WorldWideScience

Sample records for prelaunch mission operation

  1. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  2. Mission operations concepts for Earth Observing System (EOS)

    Science.gov (United States)

    Kelly, Angelita C.; Taylor, Thomas D.; Hawkins, Frederick J.

    1991-01-01

    Mission operation concepts are described which are being used to evaluate and influence space and ground system designs and architectures with the goal of achieving successful, efficient, and cost-effective Earth Observing System (EOS) operations. Emphasis is given to the general characteristics and concepts developed for the EOS Space Measurement System, which uses a new series of polar-orbiting observatories. Data rates are given for various instruments. Some of the operations concepts which require a total system view are also examined, including command operations, data processing, data accountability, data archival, prelaunch testing and readiness, launch, performance monitoring and assessment, contingency operations, flight software maintenance, and security.

  3. Pre-Launch Assessment of User Needs for SWOT Mission Data Products

    Science.gov (United States)

    Srinivasan, M. M.; Peterson, C. A.; Doorn, B.

    2015-12-01

    In order to effectively address the applications requirements of future Surface Water and Ocean Topography (SWOT) mission data users, we must understand their needs with respect to latency, spatial scales, technical capabilities, and other practical considerations. We have developed the 1st SWOT User Survey for broad distribution to the SWOT applications community to provide the SWOT Project with an understanding of and improved ability to support users needs. Actionable knowledge for specific applications may be realized when we can determine the margins of user requirements for data products and access. The SWOT Applications team will be launching a SWOT Early Adopters program and are interested in identifying a broad community of users who will participate in pre-launch applications activities including meetings, briefings, and workshops. The SWOT applications program is designed to connect mission scientists to end users and leverage the scientific research and data management tools with operational decision-making for different thematic users and data requirements. SWOT is scheduled to launch in 2020, so simulated hydrology and ocean data sets have been and will continued to be developed by science team members and the SWOT Project in order to determine how the data will represent the physical Earth systems targeted by the mission. SWOT will produce the first global survey of Earth's surface water by measuring sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. These coastal, lake and river measurements will be used for monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment. The oceanographic measurements will enhance understanding of submesoscale processes and extend the capabilities of ocean state and climate prediction models.

  4. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  5. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Jack; Lee, Shihyan; Schwarting, Tom

    2015-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 kilometers) cross-track scanning radiometer with spatial resolutions of 370 and 740 meters at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 microns to 12.01 microns]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  6. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    Science.gov (United States)

    Oudrari, Hassan; Mcintire, Jeffrey; Xiong, Xiaoxiong; Butler, James; Ji, Qiang; Schwarting, Tom; Zeng, Jinan

    2015-01-01

    The first Joint Polar Satellite System (JPSS-1 or J1) mission is scheduled to launch in January 2017, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the J1 spacecraft completed its sensor level performance testing in December 2014. VIIRS instrument is expected to provide valuable information about the Earth environment and properties on a daily basis, using a wide-swath (3,040 km) cross-track scanning radiometer. The design covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands, from 0.412 m to 12.01 m, and has spatial resolutions of 370 m and 740 m at nadir for imaging and moderate bands, respectively. This paper will provide an overview of pre-launch J1 VIIRS performance testing and methodologies, describing the at-launch baseline radiometric performance as well as the metrics needed to calibrate the instrument once on orbit. Key sensor performance metrics include the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field response, and stray light rejection. A set of performance metrics generated during the pre-launch testing program will be compared to the sensor requirements and to SNPP VIIRS pre-launch performance.

  7. SSS-A attitude control prelaunch analysis and operations plan

    Science.gov (United States)

    Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.

    1971-01-01

    A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  8. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  9. IMP-J attitude control prelaunch analysis and operations plan

    Science.gov (United States)

    Hooper, H. L.; Mckendrew, J. B.; Repass, G. D.

    1973-01-01

    A description of the attitude control support being supplied for the Explorer 50 mission is given. Included in the document are descriptions of the computer programs being used to support attitude determination, prediction, and control for the mission and descriptions of the operating procedures that will be used to accomplish mission objectives.

  10. STS-93 crew gathers for pre-launch breakfast in O&C Building

    Science.gov (United States)

    1999-01-01

    The STS-93 crew gathers a second time for a pre-launch breakfast in the Operations and Checkout Building before suiting up for launch. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. Seated from left are Mission Specialists Michel Tognini, of France, who represents the Centre National d'Etudes Spatiales (CNES), and Steven A. Hawley (Ph.D.), Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. Collins is the first woman to serve as commander of a Shuttle mission. The target landing date is July 26, 1999, at 11:24 p.m. EDT.

  11. AE-C attitude determination and control prelaunch analysis and operations plan

    Science.gov (United States)

    Werking, R. D.; Headrick, R. D.; Manders, C. F.; Woolley, R. D.

    1973-01-01

    A description of attitude control support being supplied by the Mission and Data Operations Directorate is presented. Included are descriptions of the computer programs being used to support the missions for attitude determination, prediction, and control. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  12. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  13. Mission environments for the Isotope Brayton Flight System (preliminary)

    International Nuclear Information System (INIS)

    1975-01-01

    The mission environments for the Isotope Brayton Flight Systems (IBFS) are summarized. These are based on (1) those environments established for the MHW-RTG system in the LES 8/9 and Mariner J/S and (2) engineering projections of those likely to exit for the IBFS. The pre-launch environments address transportation, storage, handling and assembly (to spacecraft) and checkout, field transportation, and launch site operations. Launch environments address the Titan IIIC and Shuttle launch vehicles. Operational mission environments address normal space temperature and meteoroide environments. Special environments that may be applicable to DOD missions are not included. Accident environments address explosion and fire for the Titan IIIC and the Shuttle, reentry, earth impact and post impact

  14. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  15. Telescience - Concepts and contributions to the Extreme Ultraviolet Explorer mission

    Science.gov (United States)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-01-01

    It is shown how the contradictory goals of low-cost and fast data turnaround characterizing the Extreme Ultraviolet Explorer (EUVE) mission can be achieved via the early use of telescience style transparent tools and simulations. The use of transparent tools reduces the parallel development of capability while ensuring that valuable prelaunch experience is not lost in the operations phase. Efforts made to upgrade the 'EUVE electronics' simulator are described.

  16. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  17. Formulation of consumables management models: Mission planning processor payload interface definition

    Science.gov (United States)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  18. IRIS Mission Operations Director's Colloquium

    Science.gov (United States)

    Carvalho, Robert; Mazmanian, Edward A.

    2014-01-01

    Pursuing the Mysteries of the Sun: The Interface Region Imaging Spectrograph (IRIS) Mission. Flight controllers from the IRIS mission will present their individual experiences on IRIS from development through the first year of flight. This will begin with a discussion of the unique nature of IRISs mission and science, and how it fits into NASA's fleet of solar observatories. Next will be a discussion of the critical roles Ames contributed in the mission including spacecraft and flight software development, ground system development, and training for launch. This will be followed by experiences from launch, early operations, ongoing operations, and unusual operations experiences. The presentation will close with IRIS science imagery and questions.

  19. The IXV Ground Segment design, implementation and operations

    Science.gov (United States)

    Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.

  20. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  1. Evolution of Training in NASA's Mission Operations Directorate

    Science.gov (United States)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  2. Design and Flight Performance of the Orion Pre-Launch Navigation System

    Science.gov (United States)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  3. STS payloads mission control study. Volume 2-A, Task 1: Joint products and functions for preflight planning of flight operations, training and simulations

    Science.gov (United States)

    1976-01-01

    Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.

  4. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Laubach, Sharon

    2014-01-01

    The duration of a mission--and subsequently, the minimum spacecraft lifetime--is a key component in designing the capabilities of a spacecraft during mission formulation. However, determining the duration is not simply a function of how long it will take the spacecraft to execute the activities needed to achieve mission objectives. Instead, the effects of the interaction between the spacecraft and ground operators must also be taken into account. This paper describes a method, using "operations efficiency factors", to account for these effects for Mars surface missions. Typically, this level of analysis has not been performed until much later in the mission development cycle, and has not been able to influence mission or spacecraft design. Further, the notion of moving to sustainable operations during Prime Mission--and the effect that change would have on operations productivity and mission objective choices--has not been encountered until the most recent rover missions (MSL, the (now-cancelled) joint NASA-ESA 2018 Mars rover, and the proposed rover for Mars 2020). Since MSL had a single control center and sun-synchronous relay assets (like MER), estimates of productivity derived from MER prime and extended missions were used. However, Mars 2018's anticipated complexity (there would have been control centers in California and Italy, and a non-sun-synchronous relay asset) required the development of an explicit model of operations efficiency that could handle these complexities. In the case of the proposed Mars 2018 mission, the model was employed to assess the mission return of competing operations concepts, and as an input to component lifetime requirements. In this paper we provide examples of how to calculate the operations efficiency factor for a given operational configuration, and how to apply the factors to surface mission scenarios. This model can be applied to future missions to enable early effective trades between operations design, science mission

  5. Improving the Operations of the Earth Observing One Mission via Automated Mission Planning

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.

  6. Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations

    Science.gov (United States)

    White, W. J.

    1977-01-01

    The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.

  7. KEPLER SCIENCE OPERATIONS

    International Nuclear Information System (INIS)

    Haas, Michael R.; Bryson, Steve T.; Dotson, Jessie L.; Koch, David G.; Smith, Marcie; Sobeck, Charles K.; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Van Cleve, Jeffrey E.; Hall, Jennifer; Klaus, Todd C.; Middour, Chris; Thompson, Richard S.; Kolodziejczak, Jeffrey; Stober, Jeremy

    2010-01-01

    Kepler's mission design includes a comprehensive plan for commissioning and science operations. The commissioning phase completed all critical tasks and accomplished all mission objectives within a week of the pre-launch plan. Since the start of science data collection, the nominal timeline has been interrupted by two safe-mode events, several losses of fine point, and some small pointing adjustments. The most important anomalies are understood and mitigated, so Kepler's technical performance has improved significantly over this period, and the prognosis for mission success is excellent. The Kepler data archive is established and hosting data for the science team, guest observers, and the public. The first data to become publicly available include the monthly full-frame images and the light curves for targets that are dropped from the exoplanet program or released after publication. Data are placed in the archive on a quarterly basis; the Kepler Results Catalog will be released annually starting in 2011.

  8. STS-95 Mission Highlights Resources Tape

    Science.gov (United States)

    1999-01-01

    The STS-95 flight crew, Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video overview of their space flight. They are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objectives include conducting a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the Hubble Space Telescope (HST) Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads being carried in the payload bay. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they were involved.

  9. Modeling and Simulation for Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  10. Apollo-Soyuz test project. Operations handbook command/service/docking modules (CSM 119/DM 1): Operational procedures reference issue

    Science.gov (United States)

    1974-01-01

    Operational and configuration checks for the Apollo-Soyuz Test Project are presented. The checks include: backup crew prelaunch, prime crew prelaunch, boost and insertion, G and C reference data, G and N reference modes, rendezvous, navigation, Apollo-Soyuz operations, abort procedures, and emergency procedures.

  11. (abstract) Science-Project Interaction in the Low-Cost Mission

    Science.gov (United States)

    Wall, Stephen D.

    1994-01-01

    Large, complex, and highly optimized missions have performed most of the preliminary reconnaisance of the solar system. As a result we have now mapped significant fractions of its total surface (or surface-equivalent) area. Now, however, scientific exploration of the solar system is undergoing a major change in scale, and existing missions find it necessary to limit costs while fulfilling existing goals. In the future, NASA's Discovery program will continue the reconnaisance, exploration, and diagnostic phases of planetary research using lower cost missions, which will include lower cost mission operations systems (MOS). Historically, one of the more expensive functions of MOS has been its interaction with the science community. Traditional MOS elements that this interaction have embraced include mission planning, science (and engineering) event conflict resolution, sequence optimization and integration, data production (e.g., assembly, enhancement, quality assurance, documentation, archive), and other science support services. In the past, the payoff from these efforts has been that use of mission resources has been highly optimized, constraining resources have been generally completely consumed, and data products have been accurate and well documented. But because these functions are expensive we are now challenged to reduce their cost while preserving the benefits. In this paper, we will consider ways of revising the traditional MOS approach that might save project resources while retaining a high degree of service to the Projects' customers. Pre-launch, science interaction can be made simplier by limiting numbers of instruments and by providing greater redundancy in mission plans. Post launch, possibilities include prioritizing data collection into a few categories, easing requirements on real-time of quick-look data delivery, and closer integration of scientists into the mission operation.

  12. Expert systems and advanced automation for space missions operations

    Science.gov (United States)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  13. Cost Analysis In A Multi-Mission Operations Environment

    Science.gov (United States)

    Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.

    2014-01-01

    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the

  14. Prelaunch Forecasting of New Automobiles

    OpenAIRE

    Glen L. Urban; John R. Hauser; John H. Roberts

    1990-01-01

    This paper develops and applies a prelaunch model and measurement system to the marketing planning of a new automobile. The analysis addresses active search by consumers, dealer visits, word-of-mouth communication, magazine reviews, and production constraints---issues that are important in understanding consumer response to durable goods. We address these issues with a detailed consumer flow model which monitors and projects key consumer transitions in response to marketing actions. A test-vs...

  15. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  16. Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries

    Science.gov (United States)

    Green, R. S.

    1986-01-01

    Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented.

  17. Management of information for mission operations using automated keyword referencing

    Science.gov (United States)

    Davidson, Roger A.; Curran, Patrick S.

    1993-01-01

    Although millions of dollars have helped to improve the operability and technology of ground data systems for mission operations, almost all mission documentation remains bound in printed volumes. This form of documentation is difficult and timeconsuming to use, may be out-of-date, and is usually not cross-referenced with other related volumes of mission documentation. A more effective, automated method of mission information access is needed. A new method of information management for mission operations using automated keyword referencing is proposed. We expound on the justification for and the objectives of this concept. The results of a prototype tool for mission information access that uses a hypertextlike user interface and existing mission documentation are shared. Finally, the future directions and benefits of our proposed work are described.

  18. Evaluation of full and degraded mission reliability and mission dependability for intermittently operated, multi-functional systems

    International Nuclear Information System (INIS)

    Sols, Alberto; Ramirez-Marquez, Jose E.; Verma, Dinesh; Vitoriano, Begona

    2007-01-01

    Availability is one of the metrics often used in the evaluation of system effectiveness. Its use as an effectiveness metric is often dictated by the nature of the system under consideration. While some systems operate continuously, many others operate on an intermittent basis where each operational period may often involve a different set of missions. This is the most likely scenario for complex multi-functional systems, where each specific system mission may require the availability of a different combination of system elements. Similarly, for these systems, not only is it important to know whether a mission can be initiated, it is just as important to know whether the system is capable of completing such a mission. Thus, for these systems, additional measures become relevant to provide a more holistic assessment of system effectiveness. This paper presents techniques for the evaluation of both full and degraded mission reliability and mission dependability for coherent, intermittently operated multi-functional systems. These metrics complement previously developed availability and degraded availability measures of multi-functional systems, in the comprehensive assessment of system effectiveness

  19. An agent-oriented approach to automated mission operations

    Science.gov (United States)

    Truszkowski, Walt; Odubiyi, Jide

    1994-01-01

    As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.

  20. Cassini's Test Methodology for Flight Software Verification and Operations

    Science.gov (United States)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  1. Mission Operations Planning and Scheduling System (MOPSS)

    Science.gov (United States)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  2. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  3. Flight Operations . [Zero Knowledge to Mission Complete

    Science.gov (United States)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  4. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    Science.gov (United States)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  5. S-NPP ATMS Instrument Prelaunch and On-Orbit Performance Evaluation

    Science.gov (United States)

    Kim, Edward; Lyu, Cheng-Hsuan; Anderson, Kent; Leslie, Vincent R.; Blackwell, William J.

    2014-01-01

    The first of a new generation of microwave sounders was launched aboard the Suomi-National Polar-Orbiting Partnership satellite in October 2011. The Advanced Technology Microwave Sounder (ATMS) combines the capabilities and channel sets of three predecessor sounders into a single package to provide information on the atmospheric vertical temperature and moisture profiles that are the most critical observations needed for numerical weather forecast models. Enhancements include size/mass/power approximately one third of the previous total, three new sounding channels, the first space-based, Nyquist-sampled cross-track microwave temperature soundings for improved fusion with infrared soundings, plus improved temperature control and reliability. This paper describes the ATMS characteristics versus its predecessor, the advanced microwave sounding unit (AMSU), and presents the first comprehensive evaluation of key prelaunch and on-orbit performance parameters. Two-year on-orbit performance shows that the ATMS has maintained very stable radiometric sensitivity, in agreement with prelaunch data, meeting requirements for all channels (with margins of 40% for channels 1-15), and improvements over AMSU-A when processed for equivalent spatial resolution. The radiometric accuracy, determined by analysis from ground test measurements, and using on-orbit instrument temperatures, also shows large margins relative to requirements (specified as ATMS is especially important for this first proto-flight model unit of what will eventually be a series of ATMS sensors providing operational sounding capability for the U.S. and its international partners well into the next decade.

  6. Lean Mission Operations Systems Design - Using Agile and Lean Development Principles for Mission Operations Design and Development

    Science.gov (United States)

    Trimble, Jay Phillip

    2014-01-01

    The Resource Prospector Mission seeks to rove the lunar surface with an in-situ resource utilization payload in search of volatiles at a polar region. The mission operations system (MOS) will need to perform the short-duration mission while taking advantage of the near real time control that the short one-way light time to the Moon provides. To maximize our use of limited resources for the design and development of the MOS we are utilizing agile and lean methods derived from our previous experience with applying these methods to software. By using methods such as "say it then sim it" we will spend less time in meetings and more time focused on the one outcome that counts - the effective utilization of our assets on the Moon to meet mission objectives.

  7. Artificial intelligence in a mission operations and satellite test environment

    Science.gov (United States)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  8. Middleware Evaluation and Benchmarking for Use in Mission Operations Centers

    Science.gov (United States)

    Antonucci, Rob; Waktola, Waka

    2005-01-01

    Middleware technologies have been promoted as timesaving, cost-cutting alternatives to the point-to-point communication used in traditional mission operations systems. However, missions have been slow to adopt the new technology. The lack of existing middleware-based missions has given rise to uncertainty about middleware's ability to perform in an operational setting. Most mission architects are also unfamiliar with the technology and do not know the benefits and detriments to architectural choices - or even what choices are available. We will present the findings of a study that evaluated several middleware options specifically for use in a mission operations system. We will address some common misconceptions regarding the applicability of middleware-based architectures, and we will identify the design decisions and tradeoffs that must be made when choosing a middleware solution. The Middleware Comparison and Benchmark Study was conducted at NASA Goddard Space Flight Center to comprehensively evaluate candidate middleware products, compare and contrast the performance of middleware solutions with the traditional point- to-point socket approach, and assess data delivery and reliability strategies. The study focused on requirements of the Global Precipitation Measurement (GPM) mission, validating the potential use of middleware in the GPM mission ground system. The study was jointly funded by GPM and the Goddard Mission Services Evolution Center (GMSEC), a virtual organization for providing mission enabling solutions and promoting the use of appropriate new technologies for mission support. The study was broken into two phases. To perform the generic middleware benchmarking and performance analysis, a network was created with data producers and consumers passing data between themselves. The benchmark monitored the delay, throughput, and reliability of the data as the characteristics were changed. Measurements were taken under a variety of topologies, data demands

  9. Study 2.6 operations analysis mission characterization

    Science.gov (United States)

    Wolfe, R. R.

    1973-01-01

    An analysis of the current operations concepts of NASA and DoD is presented to determine if alternatives exist which may improve the utilization of resources. The final product is intended to show how sensitive these ground rules and design approaches are relative to the total cost of doing business. The results are comparative in nature, and assess one concept against another as opposed to establishing an absolute cost value for program requirements. An assessment of the mission characteristics is explained to clarify the intent, scope, and direction of this effort to improve the understanding of what is to be accomplished. The characterization of missions is oriented toward grouping missions which may offer potential economic benefits by reducing overall program costs. Program costs include design, development, testing, and engineering, recurring unit costs for logistic vehicles, payload costs. and direct operating costs.

  10. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  11. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  12. Mission Specialist Scott Parazynski arrives at KSC

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski notes the time on his watch upon his late arrival aboard a T-38 jet at the Shuttle Landing Facility. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  13. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    Science.gov (United States)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  14. Carrington-L5: The UK/US Space Weather Operational Mission.

    Science.gov (United States)

    Bisi, M. M.; Trichas, M.

    2015-12-01

    Airbus Defence and Space (UK) have carried out a study for an operational L5 space weather mission, in collaboration with RAL, the UK Met Office, UCL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for operational forecasting needs. The study focussed on a mission at L5 assuming that a US mission to L1 will already occur, on the basis that L5 offers the greatest benefit for SWE predictions. The baseline payload has been selected to address all MOSWOC/SWPC priorities using UK/US instruments, consisting of: a heliospheric imager, coronagraph, EUV imager, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform is based on extensive re-use from Airbus' past missions to minimize the cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could occur in 2020, assuming Phase A KO in 2015. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  15. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Layback, Sharon L.

    2014-01-01

    For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long

  16. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  17. Agent-Supported Mission Operations Teamwork

    Science.gov (United States)

    Malin, Jane T.

    2003-01-01

    This slide presentation reviews the development of software agents to support of mission operations teamwork. The goals of the work was to make automation by agents easy to use, supervise and direct, manage information and communication to decrease distraction, interruptions, workload and errors, reduce mission impact of off-nominal situations and increase morale and decrease turnover. The accomplishments or the project are: 1. Collaborative agents - mixed initiative and creation of instructions for mediating agent 2. Methods for prototyping, evaluating and evolving socio-technical systems 3. Technology infusion: teamwork tools in mISSIons 4. Demonstrations in simulation testbed An example of the use of agent is given, the use of an agent to monitor a N2 tank leak. An incomplete instruction to the agent is handled with mediating assistants, or Intelligent Briefing and Response Assistant (IBRA). The IBRA Engine also watches data stream for triggers and executes Act-Whenever actions. There is also a Briefing and Response Instruction (BRI) which is easy for a discipline specialist to create through a BRI editor.

  18. Mission Specialist Scott Parazynski arrives late at KSC

    Science.gov (United States)

    1998-01-01

    The T-38 jet aircraft arrives at the Shuttle Landing Facility carrying STS-95 Mission Specialist Scott E. Parazynski (second seat). The pilot is astronaut Kent Rominger. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  19. Airborne campaigns for CryoSat prelaunch calibration and validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hanson, Susanne; Hvidegaard, Sine Munk

    2011-01-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite is planned for spring 2011. DTU Space has been involved in ESA’s CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the prelaunch performance...... of the CryoSat radar altimeter (SIRAL), an airborne version of the SIRAL altimeter (ASIRAS) has been flown together with a laser scanner in 2006 and 2008. Of particular interest is to study the penetration depth of the radar altimeter over both land- and sea ice. This can be done by comparing the radar...... and laser measurements with in situ observations. Here, an overview of the prelaunch airborne campaigns is given, together with results of the ASIRAS performance over land- and sea ice. The observations, used in this study, are obtained from the Greenland ice sheet and from both multiyear and first year sea...

  20. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    Science.gov (United States)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  1. OSART mission highlights 2001-2003. Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    2005-05-01

    The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States in enhancing the operational safety of nuclear power plants (NPPs). Careful design and high quality of construction are prerequisites for a safe nuclear power plant. However, a plant's safety depends ultimately on the ability and conscientiousness of the operating personnel and on the plant programmes, processes and working methods. An OSART mission compares a facility's operational performance with IAEA Safety Standards and proven good international practices. The OSART reviews are available to all countries with nuclear power plants in operation, but also approaching operation, commissioning or in earlier stages of construction (Pre-OSART). Most countries have participated in the programme by hosting one or more OSART missions or by making experts available to participate in missions. Operational safety missions can also be part of the design review missions of nuclear power plants and are known as Safety Review Missions (SRMs). Teams that review only a few specific areas or a specific issue are called Expert missions. Follow-up visits are a standard part of the OSART programme and are conducted between 12 to 18 months following the OSART mission. This report continues the practice of summarizing mission results so that all the aspects of OSART missions, Pre-OSART missions and OSART good practices are to be found in one document. It also includes the results of follow-up visits. Attempts have been made in this report to highlight the most significant findings while retaining as much of the vital background information as possible. This report is in three parts: Part I summarizes the most significant observations made during the missions and follow-up visits between 2001 and 2003; Part II, in chronological order, reviews the major strengths and opportunities for improvement identified during each OSART mission and summarizes the follow-up visits performed

  2. IAEA Leads Operational Safety Mission To Gravelines Nuclear Power Plant, France

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An IAEA-led international team of experts today began an in-depth operational safety review of the Gravelines Nuclear Power Plant in France. The review, conducted at the invitation of the French government, focuses on programmes and activities essential to the safe operation of the nuclear power plant. The three-week review will cover the areas of Management, Organization and Administration; Training and Qualification; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. The conclusions of the review will be based on the IAEA Safety Standards and on well-established international good practices. The mission is not a regulatory inspection, a design review or a substitute for an exhaustive assessment of the plant's overall safety status. The team, led by the IAEA's Division of Nuclear Installation Safety, comprises experts from Bulgaria, China, Germany, Hungary, Japan, Romania, Slovakia, South Africa, Spain and Ukraine. The Gravelines mission is the 173rd conducted as part of the IAEA's Operational Safety Review Team programme, which began in 1982. France participates actively in the programme and the Gravelines mission is the 24th hosted by the country. General information about OSART missions can be found on the IAEA Website: OSART Missions. (IAEA)

  3. Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet

    Science.gov (United States)

    Holladay, Jon; McClendon, Randy (Technical Monitor)

    2002-01-01

    The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post

  4. Pre-Launch Phase 1 Calibration and Validation Rehearsal of Geophysical Data Products of Soil Moisture Active Passive (SMAP) Mission

    Science.gov (United States)

    Colliander, A.; Jackson, T. J.; Chan, S.; Dunbar, R.; Das, N. N.; Kim, S.; Reichle, R. H.; De Lannoy, G. J.; Liu, Q.; Kimball, J. S.; Yi, Y.; Cosh, M. H.; Bindlish, R.; Crow, W. T.; Dang, L.; Yueh, S. H.; Njoku, E. G.

    2013-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate onboard the SMAP spacecraft in a 685-km Sun-synchronous near-polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of active and passive L-band observations of the mission will enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. SMAP measurements will enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The SMAP science data product suite of geophysical parameters will include estimates of surface (top 5 cm) and root-zone (down to 1-m depth) soil moisture, net ecosystem exchange, and classification of the frozen/non-frozen state of the landscape. The primary validation reference of the data products will be ground-based measurements. Other remote sensing and model-based products will be used as additional resources. The post-launch timeline of the mission requires that the geophysical data products are validated (with respect to the mission requirements) within 12 months after a 3-month in-orbit check-out phase. SMAP is taking several preparatory steps in order to meet this schedule. One of the main steps consists of running a rehearsal to exercise calibration and validation procedures planned for the Cal/Val Phase. The rehearsal is divided into two stages. Phase 1, which was conducted in June-August 2013, focused on validation methodologies for the geophysical data products. Phase 2, which will be conducted in May-June 2014, includes operational aspects including a fully functioning SMAP Science Data System. (Note that the rehearsals do not include an airborne field

  5. Mission reliability of semi-Markov systems under generalized operational time requirements

    International Nuclear Information System (INIS)

    Wu, Xiaoyue; Hillston, Jane

    2015-01-01

    Mission reliability of a system depends on specific criteria for mission success. To evaluate the mission reliability of some mission systems that do not need to work normally for the whole mission time, two types of mission reliability for such systems are studied. The first type corresponds to the mission requirement that the system must remain operational continuously for a minimum time within the given mission time interval, while the second corresponds to the mission requirement that the total operational time of the system within the mission time window must be greater than a given value. Based on Markov renewal properties, matrix integral equations are derived for semi-Markov systems. Numerical algorithms and a simulation procedure are provided for both types of mission reliability. Two examples are used for illustration purposes. One is a one-unit repairable Markov system, and the other is a cold standby semi-Markov system consisting of two components. By the proposed approaches, the mission reliability of systems with time redundancy can be more precisely estimated to avoid possible unnecessary redundancy of system resources. - Highlights: • Two types of mission reliability under generalized requirements are defined. • Equations for both types of reliability are derived for semi-Markov systems. • Numerical methods are given for solving both types of reliability. • Simulation procedure is given for estimating both types of reliability. • Verification of the numerical methods is given by the results of simulation

  6. Mission Operations Planning with Preferences: An Empirical Study

    Science.gov (United States)

    Bresina, John L.; Khatib, Lina; McGann, Conor

    2006-01-01

    This paper presents an empirical study of some nonexhaustive approaches to optimizing preferences within the context of constraint-based, mixed-initiative planning for mission operations. This work is motivated by the experience of deploying and operating the MAPGEN (Mixed-initiative Activity Plan GENerator) system for the Mars Exploration Rover Mission. Responsiveness to the user is one of the important requirements for MAPGEN, hence, the additional computation time needed to optimize preferences must be kept within reasonabble bounds. This was the primary motivation for studying non-exhaustive optimization approaches. The specific goals of rhe empirical study are to assess the impact on solution quality of two greedy heuristics used in MAPGEN and to assess the improvement gained by applying a linear programming optimization technique to the final solution.

  7. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    Science.gov (United States)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  8. Management of Operational Support Requirements for Manned Flight Missions

    Science.gov (United States)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  9. Performance Evaluation of Orbit Determination System during Initial Phase of INSAT-3 Mission

    Science.gov (United States)

    Subramanian, B.; Vighnesam, N. V.

    satellite. The orbit of the satellite had to be determined continuously at each stage of the initial phase of the mission at a brisk pace and this study shows that the ODS provided consistent results to meet the stringent requirements of the mission operations. At each stage of the mission the orbit was determined using tracking data obtained over varying periods of time. The orbit solutions obtained from short arc OD's are compared with that obtained using the longest arc OD of each stage of the initial phase of the mission. The results of this study have been tabled in this paper. The performance of the ODS in calibrating the ARIANE-4 launch vehicle has been analyzed. A comparison of the orbit elements obtained from the mission operational ODS with the injection parameters provided by CNES, Centre Spatial Guyanais has been made in this paper which shows that the satellite was injected well within the 1 dispersions quoted by ARIANE-SPACE. A comparison has also been shown between the determined transfer orbit elements with pre-launch nominal orbit elements. For the initial phase of this mission ranging support was provided by Hassan earth station at India and INMARSAT network of stations at LakeCowichan (Canada), Fucino (Italy) and Beijing (China). The performance of the tracking systems employed by these stations has been studied. The quality of tracking data obtained from these stations has also been assessed.

  10. STS-105/Discovery/ISS 7A.1: Pre-Launch Activities, Launch, Orbit Activities and Landing

    Science.gov (United States)

    2001-01-01

    The crew of Space Shuttle Discovery on STS-105 is introduced at their pre-launch meal and at suit-up. The crew members include Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Patrick Forrester and Daniel Barry, together with the Expedition 3 crew of the International Space Station (ISS). The Expedition 3 crew includes Commander Frank Culbertson, Soyuz Commander Vladimir Dezhurov, and Flight Engineer Mikhail Tyurin. When the astronauts depart for the launch pad in the Astrovan, their convoy is shown from above. Upon reaching the launch pad, they conduct a walk around of the shuttle, display signs for family members while being inspected in the White Room, and are strapped into their seats onboard Disciovery. The video includes footage of Discovery in the Orbiter Processing Facility, and some of the pre-launch procedures at the Launch Control Center are shown. The angles of launch replays include: TV-1, Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, OTV-70, Onboard, IGOR, and UCS-23. The moment of docking between Discovery and the ISS is shown from inside Discovery's cabin. While in orbit, the crew conducted extravehicular activities (EVAs) to attach an experiments container, and install handrails on the Destiny module of the ISS. The video shows the docking and unloading of the Leonardo Multipurpose Logistics Module (MPLM) onto the ISS. The deployment of a satellite from Discovery with the coast of the Gulf of Mexico in the background is shown. Cape Canaveral is also shown from space. Landing replays include VAB, Tower 1, mid-field, South End SLF, North End SLF, Tower 2, Playalinda DOAMS, UCS-23, and Pilot Point of View (PPOV). NASA Administrator Dan Goldin meets the crew upon landing and participates in their walk around of Discovery. The video concludes with a short speech by commander Horowitz.

  11. Carrington-L5: The UK/US Operational Space Weather Monitoring Mission

    Science.gov (United States)

    Trichas, Markos; Gibbs, Mark; Harrison, Richard; Green, Lucie; Eastwood, Jonathan; Bentley, Bob; Bisi, Mario; Bogdanova, Yulia; Davies, Jackie; D'Arrigo, Paolo; Eyles, Chris; Fazakerley, Andrew; Hapgood, Mike; Jackson, David; Kataria, Dhiren; Monchieri, Emanuele; Windred, Phil

    2015-06-01

    Airbus Defence and Space (UK) has carried out a study to investigate the possibilities for an operational space weather mission, in collaboration with the Met Office, RAL, MSSL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for 24/7 operational forecasting needs. We have focussed on a mission at L5 assuming that a mission to L1 will already occur, on the basis that L5 (Earth trailing) offers the greatest benefit for the earliest possible warning on hazardous SWE events and the most accurate SWE predictions. The baseline payload has been selected to cover all UK Met Office/NOAA's users priorities for L5 using instruments with extensive UK/US heritage, consisting of: heliospheric imager, coronograph, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform and subsystems are based on extensive re-use from past Airbus Defence and Space spacecraft to minimize the development cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could be achieved by 2020, assuming Phase A kick-off in 2015-2016. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  12. The Mission Operations Planning Assistant

    Science.gov (United States)

    Schuetzle, James G.

    1987-01-01

    The Mission Operations Planning Assistant (MOPA) is a knowledge-based system developed to support the planning and scheduling of instrument activities on the Upper Atmospheric Research Satellite (UARS). The MOPA system represents and maintains instrument plans at two levels of abstraction in order to keep plans comprehensible to both UARS Principal Investigators and Command Management personnel. The hierarchical representation of plans also allows MOPA to automatically create detailed instrument activity plans from which spacecraft command loads may be generated. The MOPA system was developed on a Symbolics 3640 computer using the ZetaLisp and ART languages. MOPA's features include a textual and graphical interface for plan inspection and modification, recognition of instrument operational constraint violations during the planning process, and consistency maintenance between the different planning levels. This paper describes the current MOPA system.

  13. Artificial intelligent decision support for low-cost launch vehicle integrated mission operations

    Science.gov (United States)

    Szatkowski, Gerard P.; Schultz, Roger

    1988-01-01

    The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.

  14. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  15. OSART mission highlights 1991-1992. Operational safety practices in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report continues the practice of providing summaries of the OSART missions but the format is the first of its kind. Summaries of missions in the period 1983-1990 have covered missions to operational plants, missions to plants under construction or approaching commissioning and a compilation of good practices identified in OSART missions as separate publications. The format of this report includes all such aspects in one document.

  16. OSART mission highlights 1991-1992. Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    1995-05-01

    This report continues the practice of providing summaries of the OSART missions but the format is the first of its kind. Summaries of missions in the period 1983-1990 have covered missions to operational plants, missions to plants under construction or approaching commissioning and a compilation of good practices identified in OSART missions as separate publications. The format of this report includes all such aspects in one document

  17. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    Science.gov (United States)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  18. Mission Analysis, Operations, and Navigation Toolkit Environment (Monte) Version 040

    Science.gov (United States)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.

    2012-01-01

    Monte is a software set designed for use in mission design and spacecraft navigation operations. The system can process measurement data, design optimal trajectories and maneuvers, and do orbit determination, all in one application. For the first time, a single software set can be used for mission design and navigation operations. This eliminates problems due to different models and fidelities used in legacy mission design and navigation software. The unique features of Monte 040 include a blowdown thruster model for GRAIL (Gravity Recovery and Interior Laboratory) with associated pressure models, as well as an updated, optimalsearch capability (COSMIC) that facilitated mission design for ARTEMIS. Existing legacy software lacked the capabilities necessary for these two missions. There is also a mean orbital element propagator and an osculating to mean element converter that allows long-term orbital stability analysis for the first time in compiled code. The optimized trajectory search tool COSMIC allows users to place constraints and controls on their searches without any restrictions. Constraints may be user-defined and depend on trajectory information either forward or backwards in time. In addition, a long-term orbit stability analysis tool (morbiter) existed previously as a set of scripts on top of Monte. Monte is becoming the primary tool for navigation operations, a core competency at JPL. The mission design capabilities in Monte are becoming mature enough for use in project proposals as well as post-phase A mission design. Monte has three distinct advantages over existing software. First, it is being developed in a modern paradigm: object- oriented C++ and Python. Second, the software has been developed as a toolkit, which allows users to customize their own applications and allows the development team to implement requirements quickly, efficiently, and with minimal bugs. Finally, the software is managed in accordance with the CMMI (Capability Maturity Model

  19. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  20. Attitude sensor alignment calibration for the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  1. Context-Sensitive Augmented Reality for Mission Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station (ISS) are heavily dependent upon ground controllers to assist crew members in performing routine operations...

  2. Context-sensitive Augmented Reality for Mission Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station are heavily dependent upon ground controllers to assist crew members in performing routine operations and...

  3. EOS Aqua: Mission Status at the Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) Meeting at the Kennedy Space Center (KSC)

    Science.gov (United States)

    Guit, Bill

    2017-01-01

    This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  4. Opals: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    Science.gov (United States)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In April of 2014, the Optical PAyload for Lasercomm Science (OPALS) Flight System (FS) launched to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a planned 90-day baseline mission, the OPALS FS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) ground station in Wrightwood, California. Interfaces to the ISS payload operations infrastructure have been established to facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes, such as pointing prediction and data processing, satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The ORTs have provided valuable insight into operational considerations for the instrument on the ISS.

  5. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    practices of the plant. These good practices will be shared with the nuclear industry world-wide for consideration. Examples include: - The plant has developed a comprehensive strategy to manage the core shroud cracking issue (detected in 1990 and monitored ever since) and allow long term operation; - Preserving and transferring corporate knowledge and know-how has been implemented by the plant as part of succession planning; - The plant has developed and implemented a comprehensive Accident Management Program including Severe Accident Management Guidance for shut-down conditions. Muehleberg NPP management expressed determination to address all the areas identified for improvement and requested that the IAEA schedule a follow-up mission in approximately 18 months. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at the IAEA headquarters including any comments from Muehleberg NPP and the Swiss Federal Nuclear Safety Inspectorate. The final report will be submitted to the Government of Switzerland within three months. This was the 170th mission of the OSART programme, which began in 1982. OSART missions were performed in Switzerland in 1994 at Leibstadt NPP, in 1995 at Beznau NPP, in 1999 at Goesgen NPP and in 2000 at Muehleberg NPP. General information about OSART missions can be found on the IAEA Website: OSART Missions. Background: The IAEA Nuclear Safety Action Plan defines a programme of work to strengthen the nuclear safety framework worldwide in the light of the Fukushima Daiichi Nuclear Power Plant accident. The plan was unanimously endorsed by IAEA Member States during the Agency's 55th General Conference in September 2011. The Action Plan recommended: ''Each Member State with nuclear power plants to voluntarily host at least one IAEA Operational Safety Review Team (OSART) mission during the coming three years

  6. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  7. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  8. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    Energy Technology Data Exchange (ETDEWEB)

    Chew, S.P.; Dunnett, S.J. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom); Andrews, J.D. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom)], E-mail: j.d.andrews@lboro.ac.uk

    2008-07-15

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically.

  9. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    International Nuclear Information System (INIS)

    Chew, S.P.; Dunnett, S.J.; Andrews, J.D.

    2008-01-01

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically

  10. Statistics of AUV's Missions for Operational Ocean Observation at the South Brazilian Bight.

    Science.gov (United States)

    dos Santos, F. A.; São Tiago, P. M.; Oliveira, A. L. S. C.; Barmak, R. B.; Miranda, T. C.; Guerra, L. A. A.

    2016-02-01

    The high costs and logistics limitations of ship-based data collection represent an obstacle for a persistent in-situ data collection. Satellite-operated Autonomous Underwater Vehicles (AUV's) or gliders (as these AUV's are generally known by the scientific community) are presented as an inexpensive and reliable alternative to perform long-term and real-time ocean monitoring of important parameters such as temperature, salinity, water-quality and acoustics. This work is focused on the performance statistics and the reliability for continuous operation of a fleet of seven gliders navigating in Santos Basin - Brazil, since March 2013. The gliders performance were evaluated by the number of standby days versus the number of operating days, the number of interrupted missions due to (1) equipment failure, (2) weather, (3) accident versus the number of successful missions and the amount and quality of data collected. From the start of the operations in March 2013 to the preparation of this work (July 2015), a total of 16 glider missions were accomplished, operating during 728 of the 729 days passed since then. From this total, 11 missions were successful, 3 missions were interrupted due to equipment failure and 2 gliders were lost. Most of the identified issues were observed in the communication with the glider (when recovery was necessary) or the optode sensors (when remote settings solved the problem). The average duration of a successful mission was 103 days while interrupted ones ended on average in 7 days. The longest mission lasted for 139 days, performing 859 continuous profiles and covering a distance of 2734 Km. The 2 projects performed together 6856 dives, providing an average of 9,5 profiles per day or one profile every 2,5 hours each day during 2 consecutive years.

  11. The ICESat-2 mission: design, status, applications and pre-launch performance assessments for monitoring cryopsheric changes

    Science.gov (United States)

    Neumann, T.; Markus, T.; Csatho, B. M.; Martino, A. J.

    2013-12-01

    NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is the next-generation orbiting laser altimeter, following the ICESat mission, which operated between 2003 and 2009. Its primary aim is to monitor sea-ice thickness and ice sheet elevation change at scales from outlet glaciers to the entire ice sheet, and enable global assessment of vegetation canopy height as established by ICESat. ICESat-2 is now in Phase C (Design and Development). It is scheduled to launch in 2016 on a Delta II rocket from Vandenberg Air Force Base in California. ICESat-2 will carry the Advanced Topographic Laser Altimeter System (ATLAS) and collect data to a latitudinal limit of 88 degrees. In contrast to Geoscience Laser Altimeter System (GLAS) on ICESat, ATLAS employs a 6-beam micro-pulse laser photon-counting approach. It uses a high repetition rate (10 kHz; resulting in 70 cm footprint spacing on the ground along the direction of travel) low-power laser in conjunction with single-photon sensitive detectors to measure ranges using 532 nm (green) laser light. In the polar regions, the 91-day repeat orbit pattern with a roughly monthly sub-cycle is designed to monitor seasonal and interannual variations of Greenland and Antarctic ice sheet elevations and monthly sea ice thickness changes. Dense ground-tracks over the rest of the globe achieved through a systematic sequence of off-nadir pointing (resulting in < 2 km ground-track spacing at the equator after two years) will enable measurements of land topography and vegetation canopy heights, allowing estimates of biomass and carbon in above-ground vegetation. While the ICESat-2 mission was optimized for cryospheric science, elevation measurements will be collected over land and oceans as well as histograms of backscatter from the atmosphere. These observations will provide a wealth of opportunities in addition to the primary science objectives, ranging from the retrieval of cloud properties, to river stages, to snow cover, to land

  12. Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services

    Science.gov (United States)

    Ido, Haisam Kassim

    2017-01-01

    His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.

  13. Space Station overall management approach for operations

    Science.gov (United States)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  14. Cyber Threat Assessment of Uplink and Commanding System for Mission Operation

    Science.gov (United States)

    Ko, Adans Y.; Tan, Kymie M. C.; Cilloniz-Bicchi, Ferner; Faris, Grant

    2014-01-01

    Most of today's Mission Operations Systems (MOS) rely on Ground Data System (GDS) segment to mitigate cyber security risks. Unfortunately, IT security design is done separately from the design of GDS' mission operational capabilities. This incoherent practice leaves many security vulnerabilities in the system without any notice. This paper describes a new way to system engineering MOS, to include cyber threat risk assessments throughout the MOS development cycle, without this, it is impossible to design a dependable and reliable MOS to meet today's rapid changing cyber threat environment.

  15. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  16. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    Science.gov (United States)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  17. OSART mission highlights 1989-1990: Operational safety practices in nuclear power plants

    International Nuclear Information System (INIS)

    1992-12-01

    The IAEA Operational Safety Review Team (OSART) programme provides advice and assistance to Member States in enhancing the operational safety of nuclear power plants. OSART reviews are available to all countries with nuclear power plants in operation or approaching operation. Most of these countries have participated in the programme, by hosting one or more OSART missions or by making experts available to participate in missions. Careful design and high quality of construction are prerequisites for a safe nuclear power plant. However, a plant's safety depends ultimately on the ability and conscientiousness of the operating personnel and on their tools and work methods. OSART missions assess a facility's operational practices in comparison with those used successfully in other countries, and exchange, at the working level, ideas for promoting safety. Both the plants reviewed and the organizations providing experts have benefited from the programme. The observations of the OSART members are documented in technical notes which are then used as source material for the official OSART Report submitted to the government of the host country. The technical notes contain recommendations for improvements and descriptions of recommendable good practices. The same notes have been used to compile the present summary report which is intended for wide distribution to all organizations constructing, operating or regulating nuclear power plants. This report is the fourth in a series following IAEA-TECDOC-458, IAEA-TECDOC-497 and IAEA-TECDOC-570 and covers the period June 1989 to December 1990. Reference is also made to a summary report of Pre-OSART missions, which is in preparation. In addition, a report presenting OSART Good Practices has been published (IAEA-TECDOC-605)

  18. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  19. Network Operations Support Plan for the Spot 2 mission (revision 1)

    Science.gov (United States)

    Werbitzky, Victor

    1989-01-01

    The purpose of this Network Operations Support Plan (NOSP) is to indicate operational procedures and ground equipment configurations for the SPOT 2 mission. The provisions in this document take precedence over procedures or configurations in other documents.

  20. IAEA Leads Operational Safety Mission to Armenian Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of nuclear installation safety experts, led by the International Atomic Energy Agency (IAEA), has reviewed the Armenian Nuclear Power Plant (ANPP) near Metsamor for its safety practices and has noted a series of good practices, as well as recommendations to reinforce them. The IAEA assembled an international team of experts at the request of the Government of the Republic of Armenia to conduct an Operational Safety Review (OSART) of the NPP. Under the leadership of the IAEA's Division of Nuclear Installation Safety, the OSART team performed an in-depth operational safety review from 16 May to 2 June 2011. The team was made up of experts from Finland, France, Lithuania, Hungary, Netherlands, Slovakia, UK, USA, EC and the IAEA. An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the plant's overall safety status. Experts participating in the IAEA's June 2010 International Conference on Operational Safety of Nuclear Power Plants (NPP) reviewed the experience of the OSART programme and concluded: In OSART missions NPPs are assessed against IAEA safety standards which reflect the current international consensus on what constitutes a high level of safety; and OSART recommendations and suggestions are of utmost importance for operational safety improvement of NPPs. Armenia is commended for openness to the international nuclear community and for actively inviting IAEA safety review missions to submit their activities to international scrutiny. Examples of IAEA safety reviews include: Design Safety Review in 2003; Review of Probabilistic Safety Assessment in 2007; and Assessment of Seismic Safety Re-Evaluation in 2009. The team at ANPP conducted an in-depth review of the aspects essential to the safe operation of the plant, which is largely under the control of the site management

  1. Distributed Mission Operations: Training Today’s Warfighters for Tomorrow’s Conflicts

    Science.gov (United States)

    2016-02-01

    systems or include dissimilar weapons systems to rehearse more complex mission sets. In addition to networking geographically separated simulators...over the past decade. Today, distributed mission operations can facilitate the rehearsal of theater wide operations, integrating all the anticipated...effective that many aviators earn their basic aircraft qualification before their first flight in the airplane.11 Computer memory was once a

  2. A new systems engineering approach to streamlined science and mission operations for the Far Ultraviolet Spectroscopic Explorer (FUSE)

    Science.gov (United States)

    Butler, Madeline J.; Sonneborn, George; Perkins, Dorothy C.

    1994-01-01

    The Mission Operations and Data Systems Directorate (MO&DSD, Code 500), the Space Sciences Directorate (Code 600), and the Flight Projects Directorate (Code 400) have developed a new approach to combine the science and mission operations for the FUSE mission. FUSE, the last of the Delta-class Explorer missions, will obtain high resolution far ultraviolet spectra (910 - 1220 A) of stellar and extragalactic sources to study the evolution of galaxies and conditions in the early universe. FUSE will be launched in 2000 into a 24-hour highly eccentric orbit. Science operations will be conducted in real time for 16-18 hours per day, in a manner similar to the operations performed today for the International Ultraviolet Explorer. In a radical departure from previous missions, the operations concept combines spacecraft and science operations and data processing functions in a single facility to be housed in the Laboratory for Astronomy and Solar Physics (Code 680). A small missions operations team will provide the spacecraft control, telescope operations and data handling functions in a facility designated as the Science and Mission Operations Center (SMOC). This approach will utilize the Transportable Payload Operations Control Center (TPOCC) architecture for both spacecraft and instrument commanding. Other concepts of integrated operations being developed by the Code 500 Renaissance Project will also be employed for the FUSE SMOC. The primary objective of this approach is to reduce development and mission operations costs. The operations concept, integration of mission and science operations, and extensive use of existing hardware and software tools will decrease both development and operations costs extensively. This paper describes the FUSE operations concept, discusses the systems engineering approach used for its development, and the software, hardware and management tools that will make its implementation feasible.

  3. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    Science.gov (United States)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  4. Hierarchthis: An Interactive Interface for Identifying Mission-Relevant Components of the Advanced Multi-Mission Operations System

    Science.gov (United States)

    Litomisky, Krystof

    2012-01-01

    Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.

  5. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  6. JEM-X inflight performance

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Budtz-Jørgensen, Carl; Lund, Niels

    2003-01-01

    We summarize the inflight performance of JEM-X, the X-ray monitor on the INTEGRAL mission during the initial ten months of operations. The JEM-X instruments have now been tuned to stable operational conditions. The performance is found to be close to the pre-launch expectations. The ground...

  7. Data processing pipeline for Herschel HIFI

    Science.gov (United States)

    Shipman, R. F.; Beaulieu, S. F.; Teyssier, D.; Morris, P.; Rengel, M.; McCoey, C.; Edwards, K.; Kester, D.; Lorenzani, A.; Coeur-Joly, O.; Melchior, M.; Xie, J.; Sanchez, E.; Zaal, P.; Avruch, I.; Borys, C.; Braine, J.; Comito, C.; Delforge, B.; Herpin, F.; Hoac, A.; Kwon, W.; Lord, S. D.; Marston, A.; Mueller, M.; Olberg, M.; Ossenkopf, V.; Puga, E.; Akyilmaz-Yabaci, M.

    2017-12-01

    Context. The HIFI instrument on the Herschel Space Observatory performed over 9100 astronomical observations, almost 900 of which were calibration observations in the course of the nearly four-year Herschel mission. The data from each observation had to be converted from raw telemetry into calibrated products and were included in the Herschel Science Archive. Aims: The HIFI pipeline was designed to provide robust conversion from raw telemetry into calibrated data throughout all phases of the HIFI missions. Pre-launch laboratory testing was supported as were routine mission operations. Methods: A modular software design allowed components to be easily added, removed, amended and/or extended as the understanding of the HIFI data developed during and after mission operations. Results: The HIFI pipeline processed data from all HIFI observing modes within the Herschel automated processing environment as well as within an interactive environment. The same software can be used by the general astronomical community to reprocess any standard HIFI observation. The pipeline also recorded the consistency of processing results and provided automated quality reports. Many pipeline modules were in use since the HIFI pre-launch instrument level testing. Conclusions: Processing in steps facilitated data analysis to discover and address instrument artefacts and uncertainties. The availability of the same pipeline components from pre-launch throughout the mission made for well-understood, tested, and stable processing. A smooth transition from one phase to the next significantly enhanced processing reliability and robustness. Herschel was an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Generic procedure for designing and implementing plan management systems for space science missions operations

    Science.gov (United States)

    Chaizy, P. A.; Dimbylow, T. G.; Allan, P. M.; Hapgood, M. A.

    2011-09-01

    This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA's methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and

  9. The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments

    Science.gov (United States)

    Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul

    2017-11-01

    Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.

  10. Design, qualification and operation of nuclear rockets for safe Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.W.; Olson, T.S.; Redd, L.R.

    1993-01-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests

  11. The flyby of Rosetta at asteroid Šteins - mission and science operations

    Science.gov (United States)

    Accomazzo, Andrea; Wirth, Kristin R.; Lodiot, Sylvain; Küppers, Michael; Schwehm, Gerhard

    2010-07-01

    The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko ( Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.

  12. Cryosat: ESA'S Ice Explorer Mission, 6 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Maestroni, Elia; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Scagliola, Michele

    2016-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 6th years of operational life in April 2016. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and its main scientific achievements. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  13. Cryosat: ESA'S Ice Explorer Mission. Five years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Mardle, Nicola; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Fornari, Marco; Scagliola, Michele

    2015-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 5th years of operational life in April 2015. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  14. Understanding cost growth during operations of planetary missions: An explanation of changes

    Science.gov (United States)

    McNeill, J. F.; Chapman, E. L.; Sklar, M. E.

    In the development of project cost estimates for interplanetary missions, considerable focus is generally given to the development of cost estimates for the development of ground, flight, and launch systems, i.e., Phases B, C, and D. Depending on the project team, efforts expended to develop cost estimates for operations (Phase E) may be relatively less rigorous than that devoted to estimates for ground and flight systems development. Furthermore, the project team may be challenged to develop a solid estimate of operations cost in the early stages of mission development, e.g., Concept Study Report or Systems Requirement Review (CSR/SRR), Preliminary Design Review (PDR), as mission specific peculiarities that impact cost may not be well understood. In addition, a methodology generally used to develop Phase E cost is engineering build-up, also known as “ grass roots” . Phase E can include cost and schedule risks that are not anticipated at the time of the major milestone reviews prior to launch. If not incorporated into the engineering build-up cost method for Phase E, this may translate into an estimation of the complexity of operations and overall cost estimates that are not mature and at worse, insufficient. As a result, projects may find themselves with thin reserves during cruise and on-orbit operations or project overruns prior to the end of mission. This paper examines a set of interplanetary missions in an effort to better understand the reasons for cost and staffing growth in Phase E. The method used in the study is discussed as well as the major findings summarized as the Phase E Explanation of Change (EoC). Research for the study entailed the review of project materials, including Estimates at Completion (EAC) for Phase E and staffing profiles, major project milestone reviews, e.g., CSR, PDR, Critical Design Review (CDR), the interviewing of select project and mission management, and review of Phase E replan materials. From this work, a detai- ed

  15. Cross support overview and operations concept for future space missions

    Science.gov (United States)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  16. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    Science.gov (United States)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  17. Artificial intelligence for multi-mission planetary operations

    Science.gov (United States)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  18. TAMU: A New Space Mission Operations Paradigm

    Science.gov (United States)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  19. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    Science.gov (United States)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  20. Prelaunch calibrations and on-orbit performance analysis of FY-2D SVISSR infrared channels

    Science.gov (United States)

    Zhang, Yong; Chen, Fuchun

    2014-10-01

    Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. FY-2 series satellites are one of the key components of Chinese meteorological observing system and application system. In this paper, the operational satellite- FY-2D's infrared channels were focused and analyzed. The instruments' background was introduced briefly. The main payload SVISSR specifications were compared with its ancestral VISSR. The optical structure of the SVISSR was also expressed. FY-2D prelaunch calibrations methodology was introduced and the accuracies of the absolute radiometric calibration were analyzed. Some key optics on-orbit performance of FY-2D SVISSR were analyzed include onboard blackbody, cold FPA and detector noise level. All of these works show that FY- 2D's main payload SVISSR was in a healthy status.

  1. Communications During Critical Mission Operations: Preparing for InSight's Landing on Mars

    Science.gov (United States)

    Asmar, Sami; Oudrhiri, Kamal; Kurtik, Susan; Weinstein-Weiss, Stacy

    2014-01-01

    Radio communications with deep space missions are often taken for granted due to the impressively successful records since, for decades, the technology and infrastructure have been developed for ground and flight systems to optimize telemetry and commanding. During mission-critical events such as the entry, descent, and landing of a spacecraft on the surface of Mars, the signal's level and frequency dynamics vary significantly and typically exceed the threshold of the budgeted links. The challenge is increased when spacecraft shed antennas with heat shields and other hardware during those risky few minutes. We have in the past successfully received signals on Earth during critical events even ones not intended for ground reception. These included the UHF signal transmitted by Curiosity to Marsorbiting assets. Since NASA's Deep Space Network does not operate in the UHF band, large radio telescopes around the world are utilized. The Australian CSIRO Parkes Radio Telescope supported the Curiosity UHF signal reception and DSN receivers, tools, and expertise were used in the process. In preparation for the InSight mission's landing on Mars in 2016, preparations are underway to support the UHF communications. This paper presents communication scenarios with radio telescopes, and the DSN receiver and tools. It also discusses the usefulness of the real-time information content for better response time by the mission team towards successful mission operations.

  2. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Science.gov (United States)

    Moyer, Eric

    2015-01-01

    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  3. The ESA Scientific Exploitation of Operational Missions element

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Zehner, Claus; Mathieu, Pierre-Philippe; Bojkov, Bojan; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Goryl, Philippe; Pinnock, Simon

    2015-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS,ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan has been established and is approved every year by ESA Members States. The 2015 SEOM work plan is covering the organisation of three Science users consultation workshops for Sentinel1/3/5P , the launch of new R&D studies for scientific exploitation of the Sentinels, the development of open-source multi-mission scientific toolboxes, the organisation of advanced international training courses, summer schools and educational materials, as well as activities for promoting the scientific use of EO data. The first SEOM projects have been tendered since 2013 including the development of Sentinel toolboxes, advanced INSAR algorithms for Sentinel-1 TOPS data exploitation, Improved Atmospheric Spectroscopic data-base (IAS), as well as grouped studies for Sentinel-1, -2, and -3 land and ocean applications and studies for exploiting the synergy between the Sentinels. The status and first results from these SEOM projects will be presented and an outlook for upcoming SEOM studies will be given.

  4. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  5. CryoSat: ESA's ice explorer mission. 4 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B.; Bouffard, J.; Badessi, S.; Frommknecht, B.; Davidson, M.

    2014-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 4th years of operational life in April 2014. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  6. Astronaut John Young during final suiting operations for Apollo 10 mission

    Science.gov (United States)

    1969-01-01

    A technician attaches hose from test stand to spacesuit of Astronaut John W. Young, Apollo 10 command module pilot, during final suiting operations for the Apollo 10 lunar orbit mission. Another technician makes adjustment behind Young.

  7. Potential of future operational missions sentinel 4 and 5 for atmospheric monitoring and science (CAMELOT).

    Science.gov (United States)

    Levelt, P. F.; Veefkind, J. P.

    2010-05-01

    Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. CAMELOT consists of a large European consortium formed by 9 European institutes (KNMI (lead), RAL, U.Leicester, SRON, FMI, BIRA-IASB, CNR-IFAC,NOVELTIS and RIU-U.Koeln). In the presentation an overview will give a short overview of the CAMELOT study, including some specific results for combined retrievals, cloud statistics for different orbit geometries and retrievals for several orbit

  8. IAEA Leads Operational Safety Mission to Smolensk Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    training facilities for radiation, fire and industrial safety; A set of handbooks for self-study are available to staff, providing them with an overview of events at plants in Russia and other countries; and There is comprehensive and fast-acting information system on the reactor status, including a detailed assessment of the neutron field in axial and radial directions. The team has also made recommendations and suggestions related to areas where operational safety of Smolensk NPP could be improved. The most significant proposals include the following: To ensure that a plant specific equipment qualification programme is developed and implemented, thus ensuring the capability of the equipment to perform its functions under postulated service conditions, including those arising from accidents; To improve the condition of cables trays and the routing of cables to ensure that the condition of cables is maintained at a high standard; To ensure that the surveillance programme for systems and equipment validates their required safety performance more effectively; and To improve the measurement methodology for the confinement system in order to ensure that the equivalent leak cross section is determined with sufficient accuracy. Smolensk NPP management expressed a determination to address all the areas identified for improvement and requested the IAEA to schedule a follow-up mission in approximately 18 months. The team handed over a draft of their recommendations, suggestions and good practices to the plant management in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at the IAEA headquarters including any comments from Smolensk NPP and the Nuclear Regulatory Authority of the Russian Federation. The final report will be submitted to the Government of the Russian Federation within three months. This was the 165th mission of the OSART programme, which began in 1982. OSART missions were performed in the Russian Federation at Balakovo NPP in

  9. Ground operations and logistics in the context of the International Asteroid Mission

    Science.gov (United States)

    The role of Ground Operations and Logistics, in the context of the International Asteroid Mission (IAM), is to define the mission of Ground Operations; to identify the components of a manned space infrastructure; to discuss the functions and responsibilities of these components; to provide cost estimates for delivery of the spacecraft to LEO from Earth; to identify significant ground operations and logistics issues. The purpose of this dissertation is to bring a degree of reality to the project. 'One cannot dissociate development and set up of a manned infrastructure from its operational phase since it is this last one which is the most costly due to transportation costs which plague space station use' (Eymar, 1990). While this reference is to space stations, the construction and assembly of the proposed crew vehicle and cargo vehicles will face similar cost difficulties, and logistics complexities. The uniqueness of long duration space flight is complicated further by the lack of experience with human habitated, and non-refurbishable life support systems. These problems are addressed.

  10. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  11. Modelling ship operational reliability over a mission under regular inspections

    NARCIS (Netherlands)

    Christer, A.H.; Lee, S.K.

    1997-01-01

    A ship is required to operate for a fixed mission period. Should a critical item of equipment fail at sea, the ship is subject to a costly event with potentially high risk to ship and crew. Given warning of a pending defect, the ship can try to return to port under its own power and thus attempt to

  12. Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)

    2001-01-01

    This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.

  13. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    Science.gov (United States)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  14. GLAS Long-Term Archive: Preservation and Stewardship for a Vital Earth Observing Mission

    Science.gov (United States)

    Fowler, D. K.; Moses, J. F.; Zwally, J.; Schutz, B. E.; Hancock, D.; McAllister, M.; Webster, D.; Bond, C.

    2012-12-01

    Data Stewardship, preservation, and reproducibility are fast becoming principal parts of a data manager's work. In an era of distributed data and information systems, it is of vital importance that organizations make a commitment to both current and long-term goals of data management and the preservation of scientific data. Satellite missions and instruments go through a lifecycle that involves pre-launch calibration, on-orbit data acquisition and product generation, and final reprocessing. Data products and descriptions flow to the archives for distribution on a regular basis during the active part of the mission. However there is additional information from the product generation and science teams needed to ensure the observations will be useful for long term climate studies. Examples include ancillary input datasets, product generation software, and production history as developed by the team during the course of product generation. These data and information will need to be archived after product data processing is completed. NASA has developed a set of Earth science data and information content requirements for long term preservation that is being used for all the EOS missions as they come to completion. Since the ICESat/GLAS mission was one of the first to end, NASA and NSIDC, in collaboration with the science team, are collecting data, software, and documentation, preparing for long-term support of the ICESat mission. For a long-term archive, it is imperative to preserve sufficient information about how products were prepared in order to ensure future researchers that the scientific results are accurate, understandable, and useable. Our experience suggests data centers know what to preserve in most cases. That is, the processing algorithms along with the Level 0 or Level 1a input and ancillary products used to create the higher-level products will be archived and made available to users. In other cases, such as pre-launch, calibration/validation, and test

  15. SPICE for ESA Planetary Missions: geometry and visualization support to studies, operations and data analysis within your reach

    Science.gov (United States)

    Costa, Marc

    2018-05-01

    JUICE is a mission chosen in the framework of the Cosmic Vision 2015-2024 program of the SRE. JUICE will survey the Jovian system with a special focus on the three Galilean Moons. Currently the mission is under study activities during its Definition Phase. For this period the future mission scenarios are being studied by the Science Working Team (SWT). The Mission Analysis and Payload Support (MAPPS) and the Solar System Science Operations Laboratory (SOLab) tools are being used to provide active support to the SWT in synergy with other operational tools used in the Department in order to evaluate the feasibility of those scenarios. This contribution will outline the capabilities, synergies as well as use cases of the mentioned tools focusing on the support provided to JUICEís study phase on the study of its critical operational scenarios and the early developments of its Science Ground Segment demonstrating the added value that such a tool provides to planetary science missions.

  16. Stardust Entry: Landing and Population Hazards in Mission Planning and Operations

    Science.gov (United States)

    Desai, P.; Wawrzyniak, G.

    2006-01-01

    The 385 kg Stardust mission was launched on Feb 7, 1999 on a mission to collect samples from the tail of comet Wild 2 and from interplanetary space. Stardust returned to Earth in the early morning of January 15, 2006. The sample return capsule landed in the Utah Test and Training Range (UTTR) southwest of Salt Lake City. Because Stardust was landing on Earth, hazard analysis was required by the National Aeronautics and Space Administration, UTTR, and the Stardust Project to ensure the safe return of the landing capsule along with the safety of people, ground assets, and aircraft. This paper focuses on the requirements affecting safe return of the capsule and safety of people on the ground by investigating parameters such as probability of impacting on UTTR, casualty expectation, and probability of casualty. This paper introduces the methods for the calculation of these requirements and shows how they affected mission planning, site selection, and mission operations. By analyzing these requirements before and during entry it allowed for the selection of a robust landing point that met all of the requirements during the actual landing event.

  17. Payload operations management of a planned European SL-Mission employing establishments of ESA and national agencies

    Science.gov (United States)

    Joensson, Rolf; Mueller, Karl L.

    1994-01-01

    Spacelab (SL)-missions with Payload Operations (P/L OPS) from Europe involve numerous space agencies, various ground infrastructure systems and national user organizations. An effective management structure must bring together different entities, facilities and people, but at the same time keep interfaces, costs and schedule under strict control. This paper outlines the management concept for P/L OPS of a planned European SL-mission. The proposal draws on the relevant experience in Europe, which was acquired via the ESA/NASA mission SL-1, by the execution of two German SL-missions and by the involvement in, or the support of, several NASA-missions.

  18. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    Science.gov (United States)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  19. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    Science.gov (United States)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  20. Long term operation of nuclear power plants – IAEA SALTO missions observations and trends

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, Robert, E-mail: r.krivanek@iaea.org [Operational Safety Section, Department of Nuclear Safety and Security, International Atomic Energy Agency (IAEA), Vienna 1400 (Austria); Havel, Radim, E-mail: Radim.Havel@gmail.com [RESCO, Nitranska 894/8, 10100 Praha 10 (Czech Republic)

    2016-08-15

    Highlights: • During the period 2005–mid 2015, 22 SALTO peer review missions and 2 LTO modules of OSART missions were conducted. • Analysis of these mission results and main trends observed are gathered in this paper. • The main task of the assessment performed was to evaluate and give a weight to the evaluation. • Results of SALTO follow-up missions as well as OSART follow-up missions with LTO module are summarized. • The SALTO peer review service is strongly recommended for NPPs prior to entering LTO period. - Abstract: This paper builds on paper “Long term operation of nuclear power plants – IAEA SALTO peer review service and its results”, NED8070, presented in Nuclear Engineering and Design in September 2014. This paper presents the analysis of SALTO mission results and main trends observed so that all the most important results of SALTO missions are gathered in one paper. The paper also includes the results of LTO module reviews performed in the frame of OSART missions where applicable as well as follow-up missions. This paper is divided in three main Sections. Section 1 provides brief introduction to SALTO peer review service. Section 2 provides overview of performed SALTO missions and LTO modules of OSART missions performed between 2005 and mid-2015. Section 3 summarizes the most significant observations and trends resulting from the missions between 2005 and mid-2015. Section 4 summarizes the results of SALTO follow-up missions as well as OSART follow-up missions.

  1. Automated Classification of Variable Stars in the Asteroseismology Program of the Kepler Space Mission

    DEFF Research Database (Denmark)

    Blomme, J.; Debosscher, J.; De Ridder, J.

    2010-01-01

    missions, are capable of identifying the most common types of stellar variability in a reliable way. Many new variables have been discovered, among which a large fraction are eclipsing/ellipsoidal binaries unknown prior to launch. A comparison is made between our classification from the Kepler data...... and the pre-launch class based on data from the ground, showing that the latter needs significant improvement. The noise properties of the Kepler data are compared to those of the exoplanet program of the CoRoT satellite.We find that Kepler improves on CoRoT by a factor of 2–2.3 in point-to-point scatter....

  2. The University of Colorado OSO-8 spectrometer experiment. IV - Mission operations

    Science.gov (United States)

    Hansen, E. R.; Bruner, E. C., Jr.

    1979-01-01

    The remote operation of two high-resolution ultraviolet spectrometers on the OSO-8 satellite is discussed. Mission operations enabled scientific observers to plan observations based on current solar data, interact with the observing program using real- or near real-time data and commands, evaluate quick-look instrument data, and analyze the observations for publication. During routine operations, experiments were planned a day prior to their execution, and the data from these experiments received a day later. When a shorter turnaround was required, a real-time mode was available. Here, the real-time data and command links into the remote control center were used to evaluate experiment operation and make satellite pointing or instrument configuration changes with a 1-90 minute turnaround.

  3. Mission operations update for the restructured Earth Observing System (EOS) mission

    Science.gov (United States)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  4. Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat

    Science.gov (United States)

    Monje, Oscar; Valling, Simo; Cornish, Jim

    2013-01-01

    The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.

  5. Joint operations planning for space surveillance missions on the MSX satellite

    Science.gov (United States)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  6. A Scenario-Based Process for Requirements Development: Application to Mission Operations Systems

    Science.gov (United States)

    Bindschadler, Duane L.; Boyles, Carole A.

    2008-01-01

    The notion of using operational scenarios as part of requirements development during mission formulation (Phases A & B) is widely accepted as good system engineering practice. In the context of developing a Mission Operations System (MOS), there are numerous practical challenges to translating that notion into the cost-effective development of a useful set of requirements. These challenges can include such issues as a lack of Project-level focus on operations issues, insufficient or improper flowdown of requirements, flowdown of immature or poor-quality requirements from Project level, and MOS resource constraints (personnel expertise and/or dollars). System engineering theory must be translated into a practice that provides enough structure and standards to serve as guidance, but that retains sufficient flexibility to be tailored to the needs and constraints of a particular MOS or Project. We describe a detailed, scenario-based process for requirements development. Identifying a set of attributes for high quality requirements, we show how the portions of the process address many of those attributes. We also find that the basic process steps are robust, and can be effective even in challenging Project environments.

  7. Cryosat: ESA's ice Explorer Mission. 7 years in operations: status and future outlook

    Science.gov (United States)

    Parrinello, Tommaso

    2017-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. Since its launch, CryoSat data has been used by different scientific communities on a number of Earth Science topics also beyond its prime mission objectives, cryosphere. Scope of this paper is to describe the current mission status and provide programmatic highlights and information on the next development of the mission in its extended period of operations (2017-2019).

  8. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    Science.gov (United States)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  9. Report of the peer review mission of national operational safety experience feedback process to the Ukraine 11-15 November 1996 Kiev

    International Nuclear Information System (INIS)

    1996-01-01

    At the invitation of the Nuclear Regulatory Administration of Ukraine (NRA), the IAEA carried out a Peer review mission of national operational safety experience feedback process at Kiev from 11 to 15 November 1996. The objective of this mission was to provide the host country, represented by the regulatory body, with independent and comprehensive review of current status of operational safety experience feedback (OSEF) process with respect to the IAEA's recommendations and international practices. The mission concluded that principal arrangements of operational feedback process in Ukraine are, at present, in force and brought positive results since their introduction. The mission also noted several good practices in these activities. 1 tab

  10. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  11. IAEA Leads Operational Safety Mission to Rajasthan Atomic Power Station 3 and 4

    International Nuclear Information System (INIS)

    2012-01-01

    team also made a number of recommendations and suggestions related to areas where operations of Units 3 and 4 of the Rajasthan Nuclear Power Plant (NPP) could be further reinforced. Examples include the following: - The Plant should enhance actions to maintain electrical cable conditions at a high standard; - The fire doors inspection and maintenance programme should be enhanced to identify and correct fire door function; - Certain aspects of the Plant's surveillance testing programme should be further enhanced; and - The Plant should enhance root-cause analyses to systematically identify all learning opportunities. The Rajasthan NPP management expressed their determination to address all the areas identified for improvement and requested that the IAEA schedule a follow-up mission in approximately 15 months. The team provided the Plant's management with a draft of its recommendations, suggestions and good practices in the form of ''Technical Notes'' for factual comments. The technical notes will be reviewed at the IAEA headquarters including any comments on factual matters from Rajasthan NPP and the Atomic Energy Regulatory Board of India. The final report will be submitted to the Government of India within the next three months. This was the 171th mission of the OSART programme, which began in 1982. The Rajasthan mission was the first OSART mission to India. The Plant's management and staff were very open during review and discussion with the OSART team. General information about OSART missions can be found on the IAEA Website: OSART Missions. (IAEA)

  12. The Epidemiology of Operation Stress during Continuing Promise 2011: A Humanitarian Response and Disaster Relief Mission aboard a US Navy Hospital Ship.

    Science.gov (United States)

    Scouten, William T; Mehalick, Melissa L; Yoder, Elizabeth; McCoy, Andrea; Brannock, Tracy; Riddle, Mark S

    2017-08-01

    Introduction Operational stress describes individual behavior in response to the occupational demands and tempo of a mission. The stress response of military personnel involved in combat and peace-keeping missions has been well-described. The spectrum of effect on medical professionals and support staff providing humanitarian assistance, however, is less well delineated. Research to date concentrates mainly on shore-based humanitarian missions. Problem The goal of the current study was to document the pattern of operational stress, describe factors responsible for it, and the extent to which these factors impact job performance in military and civilian participants of Continuing Promise 2011 (CP11), a ship-based humanitarian medical mission. This was a retrospective study of Disease Non-Battle Injury (DNBI) data from the medical sick-call clinic and from weekly self-report questionnaires for approximately 900 US military and civilian mission participants aboard the USNS COMFORT (T-AH 20). The incidence rates and job performance impact of reported Operational Stress/Mental Health (OS/MH) issues and predictors (age, rank, occupation, service branch) of OS/MH issues (depression, anxiety) were analyzed over a 22-week deployment period. Incidence rates of OS/MH complaints from the sick-call clinic were 3.7% (4.5/1,000 persons) and 12.0% (53/1,000 persons) from the self-report questionnaire. The rate of operational stress increased as the mission progressed and fluctuated during the mission according to ship movement. Approximately 57% of the responders reported no impact on job performance. Younger individuals (enlisted ranks E4-6, officer ranks O1-3), especially Air Force service members, those who had spent only one day off ship, and those who were members of specific directorates, reported the highest rates of operational stress. The overall incidence of OS/MH complaints was low in participants of CP11 but was under-estimated by clinic-based reporting. The OS

  13. Cost and Operational Effectiveness Analysis of Aiternative Force Structures for Fulfillment of the United States Marine Corps Operational Support Airlift and Search and Rescue Missions

    National Research Council Canada - National Science Library

    Chase, Eric

    2000-01-01

    This thesis provides a preliminary cost and operational effectiveness analysis of alternative force structures for the United States Marine Corps operational support airlift and search and rescue missions...

  14. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  15. Mission Operations of the Mars Exploration Rovers

    Science.gov (United States)

    Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel

    2007-01-01

    A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.

  16. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    2009-12-01

    Full Text Available This paper describes the Flight Dynamics Automation (FDA system for COMS Flight Dynamics System (FDS and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  17. ESA CAMELOT study: Challenges in future operational missions for GMES atmospheric monitoring, sentinel 4 and 5

    Science.gov (United States)

    Levelt, P.; Veefkind, P.

    2009-04-01

    Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. Key issues in the CAMELOT study are: • trade-offs between different observation strategies (spectral ranges, polarisation, direction etc) for aerosols and several trace gases • a quantitative assessment of the requirements for spatio-temporal sampling taking into account the contamination of nadir-viewing observations by cloud • optimising several orbit scenario's (leo, inclined

  18. NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning

  19. Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation

    Science.gov (United States)

    Shirron, Peter; Kimball, Mark; Vlahacos, Kosta

    2010-01-01

    The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions.

  20. Testing VGT data continuity between SPOT and PROBA-V missions for operational yield forecasting in North African countries

    OpenAIRE

    MERONI MICHELE; FASBENDER DOMINIQUE; BALAGHI Raid; DALI Mustapha; HAFANI Miriam; HAYTHEM Ismael; HOOKER JOSEPH DOMINIC; LAHLOU Mouanis; LOPEZ LOZANO RAUL; MAHYOU Hamid; MONCEF Ben Moussa; SGHAIER Nabil; WAFA Talhaoui; LEO Olivier

    2015-01-01

    The SPOT-VEGETATION mission operationally provided 15 years of remote sensing indicators of vegetation status. The mission reached its end-of-life in May 2014 and was timely replaced by the PROBA-V mission, aiming to ensure, among other objectives, the seamless continuity of provision of VGT-like products, including Normalized Difference Vegetation Index (NDVI). Exploiting the period of overlap when both instruments were functioning (November 2013 –May 2014), this study compared NDVI data ...

  1. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  2. Spacelab Mission Implementation Cost Assessment (SMICA)

    Science.gov (United States)

    Guynes, B. V.

    1984-01-01

    A total savings of approximately 20 percent is attainable if: (1) mission management and ground processing schedules are compressed; (2) the equipping, staffing, and operating of the Payload Operations Control Center is revised, and (3) methods of working with experiment developers are changed. The development of a new mission implementation technique, which includes mission definition, experiment development, and mission integration/operations, is examined. The Payload Operations Control Center is to relocate and utilize new computer equipment to produce cost savings. Methods of reducing costs by minimizing the Spacelab and payload processing time during pre- and post-mission operation at KSC are analyzed. The changes required to reduce costs in the analytical integration process are studied. The influence of time, requirements accountability, and risk on costs is discussed. Recommendation for cost reductions developed by the Spacelab Mission Implementation Cost Assessment study are listed.

  3. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    Science.gov (United States)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  4. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    Science.gov (United States)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  5. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  6. SSRPT (SSR Pointer Trackeer) for Cassini Mission Operations - A Ground Data Analysis Tool

    Science.gov (United States)

    Kan, E.

    1998-01-01

    Tracking the resources of the two redundant Solid State Recorders (SSR) is a necessary routine for Cassini spacecraft mission operations. Instead of relying on a full-fledged spacecraft hardware/software simulator to track and predict the SSR recording and playback pointer positions, a stand-alone SSR Pointer Tracker tool was developed as part of JPL's Multimission Spacecraft Analysis system.

  7. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  8. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities

    Science.gov (United States)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.

    2012-01-01

    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  9. MAIUS-1- Vehicle, Subsystems Design and Mission Operations

    Science.gov (United States)

    Stamminger, A.; Ettl, J.; Grosse, J.; Horschgen-Eggers, M.; Jung, W.; Kallenbach, A.; Raith, G.; Saedtler, W.; Seidel, S. T.; Turner, J.; Wittkamp, M.

    2015-09-01

    In November 2015, the DLR Mobile Rocket Base will launch the MAIUS-1 rocket vehicle at Esrange, Northern Sweden. The MAIUS-A experiment is a pathfinder atom optics experiment. The scientific objective of the mission is the first creation of a BoseEinstein Condensate in space and performing atom interferometry on a sounding rocket [3]. MAIUS-1 comprises a two-stage unguided solid propellant VSB-30 rocket motor system. The vehicle consists of a Brazilian 53 1 motor as 1 st stage, a 530 motor as 2nd stage, a conical motor adapter, a despin module, a payload adapter, the MAIUS-A experiment consisting of five experiment modules, an attitude control system module, a newly developed conical service system, and a two-staged recovery system including a nosecone. In contrast to usual payloads on VSB-30 rockets, the payload has a diameter of 500 mm due to constraints of the scientific experiment. Because of this change in design, a blunted nosecone is necessary to guarantee the required static stability during the ascent phase of the flight. This paper will give an overview on the subsystems which have been built at DLR MORABA, especially the newly developed service system. Further, it will contain a description of the MAIUS-1 vehicle, the mission and the unique requirements on operations and attitude control, which is additionally required to achieve a required attitude with respect to the nadir vector. Additionally to a usual microgravity environment, the MAIUS-l payload requires attitude control to achieve a required attitude with respect to the nadir vector.

  10. Cloud Computing for Mission Design and Operations

    Science.gov (United States)

    Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios

    2012-01-01

    The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.

  11. Operation of the Radio Occultation Mission in KOMPSAT-5

    Directory of Open Access Journals (Sweden)

    Mansoo Choi

    2010-12-01

    Full Text Available Korea multi-purpose satellite-5 (KOMPSAT-5 is a low earth orbit (LEO satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD system which consists of a space-borne dual frequency global positioning system (GPS receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

  12. Lunar Transportation Facilities and Operations Study, option 1

    Science.gov (United States)

    1991-05-01

    Throughout the Option I period of the Lunar Transportation Facilities and Operations Study (LTFOS), McDonnell Douglas Space Systems Company - Kennedy Space Center (MDSSC-KSC) provided support to both the Planetary Surface Systems (PSS) Office at the National Aeronautics and Space Administration (NASA) at the Johnson Space Center and to the Flight and Ground Systems Projects Office (Payload Projects Management) at the Kennedy Space Center. The primary objective of the Option I phase of the study was to assist the above NASA centers in developing Space Exploration Initiative (SEI) concepts. MDSSC-KSC conducted three analyses which provided launch and landing detail to the proposed exploration concepts. One analysis, the Lunar Ejecta Assessment, was conducted to determine the effects of launch and landing a vehicle in a dusty environment. A second analysis, the Thermal/Micrometeoroid Protection Trade Study, was refined to determine the impacts that Reference Architecture Option 5A would have on thermal/micrometeoroid protection approaches. The third analysis, the Centaur Prelaunch Procedure Analysis, used a Centaur prelaunch test and checkout flow to identify key considerations that would be important if a Lunar Excursion Vehicle (LEV) was to use an expander cycle liquid oxygen-liquid hydrogen engine. Several 'quick look' assessments were also conducted. One quick look assessment, the Storable Propellant Quick Look Assessment, was conducted to identify design considerations that should be made if storable propellants were to be used instead of liquid oxygen and liquid hydrogen. The LEV Servicer Maintenance Analysis provided an early look at the effort required to maintain an LEV Servicer on the lunar surface. Also, support was provided to the PSS Logistics Manager to develop initial LEV Servicer cost inputs. Consideration was given to the advanced development that must be provided to accomplish a lunar and/or Mars mission. MDSS-KSC also provided support to both MASE

  13. Model-Based Systems Engineering With the Architecture Analysis and Design Language (AADL) Applied to NASA Mission Operations

    Science.gov (United States)

    Munoz Fernandez, Michela Miche

    2014-01-01

    The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.

  14. GRACE Status at Mission End

    Science.gov (United States)

    Tapley, B. D.; Flechtner, F. M.; Watkins, M. M.; Bettadpur, S. V.

    2017-12-01

    The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for nearly 16 years. The mission objectives are to observe the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The mass changes observed are related to both the changes within the solid earth and the change within and between the Erath system components. A significant cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequence which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. The fifth reanalysis on the mission data set, the RL05 data, were released in mid-2013. With the planned launch of GRACE Follow-On in early 2018, plans are underway for a reanalysis that will be consistent with the GRACE FO processing standards. The mission is entering the final phases of its operation life with mission end expected to occur in early 2018. The current mission operations strategy emphasizes extending the mission lifetime to obtain an overlap with the GRACE FO. This presentation will review the mission status and the projections for mission lifetime, describe the current operations philosophy and its impact on the science data, discuss the issues related to achieving the GRACE and GRACE FO connection and discuss issues related to science data products during this phase of the mission period.

  15. Planck pre-launch status: The Planck mission

    DEFF Research Database (Denmark)

    Tauber, J. A.; Mandoles, N.; Puget, J.-L.

    2010-01-01

    instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail...

  16. Linking Knowledge and Skills to Mission Essential Competency-Based Syllabus Development for Distributed Mission Operations

    National Research Council Canada - National Science Library

    Symons, Steve; France, Michael; Bell, Jeffrey; Bennett, Jr, Winston

    2006-01-01

    ... of Mission Essential Competencies (MECs). MECs are defined as the higher order individual, team, and inter-team competencies that a fully prepared pilot, crew, or flight requires for successful mission completion under adverse conditions...

  17. The ESA Scientific Exploitation of Operational Missions element, first results

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Mathieu, Pierre-Philippe; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Pinnock, Simon; Foumelis, Michael; Ramoino, Fabrizio

    2016-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan is established and is approved every year by ESA Members States. During 2015 SEOM, Science users consultation workshops have been organized for Sentinel1/3/5P ( Fringe, S3 Symposium and Atmospheric science respectively) , new R&D studies for scientific exploitation of the Sentinels have been launched ( S3 for Science SAR Altimetry and Ocean Color , S2 for Science,) , open-source multi-mission scientific toolboxes have been launched (in particular the SNAP/S1-2-3 Toolbox). In addition two advanced international training courses have been organized in Europe to exploit the new S1-A and S2-A data for Land and Ocean remote sensing (over 120 participants from 25 countries) as well as activities for promoting the first scientific results ( e.g. Chili Earthquake) . In addition the First EO Open Science 2.0 was organised at ESA in October 2015 with 225 participants from 31 countries bringing together young EO scientists and data scientists. During the conference precursor activities in EO Open Science and Innovation were presented, while developing a Roadmap preparing for future ESA scientific exploitation activities. Within the conference, the first

  18. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  19. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    Science.gov (United States)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  20. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

    2008-01-01

    The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

  1. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-09-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  2. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    Science.gov (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  3. Constraint and Flight Rule Management for Space Mission Operations

    Science.gov (United States)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  4. Teamwork Reasoning and Multi-Satellite Missions

    Science.gov (United States)

    Marsella, Stacy C.; Plaunt, Christian (Technical Monitor)

    2002-01-01

    NASA is rapidly moving towards the use of spatially distributed multiple satellites operating in near Earth orbit and Deep Space. Effective operation of such multi-satellite constellations raises many key research issues. In particular, the satellites will be required to cooperate with each other as a team that must achieve common objectives with a high degree of autonomy from ground based operations. The multi-agent research community has made considerable progress in investigating the challenges of realizing such teamwork. In this report, we discuss some of the teamwork issues that will be faced by multi-satellite operations. The basis of the discussion is a particular proposed mission, the Magnetospheric MultiScale mission to explore Earth's magnetosphere. We describe this mission and then consider how multi-agent technologies might be applied in the design and operation of these missions. We consider the potential benefits of these technologies as well as the research challenges that will be raised in applying them to NASA multi-satellite missions. We conclude with some recommendations for future work.

  5. Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations

    Science.gov (United States)

    Paul, Heather; Guillory, Erika

    2007-01-01

    NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.

  6. Airborne campaigns for CryoSat pre-launch calibration and validation

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Forsberg, René; Skourup, Henriette

    2010-01-01

    From 2003 to 2008 DTU Space together with ESA and several international partners carried out airborne and ground field campaigns in preparation for CryoSat validation; called CryoVEx: CryoSat Validation Experiments covering the main ice caps in Greenland, Canada and Svalbard and sea ice in the Ar......From 2003 to 2008 DTU Space together with ESA and several international partners carried out airborne and ground field campaigns in preparation for CryoSat validation; called CryoVEx: CryoSat Validation Experiments covering the main ice caps in Greenland, Canada and Svalbard and sea ice...... in the Arctic Ocean. The main goal of the airborne surveys was to acquire coincident scanning laser and CryoSat type radar elevation measurements of the surface; either sea ice or land ice. Selected lines have been surveyed along with detailed mapping of validation sites coordinated with insitu field work...... and helicopter electromagnetic surveying. This paper summarises the pre-launch campaigns and presents some of the result from the coincident measurement from airborne and ground observations....

  7. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  8. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  9. Open Source Next Generation Visualization Software for Interplanetary Missions

    Science.gov (United States)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  10. Low-Power Operation and Plasma Characterization of a Qualification Model SPT-140 Hall Thruster for NASA Science Missions

    Science.gov (United States)

    Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge

    2015-01-01

    Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.

  11. On-line task scheduling and trajectory planning techniques for reconnaissance missions with multiple unmanned aerial vehicles supervised by a single human operator

    Science.gov (United States)

    Ortiz Rubiano, Andres Eduardo

    The problem of a single human operator monitoring multiple UAVs in reconnaissance missions is addressed in this work. In such missions, the operator inspects and classifies targets as they appear on video feeds from the various UAVs. In parallel, the aircraft autonomously execute a flight plan and transmit real-time video of an unknown terrain. The main contribution of this work is the development of a system that autonomously schedules the display of video feeds such that the human operator is able to inspect each target in real time (i.e., no video data is recorded and queued for later inspection). The construction of this non-overlapping schedule is made possible by commanding changes to the flight plan of the UAVs. These changes are constructed such that the impact on the mission time is minimized. The development of this system is addressed in the context of both fixed and arbitrary target inspection times. Under the assumption that the inspection time is constant, a Linear Program (LP) formulation is used to optimally solve the display scheduling problem in the time domain. The LP solution is implemented in the space domain via velocity and trajectory modifications to the flight plan of the UAVs. An online algorithm is proposed to resolve scheduling conflicts between multiple video feeds as targets are discovered by the UAVs. Properties of this algorithm are studied to develop conflict resolution strategies that ensure correctness regardless of the target placement. The effect of such strategies on the mission time is evaluated via numerical simulations. In the context of arbitrary inspection time, the human operator indicates the end of target inspection in real time. A set of maneuvers is devised that enable the operator to inspect each target uninterruptedly and indefinitely. In addition, a cuing mechanism is proposed to increase the situational awareness of the operator and potentially reduce the inspection times. The benefits of operator cuing on mission

  12. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  13. Modeling in the State Flow Environment to Support Launch Vehicle Verification Testing for Mission and Fault Management Algorithms in the NASA Space Launch System

    Science.gov (United States)

    Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.

    2016-01-01

    Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements

  14. The Hubble Space Telescope nickel-hydrogen battery design

    Science.gov (United States)

    Nawrocki, D. E.; Armantrout, J. D.; Standlee, D. J.; Baker, R. C.; Lanier, J. R.

    1990-01-01

    Details are presented of the HST (Hubble Space Telescope) battery cell, battery package, and module mechanical and electrical designs. Also included are a summary of acceptance, qualification, and vibration tests and thermal vacuum testing. Unique details of battery cell charge retention performance characteristics associated with prelaunch hold conditions are discussed. Special charge control methods to minimize thermal dissipation during pad charging operations are summarized. This module design meets all NASA fracture control requirements for manned missions.

  15. Mission Level Autonomy for USSV

    Science.gov (United States)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  16. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  17. Leadership Challenges in ISS Operations: Lessons Learned from Junior and Senior Mission Control Personnel

    Science.gov (United States)

    Clement, James L.; Ritsher, Jennifer Boyd; Saylor, Stephanie A.; Kanas, Nick

    2006-01-01

    The International Space Station (ISS) is operated by a multi-national, multi-organizational team that is dispersed across multiple locations, time zones, and work schedules. At NASA, both junior and senior mission control personnel have had to find ways to address the leadership challenges inherent in such work, but neither have had systematic training in how to do so. The goals of this study were to examine the major leadership challenges faced by ISS mission control personnel and to highlight the approaches that they have found most effective to surmount them. We pay particular attention to the approaches successfully employed by the senior personnel and to the training needs identified by the junior personnel. We also evaluate the extent to which responses are consistent across the junior and senior samples. Further, we compare the issues identified by our interview survey to those identified by a standardized questionnaire survey of mission control personnel and a contrasting group of space station crewmembers. We studied a sample of 14 senior ISS flight controllers and a contrasting sample of 12 more junior ISS controllers. Data were collected using a semi-structured qualitative interview and content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted new analyses of data from a previous questionnaire study of 13 American astronauts, 17 Russian cosmonauts, and 150 U.S. and 36 Russian mission control personnel supporting the ISS or Mir space stations. The interview data showed that the survey respondents had substantial consensus on several leadership challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Interview data from the junior respondents will be presented for the first time at the meeting. The questionnaire data showed that the US mission

  18. Purging sensitive science instruments with nitrogen in the STS environment

    Science.gov (United States)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  19. An Integrated Approach to Thermal Management of International Space Station Logistics Flights, Improving the Efficiency

    Science.gov (United States)

    Holladay, Jon; Day, Greg; Roberts, Barry; Leahy, Frank

    2003-01-01

    The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented for the MPLM Mission Engineering were NASA firsts and all served to improve the overall operations activities. This paper will provide an explanation of how various issues were addressed and the resulting solutions. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation the goal was to "tune" the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.

  20. Flight mission control for multiple spacecraft

    Science.gov (United States)

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  1. Virtual Mission Operations Center -Explicit Access to Small Satellites by a Net Enabled User Base

    Science.gov (United States)

    Miller, E.; Medina, O.; Paulsen, P.; Hopkins, J.; Long, C.; Holloman, K.

    2008-08-01

    The Office of Naval Research (ON R), The Office of the Secr etary of Defense (OSD) , Th e Operationally Responsive Space Off ice (ORS) , and th e National Aeronautics and Space Administration (NASA) are funding the development and integration of key technologies and new processes that w ill allow users across th e bread th of operations the ab ility to access, task , retr ieve, and collaborate w ith data from various sensors including small satellites v ia the Intern et and the SIPRnet. The V irtual Mission Oper ations Center (VMO C) facilitates the dynamic apportionmen t of space assets, allows scalable mission man agement of mu ltiple types of sensors, and provid es access for non-space savvy users through an intu itive collaborative w eb site. These key technologies are b eing used as experimentation pathfinders fo r th e Do D's Operationally Responsiv e Sp ace (O RS) initiative and NASA's Sensor W eb. The O RS initiative seeks to provide space assets that can b e rapid ly tailored to meet a commander's in telligen ce or commun ication needs. For the DoD and NASA the V MO C provid es ready and scalab le access to space b ased assets. To the commercial space sector the V MO C may provide an analog to the innovativ e fractional ownersh ip approach represen ted by FlexJet. This pap er delves in to the technology, in tegration, and applicability of th e V MO C to th e DoD , NASA , and co mmer cial sectors.

  2. Optimal Mission Abort Policy for Systems Operating in a Random Environment.

    Science.gov (United States)

    Levitin, Gregory; Finkelstein, Maxim

    2018-04-01

    Many real-world critical systems, e.g., aircrafts, manned space flight systems, and submarines, utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. For systems exposed to external impacts, the malfunctions are often caused by the consequences of these impacts. Traditional system reliability models typically cannot address a possibility of mission aborts. Therefore, in this article, we first develop the corresponding methodology for modeling and evaluation of the mission success probability and survivability of systems experiencing both internal failures and external shocks. We consider a policy when a mission is aborted and a rescue procedure is activated upon occurrence of the mth shock. We demonstrate the tradeoff between the system survivability and the mission success probability that should be balanced by the proper choice of the decision variable m. A detailed illustrative example of a mission performed by an unmanned aerial vehicle is presented. © 2017 Society for Risk Analysis.

  3. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  4. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    Science.gov (United States)

    Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen

    2015-01-01

    The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that

  5. The ESA Scientific Exploitation of Operational Missions element

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Zehner, Claus; Engdahl, Marcus; Benveniste, Jerome; Delwart, Steven; Gascon, Ferran; Mathieu, Pierre-Philippe; Bojkov, Bojan; Koetz, Benjamin; Arino, Olivier; Donlon, Craig; Davidson, Malcolm; Goryl, Philippe; Foumelis, Michael

    2014-05-01

    The objectives of the ESA Scientific Exploitation of Operational Missions (SEOM) programme element are • to federate, support and expand the research community • to strengthen the leadership of European EO research community • to enable the science community to address new scientific research As a preparation for the SEOM element a series of international science users consultation has been organized by ESA in 2012 and 2013 In particular the ESA Living Planet Symposium was successfully organized in Edinburgh September 2013 and involving 1700 participants from 60 countries. The science users recommendations have been gathered and form the basis for the 2014 SEOM work plan approved by ESA member states. The SEOM element is organized along the following action lines: 1. Developing open-source, multi-mission, scientific toolboxes : the new toolboxes for Sentinel 1/2/3 and 5P will be introduced 2. Research and development studies: the first SEOM studies are being launched such as the INSARAP studies for Sentinel 1 interferometry in orbit demonstration , the IAS study to generate an improved spectroscopic database of the trace gas species CH4, H2O, and CO in the 2.3 μm region and SO2 in the UV region for Sentinel 5 P. In addition larger Sentinels for science call will be tendered in 2014 covering grouped studies for Sentinel 1 Land , Sentinel 1 Ocean , Sentinel 2 Land, Sentinel 3 SAR Altimetry ,Sentinel 3 Ocean color, Sentinel 3 Land and Sentinels Synergy . 3. Science users consultation : the Sentinel 2 for Science workshop is planned from 20 to 22 may 2014 at ESRIN to prepare for scientific exploitation of the Sentinel-2 mission (http://seom.esa.int/S2forScience2014 ) . In addition the FRINGE workshop focusing on scientific explotation of Sentinel1 using SAR interferometry is planned to be held at ESA ESRIN in Q2 2015 4. Training the next generation of European EO scientists on the scientific exploitation of Sentinels data: the Advanced Training course Land

  6. Pre-Launch GOES-R Risk Reduction Activities for the Geostationary Lightning Mapper

    Science.gov (United States)

    Goodman, S. J.; Blakeslee, R. J.; Boccippio, D. J.; Christian, H. J.; Koshak, W. J.; Petersen, W. A.

    2005-01-01

    The GOES-R Geostationary Lightning Mapper (GLM) is a new instrument planned for GOES-R that will greatly improve storm hazard nowcasting and increase warning lead time day and night. Daytime detection of lightning is a particularly significant technological advance given the fact that the solar illuminated cloud-top signal can exceed the intensity of the lightning signal by a factor of one hundred. Our approach is detailed across three broad themes which include: Data Processing Algorithm Readiness, Forecast Applications, and Radiance Data Mining. These themes address how the data will be processed and distributed, and the algorithms and models for developing, producing, and using the data products. These pre-launch risk reduction activities will accelerate the operational and research use of the GLM data once GOES-R begins on-orbit operations. The GLM will provide unprecedented capabilities for tracking thunderstorms and earlier warning of impending severe and hazardous weather threats. By providing direct information on lightning initiation, propagation, extent, and rate, the GLM will also capture the updraft dynamics and life cycle of convective storms, as well as internal ice precipitation processes. The GLM provides information directly from the heart of the thunderstorm as opposed to cloud-top only. Nowcasting applications enabled by the GLM data will expedite the warning and response time of emergency management systems, improve the dispatch of electric power utility repair crews, and improve airline routing around thunderstorms thereby improving safety and efficiency, saving fuel and reducing delays. The use of GLM data will assist the Bureau of Land Management (BLM) and the Forest Service in quickly detecting lightning ground strikes that have a high probability of causing fires. Finally, GLM data will help assess the role of thunderstorms and deep convection in global climate, and will improve regional air quality and global chemistry/climate modeling

  7. In-Flight Operation of the Dawn Ion Propulsion System Through Survey Science Orbit at Ceres

    Science.gov (United States)

    Garner, Charles E.; Rayman, Marc D.

    2015-01-01

    a delta V of over 10.8 km/s to the spacecraft. The IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through arrival at the second science orbit at Ceres.

  8. Report on the Stanford/KACST/AMES UVLED small satellite mission to demonstrate charge management of an electrically isolated proof mass for drag-free operation

    Science.gov (United States)

    Saraf, Shailendhar

    A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.

  9. ETF Mission Statement document. ETF Design Center team

    International Nuclear Information System (INIS)

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed must provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices

  10. ETF Mission Statement document. ETF Design Center team

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed must provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.

  11. SPICE for ESA Planetary Missions

    Science.gov (United States)

    Costa, M.

    2018-04-01

    The ESA SPICE Service leads the SPICE operations for ESA missions and is responsible for the generation of the SPICE Kernel Dataset for ESA missions. This contribution will describe the status of these datasets and outline the future developments.

  12. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    M. Fehringer

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  13. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    C. P. Escoubet

    2001-09-01

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  14. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    Science.gov (United States)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  15. Using Natural Language to Enhance Mission Effectiveness

    Science.gov (United States)

    Trujillo, Anna C.; Meszaros, Erica

    2016-01-01

    The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for professional-related activities. The driving function of this research is allowing a non-UAV pilot, an operator, to define and manage a mission. This paper describes the preliminary usability measures of an interface that allows an operator to define the mission using speech to make inputs. An experiment was conducted to begin to enumerate the efficacy and user acceptance of using voice commands to define a multi-UAV mission and to provide high-level vehicle control commands such as "takeoff." The primary independent variable was input type - voice or mouse. The primary dependent variables consisted of the correctness of the mission parameter inputs and the time needed to make all inputs. Other dependent variables included NASA-TLX workload ratings and subjective ratings on a final questionnaire. The experiment required each subject to fill in an online form that contained comparable required information that would be needed for a package dispatcher to deliver packages. For each run, subjects typed in a simple numeric code for the package code. They then defined the initial starting position, the delivery location, and the return location using either pull-down menus or voice input. Voice input was accomplished using CMU Sphinx4-5prealpha for speech recognition. They then inputted the length of the package. These were the option fields. The subject had the system "Calculate Trajectory" and then "Takeoff" once the trajectory was calculated. Later, the subject used "Land" to finish the run. After the voice and mouse input blocked runs, subjects completed a NASA-TLX. At the conclusion of all runs, subjects completed a questionnaire asking them about their experience in inputting the mission parameters, and starting and stopping the mission using mouse and voice input. In general, the usability of voice commands is acceptable

  16. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  17. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study

    Science.gov (United States)

    Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.

    2013-01-01

    The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.

  18. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  19. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  20. Evolution of Orion Mission Design for Exploration Mission 1 and 2

    Science.gov (United States)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.

    2016-01-01

    The evolving mission design and concepts of NASA’s next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and pro-gram goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance as affected by variations in Earth-Moon geometry. This provides Orion’s subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Reviews (PDR and CDR), there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products needed include, large quantities of nominal trajectories for multiple monthly launch periods and abort options at any point in the mission for each valid trajectory in the launch window.

  1. Mission statement for the Engineering Test Facility

    International Nuclear Information System (INIS)

    1979-10-01

    This Mission Statement defines the ETF activity during its operating life. The results of those operations must provide the data, knowledge, experience, and confidence to continue to the next steps beyond ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that reqired to design the EPR/DEMO devices

  2. APOLLO 17 PRELAUNCH ASTRONAUT TRAINING

    Science.gov (United States)

    1972-01-01

    Apollo Command Module Pilot Evans, left, and Mission Commander Cernan, right, discuss their flight plans as each prepares to fly a T-38 jet aircraft at Patrick Air Force Base just south of the Spaceport. Astronauts Cernan and Evans flew the T-38 aircraft today on training flights over the Kennedy Space Center area to practice flying skills in preparation for upcoming launch to the Moon scheduled 12/06/72.

  3. Command and Control of Joint Air Operations through Mission Command

    Science.gov (United States)

    2016-06-01

    and outlines the C2 architecture systems, processes, and philosophy of com- mand required to enable mission command effectively. Mission Command...General Dempsey highlights the fact that “trust is the moral sinew that binds the distributed Joint Force 2020 together” and observes that “unless...con- fident about how their subordinates will make decisions and adapt to the dynamic battlespace environment. Processes, Systems, and Philosophy of

  4. Contamination control plan for prelaunch operations

    Science.gov (United States)

    Austin, J. D.

    1983-01-01

    A unified, systematic plan is presented for contamination control for space flight systems. Allowable contaminant quantities, or contamination budgets, are determined based on system performance margins and system-level allowable degradations. These contamination budgets are compared to contamination rates in ground environments to establish the controls required in each ground environment. The use of feedback from contamination monitoring and some contamination control procedures are discussed.

  5. A decision model for planetary missions

    Science.gov (United States)

    Hazelrigg, G. A., Jr.; Brigadier, W. L.

    1976-01-01

    Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.

  6. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    International Nuclear Information System (INIS)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-01

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power (≥330 We at beginning of life) during the 10-year cruise and 1-year science mission (∼11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030

  7. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  8. A review of Spacelab mission management approach

    Science.gov (United States)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  9. OCO-2 (Orbiting Carbon Observatory-2) mission operations planning and initial operations experiences

    Science.gov (United States)

    Basilio, Ralph R.; Pollock, H. Randy; Hunyadi-Lay, Sarah L.

    2014-10-01

    OCO-2 (Orbiting Carbon Observatory-2) is the first NASA (National Aeronautics and Space Administration) mission dedicated to studying atmospheric carbon dioxide, specifically to identify sources (emitters) and sinks (absorbers) on a regional (1000 km x 1000 km) scale. The mission is designed to meet a science imperative by providing critical and urgent measurements needed to improve understanding of the carbon cycle and global climate change processes. The single instrument consisting of three grating spectrometers was built at the Jet Propulsion Laboratory, but is based on the design co-developed with Hamilton Sundstrand Corporation for the original OCO mission. The instrument underwent an extensive ground test program. This was generally made possible through the use of a thermal vacuum chamber with a window/port that allowed optical ground support equipment to stimulate the instrument. The instrument was later delivered to Orbital Sciences Corporation for integration and test with the LEOStar-2 spacecraft. During the overall ground test campaign, proper function and performance in simulated launch, ascent, and space environments were verified. The observatory was launched into space on 02 July 2014. Initial indications are that the instrument is meeting functional and performance specifications, and there is every expectation that the spatially-order, geo-located, calibrated spectra of reflected sunlight and the science retrievals will meet the Level 1 science requirements.

  10. Spacelab life sciences 2 post mission report

    Science.gov (United States)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  11. Cyberinfrastructure for Aircraft Mission Support

    Science.gov (United States)

    Freudinger, Lawrence C.

    2010-01-01

    Forth last several years NASA's Airborne Science Program has been developing and using infrastructure and applications that enable researchers to interact with each other and with airborne instruments via network communications. Use of these tools has increased near realtime situational awareness during field operations, resulting it productivity improvements, improved decision making, and the collection of better data. Advances in pre-mission planning and post-mission access have also emerged. Integrating these capabilities with other tools to evolve coherent service-oriented enterprise architecture for aircraft flight and test operations is the subject of ongoing efforts.

  12. Mechanical design of the Mars Pathfinder mission

    Science.gov (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  13. [Determine and Implement Updates to Be Made to MODEAR (Mission Operations Data Enterprise Architecture Repository)

    Science.gov (United States)

    Fanourakis, Sofia

    2015-01-01

    My main project was to determine and implement updates to be made to MODEAR (Mission Operations Data Enterprise Architecture Repository) process definitions to be used for CST-100 (Crew Space Transportation-100) related missions. Emphasis was placed on the scheduling aspect of the processes. In addition, I was to complete other tasks as given. Some of the additional tasks were: to create pass-through command look-up tables for the flight controllers, finish one of the MDT (Mission Operations Directorate Display Tool) displays, gather data on what is included in the CST-100 public data, develop a VBA (Visual Basic for Applications) script to create a csv (Comma-Separated Values) file with specific information from spreadsheets containing command data, create a command script for the November MCC-ASIL (Mission Control Center-Avionics System Integration Laboratory) testing, and take notes for one of the TCVB (Terminal Configured Vehicle B-737) meetings. In order to make progress in my main project I scheduled meetings with the appropriate subject matter experts, prepared material for the meetings, and assisted in the discussions in order to understand the process or processes at hand. After such discussions I made updates to various MODEAR processes and process graphics. These meetings have resulted in significant updates to the processes that were discussed. In addition, the discussions have helped the departments responsible for these processes better understand the work ahead and provided material to help document how their products are created. I completed my other tasks utilizing resources available to me and, when necessary, consulting with the subject matter experts. Outputs resulting from my other tasks were: two completed and one partially completed pass through command look-up tables for the fight controllers, significant updates to one of the MDT displays, a spreadsheet containing data on what is included in the CST-100 public data, a tool to create a csv

  14. Pre-OSART mission highlights. 1988-1990

    International Nuclear Information System (INIS)

    1994-09-01

    The IAEA Pre-Operational Safety Review Teams (Pre-OSART) programme is part of the Operational Safety Review teams (OSART) programme and provides advice and assistance to Member States for enhancing the operational safety of nuclear power plants. OSART and Pre-OSART reviews are available to all countries with nuclear power plants in operation or approaching operation. Most of these countries have participated in the programme, by hosting one or more OSART or Pre-OSART missions or by making experts available to participate in missions. This document, which summarizes the finding of Pre-OSART reviews, covers the period from January 1988 to December 1990, and it is intended that further such documents will be prepared to cover subsequent Pre-OSART reviews

  15. The deep space 1 extended mission

    Science.gov (United States)

    Rayman, Marc D.; Varghese, Philip

    2001-03-01

    The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.

  16. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  17. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  18. STS-93 crew have breakfast before launch in O&C Building

    Science.gov (United States)

    1999-01-01

    The STS-93 crew gathers a third time for a pre-launch breakfast in the Operations and Checkout Building before suiting up for launch. After Space Shuttle Columbia's July 22 launch attempt was scrubbed due to the weather, the launch was rescheduled for Friday, July 23, at 12:24 a.m. EDT. Seated from left are Mission Specialists Catherine G. Coleman (Ph.D.) and Steven A. Hawley (Ph.D.); Commander Eileen M. Collins; Mission Specialist Michel Tognini, of France, who represents the Centre National d'Etudes Spatiales (CNES); and Pilot Jeffrey S. Ashby. STS-93 is a five- day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Collins is the first woman to serve as commander of a Shuttle mission. The target landing date is July 27, 1999, at 11:20 p.m. EDT.

  19. Automated and Adaptive Mission Planning for Orbital Express

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel; Koblick, Darin

    2008-01-01

    The Orbital Express space mission was a Defense Advanced Research Projects Agency (DARPA) lead demonstration of on-orbit satellite servicing scenarios, autonomous rendezvous, fluid transfers of hydrazine propellant, and robotic arm transfers of Orbital Replacement Unit (ORU) components. Boeing's Autonomous Space Transport Robotic Operations (ASTRO) vehicle provided the servicing to the Ball Aerospace's Next Generation Serviceable Satellite (NextSat) client. For communication opportunities, operations used the high-bandwidth ground-based Air Force Satellite Control Network (AFSCN) along with the relatively low-bandwidth GEO-Synchronous space-borne Tracking and Data Relay Satellite System (TDRSS) network. Mission operations were conducted out of the RDT&E Support Complex (RSC) at the Kirtland Air Force Base in New Mexico. All mission objectives were met successfully: The first of several autonomous rendezvous was demonstrated on May 5, 2007; autonomous free-flyer capture was demonstrated on June 22, 2007; the fluid and ORU transfers throughout the mission were successful. Planning operations for the mission were conducted by a team of personnel including Flight Directors, who were responsible for verifying the steps and contacts within the procedures, the Rendezvous Planners who would compute the locations and visibilities of the spacecraft, the Scenario Resource Planners (SRPs), who were concerned with assignment of communications windows, monitoring of resources, and sending commands to the ASTRO spacecraft, and the Mission planners who would interface with the real-time operations environment, process planning products and coordinate activities with the SRP. The SRP position was staffed by JPL personnel who used the Automated Scheduling and Planning ENvironment (ASPEN) to model and enforce mission and satellite constraints. The lifecycle of a plan began three weeks outside its execution on-board. During the planning timeframe, many aspects could change the plan

  20. Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs

    Science.gov (United States)

    Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle

    2016-01-01

    The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.

  1. Planning for Planetary Science Mission Including Resource Prospecting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computer-aided mission planning can enhance mission operations and science return for surface missions to Mars, the Moon, and beyond. While the...

  2. The PROPEL Electrodynamic Tether Demonstration Mission

    Science.gov (United States)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  3. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    Science.gov (United States)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4

  4. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  5. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    Science.gov (United States)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  6. The mission execution crew assistant : Improving human-machine team resilience for long duration missions

    OpenAIRE

    Neerincx, M.A.; Lindenberg, J.; Smets, N.J.J.M.; Bos, A.; Breebaart, L.; Grant, T.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2008-01-01

    Manned long-duration missions to the Moon and Mars set high operational, human factors and technical demands for a distributed support system, which enhances human-machine teams' capabilities to cope autonomously with unexpected, complex and potentially hazardous situations. Based on a situated Cognitive Engineering (sCE) method, we specified a theoretical and empirical founded Requirements Baseline (RB) for such a system (called Mission Execution Crew Assistant; MECA), and its rational consi...

  7. Progress Towards a 2012 Landsat Launch

    Science.gov (United States)

    Irons, Jim; Sabelhaus, Phil; Masek, Jeff; Cook, Bruce; Dabney, Phil; Loveland, Tom

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is on schedule for a December 2012 launch date. The mission is being managed by an interagency partnership between NASA and the U.S. Geological Survey (USGS). NASA leads the development and launch of the satellite observatory while leads ground system development. USGS will assume responsibility for operating the satellite and for collecting, archiving, and distributing the LDCM data following launch. When launched the satellite will carry two sensors into orbit. The Operational Land Imager (OLI) will collect data for nine shortwave spectral bands with a spatial resolution of 30 m (with a 15 m panchromatic band). The Thermal Infrared Sensor (TIRS) will coincidently collect data for two thermal infrared bands with a spatial resolution of 100 m. The OLI is fully assembled and tested and has been shipped by it?s manufacturer, Ball Aerospace and Technology Corporation, to the Orbital Sciences Corporation (Orbital) facility where it is being integrated onto the LDCM spacecraft. Pre-launch testing indicates that OLI will meet all performance specification with margin. TIRS is in development at the NASA Goddard Space Flight Center (GSFC) and is in final testing before shipping to the Orbital facility in January, 2012. The ground data processing system is in development at the USGS Earth Resources Observation and Science (EROS) Center. The presentation will describe the LDCM satellite system, provide the status of system development, and present prelaunch performance data for OLI and TIRS. The USGS has committed to renaming the satellite as Landsat 8 following launch.

  8. Planning Coverage Campaigns for Mission Design and Analysis: CLASP for DESDynl

    Science.gov (United States)

    Knight, Russell L.; McLaren, David A.; Hu, Steven

    2013-01-01

    Mission design and analysis presents challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, automated planning tools are used that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations, while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. This approach was applied to the DESDynl mission design using the CLASP planning system, but since this adaptation, many techniques have changed under the hood for CLASP, and the DESDynl mission concept has undergone drastic changes. The software produces mission evaluation products, such as memory highwater marks, coverage percentages, given a mission design in the form of coverage targets, concept of operations, spacecraft parameters, and orbital parameters. It tries to overcome the lack of fidelity and timeliness of mission requirements coverage analysis during mission design. Previous techniques primarily use Excel in ad hoc fashion to approximate key factors in mission performance, often falling victim to overgeneralizations necessary in such an adaptation. The new program allows designers to faithfully represent their mission designs quickly, and get more accurate results just as quickly.

  9. The ENVISAT Atmospheric Chemistry mission (GOMOS, MIPAS and SCIAMACHY) -Instrument status and mission evolution

    Science.gov (United States)

    Dehn, Angelika

    The ENVISAT ESA's satellite was launched on a polar orbit on March 2002. It carries on-board three atmospheric chemistry instruments: GOMOS, MIPAS and SCIAMACHY [1]. At the present time, although the mission expected lifetime of 5 years has been already exceeded, all the payload modules are in good to excellent status. The only limiting factor is the available fuel that is used for orbit control manoeuvre. A new strategy was proposed [2] that will allow to save fuel and to extend the mission up to 2013. Following this strategy, the altitude of the orbit will be lowered by 17 km starting from end of 2010 and the inclination will be allowed to drift. The new orbit scenario will result in a new repeating cycle with a variation of the Mean Local Solar Time (MLST). This will have an impact on both the in-flight operations, on the science data and on the mission. The simulations carried out for the atmospheric chemistry instruments show that the new orbit strategy will neither have a significant impact in the instrument operations nor on the quality of the science data. Therefore we expect that the atmospheric mission will continue nominally until the end of the platform life time, providing to the scientist a unique dataset of the most important geophysical parameters (e.g., trace gases, clouds, and aerosol) spanning a time interval of about 11 years. The aim of this paper is to review the overall ENVISAT atmospheric mission status for the past, present and future. The evolution of the instrument performances since launch will be analyzed with focus on the life-limited items monitoring. The tuning of the instrument in-flight operations decided to cope with instrument degradation or scientific needs will be described. The lessons learned on how to operate and monitor the instruments will be highlighted. Finally the expected evolution of the instrument performances until the ENVISAT end-of-life will be discussed. [1] H. Nett, J. Frerick, T. Paulsen, and G. Levrini, "The

  10. Identification of Mission Sensitivities with Mission Modeling from the One System Organization at Hanford - 13292

    Energy Technology Data Exchange (ETDEWEB)

    Belsher, Jeremy D.; Pierson, Kayla L. [Washington River Protection Solutions, LLC, Richland, WA 99352 (United States); Gimpel, Rod F. [One System - Waste Treatment Project, Richland, WA 99352 (United States)

    2013-07-01

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in the predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)

  11. The supply of pharmaceuticals in humanitarian assistance missions: implications for military operations.

    Science.gov (United States)

    Mahmood, Maysaa; Riley, Kevin; Bennett, David; Anderson, Warner

    2011-08-01

    In this article, we provide an overview of key international guidelines governing the supply of pharmaceuticals during disasters and complex emergencies. We review the World Health Organization's guidelines on pharmaceutical supply chain management and highlight their relevance for military humanitarian assistance missions. Given the important role of pharmaceuticals in addressing population health needs during humanitarian emergencies, a good understanding of how pharmaceuticals are supplied at the local level in different countries can help military health personnel identify the most appropriate supply options. Familiarity with international guidelines involved in cross-border movement of pharmaceuticals can improve the ability of military personnel to communicate more effectively with other actors involved in humanitarian and development spheres. Enhancing the knowledge base available to military personnel in terms of existing supply models and funding procedures can improve the effectiveness of humanitarian military operations and invite policy changes necessary to establish more flexible acquisition and funding regulations.

  12. Utilization of Ancillary Data Sets for Conceptual SMAP Mission Algorithm Development and Product Generation

    Science.gov (United States)

    O'Neill, P.; Podest, E.

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond [1]. Scheduled to launch late in 2014, the proposed SMAP mission would provide high resolution and frequent revisit global mapping of soil moisture and freeze/thaw state, utilizing enhanced Radio Frequency Interference (RFI) mitigation approaches to collect new measurements of the hydrological condition of the Earth's surface. The SMAP instrument design incorporates an L-band radar (3 km) and an L band radiometer (40 km) sharing a single 6-meter rotating mesh antenna to provide measurements of soil moisture and landscape freeze/thaw state [2]. These observations would (1) improve our understanding of linkages between the Earth's water, energy, and carbon cycles, (2) benefit many application areas including numerical weather and climate prediction, flood and drought monitoring, agricultural productivity, human health, and national security, (3) help to address priority questions on climate change, and (4) potentially provide continuity with brightness temperature and soil moisture measurements from ESA's SMOS (Soil Moisture Ocean Salinity) and NASA's Aquarius missions. In the planned SMAP mission prelaunch time frame, baseline algorithms are being developed for generating (1) soil moisture products both from radiometer measurements on a 36 km grid and from combined radar/radiometer measurements on a 9 km grid, and (2) freeze/thaw products from radar measurements on a 3 km grid. These retrieval algorithms need a variety of global ancillary data, both static and dynamic, to run the retrieval models, constrain the retrievals, and provide flags for indicating retrieval quality. The choice of which ancillary dataset to use for a particular SMAP product would be based on a number of factors

  13. Individual styles of professional operator's performance for the needs of interplanetary mission.

    Science.gov (United States)

    Boritko, Yaroslav; Gushin, Vadim; Zavalko, Irina; Smoleevskiy, Alexandr; Dudukin, Alexandr

    Maintenance of the cosmonaut’s professional performance reliability is one of the priorities of long-term space flights safety. Cosmonaut’s performance during long-term space flight decreases due to combination of the microgravity effects and inevitable degradation of skills during prolonged breaks in training. Therefore, the objective of the elaboration of countermeasures against skill decrement is very relevant. During the experiment with prolonged isolation "Mars-500" in IMBP two virtual models of professional operator’s activities were used to investigate the influence of extended isolation, monotony and confinement on professional skills degradation. One is well-known “PILOT-1” (docking to the space station), another - "VIRTU" (manned operations of planet exploration). Individual resistance to the artificial sensory conflict was estimated using computerized version of “Mirror koordinograf” with GSR registration. Two different individual performance styles, referring to the different types of response to stress, have been identified. Individual performance style, called "conservative control", manifested in permanent control of parameters, conditions and results of the operator’s activity. Operators with this performance style demonstrate high reliability in performing tasks. The drawback of the style is intensive resource expenditure - both the operator (physiological "cost") and the technical system operated (fuel, time). This style is more efficient while executing tasks that require long work with high reliability required according to a detailed protocol, such as orbital flight. Individual style, called "exploratory ", manifested in the search of new ways of task fulfillment. This style is accompanied by partial, periodic lack of control of the conditions and result of operator’s activity due to flexible approach to the tasks perfect implementation. Operators spent less resource (fuel, time, lower physiological "cost") due to high self

  14. Software Innovation in a Mission Critical Environment

    Science.gov (United States)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  15. Approach to Spacelab Payload mission management

    Science.gov (United States)

    Craft, H. G.; Lester, R. C.

    1978-01-01

    The nucleus of the approach to Spacelab Payload mission management is the establishment of a single point of authority for the entire payload on a given mission. This single point mission manager will serve as a 'broker' between the individual experiments and the STS, negotiating agreements by two-part interaction. The payload mission manager, along with a small support team, will represent the users in negotiating use of STS accommodations. He will provide the support needed by each individual experimenter to meet the scientific, technological, and applications objectives of the mission with minimum cost and maximum efficiency. The investigator will assume complete responsibility for his experiment hardware definition and development and will take an active role in the integration and operation of his experiment.

  16. Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment

    Science.gov (United States)

    Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun

    2006-01-01

    Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to

  17. Using New Technologies in Support of Future Space Missions

    Science.gov (United States)

    Hooke, Adrian J.; Welch, David C.

    1997-01-01

    This paper forms a perspective of how new technologies such as onboard autonomy and internet-like protocols will change the look and feel of operations. It analyzes the concept of a lights-out mission operations control center and it's role in future mission support and it describes likely scenarios for evolving from current concepts.

  18. MONTE: the next generation of mission design and navigation software

    Science.gov (United States)

    Evans, Scott; Taber, William; Drain, Theodore; Smith, Jonathon; Wu, Hsi-Cheng; Guevara, Michelle; Sunseri, Richard; Evans, James

    2018-03-01

    The Mission analysis, Operations and Navigation Toolkit Environment (MONTE) (Sunseri et al. in NASA Tech Briefs 36(9), 2012) is an astrodynamic toolkit produced by the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory. It provides a single integrated environment for all phases of deep space and Earth orbiting missions. Capabilities include: trajectory optimization and analysis, operational orbit determination, flight path control, and 2D/3D visualization. MONTE is presented to the user as an importable Python language module. This allows a simple but powerful user interface via CLUI or script. In addition, the Python interface allows MONTE to be used seamlessly with other canonical scientific programming tools such as SciPy, NumPy, and Matplotlib. MONTE is the prime operational orbit determination software for all JPL navigated missions.

  19. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  20. MILITARY MISSION COMBAT EFFICIENCY ESTIMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ighoyota B. AJENAGHUGHRURE

    2017-04-01

    Full Text Available Military infantry recruits, although trained, lacks experience in real-time combat operations, despite the combat simulations training. Therefore, the choice of including them in military operations is a thorough and careful process. This has left top military commanders with the tough task of deciding, the best blend of inexperienced and experienced infantry soldiers, for any military operation, based on available information on enemy strength and capability. This research project delves into the design of a mission combat efficiency estimator (MCEE. It is a decision support system that aids top military commanders in estimating the best combination of soldiers suitable for different military operations, based on available information on enemy’s combat experience. Hence, its advantages consist of reducing casualties and other risks that compromises the entire operation overall success, and also boosting the morals of soldiers in an operation, with such information as an estimation of combat efficiency of their enemies. The system was developed using Microsoft Asp.Net and Sql server backend. A case study test conducted with the MECEE system, reveals clearly that the MECEE system is an efficient tool for military mission planning in terms of team selection. Hence, when the MECEE system is fully deployed it will aid military commanders in the task of decision making on team members’ combination for any given operation based on enemy personnel information that is well known beforehand. Further work on the MECEE will be undertaken to explore fire power types and impact in mission combat efficiency estimation.

  1. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  2. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  3. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  4. 75 FR 11918 - Hewlett Pachard Company, Business Critical Systems, Mission Critical Business Software Division...

    Science.gov (United States)

    2010-03-12

    ... Pachard Company, Business Critical Systems, Mission Critical Business Software Division, Openvms Operating... Colorado, Marlborough, Massachuetts; Hewlett Pachard Company, Business Critical Systems, Mission Critical... Company, Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating System...

  5. Sentinel-3 SAR Altimetry Toolbox - Scientific Exploitation of Operational Missions (SEOM) Program Element

    Science.gov (United States)

    Benveniste, Jérôme; Lucas, Bruno; Dinardo, Salvatore

    2014-05-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage pioneered by ERS-1, ERS-2, Envisat and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the Sentinel-3 series is planned for launch in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales, the French Space Agency), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as net

  6. Combustion-based power source for Venus surface missions

    Science.gov (United States)

    Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.

    2016-10-01

    The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.

  7. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  8. The SENTINEL-3 Mission: Overview and Status

    Science.gov (United States)

    Benveniste, J.; Mecklenburg, S.

    2015-12-01

    The Copernicus Programme, being Europe's Earth Observation and Monitoring Programme led by the European Union, aims to provide, on a sustainable basis, reliable and timely services related to environmental and security issues. The Sentinel-3 mission forms part of the Copernicus Space Component. Its main objectives, building on the heritage and experience of the European Space Agency's (ESA) ERS and ENVISAT missions, are to measure sea-surface topography, sea- and land-surface temperature and ocean- and land-surface colour in support of ocean forecasting systems, and for environmental and climate monitoring. The series of Sentinel-3 satellites will ensure global, frequent and near-real time ocean, ice and land monitoring, with the provision of observation data in routine, long term (up to 20 years of operations) and continuous fashion, with a consistent quality and a high level of reliability and availability. The Sentinel-3 missions will be jointly operated by ESA and EUMETSAT. ESA will be responsible for the operations, maintenance and evolution of the Sentinel-3 ground segment on land related products and EUMETSAT for the marine products. The Sentinel-3 ground segment systematically acquires, processes and distributes a set of pre-defined core data products. Sentinel-3A is foreseen to be launched at the beginning of November 2015. The paper will give an overview on the mission, its instruments and objectives, the data products provided, the mechanisms to access the mission's data, and if available first results.

  9. Guidance system operations plan for manned cm earth orbital and lunar missions using program Colossus 3. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1971-01-01

    The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.

  10. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  11. Comet rendezvous mission design using Solar Electric Propulsion

    Science.gov (United States)

    Sackett, L. L.; Hastrup, R. C.; Yen, C.-W. L.; Wood, L. J.

    1979-01-01

    A dual comet (Halley Flyby/Tempel 2 Rendezvous) mission, which is planned to be the first to use the Solar Electric Propulsion System (SEPS), is to be launched in 1985. The purpose of this paper is to describe how the mission design attempts to maximize science return while working within spacecraft and other constraints. Science requirements and desires are outlined and specific instruments are considered. Emphasis is on the strategy for operations in the vicinity of Tempel 2, for which a representative profile is described. The mission is planned to extend about one year past initial rendezvous. Because of the large uncertainty in the comet environment the Tempel 2 operations strategy must be highly adaptive.

  12. Assessment of communication technology and post-operative telephone surveillance during global urology mission.

    Science.gov (United States)

    Rapp, David E; Colhoun, Andrew; Morin, Jacqueline; Bradford, Timothy J

    2018-02-21

    Compliance with post-operative follow-up in the context of international surgical trips is often poor. The etiology of this problem is multifactorial and includes lack of local physician involvement, transportation costs, and work responsibilities. We aimed to better understand availability of communication technologies within Belize and use this information to improve follow-up after visiting surgical trips to a public hospital in Belize City. Accordingly, a 6-item questionnaire assessing access to communication technologies was completed by all patients undergoing evaluation by a visiting surgical team in 2014. Based on this data, a pilot program for patients undergoing surgery was instituted for subsequent missions (2015-2016) that included a 6-week post-operative telephone interview with a visiting physician located in the United States. Fifty-four (n = 54) patients were assessed via survey with 89% responding that they had a mobile phone. Patients reported less access to home internet (59%), local internet (52%), and email (48%). Of 35 surgical patients undergoing surgery during 2 subsequent surgical trips, 18 (51%) were compliant with telephone interview at 6-week follow-up. Issues were identified in 3 (17%) patients that allowed for physician assistance. The cost per patient interview was $10 USD.

  13. Radioastron flight operations

    Science.gov (United States)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  14. Telepresence for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Incorporating telepresence technologies into deep space mission operations can give the crew and ground personnel the impression that they are in a location at time...

  15. A lifetime prediction method for LEDs considering mission profiles

    DEFF Research Database (Denmark)

    Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing

    2016-01-01

    and to benchmark the cost-competitiveness of different lighting technologies. The existing lifetime data released by LED manufacturers or standard organizations are usually applicable only for specific temperature and current levels. Significant lifetime discrepancies may be observed in field operations due...... to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and the statistical properties of the life data...

  16. The Advanced Technology Operations System: ATOS

    Science.gov (United States)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  17. Nanosatellite missions - the future

    Science.gov (United States)

    Koudelka, O.; Kuschnig, R.; Wenger, M.; Romano, P.

    2017-09-01

    In the beginning, nanosatellite projects were focused on educational aspects. In the meantime, the technology matured and now allows to test, demonstrate and validate new systems, operational procedures and services in space at low cost and within much shorter timescales than traditional space endeavors. The number of spacecraft developed and launched has been increasing exponentially in the last years. The constellation of BRITE nanosatellites is demonstrating impressively that demanding scientific requirements can be met with small, low-cost satellites. Industry and space agencies are now embracing small satellite technology. Particularly in the USA, companies have been established to provide commercial services based on CubeSats. The approach is in general different from traditional space projects with their strict product/quality assurance and documentation requirements. The paper gives an overview of nanosatellite missions in different areas of application. Based on lessons learnt from the BRITE mission and recent developments at TU Graz (in particular the implementation of the OPS-SAT nanosatellite for ESA), enhanced technical possibilities for a future astronomy mission after BRITE will be discussed. Powerful on-board computers will allow on-board data pre-processing. A state-of-the-art telemetry system with high data rates would facilitate interference-free operations and increase science data return.

  18. The commission of energy regulation: statute, missions and authority

    International Nuclear Information System (INIS)

    Laffaille, D.; Bossoutrot, Ch.

    2008-01-01

    The commission of energy regulation (CRE), which has superseded the commission of electricity regulation, was created by the law no. 2000-108 from February 10, 2000, relative to the modernization and development of the French electric utility. This article presents the situation of CRE's statute, missions and authority seven years after its creation. The statute of CRE warrants its independence, autonomy and impartiality. Its operation means consist in budgetary and personnel resources. Its main mission is the control of the conditions of use of gas and electricity networks and the respect of competition rules: free and transparent access to networks and infrastructures, control of the good operation and development of networks and facilities, regulation of markets, strengthening of the public utility mission. Its authority concerns the management of networks, the book-keeping control of energy operators, the settlement of disputes, the attribution of sanctions, the monitoring of energy markets operation etc. (J.S.)

  19. Mission-Critical Systems Design Framework

    Directory of Open Access Journals (Sweden)

    Kyriakos Houliotis

    2018-03-01

    Full Text Available Safety-critical systems are well documented and standardized (e.g. IEC 61508, RTCA DO-178B within system design cycles. However in Defence and Security, systems that are critical to the success of a Mission are not defined within the literature nor are there any guidelines in defining criticality in their design or operational capabilities. When it comes to Vetronics (Vehicle Electronics, a mission-critical system, is a system with much complexity and mixed criticality levels that is a part of the overall platform (military vehicle offering integrated system capabilities. In this paper, a framework is presented, providing guidelines in designing efficiently and effectively mission-critical systems considering principles of Interoperable Open Architectures (IOA, mission-critical integrity levels and following new standardization activities such as NATO Generic Vehicle Architecture (NGVA. A Defensive Aid Suite (DAS system is used as a case study to illustrate how this framework can be exploited. The indention of this extension is to provide an approach to precisely estimate threats in order to de-risk missions in the very early stages.

  20. An Analog Rover Exploration Mission for Education and Outreach

    Science.gov (United States)

    Moores, John; Campbell, Charissa L.; Smith, Christina L.; Cooper, Brittney A.

    2017-10-01

    This abstract describes an analog rover exploration mission designed as an outreach program for high school and undergraduate students. This program is used to teach them about basic mission control operations, how to manage a rover as if it were on another planetary body, and employing the rover remotely to complete mission objectives. One iteration of this program has been completed and another is underway. In both trials, participants were shown the different operation processes involved in a real-life mission. Modifications were made to these processes to decrease complexity and better simulate a mission control environment in a short time period (three 20-minute-long mission “days”). In the first run of the program, participants selected a landing site, what instruments would be on the rover - subject to cost, size, and weight limitations - and were randomly assigned one of six different mission operations roles, each with specific responsibilities. For example, a Science Planner/Integrator (SPI) would plan science activities whilst a Rover Engineer (RE) would keep on top of rover constraints. Planning consisted of a series of four meetings to develop and verify the current plan, pre-plan the next day's activities and uplink the activities to the “rover” (a human colleague). Participants were required to attend certain meetings depending upon their assigned role. To conclude the mission, students viewed the site to understand any differences between remote viewing and reality in relation to the rover. Another mission is currently in progress with revisions from the earlier run to improve the experience. This includes broader roles and meetings and pre-selecting the landing site and rover. The new roles are: Mission Lead, Rover Engineer and Science Planner. The SPI role was previously popular so most of the students were placed in this category. The meetings were reduced to three but extended in length. We are also planning to integrate this program

  1. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  2. Radioactive waste management. Ukraine. WAMAP mission to Ukraine

    International Nuclear Information System (INIS)

    Bergman, C.; Samiei, M.; Takats, F.

    1993-01-01

    In February 1992, the Ukrainian State Committee on Nuclear and Radiation Safety IAEA assisted in management of radwaste and spent fuel. A three member IAEA mission was sent to Ukraine for fact-finding. The present report discusses the outcome of this mission. It gives present legislation, regulations and organizational situation in Ukraine and generation and waste management of radioactive wastes. It discusses possible area of technical co-operation, conclusions and recommendations of the mission

  3. Navy Operational Planner - Undersea Warfare Module

    Science.gov (United States)

    2016-09-01

    concepts are considered in NOP–USW that are not in previous research: time phasing of missions, mutually exclusive missions, and asset availability...operational planning efforts. NOP–USW suggests the correct allocation of assets across a wide theater of operation to accomplish missions in the...Master’s thesis 4. TITLE AND SUBTITLE NAVY OPERATIONAL PLANNER – UNDERSEA WARFARE MODULE 5. FUNDING NUMBERS 6. AUTHOR(S) Guy A. Molina 7

  4. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  5. Trajectory Design Considerations for Exploration Mission 1

    Science.gov (United States)

    Dawn, Timothy F.; Gutkowski, Jeffrey P.; Batcha, Amelia L.; Williams, Jacob; Pedrotty, Samuel M.

    2018-01-01

    Exploration Mission 1 (EM-1) will be the first mission to send an uncrewed Orion Multi-Purpose Crew Vehicle (MPCV) to cislunar space in the fall of 2019. EM-1 was originally conceived as a lunar free-return mission, but was later changed to a Distant Retrograde Orbit (DRO) mission as a precursor to the Asteroid Redirect Mission. To understand the required mission performance (i.e., propellant requirement), a series of trajectory optimization runs was conducted using JSC's Copernicus spacecraft trajectory optimization tool. In order for the runs to be done in a timely manner, it was necessary to employ a parallelization approach on a computing cluster using a new trajectory scan tool written in Python. Details of the scan tool are provided and how it is used to perform the scans and post-process the results. Initially, a scan of daily due east launched EM-1 DRO missions in 2018 was made. Valid mission opportunities are ones that do not exceed the useable propellant available to perform the required burns. The initial scan data showed the propellant and delta-V performance patterns for each launch period. As questions were raised from different subsystems (e.g., power, thermal, communications, flight operations, etc.), the mission parameters or data that were of interest to them were added to the scan output data file. The additional data includes: (1) local launch and landing times in relation to sunrise and sunset, (2) length of eclipse periods during the in-space portion of the mission, (3) Earth line of sight from cislunar space, (4) Deep Space Network field of view looking towards cislunar space, and (5) variation of the downrange distance from Earth entry interface to splashdown. Mission design trades can also be performed based on the information that the additional data shows. For example, if the landing is in darkness, but the recovery operations team desires a landing in daylight, then an analysis is performed to determine how to change the mission design

  6. Five biomedical experiments flown in an Earth orbiting laboratory: Lessons learned from developing these experiments on the first international microgravity mission from concept to landing

    Science.gov (United States)

    Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.

    1993-01-01

    There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).

  7. Planning and Estimation of Operations Support Requirements

    Science.gov (United States)

    Newhouse, Marilyn E.; Barley, Bryan; Bacskay, Allen; Clardy, Dennon

    2010-01-01

    Life Cycle Cost (LCC) estimates during the proposal and early design phases, as well as project replans during the development phase, are heavily focused on hardware development schedules and costs. Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead to de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Any LCC growth can directly impact the programs' ability to fund new missions, and even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations. The National Aeronautics and Space Administration (NASA) D&NF Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns at or after launch due to underestimation of the complexity and supporting requirements for operations activities; the fifth mission had not launched at the time of the mission. The drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This paper updates the D

  8. Mission-directed path planning for planetary rover exploration

    Science.gov (United States)

    Tompkins, Paul

    2005-07-01

    Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot

  9. Human exploration mission studies

    Science.gov (United States)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  10. Mission Status for Earth Science Constellation MOWG Meeting at KSC: EOS Aura

    Science.gov (United States)

    Fisher, Dominic

    2017-01-01

    This will be presented at the Earth Science Constellation Mission Operations Working Group (MOWG) meeting at KSC (Kennedy Space Center) in December 2017 to discus EOS (Earth Observing System) Aura status. Reviewed and approved by Eric Moyer, ESMO (Earth Sciences Mission Operations) Deputy Project Manager.

  11. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    Science.gov (United States)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  12. PROGRAM EVALUATION INVOLVEMENT INDONESIAN NATIONAL ARMED FORCES (TNI ON MISSION UNITED NATIONS PEACEKEEPING OPERATIONS (UNPKO

    Directory of Open Access Journals (Sweden)

    I Gede Sumertha KY

    2017-07-01

    Full Text Available This research is constructed in order to study and to evaluate involvement TNI on mission United Nations Peacekeeping Operations (UNPKO in Lebanon program FY 2014-2015 due to achieve vision 4000 Peacekeepers. The CIPP model is using on apply the qualitative method for the research with consist of four evaluation components: (1 context; (2 input; (3 process; (4 product. The mechanism collecting data were collected through interviews, observations, questionnaires and documentation study. There are three levels of evaluation for judgment each aspect: low, moderate, and high. The summarized results and figured into case-order effect matrix was figure out of the categorization.The results of this research indicate that TNI involvement in mission UNPKO Lebanon, aspire to increase the number of peacekeepers up to 4.000 personnel in the category “high”, but still have some minor additional improvement especially on coordination among stakeholders. This is because the Results of Context Evaluation has a category of "high" with a scale of assessment "many" (75.3%; the Results of Input Evaluation has a category of "high" with a scale of assessment "moderate" (60.6%; the Results of Process Evaluation has a category of "high" with a scale of assessment "moderate" (65.3% and the Results of Product Evaluation has a category of "high" with a scale of assessment "moderate" (63.3% .

  13. Leveraging Geospatial Intelligence (GEOINT) in Mission Command

    Science.gov (United States)

    2009-03-21

    Operational artists at all levels need new conceptual tools commensurate to today’s demands. Conceptual aids derived from old, industrial-age analogies...are not up to the mental gymnastics demanded by 21 st –century missions. Because operational environments evince increasingly dynamic complexity

  14. The Lunar Reconnaissance Orbiter, a Planning Tool for Missions to the Moon

    Science.gov (United States)

    Keller, J. W.; Petro, N. E.

    2017-12-01

    The Lunar Reconnaissance Orbiter Mission was conceived as a one year exploration mission to pave the way for a return to the lunar surface, both robotically and by humans. After a year in orbit LRO transitioned to a science mission but has operated in a duel role of science and exploration ever since. Over the years LRO has compiled a wealth of data that can and is being used for planning future missions to the Moon by NASA, other national agencies and by private enterprises. While collecting this unique and unprecedented data set, LRO's science investigations have uncovered new questions that motivate new missions and targets. Examples include: when did volcanism on the Moon cease, motivating a sample return mission from an irregular mare patch such as Ina-D; or, is there significant water ice sequestered near the poles outside of the permanently shaded regions? In this presentation we will review the data products, tools and maps that are available for mission planning, discuss how the operating LRO mission can further enhance future missions, and suggest new targets motivated by LRO's scientific investigations.

  15. Country programming mission. Namibia

    International Nuclear Information System (INIS)

    1991-01-01

    In response to a request from the Government of Namibia conveyed in a letter dated 29 November 1990 IAEA provided a multi-disciplinary Programming Mission which visited Namibia from 15 - 19 July 1991. The terms of reference of the Mission were: 1. To assess the possibilities and benefits of nuclear energy applications in Namibia's development; 2. To advise on the infrastructure required for nuclear energy projects; 3. To assist in the formulation of project proposals which could be submitted for Agency assistance. This report is based on the findings of the Mission and falls into 3 sections with 8 appendices. The first section is a country profile providing background information, the second section deals with sectorial needs and institutional review of the sectors of agriculture including animal production, life sciences (nuclear medicine and radiotherapy) and radiation protection. The third section includes possible future technical co-operation activities

  16. Analogs and the BHP Risk Reduction Strategy for Future Spaceflight Missions

    Science.gov (United States)

    Whitmire, Sandra; Leveton, Lauren

    2011-01-01

    In preparation for future exploration missions to distant destinations (e.g., Moon, Near Earth Objects (NEO), and Mars), the NASA Human Research Program s (HRP) Behavioral Health and Performance Element (BHP) conducts and supports research to address four human health risks: Risk of Behavioral Conditions; Risk of Psychiatric Conditions; Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team; and Risk of Performance Errors due to Sleep Loss, Fatigue, Circadian Desynchronization, and Work Overload (HRP Science Management Plan, 2008). BHP Research, in collaboration with internal and external research investigators, as well as subject matter experts within NASA operations including flight surgeons, astronauts, and mission planners and others within the Mission Operations Directorate (MOD), identifies knowledge and technology gaps within each Risk. BHP Research subsequently manages and conducts research tasks to address and close the gaps, either through risk assessment and quantification, or the development of countermeasures and monitoring technologies. The resulting deliverables, in many instances, also support current Medical Operations and/or Mission Operations for the International Space Station (ISS).

  17. Special Operations Doctrine: Is it Needed

    Science.gov (United States)

    2016-12-07

    AOB), eight Special Forces Operational Detachment-Alphas (SFODAs)2, and Civil Affairs and Psychological Operations teams working alongside two bat...Operations doctrine. Sixty years after the Army’s first special operations units were formed, the time had arrived for writing how Army special operations...Affairs, Psychological Operations, and Special Forces, the effort inte- grated the roles and missions of the Ranger Regiment, Special Mission Units, and

  18. Recommendation of a More Effective Alternative to the NASA Launch Services Program Mission Integration Reporting System (MIRS) and Implementation of Updates to the Mission Plan

    Science.gov (United States)

    Dunn, Michael R.

    2014-01-01

    Over the course of my internship in the Flight Projects Office of NASA's Launch Services Program (LSP), I worked on two major projects, both of which dealt with updating current systems to make them more accurate and to allow them to operate more efficiently. The first project dealt with the Mission Integration Reporting System (MIRS), a web-accessible database application used to manage and provide mission status reporting for the LSP portfolio of awarded missions. MIRS had not gone through any major updates since its implementation in 2005, and it was my job to formulate a recommendation for the improvement of the system. The second project I worked on dealt with the Mission Plan, a document that contains an overview of the general life cycle that is followed by every LSP mission. My job on this project was to update the information currently in the mission plan and to add certain features in order to increase the accuracy and thoroughness of the document. The outcomes of these projects have implications in the orderly and efficient operation of the Flight Projects Office, and the process of Mission Management in the Launch Services Program as a whole.

  19. The mission execution crew assistant : Improving human-machine team resilience for long duration missions

    NARCIS (Netherlands)

    Neerincx, M.A.; Lindenberg, J.; Smets, N.J.J.M.; Bos, A.; Breebaart, L.; Grant, T.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2008-01-01

    Manned long-duration missions to the Moon and Mars set high operational, human factors and technical demands for a distributed support system, which enhances human-machine teams' capabilities to cope autonomously with unexpected, complex and potentially hazardous situations. Based on a situated

  20. Multiplatform Mission Planning and Operations Simulation Environment for Adaptive Remote Sensors

    Science.gov (United States)

    Smith, G.; Ball, C.; O'Brien, A.; Johnson, J. T.

    2017-12-01

    We report on the design and development of mission simulator libraries to support the emerging field of adaptive remote sensors. We will outline the current state of the art in adaptive sensing, provide analysis of how the current approach to performing observing system simulation experiments (OSSEs) must be changed to enable adaptive sensors for remote sensing, and present an architecture to enable their inclusion in future OSSEs.The growing potential of sensors capable of real-time adaptation of their operational parameters calls for a new class of mission planning and simulation tools. Existing simulation tools used in OSSEs assume a fixed set of sensor parameters in terms of observation geometry, frequencies used, resolution, or observation time, which allows simplifications to be made in the simulation and allows sensor observation errors to be characterized a priori. Adaptive sensors may vary these parameters depending on the details of the scene observed, so that sensor performance is not simple to model without conducting OSSE simulations that include sensor adaptation in response to varying observational environment. Adaptive sensors are of significance to resource-constrained, small satellite platforms because they enable the management of power and data volumes while providing methods for multiple sensors to collaborate.The new class of OSSEs required to utilize adaptive sensors located on multiple platforms must answer the question: If the physical act of sensing has a cost, how does the system determine if the science value of a measurement is worth the cost and how should that cost be shared among the collaborating sensors?Here we propose to answer this question using an architecture structured around three modules: ADAPT, MANAGE and COLLABORATE. The ADAPT module is a set of routines to facilitate modeling of adaptive sensors, the MANAGE module will implement a set of routines to facilitate simulations of sensor resource management when power and data

  1. Fusion energy for space missions in the 21st Century

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed and the energy source for their accomplishment investigated. The mission included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous mission with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing the High Energy Space Mission were investigated. Potential energy options which could provide the propulsion and electric power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified

  2. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    Science.gov (United States)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  3. Study of Power Options for Jupiter and Outer Planet Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  4. Darfur: the various Missions of a complex conflict.

    Directory of Open Access Journals (Sweden)

    Wellington Pereira Carneiro

    2013-07-01

    Full Text Available The conflict in Darfur represents the worst humanitarian crisis of the new millennium and took place at an extremely introspective time in the UN when all aspects of the peace missions were reviewed and reassessed. Mainly upon release of the Brahimi report published in the year 2000, when the failures in Rwanda, Somalia and Bosnia were conducive to the reassessment of the exaggerated optimism from end of the cold war. However, the complexity of the Darfur conflict demanded again a massive deployment of resources and troops in complex and daring peace missions. This article explores the gradual return to complex operations, first by missions led by regional actors, like AMIS (African Union and EUFOR (European Union. In this context the complex and multifunctional missions led by the UN return, incorporating the protection of populations at risk, human rights and governance, among other components. That way the hybrid UNAMID and MINURCAT appear with ambitious mandates. The UNAMID has to operate along with the display of the International Criminal Court jurisdiction over an ongoing conflict which will entail new developments and challenges.

  5. A framework for employing femtosatellites in planetary science missions, including a proposed mission concept for Titan

    Science.gov (United States)

    Perez, Tracie Renea Conn

    Over the past 15 years, there has been a growing interest in femtosatellites, a class of tiny satellites having mass less than 100 grams. Research groups from Peru, Spain, England, Canada, and the United States have proposed femtosat designs and novel mission concepts for them. In fact, Peru made history in 2013 by releasing the first - and still only - femtosat tracked from LEO. However, femtosatellite applications in interplanetary missions have yet to be explored in detail. An interesting operations concept would be for a space probe to release numerous femtosatellites into orbit around a planetary object of interest, thereby augmenting the overall data collection capability of the mission. A planetary probe releasing hundreds of femtosats could complete an in-situ, simultaneous 3D mapping of a physical property of interest, achieving scientific investigations not possible for one probe operating alone. To study the technical challenges associated with such a mission, a conceptual mission design is proposed where femtosats are deployed from a host satellite orbiting Titan. The conceptual mission objective is presented: to study Titan's dynamic atmosphere. Then, the design challenges are addressed in turn. First, any science payload measurements that the femtosats provide are only useful if their corresponding locations can be determined. Specifically, what's required is a method of position determination for femtosatellites operating beyond Medium Earth Orbit and therefore beyond the help of GPS. A technique is presented which applies Kalman filter techniques to Doppler shift measurements, allowing for orbit determination of the femtosats. Several case studies are presented demonstrating the usefulness of this approach. Second, due to the inherit power and computational limitations in a femtosatellite design, establishing a radio link between each chipsat and the mothersat will be difficult. To provide a mathematical gain, a particular form of forward error

  6. The Ricor K508 cryocooler operational experience on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-01-29

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.

  7. The Ricor K508 cryocooler operational experience on Mars

    International Nuclear Information System (INIS)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael

    2014-01-01

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data

  8. Mission Assurance Modeling and Simulation: A Cyber Security Roadmap

    Science.gov (United States)

    Gendron, Gerald; Roberts, David; Poole, Donold; Aquino, Anna

    2012-01-01

    This paper proposes a cyber security modeling and simulation roadmap to enhance mission assurance governance and establish risk reduction processes within constrained budgets. The term mission assurance stems from risk management work by Carnegie Mellon's Software Engineering Institute in the late 19905. By 2010, the Defense Information Systems Agency revised its cyber strategy and established the Program Executive Officer-Mission Assurance. This highlights a shift from simply protecting data to balancing risk and begins a necessary dialogue to establish a cyber security roadmap. The Military Operations Research Society has recommended a cyber community of practice, recognizing there are too few professionals having both cyber and analytic experience. The authors characterize the limited body of knowledge in this symbiotic relationship. This paper identifies operational and research requirements for mission assurance M&S supporting defense and homeland security. M&S techniques are needed for enterprise oversight of cyber investments, test and evaluation, policy, training, and analysis.

  9. Distributed Operations for the Cassini/Huygens Mission

    Science.gov (United States)

    Lock, P.; Sarrel, M.

    1998-01-01

    The cassini project employs a concept known as distributed operations which allows independent instrument operations from diverse locations, provides full empowerment of all participants and maximizes use of limited resources.

  10. CEO Sites Mission Management System (SMMS)

    Science.gov (United States)

    Trenchard, Mike

    2014-01-01

    Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade its science site database management tool, which at the time was integrated with the Automated Mission Planning System (AMPS) originally developed for Earth Observations mission planning in the 1980s. Although AMPS had been adapted and was reliably used by CEO for International Space Station (ISS) payload operations support, the database structure was dated, and the compiler required for modifications would not be supported in the Windows 7 64-bit operating system scheduled for implementation the following year. The Sites Mission Management System (SMMS) is now the tool used by CEO to manage a heritage Structured Query Language (SQL) database of more than 2,000 records for Earth science sites. SMMS is a carefully designed and crafted in-house software package with complete and detailed help files available for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in April 2012. The database spans the period from the earliest systematic requests for astronaut photography during the shuttle era to current ISS mission support of the CEO science payload. Besides logging basic image information (site names, locations, broad application categories, and mission requests), the upgraded database management tool now tracks dates of creation, modification, and activation; imagery acquired in response to requests; the status and location of ancillary site information; and affiliations with studies, their sponsors, and collaborators. SMMS was designed to facilitate overall mission planning in terms of site selection and activation and provide the necessary site parameters for the Satellite Tool Kit (STK) Integrated Message Production List Editor (SIMPLE), which is used by CEO operations to perform daily ISS mission planning. The CEO team

  11. Issues of geologically-focused situational awareness in robotic planetary missions: Lessons from an analogue mission at Mistastin Lake impact structure, Labrador, Canada

    Science.gov (United States)

    Antonenko, I.; Osinski, G. R.; Battler, M.; Beauchamp, M.; Cupelli, L.; Chanou, A.; Francis, R.; Mader, M. M.; Marion, C.; McCullough, E.; Pickersgill, A. E.; Preston, L. J.; Shankar, B.; Unrau, T.; Veillette, D.

    2013-07-01

    Remote robotic data provides different information than that obtained from immersion in the field. This significantly affects the geological situational awareness experienced by members of a mission control science team. In order to optimize science return from planetary robotic missions, these limitations must be understood and their effects mitigated to fully leverage the field experience of scientists at mission control.Results from a 13-day analogue deployment at the Mistastin Lake impact structure in Labrador, Canada suggest that scale, relief, geological detail, and time are intertwined issues that impact the mission control science team's effectiveness in interpreting the geology of an area. These issues are evaluated and several mitigation options are suggested. Scale was found to be difficult to interpret without the reference of known objects, even when numerical scale data were available. For this reason, embedding intuitive scale-indicating features into image data is recommended. Since relief is not conveyed in 2D images, both 3D data and observations from multiple angles are required. Furthermore, the 3D data must be observed in animation or as anaglyphs, since without such assistance much of the relief information in 3D data is not communicated. Geological detail may also be missed due to the time required to collect, analyze, and request data.We also suggest that these issues can be addressed, in part, by an improved understanding of the operational time costs and benefits of scientific data collection. Robotic activities operate on inherently slow time-scales. This fact needs to be embraced and accommodated. Instead of focusing too quickly on the details of a target of interest, thereby potentially minimizing science return, time should be allocated at first to more broad data collection at that target, including preliminary surveys, multiple observations from various vantage points, and progressively smaller scale of focus. This operational model

  12. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASAs Space Launch System

    Science.gov (United States)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM

  13. Sleep and cognitive function of crewmembers and mission controllers working 24-h shifts during a simulated 105-day spaceflight mission

    Science.gov (United States)

    Barger, Laura K.; Wright, Kenneth P.; Burke, Tina M.; Chinoy, Evan D.; Ronda, Joseph M.; Lockley, Steven W.; Czeisler, Charles A.

    2014-01-01

    The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers' average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ˜86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended

  14. 21st century early mission concepts for Mars delivery and earth return

    Science.gov (United States)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  15. Resumes of the Bird mission

    Science.gov (United States)

    Lorenz, E.; Borwald, W.; Briess, K.; Kayal, H.; Schneller, M.; Wuensten, Herbert

    2004-11-01

    The DLR micro satellite BIRD (Bi-spectral Infra Red Detection) was piggy- back launched with the Indian Polar Satellite Launch Vehicle PSLV-C3 into a 570 km circular sun-synchronous orbit on 22 October 2001. The BIRD mission, fully funded by the DLR, answers topical technological and scientific questions related to the operation of a compact infra- red push-broom sensor system on board of a micro satellite and demonstrates new spacecraft bus technologies. BIRD mission control is conducted by DLR / GSOC in Oberpfaffenhofen. Commanding, data reception and data processing is performed via ground stations in Weilheim and Neustrelitz (Germany). The BIRD mission is a demonstrator for small satellite projects dedicated to the hazard detection and monitoring. In the year 2003 BIRD has been used in the ESA project FUEGOSAT to demonstrate the utilisation of innovative space technologies for fire risk management.

  16. ESASky: a new Astronomy Multi-Mission Interface

    Science.gov (United States)

    Baines, D.; Merin, B.; Salgado, J.; Giordano, F.; Sarmiento, M.; Lopez Marti, B.; Racero, E.; Gutierrez, R.; De Teodoro, P.; Nieto, S.

    2016-06-01

    ESA is working on a science-driven discovery portal for all its astronomy missions at ESAC called ESASky. The first public release of this service will be shown, featuring interfaces for sky exploration and for single and multiple targets. It requires no operational knowledge of any of the missions involved. A first public beta release took place in October 2015 and gives users world-wide simplified access to high-level science-ready data products from ESA Astronomy missions plus a number of ESA-produced source catalogues. XMM-Newton data, metadata and products were some of the first to be accessible through ESASky. In the next decade, ESASky aims to include not only ESA missions but also access to data from other space and ground-based astronomy missions and observatories. From a technical point of view, ESASky is a web application that offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to connect all-sky mosaics to individual observations; direct access to the underlying mission-specific science archives and catalogues. The poster will be accompanied by a demo booth at the conference.

  17. Operating the EOSDIS at the land processes DAAC managing expectations, requirements, and performance across agencies, missions, instruments, systems, and user communities

    Science.gov (United States)

    Kalvelage, T.A.; ,

    2002-01-01

    NASA developed the Earth Observing System (EOS) during the 1990'S. At the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS EROS Data Center, the EOS Data and Information System (EOSDIS) is required to support heritage missions as well as Landsat 7, Terra, and Aqua. The original system concept of the early 1990'S changed as each community had its say - first the managers, then engineers, scientists, developers, operators, and then finally the general public. The systems at the LP DAAC - particularly the largest single system, the EOSDIS Core System (ECS) - are changing as experience accumulates, technology changes, and each user group gains influence. The LP DAAC has adapted as contingencies were planned for, requirements and therefore plans were modified, and expectations changed faster than requirements could hope to be satisfied. Although not responsible for Quality Assurance of the science data, the LP DAAC works to ensure the data are accessible and useable by influencing systems, capabilities, and data formats where possible, and providing tools and user support as necessary. While supporting multiple missions and instruments, the LP DAAC also works with and learns from multiple management and oversight groups as they review mission requirements, system capabilities, and the overall operation of the LP DAAC. Stakeholders, including the Land Science community, are consulted regularly to ensure that the LP DAAC remains cognizant and responsive to the evolving needs of the user community. Today, the systems do not look or function as originally planned, but they do work, and they allow customers to search and order of an impressive amount of diverse data.

  18. Sensor assignment to mission in AI-TECD

    Science.gov (United States)

    Ganger, Robert; de Mel, Geeth; Pham, Tien; Rudnicki, Ronald; Schreiber, Yonatan

    2016-05-01

    Sensor-mission assignment involves the allocation of sensors and other information-providing resources to missions in order to cover the information needs of the individual tasks within each mission. The importance of efficient and effective means to find appropriate resources for tasks is exacerbated in the coalition context where the operational environment is dynamic and a multitude of critically important tasks need to achieve their collective goals to meet the objectives of the coalition. The Sensor Assignment to Mission (SAM) framework—a research product of the International Technology Alliance in Network and Information Sciences (NIS-ITA) program—provided the first knowledge intensive resource selection approach for the sensor network domain so that contextual information could be used to effectively select resources for tasks in coalition environments. Recently, CUBRC, Inc. was tasked with operationalizing the SAM framework through the use of the I2WD Common Core Ontologies for the Communications-Electronics Research, Development and Engineering Center (CERDEC) sponsored Actionable Intelligence Technology Enabled Capabilities Demonstration (AI-TECD). The demonstration event took place at Fort Dix, New Jersey during July 2015, and this paper discusses the integration and the successful demonstration of the SAM framework within the AI-TECD, lessons learned, and its potential impact in future operations.

  19. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  20. STS-105 Crew Interview: Scott Horowitz

    Science.gov (United States)

    2001-01-01

    STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.

  1. Human missions to Mars: issues and challenges

    Science.gov (United States)

    Race, M.; Kminek, G.

    Recent announcements of the planned future human exploration of Mars by both European and US space agencies have raised a host of questions and challenges that must be addressed in advance of long-duration human missions. While detailed mission planning is a long way off, numerous issues can already be identified in the broad context of planetary protection. In this session, a panel of experts will provide brief overviews of the types of challenges ahead, such as the protection of the martian environment; the integration of human and robotic mission elements and operations; precursor scientific information necessary to plan human missions; development and use of nuclear and other technologies for the protection and support of astronauts during the mission; protection of Earth upon return; and societal and ethical questions about human exploration. The session has been designed to encourage and incorporate audience participation in the discussion about the issues and challenges ahead.

  2. The LISA Pathfinder Mission

    International Nuclear Information System (INIS)

    Armano, M; Audley, H; Born, M; Danzmann, K; Diepholz, I; Auger, G; Binetruy, P; Baird, J; Bortoluzzi, D; Brandt, N; Fitzsimons, E; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Dolesi, R; Ferroni, V; Cruise, M; Dunbar, N; Ferraioli, L

    2015-01-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter.The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper (paper)

  3. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  4. Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture

    Science.gov (United States)

    Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López

    2017-11-01

    With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.

  5. Association of market, mission, operational, and financial factors with hospitals' level of cash and security investments.

    Science.gov (United States)

    McCue, M J; Thompson, J M; Dodd-McCue, D

    Using a resource dependency framework and financial theory, this study assessed the market, mission, operational, and financial factors associated with the level of cash and security investments in hospitals. We ranked hospitals in the study sample based on their cash and security investments as a percentage of total assets: hospitals in the high cash/security investment category were in the top 25th percentile of all hospitals; those in the low cash/security investment group were in the bottom 25th percentile. Findings indicate that high cash/security investment hospitals are under either public or private nonprofit ownership and have greater market share. They also serve more complex cases, offer more technology services, generate greater profits, incur a more stable patient revenue base, and maintain less debt.

  6. Mission Concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    Science.gov (United States)

    Benford, Dominic J.; Amato, Michael J.; Mather, John C.; Moseley, S. Harvey, Jr.

    2004-01-01

    We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature ( or approx. 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of the Spitzer Space Telescope (previously SIRTF) or the Herschel Space Observatory. Additionally, it would have an angular resolution 12 times finer than that of Spitzer and three times finer than Herschel. This sensitivity and angular resolution are necessary to perform imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology (optical design, materials, and packaging), detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays. SAFIR can take advantage of much of the technology under development for JWST, but with much less stringent requirements on optical accuracy.

  7. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    Science.gov (United States)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  8. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  9. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  10. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  11. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    Science.gov (United States)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  12. Multi-Mission Power Analysis Tool (MMPAT) Version 3

    Science.gov (United States)

    Wood, Eric G.; Chang, George W.; Chen, Fannie C.

    2012-01-01

    The Multi-Mission Power Analysis Tool (MMPAT) simulates a spacecraft power subsystem including the power source (solar array and/or radioisotope thermoelectric generator), bus-voltage control, secondary battery (lithium-ion or nickel-hydrogen), thermostatic heaters, and power-consuming equipment. It handles multiple mission types including heliocentric orbiters, planetary orbiters, and surface operations. Being parametrically driven along with its user-programmable features can reduce or even eliminate any need for software modifications when configuring it for a particular spacecraft. It provides multiple levels of fidelity, thereby fulfilling the vast majority of a project s power simulation needs throughout the lifecycle. It can operate in a stand-alone mode with a graphical user interface, in batch mode, or as a library linked with other tools. This software can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. Added flexibility is provided through user-designed state models and table-driven parameters. MMPAT is designed to be used by a variety of users, such as power subsystem engineers for sizing power subsystem components; mission planners for adjusting mission scenarios using power profiles generated by the model; system engineers for performing system- level trade studies using the results of the model during the early design phases of a spacecraft; and operations personnel for high-fidelity modeling of the essential power aspect of the planning picture.

  13. STS-95 Post Flight Presentation

    Science.gov (United States)

    1998-01-01

    The STS-95 flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video mission over-view of their space flight. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the "whiteroom" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. The primary objectives, which include the conducting of a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the HST Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads are discussed in both the video and still photo presentation.

  14. BEARS: a multi-mission anomaly response system

    Science.gov (United States)

    Roberts, Bryce A.

    2009-05-01

    The Mission Operations Group at UC Berkeley's Space Sciences Laboratory operates a highly automated ground station and presently a fleet of seven satellites, each with its own associated command and control console. However, the requirement for prompt anomaly detection and resolution is shared commonly between the ground segment and all spacecraft. The efficient, low-cost operation and "lights-out" staffing of the Mission Operations Group requires that controllers and engineers be notified of spacecraft and ground system problems around the clock. The Berkeley Emergency Anomaly and Response System (BEARS) is an in-house developed web- and paging-based software system that meets this need. BEARS was developed as a replacement for an existing emergency reporting software system that was too closedsource, platform-specific, expensive, and antiquated to expand or maintain. To avoid these limitations, the new system design leverages cross-platform, open-source software products such as MySQL, PHP, and Qt. Anomaly notifications and responses make use of the two-way paging capabilities of modern smart phones.

  15. From Prime to Extended Mission: Evolution of the MER Tactical Uplink Process

    Science.gov (United States)

    Mishkin, Andrew H.; Laubach, Sharon

    2006-01-01

    To support a 90-day surface mission for two robotic rovers, the Mars Exploration Rover mission designed and implemented an intensive tactical operations process, enabling daily commanding of each rover. Using a combination of new processes, custom software tools, a Mars-time staffing schedule, and seven-day-a-week operations, the MER team was able to compress the traditional weeks-long command-turnaround for a deep space robotic mission to about 18 hours. However, the pace of this process was never intended to be continued indefinitely. Even before the end of the three-month prime mission, MER operations began evolving towards greater sustainability. A combination of continued software tool development, increasing team experience, and availability of reusable sequences first reduced the mean process duration to approximately 11 hours. The number of workshifts required to perform the process dropped, and the team returned to a modified 'Earth-time' schedule. Additional process and tool adaptation eventually provided the option of planning multiple Martian days of activity within a single workshift, making 5-day-a-week operations possible. The vast majority of the science team returned to their home institutions, continuing to participate fully in the tactical operations process remotely. MER has continued to operate for over two Earth-years as many of its key personnel have moved on to other projects, the operations team and budget have shrunk, and the rovers have begun to exhibit symptoms of aging.

  16. Next Generation Simulation Framework for Robotic and Human Space Missions

    Science.gov (United States)

    Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

    2012-01-01

    The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

  17. A Safe Cooperative Framework for Atmospheric Science Missions with Multiple Heterogeneous UAS using Piecewise Bezier Curves

    Science.gov (United States)

    Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.; hide

    2016-01-01

    Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.

  18. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    Energy Technology Data Exchange (ETDEWEB)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  19. Single-shell tank retrieval program mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  20. Single-shell tank retrieval program mission analysis report

    International Nuclear Information System (INIS)

    Stokes, W.J.

    1998-01-01

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997)

  1. Mission,System Design and Payload Aspects of ESA's Mercury Cornerstone Mission

    Science.gov (United States)

    Ferri, A.; Anselmi, A.; Scoon, G. E. N.

    1999-09-01

    Aim of this paper is to summarise the 1-year study performed by Alenia Aerospazio in close co-operation with the European Space Agency, on the Mercury Cornerstone System and Technology Study, as a part of Horizon 2000+ Scientific Programme plan. ESA's definition study towards a mission to Mercury conceives the launch of a S/C in 2009, on a two to three years journey, plus a one-year scientific observations and data take. The mission's primary objectives are manyfolded, aiming at approaching basic scientific questions on the origin and evolution of Mercury: identify and map the chemical and mineral composition of the surface, measure the topography of surface landforms, define the gravitational field, investigate particles and magnetic fields. The mission is also intended to resolve the librational state of the planet, in a system experiment requiring high accuracy inertial attitude (arcsecond level) and orbit (m-level) reconstitution. This experiment will allow to infer whether Mercury has a molten core, which is crucial to theories of magnetic field generation, and theories of the thermal history of terrestrial type planets. A hard-lander is planned to perform in-situ surface geochemical analysis. The mission is expected to provide scientists with a global portrait of Mercury returning about 1200 Gbits of scientific data, during a 1-year observation phase. The crucial aspects of the spacecraft design have to do with the high-temperature and high-radiation environment. Thermal control is achieved by a combination of orbit selection, attitude law, and special design provisions for IR shielding and HT insulation. Ad-hoc design provisions are envisaged for power and antenna mechanisms. Though the conceptual objectives of this industrial study focused on system architectures and enabling technologies for a "Cornerstone" class mission, in this paper emphasis is given on the scientific payload aspects.

  2. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  3. Influence of a new generation of operations support systems on current spacecraft operations philosophy: The users feedback

    Science.gov (United States)

    Darroy, Jean Michel

    1993-01-01

    Current trends in the spacecraft mission operations area (spacecraft & mission complexity, project duration, required flexibility are requiring a breakthrough for what concerns philosophy, organization, and support tools. A major evolution is related to space operations 'informationalization', i.e adding to existing operations support & data processing systems a new generation of tools based on advanced information technologies (object-oriented programming, artificial intelligence, data bases, hypertext) that automate, at least partially, operations tasks that used be performed manually (mission & project planning/scheduling, operations procedures elaboration & execution, data analysis & failure diagnosis). All the major facets of this 'informationalization' are addressed at MATRA MARCONI SPACE, operational applications were fielded and generic products are becoming available. These various applications have generated a significant feedback from the users (at ESA, CNES, ARIANESPACE, MATRA MARCONI SPACE), which is now allowing us to precisely measure how the deployment of this new generation of tools, that we called OPSWARE, can 'reengineer' current spacecraft mission operations philosophy, how it can make space operations faster, better, and cheaper. This paper can be considered as an update of the keynote address 'Knowledge-Based Systems for Spacecraft Control' presented during the first 'Ground Data Systems for Spacecraft Control' conference in Darmstadt, June 1990, with a special emphasis on these last two years users feedback.

  4. Predictive Modeling for NASA Entry, Descent and Landing Missions

    Science.gov (United States)

    Wright, Michael

    2016-01-01

    Entry, Descent and Landing (EDL) Modeling and Simulation (MS) is an enabling capability for complex NASA entry missions such as MSL and Orion. MS is used in every mission phase to define mission concepts, select appropriate architectures, design EDL systems, quantify margin and risk, ensure correct system operation, and analyze data returned from the entry. In an environment where it is impossible to fully test EDL concepts on the ground prior to use, accurate MS capability is required to extrapolate ground test results to expected flight performance.

  5. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    , managerial and regulatory activities (i.e. weather forecasting, deforestation, flooding, etc.) essential to the safe exploitation of global resources, conservation of sustainable ecosystems, and the compliance with numerous international treaties and conventions, depend absolutely on continuity of satellite missions to maximise socio-economic and environmental benefits. This presentation will highlight some of the multidisciplinary Earth science achievements and operational applications using ESA satellite missions. It will also address some of the key scientific challenges and need for operational monitoring services in the years to come. It capitalizes on the knowledge and awareness outlined in "The Changing Earth - New scientific challenges for ESÁs Living Planet Programme" issued in 2006 together with updated views and approved plans expressed during ESÁs Earth Sciences Advisory Committee (ESAC) meetings and agreed at the recent User Consultation meeting in January 2009.

  6. Evaluation of the electric utility missions; Evaluation des missions de service public de l'electricite

    Energy Technology Data Exchange (ETDEWEB)

    Syrota, J

    2000-07-01

    The French law from February 10, 2000, about the modernization and development of the electric utility, has created new missions of public utility and foresees some compensation mechanisms for not handicapping the power operators in charge of these missions and for not creating competition distortions to their detriment on the European market. The author explains, first, the financial and economical stakes linked with these new missions. Then, he evokes the evolution of the energy context that has taken place between the 2. World war and the enforcement of the February 10, 2000 law, and he analyzes the systems foreseen for the power generation and distribution. For each public utility charge, the existing dispositions and those introduced by the law are analyzed and compared to the equivalent systems existing in other countries. Then, charge evaluation criteria and sharing rules and proposed. (J.S.)

  7. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  8. Optimization of Second Fault Detection Thresholds to Maximize Mission POS

    Science.gov (United States)

    Anzalone, Evan

    2018-01-01

    In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of

  9. The European Union Rule of Law Mission in Kosovo

    DEFF Research Database (Denmark)

    Zupancic, Rok; Pejič, Nina; Grilj, Blaž

    2017-01-01

    different types and levels of effectiveness, considering both means applied and ends achieved. In so doing, the article contributes to the general literature on operational conflict prevention and on the specific case of Kosovo. The empirical analysis is based on fieldwork and semi-structured interviews......This article appraises effectiveness in operational conflict prevention. By focusing on the European Union Rule of Law Mission (EULEX) in Kosovo, it assesses the most extensive civilian Common Security and Defence Policy mission so far. Contrary to prevailing assessments, it posits that EULEX......, despite its challenges and deficiencies, presents positive contributions to operational conflict prevention, and peace-building. This is uncovered through structured focused analysis according to effectiveness criteria and success indicators that allow for identification of and distinction between...

  10. Dawn Mission Update

    Science.gov (United States)

    Sykes, M. V.; Russell, C. T.; Coradini, A.; Christensen, U.; de Sanctis, M. C.; Feldman, W. C.; Jaumann, R.; Keller, U.; Konopliv, A. S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mottola, S.; Neukum, G.; Pieters, C. M.; Prettyman, T. H.; Raymond, C. A.; Smith, D. E.; Williams, B. G.; Wise, J.; Zuber, M. T.

    2004-11-01

    Dawn, the ninth Discovery mission, will be the first spacecraft to rendezvous with two solar system bodies, the main belt asteroids Vesta and Ceres. This is made possible by utilizing ion propulsion to reach its targets and to maneuver into (and depart) orbits about these bodies. Vesta and Ceres are two terrestrial protoplanets that have survived since the earliest epoch of the solar system and will provide important insights into planet building processes and their evolution under very different circumstances, with and without water. Dawn carries a double framing camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron detector. At Vesta our studies will include the volcanic emplacement of basalts, its differentiation, the possible exposure of its interior near the south pole. At Ceres our studies will include the role of water in its evolution, hydration processes on its surface, and the possible existence of a subsurface ocean. The mission has passed its critical design review and is scheduled to be launched in June 2006 with arrival at Vesta in 2011 and Ceres in 2015. Operation strategies will be presented. Groundbased observations of Vesta, Ceres, and Vesta family members over broad wavelengths, periods and phases will play an important role in detailed mission planning.

  11. PRIMA Platform capability for satellite missions in LEO and MEO (SAR, Optical, GNSS, TLC, etc.)

    Science.gov (United States)

    Logue, T.; L'Abbate, M.

    2016-12-01

    PRIMA (Piattaforma Riconfigurabile Italiana Multi Applicativa) is a multi-mission 3-axis stabilized Platform developed by Thales Alenia Space Italia under ASI contract.PRIMA is designed to operate for a wide variety of applications from LEO, MEO up to GEO and for different classes of satellites Platform Family. It has an extensive heritage in flight heritage (LEO and MEO Satellites already fully operational) in which it has successfully demonstrated the flexibility of use, low management costs and the ability to adapt to changing operational conditions.The flexibility and modularity of PRIMA provides unique capability to satisfy different Payload design and mission requirements, thanks to the utilization of recurrent adaptable modules (Service Module-SVM, Propulsion Module-PPM, Payload Module-PLM) to obtain mission dependent configuration. PRIMA product line development is continuously progressing, and is based on state of art technology, modular architecture and an Integrated Avionics. The aim is to maintain and extent multi-mission capabilities to operate in different environments (LEO to GEO) with different payloads (SAR, Optical, GNSS, TLC, etc.). The design is compatible with a wide range of European and US equipment suppliers, thus maximising cooperation opportunity. Evolution activities are mainly focused on the following areas: Structure: to enable Spacecraft configurations for multiple launch; Thermal Control: to guarantee thermal limits for new missions, more demanding in terms of environment and payload; Electrical: to cope with higher power demand (e.g. electrical propulsion, wide range of payloads, etc.) considering orbital environment (e.g. lighting condition); Avionics : AOCS solutions optimized on mission (LEO observation driven by agility and pointing, agility not a driver for GEO). Use of sensors and actuators tailored for specific mission and related environments. Optimised Propulsion control. Data Handling, SW and FDIR mission customization

  12. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  13. STS-114 Crew Interview: Stephen Robinson

    Science.gov (United States)

    2003-01-01

    Stephen Robinson, Mission Specialist 2 (MS2), of the STS-114 space mission is seen during a prelaunch interview. He discusses his duties as flight engineer, Extravehicular Activity 2 (EVA 2) spacewalker, and medical officer. Robinson answers questions about his interests in spaceflight and the specific goals of the mission. He identifies this mission as the International Space Station Resupply Mission because supplies and experiments are brought to the International Space Station and Expedition 6 crew of Commander Kenneth Bowersox, and Flight Engineers Donald Pettit and Nikolai Budarin are returning to Earth. Lastly, he talks about the docking of the Space Shuttle Atlantis with the International Space Station. He looks forward to this experience in space.

  14. The Ionospheric Connection Explorer Mission: Mission Goals and Design

    Science.gov (United States)

    Immel, T. J.; England, S. L.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Korpela, E. J.; Taylor, E. R.; Craig, W. W.; Harris, S. E.; Bester, M.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gérard, J.-C.; Harlander, J. M.; Huba, J. D.; Hubert, B.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. R.; Raftery, C.; Rochus, P.; Siegmund, O. H. W.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.; Rider, K. A.; Sirk, M. M.

    2018-02-01

    The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON's development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

  15. Storyboard for the Medical System Concept of Operations for Mars Exploration Missions

    Science.gov (United States)

    Antonsen, Eric; Hailey, Melinda; Reyes, David; Rubin, David; Urbina, Michelle

    2017-01-01

    This storyboard conceptualizes one scenario of an integrated medical system during a Mars exploration mission. All content is for illustrative purposes only and neither defines nor implies system design requirement.

  16. Water Recovery System Design to Accommodate Dormant Periods for Manned Missions

    Science.gov (United States)

    Tabb, David; Carter, Layne

    2015-01-01

    Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.

  17. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission

    Directory of Open Access Journals (Sweden)

    Chen-Joe Fong

    2009-01-01

    Full Text Available The FORMOSAT-3/COSMIC spacecraft constellation consisting of six LEO satellites is the world's first operational GPS Radio Occultation (RO mission. The mission is jointly developed by Taiwan¡¦s National Space Organization (NSPO and the United States¡¦UCAR in collaboration with NSF, USAF, NOAA, NASA, NASA's Jet Propulsion Laboratory, and the US Naval Research Laboratory. The FORMOSAT-3/COSMIC satellites were successfully launched from Vandenberg US AFB in California at 0140 UTC 15 April 2006 into the same orbit plane of the designated 516 km altitude. The mission goal is to deploy the six satellites into six orbit planes at 800 km altitude with a 30-degree separation for evenly distributed global coverage. All six FORMOSAT-3/COSMIC satellites are currently maintaining a satisfactory good state-of-health. Five out of six satellites have reached their final mission orbit of 800 km as of November 2007. The data as received by FORMOSAT-3/COSMIC satellites constellation have been processed in near real time into 2500 good ionospheric profiles and 1800 good atmospheric profiles per day. These have outnumbered the worldwide radiosondes (~900 mostly over land launched from the ground per day. The processed atmospheric RO data have been assimilated into the Numerical Weather Prediction (NWP models for real-time weather prediction and typhoon/hurricane forecasting by many major weather centers in the world. This paper describes the FORMOSAT-3/COSMIC satellite constellation system performance and the mission results that span the period from April 2006 to October 2007; and reviews the prospect of a future follow-on mission.

  18. The CanMars Analogue Mission: Lessons Learned for Mars Sample Return

    Science.gov (United States)

    Osinski, G. R.; Beaty, D.; Battler, M.; Caudill, C.; Francis, R.; Haltigin, T.; Hipkin, V.; Pilles, E.

    2018-04-01

    We present an overview and lessons learned for Mars Sample Return from CanMars — an analogue mission that simulated a Mars 2020-like cache mission. Data from 39 sols of operations conducted in the Utah desert in 2015 and 2016 are presented.

  19. Decision Making Training in the Mission Operations Directorate

    Science.gov (United States)

    O'Keefe, William S.

    2013-01-01

    At JSC, we train our new flight controllers on a set of team skills that we call Space Flight Resource Management (SFRM). SFRM is akin to Crew Resource Management for the airlines and trains flight controllers to work as an effective team to reduce errors and improve safety. We have developed this training over the years with the assistance of Ames Research Center, Wyle Labs and University of Central Florida. One of the skills we teach is decision making/ problem solving (DM/PS). We teach DM/PS first in several classroom sessions, reinforce it in several part task training environments, and finally practice it in full-mission, full-team simulations. What I am proposing to talk about is this training flow: its content and how we teach it.

  20. STUDY REGARDING DIFFERENT TYPES OF AUDITOR’S MISSIONS

    Directory of Open Access Journals (Sweden)

    Daniel Botez

    2013-12-01

    Full Text Available After the involvement of the audit profession in several financial scandals, the international body of the profession, International Federation of Accountants – IFAC, has developed and published a conceptual framework and reviewed most of the reference standards in auditing to provide references regarding the responsibility of the professionals and the extent of their missions. Thus was established the use of a general term for professionals, the “practitioner”, in the context of specific missions using the “auditor”, “practitioner” or “accountant”. On the other hand, have been revised professional standards establish insurance missions and non-insurance operations, with their specific missions that do not provide insurance, including the recoding. The use of these references by audit professionals constitutes one of the “keys” to their success.

  1. A computer graphics pilot project - Spacecraft mission support with an interactive graphics workstation

    Science.gov (United States)

    Hagedorn, John; Ehrner, Marie-Jacqueline; Reese, Jodi; Chang, Kan; Tseng, Irene

    1986-01-01

    The NASA Computer Graphics Pilot Project was undertaken to enhance the quality control, productivity and efficiency of mission support operations at the Goddard Operations Support Computing Facility. The Project evolved into a set of demonstration programs for graphics intensive simulated control room operations, particularly in connection with the complex space missions that began in the 1980s. Complex mission mean more data. Graphic displays are a means to reduce the probabilities of operator errors. Workstations were selected with 1024 x 768 pixel color displays controlled by a custom VLSI chip coupled to an MC68010 chip running UNIX within a shell that permits operations through the medium of mouse-accessed pulldown window menus. The distributed workstations run off a host NAS 8040 computer. Applications of the system for tracking spacecraft orbits and monitoring Shuttle payload handling illustrate the system capabilities, noting the built-in capabilities of shifting the point of view and rotating and zooming in on three-dimensional views of spacecraft.

  2. Lessons Learned for Planning and Estimating Operations Support Requirements

    Science.gov (United States)

    Newhouse, Marilyn

    2011-01-01

    Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead projects to focus on hardware development schedules and costs, de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations, and any LCC growth can directly impact the programs ability to fund new missions. The D&NF Program Office at Marshall Space Flight Center recently studied cost overruns for 7 D&NF missions related to phase C/D development of operational capabilities and phase E mission operations. The goal was to identify the underlying causes for the overruns and develop practical mitigations to assist the D&NF projects in identifying potential operations risks and controlling the associated impacts to operations development and execution costs. The study found that the drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This presentation summarizes the study and the results, providing a set of lessons NASA can use to improve early estimation and validation of operations costs.

  3. Experience of the United States in Hosting and Supporting IAEA Peer Review Missions

    International Nuclear Information System (INIS)

    Mamish, N.

    2016-01-01

    The International Atomic Energy Agency (IAEA) provides a number of peer review services to its Member States. The United States has strongly supported these peer reviews since their inception. In 2010, the United States hosted an Integrated Regulatory Review Service (IRRS) mission, with a follow-up mission completed in 2014. The missions provided valuable recommendations and suggestions, identified a number of best practices, and acknowledged the prompt and effective actions taken by the NRC following the Fukushima Daiichi accident. Through hosting an International Physical Protection Advisory Service (IPPAS) mission in 2013, the United States benefited both from the insights provided by the team, as well as the U.S. Government’s gap analyses and preparatory efforts in advance of the mission. The United States strongly supports the IAEA’s Operational Safety Review Team (OSART) program, inviting a peer review mission to a U.S. nuclear power plant every 3 years. Although OSART is an operational, not regulatory, peer review, the NRC provides funding for the mission and gives inspection credit to operators that host them. The United States also contributes significant technical expertise to IAEA peer review missions hosted by other Member States. With the IRRS and IPPAS reaching their 10th and 20th anniversaries respectively, these programs have improved as they have matured. However, it remains critical for Member States to continue to support these programs, and provide feedback to the IAEA Secretariat on their effectiveness and areas where IAEA might enhance them. Doing so will ensure peer reviews remain an effective tool for strengthening nuclear safety and security worldwide. (author)

  4. NASA Laboratory Analysis for Manned Exploration Missions

    Science.gov (United States)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  5. Cryosphere campaigns in support of ESA's Earth Explorers Missions

    Science.gov (United States)

    Casal, Tânia; Davidson, Malcolm; Plank, Gernot; Floberghagen, Rune; Parrinello, Tommaso; Mecklenburg, Susanne; Drusch, Matthias; Fernandez, Diego

    2014-05-01

    demonstrated for the first time the potential to retrieve sea ice thickness from SMOS data. However, the product retrieval algorithm had never been validated using independent airborne measurements in the Arctic region. Therefore, the SMOSice airborne campaign will take place over sea-ice south east of Svalbard during the last week of March 2014. CryoVEx 2014 is a large collaborative effort to help ensure the accuracy of ESA's ice mission CryoSat-2. ESA has supported extensive CryoSat-2 pre-launch validation campaigns by providing simultaneous overflights of surface experiments performed by CryoSat Validation Retrieval Team (CVRT) members in Greenland, Canada, Svalbard and the Arctic Ocean in 2003, 2005, 2006, 2007 and 2008. Since CryoSat-2's launch, the field campaigns have been significantly augmented including a close collaboration with NASA's Operation Icebridge since 2011 and continued in 2014. Collectively, these activities are known as CryoVEx (CryoSat-2 Validation Experiment). The aim of this large-scale CryoVEx2014 ground and airborne campaign is to record sea-ice thickness and conditions of the ice along the CryoSat-2 ground track. A range of sensors installed in different aircraft included simple cameras to get a visual record of the sea ice, laser scanners to clearly map the height of the ice, an ice-thickness sensor (EM-Bird), ESA's radar altimeter (ASIRAS) and NASA's snow and Ku-band radars, which mimic CryoSat's measurements but at a higher resolution. Results from previous campaigns have shown the ability to detect centimetre differences between sea-ice and thin ice/water which in turn allowed for an accurate estimation of actual sea ice thickness. For the different activities a rich variety of datasets has been recorded, are archived and users can access campaign data through the EOPI web portal [http://eopi.esa.int].

  6. Evaluation of the electric utility missions

    International Nuclear Information System (INIS)

    Syrota, J.

    2000-01-01

    The French law from February 10, 2000, about the modernization and development of the electric utility, has created new missions of public utility and foresees some compensation mechanisms for not handicapping the power operators in charge of these missions and for not creating competition distortions to their detriment on the European market. The author explains, first, the financial and economical stakes linked with these new missions. Then, he evokes the evolution of the energy context that has taken place between the 2. World war and the enforcement of the February 10, 2000 law, and he analyzes the systems foreseen for the power generation and distribution. For each public utility charge, the existing dispositions and those introduced by the law are analyzed and compared to the equivalent systems existing in other countries. Then, charge evaluation criteria and sharing rules and proposed. (J.S.)

  7. An efficient phased mission reliability analysis for autonomous vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Remenyte-Prescott, R., E-mail: R.Remenyte-Prescott@nottingham.ac.u [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Andrews, J.D. [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Chung, P.W.H. [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  8. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Remenyte-Prescott, R.; Andrews, J.D.; Chung, P.W.H.

    2010-01-01

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  9. Cryosat: Esa's Ice Explorer Mission. Two YEARs in Operations: Status and Achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Cullen, R.; Fornari, M.; Davidson, M.; Laxon, S.

    2012-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Experimental evidence have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. In April 2012, the first winter [2010 -2011] sea-ice variation map of the Arctic was released to the scientific community. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  10. Telescience - Concepts And Contributions To The Extreme Ultraviolet Explorer Mission

    Science.gov (United States)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-10-01

    A goal of the telescience concept is to allow scientists to use remotely located instruments as they would in their laboratory. Another goal is to increase reliability and scientific return of these instruments. In this paper we discuss the role of transparent software tools in development, integration, and postlaunch environments to achieve hands on access to the instrument. The use of transparent tools helps to reduce the parallel development of capability and to assure that valuable pre-launch experience is not lost in the operations phase. We also discuss the use of simulation as a rapid prototyping technique. Rapid prototyping provides a cost-effective means of using an iterative approach to instrument design. By allowing inexpensive produc-tion of testbeds, scientists can quickly tune the instrument to produce the desired scientific data. Using portions of the Extreme Ultraviolet Explorer (EUVE) system, we examine some of the results of preliminary tests in the use of simulation and tran-sparent tools. Additionally, we discuss our efforts to upgrade our software "EUVE electronics" simulator to emulate a full instrument, and give the pros and cons of the simulation facilities we have developed.

  11. The assessment of GRASP as a prospective ESA gamma ray astronomy mission

    International Nuclear Information System (INIS)

    Bignami, G.; Villa, G.; Dean, A.J.

    1987-01-01

    The GRASP mission - Gamma-Ray Astronomy with Spectroscopy and Positioning was originally proposed as a prospective European astronomy mission by the representatives of a wide European community. The project was selected by ESA for a detailed assessment study which was duly completed in December 1986. The telescope has been designed as a high quality spectral imager (E/ΔE∼1000, Δθ∼6') which operates over a wide spectral range (15 keV to >∼100 MeV) with a (3σ) sensitivity of typically 10 m Crab or better over the entire operational range within an observation period of 10 5 s. Two principal mission scenarios were considered

  12. Spacelab operations planning. [ground handling, launch, flight and experiments

    Science.gov (United States)

    Lee, T. J.

    1976-01-01

    The paper reviews NASA planning in the fields of ground, launch and flight operations and experiment integration to effectively operate Spacelab. Payload mission planning is discussed taking consideration of orbital analysis and the mission of a multiuser payload which may be either single or multidiscipline. Payload analytical integration - as active process of analyses to ensure that the experiment payload is compatible to the mission objectives and profile ground and flight operations and that the resource demands upon Spacelab can be satisfied - is considered. Software integration is touched upon and the major integration levels in ground operational processing of Spacelab and its experimental payloads are examined. Flight operations, encompassing the operation of the Space Transportation System and the payload, are discussed as are the initial Spacelab missions. Charts and diagrams are presented illustrating the various planning areas.

  13. MACSAT - A Near Equatorial Earth Observation Mission

    Science.gov (United States)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  14. JSpOC Mission System Application Development Environment

    Science.gov (United States)

    Luce, R.; Reele, P.; Sabol, C.; Zetocha, P.; Echeverry, J.; Kim, R.; Golf, B.

    2012-09-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is the program of record tasked with replacing the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities by the end of FY2015 as well as providing additional Space Situational Awareness (SSA) and Command and Control (C2) capabilities post-FY2015. To meet the legacy replacement goal, the JMS program is maturing a government Service Oriented Architecture (SOA) infrastructure that supports the integration of mission applications while acquiring mature industry and government mission applications. Future capabilities required by the JSpOC after 2015 will require development of new applications and procedures as well as the exploitation of new SSA data sources. To support the post FY2015 efforts, the JMS program is partnering with the Air Force Research Laboratory (AFRL) to build a JMS application development environment. The purpose of this environment is to: 1) empower the research & development community, through access to relevant tools and data, to accelerate technology development, 2) allow the JMS program to communicate user capability priorities and requirements to the developer community, 3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and 4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. The application development environment will consist of both unclassified and classified environments that can be accessed over common networks (including the Internet) to provide software developers, scientists, and engineers everything they need (e.g., building block JMS services, modeling and simulation tools, relevant test scenarios, documentation, data sources, user priorities/requirements, and SOA integration tools) to develop and test mission applications. The developed applications will be exercised in these

  15. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  16. New Mission Old Spacecraft: EPOXI's Approach to the Comet Hartley-2

    Science.gov (United States)

    Rieber, Richard R.; LaBorde, Gregory R.

    2012-01-01

    NASA's Deep Impact mission ended successfully in 2005 after an impact and close flyby of the comet 9P/Tempel-1. The Flyby spacecraft was placed in hibernation and was left to orbit the sun. In 2007, engineers at the Jet Propulsion Laboratory brought the spacecraft out of hibernation and successfully performed two additional missions. These missions were EPOCh, Extra-solar Planetary Observation and Characterization, a photometric investigation of transiting exo-planets, and DIXI, Deep Impact eXtended Investigation, which maneuvered the Flyby spacecraft towards a close encounter with the comet 103P/Hartley- 2 on 4 November 2010. The names of these two scientific investigations combine to form the overarching mission's name, EPOXI. The encounter with 103P/Hartley-2 was vastly different from the prime mission's encounter with 9P/Tempel-1. The geometry of encounter was nearly 180 ? different and 103P/Hartley-2 was approximately one-quarter the size of 9P/Tempel-1. Mission operations for the comet flyby were broken into three phases: a) Approach, b) Encounter, and c) Departure. This paper will focus on the approach phase of the comet encounter. It will discuss the strategies used to decrease both cost and risk while maximizing science return and some of the challenges experienced during operations.

  17. Space nuclear tug mission applications

    International Nuclear Information System (INIS)

    Hodge, J.R.; Rauen, L.A.

    1996-01-01

    An initial assessment indicates that the NEBA-1 and NEBA-3 bimodal reactor designs can be integrated into a reusable tug which is capable of supporting many missions including GSO delivery, GSO retrieval, lunar trajectory deliveries, interplanetary deliveries, and a variety of satellite servicing. The tug close-quote s nuclear thermal propulsion provides timely transport and payload delivery, with GSO deliveries on the order of 3 endash 7 days. In general, the tug may provide a number of potential benefits to users. The tug may, for example, extend the life of an existing on-orbit spacecraft, boost spacecraft which were not delivered to their operational orbit, offer increased payload capability, or possibly allow payloads to launch on smaller less expensive launch vehicles. Reusing the tug for 5 or 10 missions requires total reactor burn times of 50 and 100 hours, respectively. Shielding, boom structure, and radiator requirements were identified as key factors in the configuration layout. Economic feasibility is still under evaluation, but preliminary estimates indicate that average flight costs may range from $32 M to $34 M for a 10-mission vehicle and from $39 M to $42 M for a 5-mission vehicle. copyright 1996 American Institute of Physics

  18. The EUVE Mission at UCB: Squeezing More From Less

    Science.gov (United States)

    Stroozas, B. A.; Cullison, J. L.; McDonald, K. E.; Nevitt, R.; Malina, R. F.

    2000-05-01

    With 8 years on orbit, and over three years in an outsourced mode at U.C. Berkeley (UCB), NASA's Extreme Ultraviolet Explorer (EUVE) continues to be a highly mature and productive scientific mission. The EUVE satellite is extremely stable and exhibits little degradation in its original scientific capabilities, and science data return continues to be at the >99% level. The Project's very small, dedicated, innovative, and relatively cheap ( \\$1 million/year) support team at UCB continues to validate the success of NASA's outsourcing "experiment" while providing a very high science-per-dollar return on NASA's investment with no significant additional risk to the flight systems. The EUVE mission still has much more to offer in terms of important and exciting scientific discoveries as well as mission operations innovations. To highlight this belief the EUVE team at UCB continues to find creative ways to do more with less -- to squeeze the maximum out of available funds -- in NASA's "cheaper, better, faster" environment. This paper provides an overview of the EUVE mission's past, current, and potential future efforts toward automating and integrating its multi-functional data processing systems in proposal management, observation planning, mission operations and engineering, and the processing, archival, and delivery of raw telemetry and science data products. The paper will also discuss the creative allocation of the Project's few remaining personnel resources who support both core mission functions and new innovations, while at the same time minimizing overall risk and stretching the available budget. This work is funded through NASA/UCB Cooperative Agreement NCC5-138.

  19. Linear Temporal Logic-based Mission Planning

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-06-01

    Full Text Available In this paper, we describe the Linear Temporal Logic-based reactive motion planning. We address the problem of motion planning for mobile robots, wherein the goal specification of planning is given in complex environments. The desired task specification may consist of complex behaviors of the robot, including specifications for environment constraints, need of task optimality, obstacle avoidance, rescue specifications, surveillance specifications, safety specifications, etc. We use Linear Temporal Logic to give a representation for such complex task specification and constraints. The specifications are used by a verification engine to judge the feasibility and suitability of plans. The planner gives a motion strategy as output. Finally a controller is used to generate the desired trajectory to achieve such a goal. The approach is tested using simulations on the LTLMoP mission planning tool, operating over the Robot Operating System. Simulation results generated using high level planners and low level controllers work simultaneously for mission planning and controlling the physical behavior of the robot.

  20. CryoSat: ESA's ice explorer mission. One year in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B. H.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Davidson, M.; Cullen, R.; Wingham, D.

    2012-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  1. Reducing Development and Operations Costs using NASA's "GMSEC" Systems Architecture

    Science.gov (United States)

    Smith, Dan; Bristow, John; Crouse, Patrick

    2007-01-01

    This viewgraph presentation reviews the role of Goddard Mission Services Evolution Center (GMSEC) in reducing development and operation costs in handling the massive data from NASA missions. The goals of GMSEC systems architecture development are to (1) Simplify integration and development, (2)Facilitate technology infusion over time, (3) Support evolving operational concepts, and (4) All for mix of heritage, COTS and new components. First 3 missions (i.e., Tropical Rainforest Measuring Mission (TRMM), Small Explorer (SMEX) missions - SWAS, TRACE, SAMPEX, and ST5 3-Satellite Constellation System) each selected a different telemetry and command system. These results show that GMSEC's message-bus component-based framework architecture is well proven and provides significant benefits over traditional flight and ground data system designs. The missions benefit through increased set of product options, enhanced automation, lower cost and new mission-enabling operations concept options .

  2. STS-87 Mission Specialist Winston E. Scott suits up

    Science.gov (United States)

    1997-01-01

    STS-87 Mission Specialist Winston Scott dons his launch and entry suit with the assistance of a suit technician in the Operations and Checkout Building. This is Scotts second space flight. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. He also performed a spacewalk on STS-72.

  3. The complete integration of MissionLab and CARMEN

    Directory of Open Access Journals (Sweden)

    FJ Serrano Rodriguez

    2017-05-01

    Full Text Available Nowadays, a major challenge in the development of advanced robotic systems is the creation of complex missions for groups of robots, with two main restrictions: complex programming activities not needed and the mission configuration time should be short (e.g. Urban Search And Rescue. With these ideas in mind, we analysed several robotic development environments, such as Robot Operating System (ROS, Open Robot Control Software (OROCOS, MissionLab, Carnegie Mellon Robot Navigation Toolkit (CARMEN and Player/Stage, which are helpful when creating autonomous robots. MissionLab provides high-level features (automatic mission creation, code generation and a graphical mission editor that are unavailable in other significant robotic development environments. It has however some weaknesses regarding its map-based capabilities. Creating, managing and taking advantage of maps for localization and navigation tasks are among CARMEN’s most significant features. This fact makes the integration of MissionLab with CARMEN both possible and interesting. This article describes the resulting robotic development environment, which makes it possible to work with several robots, and makes use of their map-based navigation capabilities. It will be shown that the proposed platform solves the proposed goal, that is, it simplifies the programmer’s job when developing control software for robot teams, and it further facilitates multi-robot deployment task in mission-critical situations.

  4. SunRISE Mission Concept Step 2 Study Status

    Science.gov (United States)

    Alibay, F.; Kasper, J. C.; Lazio, J.; Neilsen, T. L.

    2017-12-01

    We present an update on the Sun Radio Interferometer Space Experiment (SunRISE) mission concept, which was selected for a Step 2 study as part of the Small Explorer (SMEX) Mission of Opportunity (MoO) call. SunRISE is space-based sparse array, composed of six 6U CubeSats, designed to localize the radio emission associated with coronal mass ejections (CMEs) from the Sun. Radio emission from CMEs is a direct tracer of the particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Furthermore, CME radio emission is quite strong such that only a relatively small number of antennas is required, and a small mission would make a fundamental advancement. Indeed, the state-of-the-art for tracking CME radio emission is defined by single antennas (Wind/WAVES, Stereo/SWAVES) in which the tracking is accomplished by assuming a frequency-to-density mapping. This type of Heliophysics mission would be inherently cost prohibitive in a traditional spacecraft paradigm. However, the use of CubeSats, accompanied by the miniaturization of subsystem components, enables the development of this concept at lower cost than ever before. We present the most recent updates on this mission concept, starting from the concept's performance as compared to the required science and driving technical requirements. We then focus on the SunRISE mission concept of operations, which consists of six 6U CubeSats placed in a GEO graveyard orbit for 6 months to achieve the aforementioned science goals. The spacecraft fly in a passive formation, which allows them to form an interferometer while minimizing the impact on operations complexity. We also present details of the engineering design and the key trades being performed as part of the Step 2 concept study.

  5. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Science.gov (United States)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  6. Distributed Operations Planning

    Science.gov (United States)

    Fox, Jason; Norris, Jeffrey; Powell, Mark; Rabe, Kenneth; Shams, Khawaja

    2007-01-01

    Maestro software provides a secure and distributed mission planning system for long-term missions in general, and the Mars Exploration Rover Mission (MER) specifically. Maestro, the successor to the Science Activity Planner, has a heavy emphasis on portability and distributed operations, and requires no data replication or expensive hardware, instead relying on a set of services functioning on JPL institutional servers. Maestro works on most current computers with network connections, including laptops. When browsing down-link data from a spacecraft, Maestro functions similarly to being on a Web browser. After authenticating the user, it connects to a database server to query an index of data products. It then contacts a Web server to download and display the actual data products. The software also includes collaboration support based upon a highly reliable messaging system. Modifications made to targets in one instance are quickly and securely transmitted to other instances of Maestro. The back end that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  7. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  8. Aircraft operational reliability—A model-based approach and a case study

    International Nuclear Information System (INIS)

    Tiassou, Kossi; Kanoun, Karama; Kaâniche, Mohamed; Seguin, Christel; Papadopoulos, Chris

    2013-01-01

    The success of an aircraft mission is subject to the fulfillment of some operational requirements before and during each flight. As these requirements depend essentially on the aircraft system components and the mission profile, the effects of failures can be very severe if they are not anticipated. Hence, one should be able to assess the aircraft operational reliability with regard to its missions in order to be able to cope with failures. We address aircraft operational reliability modeling to support maintenance planning during the mission achievement. We develop a modeling approach, based on a meta-model that is used as a basis: (i) to structure the information needed to assess aircraft operational reliability and (ii) to build a stochastic model that can be tuned dynamically, in order to take into account the aircraft system operational state, a mission profile and the maintenance facilities available at the flight stop locations involved in the mission. The aim is to enable operational reliability assessment online. A case study, based on an aircraft subsystem, is considered for illustration using the Stochastic Activity Networks (SANs) formalism

  9. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  10. Mission-profile-based stress analysis of bond-wires in SiC power modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2016-01-01

    This paper proposes a novel mission-profile-based reliability analysis approach for stress on bond wires in Silicon Carbide (SiC) MOSFET power modules using statistics and thermo-mechanical FEM analysis. In the proposed approach, both the operational and environmental thermal stresses are taken...... into account. The approach uses a two-dimension statistical analysis of the operating conditions in a real one-year mission profile sampled at time frames 5 minutes long. For every statistical bin corresponding to a given operating condition, the junction temperature evolution is estimated by a thermal network...... and the mechanical stress on bond wires is consequently extracted by finite-element simulations. In the final step, the considered mission profile is translated in a stress sequence to be used for Rainflow counting calculation and lifetime estimation....

  11. Fast mission reliability prediction for Unmanned Aerial Vehicles

    International Nuclear Information System (INIS)

    Andrews, J.D.; Poole, J.; Chen, W.H.

    2013-01-01

    There is currently a significant interest in the use of autonomous vehicles in many industrial sectors. One such example is the ever increasing use of Unmanned Aerial Vehicles (UAVs), particularly in military operations. This enables dangerous missions to be accomplished without risk to a pilot. UAVs also have potential civil applications which would require their certification and the demonstration that they are able to respond safety to any potential circumstances. The aircraft would therefore need to be capable of responding safely to the occurrence of component failures, the emergence of threats such as other aircraft in the neighboring airspace, and changing weather conditions. The likelihood that an aircraft will successfully complete any mission can be predicted using phased mission analysis techniques. The predicted mission unreliability can be updated in response to changing circumstances. In the event that the likelihood of mission failure becomes too high then changes have to be made to the mission plan. If these calculations could be carried out fast enough then the quantification procedure could be used to establish an acceptable response to any new conditions. With a view to using the methodology in the context described above, this paper investigates ways in which phased mission analysis can be improved to reduce the calculation time. The methodology improves the processing capability for a UAV phased mission analysis by taking into account the specific characteristics of the fault tree structures which provide the causes of phase failure for a UAV mission. It also carries out as much of the quantification as possible in advance of the mission plan being formulated

  12. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  13. Navigating the MESSENGER Spacecraft through End of Mission

    Science.gov (United States)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  14. The James Webb Space Telescope Mission

    Science.gov (United States)

    Sonneborn, George

    2010-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under development by NASA for launch in 2014. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe, peer through dusty clouds to see AGN environments and stars forming planetary systems at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at wavelength of 2 microns (0.1 arcsec resolution). The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with propellant for 10 years of science operations. The instruments will provide broad- and narrow-band imaging, coronography, and multi-object and integral-field spectroscopy (spectral resolution of 100 to 3,000) across the 1 - 28 micron wavelength range. Science and mission operations will be conducted from the Space Telescope Science Institute in Baltimore, Maryland.

  15. Autonomous Systems and Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Systems and Operations (ASO) project will develop an understanding of the impacts of increasing communication time delays on mission operations,...

  16. Endeavour blasts-off on ambitious mission

    Science.gov (United States)

    1993-12-01

    "I am delighted to see the servicing mission off to such a beautiful start", said Roger Bonnet, ESA's Director of Science, who watched the launch from the Kennedy Space Center, Florida. "We are anxious to see the Hubble Space Telescope restored to its full capability so astronomers world- wide can take advantage of this unique observatory". During the eight and a half minute climb to orbit ESA astronaut Claude Nicollier helped the shuttle commander and pilot monitor the cockpit displays. Nicollier is the first international astronaut to serve as a shuttle's flight engineer. He will perform the same task at the end of the mission for reentry and landing. The European Space Agency has a major role in the telescope servicing mission. In addition to the presence of its astronaut, the agency is supplying new, improved power generating solar arrays and helped NASA test the Costar system of corrective optics. Nicollier will be responsible for operation of the shuttle's robot arm during the 11-day mission. He will use the arm to pluck the telescope from orbit and move astronauts and equipment around the payload bay during the mission's five spacewalks. The astronauts are spending their first hours in space setting up equipment in the orbiter's crew cabin. They will fire the shuttle's manoeuvring jets before going to bed to begin the two-day pursuit of the orbiting telescope. There will be three orbital manoeuvres tomorrow to further close the gap. The shuttle is due to reach the telescope Saturday and repair work will begin Sunday. Checkouts of the four space suits and the robot arm will occupy the crew tomorrow. Nicollier will use the arm to inspect the equipment in the cargo bay and later practise the manoeuvre he will use on Saturday to capture the telescope. Hubble Space Telescope science operations will be suspended at midnight tonight EST (06h00 a.m. CET tomorrow) and the HST aperture door closed at 07h30 a.m. EST (01h30 p.m. CET).

  17. Product Operations Status Summary Metrics

    Science.gov (United States)

    Takagi, Atsuya; Toole, Nicholas

    2010-01-01

    The Product Operations Status Summary Metrics (POSSUM) computer program provides a readable view into the state of the Phoenix Operations Product Generation Subsystem (OPGS) data pipeline. POSSUM provides a user interface that can search the data store, collect product metadata, and display the results in an easily-readable layout. It was designed with flexibility in mind for support in future missions. Flexibility over various data store hierarchies is provided through the disk-searching facilities of Marsviewer. This is a proven program that has been in operational use since the first day of the Phoenix mission.

  18. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    Science.gov (United States)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  19. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Science.gov (United States)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  20. A Mars orbiter/rover/penetrator mission for the 1984 opportunity

    Science.gov (United States)

    Hastrup, R.; Driver, J.; Nagorski, R.

    1977-01-01

    A point design mission is described that utilizes the 1984 opportunity to extend the exploration of Mars after the successful Viking operations and provide the additional scientific information needed before conducting a sample return mission. Two identical multi-element spacecraft are employed, each consisting of (1) an orbiter, (2) a Viking-derived landing system that delivers a heavily instrumented, semi-autonomous rover, and (3) three penetrators deployed from the approach trajectory. Selection of the orbit profiles requires consideration of several important factors in order to satisfy all of the mission goals.

  1. Fusion energy for space missions in the 21st century: Executive summary

    International Nuclear Information System (INIS)

    Schulze, N.R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority

  2. Fusion energy for space missions in the 21st century: Executive summary

    Science.gov (United States)

    Schulze, Norman R.

    1991-08-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  3. Formation Control for the MAXIM Mission

    Science.gov (United States)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the space-based scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today s technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. MAXIM formation flying requirements are on the order of microns, while Stellar Imager mission requirements are on the order of nanometers. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; and (2) the development of linearized equations of relative motion for a formation operating in an n-body gravitational field. Linearized equations of motion provide the ground work for linear formation control designs.

  4. Red Dragon drill missions to Mars

    Science.gov (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris

    2017-12-01

    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  5. Robotic planetary mission benefits from nuclear electric propulsion

    International Nuclear Information System (INIS)

    Kelley, J.H.; Yen, C.L.

    1992-01-01

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto.) Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, a Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis

  6. STS-95 Mission Specialist Duque suits up during TCDT

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Duque and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  7. Synthesis report about the after-mine mission; Rapport de synthese sur la mission apres-mine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The French ministry of economy finances and industry has assigned the mission of evaluating the after-mine management system to the general inspection of finances and the general council of mines. The after-mine management system encompasses all procedures of coal, iron and potash mines closing down, land reclamation and environmental remedial action and site rehabilitation. This document makes first a status of the problems generated by the stoppage of mining activities: technical aspects, costs, institutional, organisational and juridical aspects, conservation of competences, international benchmarking elements and good practices implemented in foreign countries. Then, in a second part, this report presents the recommendations of the after-mine mission about the mastery of after-mine costs in agreement with the respect of the technical and social goals, with the development of the after-mine institutional system with the scheduled disappearance of Charbonnages de France and Mines de Potasses d'Alsace companies, and with the conservation of competences in the framework of the post-mine operational structure proposed by the mission. (J.S.)

  8. Synthesis report about the after-mine mission; Rapport de synthese sur la mission apres-mine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The French ministry of economy finances and industry has assigned the mission of evaluating the after-mine management system to the general inspection of finances and the general council of mines. The after-mine management system encompasses all procedures of coal, iron and potash mines closing down, land reclamation and environmental remedial action and site rehabilitation. This document makes first a status of the problems generated by the stoppage of mining activities: technical aspects, costs, institutional, organisational and juridical aspects, conservation of competences, international benchmarking elements and good practices implemented in foreign countries. Then, in a second part, this report presents the recommendations of the after-mine mission about the mastery of after-mine costs in agreement with the respect of the technical and social goals, with the development of the after-mine institutional system with the scheduled disappearance of Charbonnages de France and Mines de Potasses d'Alsace companies, and with the conservation of competences in the framework of the post-mine operational structure proposed by the mission. (J.S.)

  9. 'Bimodal' NTR and LANTR propulsion for human missions to Mars/Phobos

    International Nuclear Information System (INIS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ∼850-1000 s) and attractive engine thrust-to-weight ratio (∼3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, 'power-rich' stage enabling propulsive Mars capture and reuse capability. A family of modular 'bimodal' NTR (BNTR) vehicles are described which utilize a common 'core' stage powered by three 66.7 kN (∼15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, 'zero-boiloff' liquid hydrogen (LH 2 ) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the 'all LH 2 ' BNTR stage. The use of ''LOX-augmented' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase 'bulk' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH 2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ∼80 t 'Magnum' heavy lift launch vehicles (HLLVs)

  10. Engineering a Successful Mission: Lessons from the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Everett, David F.

    2011-01-01

    Schedule pressure is common in the commercial world, where late delivery of a product means delayed income and loss of profit. 12 Research spacecraft developed by NASA, on the other hand, tend to be driven by the high cost of launch vehicles and the public scrutiny of failure-- the primary driver is ensuring proper operation in space for a system that cannot be retrieved for repair. The Lunar Reconnaissance Orbiter (LRO) development faced both schedule pressure and high visibility. The team had to balance the strong push to meet a launch date against the need to ensure that this first mission for Exploration succeeded. This paper will provide an overview of the mission from concept through its first year of operation and explore some of the challenges the systems engineering team faced taking a mission from preliminary design review to pre-ship review in 3 years.

  11. JPSS-1 VIIRS Pre-Launch Response Versus Scan Angle Testing and Performance

    Science.gov (United States)

    Moyer, David; McIntire, Jeff; Oudrari, Hassan; McCarthy, James; Xiong, Xiaoxiong; De Luccia, Frank

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instruments on-board both the Suomi National Polar-orbiting Partnership (S-NPP) and the first Joint Polar Satellite System (JPSS-1) spacecraft, with launch dates of October 2011 and December 2016 respectively, are cross-track scanners with an angular swath of +/-56.06 deg. A four-mirror Rotating Telescope Assembly (RTA) is used for scanning combined with a Half Angle Mirror (HAM) that directs light exiting from the RTA into the aft-optics. It has 14 Reflective Solar Bands (RSBs), seven Thermal Emissive Bands (TEBs) and a panchromatic Day Night Band (DNB). There are three internal calibration targets, the Solar Diffuser, the BlackBody and the Space View, that have fixed scan angles within the internal cavity of VIIRS. VIIRS has calibration requirements of 2% on RSB reflectance and as tight as 0.4% on TEB radiance that requires the sensor's gain change across the scan or Response Versus Scan angle (RVS) to be well quantified. A flow down of the top level calibration requirements put constraints on the characterization of the RVS to 0.2%-0.3% but there are no specified limitations on the magnitude of response change across scan. The RVS change across scan angle can vary significantly between bands with the RSBs having smaller changes of approximately 2% and some TEBs having approximately 10% variation. Within aband, the RVS has both detector and HAM side dependencies that vary across scan. Errors in the RVS characterization will contribute to image banding and striping artifacts if their magnitudes are above the noise level of the detectors. The RVS was characterized pre-launch for both S-NPP and JPSS-1 VIIRS and a comparison of the RVS curves between these two sensors will be discussed.

  12. NCEP Central Operations

    Science.gov (United States)

    ) NCO Organizational Chart NOAA's Weather and Climate Operational Supercomputing System is known as Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library Photo Library NCO's MISSION * Execute the NCEP operational model suite - Create climate, weather, ocean, space and

  13. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    Science.gov (United States)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  14. Understanding NEOs: The Role of Characterization Missions

    Science.gov (United States)

    Morrison, David

    2007-10-01

    NEOs are important from multiple perspectives, including science, hazard mitigation, space resources, and as targets for human missions. Much can be learned from ground-based studies, especially with radar, but the unique value of in situ investigation has been shown by missions such as NEAR-Shoemaker and Hayabusa to asteroids Eros and Itokawa, and Deep Impact and Stardust to comets. The next mission targets are likely to be NEAs in the subkilometer size range. Because these smaller objects are much more numerous, they are the objects we most need to understand from a defense perspective, and they are also the most likely targets for early human missions. However, there are unique challenges in sending spacecraft to investigate sub-km asteroids. Reconnaissance flybys are of little use, orbiting requires active control, and landing on such a low-gravity surface is perhaps better described as docking. Yet we need to operate close to the target, and probably to land, to obtain crucial information about interior structure. This paper deals primarily with small landers like the Near Earth Asteroid Trailblazer Mission (NEAT) studied at Ames Research Center. The NEAT objectives are to provide global reconnaissance (shape, mass, density, dynamical state), in situ surface characterization, and long-term precision tracking. Alternative approaches use deep-penetrating radar and electromagnetic sounding to probe interior structure. A third class of missions is ballistic impactors such as the ESA Don Quijote, which test one of the technologies for deflecting small asteroids. If the targets are selected for their accessibility, such missions could be implemented with low-cost launchers such as Pegasus, Falcon, or Minotaur. Such missions will have high science return. But from the perspective of defense, we have not yet developed a consensus strategy for the role of such characterization missions.

  15. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  16. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  17. A Lifetime Prediction Method for LEDs Considering Real Mission Profiles

    DEFF Research Database (Denmark)

    Qu, Xiaohui; Wang, Huai; Zhan, Xiaoqing

    2017-01-01

    operations due to the varying operational and environmental conditions during the entire service time (i.e., mission profiles). To overcome the challenge, this paper proposes an advanced lifetime prediction method, which takes into account the field operation mission profiles and also the statistical......The Light-Emitting Diode (LED) has become a very promising alternative lighting source with the advantages of longer lifetime and higher efficiency than traditional ones. The lifetime prediction of LEDs is important to guide the LED system designers to fulfill the design specifications...... properties of the life data available from accelerated degradation testing. The electrical and thermal characteristics of LEDs are measured by a T3Ster system, used for the electro-thermal modeling. It also identifies key variables (e.g., heat sink parameters) that can be designed to achieve a specified...

  18. Wide angle view of MOCR activity during STS-3 mission

    Science.gov (United States)

    1982-01-01

    Wide angle view of Mission Operation Control Room (MOCR) activity during Day 2 of STS-3 mission. This view shows many of th consoles, tracking map, and Eidophor-controlled data screens. Flight controllers in the foreground are (l.r.) R. John Rector and Chares L. Dumie. They are seated at the EECOM console. The 'thermodillo' contraption, used by flight controllers to indicate the Shuttle's position in relation to the sun for various tests, can be seen at right (28732); closeup view of the 'thermodillo'. The position of the armadillo's tail indicates position of the orbiter in relation to sun (28733); Mission Specialist/Astronaut Sally K. Ride, STS-3 orbit team spacecraft communicator (CAPCOM), talks to flight director during mission control center activity. Mission Specialist/Astronaut George D. Nelson, backup orbit team CAPCOM, watches the monitor at his console (28734).

  19. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  20. Landsat Data Continuity Mission

    Science.gov (United States)

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  1. Draft Strategic Laboratory Missions Plan. Volume II

    International Nuclear Information System (INIS)

    1996-03-01

    This volume described in detail the Department's research and technology development activities and their funding at the Department's laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B ampersand R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department's appropriation to a specific activity description and to specific R ampersand D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R ampersand D performers chosen to execute the Department's missions

  2. Draft Strategic Laboratory Missions Plan. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

  3. Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture

    Science.gov (United States)

    Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan

    2014-01-01

    With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the

  4. A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission

    Science.gov (United States)

    Dennehy, Cornelius J.; Carpenter, James R.

    2011-01-01

    The Guidance, Navigation, and Control (GN&C) Technical Discipline Team (TDT) sponsored Dr. J. Russell Carpenter, a Navigation and Rendezvous Subject Matter Expert (SME) from NASA's Goddard Space Flight Center (GSFC), to provide support to the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) rendezvous and docking flight test that was conducted in 2007. When that DARPA OE mission was completed, Mr. Neil Dennehy, NASA Technical Fellow for GN&C, requested Dr. Carpenter document his findings (lessons learned) and recommendations for future rendezvous missions resulting from his OE support experience. This report captures lessons specifically from anomalies that occurred during one of OE's unmated operations.

  5. Power Subsystem Approach for the Europa Mission

    Directory of Open Access Journals (Sweden)

    Ulloa-Severino Antonio

    2017-01-01

    Full Text Available NASA is planning to launch a spacecraft on a mission to the Jovian moon Europa, in order to conduct a detailed reconnaissance and investigation of its habitability. The spacecraft would orbit Jupiter and perform a detailed science investigation of Europa, utilizing a number of science instruments including an ice-penetrating radar to determine the icy shell thickness and presence of subsurface oceans. The spacecraft would be exposed to harsh radiation and extreme temperature environments. To meet mission objectives, the spacecraft power subsystem is being architected and designed to operate efficiently, and with a high degree of reliability.

  6. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  7. Quality Interaction Between Mission Assurance and Project Team Members

    Science.gov (United States)

    Kwong-Fu, Helenann H.; Wilson, Robert K.

    2006-01-01

    Mission Assurance independent assessments started during the development cycle and continued through post launch operations. In operations, Health and Safety of the Observatory is of utmost importance. Therefore, Mission Assurance must ensure requirements compliance and focus on process improvements required across the operational systems including new/modified products, tools, and procedures. The deployment of the interactive model involves three objectives: Team member Interaction, Good Root Cause Analysis Practices, and Risk Assessment to avoid reoccurrences. In applying this model, we use a metric based measurement process and was found to have the most significant effect, which points to the importance of focuses on a combination of root cause analysis and risk approaches allowing the engineers the ability to prioritize and quantify their corrective actions based on a well-defined set of root cause definitions (i.e. closure criteria for problem reports), success criteria and risk rating definitions.

  8. Mission Specialist Scott Parazynski checks his flight suit

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  9. Nickel-hydrogen battery state of charge during low rate trickle charging

    Science.gov (United States)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1996-01-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  10. Nickel-hydrogen battery state of charge during low rate trickle charging

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L. [TRW Space and Electronics Group, Redondo Beach, CA (United States)

    1996-02-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  11. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Science.gov (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  12. Habitability during long-duration space missions - Key issues associated with a mission to Mars

    Science.gov (United States)

    Stuster, Jack

    1989-01-01

    Isolation and confinement conditions similar to those of a long-duration mission to Mars are examined, focusing on 14 behavioral issues with design implications. Consideration is given to sleep, clothing, exercise, medical support, personal hygiene, food preparation, group interaction, habitat aesthetics, outside communications, recreational opportunities, privacy, waste disposal, onboard training, and the microgravity environment. The results are used to develop operational requirements and habitability design guidelines for interplanetary spacecraft.

  13. Operations planning simulation: Model study

    Science.gov (United States)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  14. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  15. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  16. Crew-Centered Operations: What HAL 9000 Should Have Been

    Science.gov (United States)

    Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.

    2005-01-01

    To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.

  17. The MSG Central Facility - A Mission Control System for Windows NT

    Science.gov (United States)

    Thompson, R.

    The MSG Central Facility, being developed by Science Systems for EUMETSAT1, represents the first of a new generation of satellite mission control systems, based on the Windows NT operating system. The system makes use of a range of new technologies to provide an integrated environment for the planning, scheduling, control and monitoring of the entire Meteosat Second Generation mission. It supports packetised TM/TC and uses Science System's Space UNiT product to provide automated operations support at both Schedule (Timeline) and Procedure levels. Flexible access to historical data is provided through an operations archive based on ORACLE Enterprise Server, hosted on a large RAID array and off-line tape jukebox. Event driven real-time data distribution is based on the CORBA standard. Operations preparation and configuration control tools form a fully integrated element of the system.

  18. Advanced Multimission Operations Systems Tech (AMMOS) Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — AMMOS provides multi-mission operations, navigation, design, and training tools for Planetary Science flight missions, and undertakes technology investments for...

  19. Preliminary design of an asteroid hopping mission

    Science.gov (United States)

    Scheppa, Michael D.

    In 2010, NASA announced that its new vision is to support private space launch operations. It is anticipated that this new direction will create the need for new and innovative ideas that push the current boundaries of space exploration and contain the promise of substantial gain, both in research and capital. The purpose of the study is to plan and estimate the feasibility of a mission to visit a number of near Earth asteroids (NEAs). The mission would take place before the end of the 21st century, and would only use commercially available technology. Throughout the mission design process, while holding astronaut safety paramount, it was the goal to maximize the return while keeping the cost to a minimum. A mission of the nature would appeal to the private space industry because it could be easily adapted and set into motion. The mission design was divided into three main parts; mission timeline, vehicle design and power sources, with emphasis on nuclear and solar electric power, were investigated. The timeline and associated trajectories were initially selected using a numerical estimation and then optimized using Satellite Tool Kit (STK) 9.s's Design Explorer Optimizer [1]. Next, the spacecraft was design using commercially available parts that would support the mission requirements. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was and instrumental piece in maximizing the number of NEAs visited. Once the spacecraft was designed, acceptable power supply options were investigated. The VASIMR VX-200 requires 200 kilowatts of power to maintain thrust. This creates the need for a substantial power supply that consists of either a nuclear reactor of massive solar arrays. STK 9.1's Design Explorer Optimizer was able to create a mission time line that allowed for the exploration of seven NEAs in under two years, while keeping the total mission DeltaV under 71 kilometers per second. Based on these initial findings, it is determined that a mission of this

  20. IAEA OSART/EXPERT follow-up review mission completes assessment of actions taken by Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    2004-01-01

    On 28 February 2004 the IAEA completed its follow-up review mission to assess the actions taken by Paks nuclear power plant (NPP) in response to the Agency's recommendations and suggestions made during the 2001 Operational Safety Review Team (OSART) mission and the 2003 Expert mission that investigated the fuel cleaning incident at the Paks NPP in Hungary. The mission was requested by the Hungarian Government to provide an independent assessment of the actions taken by Paks NPP. The IAEA team determined that the actions taken by Paks have resulted in tangible progress and concluded that all issues were either fully resolved or progressing satisfactorily. In a press conference, the team's conclusions in five areas were highlighted: management, Regulatory Oversight/Interface, operations and maintenance, including operating experience, radiation protection, emergency planning and preparedness, and transparency

  1. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  2. Trust: The Key to the Success of Mission Command in the Joint Force

    Science.gov (United States)

    2015-05-18

    Malaysia , Kuala Lumpur: International Conference on ISO9000. Schmidt, Todd A. “Design, Mission Command and the Network: Enabling Organization...trust.pdf. Steele , Dennis. “Setting the Azimuth for Joint Force 2020: Globally Integrated Operations and Mission Command.” Army Magazine, November

  3. ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch

    Science.gov (United States)

    Straume, Anne Grete; Elfving, Anders; Wernham, Denny; de Bruin, Frank; Kanitz, Thomas; Schuettemeyer, Dirk; Bismarck, Jonas von; Buscaglione, Fabio; Lecrenier, O.; McGoldrick, Phil

    2018-04-01

    ESA's Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus), was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP) and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK), and the instrument prime is Airbus Defence & Space France (ADS-F).

  4. Utilization of Virtual Server Technology in Mission Operations

    Science.gov (United States)

    Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.

    2010-01-01

    Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.

  5. Artificial intelligence for the EChO mission planning tool

    Science.gov (United States)

    Garcia-Piquer, Alvaro; Ribas, Ignasi; Colomé, Josep

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) has as its main goal the measurement of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. In order to yield measurements of sufficient Signal-to-Noise Ratio to fulfil the mission objectives, the events of each exoplanet have to be observed several times. In addition, several criteria have to be considered to carry out each observation, such as the exoplanet visibility, its event duration, and no overlapping with other tasks. It is expected that a suitable mission plan increases the efficiency of telescope operation, which will represent an important benefit in terms of scientific return and operational costs. Nevertheless, to obtain a long term mission plan becomes unaffordable for human planners due to the complexity of computing the huge number of possible combinations for finding an optimum solution. In this contribution we present a long term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the defined objectives, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of exoplanets to be observed. Specifically, the results show that, with the proposed tool, EChO uses 94% of the available time of the mission, so the amount of downtime is small, and it completes 98% of the targets.

  6. Education and Public Outreach and Engagement at NASA's Analog Missions in 2012

    Science.gov (United States)

    Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.

    2013-01-01

    Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate

  7. SCOSII: ESA's new generation of mission control systems: The user's perspective

    Science.gov (United States)

    Kaufeler, P.; Pecchioli, M.; Shurmer, I.

    1994-01-01

    In 1974 ESOC decided to develop a reusable Mission Control System infrastructure for ESA's missions operated under its responsibility. This triggered a long and successful product development line, which started with the Multi Mission Support System (MSSS) which entered in service in 1977 and is still being used today by the MARECS and ECS missions; it was followed in 1989 by a second generation of systems known as SCOS-I, which was/is used by the Hipparcos, ERS-1 and EURECA missions and will continue to support all future ESCO controlled missions until approximately 1995. In the meantime the increasing complexity of future missions together with the emergence of new hardware and software technologies have led ESOC to go for the development of a third generation of control systems, SCOSII, which will support their future missions up to at least the middle of the next decade. The objective of the paper is to present the characteristics of the SCOSII system from the perspective of the mission control team; i.e. it will concentrate on the improvements and advances in the performance, functionality and work efficiency of the system.

  8. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  9. K-Rankine systems for piloted and cargo Mars missions

    International Nuclear Information System (INIS)

    Mills, J.C.; Rovang, R.D.; Johnson, G.A.

    1992-03-01

    Studies are performed to demonstrate the attractiveness of potassium-Rankine (K-Rankine) nuclear electric propulsion (NEP) systems for both piloted and cargo Mars missions. The key results of the piloted mission study are that a full-up piloted mission can be accomplished with a trip time of less than 390 days with an attractive initial mass in low earth orbit (IMLEO) of 700 metric tons. This is achieved by coupling two advanced cermet fuel reactors (1550 K outlet temperature) to K-Rankine power-conversion systems to produce the 46 MWe needed to power advanced ion engines. This design approach offers an alternative to a more risky split-sprint mission where comparable trip times and IMLEO can be achieved with a nearer-term reactor (SP-100 at 1350 K outlet temperature) technology. The results of the cargo-mission study indicate that a lower-power K-Rankine system (5.5 MWe) operating at SP-100 reactor conditions would best perform a representative Mars cargo transport. A round-trip mission (480 days outbound; 600 day return) to Mars requires only 225 metric tons IMLEO and permit possible system reuse. 6 refs

  10. Proximity operations concept design study, task 6

    Science.gov (United States)

    Williams, A. N.

    1990-01-01

    The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.

  11. Automating the SMAP Ground Data System to Support Lights-Out Operations

    Science.gov (United States)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  12. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    Science.gov (United States)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work

  13. STS-57 crewmembers train in JSC's FB Shuttle Mission Simulator (SMS)

    Science.gov (United States)

    1993-01-01

    STS-57 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 2 (MS2) Nancy J. Sherlock, holding computer diskettes and procedural checklist, discusses equipment operation with Commander Ronald J. Grabe on the middeck of JSC's fixed based (FB) shuttle mission simulator (SMS). Payload Commander (PLC) G. David Low points to a forward locker location as MS3 Peter J.K. Wisoff switches controls on overhead panels MO42F and MO58F, and MS4 Janice E. Voss looks on. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.

  14. Reliability Assessment of Transformerless PV Inverters considering Mission Profiles

    Directory of Open Access Journals (Sweden)

    Yongheng Yang

    2015-01-01

    Full Text Available Due to the small volume and high efficiency, transformerless inverters have gained much popularity in grid-connected PV applications, where minimizing leakage current injection is mandatory. This can be achieved by either modifying the modulation schemes or adding extra power switching devices, resulting in an uneven distribution of the power losses on the switching devices. Consequently, the device thermal loading is redistributed and thus may alter the entire inverter reliability performance, especially under a long-term operation. In this consideration, this paper assesses the device reliability of three transformerless inverters under a yearly mission profile (i.e., solar irradiance and ambient temperature. The mission profile is translated to device thermal loading, which is used for lifetime prediction. Comparison results reveal the lifetime mismatches among the power switching devices operating under the same condition, which offers new thoughts for a robust design and a reliable operation of grid-connected transformerless PV inverters with high efficiency.

  15. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness.

    Science.gov (United States)

    Buchler, Norbou; Fitzhugh, Sean M; Marusich, Laura R; Ungvarsky, Diane M; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  16. Mission Applications Support at NASA: Coastal Applications of SWOT Mission Data

    Science.gov (United States)

    Srinivasan, M. M.; Peterson, C. A.; Chao, Y.

    2014-12-01

    The Surface Water and Ocean Topography (SWOT) mission is an international collaboration of two scientific communities focused on a better understanding of the world's oceans and its terrestrial surface waters. SWOT will produce the first global survey of Earth's surface water by measuring sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. These coastal, lake and river measurements will be useful for monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment. NASA and their French, Canadian and the United Kingdom space agency partners are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies, and will have the capability to make observations with unprecedented resolution compared to existing technologies and will have the capability of measuring how water bodies change over time. Along with existing altimetry datasets, simulated SWOT data sets are being planned to assess the quality and potential value of anticipated SWOT measurements to both oceanography and hydrology applications. With the surface water measurements anticipated from SWOT, a broad range of applications may inform coastal managers and marine operators of offshore conditions and currents relevant to their regions. One study proposed to the NASA ASP would highlight coastal and estuary applications potential of the future SWOT mission. This study would promote the use of remote sensing measurements to improve the understanding, monitoring and management of estuaries and deltas for a broad range of users. In addition, the AirSWOT airborne mission to demonstrate the wide swath technology of SWOT is providing preliminary data products in inland and coastal regions that may be useful for early assessment by users of the future value of SWOT. NASA's Applied Sciences Program (ASP), along with the international SWOT project teams, is supporting a program that promotes

  17. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  18. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  19. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  20. Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    Science.gov (United States)

    Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.

    2010-01-01

    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the

  1. National Space Transportation System telemetry distribution and processing, NASA-JFK Space Center/Cape Canaveral

    Science.gov (United States)

    Jenkins, George

    1986-01-01

    Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.

  2. Automation, robotics, and inflight training for manned Mars missions

    Science.gov (United States)

    Holt, Alan C.

    1986-01-01

    The automation, robotics, and inflight training requirements of manned Mars missions will be supported by similar capabilities developed for the space station program. Evolutionary space station onboard training facilities will allow the crewmembers to minimize the amount of training received on the ground by providing extensive onboard access to system and experiment malfunction procedures, maintenance procedures, repair procedures, and associated video sequences. Considerable on-the-job training will also be conducted for space station management, mobile remote manipulator operations, proximity operations with the Orbital Maneuvering Vehicle (and later the Orbit Transfer Vehicle), and telerobotics and mobile robots. A similar approach could be used for manned Mars mission training with significant additions such as high fidelity image generation and simulation systems such as holographic projection systems for Mars landing, ascent, and rendezvous training. In addition, a substantial increase in the use of automation and robotics for hazardous and tedious tasks would be expected for Mars mission. Mobile robots may be used to assist in the assembly, test and checkout of the Mars spacecraft, in the handling of nuclear components and hazardous chemical propellent transfer operations, in major spacecraft repair tasks which might be needed (repair of a micrometeroid penetration, for example), in the construction of a Mars base, and for routine maintenance of the base when unmanned.

  3. SPHEREx: Playing Nicely with Other Missions

    Science.gov (United States)

    Werner, Michael; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for a competitive Phase A study in August 2017, is an all-sky survey satellite designed to address all three science goals of NASA's Astrophysics Division. SPHEREx is a wide-field spectral imager, and it would produce the first all-sky near-infrared spectral survey, using a passively cooled telescope with a wide field-of-view for large mapping speed. The SPHEREx spectra would have resolving power R=41 at wavelengths from 0.75 to 4.2um, and R=135 from 4.2 to 5um. The spectra resolution is provided by Linear Variable Filters placed directly over the four SPHEREx H2RG detector arrays. SPHEREx would be sensitive enough to obtain spectra of essentially all near-infrared sources from the WISE survey. During its two-year mission, SPHEREx, to be launched in 2022, would produce four complete all-sky spectral maps that would serve as a rich archive for the astronomy community.SPHEREx would be tremendously synergistic with numerous other missions and facilities [NASA and non-NASA] which will be operating in the coming decade. SPHEREx observations could pick out the most promising and exciting targets for investigation from JWST. From the opposite perspective, SPHEREx statistical samples could be used to refine the conclusions derived from JWST’s indepth studies of a few members of an interesting class of objects. SPHEREx and GAIA spectrophotometry, incorporating photometry from WISE and GALEX as well as GAIA astrometry, could lead to the determination of the radii of main sequence stars, and their transiting exoplanets discovered by TESS, with 1% accuracy. SPHEREx low redshift spectra of millions of galaxies could be used to validate and calibrate the photometric nredshift scale being adopted by WFIRST and Euclid, improving the precision of the dark energy measures being returned by those missions. The poster will briefly address SPHEREx synergisms with these and other missions ranging from LSST

  4. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  5. STS-93 Mission Specialist Hawley suits up for launch

    Science.gov (United States)

    1999-01-01

    For the third time, during final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Steven A. Hawley (Ph.D.) waves after donning his launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Hawley, Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  6. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  7. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  8. Nickel-hydrogen battery state of charge management in the absence of active cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, C.; Foroozan, S. [TRW, Redondo Beach, CA (United States); Brewer, J.; Jackson, L.G. [NASA, Huntsville, AL (United States). Marshall Space Flight Center

    1995-12-31

    Battery management during prelaunch activities has always required special attention and careful planning. `ne transition from nickel-cadmium to nickel-hydrogen batteries, with their higher self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, have made this aspect of spacecraft management even more challenging. The NASA AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure adequate state of charge during prelaunch charge, trickle charge, and stand was considered and proved to be expensive and difficult to implement. Alternate approaches were considered. A procedure including optimized charging and low rate (mission simulation test. Charging, trickle charging, and open circuit stand are considered in each phase. The major conclusion of this work is that nickel-hydrogen batteries can achieve and maintain high states of charge, in the absence of active cooling, using the approach described in this paper.

  9. Drone Mission Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors.

    Science.gov (United States)

    Besada, Juan A; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; López-Araquistain, Jaime; Bernardos, Ana M; Casar, José R

    2018-04-11

    This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control.

  10. Mission Control Operations: Employing a New High Performance Design for Communications Links Supporting Exploration Programs

    Science.gov (United States)

    Jackson, Dan E., Jr.

    2015-01-01

    The planetary exploration programs demand a totally new examination of data multiplexing, digital communications protocols and data transmission principles for both ground and spacecraft operations. Highly adaptive communications devices on-board and on the ground must provide the greatest possible transmitted data density between deployed crew personnel, spacecraft and ground control teams. Regarding these requirements, this proposal borrows from research into quantum mechanical computing by applying the concept of a qubit, a single bit that represents 16 states, to radio frequency (RF) communications link design for exploration programs. This concept of placing multiple character values into a single data bit can easily make the evolutionary steps needed to meet exploration mission demands. To move the qubit from the quantum mechanical research laboratory into long distance RF data transmission, this proposal utilizes polarization modulation of the RF carrier signal to represent numbers from zero to fifteen. It introduces the concept of a binary-to-hexadecimal converter that quickly chops any data stream into 16-bit words and connects variously polarized feedhorns to a single-frequency radio transmitter. Further, the concept relies on development of a receiver that uses low-noise amplifiers and an antenna array to quickly assess carrier polarity and perform hexadecimal to binary conversion. Early testbed experiments using the International Space Station (ISS) as an operations laboratory can be implemented to provide the most cost-effective return for research investment. The improvement in signal-to-noise ratio while supporting greater baseband data rates that could be achieved through this concept justifies its consideration for long-distance exploration programs.

  11. Why Mission-Critical Systems Are Critical to the Future of Academic Libraries

    Science.gov (United States)

    Oberlander, Cyril

    2012-01-01

    A mission-critical system is one that is so intertwined with the operation of an organization that the organization can scarcely function without it. Just as in corporations, mission-critical library systems offer the capability to unlock talent and time. They are essential to the transformation of higher education and the learning environment. A…

  12. 75 FR 5146 - Hewlett Packard Company Business Critical Systems, Mission Critical Business Software Division...

    Science.gov (United States)

    2010-02-01

    ... Packard Company Business Critical Systems, Mission Critical Business Software Division, OpenVMS Operating... Colorado, Marlborough, MA; Hewlett Packard Company Business Critical Systems, Mission Critical Business... Assistance on August 27, 2009, applicable to workers of Hewlett Packard Company, Business Critical Systems...

  13. Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    Science.gov (United States)

    Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob

    2014-01-01

    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.

  14. Exploring the martian moons a human mission to Deimos and Phobos

    CERN Document Server

    von Ehrenfried, Manfred “Dutch”

    2017-01-01

    This book explores the once popular idea of 'Flexible Path' in terms of Mars, a strategy that would focus on a manned orbital mission to Mars's moons rather than the more risky, expensive and time-consuming trip to land humans on the Martian surface. While currently still not the most popular idea, this mission would take advantage of the operational, scientific and engineering lessons to be learned from going to Mars's moons first. Unlike a trip to the planet's surface, an orbital mission avoids the dangers of the deep gravity well of Mars and a very long stay on the surface. This is analogous to Apollo 8 and 10, which preceded the landing on the Moon of Apollo 11. Furthermore, a Mars orbital mission could be achieved at least five years, possibly 10 before a landing mission. Nor would an orbital mission require all of the extra vehicles, equipment and supplies needed for a landing and a stay on the planet for over a year. The cost difference between the two types of missions is in the order of tens of billi...

  15. SOLON: An autonomous vehicle mission planner

    Science.gov (United States)

    Dudziak, M. J.

    1987-01-01

    The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.

  16. Using Small UAS for Mission Simulation, Science Validation, and Definition

    Science.gov (United States)

    Abakians, H.; Donnellan, A.; Chapman, B. D.; Williford, K. H.; Francis, R.; Ehlmann, B. L.; Smith, A. T.

    2017-12-01

    Small Unmanned Aerial Systems (sUAS) are increasingly being used across JPL and NASA for science data collection, mission simulation, and mission validation. They can also be used as proof of concept for development of autonomous capabilities for Earth and planetary exploration. sUAS are useful for reconstruction of topography and imagery for a variety of applications ranging from fault zone morphology, Mars analog studies, geologic mapping, photometry, and estimation of vegetation structure. Imagery, particularly multispectral imagery can be used for identifying materials such as fault lithology or vegetation type. Reflectance maps can be produced for wetland or other studies. Topography and imagery observations are useful in radar studies such as from UAVSAR or the future NISAR mission to validate 3D motions and to provide imagery in areas of disruption where the radar measurements decorrelate. Small UAS are inexpensive to operate, reconfigurable, and agile, making them a powerful platform for validating mission science measurements, and also for providing surrogate data for existing or future missions.

  17. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy

    Science.gov (United States)

    Carter, Layne; Tabb, David; Anderson, Molly

    2017-01-01

    Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.

  18. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    Science.gov (United States)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  19. New Space at Airbus Defence & Space to facilitate science missions

    Science.gov (United States)

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  20. Lessons learned from the STS-120/ISS 10A robotics operations

    Science.gov (United States)

    Aziz, Sarmad

    2010-01-01

    The STS-120/ISS 10A assembly mission was an unprecedented period during the life of the International Space Stations (ISS). The successful completion of the mission laid the foundation for the launch of the European and Japanese laboratories and continued assembly of the station. Unlike previous missions that concluded when the Space Shuttle undocked from the ISS, the 10A mission required critical assembly operations to continue after the Shuttle's departure to relocate the Harmony module to its permanent location and activate its systems. The end-to-end mission lasted for almost a month and required the execution of seven space walks, over 20 major robotics operations, and countless hours of ground commanding. The Canadian built mobile servicing system (MSS) and its robotics space station remote manipulator system (SSRMS) played a key a role in the success of the assembly operations. The mission presented the ISS robotics flight control team (ROBO) with unique challenges during the pre-mission planning and real-time execution of complex assembly tasks. The mission included the relocation of the P6 truss segment from the Z1 Node to its permanent location on the P5 truss; a three day marathon of highly choreographed sequence of robotics operations and space walks, and the reconfiguration of ISS structure to attach Harmony (Node 2) to the US destiny laboratory module; a six day sequence of complex robotics operations the majority of which was executed after the departure of the shuttle and included an unprecedented amount of ground commanded robotics operations. Of all the robotics operations executed during the mission, none were more challenging than supporting the repair of a torn P6 solar array that was damaged during its deployment; a dramatic space walk that pushed the MSS and the robotics flight control team to new limits and required the real-time planning and execution of an intricate series of operations that spanned two days. This paper will present an

  1. Weathering the Storm - GOCE Flight Operations in 2010

    Science.gov (United States)

    Steiger, C.; Da Costa, A.; Floberghagen, R.; Fehringer, M.; Emanuelli, P. P.

    2011-07-01

    ESA's Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) was successfully launched on 17th March 2009. The mission is controlled by ESA's European Space Operations Centre (ESOC) in Darmstadt, Germany. Following completion of commissioning, routine operations started in September 2009, keeping the S/C in drag-free mode at an altitude of 259.6 km. Operations are driven by the unique aspects of the mission, in particular the very low altitude and the high complexity of GOCE's drag- free control system. Following a general introduction, the main focus is put on the special events of 2010, when science operations were interrupted for several months due to problems with the main platform computer. These anomalies presented a major challenge, requiring to operate the spacecraft "in the blind" with no status information available, and extensive modifications of the on-board software to recover the mission.

  2. Mission Command and JC41: Managing Chaos in a Dynamic World

    Science.gov (United States)

    2018-04-20

    doubly so, but perhaps not solely for the reasons expected. History has seen the progression of technology enable commanders and staffs to extend their...highlights the degree to which each Service embraces and codifies the mission command concept. Chapter 3 covers the history of the technologies ...Abstract Executing effective mission command has always been a challenge and in today’s technologically saturated joint operating environment is

  3. OMV mission simulator

    Science.gov (United States)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  4. The Evolution of US Army Peace Operations.

    Science.gov (United States)

    1995-12-01

    Social constructionism predicts that until a new mission is accepted by the individual and the group, it will continue to cause disequilibrium. The...institution. Insight from the sociological perspective known as social construction was used to examine doctrinal development and institutionalization...mission. The national security strategy of the US is the primary, the first step in the social construction of peace operations. When peace operations

  5. Game-based versus storyboard-based evaluations of crew support prototypes for long duration missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Abbing, M.S.; Neerincx, M.A.; Lindenberg, J.; Oostendorp, H. van

    2010-01-01

    The Mission Execution Crew Assistant (MECA) is developing a distributed system of electronic partners (ePartners) to support astronauts performing nominal and off- nominal actions in long duration missions. The ePartners' support should adequately deal with the dynamics of the context, operations,

  6. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  7. Real field mission profile oriented design of a SiC-based PV-inverter application

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper introduces a real field mission profile oriented design tool for the new generation of grid connected PV-inverters applications based on SiC-devices. The proposed design tool consists of a grid connected PV-inverter model, an ElectroThermal model, a converter safe operating area (SOA...... Zth_H in order to perform in a safe mode for the whole operating range. Furthermore, the proposed design tool considers the mission profile (the measured solar irradiance and ambient temperature) from the real field where the converter will operate. Thus, a realistic loading of the converter devices......) model, a mission profile model and an the evaluation block. The PV-system model involves a three level bipolar switch neutral point clamped (3L-BS NPC) inverter connected to the three phase grid through a LCL-filter. Moreover, the SOA model calculates the required converter heatsink thermal impedance...

  8. The Columbus-CC—Operating the European laboratory at ISS

    Science.gov (United States)

    Kuch, T.; Sabath, D.

    2008-07-01

    The European ISS Columbus Control Center (Col-CC) joined the club of ISS mission control centers in Moscow, Houston and Huntsville. It took some time to reach that goal. In 1998 the European Space Agency (ESA) awarded the German Aerospace Center DLR to design, develop and implement the Col-CC at its premises in Oberpfaffenhofen, near Munich, Germany. In 2002 a core mission operations team was built up. An integrated team of ESA, industry and control center started to define processes and implemented first operations products and tools. This was accompanied by regular meetings with the international partners in the US and Russia. With intensive training and numerous simulations the team was able to gain experience and is now eagerly waiting for the launch of Columbus. However, thanks to the involvement in some operational activities the Col-CC staff has already been able to gain operational ISS experience. After the inauguration in October 2004 Col-CC supported the Eneide mission in April 2005 when the Italian ESA-Astronaut Roberto Vittori flew onboard a Soyuz to the ISS where he spent 10 days. Another very important milestone was the operations support for ESA's Astrolab mission. The Astrolab mission was of major importance for Europe and particularly for Germany because it implied the first long duration flight of ESA astronaut Thomas Reiter, an astronaut of German nationality. The tasks of Col-CC are described and also the experiences made with the first operational long-term mission which took place from July to December 2006. Meanwhile the Col-CC was able to reach the operational readiness status for the Columbus mission which is set for a launch date later in 2007. Despite the concentration on the challenging Columbus Assembly and Checkout phase emphasis is already laid on the following increments for the European ISS operations. Early 2006 ESA transferred the operational tasks and responsibilities to the hands of the industrial operator. This approach creates

  9. AN/FPS-108 COBRA DANE Space Surveillance Mission Evolution

    Science.gov (United States)

    Chorman, P.; Boggs, J.

    2013-09-01

    It has been ten years since the COBRA DANE radar was restored to continuous full power operations in a more dedicated role of space debris tracking. Over this time, the satellite catalog population has grown and the overall average RCS value of cataloged objects has decreased dramatically, due to a combination of breakups and collisions together with the increased sensitivity offered by COBRA DANE's support to the network. This shift in catalog composition places new challenges on COBRA DANE and other debris tracking radars (PARCS and Eglin/FPS-85) to consistently track the ever-increasing number of small objects. Space Surveillance Network radars now operate at the limits of their detection performance, tracking several thousand new objects in a size category that only the most powerful and sensitive radars can observe (i.e., COBRA DANE's inherent Spacetrack mission software functionality remained better tuned for its original support role against the larger (known) orbital objects than for its more modern role in acquiring and reporting small debris in an appreciable number -- that is, until now. Several newly-identified software changes offer promise of significantly increased data yield that will make COBRA DANE an even more important asset for this evolving mission. In the course of assisting JSpOC, AFSPC, and USSTRATCOM with the ongoing challenges of lost satellite management, it was discovered that the radar's performance is being artificially restricted by mission software, rather than by the system's overall architectural design (power-aperture envelope and radar resources). This paper captures specific opportunities to improve COBRA DANE's Spacetrack mission performance, several of which are currently implemented and slated to become operational with the next two software releases. With one of the more prominent enhancements, COBRA DANE will be capable of autonomously 'fence tasking' all newly acquired small objects. Under the current operating paradigm

  10. TDEM for Martian in situ resource prospecting missions

    Directory of Open Access Journals (Sweden)

    G. Tacconi

    2003-06-01

    Full Text Available This paper presents a TDEM (Time Domain Electromagnetic Methods application, addressed to the search for water on Mars. In this context, the opportunities for a TDEM system as payload in a future mission are investigated for different in situ exploration scenarios. The TDEM sounding capability is evaluated with respect to the expected Martian environment, and some considerations are made about the many unknown variables (above all the background EM noise and the subsoil composition altogether with the limited resources availability (mission constraints in mass, time and power and the way they could represent an obstacle for operations and measurements.

  11. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  12. ESA’s spaceborne lidar mission ADM-Aeolus; project status and preparations for launch

    Directory of Open Access Journals (Sweden)

    Straume Anne Grete

    2018-01-01

    Full Text Available ESA’s Doppler Wind lidar mission, the Atmospheric Dynamics Mission (ADM-Aeolus, hereafter abbreviated to Aeolus, was chosen as an Earth Explorer Core mission within the Living Planet Programme in 1999. It shall demonstrate the potential of space-based Doppler Wind lidars for operational measurements of wind profiles and their use in Numerical Weather Prediction (NWP and climate research. Spin-off products are profiles of cloud and aerosol optical properties. Aeolus carries the novel Doppler Wind lidar instrument ALADIN. The mission prime is Airbus Defence & Space UK (ADS-UK, and the instrument prime is Airbus Defence & Space France (ADS-F.

  13. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  14. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  15. Phobos Environment Model and Regolith Simulant for MMX Mission

    Science.gov (United States)

    Miyamoto, H.; Niihara, T.; Wada, K.; Ogawa, K.; Baresi, N.; Abell, Paul A.; Asphaug, E.; Britt, D.; Dodbiba, G.; Fujita, T.; hide

    2018-01-01

    Phobos and Deimos, the two moons of Mars, are considered to be scientifically important and potential human mission's target. Martian Moons eXplorer (MMX) is the JAXA's mission to explore Phobos (and/or Deimos), which is scheduled to be launched in 2024. The main spacecraft of MMX will perform in-situ observations of both Phobos and Deimos, land on one of them (most likely, Phobos), and bring samples back to Earth. Small landing modules may be included in the mission as for the Hayabusa-2 mission. The designs of both the landing and sampling devices depend largely on the surface conditions of the target body and on how this surface reacts to an external action in the low gravity conditions of the target. Thus, the Landing Operation Working Team (LOWT) of MMX, which is composed of both scientists and engineers, is studying Phobos' surface based on previous observations and theoretical/experimental considerations. Though engineering motivation initiated this activity, the results will be extremely useful for scientific purposes.

  16. The Stellar Imager (SI)"Vision Mission"

    Science.gov (United States)

    Carpenter, Ken; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Karovska, M.; Allen, R.

    2004-01-01

    The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.

  17. STS-93 Mission Specialist Cady Coleman suits up for launch

    Science.gov (United States)

    1999-01-01

    For the third time, during final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) dons her launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Coleman, and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  18. IAEA Completes Expert Mission to Kori 1 Nuclear Power Plant in the Republic of Korea

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) has completed a review of safety practices at the Kori 1 Nuclear Power Plant (NPP) near Busan in the Republic of Korea. The IAEA assembled the team at the request of Korea Hydro and Nuclear Power Co., Ltd. (KHNP) following a station blackout event on 9 February 2012. The team - comprised of experts from Belgium, France, Sweden, United Kingdom and the IAEA - conducted its mission from 4 to 11 June 2012 under the leadership of the IAEA's Division of Nuclear Installation Safety. The expert mission applied the methodology of the IAEA's Operational Safety Review (OSART) missions and covered the areas of Management, Organization and Administration; Operations; Maintenance and Operating Experience. The conclusions of the review are based on the IAEA's Safety Standards, which are developed by the Agency to help nations improve their nuclear safety practices, which are the responsibility of every nation that undertakes nuclear-related activities. Throughout the review, the exchange of information between the experts and plant personnel was very open, professional and productive. Prior to the mission, Korea's Nuclear Safety and Security Commission completed an interim investigation, and it continues to perform additional investigations and technical reviews. The Commission identified corrective actions for the plant concerning reinforcing safety culture, emergency diesel generator reliability, configuration control and risk management during refueling outage, test and maintenance procedures and emergency action level declaration. The expert mission confirmed that some corrective actions have already been completed and others are in progress. The expert mission found the management and staff of Kori 1 NPP to be committed and working hard to complete all improvements. The root cause analysis of the event at Kori 1 NPP is still in progress and is expected to lead to

  19. CIRPLAST: Cleft Lip and Palate Missions in Peru.

    Science.gov (United States)

    Navarro, Carlos E

    2015-06-01

    The author presents a 20-year experience leading cleft lip and palate surgical volunteer missions in Peru for CIRPLAST, a nonprofit volunteer plastic surgery goodwill program that has provided free surgery for patients with cleft lip and palate deformities in remote areas of Peru. Surgical procedures were performed by the author, together with a group of experienced plastic surgeons, under the auspices of the Peruvian Plastic Surgery Society, and local health authorities. CIRPLAST missions are scheduled annually in different locations around Peru. Selected patients for surgery after adequate screening are photographed, and their cleft deformity is recorded. Scheduled patients or their parents, when they are minors, sign an informed consent form. Patients operated on in any given day are examined and photographed 1 day after surgery, before discharge. Between 30 and 35 patients are operated on at each mission site. About 2 weeks after the mission, patients are checked and photographed, and the outcome of surgery is recorded. Complications that may occur are recorded and treated by the CIRPLAST team as soon as possible. Almost all operations are performed under general endotracheal anesthesia coupled by local anesthesia containing a vasoconstrictor, to reduce bleeding and facilitate tissue dissection. All wounds of the lip and palate are closed with absorbable sutures, to avoid the need for suture removal. After cleft lip surgery, patients go to the recovery room for monitoring by nurses until they recover completely. A total of 6108 cleft lip and palate repairs, primary and secondary, were performed by CIRPLAST in 141 missions, between May 12, 1994, and October 15, 2014. The medical records of the 5162 patients (84.5%) who returned for follow-up (ranging from 12 days to 9 years) were reviewed retrospectively. Between 45% and 70% of the patients operated on a mission have returned for early follow-up and some the following year. There were 3176 males (51.9%) and 2932

  20. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost