1 trade of battery weight for wing weight. A 3D, unsteady panel method utilizing a nonlinear implementation of the Kutta-Joukowsky condition is also presented as a means of computing aerodynamic interference effects and, through the implementation of rotor, body, and wing geometry generators, is prepared for coupling with a comprehensive rotor analysis package.

  11. Understanding Creative Design Processes by Integrating Sketching and CAD Modelling Design Environments: A Preliminary Protocol Result from Architectural Designers

    Directory of Open Access Journals (Sweden)

    Yi Teng Shih

    2015-11-01

    Full Text Available This paper presents the results of a preliminary protocol study of the cognitive behaviour of architectural designers during the design process. The aim is to better understand the similarities and differences in cognitive behaviour using Sequential Mixed Media (SMM and Alternative Mixed Media (AMM approaches, and how switching between media may impact on design processes. Two participants with at least one-year’s professional design experience and a Bachelor of Design degree, and competence in both sketching and computer-aid design (CAD modelling participated in the study. Video recordings of participants working on different projects were coded using the Function-Behaviour-Structure (FBS coding scheme. Participants were also interviewed and their explanations about their switching behaviours were categorised into three types: S→C, S/C↹R and C→S. Preliminary results indicate that switching between media may influence how designers identify problems and develop solutions. In particular, two design issues were identified.  These relate to the FBS coding scheme, where structure (S and behaviour derived from structure (Bs, change to documentation (D after switching from sketching to CAD modelling (S→C. These switches make it possible for designers to integrate both approaches into one design medium and facilitate their design processes in AMM design environments.

  12. Software Tools for Battery Design | Transportation Research | NREL

    Science.gov (United States)

    Software Tools for Battery Design Software Tools for Battery Design Under the Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) project, NREL has developed software tools to help using CAEBAT software tools. Knowledge of the interplay of multi-physics at varied scales is imperative

  13. Simplified methods and application to preliminary design of piping for elevated temperature service

    International Nuclear Information System (INIS)

    Severud, L.K.

    1975-01-01

    A number of simplified stress analysis methods and procedures that have been used on the FFTF project for preliminary design of piping operating at elevated temperatures are described. The rationale and considerations involved in developing the procedures and preliminary design guidelines are given. Applications of the simplified methods to a few FFTF pipelines are described and the success of these guidelines are measured by means of comparisons to pipeline designs that have had detailed Code type stress analyses. (U.S.)

  14. Expressive Design Tools: Procedural Content Generation for Game Designers

    OpenAIRE

    Smith, Gillian Margaret

    2012-01-01

    Games are shaped by the tools we use to make them and our ability to model the concepts they address. Vast improvements in computer graphics technology, processing power, storage capacity, and physics simulations have driven game design for the past forty years, leading to beautiful, spacious, detailed, and highly immersive worlds supporting games that are, for the most part, fundamentally about movement, collision, and other physics-based concepts. Designers use increasingly complex tools th...

  15. Short Paper: Design Tools, Hybridization Exploring Intuitive Interaction

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kuhlen, Torsten; Coquillart, Sabine; Interrante, Victoria

    2010-01-01

    Design and Design Engineering is about making abstract representations often based on fuzzy notions, ideas or prerequisite requirements with the use of various design tools. This paper introduces an interactive hybrid design tool to assist and support singular design activity or multiple

  16. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  17. Integrated Radiation Analysis and Design Tools

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Radiation Analysis and Design Tools (IRADT) Project develops and maintains an integrated tool set that collects the current best practices, databases,...

  18. Analysis of functionality free CASE-tools databases design

    Directory of Open Access Journals (Sweden)

    A. V. Gavrilov

    2016-01-01

    Full Text Available The introduction in the educational process of database design CASEtechnologies requires the institution of significant costs for the purchase of software. A possible solution could be the use of free software peers. At the same time this kind of substitution should be based on even-com representation of the functional characteristics and features of operation of these programs. The purpose of the article – a review of the free and non-profi t CASE-tools database design, as well as their classifi cation on the basis of the analysis functionality. When writing this article were used materials from the offi cial websites of the tool developers. Evaluation of the functional characteristics of CASEtools for database design made exclusively empirically with the direct work with software products. Analysis functionality of tools allow you to distinguish the two categories CASE-tools database design. The first category includes systems with a basic set of features and tools. The most important basic functions of these systems are: management connections to database servers, visual tools to create and modify database objects (tables, views, triggers, procedures, the ability to enter and edit data in table mode, user and privilege management tools, editor SQL-code, means export/import data. CASE-system related to the first category can be used to design and develop simple databases, data management, as well as a means of administration server database. A distinctive feature of the second category of CASE-tools for database design (full-featured systems is the presence of visual designer, allowing to carry out the construction of the database model and automatic creation of the database on the server based on this model. CASE-system related to this categories can be used for the design and development of databases of any structural complexity, as well as a database server administration tool. The article concluded that the

  19. Preliminary design and definition of field experiments for welded tuff rock mechanics program

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1982-06-01

    The preliminary design contains objectives, typical experiment layouts, definitions of equipment and instrumentation, test matrices, preliminary design predictive modeling results for five experiments, and a definition of the G-Tunnel Underground Facility (GTUF) at the Nevada Test Site where the experiments are to be located. Experiments described for investigations in welded tuff are the Small Diameter Heater, Unit Cell-Canister Scale, Heated Block, Rocha Slot, and Miniature Heater

  20. Harnessing VLSI System Design with EDA Tools

    CERN Document Server

    Kamat, Rajanish K; Gaikwad, Pawan K; Guhilot, Hansraj

    2012-01-01

    This book explores various dimensions of EDA technologies for achieving different goals in VLSI system design. Although the scope of EDA is very broad and comprises diversified hardware and software tools to accomplish different phases of VLSI system design, such as design, layout, simulation, testability, prototyping and implementation, this book focuses only on demystifying the code, a.k.a. firmware development and its implementation with FPGAs. Since there are a variety of languages for system design, this book covers various issues related to VHDL, Verilog and System C synergized with EDA tools, using a variety of case studies such as testability, verification and power consumption. * Covers aspects of VHDL, Verilog and Handel C in one text; * Enables designers to judge the appropriateness of each EDA tool for relevant applications; * Omits discussion of design platforms and focuses on design case studies; * Uses design case studies from diversified application domains such as network on chip, hospital on...

  1. TITAN Legal Weight Truck cask preliminary design report

    International Nuclear Information System (INIS)

    1990-04-01

    The Preliminary Design of the TITAN Legal Weight Truck (LWT) Cask System and Ancillary Equipment is presented in this document. The scope of the document includes the LWT cask with fuel baskets; impact limiters, and lifting and tiedown features; the cask support system for transportation; intermodal transfer skid; personnel barrier; and cask lifting yoke assembly. 75 figs., 48 tabs

  2. Design Preliminaries for Direct Drive under Water Wind Turbine Generator

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2012-01-01

    This paper focuses on the preliminary design process of a 20 MW electric generator. The application calls for an offshore, vertical axis, direct drive wind turbine. Arguments for selecting the type of electric machine for the application are presented and discussed. Comparison criteria for deciding...... on a type of machine are listed. Additional constraints emerging from the direct drive, vertical axis concepts are considered. General rules and a preliminary algorithm are discussed for the machine selected to be most suitable for the imposed conditions....

  3. Preliminary design review report for K Basin Dose Reduction Project

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design

  4. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 1, Report

    International Nuclear Information System (INIS)

    1986-01-01

    This design report describes the NUS Preliminary Design of the Prototype Spent Nuclear Fuel Rod Consolidation Equipment for the Department of Energy. The sections of the report elaborate on each facet of the preliminary design. A concept summary is provided to assist the reader in rapidly understanding the complete design. The NUS Prototype Spent Fuel Rod Consolidation System is an automatically controlled system to consolidate a minimum of 750 MT (heavy metal)/year of US commercial nuclear reactor fuel, at 75% availability. The system is designed with replaceable components utilizing the latest state-of-the-art technology. This approach gives the system the flexibility to be developed without costly development programs, yet accept new technology as it evolves over the next ten years. Capability is also provided in the system design to accommodate a wide variety of fuel conditions and to recover from any situation which may arise

  5. Preliminary Design and Analysis of an In-plane PRSEUS Joint

    Science.gov (United States)

    Lovejoy, Andrew E.; Poplawski, Steven

    2013-01-01

    As part of the National Aeronautics and Space Administration's (NASA's) Environmentally Responsible Aviation (ERA) program, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) has been designed, developed and tested. However, PRSEUS development efforts to date have only addressed joints required to transfer bending moments between PRSEUS panels. Development of in-plane joints for the PRSEUS concept is necessary to facilitate in-plane transfer of load from PRSEUS panels to an adjacent structure, such as from a wing panel into a fuselage. This paper presents preliminary design and analysis of an in-plane PRSEUS joint for connecting PRSEUS panels at the termination of the rod-stiffened stringers. Design requirements are provided, the PRSEUS blade joint concept is presented, and preliminary design changes and analyses are carried out to examine the feasibility of the proposed in-plane PRSEUS blade joint. The study conducted herein focuses mainly on the PRSEUS structure on one side of the joint. In particular, the design requirements for the rod shear stress and bolt bearing stress are examined. A PRSEUS blade joint design was developed that demonstrates the feasibility of this in-plane PRSEUS joint concept to terminate the rod-stiffened stringers. The presented design only demonstrates feasibility, therefore, some areas of refinement are presented that would lead to a more optimum and realistic design.

  6. Preliminary design and thermal analysis of device for finish cooling Jaffa biscuits in a.d. 'Jaffa'- Crvenka

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available In this paper preliminary design of device for finish cooling chocolate topping of biscuits in A.D. 'Jaffa'- Crvenka was done. The proposed preliminary design followed by the required technological process of finish cooling biscuits and required parameters of process which was supposed to get and which represented part of project task. Thermal analysis was made and obtained percentage error between surface contact of the air and chocolate topping, obtained from heat balance and geometrical over proposed preliminary design, wasn't more than 0.67%. This is a preliminary design completely justified because using required length of belt conveyor receive required temperature of chocolate topping at the end of the cooling process.

  7. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  8. Design and development of progressive tool for manufacturing washer

    Science.gov (United States)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  9. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

  10. Advanced Subsonic Technology (AST) 22-Inch Low Noise Research Fan Rig Preliminary Design of ADP-Type Fan 3

    Science.gov (United States)

    Jeracki, Robert J. (Technical Monitor); Topol, David A.; Ingram, Clint L.; Larkin, Michael J.; Roche, Charles H.; Thulin, Robert D.

    2004-01-01

    This report presents results of the work completed on the preliminary design of Fan 3 of NASA s 22-inch Fan Low Noise Research project. Fan 3 was intended to build on the experience gained from Fans 1 and 2 by demonstrating noise reduction technology that surpasses 1992 levels by 6 dB. The work was performed as part of NASA s Advanced Subsonic Technology (AST) program. Work on this task was conducted in the areas of CFD code validation, acoustic prediction and validation, rotor parametric studies, and fan exit guide vane (FEGV) studies up to the time when a NASA decision was made to cancel the design, fabrication and testing phases of the work. The scope of the program changed accordingly to concentrate on two subtasks: (1) Rig data analysis and CFD code validation and (2) Fan and FEGV optimization studies. The results of the CFD code validation work showed that this tool predicts 3D flowfield features well from the blade trailing edge to about a chord downstream. The CFD tool loses accuracy as the distance from the trailing edge increases beyond a blade chord. The comparisons of noise predictions to rig test data showed that both the tone noise tool and the broadband noise tool demonstrated reasonable agreement with the data to the degree that these tools can reliably be used for design work. The section on rig airflow and inlet separation analysis describes the method used to determine total fan airflow, shows the good agreement of predicted boundary layer profiles to measured profiles, and shows separation angles of attack ranging from 29.5 to 27deg for the range of airflows tested. The results of the rotor parametric studies were significant in leading to the decision not to pursue a new rotor design for Fan 3 and resulted in recommendations to concentrate efforts on FEGV stator designs. The ensuing parametric study on FEGV designs showed the potential for 8 to 10 EPNdB noise reduction relative to the baseline.

  11. Visualization tool for human-machine interface designers

    Science.gov (United States)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  12. Tools and techniques for product design

    NARCIS (Netherlands)

    Lutters, Diederick; Houten, Fred J.A.M.; Bernard, Alain; Mermoz, Emmanuel; Schutte, Corné S.L.

    2014-01-01

    For product designers, tools and techniques are essential in driving the design cycle. Nevertheless, their employment usually is implicit, while passing over e.g. the design and project environments empowering their adequate use. This publication presents an overview of approaches in structuring and

  13. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  14. Second preliminary design of JAERI experimental fusion reactor (JXFR)

    International Nuclear Information System (INIS)

    Sako, Kiyoshi; Tone, Tatsuzo; Seki, Yasushi; Iida, Hiromasa; Yamato, Harumi

    1979-06-01

    Second preliminary design of a tokamak experimental fusion reactor to be built in the near future has been performed. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics radiation shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel recirculating system, reactor cooling and tritium recovery systems and maintenance scheme. Safety analyses of the reactor system have been also performed. This paper gives a brief description of the design as of January, 1979. The feasibility study of raising the power density has been also studied and is shown as appendix. (author)

  15. Design Tools for Reconfigurable Hardware in Orbit (RHinO)

    Science.gov (United States)

    French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian

    2004-01-01

    The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.

  16. Current Status of HCCR TBM Design for the Preliminary Design Phase Preparation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) TBM-set will be installed in the equatorial port no.18 of ITER inside the vacuum vessel directly facing the plasma. TBM-set refers the TBM and associated shield and connecting support. After the Conceptual Design Review (CDR), Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design is being updated for the preparation of the preliminary design phase. The manufacturability is considered based on the TBM-set model of the conceptual design phase. In this work, the design changes for each component of the TBM-set is described in comparison with the CD phase. The current design direction and details is presented. The first wall (FW) is component facing the plasma directly. This component should have a superior cooling performance. Present Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design was described in comparison with the CD model. The manufacturability was considered in current PD phase. The detained design of the connecting support will be determined reflecting the load assessment. The structural integrity will be confirmed with a various load condition.

  17. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    OpenAIRE

    Matha, Denis; Sandner, Frank; Molins i Borrell, Climent; Campos Hortigüela, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provide...

  18. Designer's unified cost model

    Science.gov (United States)

    Freeman, William T.; Ilcewicz, L. B.; Swanson, G. D.; Gutowski, T.

    1992-01-01

    A conceptual and preliminary designers' cost prediction model has been initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a data base and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. The approach, goals, plans, and progress is presented for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).

  19. Design Tool for 5-20 MW Direct Drive Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Argeseanu, Alin

    2014-01-01

    This paper reports on a machine design tool for large (5-10MW) direct drive electrical generator. The aim of the work is to construct a flexible calculation tool that enables the analysis of different ideas and concepts for generator design. The tool is intended for engineers that are involved...... in the design of wind turbine systems. The design tool comprises calculation modules that are kept as independent as possible from each other so that new machine geometries and types can be modelled by reusing, recombining and modifying the different modules. Choice of the most suitable candidates...

  20. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    International Nuclear Information System (INIS)

    Kappes, J.A.

    1999-01-01

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M andO 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS)

  1. Design of jigs, fixtures and press tools

    CERN Document Server

    Venkataraman, K

    2015-01-01

    Textbook presenting the fundamentals of tool design with special focus on jigs, fixtures and die design Covers sections on sheet metal forming processes; turning, grinding, broaching, welding and modular fixtures; principles of clamping; and an Introduction to Presses and Auxiliary Equipment Author has many years' experience in both academic and industrial environments, and presents this work in an easily-accessible style End of chapter questions and answers assist the learning process for both practicing tooling designers and engineers, and manufacturing en

  2. A preliminary design of mechanical device on industrial digital radiography equipment design

    International Nuclear Information System (INIS)

    Nur Khasan; Samuel Praptoyo

    2015-01-01

    A preliminary design of mechanical device on industrial digital radiography equipment has been done. this design is intended as a basis for the manufacture of complete facilities for the realization a prototype on industrial digital radiography equipment. the design and construction were carried out by paying attention to the general configuration of the basic design in which its mechanical design has several components with specific dimensions and heavy mass. this design consist of a main frame holder, flat panel detector support and hydraulic hand stacker for mounting the x-ray machine. this mechanical device design will then be fabricated to facilitate and assist work of digital radiographic retrieval. computer application programs sketch-up is used to draw this design and the analysis stress of autodesk inventor to analysis the strength construction design. the results of this design are the configuration drawing, sketch drawings of construction and the safety factor of construction design with a minimum value of 2.39 as well as a maximum value of 15 when to be simulated by the load 500 Kg which is 4 times of total workload. (author)

  3. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  4. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  5. Preliminary electrostatic and mechanical design of a SINGAP-MAMuG compatible accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Grando, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: luca.grando@igi.cnr.it; Dal Bello, S.; De Lorenzi, A. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Pilan, N. [DIE, Universita di Padova, Via Gradenigo 6A, I-35100 Padova (Italy); Rizzolo, A.; Zaccaria, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2009-06-15

    Each ITER NB injector shall provide 16.5 MW auxiliary power by accelerating a deuterium beam across a voltage of -1 MV. At present two possible alternatives for the accelerator are considered: the reference design, based on MAMuG electrostatic accelerator, where the total voltage is graded using five grids at intermediate steps of 200 kV, and the alternative concept, the SINGAP accelerator, for which the total voltage is held by one single gap. This paper focuses a preliminary feasibility study of integration of SINGAP accelerator grids into the support structure of a MAMuG type accelerator; the review or design of new electrostatic shields to improve the voltage withstanding capability of the system and the preliminary design of electrical and hydraulic connections routing from the bushing to the accelerator are also discussed. Electrostatic and mechanical analyses carried out to support the design are described in detail.

  6. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  7. AGC-1 Experiment and Final Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Bratton; Tim Burchell

    2006-08-01

    This report details the experimental plan and design as of the preliminary design review for the Advanced Test Reactor Graphite Creep-1 graphite compressive creep capsule. The capsule will contain five graphite grades that will be irradiated in the Advanced Test Reactor at the Idaho National Laboratory to determine the irradiation induced creep constants. Seven other grades of graphite will be irradiated to determine irradiated physical properties. The capsule will have an irradiation temperature of 900 C and a peak irradiation dose of 5.8 x 10{sup 21} n/cm{sup 2} [E > 0.1 MeV], or 4.2 displacements per atom.

  8. New tools for evaluating LQAS survey designs.

    Science.gov (United States)

    Hund, Lauren

    2014-02-15

    Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are provided for calculating the positive and negative predictive value of a design with respect to an underlying coverage distribution and the selected design parameters. These tools are illustrated using a data example from two consecutive LQAS surveys measuring Oral Rehydration Solution (ORS) preparation. Using the survey tools, the dependence of classification accuracy on benchmark selection and the width of the 'grey region' are clarified in the context of ORS preparation across seven supervision areas. Following the completion of an LQAS survey, estimation of the distribution of coverage across areas facilitates quantifying classification accuracy and can help guide intervention decisions.

  9. Review of SFR Design Safety using Preliminary Regulatory PSA Model

    International Nuclear Information System (INIS)

    Na, Hyun Ju; Lee, Yong Suk; Shin, Andong; Suh, Nam Duk

    2013-01-01

    The major objective of this research is to develop a risk model for regulatory verification of the SFR design, and thereby, make sure that the SFR design is adequate from a risk perspective. In this paper, the development result of preliminary regulatory PSA model of SFR is discussed. In this paper, development and quantification result of preliminary regulatory PSA model of SFR is discussed. It was confirmed that the importance PDRC and ADRC dampers is significant as stated in the result of KAERI PSA model. However, the importance can be changed significantly depending on assumption of CCCG and CCF factor of PDRC and ADRC dampers. SFR (sodium-cooled fast reactor) which is Gen-IV nuclear energy system, is designed to accord with the concept of stability, sustainability and proliferation resistance. KALIMER-600, which is under development in Korea, includes passive safety systems (e. g. passive reactor shutdown, passive residual heat removal, and etc.) as well as active safety systems. Risk analysis from a regulatory perspective is needed to support the regulatory body in its safety and licensing review for SFR (KALIMER-600). Safety issues should be identified in the early design phase in order to prevent the unexpected cost increase and delay of the SFR licensing schedule that may be caused otherwise

  10. Preliminary design characteristics of the RB fast-thermal core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.

    1989-01-01

    The 'RB' is zero power heavy water critical assembly designed in 1958 in Yugoslavia. The reactor operated using natural metal uranium, 2% enriched metal uranium, and 80% enriched UO 2 fuel of Soviet origin. A study of design of fast neutron fields began in 1976 and three fast neutron fields were designed up to 1983: the external neutron converter, the experimental fuel channel and the internal neutron converter, as the first step to fast-thermal coupled system. The preliminary design characteristics of the HERBE - a new fast - thermal core at the RB reactor are shown in this paper. (author)

  11. Analysis of design tool attributes with regards to sustainability benefits

    Science.gov (United States)

    Zain, S.; Ismail, A. F.; Ahmad, Z.; Adesta, E. Y. T.

    2018-01-01

    The trend of global manufacturing competitiveness has shown a significant shift from profit and customer driven business to a more harmonious sustainability paradigm. This new direction, which emphasises the interests of three pillars of sustainability, i.e., social, economic and environment dimensions, has changed the ways products are designed. As a result, the roles of design tools in the product development stage of manufacturing in adapting to the new strategy are vital and increasingly challenging. The aim of this paper is to review the literature on the attributes of design tools with regards to the sustainability perspective. Four well-established design tools are selected, namely Quality Function Deployment (QFD), Failure Mode and Element Analysis (FMEA), Design for Six Sigma (DFSS) and Design for Environment (DfE). By analysing previous studies, the main attributes of each design tool and its benefits with respect to each sustainability dimension throughout four stages of product lifecycle are discussed. From this study, it is learnt that each of the design tools contributes to the three pillars of sustainability either directly or indirectly, but they are unbalanced and not holistic. Therefore, the prospective of improving and optimising the design tools is projected, and the possibility of collaboration between the different tools is discussed.

  12. Gear cutting tools fundamentals of design and computation

    CERN Document Server

    Radzevich, Stephen P

    2010-01-01

    Presents the DG/K-based method of surface generation, a novel and practical mathematical method for designing gear cutting tools with optimal parameters. This book proposes a scientific classification for the various kinds of the gear machining meshes, discussing optimal designs of gear cutting tools.

  13. Preliminary design analysis of the ALT-II limiter for TEXTOR

    International Nuclear Information System (INIS)

    Koski, J.A.; Boyd, R.D.; Kempka, S.M.; Romig, A.D. Jr.; Smith, M.F.; Watson, R.D.; Whitley, J.B.; Conn, R.W.; Grotz, S.P.

    1983-01-01

    Installation of a large toroidal belt pump limiter, Advanced Limiter Test II (ALT-II), on the TEXTOR tokamak at Juelich, FRG is anticipated for early 1986. This paper discusses the preliminary mechanical design and materials considerations undertaken as part of the feasibility study phase for ALT-II

  14. Radiology workstation for mammography: preliminary observations, eyetracker studies, and design

    Science.gov (United States)

    Beard, David V.; Johnston, Richard E.; Pisano, Etta D.; Hemminger, Bradley M.; Pizer, Stephen M.

    1991-07-01

    For the last four years, the UNC FilmPlane project has focused on constructing a radiology workstation facilitating CT interpretations equivalent to those with film and viewbox. Interpretation of multiple CT studies was originally chosen because handling such large numbers of images was considered to be one of the most difficult tasks that could be performed with a workstation. The authors extend the FilmPlane design to address mammography. The high resolution and contrast demands coupled with the number of images often cross- compared make mammography a difficult challenge for the workstation designer. This paper presents the results of preliminary work with workstation interpretation of mammography. Background material is presented to justify why the authors believe electronic mammographic workstations could improve health care delivery. The results of several observation sessions and a preliminary eyetracker study of multiple-study mammography interpretations are described. Finally, tentative conclusions of what a mammographic workstation might look like and how it would meet clinical demand to be effective are presented.

  15. Design of a Cognitive Tool to Enhance Problemsolving Performance

    Science.gov (United States)

    Lee, Youngmin; Nelson, David

    2005-01-01

    The design of a cognitive tool to support problem-solving performance for external representation of knowledge is described. The limitations of conventional knowledge maps are analyzed in proposing the tool. The design principles and specifications are described. This tool is expected to enhance learners problem-solving performance by allowing…

  16. First preliminary design of an experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-09-01

    A preliminary design of a tokamak experimental fusion reactor to be built in the near future is under way. The goals of the reactor are to achieve reactor-level plasma conditions for a sufficiently long operation period and to obtain design, construction and operational experience for the main components of full-scale power reactors. This design covers overall reactor system including plasma characteristics, reactor structure, blanket neutronics, shielding, superconducting magnets, neutral beam injector, electric power supply system, fuel circulating system, reactor cooling system, tritium recovery system and maintenance scheme. The main design parameters are as follows: the reactor fusion power 100 MW, torus radius 6.75 m, plasma radius 1.5 m, first wall radius 1.75 m, toroidal magnet field on axis 6 T, blanket fertile material Li 2 O, coolant He, structural material 316SS and tritium breeding ratio 0.9. (auth.)

  17. REQUIREMENTS PROCESSING TOOLS AND THE BUILDING DESIGNERS MOTIVATION ON USE

    Directory of Open Access Journals (Sweden)

    Camila Pegoraro

    2017-04-01

    Full Text Available The successful development of projects requires, among other conditions, the ability to process requirements. In the construction literature, researchers have figured out that human difficulties was often at the root of Requirements Processing (RP problems throughout the design phases, and that the employment of tools could be a key factor for RP implementation. To check these outcomes and to look at how current practitioners behave in relation to the RP tools, an exploratory case study was conducted with a building design team from a public university. The aim of this paper was to investigate the perception of benefits and the motivation of designers regarding the RP tools. The results indicated that 42% of the participants are highly motivated to use new tools and that they have more interest in tools that deal directly with design activities than in those focused on data. Validation tools aroused interest as the most useful tools for designers. 66,7% of the participants mentioned that the tools can make the design process clearer, and that training and adaptation are crucial to promote acceptance and commitment to RP. The main contribution is the indication of gaps for further research and for tools improvement from the designers’ perspective.

  18. ICT and UD: Preliminary Study for Recommendations to Design Accessible University Courses.

    Science.gov (United States)

    Pagliara, Silvio Marcello; Sánchez Utgé, Marta; De Anna, Lucia

    2017-01-01

    Starting from the Universal Design in the educational context principles, the experiences gained during the FIRB project "Net@ccessibility" and the high-education courses for teachers' specialization on special education, this research will focus on preliminary studies in order to define the recommendations for designing accessible university courses.

  19. Status report on preliminary design activities for solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information presented provides status and progress on the development of solar heating and cooling systems. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities as part of the contract requirements.

  20. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  1. Developing a Conceptual Design Engineering Toolbox and its Tools

    Directory of Open Access Journals (Sweden)

    R. W. Vroom

    2004-01-01

    Full Text Available In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension.

  2. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  3. Representation stigma: Perceptions of tools and processes for design graphics

    Directory of Open Access Journals (Sweden)

    David Barbarash

    2016-12-01

    Full Text Available Practicing designers and design students across multiple fields were surveyed to measure preference and perception of traditional hand and digital tools to determine if common biases for an individual toolset are realized in practice. Significant results were found, primarily with age being a determinant in preference of graphic tools and processes; this finding demonstrates a hard line between generations of designers. Results show that while there are strong opinions in tools and processes, the realities of modern business practice and production gravitate towards digital methods despite a traditional tool preference in more experienced designers. While negative stigmas regarding computers remain, younger generations are more accepting of digital tools and images, which should eventually lead to a paradigm shift in design professions.

  4. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  5. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  6. IRIS: Proceeding Towards the Preliminary Design

    International Nuclear Information System (INIS)

    Carelli, M.; Miller, K.; Lombardi, C.; Todreas, N.; Greenspan, E.; Ninokata, H.; Lopez, F.; Cinotti, L.; Collado, J.; Oriolo, F.; Alonso, G.; Morales, M.; Boroughs, R.; Barroso, A.; Ingersoll, D.; Cavlina, N.

    2002-01-01

    The IRIS (International Reactor Innovative and Secure) project has completed the conceptual design phase and is moving towards completion of the preliminary design, scheduled for the end of 2002. Several other papers presented in this conference provide details on major aspects of the IRIS design. The three most innovative features which uniquely characterize IRIS are, in descending order of impact: 1. Safety-by-design, which takes maximum advantage of the integral configuration to eliminate from consideration some accidents, greatly lessen the consequence of other accident scenarios and decrease their probability of occurring; 2. Optimized maintenance, where the interval between maintenance shutdowns is extended to 48 months; and 3. Long core life, of at least four years without shuffling or partial refueling. Regarding feature 1, design and analyses will be supplemented by an extensive testing campaign to verify and demonstrate the performance of the integral components, individually as well as interactive systems. Test planning is being initiated. Test results will be factored into PRA analyses under an overall risk informed regulation approach, which is planned to be used in the IRIS licensing. Pre-application activities with NRC are also scheduled to start in mid 2002. Regarding feature 2, effort is being focused on advanced online diagnostics for the integral components, first of all the steam generators, which are the most critical component; several techniques are being investigated. Finally, a four year long life core design is well underway and some of the IRIS team members are examining higher enrichment, eight to ten year life cores which could be considered for reloads. (authors)

  7. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    Science.gov (United States)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  8. 3D Design Tools for Vacuum Electron Devices

    International Nuclear Information System (INIS)

    Levush, Baruch

    2003-01-01

    A reduction of development costs will have a significant impact on the total cost of the vacuum electron devices. Experimental testing cycles can be reduced or eliminated through the use of simulation-based design methodology, thereby reducing the time and cost of development. Moreover, by use of modern optimization tools for automating the process of seeking specific solution parameters and for studying dependencies of performance on parameters, new performance capabilities can be achieved, without resorting to expensive cycles of hardware fabrication and testing. Simulation-based-design will also provide the basis for sensitivity studies for determining the manufacturing tolerances associated with a particular design. Since material properties can have a critical effect on the performance of the vacuum electron devices, the design tools require precise knowledge of material characteristics, such as dielectric properties of the support rods, loss profile etc. Sensitivity studies must therefore include the effects of materials properties variation on device performance. This will provide insight for choosing the proper technological processes in order to achieve these tolerances, which is of great importance for achieving cost reduction. A successful design methodology depends on the development of accurate and efficient design tools with predictive capabilities. These design tools must be based on realistic models capable of high fidelity representation of geometry and materials, they must have optimization capabilities, and they must be easy to use

  9. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  10. Designers' unified cost model

    Science.gov (United States)

    Freeman, W.; Ilcewicz, L.; Swanson, G.; Gutowski, T.

    1992-01-01

    The Structures Technology Program Office (STPO) at NASA LaRC has initiated development of a conceptual and preliminary designers' cost prediction model. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state-of-the-art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a database and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. This paper presents the team members, approach, goals, plans, and progress to date for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).

  11. Design Tools for Integrated Asynchronous Electronic Circuits

    National Research Council Canada - National Science Library

    Martin, Alain

    2003-01-01

    ..., simulation, verification, at the logical and physical levels. Situs has developed a business model for the commercialization of the CAD tools, and has designed the prototype of the tool suite based on this business model and the Caltech approach...

  12. Designing decision support tools for targeted N-regulation

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard; Piil, Kristoffer; Andersen, Peter Stubkjær

    2017-01-01

    data model for land use data – the dNmark landscape model. Based on input data which is corrected and edited by workshop participants, the tool estimates the effect of potential land use scenarios on nutrient emissions. The tool was tested in 5 scenario workshops in case areas in Denmark in 2016...... in Denmark to develop and improve a functioning decision support tool for landscape scale N-management. The aim of the study is to evaluate how a decision support tool can best be designed in order to enable landscape scale strategic N-management practices. Methods: A prototype GIS-tool for capturing......, storing, editing, displaying and modelling landscape scale farming practices and associated emission consequences was developed. The tool was designed to integrate locally held knowledge with national scale datasets in live scenario situations through the implementation of a flexible, uniform and editable...

  13. Near-term hybrid vehicle program, phase 1. Appendix C: Preliminary design data package

    Science.gov (United States)

    1979-01-01

    The design methodology, the design decision rationale, the vehicle preliminary design summary, and the advanced technology developments are presented. The detailed vehicle design, the vehicle ride and handling and front structural crashworthiness analysis, the microcomputer control of the propulsion system, the design study of the battery switching circuit, the field chopper, and the battery charger, and the recent program refinements and computer results are presented.

  14. Internet MEMS design tools based on component technology

    Science.gov (United States)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  15. VLM Tool for IDS Integration

    Directory of Open Access Journals (Sweden)

    Cǎtǎlin NAE

    2010-03-01

    Full Text Available This paper is dedicated to a very specific type of analysis tool (VLM - Vortex Lattice Method to be integrated in a IDS - Integrated Design System, tailored for the usage of small aircraft industry. The major interest is to have the possibility to simulate at very low computational costs a preliminary set of aerodynamic characteristics for basic aerodynamic global characteristics (Lift, Drag, Pitching Moment and aerodynamic derivatives for longitudinal and lateral-directional stability analysis. This work enables fast investigations of the influence of configuration changes in a very efficient computational environment. Using experimental data and/or CFD information for a specific calibration of VLM method, reliability of the analysis may me increased so that a first type (iteration zero aerodynamic evaluation of the preliminary 3D configuration is possible. The output of this tool is basic state aerodynamic and associated stability and control derivatives, as well as a complete set of information on specific loads on major airframe components.The major interest in using and validating this type of methods is coming from the possibility to integrate it as a tool in an IDS system for conceptual design phase, as considered for development for CESAR project (IP, UE FP6.

  16. Hybrid Design Tools Intuit Interaction

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kyvsgaard Hansen, P.; Rasmussen, J.; Jorgensen, K.A.; Tollestrup, C.

    2012-01-01

    Non-linear, non-explicit, non-standard thinking and ambiguity in design tools has a great impact on enhancement of creativity during ideation and conceptualization. Tacit-tangible representation based on a mere idiosyncratic and individual approach combined with computational assistance allows the

  17. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    Science.gov (United States)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  18. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    International Nuclear Information System (INIS)

    TEDESCHI, D.J.

    2000-01-01

    This design package documents design, fabrication, and testing of new stinger tool design. Future revisions will document further development of the stinger tool and incorporate various developmental stages, and final test results

  19. Remediating a design tool

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Rädle, Roman; Klokmose, Clemens N.

    2018-01-01

    digital sticky notes setup. The paper contributes with a nuanced understanding of what happens when remediating a physical design tool into digital space, by emphasizing focus shifts and breakdowns caused by the technology, but also benefits and promises inherent in the digital media. Despite users......' preference for creating physical notes, handling digital notes on boards was easier and the potential of proper documentation make the digital setup a possible alternative. While the analogy in our remediation supported a transfer of learned handling, the users' experiences across technological setups impact......Sticky notes are ubiquitous in design processes because of their tangibility and ease of use. Yet, they have well-known limitations in professional design processes, as documentation and distribution are cumbersome at best. This paper compares the use of sticky notes in ideation with a remediated...

  20. Designer Modeling for Personalized Game Content Creation Tools

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2013-01-01

    preferences, goals and processes from their interaction with a computer-aided design tool, and suggests methods and domains within game development where such a model can be applied. We describe how designer modeling could be integrated with current work on automated and mixed-initiative content creation......With the growing use of automated content creation and computer-aided design tools in game development, there is potential for enhancing the design process through personalized interactions between the software and the game developer. This paper proposes designer modeling for capturing the designer’s......, and envision future directions which focus on personalizing the processes to a designer’s particular wishes....

  1. European passive plant program preliminary safety analyses to support system design

    International Nuclear Information System (INIS)

    Saiu, Gianfranco; Barucca, Luciana; King, K.J.

    1999-01-01

    In 1994, a group of European Utilities, together with Westinghouse and its Industrial Partner GENESI (an Italian consortium including ANSALDO and FIAT), initiated a program designated EPP (European Passive Plant) to evaluate Westinghouse Passive Nuclear Plant Technology for application in Europe. In the Phase 1 of the European Passive Plant Program which was completed in 1996, a 1000 MWe passive plant reference design (EP1000) was established which conforms to the European Utility Requirements (EUR) and is expected to meet the European Safety Authorities requirements. Phase 2 of the program was initiated in 1997 with the objective of developing the Nuclear Island design details and performing supporting analyses to start development of Safety Case Report (SCR) for submittal to European Licensing Authorities. The first part of Phase 2, 'Design Definition' phase (Phase 2A) was completed at the end of 1998, the main efforts being design definition of key systems and structures, development of the Nuclear Island layout, and performing preliminary safety analyses to support design efforts. Incorporation of the EUR has been a key design requirement for the EP1000 form the beginning of the program. Detailed design solutions to meet the EUR have been defined and the safety approach has also been developed based on the EUR guidelines. The present paper describes the EP1000 approach to safety analysis and, in particular, to the Design Extension Conditions that, according to the EUR, represent the preferred method for giving consideration to the Complex Sequences and Severe Accidents at the design stage without including them in the design bases conditions. Preliminary results of some DEC analyses and an overview of the probabilistic safety assessment (PSA) are also presented. (author)

  2. Program Design Report of the CNC Machine Tool(II)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H.

    2007-06-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  3. Program Design Report of the CNC Machine Tool(II)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H

    2007-06-15

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology.

  4. Program Design Report of the CNC Machine Tool(III)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.; Lee, I. B.; Yoon, K. B.; Lee, C. K.; Youm, J. H.

    2008-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  5. Program Design Report of the CNC Machine Tool (I)

    International Nuclear Information System (INIS)

    Kim, Jong Kiun; Youm, K. U.; Kim, K. S.

    2006-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  6. Program Design Report of the CNC Machine Tool(IV)

    International Nuclear Information System (INIS)

    Youm, Ki Un; Lee, I. B.; Youm, J. H.

    2009-09-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  7. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Nathan [Department of Computer Science, The College of New Jersey, Ewing, NJ (United States); Hendy, Oliver [Department of Biology, The College of New Jersey, Ewing, NJ (United States); Papamichail, Dimitris, E-mail: papamicd@tcnj.edu [Department of Computer Science, The College of New Jersey, Ewing, NJ (United States)

    2014-10-06

    Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.

  8. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    International Nuclear Information System (INIS)

    Gould, Nathan; Hendy, Oliver; Papamichail, Dimitris

    2014-01-01

    Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.

  9. Development of tools to manage the operational monitoring and pre-design of the NPP-LV cycle; Desarrollo de herramientas para administrar el seguimiento operativo y el pre-diseno del ciclo de la CLV

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Arredondo S, C.; Hernandez M, J. L.; Montes T, J. L.; Castillo M, A.; Ortiz S, J. J., E-mail: raul.perusquia@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    This paper presents the development of tools to facilitate the management so much, the operational monitoring of boiling water reactors (BWR) of the nuclear power plant of Laguna Verde (NPP-LV) through independent codes, and how to carry out the static calculations corresponding to process of optimized pre-design of the reference cycle next to current cycle. The progress and preliminary results obtained with the program SACal, developed at Instituto Nacional de Investigaciones Nucleares (ININ), central tool to achieve provide a management platform of the operational monitoring and pre-design of NPP-LV cycle are also described. The reached preliminary advances directed to get an Analysis center and automated design of fuel assembly cells are also presented, which together with centers or similar modules related with the fuel reloads form the key part to meet the targets set for the realization of a Management Platform of Nuclear Fuel of the NPP-LV. (Author)

  10. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  11. Preliminary study of magnet design for an SSC

    International Nuclear Information System (INIS)

    Taylor, C.E.; Meuser, R.B.

    1983-08-01

    The overriding design consideration for the SSC magnets is that cost of the facility be minimized; at 8 T, approximately 40 km of bending magnets is required for each ring of a 20 TeV collider. We present some results of a parametric study of two-in-one, iron-core magnets for an SSC. These results are necessarily preliminary in nature, and are intended only to show some of the trade-offs for a wide range of the variables. We show also some results for a reference design that produces 6.5 T in the aperture at 4.4 K for a coil inside diameter of 40 mm. It is not to be inferred that we have established this to be an optimum in any sense

  12. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  13. Preliminary design study of a large scale graphite oxidation loop

    International Nuclear Information System (INIS)

    Epel, L.G.; Majeski, S.J.; Schweitzer, D.G.; Sheehan, T.V.

    1979-08-01

    A preliminary design study of a large scale graphite oxidation loop was performed in order to assess feasibility and to estimate capital costs. The nominal design operates at 50 atmospheres helium and 1800 F with a graphite specimen 30 inches long and 10 inches in diameter. It was determined that a simple single walled design was not practical at this time because of a lack of commercially available thick walled high temperature alloys. Two alternative concepts, at reduced operating pressure, were investigated. Both were found to be readily fabricable to operate at 1800 F and capital cost estimates for these are included. A design concept, which is outside the scope of this study, was briefly considered

  14. Gradually including potential users: A tool to counter design exclusions.

    Science.gov (United States)

    Zitkus, Emilene; Langdon, Patrick; Clarkson, P John

    2018-01-01

    The paper describes an iterative development process used to understand the suitability of different inclusive design evaluation tools applied into design practices. At the end of this process, a tool named Inclusive Design Advisor was developed, combining data related to design features of small appliances with ergonomic task demands, anthropometric data and exclusion data. When auditing a new design the tool examines the exclusion that each design feature can cause, followed by objective recommendations directly related to its features. Interactively, it allows designers or clients to balance design changes with the exclusion caused. It presents the type of information that enables designers and clients to discuss user needs and make more inclusive design decisions. Copyright © 2017. Published by Elsevier Ltd.

  15. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  16. Designing the user experience of game development tools

    CERN Document Server

    Lightbown, David

    2015-01-01

    The Big Green Button My Story Who Should Read this Book? Companion Website and Twitter Account Before we BeginWelcome to Designing the User Experience of Game Development ToolsWhat Will We Learn in This Chapter?What Is This Book About?Defining User ExperienceThe Value of Improving the User Experience of Our ToolsParallels Between User Experience and Game DesignHow Do People Benefit From an Improved User Experience?Finding the Right BalanceWrapping UpThe User-Centered Design ProcessWhat Will We

  17. Design of a New Research Reactor: Preliminary Conceptual Design (3rd Year)

    International Nuclear Information System (INIS)

    Park, Cheol; Lee, B. C.; Chae, H. T. and others

    2006-01-01

    A research reactor design is a kind of integral engineering project and a process to obtain a concrete shape through several years of concept development, conceptual design, basic design and detail design. So it requires close cooperation in various areas as well as lots of manpower and cost. The overall process at each stage may be said to be similar except for some stage-specific works. In 2005 as last year of a concept development stage, investigations on the various concepts of the fuel, reactor structure and systems which can meet the requirements established. The requirements for the process systems and I and C systems have also been embodied. The major tasks planned at the early of 2005 have been performed for each area of reactor design as follows: Establishment of the fuel and reactor core concept, and the core analysis, Preliminary thermal-hydraulic and safety analyses for the conceptual cores, Establishment and improvement of analysis system, Concept developments of the reactor structures and major systems, Test and test plan to verify the developed concepts, International cooperation to establish the foundations for exporting a research reactor

  18. Current Mooring Design in Partner WECs and Candidates for Preliminary Analysis

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter

    This report is the combined report of Commercial Milestone "CM1: Design and Cost of Current Mooring Solutions of Partner WECs" and Milestone "M3: Mooring Solutions for Preliminary Analysis" of the EUDP project "Mooring Solutions for Large Wave Energy Converters". The report covers a description o...

  19. Development of hybrid lifecycle cost estimating tool (HLCET) for manufacturing influenced design tradeoff

    Science.gov (United States)

    Sirirojvisuth, Apinut

    In complex aerospace system design, making an effective design decision requires multidisciplinary knowledge from both product and process perspectives. Integrating manufacturing considerations into the design process is most valuable during the early design stages since designers have more freedom to integrate new ideas when changes are relatively inexpensive in terms of time and effort. Several metrics related to manufacturability are cost, time, and manufacturing readiness level (MRL). Yet, there is a lack of structured methodology that quantifies how changes in the design decisions impact these metrics. As a result, a new set of integrated cost analysis tools are proposed in this study to quantify the impacts. Equally important is the capability to integrate this new cost tool into the existing design methodologies without sacrificing agility and flexibility required during the early design phases. To demonstrate the applicability of this concept, a ModelCenter environment is used to develop software architecture that represents Integrated Product and Process Development (IPPD) methodology used in several aerospace systems designs. The environment seamlessly integrates product and process analysis tools and makes effective transition from one design phase to the other while retaining knowledge gained a priori. Then, an advanced cost estimating tool called Hybrid Lifecycle Cost Estimating Tool (HLCET), a hybrid combination of weight-, process-, and activity-based estimating techniques, is integrated with the design framework. A new weight-based lifecycle cost model is created based on Tailored Cost Model (TCM) equations [3]. This lifecycle cost tool estimates the program cost based on vehicle component weights and programmatic assumptions. Additional high fidelity cost tools like process-based and activity-based cost analysis methods can be used to modify the baseline TCM result as more knowledge is accumulated over design iterations. Therefore, with this

  20. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    Directory of Open Access Journals (Sweden)

    Nathan eGould

    2014-10-01

    Full Text Available Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de-novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.

  1. Topics in expert system design methodologies and tools

    CERN Document Server

    Tasso, C

    1989-01-01

    Expert Systems are so far the most promising achievement of artificial intelligence research. Decision making, planning, design, control, supervision and diagnosis are areas where they are showing great potential. However, the establishment of expert system technology and its actual industrial impact are still limited by the lack of a sound, general and reliable design and construction methodology.This book has a dual purpose: to offer concrete guidelines and tools to the designers of expert systems, and to promote basic and applied research on methodologies and tools. It is a coordinated coll

  2. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    Science.gov (United States)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  3. The future-essay as a design tool

    DEFF Research Database (Denmark)

    Thomsen, Bente Dahl; Kappel, Anne

    2007-01-01

    The aim of this paper is to present scenarios, photo-essays and future-essays as tools in communication, and as tools for clarifying the use of products in the future and the aesthetic qualities in the programme. In the design process, the programme is a description of the function, the condition...

  4. Conceptual design tool development for a Pb-Bi cooled reactor

    International Nuclear Information System (INIS)

    Lee, K. G.; Chang, S. H.; No, H. C.; Chunm, M. H.

    2000-01-01

    Conceptual design is generally ill-structured and mysterious problem solving. This leads the experienced experts to be still responsible for the most of synthesis and analysis task, which are not amenable to logical formulations in design problems. Especially because a novel reactor such as a Pb-Bi cooled reactor is going on a conceptual design stage, it will be very meaningful to develop the conceptual design tool. This tool consists of system design module with artificial intelligence, scaling module, and validation module. System design decides the optimal structure and the layout of a Pb-Bi cooled reactor, using design synthesis part and design analysis part. The designed system is scaled to be optimal with desired power level, and then the design basis accidents (Dbase) are analyzed in validation module. Design synthesis part contains the specific data for reactor components and the general data for a Pb-Bi cooled reactor. Design analysis part contains several design constraints for formulation and solution of a design problem. In addition, designer's intention may be externalized through emphasis on design requirements. For the purpose of demonstration, the conceptual design tool is applied to a Pb-Bi cooled reactor with 125 M Wth of power level. The Pb-Bi cooled reactor is a novel reactor concept in which the fission-generated heat is transferred from the primary coolant to the secondary coolant through a reactor vessel wall of a novel design. The Pb-Bi cooled reactor is to deliver 125 M Wth per module for 15 effective full power years without any on-site fuel handling. The conceptual design tool investigated the feasibility of a Pb-Bi cooled reactor. Application of the conceptual design tool will be, in detail, presented in the full paper. (author)

  5. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical re...

  6. Solar Central Receiver Prototype Heliostat. Volume II. Phase II planning (preliminary)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A currently planned DOE program will develop and construct a 10 MW/sub e/ Pilot Plant to demonstrate the feasibility and operational characteristics of Solar Central Receiver Power Generation. The field of heliostats is a major element of the Solar Central Receiver Power Generation system. The primary objective of the program described is to establish and verify the manufacturability, performance, durability, and maintenance requirements of the commercial plant heliostat design. End products of the 16 month effort include: (1) design, fabrication, and test of heliostats; (2) preliminary designs of manufacturing, assembly, installation, and maintenance processes for quantity production; (3) detailed design of critical tooling or other special equipment for such processes; (4) refined cost estimates for heliostats and maintenance; and (5) an updated commercial plant heliostat preliminary design. The program management and control system is discussed. (WHK)

  7. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  8. Interactive Block Games for Assessing Children's Cognitive Skills: Design and Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Kiju Lee

    2018-05-01

    Full Text Available Background: This paper presents design and results from preliminary evaluation of Tangible Geometric Games (TAG-Games for cognitive assessment in young children. The TAG-Games technology employs a set of sensor-integrated cube blocks, called SIG-Blocks, and graphical user interfaces for test administration and real-time performance monitoring. TAG-Games were administered to children from 4 to 8 years of age for evaluating preliminary efficacy of this new technology-based approach.Methods: Five different sets of SIG-Blocks comprised of geometric shapes, segmented human faces, segmented animal faces, emoticons, and colors, were used for three types of TAG-Games, including Assembly, Shape Matching, and Sequence Memory. Computational task difficulty measures were defined for each game and used to generate items with varying difficulty. For preliminary evaluation, TAG-Games were tested on 40 children. To explore the clinical utility of the information assessed by TAG-Games, three subtests of the age-appropriate Wechsler tests (i.e., Block Design, Matrix Reasoning, and Picture Concept were also administered.Results: Internal consistency of TAG-Games was evaluated by the split-half reliability test. Weak to moderate correlations between Assembly and Block Design, Shape Matching and Matrix Reasoning, and Sequence Memory and Picture Concept were found. The computational measure of task complexity for each TAG-Game showed a significant correlation with participants' performance. In addition, age-correlations on TAG-Game scores were found, implying its potential use for assessing children's cognitive skills autonomously.

  9. A Framework for the Application of Robust Design Methods and Tools

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Howard, Thomas J.

    2014-01-01

    can deliver are not always clear. Expectations to the output are sometimes misleading and imply the incorrect utilization of tools. A categorization of tools, methods and techniques typically associated with robust design methodology in the literature is provided in this paper in terms of purpose...... and deliverables of the individual tool or method. The majority of tools aims for optimizing an existing design solution or give an indication of how robust a design is, which requires a somewhat settled design. Furthermore, the categorization presented in this paper shows a lack in the methodology for tools...... of the existing tools. When to apply, what tool or method, for which purpose can be concluded. The paper also contributes with a framework for researchers to derive a generic landscape or database for RDM build upon the main premises and deliverables of each method....

  10. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  11. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    International Nuclear Information System (INIS)

    TEDESCHI, D.J.

    2000-01-01

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports

  12. Muon-catalyzed fusion experiment target and detector system. Preliminary design report

    International Nuclear Information System (INIS)

    Jones, S.E.; Watts, K.D.; Caffrey, A.J.; Walter, J.B.

    1982-03-01

    We present detailed plans for the target and particle detector systems for the muon-catalyzed fusion experiment. Requirements imposed on the target vessel by experimental conditions and safety considerations are delineated. Preliminary designs for the target vessel capsule and secondary containment vessel have been developed which meet these requirements. In addition, the particle detection system is outlined, including associated fast electronics and on-line data acquisition. Computer programs developed to study the target and detector system designs are described

  13. Interactive Graphics Analysis for Aircraft Design

    Science.gov (United States)

    Townsend, J. C.

    1983-01-01

    Program uses higher-order far field drag minimization. Computer program WDES WDEM preliminary aerodynamic design tool for one or two interacting, subsonic lifting surfaces. Subcritical wing design code employs higher-order far-field drag minimization technique. Linearized aerodynamic theory used. Program written in FORTRAN IV.

  14. Preliminary design of RDE feedwater pump impeller

    International Nuclear Information System (INIS)

    Sri Sudadiyo

    2018-01-01

    Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Experimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MW th , and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm. (author)

  15. Control room design and human factors using a virtual reality based tool for design, test and training

    International Nuclear Information System (INIS)

    Lirvall, Peter

    1998-02-01

    This report describes a user-centred approach to control room design adopted by IFE for the nuclear industry. The novelty of this approach is the development of a Control Room Philosophy, and the use of Virtual Reality (VR) technology as a tool in the design process, integrated with a specially developed Design Documentation System (DDS) and a process display prototyping tool PICASSO-3. The control room philosophy identifies all functional aspects of a control centre, to define the baseline principles and guidelines for the design. The use of VR technology enables end-users of the control room design (e.g. control room operators) to specify their preferred design of the new control room, and to replace the need for a physical mock-up to test and evaluate the proposed design. The DDS, integrated with the VR design tool, guides the control room operators, through a structured approach, to document the proposed design in a complete design specification. The VR tool, specially developed by IFE, is called the VR based Design, Test and Training tool (VR DTandT). It is not only intended to visualise the design, but also to test and evaluate the design. When the design is implemented, the same model is re-used as a VR based training simulator for operators. A special feature in the VR DTandT tool is that the verification and validation (VandV) tests, concerning human factors, are according to the regulative standards for nuclear control rooms

  16. Design of a Three-Axis Machine Tool Module

    National Research Council Canada - National Science Library

    Childers, Marshal

    2003-01-01

    This report documents the design improvement process of the components in a tool module for a three-axis machine tool, which occurred during the period of March-April 2002 in support of a critical U.S...

  17. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  18. International Assistance for Low-Emission Development Planning: Coordinated Low Emissions Assistance Network (CLEAN) Inventory of Activities and Tools--Preliminary Trends

    Energy Technology Data Exchange (ETDEWEB)

    Cox, S.; Benioff, R.

    2011-05-01

    The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.

  19. A Modeling Tool for Household Biogas Burner Flame Port Design

    Science.gov (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  20. Searching for Sentient Design Tools for Game Development

    DEFF Research Database (Denmark)

    Liapis, Antonios

    their generative algorithms) and to their human users (who must take all design decisions), respectively. This thesis argues that computers can be creative partners to human designers rather than mere slaves; game design tools can be aware of designer intentions, preferences and routines, and can accommodate them...... or even subvert them. This thesis presents Sentient Sketchbook, a tool for designing game level abstractions of different game genres, which assists the level designer as it automatically tests maps for playability constraints, evaluates and displays the map's gameplay properties and creates alternatives......Over the last twenty years, computer games have grown from a niche market targeting young adults to an important player in the global economy, engaging millions of people from different cultural backgrounds. As both the number and the size of computer games continue to rise, game companies handle...

  1. Decision support tools in conservation: a workshop to improve user-centred design

    Directory of Open Access Journals (Sweden)

    David Rose

    2017-09-01

    Full Text Available A workshop held at the University of Cambridge in May 2017 brought developers, researchers, knowledge brokers, and users together to discuss user-centred design of decision support tools. Decision support tools are designed to take users through logical decision steps towards an evidence-informed final decision. Although they may exist in different forms, including on paper, decision support tools are generally considered to be computer- (online, software or app-based. Studies have illustrated the potential value of decision support tools for conservation, and there are several papers describing the design of individual tools. Rather less attention, however, has been placed on the desirable characteristics for use, and even less on whether tools are actually being used in practice. This is concerning because if tools are not used by their intended end user, for example a policy-maker or practitioner, then its design will have wasted resources. Based on an analysis of papers on tool use in conservation, there is a lack of social science research on improving design, and relatively few examples where users have been incorporated into the design process. Evidence from other disciplines, particularly human-computer interaction research, illustrates that involving users throughout the design of decision support tools increases the relevance, usability, and impact of systems. User-centred design of tools is, however, seldom mentioned in the conservation literature. The workshop started the necessary process of bringing together developers and users to share knowledge about how to conduct good user-centred design of decision support tools. This will help to ensure that tools are usable and make an impact in conservation policy and practice.

  2. Improving design processes through structured reflection : a prototype software tool

    OpenAIRE

    Reymen, I.M.M.J.; Melby, E.

    2001-01-01

    A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype software tool and the design method are developed as part of the Ph.D. project of Isabelle Reymen. The goal of the design method is supporting designers with reflection on design processes in a systemati...

  3. A fast-track preliminary thermo-mechanical design of oil export pipelines from P-56 platform

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Rafael F.; Mendonca, Salete M. de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Franco, Luciano D.; Walker, Alastair; El-Gebaly, Sherif H. [INTECSEA, Rio de Janeiro, RJ (Brazil)

    2009-12-19

    The oil export pipelines of Marlim Sul field Module 3, Campus Basin, offshore Brazil, will operate in high pressure and temperature conditions, and will be laid on seabed crossing ten previously laid pipelines along the routes. In terms of thermo-mechanical design, these conditions turn out to be great challenges. In order to obtain initial results and recommendations for detail design, a preliminary thermo-mechanical design of pipelines was carried out as a fast-track design before the bid. This way, PETROBRAS can assess and emphasize the susceptibility of these lines to lateral buckling and pipeline walking behavior. Therefore, PETROBRAS can present a preliminary mitigation strategy for lateral buckling showing solutions based on displacement controlled criteria and by introducing buckle initiation along the pipeline using distribution buoyancy. Besides that, axial displacements and loads at the pipeline ends can be furnished also in order to provide a basis for the detailed design. The work reported in this paper follows the SAFEBUCK JIP methodology and recommendation, which were used to determine the allowable strain and maximum allowable VAS (Virtual Anchor Spacing) considered in the buckling mitigation strategy. The paper presents also the formation of uncontrolled buckles on the seabed and the propensity for pipeline walking in its sections between buckles. The buckling mitigation strategy established in this preliminary design confirms that the oil pipeline specifications are adequate to maintain integrity during design life. (author)

  4. OSU TOMF Program Site Selection and Preliminary Concept Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Spadling, Steve [Oklahoma State Univ., Stillwater, OK (United States)

    2012-05-10

    The purpose of this report is to confirm the programmatic requirements for the new facilities, identify the most appropriate project site, and develop preliminary site and building concepts that successfully address the overall project goals and site issues. These new facilities will be designed to accommodate the staff, drivers and maintenance requirements for the future mixed fleet of passenger vehicles, Transit Style Buses and School Buses.

  5. Towards a preliminary design of the ITER plasma control system architecture

    International Nuclear Information System (INIS)

    Treutterer, W.; Rapson, C.J.; Raupp, G.; Snipes, J.; Vries, P. de; Winter, A.; Humphreys, D.A.; Walker, M.; Tommasi, G. de; Cinque, M.; Bremond, S.; Moreau, P.; Nouailletas, R.; Felton, R.

    2017-01-01

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  6. Towards a preliminary design of the ITER plasma control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Rapson, C.J.; Raupp, G. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Snipes, J.; Vries, P. de; Winter, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Humphreys, D.A.; Walker, M. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Tommasi, G. de; Cinque, M. [CREATE/Università di Napoli Federico II, Napoli (Italy); Bremond, S.; Moreau, P.; Nouailletas, R. [Association CEA pour la Fusion Contrôlée, CEA Cadarache, 13108 St Paul les Durance (France); Felton, R. [CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire, OX14 3DB (United Kingdom)

    2017-02-15

    Highlights: • ITER control requirements and use scenarios for initial plasma operation have been analysed. • Basic choices from conceptual design could be confirmed. • Architectural design considers dynamic structure changes. • All PCS components are integrated in an exception handling hierarchy. - Abstract: Design of the ITER plasma control system is proceeding towards its next – preliminary design – stage. During the conceptual design in 2013 an overall assessment of high-level control tasks and their relationships has been conducted. The goal of the preliminary design is to show, that a reasonable implementation of the proposed concepts exists which fulfills the high-level requirements and is suitable for realistic use cases. This verification is conducted with focus on the concrete use cases of early operation and first plasma, since these phases are mandatory for ITER startup. In particular, detailed control requirements and functions for commissioning and first plasma operation including breakdown, burn-through and ramp-up in L-mode, as well as for planned or exceptional shutdown are identified. Control functions related to those operational phases and the underlying control system architecture are modeled. The goal is to check whether the flexibility of the conceptual architectural approach is adequate also in consideration of the more elaborate definitions for control functions and their interactions. In addition, architecture shall already be prepared for extension to H-mode operation and burn-control, even if the related control functions are only roughly defined at the moment. As a consequence, the architectural design is amended where necessary and converted into base components and infrastructure services allowing to deploy control and exception handling algorithms for the concrete first-plasma operation.

  7. Design of automation tools for management of descent traffic

    Science.gov (United States)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational

  8. Designing Online Assessment Tools for Disengaged Youth

    Science.gov (United States)

    Brader, Andy; Luke, Allan; Klenowski, Val; Connolly, Stephen; Behzadpour, Adib

    2014-01-01

    This article reports on the development of online assessment tools for disengaged youth in flexible learning environments. Sociocultural theories of learning and assessment and Bourdieu's sociological concepts of capital and exchange were used to design a purpose-built content management system. This design experiment engaged participants in…

  9. Integrated Design Tools for Embedded Control Systems

    NARCIS (Netherlands)

    Jovanovic, D.S.; Hilderink, G.H.; Broenink, Johannes F.; Karelse, F.

    2001-01-01

    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded

  10. A two-step approach for the preliminary evaluation of the thermal-hydraulics and safety of the ELSY open square core design

    International Nuclear Information System (INIS)

    Meloni, Paride; Bandini, Giacomino; Polidori, Massimiliano; Cervone, Antonio; Manservisi, Sandro

    2009-01-01

    Several innovative solutions for a liquid metal fast reactor design have been investigated in the EURATOM Sixth Framework Programme and an open-assembly core design for the ELSY (European Lead-cooled System) reactor has been proposed by ENEA. The development of this new reactor, based on innovative neutronic and safety considerations, requires a new approach to the thermal-hydraulic (T/H) core design. In this paper a new two-step approach of the T/H analysis for this open-assembly core is presented and, in particular is used for the evaluation of the preliminary core design of a 1500 MW lead fast reactor with open square lattice and three fuel radial zones with different levels of enrichment. In the first step a preliminary thermal-hydraulic and safety evaluation of the core neutronic design is investigated by using a one-dimensional RELAP5 model for independent channel analysis. Then two and three-dimensional effects are taken into account by using a dedicated tool for the evaluation of assembly mixing effects. The RELAP5 model, based on pressure loss and heat transfer correlations available for heavy liquid metal flows in rod bundle, consists of completely independent assemblies and therefore it can be used for a conservative evaluation of the thermal-hydraulics of the core reactor. Due to the open-lattice configuration, the two and three-dimensional effects are important and they are taken into account by using a simplified three-dimensional numerical model of an open square lattice reactor core, developed with the purpose of analyzing the whole core behavior. The numerical simulation is performed at assembly length level taking into account the local fluctuations of turbulent viscosity and energy exchange coefficients at sub-channel level through transfer operators based on parametric coefficients. A preliminary evaluation of the mixing effects between assembly flows on the temperature field has been performed by using an average assembly turbulent viscosity

  11. Preliminary RAMI analysis of WCLL blanket and breeder systems

    International Nuclear Information System (INIS)

    Arroyo, Jose Manuel; Brown, Richard; Harman, Jon; Rosa, Elena; Ibarra, Angel

    2015-01-01

    Highlights: • Preliminary RAMI model for WCLL has been developed. • Critical parts and parameters influencing WCLL availability have been focused. • Necessary developments of tools/models to represent system performance have been identified. - Abstract: DEMO will be a prototype fusion reactor designed to prove the capability to produce electrical power in a commercially acceptable way. One of the key factors in that endeavor is the achievement of certain level of plant availability. Therefore, RAMI (Reliability, Availability, Maintainability and Inspectability) will be a key element in the engineering development of DEMO. Some studies have been started so as to develop the tools and models to assess different design alternatives from RAMI point of view. The main objective of these studies is to be able to evaluate the influence of different parameters on DEMO availability and to focus the critical parts that should be further researched and improved in order to develop a high-availability oriented DEMO design. A preliminary RAMI analysis of the Water Cooled Lithium-Lead (WCLL) blanket and breeder concept for DEMO has been developed. The amounts of single elements that may fail (e.g. more than 180,000 C-shaped tubes) and the mean down time associated to failures inside the vacuum vessel (around 3 months) have been highlighted as the critical parameters influencing the system availability. On the other hand, the necessary developments of tools/models to better represent the system performance have been identified and proposed for future work.

  12. Preliminary RAMI analysis of WCLL blanket and breeder systems

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, Jose Manuel, E-mail: josemanuel.arroyo@ciemat.es [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Brown, Richard [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon (United Kingdom); Harman, Jon [EFDA Close Support Unit, Garching (Germany); Rosa, Elena; Ibarra, Angel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2015-10-15

    Highlights: • Preliminary RAMI model for WCLL has been developed. • Critical parts and parameters influencing WCLL availability have been focused. • Necessary developments of tools/models to represent system performance have been identified. - Abstract: DEMO will be a prototype fusion reactor designed to prove the capability to produce electrical power in a commercially acceptable way. One of the key factors in that endeavor is the achievement of certain level of plant availability. Therefore, RAMI (Reliability, Availability, Maintainability and Inspectability) will be a key element in the engineering development of DEMO. Some studies have been started so as to develop the tools and models to assess different design alternatives from RAMI point of view. The main objective of these studies is to be able to evaluate the influence of different parameters on DEMO availability and to focus the critical parts that should be further researched and improved in order to develop a high-availability oriented DEMO design. A preliminary RAMI analysis of the Water Cooled Lithium-Lead (WCLL) blanket and breeder concept for DEMO has been developed. The amounts of single elements that may fail (e.g. more than 180,000 C-shaped tubes) and the mean down time associated to failures inside the vacuum vessel (around 3 months) have been highlighted as the critical parameters influencing the system availability. On the other hand, the necessary developments of tools/models to better represent the system performance have been identified and proposed for future work.

  13. Computer-aided design in power engineering. Application of software tools

    International Nuclear Information System (INIS)

    Stojkovic, Zlatan

    2012-01-01

    Demonstrates the use software tools in the practice of design in the field of power systems. Presents many applications in the design in the field of power systems. Useful for educative purposes and practical work. This textbooks demonstrates the application of software tools in solving a series of problems from the field of designing power system structures and systems. It contains four chapters: The first chapter leads the reader through all the phases necessary in the procedures of computer aided modeling and simulation. It guides through the complex problems presenting on the basis of eleven original examples. The second chapter presents application of software tools in power system calculations of power systems equipment design. Several design example calculations are carried out using engineering standards like MATLAB, EMTP/ATP, Excel and Access, AutoCAD and Simulink. The third chapters focuses on the graphical documentation using a collection of software tools (AutoCAD, EPLAN, SIMARIS SIVACON, SIMARIS DESIGN) which enable the complete automation of the development of graphical documentation of a power systems. In the fourth chapter, the application of software tools in the project management in power systems is discussed. Here, the emphasis is put on the standard software MS Excel and MS Project.

  14. Computer-aided design in power engineering. Application of software tools

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovic, Zlatan

    2012-07-01

    Demonstrates the use software tools in the practice of design in the field of power systems. Presents many applications in the design in the field of power systems. Useful for educative purposes and practical work. This textbooks demonstrates the application of software tools in solving a series of problems from the field of designing power system structures and systems. It contains four chapters: The first chapter leads the reader through all the phases necessary in the procedures of computer aided modeling and simulation. It guides through the complex problems presenting on the basis of eleven original examples. The second chapter presents application of software tools in power system calculations of power systems equipment design. Several design example calculations are carried out using engineering standards like MATLAB, EMTP/ATP, Excel and Access, AutoCAD and Simulink. The third chapters focuses on the graphical documentation using a collection of software tools (AutoCAD, EPLAN, SIMARIS SIVACON, SIMARIS DESIGN) which enable the complete automation of the development of graphical documentation of a power systems. In the fourth chapter, the application of software tools in the project management in power systems is discussed. Here, the emphasis is put on the standard software MS Excel and MS Project.

  15. Keep IT Real : On Tools, Emotion, Cognition and Intentionality in Design

    NARCIS (Netherlands)

    Wendrich, R. E.; Kruiper, R.; Marjanović, D.; M., Štorga; Pavković, N.; Bojčetić, N.; Škec, S.

    2016-01-01

    Keep IT real, create, build, and develop design tools that support designers during the early phases of design processing. This paper investigates how, and whether, current technology can afford real-time interaction and affective computing in a HDT(E) design tool that integrates and blends

  16. Program Design Report of the CNC Machine Tool(V-1)

    International Nuclear Information System (INIS)

    Youm, Ki Un; Moon, J. S.; Lee, I. B.; Youn, J. H.

    2010-08-01

    The application of CNC machine tool being widely expanded according to variety of machine work method and rapid promotion of machine tool, cutting tool, for high speed efficient machine work. In order to conduct of the project of manufacture and maintenance of laboratory equipment, production design and machine work technology are continually developed, especially the application of CNC machine tool is very important for the improvement of productivity, quality and clearing up a manpower shortage. We publish technical report which it includes CNC machine tool program and drawing, it contributes to the systematic development of CNC program design and machine work technology

  17. Prototypical spent fuel rod consolidation equipment preliminary design report: Volume 2, Drawings

    International Nuclear Information System (INIS)

    1986-01-01

    This volume consists of 65 E size drawings and 4 sketches of the NUS spent fuel rod consolidation equipment. The drawings have been grouped into categories; a detailed list of the drawings is included. The sketches prepared during the preliminary design process have been included

  18. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  19. Tool and Fixture Design

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Mark W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-28

    In a manufacturing process, a need is identified and a product is created to fill this need. While design and engineering of the final product is important, the tools and fixtures that aid in the creation of the final product are just as important, if not more so. Power supplies assembled at the TA-55 PF-5 have been designed by an excellent engineering team. The task in PF-5 now is to ensure that all steps of the assembly and manufacturing process can be completed safely, reliably, and in a quality repeatable manner. One of these process steps involves soldering fine wires to an electrical connector. During the process development phase, the method of soldering included placing the power supply in a vice in order to manipulate it into a position conducive to soldering. This method is unacceptable from a reliability, repeatability, and ergonomic standpoint. To combat these issues, a fixture was designed to replace the current method. To do so, a twelve step engineering design process was used to create the fixture that would provide a solution to a multitude of problems, and increase the safety and efficiency of production.

  20. The Development of a Tool for Sustainable Building Design:

    DEFF Research Database (Denmark)

    Tine Ring Hansen, Hanne; Knudstrup, Mary-Ann

    2009-01-01

    for sustainable buildings, as well as, an analysis of the relationship between the different approaches (e.g. low-energy, environmental, green building, solar architecture, bio-climatic architecture etc.) to sustainable building design and these indicators. The paper furthermore discusses how sustainable......The understanding of sustainable building has changed over time along with the architectural interpretation of sustainability. The paper presents the results of a comparative analysis of the indicators found in different internationally acclaimed and Danish certification schemes and standards...... architecture will gain more focus in the coming years, thus, establishing the need for the development of a new tool and methodology, The paper furthermore describes the background and considerations involved in the development of a design support tool for sustainable building design. A tool which considers...

  1. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  2. Automatic differentiation as a tool in engineering design

    Science.gov (United States)

    Barthelemy, Jean-Francois; Hall, Laura E.

    1992-01-01

    Automatic Differentiation (AD) is a tool that systematically implements the chain rule of differentiation to obtain the derivatives of functions calculated by computer programs. AD is assessed as a tool for engineering design. The forward and reverse modes of AD, their computing requirements, as well as approaches to implementing AD are discussed. The application of two different tools to two medium-size structural analysis problems to generate sensitivity information typically necessary in an optimization or design situation is also discussed. The observation is made that AD is to be preferred to finite differencing in most cases, as long as sufficient computer storage is available; in some instances, AD may be the alternative to consider in lieu of analytical sensitivity analysis.

  3. New tools for evaluating LQAS survey designs

    OpenAIRE

    Hund, Lauren

    2014-01-01

    Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are pr...

  4. Nose-to-tail analysis of an airbreathing hypersonic vehicle using an in-house simplified tool

    Science.gov (United States)

    Piscitelli, Filomena; Cutrone, Luigi; Pezzella, Giuseppe; Roncioni, Pietro; Marini, Marco

    2017-07-01

    SPREAD (Scramjet PREliminary Aerothermodynamic Design) is a simplified, in-house method developed by CIRA (Italian Aerospace Research Centre), able to provide a preliminary estimation of the performance of engine/aeroshape for airbreathing configurations. It is especially useful for scramjet engines, for which the strong coupling between the aerothermodynamic (external) and propulsive (internal) flow fields requires real-time screening of several engine/aeroshape configurations and the identification of the most promising one/s with respect to user-defined constraints and requirements. The outcome of this tool defines the base-line configuration for further design analyses with more accurate tools, e.g., CFD simulations and wind tunnel testing. SPREAD tool has been used to perform the nose-to-tail analysis of the LAPCAT-II Mach 8 MR2.4 vehicle configuration. The numerical results demonstrate SPREAD capability to quickly predict reliable values of aero-propulsive balance (i.e., net-thrust) and aerodynamic efficiency in a pre-design phase.

  5. Robust Unconventional Interaction Design and Hybrid Tool Environments for Design and Engineering Processes

    NARCIS (Netherlands)

    Wendrich, Robert E.; Kruiper, Ruben

    2017-01-01

    This paper investigates how and whether existing or current design tools, assist and support designers and engineers in the early-phases of ideation and conceptualization stages of design and engineering processes. The research explores how fluidly and/or congruously technology affords cognitive,

  6. Notification: Preliminary Research on EPA's Design for the Environment Product Labeling Program OIG

    Science.gov (United States)

    Project #OPE-FY14-4012, November 06, 2013. The Office of Inspector General (OIG) is starting preliminary research on the U.S. Environmental Protection Agency’s (EPA’s) Design for the Environment (DfE) Product Labeling Program.

  7. Designing tools for oil exploration using nuclear modeling

    Science.gov (United States)

    Mauborgne, Marie-Laure; Allioli, Françoise; Manclossi, Mauro; Nicoletti, Luisa; Stoller, Chris; Evans, Mike

    2017-09-01

    When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  8. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    International Nuclear Information System (INIS)

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs

  9. Computer- Aided Design in Power Engineering Application of Software Tools

    CERN Document Server

    Stojkovic, Zlatan

    2012-01-01

    This textbooks demonstrates the application of software tools in solving a series of problems from the field of designing power system structures and systems. It contains four chapters: The first chapter leads the reader through all the phases necessary in the procedures of computer aided modeling and simulation. It guides through the complex problems presenting on the basis of eleven original examples. The second chapter presents  application of software tools in power system calculations of power systems equipment design. Several design example calculations are carried out using engineering standards like MATLAB, EMTP/ATP, Excel & Access, AutoCAD and Simulink. The third chapters focuses on the graphical documentation using a collection of software tools (AutoCAD, EPLAN, SIMARIS SIVACON, SIMARIS DESIGN) which enable the complete automation of the development of graphical documentation of a power systems. In the fourth chapter, the application of software tools in the project management in power systems ...

  10. The Square Kilometre Array Science Data Processor. Preliminary compute platform design

    International Nuclear Information System (INIS)

    Broekema, P.C.; Nieuwpoort, R.V. van; Bal, H.E.

    2015-01-01

    The Square Kilometre Array is a next-generation radio-telescope, to be built in South Africa and Western Australia. It is currently in its detailed design phase, with procurement and construction scheduled to start in 2017. The SKA Science Data Processor is the high-performance computing element of the instrument, responsible for producing science-ready data. This is a major IT project, with the Science Data Processor expected to challenge the computing state-of-the art even in 2020. In this paper we introduce the preliminary Science Data Processor design and the principles that guide the design process, as well as the constraints to the design. We introduce a highly scalable and flexible system architecture capable of handling the SDP workload

  11. Preliminary design of offshore wind turbine support structures : The importance of proper mode shape estimation

    NARCIS (Netherlands)

    Van der Male, P.

    2013-01-01

    Offshore wind turbines are highly exposed to timevarying loads. For support structures, estimation of the fatigue damage during the lifetime of the structure is an essential design aspect. This already applies for the preliminary design stage. In determining the dynamic amplification in the

  12. Improving Tools and Processes in Mechanical Design Collaboration

    Science.gov (United States)

    Briggs, Clark

    2009-01-01

    Cooperative product development projects in the aerospace and defense industry are held hostage to high cost and risk due to poor alignment of collaborative design tools and processes. This impasse can be broken if companies will jointly develop implementation approaches and practices in support of high value working arrangements. The current tools can be used to better advantage in many situations and there is reason for optimism that tool vendors will provide significant support.

  13. Software tools for the particle accelerator designs

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1988-01-01

    The software tools used for the designs of the particle accelerators are going to be implemented on the small computer systems, such as the personal computers or the work stations. These are called from the interactive environment like a window application program. The environment contains the small expert system to make easy to select the design parameters. (author)

  14. Georgetown University Integrated Community Energy System (GU-ICES). Phase III, Stage II. Preliminary design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    Results are presented for two elements in the Georgetown University ICES program - the installation of a 2500-kW backpressure steam-turbine generator within a new extension to the heating and cooling plant (cogeneration) and the provision of four additional ash silos for the university's atmospheric fluidized-bed boiler plant (added storage scheme). The preliminary design and supporting documentation for the work items and architectural drawings are presented. Section 1 discusses the basis for the report, followed by sections on: feasibility analysis update; preliminary design documents; instrumentation and testing; revised work management plan; and appendices including outline constructions, turbine-generator prepurchase specification, design calculations, cost estimates, and Potomac Electric Company data. (MCW)

  15. A new design of automatic vertical drilling tool

    Directory of Open Access Journals (Sweden)

    Yanfeng Ma

    2015-09-01

    Full Text Available In order to effectively improve penetration rates and enhance wellbore quality for vertical wells, a new Automatic Vertical Drilling Tool (AVDT based on Eccentric Braced Structure (EBS is designed. Applying operating principle of rotary steering drilling, AVDT adds offset gravity block automatic induction inclination mechanism. When hole straightening happens, tools take essentric moment to be produced by gravity of offset gravity lock to control the bearing of guide force, so that well straightening is achieved. The normal tool's size of the AVDT is designed as 215.9 mm,other major components' sizes are worked out by the result of theoretical analysis, including the offset angle of EBS. This paper aims to introduce the structure, operating principle, theoretical analysis and describe the key components' parameters setting of the AVDT.

  16. A study on the development plan and preliminary design of proton accelerator for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Choi, B H; Park, C K; Chung, K S. and others

    1997-11-01

    A study on the development plan and preliminary design for the realisation of high current proton accelerator to be used as an essential component for the R and D of accelerator-driven system (ADS) for energy production and transmutation of long-lived radionuclides. Various fields of application of the accelerator such as basic nuclear physics, material science, biology, high energy physics, medicine, etc. were also investigated. From the preliminary design study, 1 GeV (20 mA) - Linac is required for the purposed of transmutation and energy production. Specification of injector, RFQ, CCTL and SL was also suggested. For the case study, a duoplasmatron ion source was designed by KAERI and fabricated by a domestic manufacturer, and the performance was also tested. (author). 71 refs., 61 tabs., 131 figs

  17. A Tool Supporting Collaborative Data Analytics Workflow Design and Management

    Science.gov (United States)

    Zhang, J.; Bao, Q.; Lee, T. J.

    2016-12-01

    Collaborative experiment design could significantly enhance the sharing and adoption of the data analytics algorithms and models emerged in Earth science. Existing data-oriented workflow tools, however, are not suitable to support collaborative design of such a workflow, to name a few, to support real-time co-design; to track how a workflow evolves over time based on changing designs contributed by multiple Earth scientists; and to capture and retrieve collaboration knowledge on workflow design (discussions that lead to a design). To address the aforementioned challenges, we have designed and developed a technique supporting collaborative data-oriented workflow composition and management, as a key component toward supporting big data collaboration through the Internet. Reproducibility and scalability are two major targets demanding fundamental infrastructural support. One outcome of the project os a software tool, supporting an elastic number of groups of Earth scientists to collaboratively design and compose data analytics workflows through the Internet. Instead of recreating the wheel, we have extended an existing workflow tool VisTrails into an online collaborative environment as a proof of concept.

  18. Designing Tools for Supporting User Decision-Making in e-Commerce

    Science.gov (United States)

    Sutcliffe, Alistair; Al-Qaed, Faisal

    The paper describes a set of tools designed to support a variety of user decision-making strategies. The tools are complemented by an online advisor so they can be adapted to different domains and users can be guided to adopt appropriate tools for different choices in e-commerce, e.g. purchasing high-value products, exploring product fit to users’ needs, or selecting products which satisfy requirements. The tools range from simple recommenders to decision support by interactive querying and comparison matrices. They were evaluated in a scenario-based experiment which varied the users’ task and motivation, with and without an advisor agent. The results show the tools and advisor were effective in supporting users and agreed with the predictions of ADM (adaptive decision making) theory, on which the design of the tools was based.

  19. Preliminary Design Progress of the HCCR TBM for ITER testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Park, Sung Dae; Kim, Dong Jun; Jin, Hyung Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea has designed a helium cooled ceramic reflector (HCCR) test blanket module (TBM) including the TBM-shield, which is called the TBM-set, to be tested in ITER, a Nuclear Facility INB-174. Through the conceptual design review (CDR), its design integrity was successfully demonstrated at the conceptual design level at various loads. After CD approval, preliminary design (PD) was started and the progress is introduced in the present study. After PD review and approval, final design and then fabrication will be started. The main purpose of PD is to design the TBM-set according to the fabrication aspect and more detailed design for interfaces with ITER machine, such as installed TBM port plug and frame. With these considering, PD of TBM-set was started. PD for HCCR TBM has been performed (so far v0.24) from the CD model. FW, BZ, SW, TES/NAS, BM, and connecting support design were performed through the analyses, if necessary. The manufacturability was the main concern for PD model development. Thermal hydraulic analysis will be performed to evaluate the temperature and pressure drop in TBM-set. The structural integrity of TBM-set will be confirmed with combined various loads condition.

  20. Ultraviolet Free Electron Laser Facility preliminary design report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (ed.)

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  1. Ultraviolet Free Electron Laser Facility preliminary design report

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA)

  2. Design principles of a web interface for monitoring tools

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Fantinel, S; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A

    2008-01-01

    A monitoring tool of a complex Grid system can gather a huge amount of information that have to be presented to the users in the most comprehensive way. Moreover different types of consumers could be interested in inspecting and analyzing different subsets of data. The main goal in designing a Web interface for the presentation of monitoring information is to organize the huge amount of data in a simple, user-friendly and usable structure. One more problem is to consider different approaches, skills and interests that all the possible categories of users have in looking for the desired information. Starting from the Information Architecture guidelines for the Web, it is possible to design Web interfaces towards a closer user experience and to deal with an advanced user interaction through the implementation of many Web standard technologies. In this paper, we will present a number of principles for the design of Web interface for monitoring tools that provide a wider, richer range of possibilities for what concerns the user interaction. These principles are based on an extensive review of the current literature in Web design and on the experience with the development of the GridICE monitoring tool. The described principles can drive the evolution of the Web interface of Grid monitoring tools

  3. Software tools to aid Pascal and Ada program design

    Energy Technology Data Exchange (ETDEWEB)

    Jankowitz, H.T.

    1987-01-01

    This thesis describes a software tool which analyses the style and structure of Pascal and Ada programs by ensuring that some minimum design requirements are fulfilled. The tool is used in much the same way as a compiler is used to teach students the syntax of a language, only in this case issues related to the design and structure of the program are of paramount importance. The tool operates by analyzing the design and structure of a syntactically correct program, automatically generating a report detailing changes that need to be made in order to ensure that the program is structurally sound. The author discusses how the model gradually evolved from a plagiarism detection system which extracted several measurable characteristics in a program to a model that analyzed the style of Pascal programs. In order to incorporate more-sophistical concepts like data abstraction, information hiding and data protection, this model was then extended to analyze the composition of Ada programs. The Ada model takes full advantage of facilities offered in the language and by using this tool the standard and quality of written programs is raised whilst the fundamental principles of program design are grasped through a process of self-tuition.

  4. Computing tools for implementing standards for single-case designs.

    Science.gov (United States)

    Chen, Li-Ting; Peng, Chao-Ying Joanne; Chen, Ming-E

    2015-11-01

    In the single-case design (SCD) literature, five sets of standards have been formulated and distinguished: design standards, assessment standards, analysis standards, reporting standards, and research synthesis standards. This article reviews computing tools that can assist researchers and practitioners in meeting the analysis standards recommended by the What Works Clearinghouse: Procedures and Standards Handbook-the WWC standards. These tools consist of specialized web-based calculators or downloadable software for SCD data, and algorithms or programs written in Excel, SAS procedures, SPSS commands/Macros, or the R programming language. We aligned these tools with the WWC standards and evaluated them for accuracy and treatment of missing data, using two published data sets. All tools were tested to be accurate. When missing data were present, most tools either gave an error message or conducted analysis based on the available data. Only one program used a single imputation method. This article concludes with suggestions for an inclusive computing tool or environment, additional research on the treatment of missing data, and reasonable and flexible interpretations of the WWC standards. © The Author(s) 2015.

  5. Configuration design and accuracy analysis of a novel magneto rheological finishing machine tool for concave surfaces with small radius of curvature

    International Nuclear Information System (INIS)

    Liu, Henan; Chen, Mingjun; Yu, Bo; Zhen, Fang

    2016-01-01

    Magnetorheological finishing (MRF) is a computer-controlled deterministic polishing technique that is widely used in the production of high-quality optics. In order to overcome the defects of existing MRF processes that are unable to achieve concave surfaces with small radius of curvature, a configuration method of a novel structured MRF machine tool using small ball-end permanent-magnet polishing head is proposed in this paper. The preliminary design focuses on the structural configuration of the machine, which includes the machine body, motion units and accessory equipment, and so on. Structural deformation and fabrication accuracy of the machine are analyzed theoretically, in which the reasonable structure sizes, manufacturing errors and assembly errors of main structural components are given for configuration optimization. Based on the theoretical analysis, a four-axes linkage MRF machine tool is developed. Preliminary experiments of spot polishing are carried out and the results indicate that the proposed MRF process can achieve stable polishing area which meets requirement of deterministic polishing. A typical small-bore complex component is polished on the developed device and fine surface quality is obtained with sphericity of the finished spherical surfaces 1.3 μm and surface roughness Ra less than 0.018 μm.

  6. Impact of design research on industrial practice tools, technology, and training

    CERN Document Server

    Lindemann, Udo

    2016-01-01

    Showcasing exemplars of how various aspects of design research were successfully transitioned into and influenced, design practice, this book features chapters written by eminent international researchers and practitioners from industry on the Impact of Design Research on Industrial Practice. Chapters written by internationally acclaimed researchers of design analyse the findings (guidelines, methods and tools), technologies/products and educational approaches that have been transferred as tools, technologies and people to transform industrial practice of engineering design, whilst the chapters that are written by industrial practitioners describe their experience of how various tools, technologies and training impacted design practice. The main benefit of this book, for educators, researchers and practitioners in (engineering) design, will be access to a comprehensive coverage of case studies of successful transfer of outcomes of design research into practice; as well as guidelines and platforms for successf...

  7. Design tools for computer-generated display of information to operators

    International Nuclear Information System (INIS)

    O'Brien, J.F.; Cain, D.G.; Sun, B.K.H.

    1985-01-01

    More and more computers are being used to process and display information to operators who control nuclear power plants. Implementation of computer-generated displays in power plant control rooms represents a considerable design challenge for industry designers. Over the last several years, the EPRI has conducted research aimed at providing industry designers tools to meet this new design challenge. These tools provide guidance in defining more 'intelligent' information for plant control and in developing effective displays to communicate this information to the operators. (orig./HP)

  8. Simulation tools for detector and instrument design

    DEFF Research Database (Denmark)

    Kanaki, Kalliopi; Kittelmann, Thomas; Cai, Xiao Xiao

    2018-01-01

    The high performance requirements at the European Spallation Source have been driving the technological advances on the neutron detector front. Now more than ever is it important to optimize the design of detectors and instruments, to fully exploit the ESS source brilliance. Most of the simulation...... a powerful set of tools to tailor the detector and instrument design to the instrument application....

  9. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs

    Science.gov (United States)

    Min, James B.

    2005-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  10. Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design

    Science.gov (United States)

    Iqbal, Liaquat Ullah

    achieving better designs with reduced risk in lesser time and cost. The approach is shown to eliminate the traditional boundary between the conceptual and the preliminary design stages, combining the two into one consolidated preliminary design phase. Several examples for the validation and utilization of the Multidisciplinary Design and Optimization (MDO) Tool are presented using missions for the Medium and High Altitude Long Range/Endurance Unmanned Aerial Vehicles (UAVs).

  11. Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

  12. Design Tool for Direct Drive Wind Turbine Generators

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika

    . A comparison of the selected machine types in view of up-scaling to 20 [MW] was performed. As an example fitness criterion, the use of active materials for the generators was considered. Based on this, suggestions for 20 [MW] generators were made. The results are discussed and future work, directions......The current work offers a comparison of the proposed machine geometries for 6 [MW] direct drive wind generator candidates with the prospective of up scaling to 20MW. The suggestions are based on a design tool especially built for this investigation. The in-built flexibility of the design tool gives...

  13. Finite-element model evaluation of barrier configurations to reduce infiltration into waste-disposal structures: preliminary results and design considerations

    International Nuclear Information System (INIS)

    Lu, A.H.; Phillips, S.J.; Adams, M.R.

    1982-09-01

    Barriers to reduce infiltration into waste burial disposal structures (trenches, pits, etc.) may be required to provide adequate waste confinement. The preliminary engineering design of these barriers should consider interrelated barrier performance factors. This paper summarizes preliminary computer simulation activities to further engineering barrier design efforts. Several barrier configurations were conceived and evaluated. Models were simulated for each barrier configuration using a finite element computer code. Results of this preliminary evaluation indicate that barrier configurations, depending on their morphology and materials, may significantly influence infiltration, flux, drainage, and storage of water through and within waste disposal structures. 9 figures

  14. Simple Functions Spreadsheet tool presentation

    International Nuclear Information System (INIS)

    Grive, Mireia; Domenech, Cristina; Montoya, Vanessa; Garcia, David; Duro, Lara

    2010-09-01

    This document is a guide for users of the Simple Functions Spreadsheet tool. The Simple Functions Spreadsheet tool has been developed by Amphos 21 to determine the solubility limits of some radionuclides and it has been especially designed for Performance Assessment exercises. The development of this tool has been promoted by the necessity expressed by SKB of having a confident and easy-to-handle tool to calculate solubility limits in an agile and relatively fast manner. Its development started in 2005 and since then, it has been improved until the current version. This document describes the accurate and preliminary study following expert criteria that has been used to select the simplified aqueous speciation and solid phase system included in the tool. This report also gives the basic instructions to use this tool and to interpret its results. Finally, this document also reports the different validation tests and sensitivity analyses that have been done during the verification process

  15. Systems scenarios: a tool for facilitating the socio-technical design of work systems.

    Science.gov (United States)

    Hughes, Helen P N; Clegg, Chris W; Bolton, Lucy E; Machon, Lauren C

    2017-10-01

    The socio-technical systems approach to design is well documented. Recognising the benefits of this approach, organisations are increasingly trying to work with systems, rather than their component parts. However, few tools attempt to analyse the complexity inherent in such systems, in ways that generate useful, practical outputs. In this paper, we outline the 'System Scenarios Tool' (SST), which is a novel, applied methodology that can be used by designers, end-users, consultants or researchers to help design or re-design work systems. The paper introduces the SST using examples of its application, and describes the potential benefits of its use, before reflecting on its limitations. Finally, we discuss potential opportunities for the tool, and describe sets of circumstances in which it might be used. Practitioner Summary: The paper presents a novel, applied methodological tool, named the 'Systems Scenarios Tool'. We believe this tool can be used as a point of reference by designers, end-users, consultants or researchers, to help design or re-design work systems. Included in the paper are two worked examples, demonstrating the tool's application.

  16. Preliminary evaluation of FY98 KALIMER shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Woon; Kang, Chang Mu; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    This report describes a preliminary evaluation of the shielding design of FY98 KALIMER. The KALIMER shielding design includes the Inner Fixed Shield of a stainless cylinder located inside the support barrel; the Radial PSDRS Shields which are three B{sub 4}C cylinders located outside the support barrel at core level; the Lower IHX shield of a cylindrical B{sub 4}C plate located above the flow guide; and Inner and Outer IHX shields of B{sub 4}C cylinders located inside and outside of the support barrel, respectively. The DORT3.1 two-dimensional transport code was used to evaluate the KALIMER shielding design. The reactor system was represented by four axial zones, each of which was modeled in the R-Z geometry. The KAFAX-F22 library was used in the analyses, which was generated from the JEF-2.2 of OECD/NEA files for LMR applications by KAERI. The performance of the KALIMER shielding design is compared against the shielding design criteria. The results indicate that the support barrel, upper grid plate, and other reactor structures meet the maximum neutron fluence and DPA limits established in the shielding design criteria. Activities of the air effluent in the PSDRS were also evaluated and are shown to satisfy the maximum permissible concentration (MPC) limits in 10 CFR Part 20. In the future, the validation of the DORT model by a detailed three dimensional calculation such as MCNP and the justification of the current shielding design limits are needed. (author). 13 refs., 23 figs., 31 tabs.

  17. Designing tools for oil exploration using nuclear modeling

    Directory of Open Access Journals (Sweden)

    Mauborgne Marie-Laure

    2017-01-01

    Full Text Available When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  18. ANALYSING THE USE OF FOUR CREATIVITY TOOLS IN A CONSTRAINED DESIGN SITUATION

    DEFF Research Database (Denmark)

    Snider, C.M.; Dekoninck, E.A.; Yue, H.

    2011-01-01

    This paper investigates creativity tools and their use within highly constrained design tasks. Previously, a coding scheme was developed to classify design changes as ‘Creative Modes of Change’. The coding scheme is used to compare the outcomes from the use of four creative tools (supported design......) against unsupported design within a constrained task. The tools showed design space expansion, developing additional concepts to those from the unsupported stage. All four tools stimulated ‘Creative Modes of Change’, although the type varied depending on their operation. ‘Assumption Smashing......’ and the ‘Contradiction Matrix’ usually stimulate extra function; ‘Analogies’ and ‘Trends of Evolution’ improve design performance. The former two usually produce ‘Creative Modes of Change’ as opposed to routine. The results show some links between the designer’s driving force, mode of change and the design outcome. ‘New...

  19. DELTA.M: A tool for metropolitan designing systems

    OpenAIRE

    Tisma, A.

    2001-01-01

    This research deals with the development of a tool to enable designers, decision-makers and citizens to jointly shape the physical environments they inhabit, through interaction and communication via electronic networks. The designing of physical environment becomes the collective responsibility of all interested societal actors, who together form a "designing system". This research defines a 'designing system' as a temporary alliance of people responsible for decisions about the spatial deve...

  20. Heat recovery and seed recovery development project: preliminary design report (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  1. Preliminary identification of potential markets for off-grid electrification: tool development and a case study of Ghana

    Science.gov (United States)

    Descoqs, Benoit; Bhattacharyya, Subhes

    2018-02-01

    With more than one billion people lacking access to electricity in the world, ensuring universal access to electricity by 2030 remains a major challenge which cannot be left to the government initiatives alone. Access to local information and identification of potential areas for investment can be a challenge for investors. This paper provides a tool for preliminary assessment of potential markets for off-grid electrification in developing countries and applies this to Ghana to demonstrate its applicability. A multi-criteria approach is used to rank the districts according to the overall potential and the best markets and least favourable areas for investment are identified. The tool offers flexibility to include new inputs to the analysis and the factor weights can be adjusted as appropriate. The case study shows that the tool can effectively identify potential areas from a list of candidates and offers support to analysts.

  2. E-Block: A Tangible Programming Tool with Graphical Blocks

    OpenAIRE

    Danli Wang; Yang Zhang; Shengyong Chen

    2013-01-01

    This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transfer...

  3. Modeling a Decision Support Tool for Buildable and Sustainable Building Envelope Designs

    Directory of Open Access Journals (Sweden)

    Natee Singhaputtangkul

    2015-05-01

    Full Text Available Sustainability and buildability requirements in building envelope design have significantly gained more importance nowadays, yet there is a lack of an appropriate decision support system (DSS that can help a building design team to incorporate these requirements and manage their tradeoffs at once. The main objective of this study is to build such a tool to facilitate a building design team to take into account sustainability and buildability criteria for assessment of building envelopes of high-rise residential buildings in Singapore. Literature reviews were conducted to investigate a comprehensive set of the sustainability and buildability criteria. This also included development of the tool using a Quality Functional Deployment (QFD approach combined with fuzzy set theory. A building design team was engaged to test the tool with the aim to evaluate usefulness of the tool in managing the tradeoffs among the sustainability and buildability criteria. The results from a qualitative data analysis suggested that the tool allowed the design team to effectively find a balance between the tradeoffs among the criteria when assessing multiple building envelope design alternatives. Main contributions of using this tool are achievement of a more efficient assessment of the building envelopes and more sustainable and buildable building envelope design.

  4. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    Science.gov (United States)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  5. Development of a quality-assessment tool for experimental bruxism studies: reliability and validity.

    Science.gov (United States)

    Dawson, Andreas; Raphael, Karen G; Glaros, Alan; Axelsson, Susanna; Arima, Taro; Ernberg, Malin; Farella, Mauro; Lobbezoo, Frank; Manfredini, Daniele; Michelotti, Ambra; Svensson, Peter; List, Thomas

    2013-01-01

    To combine empirical evidence and expert opinion in a formal consensus method in order to develop a quality-assessment tool for experimental bruxism studies in systematic reviews. Tool development comprised five steps: (1) preliminary decisions, (2) item generation, (3) face-validity assessment, (4) reliability and discriminitive validity assessment, and (5) instrument refinement. The kappa value and phi-coefficient were calculated to assess inter-observer reliability and discriminative ability, respectively. Following preliminary decisions and a literature review, a list of 52 items to be considered for inclusion in the tool was compiled. Eleven experts were invited to join a Delphi panel and 10 accepted. Four Delphi rounds reduced the preliminary tool-Quality-Assessment Tool for Experimental Bruxism Studies (Qu-ATEBS)- to 8 items: study aim, study sample, control condition or group, study design, experimental bruxism task, statistics, interpretation of results, and conflict of interest statement. Consensus among the Delphi panelists yielded good face validity. Inter-observer reliability was acceptable (k = 0.77). Discriminative validity was excellent (phi coefficient 1.0; P reviews of experimental bruxism studies, exhibits face validity, excellent discriminative validity, and acceptable inter-observer reliability. Development of quality assessment tools for many other topics in the orofacial pain literature is needed and may follow the described procedure.

  6. Preliminary physical design of 7 MeV proton RFQ for the accelerator driven-energy system

    International Nuclear Information System (INIS)

    Luo Zihua

    2000-01-01

    The preliminary physical design of 7 MeV proton RFQ for the ADS (Accelerator Driven-energy System) is briefly described. The design features and the basic parameters and the design version of the RFQ are discussed. The matches between IS and RFQ and between RFQ and CCDTL/DTL are also discussed. The ideas of research for the RFQ are presented

  7. Tools for Real-Time Control Systems Co-Design - A Survey

    OpenAIRE

    Henriksson, Dan; El-Khoury, Jad; Årzén, Karl-Erik; Törngren, Martin; Redell, Ola

    2005-01-01

    This report presents a survey of current simulation tools in the area of integrated control and real-time systems design. Each tool is presented with a quick overview followed by a more detailed section describing comparative aspects of the tool. These aspects describe the context and purpose of the tool (scenarios, development stages, activities, and qualities/constraints being addressed) and the actual tool technology (tool architecture, inputs, outputs, modeling content, extensibility and ...

  8. Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

  9. Possibilities for using software tools in the process of secuirty design

    Directory of Open Access Journals (Sweden)

    Ladislav Mariš

    2013-07-01

    Full Text Available The authors deal with the use of software support the process of security design. The article proposes the theoretical basis of the implementation of software tools to design activities. Based on the selected design standards of electrical safety systems application design solutions, especially in drawing documentation. The article should serve the needs of the project team members in order to use selected software tools and a subsequent increase in the degree of automation of design activities.

  10. Mindfully implementing simulation tools for supporting pragmatic design inquiries

    NARCIS (Netherlands)

    Hartmann, Timo; olde Scholtenhuis, Léon Luc; Zerjav, Vedran; Champlin, Carissa J

    2015-01-01

    Based upon a conceptualization of the engineering design process as pragmatic inquiry, this paper introduces a framework for supporting designers and design managers with a better understanding of the trade-offs required for a successful implementation of simulation tools. This framework contributes

  11. E-Block: A Tangible Programming Tool with Graphical Blocks

    Directory of Open Access Journals (Sweden)

    Danli Wang

    2013-01-01

    Full Text Available This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transferred to computer by microcomputers and then translated into semantic information. The system applies wireless and infrared technologies and provides user with feedbacks on both screen and programming blocks. Preliminary user studies using observation and user interview methods are shown for E-Block's prototype. The test results prove that E-Block is attractive to children and easy to learn and use. The project also highlights potential advantages of using single chip microcomputer (SCM technology to develop tangible programming tools for children.

  12. Preliminary shielding design evaluation for reactor assembly of SMART

    International Nuclear Information System (INIS)

    Kim, Kyo Youn; Kang, Chang M.; Kim, Ha Yong; Zee, Sung Quun; Chang, Moon Hee

    1999-03-01

    This report describes a preliminary evaluations of SMART shielding design near the reactor core by using the DORT two-dimensional discrete ordinates transport code. The results indicate that maximum neutron fluence at the bottom of reactor vessel is 1.64x10 17 n/cm 2 and that on the radial surface of reactor vessel is 6.71x10 16 n/cm 2 . These results meet the requirement, 1.0x10 20 n/cm 2 , in 10 CFR 50.61 and the integrity of SMART reactor vessel is confirmed during the lifetime of reactor. (Author). 20 refs., 11 tabs., 8 figs

  13. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  14. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    Science.gov (United States)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  15. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  16. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, Giuseppe [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University Mediterranea of Reggio Calabria, Reggio Calabria (Italy); Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Gammino, Santo [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Sorbello, Gino [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University of Catania, Catania, Italy and INFN-LNS, Catania (Italy); Isernia, Tommaso [University Mediterranea of Reggio Calabria, Reggio Calabria (Italy)

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  17. Managing design excellence tools during the development of new orthopaedic implants.

    Science.gov (United States)

    Défossez, Henri J P; Serhan, Hassan

    2013-11-01

    Design excellence (DEX) tools have been widely used for years in some industries for their potential to facilitate new product development. The medical sector, targeted by cost pressures, has therefore started adopting them. Numerous tools are available; however only appropriate deployment during the new product development stages can optimize the overall process. The primary study objectives were to describe generic tools and illustrate their implementation and management during the development of new orthopaedic implants, and compile a reference package. Secondary objectives were to present the DEX tool investment costs and savings, since the method can require significant resources for which companies must carefully plan. The publicly available DEX method "Define Measure Analyze Design Verify Validate" was adopted and implemented during the development of a new spinal implant. Several tools proved most successful at developing the correct product, addressing clinical needs, and increasing market penetration potential, while reducing design iterations and manufacturing validations. Cost analysis and Pugh Matrix coupled with multi generation planning enabled developing a strong rationale to activate the project, set the vision and goals. improved risk management and product map established a robust technical verification-validation program. Design of experiments and process quantification facilitated design for manufacturing of critical features, as early as the concept phase. Biomechanical testing with analysis of variance provided a validation model with a recognized statistical performance baseline. Within those tools, only certain ones required minimum resources (i.e., business case, multi generational plan, project value proposition, Pugh Matrix, critical To quality process validation techniques), while others required significant investments (i.e., voice of customer, product usage map, improved risk management, design of experiments, biomechanical testing

  18. Preliminary design of the repository. Stage 2

    International Nuclear Information System (INIS)

    Saanio, T.; Kirkkomaeki, T.; Keto, P.; Kukkola, T.; Raiko, H.

    2007-04-01

    Spent nuclear fuel from Finnish nuclear power plants will be disposed of in deep bedrock in Olkiluoto, Eurajoki. The repository is planned to be excavated at a depth of 400 - 500 metres. Access routes to the repository include a 1:10 inclined access tunnel, and vertical shafts. The fuel is encapsulated in the encapsulation plant above ground and transferred to the repository in the canister lift. Deposition tunnels, central tunnels and technical rooms are excavated at the disposal level. The canisters are deposited in deposition holes that are covered with bentonite blocks. The deposition holes are bored in the floors of the deposition tunnels. The central tunnel system consists of two parallel central tunnels that are inter-connected at certain distances. Two parallel central tunnels improve the fire safety of the rooms and also allow flexible backfilling and closing of the deposition tunnels in stages at the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level to support and confirm investigations carried out from above ground. ONKALO is designed so that it can later serve as part of the repository. ONKALO excavations were started in 2004. The repository will be excavated in the 2010s and operation will start in 2020. The fifth nuclear power unit makes the operational phase of the repository very long. Parts of the repository will be excavated and closed over the long operational period. The repository can be constructed at one or several levels. The one-storey alternative is the so-called reference alternative in this preliminary design report. The two-storey alternative is also taken into account in the ONKALO designs. The preliminary designs of the repository are presented as located in Olkiluoto. The location of the repository will be revised when more information on the bedrock has been gained. More detailed data of the circumstances will be obtained from above ground investigations

  19. Preliminary design of the repository, stage 2

    International Nuclear Information System (INIS)

    Saanio, T.; Kirkkomaeki, T.; Keto, P.; Kukkola, T.; Raiko, H.

    2007-01-01

    Spent nuclear fuel from Finnish nuclear power plants will be disposed of in deep bedrock in Olkiluoto, Eurajoki. The repository is planned to be excavated at a depth of 400 - 500 metres. Access routes to the repository include a 1:10 inclined access tunnel, and vertical shafts. The fuel is encapsulated in the encapsulation plant above ground and transferred to the repository in the canister lift. Deposition tunnels, central tunnels and technical rooms are excavated at the disposal level. The canisters are deposited in deposition holes that are covered with bentonite blocks. The deposition holes are bored in the floors of the deposition tunnels. The central tunnel system consists of two parallel central tunnels that are inter-connected at certain distances. Two parallel central tunnels improve the fire safety of the rooms and also allow flexible backfilling and closing of the deposition tunnels in stages at the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level to support and confirm investigations carried out from above ground. ONKALO is designed so that it can later serve as part of the repository. ONKALO excavations were started in 2004. The repository will be excavated in the 2010s and operation will start in 2020. The fifth nuclear power unit makes the operational phase of the repository very long. Parts of the repository will be excavated and closed over the long operational period. The repository can be constructed at one or several levels. The one-storey alternative is the so-called reference alternative in this preliminary design report. The two-storey alternative is also taken into account in the ONKALO designs. The preliminary designs of the repository are presented as located in Olkiluoto. The location of the repository will be revised when more information on the bedrock has been gained. More detailed data of the circumstances will be obtained from above ground investigations

  20. Comfort in using hand tools : theory, design and evaluation

    OpenAIRE

    Kuijt-Evers, L.F.M.

    2007-01-01

    Everyone uses hand tools in their daily life, like knife and fork. Moreover, many people use hand tools in their profession as well as during leisure time. It is important that they can work with hand tools that provide comfort. Until now, the avoidance of discomfort was emphasized during the design process of hand tools, like screwdrivers, hand saws and paint brushes. In the near future, the focus will shift towards providing comfort. However, some questions need to be answered to make this ...

  1. Graphical Acoustic Liner Design and Analysis Tool

    Science.gov (United States)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  2. Central receiver solar thermal power system. Phase 1. CDRL item 2; Pilot Plant preliminary design report. Volume II. System decription and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    An active system analysis and integration effort has been maintained. These activities have included the transformation of initial program requirements into a preliminary system design, the evolution of subsystem requirements which lay the foundation for subsystem design and test activity, and the overseeing of the final preliminary design effort to ensure that the subsystems are operationally compatible and capable of producing electricity at the lowest possible cost per unit of energy. Volume II of the Preliminary Design Report presents the results of the overall system effort that went on during this contract. The effort is assumed to include not only the total system definition and design but also all subsystem interactions.

  3. Preliminary design of the thermal protection system for solar probe

    Science.gov (United States)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  4. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  5. ARCHITECTURAL FORM CREATION IN THE DESIGN STUDIO: PHYSICAL MODELING AS AN EFFECTIVE DESIGN TOOL

    Directory of Open Access Journals (Sweden)

    Wael Abdelhameed

    2011-11-01

    Full Text Available This research paper attempts to shed more light on an area of the design studio, which concerns with the use of physical modeling as a design medium in architectural form creation. An experiment has been carried out during an architectural design studio in order to not only investigate physical modeling as a tool of form creation but also improve visual design thinking that students employ while using this manual tool. To achieve the research objective, a method was proposed and applied to track form creation processes, based upon three types of operation, namely: sketching transformations, divergent physical-modeling transformations, and convergent physical-modeling transformations. The method helps record the innovative transitions of form during conceptual designing in a simple way. Investigating form creation processes and activities associated with visual design thinking enables the research to conclude to general results of the role of physical modeling in the conceptual phase of designing, and to specific results of the methods used in this architectural design studio experiment.

  6. Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The information available here is presented as a tool to help school districts and facility planners design the next generation of learning environments so that the school facility will help, rather than hinder, schools in achieving their core mission

  7. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  8. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  9. A Gaussian decision-support tool for engineering design process

    NARCIS (Netherlands)

    Rajabali Nejad, Mohammadreza; Spitas, Christos

    2013-01-01

    Decision-making in design is of great importance, resulting in success or failure of a system (Liu et al., 2010; Roozenburg and Eekels, 1995; Spitas, 2011a). This paper describes a robust decision-support tool for engineering design process, which can be used throughout the design process in either

  10. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    International Nuclear Information System (INIS)

    Powers, J.

    2008-01-01

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials (1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF 4 or ThF 4 or some combination thereof. Future systems could look at using PuF 3 or PuF 4 as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory. Preliminary design studies

  11. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  12. Status of Conceptual Design Progress for ITER Sector Sub-assembly Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Jae Hyuk; Kim, Kyung Kyu [SFA Engineering Corp., Changwon (Korea, Republic of); Im, Ki Hak; Robert, Shaw [ITER Organization, Paul lez Durance (France)

    2010-05-15

    The ITER (International Thermonuclear Experimental Reactor) Tokamak assembly tools are purpose-built tools to complete the ITER Tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the ITER organization, Korea has carried out the conceptual design of assembly tools. The 40 .deg. sector assemblies sub-assembled at assembly hall are transferred to Tokamak hall using the lifting tool operated by Tokamak main cranes. In-pit assembly tools are the purpose-built assembly tools for the completion of final sector assembly at Tokamak hall. The 40 .deg. sector sub-assembly tools are composed of the upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and bracing tools. The process of the ITER sector sub-assembly at assembly hall and status of research and development are described in this paper. The ITER Tokamak device is composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 .deg. sectors. Each VV/TFCs/VVTS 40 .deg. sector is made up of one 40 .deg. VV, two 20 .deg. TFCs and associated VVTS segments. The 40 .deg. sectors are sub-assembled at assembly hall respectively and then 9 sectors which sub-assembled at assembly hall are finally assembled at Tokamak hall. As a basic assembly component, the assembly strategy and tools for the 40 .deg. sector sub-assembly and final assembly at inpit should be developed to satisfy the basic assembly requirements of the ITER Tokamak device. Accordingly, the purpose-built assembly tools should be designed and manufactured considering assembly plan, available space, safety, easy operation, efficient maintenance, and so on. The 40 .deg. sector assembly tools are classified into 2 groups. One group is the sub-assembly tools including upending tool, lifting tool, sub-assembly tool, VV supports and bracing tools used at assembly hall and the other group is the in

  13. SCALES : A System Level Tool for Conceptual Design of Nano- and Microsatellites

    NARCIS (Netherlands)

    Aas, C.; Zandbergen, B.T.C.; Hamann, R.J.; Gill, E.K.A.

    2009-01-01

    A satellite design tool has been developed offering systems engineers a fast way to analyze the feasibility of a particular design concept. The tool differs from available tools on the market in that it is specifically targeted at small satellites in the mass range of 1-50 kg, and with a limited

  14. General description of preliminary design of an experimental fusion reactor and the future problems

    International Nuclear Information System (INIS)

    Sako, Kiyoshi

    1976-01-01

    Recently, the studies on plasma physics has progressed rapidly, and promising experimental data emerged successively. Especially expectation mounts high that Tokamak will develop into power reactors. In Japan, the construction of large plasma devices such as JT-60 of JAERI is going to start, and after several years, the studies on plasma physics will come to the end of first stage, then the main research and development will be directed to power reactors. The studies on the design of practical fusion reactors have been in progress since 1973 in JAERI, and the preliminary design is being carried out. The purposes of the preliminary design are the clarification of the concept of the experimental reactor and the requirements for the studies on core plasma, the examination of the problems for developing main components and systems of the reactor, and the development of design technology. The experimental reactor is the quasi-steady reactor of 100 MW fusion reaction output, and the conditions set for the design and the basis of their setting are explained. The outline of the design, namely core plasma, blankets, superconductive magnets and the shielding with them, vacuum wall, neutral particle injection heating device, core fuel supply and exhaust system, and others, is described. In case of scale-up the reactor structural material which can withstand neutron damage must be developed. (Kako, I.)

  15. Report on design rules of μ-tools for standard insert

    DEFF Research Database (Denmark)

    Tosello, Guido; Esmoris, Josa Ignacio; Quadroni, A.

    2011-01-01

    -effectively, especially for micro injection moulding. This particular deliverable has the objective to present the design rules for high performance μ-tools and inserts manufacture based on the new standard manufacturing process chains established during the WP 2.2 work. In particular, the achievable features, surfaces......Tooling is one of the critical stages of the process chain for polymer micro products manufacture and in particular for the COTECH process chain. Therefore, within the scope of SP2 “Tooling”, the WP 2.2 “New tool-making solutions for μ-IM and HE” is designed to investigate, develop and standardize...

  16. Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

  17. Preliminary structural design of composite main rotor blades for minimum weight

    Science.gov (United States)

    Nixon, Mark W.

    1987-01-01

    A methodology is developed to perform minimum weight structural design for composite or metallic main rotor blades subject to aerodynamic performance, material strength, autorotation, and frequency constraints. The constraints and load cases are developed such that the final preliminary rotor design will satisfy U.S. Army military specifications, as well as take advantage of the versatility of composite materials. A minimum weight design is first developed subject to satisfying the aerodynamic performance, strength, and autorotation constraints for all static load cases. The minimum weight design is then dynamically tuned to avoid resonant frequencies occurring at the design rotor speed. With this methodology, three rotor blade designs were developed based on the geometry of the UH-60A Black Hawk titanium-spar rotor blade. The first design is of a single titanium-spar cross section, which is compared with the UH-60A Black Hawk rotor blade. The second and third designs use single and multiple graphite/epoxy-spar cross sections. These are compared with the titanium-spar design to demonstrate weight savings from use of this design methodology in conjunction with advanced composite materials.

  18. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    Science.gov (United States)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  19. Preliminary design of an energy-conversion unit of radiation-voltaic battery

    International Nuclear Information System (INIS)

    Yang Yuqing; Wang Guanquan; Hu Rui; Gao Hui; Liu Yebing; Zhang Huaming; Luo Shunzhong

    2010-01-01

    Based on the principle of radiation-voltaic effect, a preliminary energy-conversion unit of radiation-voltaic battery was designed. Three energy-conversion units were manufactured and their electric I-V properties under irradiation of solid sources of 63 Ni and 3 H were measured. The I-V curves were analyzed and some ideas for improvement were presented. It was found that the designed energy-conversion unit deteriorated dramatically under irradiation of 241 Am source. The best U oc and I sc gained under irradiation of 2.96 x 10 8 Bq 63 Ni were 0.267 V and 28.4 nA, and were 0.260 V and 62.8 nA under irradiation of a 5.09 x 10 9 Bq 3 H source. Further efforts are being made to improve the design. (authors)

  20. Preliminary design for a pierce wiggler beamstick and addendum

    International Nuclear Information System (INIS)

    Pirkle, D.

    1988-05-01

    Lawrence Livermore National Laboratory is developing a fast tunable microwave source for operation at 250 GHz and 10kW peak output power. This report presents the preliminary design of a Pierce gun and solenoid magnet that will be compatible with a Pierce-wiggler electron beam formation system (beamstick). The beamstick will be an appropriate power source for a tunable gyro-BWO at 250 GHz. Figure 1 presents the major components of the Pierce-wiggler beamstick: the electron gun, solenoid, beam tunnel, wiggler, and vacuum valve. Figure 2 shows an artistic conception of how the beamstick will interface with the interaction magnet, modulator and gyro-BWO circuit at MIT. 15 figs

  1. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  2. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  3. Preliminary power train design for a state-of-the-art electric vehicle

    Science.gov (United States)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  4. Integrated Design Tools for Embedded Control Systems

    OpenAIRE

    Jovanovic, D.S.; Hilderink, G.H.; Broenink, Johannes F.; Karelse, F.

    2001-01-01

    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about...

  5. Proverbs : Probabilistic design tools for vertical breakwaters

    NARCIS (Netherlands)

    Oumeraci, H.; Allsop, N.W.H.; De Groot, M.B.; Crouch, R.S.; Vrijling, J.K.

    1999-01-01

    Final report and appendices of the European project Proverbs on tools for the design of vertical breakwaters (caisson type breakwaters) and similar hydraulic structures in the coastal zone. It includes the loads (waves) as well as the strength of the structure (geotechnial aspects, structural

  6. An Open-Source Tool Set Enabling Analog-Digital-Software Co-Design

    Directory of Open Access Journals (Sweden)

    Michelle Collins

    2016-02-01

    Full Text Available This paper presents an analog-digital hardware-software co-design environment for simulating and programming reconfigurable systems. The tool simulates, designs, as well as enables experimental measurements after compiling to configurable systems in the same integrated design tool framework. High level software in Scilab/Xcos (open-source programs similar to MATLAB/Simulink that converts the high-level block description by the user to blif format (sci2blif, which acts as an input to the modified VPR tool, including the code v p r 2 s w c s , encoding the specific platform through specific architecture files, resulting in a targetable switch list on the resulting configurable analog–digital system. The resulting tool uses an analog and mixed-signal library of components, enabling users and future researchers access to the basic analog operations/computations that are possible.

  7. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    Science.gov (United States)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  8. A software tool for design of process monitoring and analysis systems

    DEFF Research Database (Denmark)

    Singh, Ravendra; Gernaey, Krist; Gani, Rafiqul

    2009-01-01

    A well designed process monitoring and analysis system is necessary to consistently achieve any predefined end product quality. Systematic computer aided methods and tools provide the means to design the necessary process monitoring and analysis systems and/or to validate any existing monitoring...... and analysis system. A software to achieve this has been developed. Two developed supporting tools for the design, a knowledge base (consisting of the process knowledge as well as the knowledge on measurement methods & tools) and a model library (consisting of the process operational models) have been extended...... rigorously and integrated with the user interface, which made the software more generic and applicable to a wide range of problems. The software for the design of a process monitoring and analysis system is presented and illustrated with a tablet manufacturing process example....

  9. A tangible design tool for sketching materials in products

    NARCIS (Netherlands)

    Saakes, D.P.; Stappers, P.J.

    2009-01-01

    Industrial designers make sketches and physical models to start and develop ideas and concept designs. Such representations have advantages that they support fast, intuitive, rich, sensory exploration of solutions. Although existing tools and techniques provide adequate support where the shape of

  10. Integrated optimization on aerodynamics-structure coupling and flight stability of a large airplane in preliminary design

    Directory of Open Access Journals (Sweden)

    Xiaozhe WANG

    2018-06-01

    Full Text Available The preliminary phase is significant during the whole design process of a large airplane because of its enormous potential in enhancing the overall performance. However, classical sequential designs can hardly adapt to modern airplanes, due to their repeated iterations, long periods, and massive computational burdens. Multidisciplinary analysis and optimization demonstrates the capability to tackle such complex design issues. In this paper, an integrated optimization method for the preliminary design of a large airplane is proposed, accounting for aerodynamics, structure, and stability. Aeroelastic responses are computed by a rapid three-dimensional flight load analysis method combining the high-order panel method and the structural elasticity correction. The flow field is determined by the viscous/inviscid iteration method, and the cruise stability is evaluated by the linear small-disturbance theory. Parametric optimization is carried out using genetic algorithm to seek the minimal weight of a simplified plate-beam wing structure in the cruise trim condition subject to aeroelastic, aerodynamic, and stability constraints, and the optimal wing geometry shape, front/rear spar positions, and structural sizes are obtained simultaneously. To reduce the computational burden of the static aeroelasticity analysis in the optimization process, the Kriging method is employed to predict aerodynamic influence coefficient matrices of different aerodynamic shapes. The multidisciplinary analyses guarantee computational accuracy and efficiency, and the integrated optimization considers the coupling effect sufficiently between different disciplines to improve the overall performance, avoiding the limitations of sequential approaches utilized currently. Keywords: Aeroelasticity, Integrated optimization, Multidisciplinary analysis, Large airplane, Preliminary design

  11. Virtual reality as a multidisciplinary convergence tool in the product design process

    Directory of Open Access Journals (Sweden)

    Gaël Guerlesquin

    2012-02-01

    Full Text Available Nowadays firms have to use concurrent design to meet customers’ expectations. A plural approach to the design process is essential. Unfortunately, the design activity involves experts specialized in various aspects of the product such as aesthetics, ergonomics and mechanics. Thus the collaboration between these experts is particularly difficult in the convergence steps and often results in complex adjustments. This paper details a proposition of design methodology based on a multidisciplinary approach, using virtual reality tools. Our goal is to facilitate the integration of ergonomics and aesthetics in a mechanical design process. In this context, we consider virtual reality as an intermediary design tool useful for collaborative decision support during convergence phases. We present our methodology and associated tools tested during an industrial project, by focusing on an aesthetics-mechanics convergence step.

  12. Design Tools and Workflows for Braided Structures

    DEFF Research Database (Denmark)

    Vestartas, Petras; Heinrich, Mary Katherine; Zwierzycki, Mateusz

    2017-01-01

    the objectives and motivation for our exploration of braid within an architectural context and highlighting both the relevance of braid and current lack of suitable design modelling tools to support our approach. We briefly introduce the state-of-the-art in braid representation and present the characteristics...

  13. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  14. QFD: a methodological tool for integration of ergonomics at the design stage.

    Science.gov (United States)

    Marsot, Jacques

    2005-03-01

    As a marked increase in the number of musculoskeletal disorders was noted in many industrialized countries and more specifically in companies that require the use of hand tools, the French National Research and Safety Institute launched in 1999 a research program on the topic of integrating ergonomics into hand tool design. After a brief review of the problems of integrating ergonomics at the design stage, the paper shows how the "Quality Function Deployment" method has been applied to the design of a boning knife and it highlights the difficulties encountered. Then, it demonstrates how this method can be a methodological tool geared to greater ergonomics consideration in product design.

  15. On the Integration of Digital Design and Analysis Tools

    DEFF Research Database (Denmark)

    Klitgaard, Jens; Kirkegaard, Poul Henning

    2006-01-01

    The aim of this research is to look into integrated digital design and analysis tools in order to find out if it is suited for use by architects and designers or only by specialists and technicians - and if not, then to look at what can be done to make them more available to architects and design...

  16. The effect of ergonomic laparoscopic tool handle design on performance and efficiency.

    Science.gov (United States)

    Tung, Kryztopher D; Shorti, Rami M; Downey, Earl C; Bloswick, Donald S; Merryweather, Andrew S

    2015-09-01

    Many factors can affect a surgeon's performance in the operating room; these may include surgeon comfort, ergonomics of tool handle design, and fatigue. A laparoscopic tool handle designed with ergonomic considerations (pistol grip) was tested against a current market tool with a traditional pinch grip handle. The goal of this study is to quantify the impact ergonomic design considerations which have on surgeon performance. We hypothesized that there will be measurable differences between the efficiency while performing FLS surgical trainer tasks when using both tool handle designs in three categories: time to completion, technical skill, and subjective user ratings. The pistol grip incorporates an ergonomic interface intended to reduce contact stress points on the hand and fingers, promote a more neutral operating wrist posture, and reduce hand tremor and fatigue. The traditional pinch grip is a laparoscopic tool developed by Stryker Inc. widely used during minimal invasive surgery. Twenty-three (13 M, 10 F) participants with no existing upper extremity musculoskeletal disorders or experience performing laparoscopic procedures were selected to perform in this study. During a training session prior to testing, participants performed practice trials in a SAGES FLS trainer with both tools. During data collection, participants performed three evaluation tasks using both handle designs (order was randomized, and each trial completed three times). The tasks consisted of FLS peg transfer, cutting, and suturing tasks. Feedback from test participants indicated that they significantly preferred the ergonomic pistol grip in every category (p < 0.05); most notably, participants experienced greater degrees of discomfort in their hands after using the pinch grip tool. Furthermore, participants completed cutting and peg transfer tasks in a shorter time duration (p < 0.05) with the pistol grip than with the pinch grip design; there was no significant difference between completion

  17. Tool design and materials for electro sinter forging (ESF)

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin

    ) process, the main requirement is the electrical current passing through the electrical conducting powder. To obtain this, a closed-die setup with electrical insulating properties was used. Furthermore, the alignment between the compacting punch and die needed to be ensured by pre-aligning or alternatively...... by using an alignment system. The present work is focused on the designing phase of a tool for the electro sinter forging of a disc, made from titanium powder. By applying a pre-alignment system, the setup resulted suitable for this application. A tool design for sintering rings is also showed....

  18. Gas cooled fast reactor 2400 MWTh, status on the conceptual design studies and preliminary safety analysis

    International Nuclear Information System (INIS)

    Malo, J.Y.; Alpy, N.; Bentivoglio, F.

    2009-01-01

    The Gas cooled Fast Reactor (GFR) is considered by the French Commissariat a l'Energie Atomique as a promising concept, combining the benefits of fast spectrum and high temperature, using Helium as coolant. A status on the GFR preliminary viability was made at the end of 2007, ending the pre-conceptual design phase. A consistent overall systems arrangement was proposed and a preliminary safety analysis based on operating transient calculations and a simplified PSA had established a global confidence in the feasibility and safety of this baseline concept. Its potential for attractive performances had been pointed out. Compare to the more mature Sodium Fast Reactor technology, no demonstrator has ever been built and the feasibility demonstration will required a longer lead time. The next main project milestone is related to the GFR viability, scheduled in 2012. The current studies consist in revisiting the reactor reference design options as selected at the end of 2007. Most of them are being consolidated by going more in depth in the analysis. Some possible alternatives are assessed. The paper will give a status on the last studies performed on the core design and corresponding neutronics and cycle performance, the Decay Heat Removal strategy and preliminary safety analysis, systems design and balance of plant... This paper is complementary to the Icapp'09 papers 9062 dealing with the Gas cooled Fast Reactor Demonstrator ALLEGRO and 9378 related to GFR transients analysis. (author)

  19. Participatory design of probability-based decision support tools for in-hospital nurses.

    Science.gov (United States)

    Jeffery, Alvin D; Novak, Laurie L; Kennedy, Betsy; Dietrich, Mary S; Mion, Lorraine C

    2017-11-01

    To describe nurses' preferences for the design of a probability-based clinical decision support (PB-CDS) tool for in-hospital clinical deterioration. A convenience sample of bedside nurses, charge nurses, and rapid response nurses (n = 20) from adult and pediatric hospitals completed participatory design sessions with researchers in a simulation laboratory to elicit preferred design considerations for a PB-CDS tool. Following theme-based content analysis, we shared findings with user interface designers and created a low-fidelity prototype. Three major themes and several considerations for design elements of a PB-CDS tool surfaced from end users. Themes focused on "painting a picture" of the patient condition over time, promoting empowerment, and aligning probability information with what a nurse already believes about the patient. The most notable design element consideration included visualizing a temporal trend of the predicted probability of the outcome along with user-selected overlapping depictions of vital signs, laboratory values, and outcome-related treatments and interventions. Participants expressed that the prototype adequately operationalized requests from the design sessions. Participatory design served as a valuable method in taking the first step toward developing PB-CDS tools for nurses. This information about preferred design elements of tools that support, rather than interrupt, nurses' cognitive workflows can benefit future studies in this field as well as nurses' practice. Published by Oxford University Press on behalf of the American Medical Informatics Association 2017. This work is written by US Government employees and is in the public domain in the United States.

  20. The ORNL Modulating Heat Pump Design Tool User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C.K.

    2001-06-01

    The ORNL Modulating Heat Pump Design Tool consists of a Modulating HPDM (Heat Pump Design Model) and a parametric-analysis (contour-data generating) front-end. Collectively the program is also referred to as MODCON which is in reference to the modulating and the contour data generating capabilities. The program was developed by Oak Ridge National Laboratory for the Department of Energy to provide a publicly-available system design tool for variable- and single-speed heat pumps.

  1. Engineering tool for the qualification of optical coatings

    Science.gov (United States)

    Davi, M.; Perrin, D.; Lequime, M.; Doyle, D.

    2017-11-01

    For the needs of the European Space Agency, SESO is developing in cooperation with the Institut Fresnel an Engineering Tool for the Qualification of Optical Coatings. The goal is to develop a standard methodology for testing the behaviour and stability of optical coatings during the air to vacuum transition. The Engineering Tool is indeed designed to achieve in vacuum reflectance and transmittance measurements between 600 and 1700 nm. It is also designed to evaluate during the vacuum cycle partially the nature of the outgassing elements, using mass spectrometry. We will present in our paper the concept of this equipment and the associated test method. The preliminary characterizations will be done in June 2006 on reflective coatings, one anti reflective coating and dichroic filters.

  2. Automated Design Tools for Integrated Mixed-Signal Microsystems (NeoCAD)

    National Research Council Canada - National Science Library

    Petre, P; Visher, J; Shringarpure, R; Valley, F; Swaminathan, M

    2005-01-01

    Automated design tools and integrated design flow methodologies were developed that demonstrated more than an order- of-magnitude reduction in cycle time and cost for mixed signal (digital/analoglRF...

  3. A Conceptual Design and Optimization Method for Blended-Wing-Body Aircraft

    NARCIS (Netherlands)

    Vos, R.; Van Dommelen, J.

    2012-01-01

    This paper details a new software tool to aid in the conceptual design of blended-wingbody aircraft. The tool consists of four main modules. In the preliminary sizing model a class I estimate of the maximum take-off weight, wing loading, and thrust-to-weight ratio is calculated. This information is

  4. A Maturity Grid Assessment Tool for Environmentally Conscious Design in the Medical Device Industry

    DEFF Research Database (Denmark)

    Moultrie, James; Sutcliffe, Laura Francesca Rose; Maier, Anja

    2016-01-01

    . This intervention tool provides designers and product marketers with insights on how to improve the design of their medical devices and specifically allows consideration of the complex trade-offs between decisions that influence different life-cycle stages. Through the tool, actionable insight is created......The medical device industry is growing increasingly concerned about environmental impact of products. Whilst there are many tools aiming to support environmentally conscious design, they are typically complex to use, demand substantial data collection and are not tailored to the specific needs...... of the medical device sector. This paper reports on the development of a Maturity Grid to address this gap. This novel design tool was developed iteratively through application in five case studies. The tool captures principles of eco-design for medical devices in a simple form, designed to be used by a team...

  5. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    Science.gov (United States)

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  7. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    OpenAIRE

    Zhongqi Sheng; Lei Zhang; Hualong Xie; Changchun Liu

    2014-01-01

    Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to as...

  8. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  9. Preliminary design of a tandem mirror reactor

    International Nuclear Information System (INIS)

    Strohmayer, J.N.

    1984-04-01

    The purpose of this thesis is to examine the TARA mirror experiment as a possible tandem mirror reactor configuration. This is a preliminary study to size the coil structure based on using the smallest end cell axial length that physics and engineering allow, zeroing the central cell parallel currents and having interchange stability. The input powers are estimated for the final reactor design so a Q value may be estimated. The Q value is defined as the fusion power divided by the total injected power absorbed by the plasma. A computer study was performed on the effect of the transition size, the transition vertical spacing and transition current. These parameters affect the central cell parallel currents, the recircularization of the flux tube and the ratio of central cell beta to anchor beta needed for marginal stability. Two designs were identified. The first uses 100 keV and 13 keV neutral beams to pump the ions that trap in the thermal barrier. The Q value of this reactor is 11.3. The second reactor uses a pump beam at 40 keV. This energy is chosen because there is a resonance for the charge exchange cross section between D 0 and He 2+ at this energy, thus the alpha ash will be pumped along with the deuterium and tritium. The Q value of this reactor is 11.6

  10. Comparative study of electromagnetic compatibility methods in printed circuit board design tools

    International Nuclear Information System (INIS)

    Marinova, Galia

    2002-01-01

    The paper considers the state-of-the art in electromagnetic compatibility (EMC) oriented printed circuit board (PCB) design. A general methodology of EMC oriented PCB design is synthesized. The main CAD tools available today are estimated and compared for their abilities to treat EMC oriented design. To help non experts a knowledge-base containing more than 50 basic rules for EMC-oriented PCB design is proposed. It can be applied in the PCB design CAD tools that possess rule-builders or it can help interactive design. Trends in this area of EMC-oriented PCB design are deduced. (Author)

  11. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    Science.gov (United States)

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  12. Rapid Preliminary Design of Interplanetary Trajectories Using the Evolutionary Mission Trajectory Generator

    Science.gov (United States)

    Englander, Jacob

    2016-01-01

    Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.

  13. Interactive tool that empowers structural understanding and enables FEM analysis in a parametric design environment

    DEFF Research Database (Denmark)

    Christensen, Jesper Thøger; Parigi, Dario; Kirkegaard, Poul Henning

    2014-01-01

    This paper introduces an interactive tool developed to integrate structural analysis in the architectural design environment from the early conceptual design stage. The tool improves exchange of data between the design environment of Rhino Grasshopper and the FEM analysis of Autodesk Robot...... Structural Analysis. Further the tool provides intuitive setup and visual aids in order to facilitate the process. Enabling students and professionals to quickly analyze and evaluate multiple design variations. The tool has been developed inside the Performance Aided Design course at the Master...... of Architecture and Design at Aalborg University...

  14. CATO: a CAD tool for intelligent design of optical networks and interconnects

    Science.gov (United States)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  15. Instruments of Inquiry: Understanding the Nature and Role of Design Tools

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2017-01-01

    Designers employ a range of tools in most design projects, yet there are few frameworks for understanding how and why they work. On the basis of a well-established school of thought, pragmatism, this paper contributes with a coherent conceptualisation of tools in design, which I label instruments...... of inquiry. This perspective underscores the crucial role that instruments play in design, and the ways in which they scaffold design creativity and exploration. In particular, it highlights that instruments not only augment our capabilities for carrying out intended actions, they also guide our perception...... and understanding of design problems and solutions. I present and discuss a framework consisting of five qualities of instruments of inquiry, which make them valuable in designerly inquiry: perception, conception, externalisation, knowing-through-action, and mediation....

  16. Improving design processes through structured reflection : a prototype software tool

    NARCIS (Netherlands)

    Reymen, I.M.M.J.; Melby, E.

    2001-01-01

    A prototype software tool facilitating the use of a design method supporting structured reflection on design processes is presented. The prototype, called Echo, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Both the prototype

  17. Climate-responsive design: A framework for an energy concept design-decision support tool for architects using principles of climate-responsive design

    Directory of Open Access Journals (Sweden)

    Remco Looman

    2017-01-01

    Full Text Available In climate-responsive design the building becomes an intermediary in its own energy housekeeping, forming a link between the harvest of climate resources and low energy provision of comfort. Essential here is the employment of climate-responsive building elements, defined as structural and architectural elements in which the energy infrastructure is far-reaching integrated. This thesis presents the results of research conducted on what knowledge is needed in the early stages of the design process and how to transfer and transform that knowledge to the field of the architect in order for them to successfully implement the principles of climate-responsive design. The derived content, form and functional requirements provide the framework for a design decision support tool. These requirements were incorporated into a concept tool that has been presented to architects in the field, in order to gain their feedback. Climate-responsive design makes the complex task of designing even more complex. Architects are helped when sufficient information on the basics of climate-responsive design and its implications are provided as informative support during decision making in the early design stages of analysis and energy concept development. This informative support on climate-responsive design should address to different design styles in order to be useful to any type of architects. What is defined as comfortable has far-reaching implications for the way buildings are designed and how they operate. This in turn gives an indication of the energy used for maintaining a comfortable indoor environment. Comfort is not a strict situation, but subjective. Diversity is appreciated and comfort is improved when users have the ability to exert influence on their environment. Historically, the provision of comfort has led to the adoption of mechanical climate control systems that operate in many cases indifferent from the building space and mass and its environment

  18. The preliminary design of real-time neutron fissile material monitoring system

    International Nuclear Information System (INIS)

    Shi Jun; Ren Zhongguo; Zhang Ming; Zhao Zhiping; Chen Qi

    2013-01-01

    In this paper we present the preliminary design to carry out real-time neutron fissile material monitoring system, The system includes hardware and data acquisition software. For the hardware, it is employed with He3 proportional tubes as neutron detectors, polyethylene as moderator, and, to achieve the remote counting, RM4036 counting modules are connected to the remote computer through the 485 ports. The software with real-time data display and storage, alarm and other functions are developed using Visual Basic 6.0. (authors)

  19. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  20. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  1. Equipment and special tool design for remote maintenance

    International Nuclear Information System (INIS)

    Northey, L.M.; Thomson, J.D.

    1985-01-01

    Maintenance tasks performed in locations with hostile environments and/or limited space accesses often require equipment that is operated remotely. This paper discusses considerations that should be addressed in the design of remote maintenance equipment. Some of the topics include proper material selection, interface identifications, operational feedback devices and cost limitations. These considerations add ''human engineering'' to the equipment design to assure protection of the tool and the operating personnel. Examples of remote maintenance and inspection systems that were developed by the Westinghouse Hanford Company and that utilize many of these design considerations are included

  2. Design tool for TOF and SL based 3D cameras.

    Science.gov (United States)

    Bouquet, Gregory; Thorstensen, Jostein; Bakke, Kari Anne Hestnes; Risholm, Petter

    2017-10-30

    Active illumination 3D imaging systems based on Time-of-flight (TOF) and Structured Light (SL) projection are in rapid development, and are constantly finding new areas of application. In this paper, we present a theoretical design tool that allows prediction of 3D imaging precision. Theoretical expressions are developed for both TOF and SL imaging systems. The expressions contain only physically measurable parameters and no fitting parameters. We perform 3D measurements with both TOF and SL imaging systems, showing excellent agreement between theoretical and measured distance precision. The theoretical framework can be a powerful 3D imaging design tool, as it allows for prediction of 3D measurement precision already in the design phase.

  3. Methodology and preliminary models for analyzing nuclear safeguards decisions

    International Nuclear Information System (INIS)

    1978-11-01

    This report describes a general analytical tool designed to assist the NRC in making nuclear safeguards decisions. The approach is based on decision analysis--a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material, demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria), and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  4. IT-tool Concept for Design and Intelligent Motion Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Hansen, Poul Erik; Sørensen, Torben

    2000-01-01

    The paper presents results obtained from a Danish mechatronic research program focusing on intelligent motion control as well as results from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility with digital controllers for ....... Furthermore, a developed IT-tool concept for controller and system design utilising the ISO 10303 STEP Standard is proposed....

  5. Validation of designing tools as part of nuclear pump development process

    International Nuclear Information System (INIS)

    Klemm, T.; Sehr, F.; Spenner, P.; Fritz, J.

    2010-01-01

    Nuclear pumps are characterized by high safety standards, operational reliability as well as long life cycles. For the design process it is of common use to have a down scaled model pump to qualify operating data and simulate exceptional operating conditions. In case of modifications of the pump design compared to existing reactor coolant pumps a model pump is required to develop methods and tools to design the full scale pump. In the presented case it has a geometry scale of 1:2 regarding the full scale pump size. The experimental data of the model pump is basis for validation of methods and tools which are applied in the designing process of the full scale pump. In this paper the selection of qualified tools and the validation process is demonstrated exemplarily on a cooling circuit. The aim is to predict the resulting flow rate. Tools are chosen for different components depending on the benefit to effort ratio. For elementary flow phenomena such as fluid flow in straight pipes or gaps analytic or empirical laws can be used. For more complex flow situations numerical methods are utilized. Main focus is set on the validation process of the applied numerical flow simulation. In this case not only integral data should be compared, it is also necessary to validate local flow structure of numerical flow simulation to avoid systematic errors in CFD Model generation. Due to complex design internal flow measurements are not possible. On that reason simple comparisons of similar flow test cases are used. Results of this study show, that the flow simulation data closely match measured integral pump and test case data. With this validation it is now possible to qualify CFD simulations as a design tool for the full scale pump in similar cooling circuit. (authors)

  6. Design of a novel parallel reconfigurable machine tool

    CSIR Research Space (South Africa)

    Modungwa, D

    2008-06-01

    Full Text Available of meeting the demands for high mechanical dexterity adaptation as well as high stiffness necessary for mould and die re-conditioning. This paper presents, the design of parallel reconfigurable machine tool (PRMT) based on both application...

  7. A preliminary design of interior structure and foundation of an inflatable lunar habitat

    Science.gov (United States)

    Yin, Paul K.

    1989-01-01

    A preliminary structural design and analysis of an inflatable habitat for installation on the moon was completed. The concept takes the shape of a sphere with a diameter of approximately 16 meters. The interior framing provides five floor levels and is enclosed by a spherical air-tight membrane holding an interior pressure of 14.7 psi (101.4kpa). The spherical habitat is to be erected on the lunar surface with the lower one third below grade and the upper two thirds covered with a layer of lunar regolith for thermal insulation and shielding against radiation and meteoroids. The total dead weight (earth weight) of the structural aluminum, which is of vital interest for the costly space transportation, is presented. This structural dead weight represents a preliminary estimate without including structural details. The design results in two versions: one supports the weight of the radiation shielding in case of deflation of the fabric enclosure and the other assumes that the radiation shielding is self supporting. To gain some indication of the amount of structural materials needed if the identical habitat were installed on Mars and Earth, three additional design versions were generated where the only difference is in gravity. These additional design versions are highly academic since the difference will be much more than in gravity alone. The lateral loading due to dust storms on Mars and wind loads on Earth are some examples. The designs under the lunar gravity are realistic. They may not be adequate for final material procurement and fabrication, however, as the connection details, among other reasons, may effect the sizes of the structural members.

  8. Cast Off expansion plan by rapid improvement through Optimization tool design, Tool Parameters and using Six Sigma’s ECRS Technique

    Science.gov (United States)

    Gopalakrishnan, T.; Saravanan, R.

    2017-03-01

    Powerful management concepts step-up the quality of the product, time saving in producing the product thereby increase the production rate, improves tools and techniques, work culture, work place and employee motivation and morale. In this paper discussed about the case study of optimizing the tool design, tool parameters to cast off expansion plan according ECRS technique. The proposed designs and optimal tool parameters yielded best results and meet the customer demand without expansion plan. Hence the work yielded huge savings of money (direct and indirect cost), time and improved the motivation and more of employees significantly.

  9. ErgoTMC, A New Tool For Human-Centered TMC Design

    Science.gov (United States)

    2000-04-01

    The Federal Highway Administration (FHWA) has recently made available a new tool to assist Transportation Management Center (TMC) managers and designers in incorporating human-centered design principles into their TMCs. ErgoTMC, a web site tailored t...

  10. Re-connect: designing accessible email communication support for persons with aphasia

    NARCIS (Netherlands)

    Mahmud, Al A.; Martens, J.B.O.S.

    2010-01-01

    In this paper we present some preliminary outcomes concerning the design of an email communication tool for persons with expressive aphasia. The purpose of our design is to make email accessible for aphasics. It is based on interviews with persons with aphasia and their partners and has been

  11. Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port

    Science.gov (United States)

    Mustakim, Achmad; Hadi, Firmanto

    2018-03-01

    The condition of loading and unloading process of livestock in a number of Indonesian ports doesn’t meet the principle of animal welfare, which makes cattle lose weight and injury when unloaded. Livestock loading and unloading is done by throwing cattle into the sea one by one, tying cattle hung with a sling strap and push the cattle to the berth directly. This process is against PP. 82 year 2000 on Article 47 and 55 about animal welfare. Innovation of loading and unloading tools design offered are loading and unloading design with garbarata. In the design of loading and unloading tools with garbarata, apply the concept of semi-horizontal hydraulic ladder that connects the ship and truck directly. This livestock unloading equipment design innovation is a combination of fire extinguisher truck design and bridge equipped with weightlifting equipment. In 10 years of planning garbarata, requires a total cost of IDR 321,142,921; gets benefits IDR 923,352,333; and BCR (Benefit-Cost Ratio) Value worth 2.88. BCR value >1 means the tool is feasible applied. The designs of this loading and unloading tools are estimated up to 1 hour faster than existing way. It can also minimize risks such as injury and also weight reduction livestock agencies significantly.

  12. Preliminary design studies on the Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Terry, W.J.; Terry, W.K.; Ryskamp, J.M.; Jahshan, S.N.; Fletcher, C.D.; Moore, R.L.; Leyse, C.F.; Ottewitte, E.H.; Motloch, C.G.; Lacy, J.M.

    1992-08-01

    This report describes progress made at the Idaho National Engineering Laboratory during the first three quarters of Fiscal Year (FY) 1992 on the Laboratory-Directed Research and Development (LDRD) project to perform preliminary design studies on the Broad Application Test Reactor (BATR). This work builds on the FY-92 BATR studies, which identified anticipated mission and safety requirements for BATR and assessed a variety of reactor concepts for their potential capability to meet those requirements. The main accomplishment of the FY-92 BATR program is the development of baseline reactor configurations for the two conventional conceptual test reactors recommended in the FY-91 report. Much of the present report consists of descriptions and neutronics and thermohydraulics analyses of these baseline configurations. In addition, we considered reactor safety issues, compared the consequences of steam explosions for alternative conventional fuel types, explored a Molten Chloride Fast Reactor concept as an alternate BATR design, and examined strategies for the reduction of operating costs. Work planned for the last quarter of FY-92 is discussed, and recommendations for future work are also presented

  13. Space Launch Systems Block 1B Preliminary Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  14. Process development and tooling design for intrinsic hybrid composites

    Science.gov (United States)

    Riemer, M.; Müller, R.; Drossel, W. G.; Landgrebe, D.

    2017-09-01

    Hybrid parts, which combine the advantages of different material classes, are moving into the focus of lightweight applications. This development is amplified by their high potential for usage in the field of crash relevant structures. By the current state of the art, hybrid parts are mainly made in separate, subsequent forming and joining processes. By using the concept of an intrinsic hybrid, the shaping of the part and the joining of the different materials are performed in a single process step for shortening the overall processing time and thereby the manufacturing costs. The investigated hybrid part is made from continuous fibre reinforced plastic (FRP), in which a metallic reinforcement structure is integrated. The connection between these layered components is realized by a combination of adhesive bonding and a geometrical form fit. The form fit elements are intrinsically generated during the forming process. This contribution regards the development of the forming process and the design of the forming tool for the single step production of a hybrid part. To this end a forming tool, which combines the thermo-forming and the metal forming process, is developed. The main challenge by designing the tool is the temperature management of the tool elements for the variothermal forming process. The process parameters are determined in basic tests and finite element (FE) simulation studies. On the basis of these investigations a control concept for the steering of the motion axes and the tool temperature is developed. Forming tests are carried out with the developed tool and the manufactured parts are analysed by computer assisted tomography (CT) scans.

  15. PROMO: a computerized tool to support process monitoring activities -application in CANDU simulators

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D T [York Univ., Toronto, ON (Canada); Singh, P P [Case Western Reserve Univ., Cleveland, OH (United States)

    1996-12-31

    PROMO, a prototype computerized PROcess MOnitoring tool, has been designed for the resolution of perceived complexity under conditions of time constraints and criticality. It is suggested that this makes it uniquely suitable for applications such as nuclear power plant operator training and support. This paper describes the tool, the theory underlying its design, and results from preliminary laboratory experiments. While field tests are necessary prior to the drawing of conclusions, the results from the laboratory trials are promising. Efforts are currently underway to extend the research setting to power plant operator training centers. (author). 57 refs., 1 fig.

  16. PROMO: a computerized tool to support process monitoring activities -application in CANDU simulators

    International Nuclear Information System (INIS)

    Singh, D.T.; Singh, P.P.

    1995-01-01

    PROMO, a prototype computerized PROcess MOnitoring tool, has been designed for the resolution of perceived complexity under conditions of time constraints and criticality. It is suggested that this makes it uniquely suitable for applications such as nuclear power plant operator training and support. This paper describes the tool, the theory underlying its design, and results from preliminary laboratory experiments. While field tests are necessary prior to the drawing of conclusions, the results from the laboratory trials are promising. Efforts are currently underway to extend the research setting to power plant operator training centers. (author). 57 refs., 1 fig

  17. DESIGN OF A SUPERBIKE PADDOCK STAND USING CAD AND CAE TOOLS

    Directory of Open Access Journals (Sweden)

    M.H. Mohd Noh

    2012-06-01

    Full Text Available Two people are required to operate current superbike paddock stands in order to elevate the superbike. Lifting the superbike alone using the current design of paddock stand may be impractical and inconvenient for users. To overcome this limitation, a new design of a superbike paddock stand was conceived that could be operated by a single user. CAD and CAE tools using CATIA V5R18 software were utilised in designing this new stand. A 3D CAD model was developed and analysed through finite element analysis (FEA and a prototype fabricated for verification testing of the design. The use of CAD and CAE tools saved much time in the design work and gave the researchers and designers freedom in producing their own design. However, the most important aspect of this design study was to design a superbike paddock stand that is more practical and convenient for operation by a single user.

  18. The Pierre Auger Observatory Upgrade - Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aab, Alexander [Univ. Siegen (Germany); et al.

    2016-04-12

    The Pierre Auger Observatory has begun a major Upgrade of its already impressive capabilities, with an emphasis on improved mass composition determination using the surface detectors of the Observatory. Known as AugerPrime, the upgrade will include new 4 m2 plastic scintillator detectors on top of all 1660 water-Cherenkov detectors, updated and more flexible surface detector electronics, a large array of buried muon detectors, and an extended duty cycle for operations of the fluorescence detectors. This Preliminary Design Report was produced by the Collaboration in April 2015 as an internal document and information for funding agencies. It outlines the scientific and technical case for AugerPrime. We now release it to the public via the arXiv server. We invite you to review the large number of fundamental results already achieved by the Observatory and our plans for the future.

  19. Tool-based requirement traceability between requirement and design artifacts

    CERN Document Server

    Turban, Bernhard

    2013-01-01

    Processes for developing safety-critical systems impose special demands on ensuring requirements traceability. Achieving valuable traceability information, however, is especially difficult concerning the transition from requirements to design. Bernhard Turban analyzes systems and software engineering theories cross-cutting the issue (embedded systems development, systems engineering, software engineering, requirements engineering and management, design theory and processes for safety-critical systems). As a solution, the author proposes a new tool approach to support designers in their thinkin

  20. A review of electronic engineering design free software tools

    OpenAIRE

    Medrano Sánchez, Carlos; Plaza García, Inmaculada; Castro Gil, Manuel Alonso; García Sevilla, Francisco; Martínez Calero, J.D.; Pou Félix, Josep; Corbalán Fuertes, Montserrat

    2010-01-01

    In this paper, we review electronic design free software tools. We have searched open source programs that help with several tasks of the electronic design flow: analog and digital simulation, schematic capture, printed circuit board design and hardware description language compilation and simulation. Using some rapid criteria for verifying their availability, we have selected some of them which are worth working with. This work intends to perform a deeper analysis of fre...

  1. New tools for the simulation and design of calorimeters

    International Nuclear Information System (INIS)

    Womersley, W.J.

    1989-01-01

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab

  2. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Science.gov (United States)

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  3. Justifying the design and selection of literacy and thinking tools

    Directory of Open Access Journals (Sweden)

    David Whitehead

    2008-10-01

    Full Text Available Criteria for the design and selection of literacy and thinking tools that allow educators to justify what they do are described within a wider framework of learning theory and research into best practice. Based on a meta-analysis of best practice, results from a three year project designed to evaluate the effectiveness of a secondary school literacy initiative in New Zealand, together with recent research from cognitive and neuro-psychologists, it is argued that the design and selection of literacy and thinking tools used in elementary schools should be consistent with (i teaching focused (ii learner focused, (iii thought linked (iv neurologically consistent, (v subject specific, (vi text linked, (vii developmentally appropriate, and (viii assessment linked criteria.

  4. DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS

    Science.gov (United States)

    2017-10-01

    Determine GLOBAL CLK DEF or NETLIST Produce results END STA TOOL Determine clocking scheme Determine system clock Determine slack and other path...times. It also enables the designer to input a target time for the design which produces a slack value. Positive slack meaning that the critical time is...less than the target time and the design meets the speed requirements set by the designer. A negative slack value indicates that the design does

  5. Preliminary radiation shielding design for BOOMERANG

    International Nuclear Information System (INIS)

    Donahue, Richard J.

    2002-01-01

    Preliminary radiation shielding specifications are presented here for the 3 GeV BOOMERANG Australian synchrotron light source project. At this time the bulk shield walls for the storage ring and injection system (100 MeV Linac and 3 GeV Booster) are considered for siting purposes

  6. Status of Progress Made Toward Preliminary Design Concepts for the Inventory in Select Media for DOE-Managed HLW/SNF

    Energy Technology Data Exchange (ETDEWEB)

    Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Park, Heeho Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    As the title suggests, this report provides a summary of the status and progress for the Preliminary Design Concepts Work Package. Described herein are design concepts and thermal analysis for crystalline and salt host media. The report concludes that thermal management of defense waste, including the relatively small subset of high thermal output waste packages, is readily achievable. Another important conclusion pertains to engineering feasibility, and design concepts presented herein are based upon established and existing elements and/or designs. The multipack configuration options for the crystalline host media pose the greatest engineering challenges, as these designs involve large, heavy waste packages that pose specific challenges with respect to handling and emplacement. Defense-related Spent Nuclear Fuel (DSNF) presents issues for post-closure criticality control, and a key recommendation made herein relates to the need for special packaging design that includes neutron-absorbing material for the DSNF. Lastly, this report finds that the preliminary design options discussed are tenable for operational and post-closure safety, owing to the fact that these concepts have been derived from other published and well-studied repository designs.

  7. Tools for environmental simulations and calculations in an Integrated Design Process

    DEFF Research Database (Denmark)

    Petersen, Mads Dines; Knudstrup, Mary-Ann

    2010-01-01

    to address environmental issues. This paper in specific takes its starting point in a student project where the student is working with a building complex that have to fulfill the passive house standards and through that the student explores the use of the simulation and calculation tools in the design...... the possibilities of interoperability and the different possibilities are utilized pointing towards a heavier focus of the utilization of BIM tools in the design process from the first stages....

  8. TPX: Contractor preliminary design review. Volume 5, Manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Roach, J.F.; Urban, W.M.; Hartman, D. [Everson Electric Co., Bekthlehem, PA (United States)

    1995-08-04

    TPX Insulation & Impregnation R&D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed.

  9. Grid-Connected Integrated Community Energy System. Phase II: detailed feasibility analysis and preliminary design. Final report, Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The purpose of this study was to determine the economic and environmental feasibility of a Grid-Connected Integrated Community Energy System (ICES) based on a multifuel (gas, oil, treated solid wastes, and coal) design with which to serve any or all the institutions within the Louisiana Medical Complex in cooperation with the Health Education Authority of Louisiana (HEAL). In this context, a preliminary design is presented which consists of ICES plant description and engineering analyses. This demonstration system is capable of meeting 1982 system demands by providing 10,000 tons of air conditioning and, from a boiler plant with a high-pressure steam capacity of 200,000 lb/h, approximately 125,000 lb/h of 185 psig steam to the HEAL institutions, and at the same time generating up to 7600 kW of electrical power as byproduct energy. The plant will consist of multiple-fuel steam boilers, turbine generator, turbine driven chillers and necessary auxiliaries and ancillary systems. The preliminary design for these systems and for the building to house the central plant systems are presented along with equipment and instrumentation schedules and outline specifications for major components. Costs were updated to reflect revised data. The final preliminary cost estimate includes allowances for contingencies and escalation, as well as cost for the plant site and professional fees. This design is for a facility specifically with coal burning capability, recognizing that it is more capital-intensive than a gas/oil facility. In the opinion of the Louisiana Department of Natural Resources (DNR), the relatively modest allocations made for scrubbing and ash removal involve less than is implied in standard industry (EPRI) cost increments of over 30% for these duties. The preliminary environmental assessment is included. (LCL)

  10. The PDS4 Data Dictionary Tool - Metadata Design for Data Preparers

    Science.gov (United States)

    Raugh, A.; Hughes, J. S.

    2017-12-01

    One of the major design goals of the PDS4 development effort was to create an extendable Information Model (IM) for the archive, and to allow mission data designers/preparers to create extensions for metadata definitions specific to their own contexts. This capability is critical for the Planetary Data System - an archive that deals with a data collection that is diverse along virtually every conceivable axis. Amid such diversity in the data itself, it is in the best interests of the PDS archive and its users that all extensions to the IM follow the same design techniques, conventions, and restrictions as the core implementation itself. But it is unrealistic to expect mission data designers to acquire expertise in information modeling, model-driven design, ontology, schema formulation, and PDS4 design conventions and philosophy in order to define their own metadata. To bridge that expertise gap and bring the power of information modeling to the data label designer, the PDS Engineering Node has developed the data dictionary creation tool known as "LDDTool". This tool incorporates the same software used to maintain and extend the core IM, packaged with an interface that enables a developer to create his extension to the IM using the same, standards-based metadata framework PDS itself uses. Through this interface, the novice dictionary developer has immediate access to the common set of data types and unit classes for defining attributes, and a straight-forward method for constructing classes. The more experienced developer, using the same tool, has access to more sophisticated modeling methods like abstraction and extension, and can define context-specific validation rules. We present the key features of the PDS Local Data Dictionary Tool, which both supports the development of extensions to the PDS4 IM, and ensures their compatibility with the IM.

  11. On Computational Fluid Dynamics Tools in Architectural Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hougaard, Mads; Stærdahl, Jesper Winther

    engineering computational fluid dynamics (CFD) simulation program ANSYS CFX and a CFD based representative program RealFlow are investigated. These two programs represent two types of CFD based tools available for use during phases of an architectural design process. However, as outlined in two case studies...

  12. Ecological Interface Design of a Tactical Airborne Separation Assistance Tool

    NARCIS (Netherlands)

    Van Dam, S.; Mulder, M.; Van Paassen, M.M.

    2008-01-01

    In a free-flight airspace environment, pilots have more freedom to choose user-preferred trajectories. An onboard pilot support system is needed that exploits travel freedom while maintaining spatial separation with other traffic. Ecological interface design is used to design an interface tool that

  13. FROM DOCUMENTATION IMAGES TO RESTAURATION SUPPORT TOOLS: A PATH FOLLOWING THE NEPTUNE FOUNTAIN IN BOLOGNA DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    F. I. Apollonio

    2017-05-01

    Full Text Available The sixteenth-century Fountain of Neptune is one of Bologna’s most renowned landmarks. During the recent restoration activities of the monumental sculpture group, consisting in precious marbles and highly refined bronzes with water jets, a photographic campaign has been carried out exclusively for documentation purposes of the current state of preservation of the complex. Nevertheless, the highquality imagery was used for a different use, namely to create a 3D digital model accurate in shape and color by means of automated photogrammetric techniques and a robust customized pipeline. This 3D model was used as basic tool to support many and different activities of the restoration site. The paper describes the 3D model construction technique used and the most important applications in which it was used as support tool for restoration: (i reliable documentation of the actual state; (ii surface cleaning analysis; (iii new water system and jets; (iv new lighting design simulation; (v support for preliminary analysis and projectual studies related to hardly accessible areas; (vi structural analysis; (vii base for filling gaps or missing elements through 3D printing; (viii high-quality visualization and rendering and (ix support for data modelling and semantic-based diagrams.

  14. A Conceptual Design and Structural Analysis for ITER Mid-plane Brace Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Jae Hyuk; Kim, Kyung kyu [SFA Engineering Corp., Changwon (Korea, Republic of); Im, Kihak; Robert, Shaw [ITER Organization, St Paul lez Durance Cedex (France)

    2010-10-15

    The ITER, International Thermonuclear Experimental Reactor, Tokamak machine is mainly composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 .deg. sectors. Each VV/TFCs/VVTS 40 .deg. sector is made up of one 40 .deg. VV, two 20 .deg. TFCs and associated VVTS segments. The ITER Tokamak assembly tools are purpose-built tools to assemble the ITER Tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the IO (ITER international organization), Korea has carried out the conceptual design of assembly tools with IO cooperation. The 40 .deg. sector assemblies attached mid-plane brace tools sub-assembled at assembly hall are transferred to Tokamak hall using the lifting tool operated by Tokamak main cranes. The sector sub-assembly tools are composed of the upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and mid-plane brace tools. The mid-plane brace tool is assembled to inner surface of VV and TFCs in phase of sector sub-assembly after completion of all sector components. VV, TFC and VVTS are separated fully before completion of 9 sectors at Tokamak in-pit. In this paper the mid-plane brace tools is introduced about function, structure and status of research and development are also described

  15. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  16. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  17. Preliminary neutronic design of spock reactor: A nuclear system for space power generation

    International Nuclear Information System (INIS)

    Burgio, N.; Santagata, A.; Cumo, M.; Fasano, A.; Frullini, M.

    2007-01-01

    Aim of this paper is to preliminary investigates the neutronic features of an upgrade of the MAUS [1] nuclear reactor whose core will be able to supply a thermoelectric converter in order to generate 30 kW of electricity for space applications. The neutronic layout of SPOCK (Space Power Core Ka) is a compact, MOX fuelled, liquid metal cooled and totally reflected fast reactor with a control system based on neutron absorption. Spock, that during the heart and launch operation must be maintained in sub-critical state, has to start up in the outer space at 40 K temperatures with the coolant in a solid state and it will reach the operating steady condition at the maximum temperature of 1300 K with the coolant in the liquid state. The main design goal is to maintains, in the operating conditions of a typical space mission, the control of the appropriate criticality margin versus temperature and coolant physical state. For this purpose, a neutronic/thermal-hydraulic calculation chain able to assists the entire design process must be set up. As preliminary recognition, MCNPX 2.5.0 and FLUENT calculations were carried out. The emerging key features of SPOCK are: an equilateral triangular mesh of 91 cylindrical UO 2 fuel rods with a Molybdenum clad ensured by two grids of the same material, cooled by liquid Sodium and contained in an AISI 316 L vessel. The core is totally wrapped by a Beryllium reflector that hosts six absorber (B 4 C) rotating control rods. The reactor shape is cylindrical (radius = 30 cm and height = 60 cm) with a total mass of 275 kg. The excess reactivity was of 5000 PCM at 1300 K. A preliminary evaluation of the control rods worth and a power spatial distribution were also discussed. Through the definition of an ideal reference K e ff value at 300 K for the actual SPOCK configuration, a sensitivity analysis on various cross sections data and material physical properties was performed for the given mission temperature range, allowing consideration on

  18. Providing guidance in virtual lab experimentation : the case of an experiment design tool

    NARCIS (Netherlands)

    Efstathiou, Charalampos; Hovardas, Tasos; Xenofontos, Nikoletta A.; Zacharia, Zacharias C.; de Jong, Ton A.J.M.; Anjewierden, Anjo; van Riesen, Siswa A.N.

    2018-01-01

    The present study employed a quasi-experimental design to assess a computer-based tool, which was intended to scaffold the task of designing experiments when using a virtual lab for the process of experimentation. In particular, we assessed the impact of this tool on primary school students’

  19. The design process and the use of computerized tools in control room design

    International Nuclear Information System (INIS)

    Wahlstroem, B.; Heinonen, R.; Ranta, J.; Haarla, J.

    1985-09-01

    Control room design has proven an important component when the safety and availability of a complex industrial process plant are considered. Many control room deficiencies can be traced back to oversights and other errors during the design process. The introduction of powerful computers and software for computer-aided design (CAD) offers one possibility when tools for improving the quality of design are being selected. The report gives a broad assessment of problems of design and the benefits of using computer-aided design. One proposal for a structure of a computer-aided design system is considered in more detail. In this system special emphasis has been laid on dealing with requirements during design process. A demonstration system has been built and sample system user dialogues are described. The report is the final report of the LIT3.1 project of the Nordic cooperation on human reliability in the energy production field. (author)

  20. LASL experimental engineered waste burial facility: design considerations and preliminary plan

    International Nuclear Information System (INIS)

    DePoorter, G.L.

    1980-01-01

    The LASL Experimental Engineered Waste Burial Facility is a part of the National Low-Level Waste Management Program on Shallow-Land Burial Technology. It is a test facility where basic information can be obtained on the processes that occur in shallow-land burial operations and where new concepts for shallow-land burial can be tested on an accelerated basis on an appropriate scale. The purpose of this paper is to present some of the factors considered in the design of the facility and to present a preliminary description of the experiments that are initially planned. This will be done by discussing waste management philosophies, the purposes of the facility in the context of the waste management philosophy for the facility, and the design considerations, and by describing the experiments initially planned for inclusion in the facility, and the facility site

  1. Development of reactor design aid tool using virtual reality technology

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Tamura, Y.; Imagawa, S.; Sagara, A.; Hayashi, T.

    2006-01-01

    A new type of aid system for fusion reactor design, to which the virtual reality (VR) visualization and sonification techniques are applied, is developed. This system provides us with an intuitive interaction environment in the VR space between the observer and the designed objects constructed by the conventional 3D computer-aided design (CAD) system. We have applied the design aid tool to the heliotron-type fusion reactor design activity FFHR2m [A. Sagara, S. Imagawa, O. Mitarai, T. Dolan, T. Tanaka, Y. Kubota, et al., Improved structure and long -life blanket concepts for heliotron reactors, Nucl. Fusion 45 (2005) 258-263] on the virtual reality system CompleXcope [Y. Tamura, A. Kageyama, T. Sato, S. Fujiwara, H. Nakamura, Virtual reality system to visualize and auralize numerical imulation data, Comp. Phys. Comm. 142 (2001) 227-230] of the National Institute for Fusion Science, Japan, and have evaluated its performance. The tool includes the functions of transfer of the observer, translation and scaling of the objects, recording of the operations and the check of interference

  2. Gas turbine designer computer program - a study of using a computer for preliminary design of gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Rickard

    1995-11-01

    This thesis presents calculation schemes and theories for preliminary design of the fan, high pressure compressor and turbine of a gas turbine. The calculations are presented step by step, making it easier to implement in other applications. The calculation schemes have been implemented as a subroutine in a thermodynamic program. The combination of the thermodynamic cycle calculation and the design calculation turned out to give quite relevant results, when predicting the geometry and performance of an existing aero engine. The program developed is able to handle several different gas turbines, including those in which the flow is split (i.e. turbofan engines). The design process is limited to the fan, compressor and turbine of the gas turbine, the rest of the components have not been considered. Output from the program are main geometry, presented both numerically and as a scale plot, component efficiencies, stresses in critical points and a simple prediction of turbine blade temperatures. 11 refs, 21 figs, 1 tab

  3. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Daniel P

    2009-01-12

    the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  4. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    International Nuclear Information System (INIS)

    Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria

    2014-01-01

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  5. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    Energy Technology Data Exchange (ETDEWEB)

    Laganà, Alessandro [Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (United States); Shasha, Dennis [Courant Institute of Mathematical Sciences, New York University, New York, NY (United States); Croce, Carlo Maria [Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (United States)

    2014-12-11

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.

  6. Logical Framework Analysis (LFA): An Essential Tool for Designing ...

    African Journals Online (AJOL)

    Logical Framework Analysis (LFA): An Essential Tool for Designing Agricultural Project ... overview of the process and the structure of the Logical Framework Matrix or Logframe, derivable from it, ..... System Approach to Managing The Project.

  7. Preliminary structural evaluations of the STAR-LM reactor vessel and the support design

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Sienicki, James J.; Moisseytsev, Anton

    2007-01-01

    In this paper, preliminary structural evaluations of the reactor vessel and support design of the STAR-LM (The Secure, Transportable, Autonomous Reactor - Liquid Metal variant), which is a lead-cooled reactor, are carried out with respect to an elevated temperature design and seismic design. For an elevated temperature design, the structural integrity of a direct coolant contact to the reactor vessel is investigated by using a detail structural analysis and the ASME-NH code rules. From the results of the structural analyses and the integrity evaluations, it was found that the design concept of a direct coolant contact to the reactor vessel cannot satisfy the ASME-NH rules for a given design condition. Therefore, a design modification with regards to the thermal barrier is introduced in the STAR-LM design. For a seismic design, detailed seismic time history response analyses for a reactor vessel with a consideration of a fluid-structure interaction are carried out for both a top support type and a bottom support type. And from the results of the hydrodynamic pressure responses, an investigation of the minimum thickness design of the reactor vessel is tentatively carried out by using the ASME design rules

  8. Improving sustainability during hospital design and operation a multidisciplinary evaluation tool

    CERN Document Server

    Bottero, Marta; Buffoli, Maddalena; Lettieri, Emanuele

    2015-01-01

    This book describes the Sustainable High Quality Healthcare (SustHealth) project, which had the goal of developing an original multidisciplinary evaluation tool that can be applied to assess and improve hospitals’ overall sustainability. The comprehensive nature of the appraisal offered by this tool exceeds the scope of most current rating systems, which typically permit a thorough evaluation of relevant environmental factors when designing a new building but fail to consider social and economic impacts of the design phase or the performance of the hospital’s operational structure in these fields. The multidisciplinary evaluation system was developed, from its very inception through to its testing, by following a scientific experimental method in which a global perspective was constantly maintained, as opposed to a focus only on specific technical issues. Application of the SustHealth rating tool to a currently functioning hospital, or one under design, will identify weaknesses and guide users to potentia...

  9. AGILE, a tool for interactive lattice design

    CERN Document Server

    Bryant, P J

    2000-01-01

    AGILE is a program that works in the IBM-PC, MS-Windows environment and is dedicated to the interactive design of alternating-gradient lattices for synchrotrons and transfer lines. The program was originally intended as a teaching tool, but has been used mostly for professional design work and is subject to continuous development. It contains original algorithms for coupling, scattering and eddy currents, and some slightly unusual algorithms for off-axis orbits and space charge. There are also additional features such as engineering design aids, calculators for relativistic and synchrotron radiation parameters, expert routines for optimising slow extraction, fitting and matching, and the internal storage of constants for over 1000 stable and quasi-stable charged particles. The program is object-oriented and fully integrated into the Windows environment - it is not a shell. Apart from office work, AGILE is ideal for home use, design workshops and when travelling. It is particularly suited to practical problems...

  10. Metal Cutting Theory and Friction Stir Welding Tool Design

    Science.gov (United States)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  11. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  12. Performance Evaluation of a Software Engineering Tool for Automated Design of Cooling Systems in Injection Moulding

    DEFF Research Database (Denmark)

    Jauregui-Becker, Juan M.; Tosello, Guido; van Houten, Fred J.A.M.

    2013-01-01

    This paper presents a software tool for automating the design of cooling systems for injection moulding and a validation of its performance. Cooling system designs were automatically generated by the proposed software tool and by applying a best practice tool engineering design approach. The two...

  13. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    Science.gov (United States)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  14. Methodology and preliminary models for analyzing nuclear-safeguards decisions

    International Nuclear Information System (INIS)

    Judd, B.R.; Weissenberger, S.

    1978-11-01

    This report describes a general analytical tool designed with Lawrence Livermore Laboratory to assist the Nuclear Regulatory Commission in making nuclear safeguards decisions. The approach is based on decision analysis - a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material; demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria); and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  15. Analytical Modelling Of Milling For Tool Design And Selection

    International Nuclear Information System (INIS)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-01-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools

  16. Tools for Stakeholder Involvement in Facility Management Service Design

    DEFF Research Database (Denmark)

    Nardelli, Giulia; Scupola, Ada

    that are more in line with the stakeholder needs and expectations, and may thus result in increased customer satisfaction, better services and, at the very end, an increased competitive advantage for the organization. Background: The background of this study lies in user involvement in service design...... in the design process as well as FM service provision processes. Research limitations: The major limitation of the study consists of the relatively small amount of interviews conducted, which is the basis for finding the tools in FM service design processes....

  17. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    Energy Technology Data Exchange (ETDEWEB)

    Price, R. E.

    1983-12-31

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  18. Matlab as a robust control design tool

    Science.gov (United States)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  19. Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency

    International Nuclear Information System (INIS)

    Oh, J.S.; Choi, J.; Suh, J.H.; Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W.; Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H.

    2013-01-01

    Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients

  20. Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.S., E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, J.; Suh, J.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W. [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H. [Hyosung Corp., 450, Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); and others

    2013-10-15

    Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients.

  1. IT-based wellness tools for older adults: Design concepts and feedback.

    Science.gov (United States)

    Joe, Jonathan; Hall, Amanda; Chi, Nai-Ching; Thompson, Hilaire; Demiris, George

    2018-03-01

    To explore older adults' preferences regarding e-health applications through use of generated concepts that inform wellness tool design. The 6-8-5 method and affinity mapping were used to create e-health design ideas that were translated into storyboards and scenarios. Focus groups were conducted to obtain feedback on the prototypes and included participant sketching. A qualitative analysis of the focus groups for emerging themes was conducted, and sketches were analyzed. Forty-three older adults participated in six focus group sessions. The majority of participants found the wellness tools useful. Preferences included features that supported participants in areas of unmet needs, such as ability to find reliable health information, cognitive training, or maintaining social ties. Participants favored features such as use of voice navigation, but were concerned over cost and the need for technology skills and access. Sketches reinforced these wants, including portability, convenience, and simplicity. Several factors were found to increase the desirability of such devices including convenient access to their health and health information, a simple, accessible interface, and support for memory issues. Researchers and designers should incorporate the feedback of older adults regarding wellness tools, so that future designs meet the needs of older adults.

  2. Virtual reality solutions for the design of machine tools in practice

    OpenAIRE

    Zickner, H.; Neugebauer, Reimund; Weidlich, D.

    2006-01-01

    At the Virtual Reality Centre Production Engineering (VRCP) the Institute for Machine Tools and Production Processes (IWP) of the Chemnitz University of Technology and the Fraunhofer Institute for Machine Tools and Forming Technology (IWU) have developed several practical Virtual Reality (VR) based solutions for the industry. Some practical examples will show the benefits gained by the application of Virtual Reality techniques in the design process of machine tools and assembly lines.

  3. Quantitative and creative design tools for urban design in cold and windy climates

    DEFF Research Database (Denmark)

    Koss, Holger; Jensen, Lotte Bjerregaard; Nielsen, Thomas Alexander Sick

    2014-01-01

    between the design processes and the academic knowledge available is a focus area. The effects of climate change and a general higher demand for quantitative assessment of urban planning proposals in hard climatic locations have created a demand for research based design advice. The paper will present......In cold and windy climates, the quality of the urban spaces is severely challenged. A design process with a very high level of information regarding wind, sun, daylight and water from the earliest of the design process will help create the most optimized design. For the last couple of years...... in academic ‘silos’ where little attention has been made in regards to architectural design processes. Simulation tools were developed that can render a larger amount of information available in a short time and thus can keep pace with an ongoing design process in an architectural studio. Bridging the gap...

  4. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    Science.gov (United States)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  5. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  6. Design support document for the K Basins Vertical Fuel Handling Tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the design support information for the Vertical Fuel Handling Tools, developed for the removal of N Reactor fuel elements from their storage canisters in the K Basins storage pool and insertion into the Single Fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N Reactor fuel elements is part of the overall characterization effort. These new hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element vertically from the storage canister. Additionally, a Mark II storage canister Lip Seal Protector was designed and fabricated for use during fuel retrieval. This device was required to prevent damage to the canister lip should a fuel element accidentally be dropped during its retrieval, using the handling tools. Supporting documentation for this device is included in this document

  7. Experience with case tools in the design of process-oriented software

    Science.gov (United States)

    Novakov, Ognian; Sicard, Claude-Henri

    1994-12-01

    In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.

  8. Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    Science.gov (United States)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2003-01-01

    The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to

  9. a Tool for Crowdsourced Building Information Modeling Through Low-Cost Range Camera: Preliminary Demonstration and Potential

    Science.gov (United States)

    Capocchiano, F.; Ravanelli, R.; Crespi, M.

    2017-11-01

    Within the construction sector, Building Information Models (BIMs) are more and more used thanks to the several benefits that they offer in the design of new buildings and the management of the existing ones. Frequently, however, BIMs are not available for already built constructions, but, at the same time, the range camera technology provides nowadays a cheap, intuitive and effective tool for automatically collecting the 3D geometry of indoor environments. It is thus essential to find new strategies, able to perform the first step of the scan to BIM process, by extracting the geometrical information contained in the 3D models that are so easily collected through the range cameras. In this work, a new algorithm to extract planimetries from the 3D models of rooms acquired by means of a range camera is therefore presented. The algorithm was tested on two rooms, characterized by different shapes and dimensions, whose 3D models were captured with the Occipital Structure SensorTM. The preliminary results are promising: the developed algorithm is able to model effectively the 2D shape of the investigated rooms, with an accuracy level comprised in the range of 5 - 10 cm. It can be potentially used by non-expert users in the first step of the BIM generation, when the building geometry is reconstructed, for collecting crowdsourced indoor information in the frame of BIMs Volunteered Geographic Information (VGI) generation.

  10. Design and validation of an improved graphical user interface with the 'Tool ball'.

    Science.gov (United States)

    Lee, Kuo-Wei; Lee, Ying-Chu

    2012-01-01

    The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Reliability Oriented Design Tool For the New Generation of Grid Connected PV-Inverters

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Blaabjerg, Frede; Wang, Huai

    2015-01-01

    is achieved and is further used as an input to the lifetime model. The proposed reliability-oriented design tool is used to study the impact of mission profile (MP) variation and device degradation (aging) in the PV inverter lifetime. The obtained results indicate that the MP of the field where the PV...... inverter is operating has an important impact (up to 70%) on the converter lifetime expectation, and it should be considered in the design stage to better optimize the converter design margin. In order to have correct lifetime estimation, it is crucial to consider also the device degradation feedback (in......This paper introduces a reliability-oriented design tool for a new generation of grid-connected photovoltaic (PV) inverters. The proposed design tool consists of a real field mission profile (RFMP) model (for two operating regions: USA and Denmark), a PV panel model, a grid-connected PV inverter...

  12. Judicial problems in connection with preliminary decision and construction design approval in nuclear licensing procedures

    International Nuclear Information System (INIS)

    Schmieder, K.

    1977-01-01

    Standardization in nuclear engineering makes two demands on a legal instrument which is to make this standardization possible and which is to promote standardization in the nuclear licensing practice: On the basis of just one licence for a constructional part or a component, its applicability in any number of subsequent facility licensing procedures has to be warranted, and by virtue of its binding effect, standardization has to create a sufficiently big confidence protection with manufacturers, constructioneers and operators to offer sufficiently effective incentives for standardization. The nuclear preliminary decision pursuant to section 7 a of the Atomic Energy Act in the form of the component preliminary decision appears to be unsuitable as a legal instrument for standardization, as the preliminary decision refers exclusively to the construction of a concrete facility. For standardization in reactor engineering, the construction design approval appears to be basically the proper legal instrument on account of its legal structure as well as its economic effect. Its binding effect encouters a limitation with regard to third parties in so far that this limitation could question again the binding effect in a subsequent site-dependent nuclear licence procedure. The legal structure of the extent of the binding effect, which is decisive for the suitability of the construction design approval, lies with the legislator. The following questions have to be regulated: Ought the applicant to have a legal claim on the granting of a construction design approval, or ought it to be at the discretion of the authorities, and secondly, the extent of the binding effect in terms of time on the basis of the fixation of a time limit, or on the basis of the possibility of subsequent conditions to be imposed, or the revocation. (orig./HP) [de

  13. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    Science.gov (United States)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  14. A Simulation Tool for the Conceptual Design of Thermonuclear Pulsors

    International Nuclear Information System (INIS)

    Ramos, R.; Gonzalez, J.; Clausse, A.

    2003-01-01

    We worked with an effective model that calculates the neutron production of Plasma Focus devices.From experimental data we obtained different fitting functions for the model lumped parameters.By this way, we obtained a simple tool for neutron yield calculation.This tool is very useful at a conceptual design stage, because it can predict easily if a given PF device would be suitable for a certain application

  15. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  16. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    International Nuclear Information System (INIS)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W.

    2016-01-01

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  17. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2016-05-15

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  18. Solid Waste Operations Complex W-113: Project cost estimate. Preliminary design report. Volume IV

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains Volume IV of the Preliminary Design Report for the Solid Waste Operations Complex W-113 which is the Project Cost Estimate and construction schedule. The estimate was developed based upon Title 1 material take-offs, budgetary equipment quotes and Raytheon historical in-house data. The W-113 project cost estimate and project construction schedule were integrated together to provide a resource loaded project network

  19. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  20. Process Improvement Through Tool Integration in Aero-Mechanical Design

    Science.gov (United States)

    Briggs, Clark

    2010-01-01

    Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.

  1. A Revised Interface for the ARL Topodef Mobility Design Tool

    Science.gov (United States)

    2012-04-01

    designed paths as though moving down a conveyor belt . Giving paths an existence independent of the nodes that travel along them not only makes their...A Revised Interface for the ARL Topodef Mobility Design Tool by Andrew J. Toth and Michael Christensen ARL-TR-5980 April 2012...Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other

  2. Value engineering on the designed operator work tools for brick and rings wells production

    Science.gov (United States)

    Ayu Bidiawati J., R.; Muchtiar, Yesmizarti; Wariza, Ragil Okta

    2017-06-01

    Operator working tools in making brick and ring wells were designed and made, and the value engineering was calculated to identify and develop the function of these tools in obtaining the balance between cost, reliability and appearance. This study focused on the value of functional components of the tools and attempted to increase the difference between the costs incurred by the generated values. The purpose of this study was to determine the alternatives of tools design and to determine the performance of each alternative. The technique was developed using FAST method that consisted of five stages: information, creative, analytical, development and presentation stage. The results of the analysis concluded that the designed tools have higher value and better function description. There were four alternative draft improvements for operator working tools. The best alternative was determined based on the rank by using matrix evaluation. Best performance was obtained by the alternative II, amounting to 98.92 with a value of 0.77.

  3. Preliminary Validation and Verification of TURBO{sub D}ESIGN for S-CO{sub 2} Axial Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoon Han; Kim, Seong Gu [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoon, Ho Joon; Addad, Yacine [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2012-05-15

    To use the advantages of Supercritical CO{sub 2}(S-CO{sub 2}) Brayton cycle for nuclear power plant, KAIST-Khalifa University joint research team has been focusing on S-CO{sub 2} turbomachinery development. TURBO{sub D}ESIGN code is one of the products of our researches to design a turbomachinery. The major feature of TURBO{sub D}ESIGN is that the formulation is based on the real gas and none of the ideal gas assumption was applied to the code. Thus, TURBO{sub D}ESIGN has high flexibility regarding the type of gases. In this paper, preliminary code validation and verification of TURBO{sub D}ESIGN will be discussed for axial type compressor design

  4. Development of the ITER IOIS assembly tool and mock-up

    International Nuclear Information System (INIS)

    Nam, Kyoungo; Kim, Dongjin; Park, Hyunki; Ahn, Heejae; Kim, Kyoungkyu; Yoo, Yongsoo; Watson, Emma; Shaw, Robert

    2014-01-01

    The ITER toroidal field coils (TFCs) are connected by 3 different connecting structures as follows; Outer Intercoil Structure (OIS), Inner Intercoil Structure (IIS), Intermediate Outer Intercoil Structure (IOIS). In assessing the assembly, requirements and environmental conditions of each Intercoil structure, the IOIS and IIS assembly were thought to be the most challenging compared to the OIS assembly due to the very limited assembly space available and the strict requirements requested by IO, especially the IOIS assembly, which has particularly difficult installation requirements including complicated shear pin assemblies. A conceptual and preliminary design has been developed by the Korean domestic agency (KODA) for the sub assembly and final assembly phase; the tool includes the ability to control both IOIS plates simultaneously. For design verification of the IOIS assembly tool mentioned above, structural analysis has been carried out considering seismic event. Also, a half sized mock-up has been fabricated and tested according to assembly procedures. In this paper, a description of tool design and the results of analysis and mock-test will be introduced

  5. Resources for Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The information available here is presented as a tool to help school districts and facility planners design the next generation of learning environments so that the school facility will help schools in achieving their core mission of educating children.

  6. Team learning center design principles

    Energy Technology Data Exchange (ETDEWEB)

    Daily, B.; Loveland, J.; Whatley, A. [New Mexico State Univ., Las Cruces, NM (United States)] [and others

    1995-06-01

    This is a preliminary report of a multi-year collaboration of the authors addressing the subject: Can a facility be designed for team learning and would it improve the efficiency and effectiveness of team interactions? Team learning in this context is a broad definition that covers all activities where small to large groups of people come together to work, to learn, and to share through team activities. Multimedia, networking, such as World Wide Web and other tools, are greatly enhancing the capability of individual learning. This paper addresses the application of technology and design to facilitate group or team learning. Many organizational meetings need tens of people to come together to do work as a large group and then divide into smaller subgroups of five to ten to work and then to return and report and interact with the larger group. Current facilities were not, in general, designed for this type of meeting. Problems with current facilities are defined and a preliminary design solution to many of the identified problems is presented.

  7. Justifying the design and selection of literacy and thinking tools

    Directory of Open Access Journals (Sweden)

    David Whitehead

    2008-10-01

    Full Text Available Criteria for the design and selection of literacy and thinking tools that allow educators to justifywhat they do are described within a wider framework of learning theory and research into bestpractice. Based on a meta-analysis of best practice, results from a three year project designedto evaluate the effectiveness of a secondary school literacy initiative in New Zealand, togetherwith recent research from cognitive and neuro-psychologists, it is argued that the design andselection of literacy and thinking tools used in elementary schools should be consistent with (iteaching focused (ii learner focused, (iii thought linked (iv neurologically consistent, (vsubject specific, (vi text linked, (vii developmentally appropriate, and (viii assessment linkedcriteria.

  8. An Accurate and Efficient Design Tool for Large Contoured Beam Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min; Sørensen, Stig B.; Jørgensen, Erik

    2012-01-01

    An accurate and efficient tool for the design of contoured beam reflectarrays is presented. It is based on the Spectral Domain Method of Moments, the Local Periodicity approach, and a minimax optimization algorithm. Contrary to the conventional phase-only optimization techniques, the geometrical...... parameters of the array elements are directly optimized to fulfill the far-field requirements. The design tool can be used to optimize reflectarrays based on a regular grid as well as an irregular grid. Both coand cross-polar radiation can be optimized for multiple frequencies, polarizations, and feed...... illuminations. Two offset contoured beam reflectarrays that radiate a highgain beam on an European coverage have been designed, manufactured, and measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. An excellent agreement is obtained for the simulated and measured patterns. To show the design...

  9. Interdisciplinary Approach to Tool-Handle Design Based on Medical Imaging

    Directory of Open Access Journals (Sweden)

    G. Harih

    2013-01-01

    Full Text Available Products are becoming increasingly complex; therefore, designers are faced with a challenging task to incorporate new functionality, higher performance, and optimal shape design. Traditional user-centered design techniques such as designing with anthropometric data do not incorporate enough subject data to design products with optimal shape for best fit to the target population. To overcome these limitations, we present an interdisciplinary approach with medical imaging. The use of this approach is being presented on the development of an optimal sized and shaped tool handle where the hand is imaged using magnetic resonance imaging machine. The obtained images of the hand are reconstructed and imported into computer-aided design software, where optimal shape of the handle is obtained with Boolean operations. Methods can be used to develop fully customized products with optimal shape to provide best fit to the target population. This increases subjective comfort rating, performance and can prevent acute and cumulative trauma disorders. Provided methods are especially suited for products where high stresses and exceptional performance is expected (high performance tools, professional sports, and military equipment, etc.. With the use of these interdisciplinary methods, the value of the product is increased, which also increases the competitiveness of the product on the market.

  10. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  11. Permian Basin, Texas: Volume 1, Text: Final preliminary design report

    International Nuclear Information System (INIS)

    1988-01-01

    This report is a description of the preliminary design for an Exploratory Shaft Facility (ESF) at the proposed 49 acre site located 21 miles north of Hereford, Texas in Deaf Smith County. Department of Energy must conduct in situ testing at depth to ascertain the engineering and environmental suitability of the site for further consideration for nuclear waste repository development. The ESF includes the construction of two 12-ft diameter engineered shafts for accessing the bedded salt horizon to conduct in situ tests to ascertain if the site should be considered a candidate site for the first High Level Nuclear Waste Repository. This report includes pertinent engineering drawings for two shafts and all support facilities necessary for shaft construction and testing program operation. Shafts will be constructed by conventional drill-and-blast methods employing ground freezing prior to shaft construction to stabilize the existing groundwater and soil conditions at the site. A watertight liner and seal system will be employed to prevent intermingling of aquifers and provide a stable shaft throughout its design life. 38 refs., 37 figs., 14 tabs

  12. The ORNL Modulating Heat Pump Design Tool -- Mark IV User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C.K.

    2001-09-27

    The ORNL Modulating Heat Pump Design Tool consists of a Modulating HPDM (Heat Pump Design Model) and a parametric-analysis (contour-data generating) front-end. Collectively the program is also referred to as MODCON which is in reference to the modulating and the contour data generating capabilities. The program was developed by Oak Ridge National Laboratory for the Department of Energy to provide a publicly-available system design tool for variable- and single-speed heat pumps.

  13. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Science.gov (United States)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  14. Impact assessment as a design tool

    DEFF Research Database (Denmark)

    Lyhne, Ivar

    Research and development (R&D) programmes constitute a pivotal arena for shaping technologies of the future. In order to make qualified decisions, R&D programmes ought to be subject to impact assessment (IA). It seems, however, that only a few countries have developed a systematic practice. One r...... reason for the limited practice might be that IA of R&D policy is said to be particularly difficult. This paper reports on experiences from a voluntary IA application in Danish with point of departure in the question: How does IA work as a design tool in terms of R&D programmes?...

  15. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  16. Towards life-cycle awareness in decision support tools for engineering design

    OpenAIRE

    Nergård, Henrik; Sandberg, Marcus; Larsson, Tobias

    2009-01-01

    In this paper a decision support tool with the focus on how to generate and visualize decision base coupled to the business agreement is outlined and discussed. Decision support tools for the early design phases are few and especially tools that visualize the readiness level of activities throughout the product life-cycle. Aiming for the sustainable society there is an indication that business-to-business manufacturers move toward providing a function rather than selling off the hardware and ...

  17. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Energy Technology Data Exchange (ETDEWEB)

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  18. Computer Aided Design Tools for Extreme Environment Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to provide Computer Aided Design (CAD) tools for radiation-tolerant, wide-temperature-range digital, analog, mixed-signal, and radio-frequency...

  19. Design and application of a formal verification tool for VHDL designs

    International Nuclear Information System (INIS)

    John, Ajith K.; Bhattacharjee, A.K.; Sharma, Mukesh; Ganesh, G.; Dhodapkar, S.D.; Biswas, B.B.

    2012-01-01

    The design of Control and Instrumentation (C and I) systems used in safety critical applications such as nuclear power plants involves partitioning of the overall system functionality into subparts and implementing each subpart in hardware and/or software as appropriate. With increasing use of programmable devices like FPGA, the hardware subsystems are often implemented in Hardware Description Languages (HDL) like VHDL. Since the functional bugs in such hardware subsystems used in safety critical C and I systems have disastrous consequences, it is important to use rigorous reasoning to verify the functionalities of the HDL models. Work on developing a software tool named VBMC (VHDL Bounded Model Checker) for mathematically proving functional properties of hardware designs described in VHDL has been described. It is based on the principle of bounded model checking. Although the design of VBMC is still evolving, it is currently also being used for the functional verification of FPGA based intelligent I/O (EHS) boards developed in Reactor Control Division, BARC

  20. The Design of Tools for Sketching Sensor-Based Interaction

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock

    2012-01-01

    In this paper we motivate, present, and give an initial evaluation of DUL Radio, a small wireless toolkit for sketching sensor-based interaction. In the motivation, we discuss the purpose of this specific platform, which aims to balance ease-of-use (learning, setup, initialization), size, speed......, flexibility and cost, aimed at wearable and ultra-mobile prototyping where fast reaction is needed (e.g. in controlling sound), and we discuss the general issues facing this category of embodied interaction design tools. We then present the platform in more detail, both regarding hard- ware and software....... In the brief evaluation, we present our initial experiences with the platform both in design projects and in teaching. We conclude that DUL Radio does seem to be a relatively easy-to-use tool for sketching sensor-based interaction compared to other solutions, but that there are many ways to improve it. Target...

  1. A Method for Design of Modular Reconfigurable Machine Tools

    Directory of Open Access Journals (Sweden)

    Zhengyi Xu

    2017-02-01

    Full Text Available Presented in this paper is a method for the design of modular reconfigurable machine tools (MRMTs. An MRMT is capable of using a minimal number of modules through reconfiguration to perform the required machining tasks for a family of parts. The proposed method consists of three steps: module identification, module determination, and layout synthesis. In the first step, the module components are collected from a family of general-purpose machines to establish a module library. In the second step, for a given family of parts to be machined, a set of needed modules are selected from the module library to construct a desired reconfigurable machine tool. In the third step, a final machine layout is decided though evaluation by considering a number of performance indices. Based on this method, a software package has been developed that can design an MRMT for a given part family.

  2. Development of a software tool and criteria evaluation for efficient design of small interfering RNA

    International Nuclear Information System (INIS)

    Chaudhary, Aparna; Srivastava, Sonam; Garg, Sanjeev

    2011-01-01

    Research highlights: → The developed tool predicted siRNA constructs with better thermodynamic stability and total score based on positional and other criteria. → Off-target silencing below score 30 were observed for the best siRNA constructs for different genes. → Immunostimulation and cytotoxicity motifs considered and penalized in the developed tool. → Both positional and compositional criteria were observed to be important. -- Abstract: RNA interference can be used as a tool for gene silencing mediated by small interfering RNAs (siRNA). The critical step in effective and specific RNAi processing is the selection of suitable constructs. Major design criteria, i.e., Reynolds's design rules, thermodynamic stability, internal repeats, immunostimulatory motifs were emphasized and implemented in the siRNA design tool. The tool provides thermodynamic stability score, GC content and a total score based on other design criteria in the output. The viability of the tool was established with different datasets. In general, the siRNA constructs produced by the tool had better thermodynamic score and positional properties. Comparable thermodynamic scores and better total scores were observed with the existing tools. Moreover, the results generated had comparable off-target silencing effect. Criteria evaluations with additional criteria were achieved in WEKA.

  3. Preliminary design of an asteroid hopping mission

    Science.gov (United States)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  4. Preliminary design needs for pilot plant of Monazite processing into Thorium Oxide (ThO_2)

    International Nuclear Information System (INIS)

    Hafni Lissa Nuri; Prayitno; Abdul Jami; M-Pancoko

    2014-01-01

    Data and information collection aimed in order to meet the needs of the initial design for pilot plant of monazite processing into thorium oxide (ThO_2). The content of thorium in monazite is high in Indonesia between 2.9 to 4.1% and relatively abundant in Bangka Belitung Islands. Thorium can be used as fuel because of its potential is more abundant instead of uranium. Plant of thorium oxide commercially from monazite established starting from pilot uranium. Plant of thorium oxide commercially from monazite established starting from pilot plant in order to test laboratory data. Pilot plant design started from initial design, basic design, detailed design, procurement and construction. Preliminary design needs includes data feed and products, a block diagram of the process, a description of the process, the determination of process conditions and type of major appliance has been conducted. (author)

  5. SSME Investment in Turbomachinery Inducer Impeller Design Tools and Methodology

    Science.gov (United States)

    Zoladz, Thomas; Mitchell, William; Lunde, Kevin

    2010-01-01

    Within the rocket engine industry, SSME turbomachines are the de facto standards of success with regard to meeting aggressive performance requirements under challenging operational environments. Over the Shuttle era, SSME has invested heavily in our national inducer impeller design infrastructure. While both low and high pressure turbopump failures/anomaly resolution efforts spurred some of these investments, the SSME program was a major benefactor of key areas of turbomachinery inducer-impeller research outside of flight manifest pressures. Over the past several decades, key turbopump internal environments have been interrogated via highly instrumented hot-fire and cold-flow testing. Likewise, SSME has sponsored the advancement of time accurate and cavitating inducer impeller computation fluid dynamics (CFD) tools. These investments together have led to a better understanding of the complex internal flow fields within aggressive high performing inducers and impellers. New design tools and methodologies have evolved which intend to provide confident blade designs which strike an appropriate balance between performance and self induced load management.

  6. A tool for early workstation design for small and medium enterprises evaluated in five cases

    NARCIS (Netherlands)

    Hallbeck, M.S.; Bosch, T.; Rhijn, J.W.van; Krause, F.; Looze, M.P.de; Vink, P.

    2010-01-01

    Five case studies on production line design were described to study the effect of an early design support tool. Based on these case studies, the simple, interactive, real-time, medium-fidelity, mixed-reality methodology was not only found to be a good early design stage evaluative tool for

  7. Design of Scalable and Effective Earth Science Collaboration Tool

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  8. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  9. TPX: Contractor preliminary design review. Volume 5, Manufacturing R ampersand D

    International Nuclear Information System (INIS)

    Roach, J.F.; Urban, W.M.; Hartman, D.

    1995-01-01

    TPX Insulation ampersand Impregnation R ampersand D test results are reported for 1x2 samples designed for screening candidate conduit insulation systems for TPX PF and TF coils. The epoxy/glass insulation system and three proposed alternate insulation systems employing Kapton, was evaluated in as received sample condition and after 10 thermal cycles in liquid nitrogen. Two DGBA impregnation systems, Shell 826 and CTD101K were investigated. Square incoloy 908 and 316 LN stainless hollow conduits were used for 1x2 sample fabrication. Capacitance, dielectric loss, and insulation resistance dielectric characteristics were measured for all samples. Partial discharge performance was measured for samples either in air, under silicon oil, or under liquid nitrogen up to 10kVrms at 60 Hz. Hipot screening was performed at 10 kVdc. The samples were cross sectioned and evaluated for impregnation quality. The implications of the test results on the TPX preliminary design decision are discussed

  10. Structure for Categorization of EcoDesign Methods and Tools

    OpenAIRE

    Lindahl, Mattias; Ekermann, Sara

    2013-01-01

    This edited volume presents the proceedings of the 20th CIRP LCE Conference, which cover various areas in life cycle engineering such as life cycle design, end-of-life management, manufacturing processes, manufacturing systems, methods and tools for sustainability, social sustainability, supply chain management, remanufacturing,

  11. Software simulation: a tool for enhancing control system design

    International Nuclear Information System (INIS)

    Sze, B.; Ridgway, G.H.

    2008-01-01

    The creation, implementation and management of engineering design tools are important to the quality and efficiency of any large engineering project. Some of the most complicated tools to develop are system simulators. The development and implementation of system simulators to support replacement fuel handling control systems is of particular interest to the Canadian nuclear industry given the current age of installations and the risk of obsolescence to many utilities. The use of such simulator tools has been known to significantly improve successful deployment of new software packages and maintenance-related software changes while reducing the time required for their overall development. Moreover, these simulation systems can also serve as operator training stations and provide a virtual environment for site engineers to test operational changes before they are uploaded to the actual system. (author)

  12. Tooling device design for vibration-assisted high speed shaping of PMMA

    International Nuclear Information System (INIS)

    Mostofa, Md. Golam; Noh, J. H.; Kim, H. Y.; Ahn, J. H.; Kang, D. B.

    2010-01-01

    PMMA optical components that are used as one of the most important parts of high precision equipment and machines are increasingly replacing the glass due to the various advantages of PMMA. Especially in Light Guide Panels, the PMMA sheet that is used in Liquid Crystal Displays plays an important role in scattering the incident light and requires very fine machining as the sheet is directly related to the optical characteristics of the panels. The High Speed End milling and High Speed Shaping processes that are widely adopted and applied to the precise machining of Light Incident Plane still have quality problems, such as cracks, breakages, poor waviness, and straightness. This paper presents the tooling device design for machining a Light Incident Plane through vibration-assisted High Speed Shaping for increasing the optical quality by minimizing the above-mentioned problems. The cutting tool and the tool post presented in this paper are designed by the authors to increase the magnitude of the cutting stroke by adopting the resonant frequency without weakening the stiffness and to reduce vibrations during even high speed feeding. The dynamic characteristics of the cutting tool and the tool post are evaluated through simulation and experiment as well. The results reveal very appropriate dynamic characteristics for vibration-assisted High Speed Shaping

  13. Rapid Design and Navigation Tools to Enable Small-Body Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid design and navigation tools broaden the number and scope of available missions by making the most of advances in astrodynamics and in computer software and...

  14. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  15. Application of modern tools and techniques to maximize engineering productivity in the development of orbital operations plans for the space station progrm

    Science.gov (United States)

    Manford, J. S.; Bennett, G. R.

    1985-01-01

    The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.

  16. Streamlining the Design-to-Build Transition with Build-Optimization Software Tools.

    Science.gov (United States)

    Oberortner, Ernst; Cheng, Jan-Fang; Hillson, Nathan J; Deutsch, Samuel

    2017-03-17

    Scaling-up capabilities for the design, build, and test of synthetic biology constructs holds great promise for the development of new applications in fuels, chemical production, or cellular-behavior engineering. Construct design is an essential component in this process; however, not every designed DNA sequence can be readily manufactured, even using state-of-the-art DNA synthesis methods. Current biological computer-aided design and manufacture tools (bioCAD/CAM) do not adequately consider the limitations of DNA synthesis technologies when generating their outputs. Designed sequences that violate DNA synthesis constraints may require substantial sequence redesign or lead to price-premiums and temporal delays, which adversely impact the efficiency of the DNA manufacturing process. We have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows. BOOST incorporates knowledge of DNA synthesis success determinants into the design process to output ready-to-build sequences, preempting the need for sequence redesign. The BOOST web application is available at https://boost.jgi.doe.gov and its Application Program Interfaces (API) enable integration into automated, customized DNA design processes. The herein presented results highlight the effectiveness of BOOST in reducing DNA synthesis costs and timelines.

  17. Preliminary design of the beam transport system for the Milan biomedical cyclotron

    International Nuclear Information System (INIS)

    Silari, M.

    1988-01-01

    This report illustrates the preliminary design of the beam transport system for the Scanditronix MC40 cyclotron to be installed in Milan. The Cyclotron will be dedicated to biomedical research and the different experimental conditions that could occur will require a beam transport system flexible enough so as to deliver beams with the specified characteristics. The report describes the computer codes used, the calculations performed and the results obtained. The complete configuration of the beam lines serving the first two target rooms is given, together with typical beam profiles and the emittance ellipse variation along the transfer channels

  18. WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations

    Directory of Open Access Journals (Sweden)

    Assawamakin Anunchai

    2007-08-01

    Full Text Available Abstract Background Allele-specific (AS Polymerase Chain Reaction is a convenient and inexpensive method for genotyping Single Nucleotide Polymorphisms (SNPs and mutations. It is applied in many recent studies including population genetics, molecular genetics and pharmacogenomics. Using known AS primer design tools to create primers leads to cumbersome process to inexperience users since information about SNP/mutation must be acquired from public databases prior to the design. Furthermore, most of these tools do not offer the mismatch enhancement to designed primers. The available web applications do not provide user-friendly graphical input interface and intuitive visualization of their primer results. Results This work presents a web-based AS primer design application called WASP. This tool can efficiently design AS primers for human SNPs as well as mutations. To assist scientists with collecting necessary information about target polymorphisms, this tool provides a local SNP database containing over 10 million SNPs of various populations from public domain databases, namely NCBI dbSNP, HapMap and JSNP respectively. This database is tightly integrated with the tool so that users can perform the design for existing SNPs without going off the site. To guarantee specificity of AS primers, the proposed system incorporates a primer specificity enhancement technique widely used in experiment protocol. In particular, WASP makes use of different destabilizing effects by introducing one deliberate 'mismatch' at the penultimate (second to last of the 3'-end base of AS primers to improve the resulting AS primers. Furthermore, WASP offers graphical user interface through scalable vector graphic (SVG draw that allow users to select SNPs and graphically visualize designed primers and their conditions. Conclusion WASP offers a tool for designing AS primers for both SNPs and mutations. By integrating the database for known SNPs (using gene ID or rs number

  19. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  20. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013