WorldWideScience

Sample records for preincubation warming profile

  1. Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions.

    Science.gov (United States)

    Reyna, Kelly S; Burggren, Warren W

    2017-01-01

    Global warming is likely to alter reproductive success of ground-nesting birds that lay eggs normally left unattended for days or even weeks before actual parental incubation, especially in already warm climates. The native North American bobwhite quail (Colinus virginianus) is such a species, and pre-incubation quail eggs may experience temperatures ≥45°C. Yet, almost nothing is known about embryonic survival after such high pre-incubation temperatures. Freshly laid bobwhite quail eggs were exposed during a 12 day pre-incubation period to one of five thermal regimes: low oscillating temperatures (25-40°C, mean = 28.9°C), high oscillating temperatures (30-45°C, mean = 33.9°C), low constant temperatures (28.85°C), high constant temperatures (mean = 33.9°C), or commercially employed pre-incubation temperatures (20°C). After treatment, eggs were then incubated at a standard 37.5°C to determine subsequent effects on embryonic development rate, survival, water loss, hatching, and embryonic oxygen consumption. Both quantity of heating degree hours during pre-incubation and specific thermal regime (oscillating vs. non-oscillating) profoundly affected important aspects of embryo survival and indices of development and growth Pre-incubation quail eggs showed a remarkable tolerance to constant high temperatures (up to 45°C), surviving for 4.5±0.3 days of subsequent incubation, but high oscillating pre-incubation temperature increased embryo survival (mean survival 12.2±1.8 days) and led to more rapid development than high constant temperature (maximum 38.5°C), even though both groups experienced the same total heating degree-hours. Oxygen consumption was ~200-300 μl O2.egg.min-1 at hatching in all groups, and was not affected by pre-incubation conditions. Oscillating temperatures, which are the norm for pre-incubation quail eggs in their natural habitat, thus enhanced survival at higher temperatures. However, a 5°C increase in pre-incubation temperature

  2. The Pre-Incubator: A Longitudinal Study of 10 Years of University Pre-Incubation in Wales

    Science.gov (United States)

    Voisey, Pamela; Jones, Paul; Thomas, Brychan

    2013-01-01

    This paper describes a longitudinal study of over 10 years of university pre-incubation in Wales, using case studies of incubated businesses to track their performance since 2001. Surviving "graduated" businesses were investigated and quantitative and qualitative data were gathered to profile the current status of these businesses and…

  3. FIR line profiles as probes of warm gas dynamics

    Science.gov (United States)

    Betz, A. L.; Boreiko, R. T.

    1995-01-01

    Measurements of the shapes, velocities, and intensities of FIR lines all help to probe the dynamics, physical associations, and excitation conditions of warm gas in molecular clouds. With this in mind, we have observed the J=9-8, 12-11,14-13, and 16-15 lines of (12)CO and the 158 micron line of C II in a number of positions in 4 selected clouds. The data were obtained with a laser heterodyne spectrometer aboard NASA's Kuiper Airborne Observatory. Line measurements at 0.6 km/s resolution allow us to resolve the profiles completely, and thereby to distinguish between UV-and shock-heating mechanisms for the high-excitation gas. For CO, the high-J linewidths lie in the range of 4-20 km/s (FWHM), similar to those observed for low-J (J less than 4) transitions in these sources. This correspondence suggests that the hotter gas (T = 200-600 K) is dynamically linked to the quiescent gas component, perhaps by association with the UV-heated peripheries of the numerous cloud clumps. Much of the C II emission is thought to emanate from these cloud peripheries, but the line profiles generally do not match those seen in CO. None of the observed sources show any evidence in high-J (12)CO emission for shock-excitation (i.e., linewidths greater than 30 km/s).

  4. Correcting Borehole Temperture Profiles for the Effects of Postglacial Warming

    Science.gov (United States)

    Rath, V.; Gonzalez-Rouco, J. F.

    2010-09-01

    Though the investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories, there are many open questions concerning the signifcance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last glacial Maximum (LGM) is still present in borehole temperature proiles. It also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries. This is shown using Monte Carlo experiments on past surface temperature change, using plausible distributions for the most important parameters, i.e.,amplitude and timing of the glacial-interglacial transition, the prior average temperature, and petrophysical properties. It has been argued that the signature of the last glacial-interglacial transition could be responsible for the high amplitudes of millennial temperature reconstructions. However, in shallow boreholes the additional effect of past climate can reasonably approximated by a linear variation of temperature with depth, and thus be accommodated by a "biased" background heat flow. This is good news for borehole climatology. A simple correction based on subtracting an appropriate prior surface temperature history shows promising results reducing these errors considerably, in particular with deeper boreholes, where the warming signal in heat flow can no longer be approximated linearly. We will show examples from North America and Eurasia, comparing temperatures reduced the proposed algoritm with AOGCM modeling results.

  5. Ozonesonde profiles from the West Pacific Warm Pool

    Directory of Open Access Journals (Sweden)

    R. Newton

    2015-06-01

    Full Text Available We present a series of ozonesonde profiles measured from Manus Island, Papua New Guinea, during February 2014. The experiment formed a part of a wider airborne campaign involving three aircraft based in Guam, to characterise the atmospheric composition above the tropical West Pacific in unprecedented detail. Thirty-nine ozonesondes were launched between 2 and 25 February, of which 34 gave good ozone profiles. Particular attention was paid to measuring the background current of the ozonesonde before launch, as this can amount to half the measured signal in the tropical tropopause layer (TTL. An unexpected contamination event affected these measurements and required a departure from standard operating procedures for the ozonesondes. Comparison with aircraft measurements allows validation of the measured ozone profiles and confirms that for well-characterized sondes (background current <50 nA a constant background current should be assumed throughout the profile, equal to the minimum value measured during preparation just before launch. From this set of 34 ozonesondes, the minimum reproducible ozone concentration measured in the TTL was 12–13 ppbv; no examples of near-zero ozone concentration as reported by other recent papers were measured. The lowest ozone concentrations coincided with outflow from extensive deep convection to the east of Manus, consistent with uplift of ozone-poor air from the boundary layer. However, these minima were lower than the ozone concentration measured through most of the boundary layer, and were matched only by measurements at the surface in Manus.

  6. Pre-incubation and low temperatures in quantitative radioreceptor assays

    Energy Technology Data Exchange (ETDEWEB)

    Ensing, K.; de Zeeuw, R.A.

    1984-01-01

    The detection limits of drugs in quantitative RRA are primarily determined by their affinities towards the receptor. Yet, the concentration of radiolabeled ligand, necessary for quantification of receptor-bound drug, increases the theoretical detection limit. Therefore the influences of low temperatures and pre-incubation on the detection limit was studied. Analysis of experimental data suggests that when a well-defined incubation procedure is used, pre-incubation and low temperatures will increase sensitivity without loss of accuracy and precision. 6 references, 2 figures.

  7. Fingerprints of the initial conditions on the density profiles of cold and warm dark matter haloes

    CERN Document Server

    Polisensky, E

    2015-01-01

    We use N-body simulations of dark matter haloes in cold dark matter (CDM) and a large set of different warm dark matter (WDM) cosmologies to demonstrate that the spherically averaged density profile of dark matter haloes has a shape that depends on the power spectrum of matter perturbations. Density profiles are steeper in WDM but become shallower at scales less than one percent of the virial radius. Virialization isotropizes the velocity dispersion in the inner regions of the halo but does not erase the memory of the initial conditions in phase space. The location of the observed deviations from CDM in the density profile and in phase space can be directly related to the ratio between the halo mass and the filtering mass and are most evident in small mass haloes, even for a 34 keV thermal relic WDM. The rearrangement of mass within the haloes supports analytic models of halo structure that include angular momentum. We also find evidence of a dependence of the slope of the inner density profile in CDM cosmolo...

  8. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  9. Estimating the vertical profiles of cloud water content in warm rain clouds

    Science.gov (United States)

    Li, Rui; Guo, Jingchao; Fu, Yufei; Min, Qinlong; Wang, Yu; Gao, Xiaoming; Dong, Xue

    2017-04-01

    The cloud water content (CWC) in rainy clouds is a crucial parameter to determine the onset and the growth rate of precipitation, and to quantify the associated latent heating rate. No direct retrieval of CWC in rainy cloud from satellite observations is reported due to the difficulties of separating cloud particles from precipitation sized particles. However, based on multiple cloud simulations from the Weather and Research Forecasting (WRF) model, we have found that the CWC profile in warm rains can be well determined by three macro-physical cloud properties of cloud water path (CWP), cloud top height (CTH), and cloud bottom height (CBH). The CBH can be estimated using CWP, CTH and near surface rain rate. We proposed an algorithm with a lookup table for estimating the CWC profile using CWP, CTH and near surface rain rate as inputs. The performance of this algorithm was tested with WRF model simulations and a real drizzle case observed by the CloudSat satellite. Testing verified that the algorithm can retrieve the vertical distribution of CWC correctly with few errors at different spatiotemporal scales. In addition, the algorithm is not confined to particular microphysics schemes and is valid for multiple cloud systems in different areas over the world. This algorithm is expected to improve current knowledge of cloud water content in rainy clouds.

  10. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    Science.gov (United States)

    de Vega, H. J.; Sanchez, N. G.

    2017-02-01

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f( E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r_h , mass M_h , velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M_h ≳ 2.3 × 10^6 M_⊙ and effective temperatures T_0 > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 × 10^6 M_⊙ ≳ M_h ≳ M_{h,min} ˜eq 3.10 × 10^4 (2 {keV}/m)^{16/5} M_⊙, T_0 < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T_0 = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r_h , the squared velocity v^2(r_h) and the temperature T_0 turn to exhibit square-root of M_h scaling laws. The normalized density profiles ρ (r)/ρ (0) and the normalized velocity profiles v^2(r)/ v^2(0) are universal functions of r/r_h reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 10^6 ≳ M_h ≥ M_{h,min} , the equation of state is galaxy mass dependent and the density and velocity profiles are not

  11. Validation of MODIS liquid water path for oceanic nonraining warm clouds: Implications on the vertical profile of cloud water content

    Science.gov (United States)

    Zhou, Lingli; Liu, Qi; Liu, Dongyang; Xie, Lei; Qi, Lin; Liu, Xiantong

    2016-05-01

    Liquid water path (LWP) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) is validated using the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) retrievals for global oceanic nonraining warm clouds, with focus on the vertically homogeneous (VH) model and adiabatically stratified (AS) model of liquid water content (LWC) profile used in MODIS retrieval. With respect to AMSR-E LWP that acts as ground truth under a series of constraints, the global average of MODIS-LWPVH and MODIS-LWPAS has a positive (11.8%) and negative (-6.8%) bias, respectively. Most of the oceanic warm clouds tend to have adiabatic origin and correspondingly form AS-like profiles, which could be well retained if drizzle is absent. Besides, the presence of drizzle, cloud top entrainment seems to be another cause that modifies the original LWC profiles to become VH-like, which is notable for the very low clouds that have rather small thickness. These factors jointly determine the appearance of LWP profiles and in turn their spatial pattern across global oceans, with AS-like profiles dominant in the areas where nonraining warm clouds occur very frequently in the form of stratocumulus. The modified MODIS LWP shows significant improvement compared with either MODIS-LWPVH or MODIS-LWPAS. This is achieved by using the two physically explicit models flexibly, in which the elementary MODIS retrievals of cloud top temperature, cloud optical thickness, and droplet effective radius play a determinant role. A combined use of VH and AS model in the MODIS retrieval is demonstrated to be effective for improving the LWP estimation for oceanic nonraining warm clouds.

  12. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Vega, H.J. de [Sorbonne Universites, Universite Pierre et Marie Curie UPMC Paris VI, LPTHE CNRS UMR 7589, Paris Cedex 05 (France); Sanchez, N.G. [Observatoire de Paris PSL Research University, Sorbonne Universites UPMC Paris VI, Observatoire de Paris, LERMA CNRS UMR 8112, Paris (France)

    2017-02-15

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r{sub h}, mass M{sub h}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M{sub h} >or similar 2.3 x 10{sup 6} M {sub CircleDot} and effective temperatures T{sub 0} > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 x 10{sup 6} M {sub CircleDot} >or similar M{sub h} >or similar M{sub h,min} ≅ 3.10 x 10{sup 4} (2 keV/m){sup (16)/(5)} M {sub CircleDot}, T{sub 0} < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T{sub 0} = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r{sub h}, the squared velocity v{sup 2}(r{sub h}) and the temperature T{sub 0} turn to exhibit square-root of M{sub h} scaling laws. The normalized density profiles ρ(r)/ρ(0) and the normalized velocity profiles v{sup 2}(r)/v{sup 2}(0) are universal functions of r/r{sub h} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For

  13. Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard CloudSat

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The Cloud Profi ling Radar (CPR) onboard CloudSat is an active sensor specifi cally dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR refl ectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identifi ed as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 km, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 km, and these clouds mostly have evidently small optical depths and droplet eff ective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m−2 . It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter.

  14. Trehalose preincubation increases mesenchymal (CD271+ stem cells post-cryopreservation viability

    Directory of Open Access Journals (Sweden)

    Indra Kusuma

    2016-10-01

    Full Text Available Background: Dimethyl sulfoxide (Me2SO is a common cryoprotective agent widely used in cell preservation system. Me2SO is currently known to cause epigenetic changes which are  critical in stem cells development and cellular differentiation. Therefore, it is imperative to develop cryopreservation techniques that protect cellular functions and avert Me2SO adverse effect. Trehalose was able to protect organism in extreme condition such as dehydration and cold. This study aimed to verify the protective effect of trehalose preincubation procedure in cryopreservation.Methods: The study was conducted using experimental design. Thawed mesenchymal (CD271+ stem cells from YARSI biorepository were used for the experiment. Trehalose preincubation was performed for 1 hour, internalized trehalose was confirmed by FTIR-ATR measurement. Three groups consisted of (1 cryopreserved without trehalose preincubation, (2 cryopreserved with trehalose preincubation, and (3 did not undergo cryopreservation were evaluated after 24 hours in LN2 for viability in culture. The absorbance from each group was measured at 450 nm. The analysis performed using paired student t test.Results: Viability of thawed mesenchymal (CD271+ stem cells that undergo trehalose preincubation prior cryopreservation was significantly higher (p<0.05 compared to group without trehalose preincubation. Higher viability observed between group with trehalose preincubation compared with controlled group suggests protection to trypsinization. Mesenchymal (CD271+ stem cells incubated for 1 hour in 100 mM trehalose supplemented medium  results in 15%  trehalose loading efficiency.Conclusion: These findings confirm the protective effect of trehalose preincubation in cryopreservation. Future research should be directed to elucidate the trehalose internalization mechanism and eventually the protective mechanism of trehalose in mammalian cell cryopreservation.

  15. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    Science.gov (United States)

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast.

  16. I know how you feel: the warm-altruistic personality profile and the empathic brain.

    Science.gov (United States)

    Haas, Brian W; Brook, Michael; Remillard, Laura; Ishak, Alexandra; Anderson, Ian W; Filkowski, Megan M

    2015-01-01

    The ability to empathize with other people is a critical component of human social relationships. Empathic processing varies across the human population, however it is currently unclear how personality traits are associated with empathic processing. This study was designed to test the hypothesis that specific personality traits are associated with behavioral and biological indicators of improved empathy. Extraversion and Agreeableness are personality traits designed to measure individual differences in social-cognitive functioning, however each trait-dimension includes elements that represent interpersonal social functioning and elements that do not represent interpersonal social functioning. We tested the prediction that interpersonal elements of Extraversion (Warmth) and Agreeableness (Altruism) are associated with empathy and non-interpersonal elements of Extraversion and Agreeableness are not associated with empathy. We quantified empathic processing behaviorally (empathic accuracy task using video vignettes) and within the brain (fMRI and an emotional perspective taking task) in 50 healthy subjects. Converging evidence shows that highly warm and altruistic people are well skilled in recognizing the emotional states of other people and exhibit greater activity in brain regions important for empathy (temporoparietal junction and medial prefrontal cortex) during emotional perspective taking. A mediation analysis further supported the association between warm-altruistic personality and empathic processing; indicating that one reason why highly warm-altruistic individuals may be skilled empathizers is that they engage the temporoparietal junction and medial prefrontal cortex more. Together, these findings advance the way the behavioral and neural basis of empathy is understood and demonstrates the efficacy of personality scales to measure individual differences in interpersonal social function.

  17. I know how you feel: the warm-altruistic personality profile and the empathic brain.

    Directory of Open Access Journals (Sweden)

    Brian W Haas

    Full Text Available The ability to empathize with other people is a critical component of human social relationships. Empathic processing varies across the human population, however it is currently unclear how personality traits are associated with empathic processing. This study was designed to test the hypothesis that specific personality traits are associated with behavioral and biological indicators of improved empathy. Extraversion and Agreeableness are personality traits designed to measure individual differences in social-cognitive functioning, however each trait-dimension includes elements that represent interpersonal social functioning and elements that do not represent interpersonal social functioning. We tested the prediction that interpersonal elements of Extraversion (Warmth and Agreeableness (Altruism are associated with empathy and non-interpersonal elements of Extraversion and Agreeableness are not associated with empathy. We quantified empathic processing behaviorally (empathic accuracy task using video vignettes and within the brain (fMRI and an emotional perspective taking task in 50 healthy subjects. Converging evidence shows that highly warm and altruistic people are well skilled in recognizing the emotional states of other people and exhibit greater activity in brain regions important for empathy (temporoparietal junction and medial prefrontal cortex during emotional perspective taking. A mediation analysis further supported the association between warm-altruistic personality and empathic processing; indicating that one reason why highly warm-altruistic individuals may be skilled empathizers is that they engage the temporoparietal junction and medial prefrontal cortex more. Together, these findings advance the way the behavioral and neural basis of empathy is understood and demonstrates the efficacy of personality scales to measure individual differences in interpersonal social function.

  18. Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa.

    Directory of Open Access Journals (Sweden)

    Valeria Musella

    Full Text Available BACKGROUND: Genome-wide gene expression analyses of tumors are a powerful tool to identify gene signatures associated with biologically and clinically relevant characteristics and for several tumor types are under clinical validation by prospective trials. However, handling and processing of clinical specimens may significantly affect the molecular data obtained from their analysis. We studied the effects of tissue handling time on gene expression in human normal and tumor colon tissues undergoing routine surgical procedures. METHODS: RNA extracted from specimens of 15 patients at four time points (for a total of 180 samples after surgery was analyzed for gene expression on high-density oligonucleotide microarrays. A mixed-effects model was used to identify probes with different expression means across the four different time points. The p-values of the model were adjusted with the Bonferroni method. RESULTS: Thirty-two probe sets associated with tissue handling time in the tumor specimens, and thirty-one in the normal tissues, were identified. Most genes exhibited moderate changes in expression over the time points analyzed; however four of them were oncogenes, and two confirmed the effect of tissue handling by independent validation. CONCLUSIONS: Our results suggest that a critical time point for tissue handling in colon seems to be 60 minutes at room temperature. Although the number of time-dependent genes we identified was low, the three genes that already showed changes at this time point in tumor samples were all oncogenes, hence recommending standardization of tissue-handling protocols and effort to reduce the time from specimen removal to snap freezing accounting for warm ischemia in this tumor type.

  19. Influence of Grape Composition on Red Wine Ester Profile: Comparison between Cabernet Sauvignon and Shiraz Cultivars from Australian Warm Climate.

    Science.gov (United States)

    Antalick, Guillaume; Šuklje, Katja; Blackman, John W; Meeks, Campbell; Deloire, Alain; Schmidtke, Leigh M

    2015-05-13

    The relationship between grape composition and subsequent red wine ester profile was examined. Cabernet Sauvignon and Shiraz, from the same Australian very warm climate vineyard, were harvested at two different stages of maturity and triplicate wines were vinified. Grape analyses focused on nitrogen and lipid composition by measuring 18 amino acids by HPLC-FLD, 3 polyunsaturated fatty acids, and 6 C6-compounds derived from lipid degradation by GC-MS. Twenty esters and four higher alcohols were analyzed in wines by HS-SPME-GC-MS. Concentrations of the ethyl esters of branched acids were significantly affected by grape maturity, but the variations were inconsistent between cultivars. Small relative variations were observed between wines for ethyl esters of fatty acids, whereas higher alcohol acetates displayed the most obvious differences with concentrations ranging from 1.5- to 26-fold higher in Shiraz than in Cabernet Sauvignon wines regardless of the grape maturity. Grape analyses revealed the variations of wine ester composition might be related to specific grape juice nitrogen composition and lipid metabolism. To the authors' knowledge the present study is the first to investigate varietal differences in the ester profiles of Shiraz and Cabernet Sauvignon wines made with grapes harvested at different maturity stages.

  20. Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming.

    Science.gov (United States)

    Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix Christopher; Storch, Daniela; Held, Christoph; Pörtner, Hans-Otto; Lucassen, Magnus

    2014-09-12

    Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 μatm) and high (1,960 μatm) PCO2 at different temperatures (5°C and 10°C). The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation. Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.

  1. Inhibition of Leydig Cell Steroidogenesis: Effect of Actinomycin D Before and After Preincubation of Leydig Cells In Vitro

    NARCIS (Netherlands)

    Cooke, B.A.; F.H.A. Janszen (Felix); M. van Driel (Marjolein)

    1978-01-01

    textabstractThe effect of preincubating purified Leydig cells in Eagle's medium and the subsequent effect of the mRNA synthesis inhibitor actinomycin D on LH‐stimulated testosterone synthesis has been investigated. The inhibitory effect obtained was found to decrease with the period of preincubation

  2. Preincubation of Penicillium commune conidia under modified atmosphere conditions: Influence on growth potential as determined by an impedimetric method

    DEFF Research Database (Denmark)

    Haasum, Iben; Nielsen, Per Væggemose

    1996-01-01

    The combined effect of preincubation time, relative humidity (r.h.), headspace carbon dioxide (CO2) and oxygen (O2) on subsequent growth potential of conidia from Penicillium commune was studied using Response Surface Modelling (RSM). Native conidia were preincubated under modified atmosphere...... during the time of preincubation. This paper describes the first investigation of the combined effect of two significant environmental factors on the growth potential of conidia from P. commune. It is demonstrated that storage for more than 56 d in levels of CO2 below 20% results in sublethal injury...... of the conidia from P. commune, retarding growth by increasing lag times and decelerating growth rates....

  3. Patterns of distribution of sound-scattering zooplankton in warm- and cold-core eddies in the Gulf of Mexico, from a narrowband acoustic Doppler current profiler survey

    Science.gov (United States)

    Zimmerman, Robert A.; Biggs, Douglas C.

    1999-03-01

    The acoustic backscatter intensity (ABI) reflected from epipelagic zooplankton communities in the central Gulf of Mexico was measured during June 1995 with a vessel-mounted, narrowband-153-kHz acoustic Doppler current profiler (ADCP). Horizontal and vertical variations in ABI were documented in three kinds of mesoscale hydrographic features commonly found in the Gulf of Mexico: the warm-core Loop Current (LC), a warm-core Loop Current eddy (LCE), and a cold-core region that separated the two warm-core features. Since new nitrogen domes close to surface waters in cold-core features whereas surface waters of warm-core features are nutrient depleted, the cold-core region was expected to have higher biological stocks as a result of locally higher primary production. Both ABI and net tow data confirmed that the cold-core region was in fact a zone of local aggregation of zooplankton and micronekton. During both day and night, ABI when integrated for the upper 50 and 100 m in the cold-core region was significantly greater than in the LC or in the LCE, and ABI was positively correlated with standing stock biomass taken by the net tows. Further investigations into the biological differences between Gulf of Mexico divergence and convergence regimes are warranted, and the ADCP will be a useful tool for examination of the distribution of sound scatterers in such features.

  4. Leaves of the Arabidopsis maltose exporter1 mutant exhibit a metabolic profile with features of cold acclimation in the warm.

    Directory of Open Access Journals (Sweden)

    Sarah J Purdy

    Full Text Available BACKGROUND: Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold. PRINCIPAL FINDINGS: Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT. CONCLUSIONS: The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation.

  5. Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions

    Directory of Open Access Journals (Sweden)

    Regine Willumeit

    2014-05-01

    Full Text Available Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  6. EFFECTS OF PRE-INCUBATION STORAGE TIME OF OSTRICH EGGS ON THEIR INCUBATION AND HATCHING RESULTS

    Directory of Open Access Journals (Sweden)

    Lumturi Sena

    2010-12-01

    Full Text Available The research was carried out in the “ANOC” ostrich farm in Patos/Albania, in order to determine the effects of storage period on the hatchability of 197 ostrich (Struthio camelus eggs. One egg setting was monitored, through dividing the eggs into three groups according to their age, as following: 20-30, 10-20 and 1-10 days old, containing respectively 49, 80 and 68 eggs/group. During the hatching process, the respective parameters, such as: fecundity, embryonic mortality, weight egg loss and hatchability were recorded and monitored. After two weeks, the average weight loss of the all eggs resulted to be 0.5% more than the standard, referred as such, the instructions given by the Dutch company PAS REFORM, producer of the ostrich eggs incubation and hatching machines. The reason of the high embryonic mortality (40.7% mainly relates with the long pre-incubation storage time. Higher sterility (42.6% might especially relate with the high temperature stress in the farm, considering the fact that the animals were just transferred from the Netherlands to Albania. The hatching rate (29.9%, compared to the total number of the set eggs is comparable with the same parameter achieved in the UK. Out of these results, it is concluded that: the shorter the egg storage time before the setting the better will the hatching results be.

  7. A comparison of the ability of Bellucia dichotoma Cogn. (Melastomataceae) extract to inhibit the local effects of Bothrops atrox venom when pre-incubated and when used according to traditional methods.

    Science.gov (United States)

    Mourão de Moura, Valéria; Serra Bezerra, Adrielle N; Veras Mourão, Rosa Helena; Varjão Lameiras, Juliana L; Almeida Raposo, Juliana D; Luckwu de Sousa, Rafael; Boechat, Antônio Luiz; Bezerra de Oliveira, Ricardo; de Menezes Chalkidis, Hipocrátes; Dos-Santos, Maria Cristina

    2014-07-01

    was administered in combination with BA. The SDS-PAGE profiles showed that several of the BaV protein (SDS-PAGE) and enzyme (zymography) bands were not detected when the venom was pre-incubated, and Western blot revealed that this was not caused by the AEBd enzymes observed in the zymogram. The "pseudo inhibition" observed after pre-incubation in this study may be due to the presence of tannins in the extract, which could act as chelating agents, removing metalloproteins and Ca²⁺ ions and thus inhibiting hemorrhagin and PLA₂ activity. However, when administered according to traditional methods, B. dichotoma extract was effective in blocking BaV-induced edematogenic activity and had an additional effect on inhibition of this activity by BA.

  8. [Development of Eimeria tenella in MDBK cell culture with a note on enhancing effect of preincubation with chicken spleen cells].

    Science.gov (United States)

    Chai, J Y; Lee, S H; Kim, W H; Yun, C K

    1989-06-01

    Eimeria tenella, an intracellular protozoan parasite infecting the epithelial cells of the ceca of chickens, causes severe diarrhea and bleeding that can lead its host to death. It is of interest that E. tenella first penetrate into the mucosal intraepithelial lymphocytes (IEL) before they parasitize crypt or villous epithelial cells. This in vitro study was undertaken to know whether the penetration of E. tenella into such a lymphoid cell is a beneficial step for the parasite survival and development. Three sequential experiments were performed. First, the in vitro established bovine kidney cell line, MDBK cells, were evaluated for use as host cells for E. tenella, through morphological observation. Second, the degree of parasite development and multiplication in MDBK cells was quantitatively assayed using radioisotope-labelled uracil (3H-uracil). Third, the E. tenella sporozoites viability was assayed after preincubation of them with chicken spleen cells. E. tenella oöcysts obtained from the ceca of the infected chickens were used for the source of the sporozoites. Spleen cells (E) obtained from normal chickens (FP strain) were preincubated with the sporozoites (T) at the E:T ratio of 100:1, 50:1 or 25:1 for 4 or 12 hours, and then the mixture was inoculated into the MDBK cell monolayer. Morphologically the infected MDBK cells revealed active schizogonic cycle of E. tenella in 3-4 days, which was characterized by the appearance of trophozoites, and immature and mature schizonts containing merozoites. The 3H-uracil uptake by E. tenella increased gradually in the MDBK cells, which made a plateau after 48-60 hours, and decreased thereafter. The uptake amount of 3H-uracil depended not only upon the inoculum size of the sporozoites but also on the degree of time delay (preincubation; sporozoites only) from excystation to inoculation into MDBK cells. The 3H-uracil uptake became lower as the preincubation time was prolonged. In comparison, after preincubation of

  9. Descriptive sensory profiling and physical/chemical analyses of warmed-over flavour in pork patties from carriers and non-carriers of the RN(-) allele.

    Science.gov (United States)

    Byrne, D V; O'Sullivan, M G; Bredie, W L P; Andersen, H J; Martens, M

    2003-02-01

    Descriptive sensory profiling was carried out to evaluate warmed-over flavour (WOF) development in cooked, chill-stored and reheated pork patties derived from the meat (Musculus longissimus dorsi) of carriers (RN(-)/rn(+)) and non-carriers (rn(+)/rn(+)) of the RN(-) gene. Patties were oven-cooked at 150 and 170 °C and chill-stored for up to 5 days to facilitate warmed-over flavour (WOF) development. In addition, thawing losses, cooking losses, pH and TBARS were measured in the cooked pork patties. Analysis of variance (ANOVA) was used to investigate changes in the physical/chemical measurements due to the experimental design variables (storage days, cooking temperature and genotype) and multivariate ANOVA-partial least squares regression (APLSR) was used to determine relationships between the design variables and the sensory and physical/chemical data. WOF was found to involve the development of lipid oxidation derived nuance off-flavour and odour notes, e.g. rancid-like flavour and linseed oil-like odour, in association with a concurrent decrease in 'meatiness' as described by, e.g. cooked pork meat-like flavour. Cooking temperature was described by roasted-like and caramel-like odours and samples from carriers of the RN(-) gene were described as more 'sour' and 'metallic'. Thawing and cooking losses were found to be significantly (P cooked meat samples. TBARS were found to be significant (P cooked at high oven temperatures (170 °C). The former effect was postulated as related to pH and the latter as related to the antioxidant effects of Maillard reaction products developed at higher cooking temperatures. Overall, WOF, cooking temperature and genotype were differentiated as individual dimensions through sensory profiling of the meat samples and each source of variation was characterised by specific groups of sensory descriptors. Moreover, the predictive nature of thawing losses, cooking losses and TBARS was established for the effects of RN(-) gene, cooking

  10. Effects of pre-incubation of eggs in fresh water and varying sperm concentration on fertilization rate in sterlet sturgeon, Acipenser ruthenus.

    Science.gov (United States)

    Siddique, Mohammad Abdul Momin; Butts, Ian Anthony Ernest; Psenicka, Martin; Linhart, Otomar

    2015-08-01

    Standardization of fertilization protocols for sterlet Acipenser ruthenus is crucial for improving reproductive techniques and for conservation purposes. Our objectives were to determine the number of sperm (tested 430,000:1, 43,000:1, 4300:1, 430:1 sperm to egg) required to fertilize eggs and explore how pre-incubation of eggs in freshwater for 0min, 0.5min, 1min, and 10min interacts with different sperm ratios. Fertilization success ranged from 29.7% at 430:1 to 84.2% at 430,000:1. Pre-incubation time had no effect on fertilization success at 430,000:1 and 43,000:1 sperm to egg ratios, while it was significant at the 4300:1 and 430:1 ratios. The use of adequate experimental suboptimal sperm to egg ratio revealed a positive effect of pre-incubation time, such that at the 430:1 ratio, 0.5min pre-incubation increased the fertilization rate than 10min. At 0min pre-incubation the proportion of fertilized eggs increased at the 430,000:1 ratio, while at 1min fertilization increased at the 4300:1 ratio. At the 10min pre-incubation time, fertilization increased at the 43,000:1 ratio. Moreover, at the 0.5min pre-incubation time, the 43,000:1 ratio increased the fertilization rate than the 430:1 ratio. Generally, for 430:1 ratio, the fertilization rate is lower than in control. Transmission electron microscopy showed that pre-incubation of eggs in water for fertilization can enhance fertilization rate of sterlet. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Acquiring competence for shoot development in Arabidopsis: ARR2 directly targets A-type ARR genes that are differentially activated by CIM preincubation.

    Science.gov (United States)

    Che, Ping; Lall, Sonia; Howell, Stephen H

    2008-02-01

    Shoots can be regenerated from roots in Arabidopsis by treating root explants with cytokinin, however, shoot regeneration requires preincubation on callus induction medium (CIM) prior to induction on cytokinin-rich shoot induction medium (SIM). A cytokinin-inducible marker gene, RESPONSE REGULATOR 15 (ARR15), was identified through a "CIM dropout experiment" with similar requirements for CIM preincubation. The requirements for ARR15 contrasted to ARR5, another cytokinin-inducible ARR gene that does not require CIM preincubation. We show here that despite their differences, both ARR5 and ARR15 are direct targets of the transcriptional B-type response regulator, ARR2. This was demonstrated by identifying genes upregulated following beta estradiol induced nuclear relocation of an ARR2-estradiol receptor fusion protein. The differences in CIM preincubation requirements for ARR5 and ARR15 expression indicate an additional layer of control for these A-type ARR genes during SIM incubation. For ARR15, the CIM requirement is a transcriptional effect, because the expression of ARR15 promoter:GUS reporter gene constructs is also affected by CIM preincubation. A testable model is that transcription of ARR15, but not ARR5, is blocked by a repressor and that the effects of the repressor are relieved by CIM preincubation.

  12. Warm Inflation

    Directory of Open Access Journals (Sweden)

    Øyvind Grøn

    2016-09-01

    Full Text Available I show here that there are some interesting differences between the predictions of warm and cold inflation models focusing in particular upon the scalar spectral index n s and the tensor-to-scalar ratio r. The first thing to be noted is that the warm inflation models in general predict a vanishingly small value of r. Cold inflationary models with the potential V = M 4 ( ϕ / M P p and a number of e-folds N = 60 predict δ n s C ≡ 1 − n s ≈ ( p + 2 / 120 , where n s is the scalar spectral index, while the corresponding warm inflation models with constant value of the dissipation parameter Γ predict δ n s W = [ ( 20 + p / ( 4 + p ] / 120 . For example, for p = 2 this gives δ n s W = 1.1 δ n s C . The warm polynomial model with Γ = V seems to be in conflict with the Planck data. However, the warm natural inflation model can be adjusted to be in agreement with the Planck data. It has, however, more adjustable parameters in the expressions for the spectral parameters than the corresponding cold inflation model, and is hence a weaker model with less predictive force. However, it should be noted that the warm inflation models take into account physical processes such as dissipation of inflaton energy to radiation energy, which is neglected in the cold inflationary models.

  13. Fertilization strategies for Sea Bass Dicentrarchus labrax (Linnaeus, 1758): effects of pre-incubation and duration of egg receptivity in seawater

    DEFF Research Database (Denmark)

    Siddique, Mohammad A Momin; Butts, Ian; Linhart, Otomar

    2017-01-01

    these treatments after 3 min of pre-incubation, which clearly indicates that sea bass eggs are able to be fertilized by sperm for up to 3 min after release into seawater. This study has particular importance for understanding fertilization strategies, reproductive potential, as well as reproductive ecology of sea......Studying gamete biology can provide important information about a species fertilization strategy as well as their reproductive ecology. Currently, there is a lack of knowledge about how long sea bass Dicentrarchus labrax eggs can remain viable after being activated in seawater. The objectives...... of this study were to understand the effects of pre-incubation of fresh and overripe sea bass eggs in seawater and to determine the duration of egg receptivity. Pooled eggs (fresh and overripe) from four females were pre-incubated in seawater for 0 min (control), 0.5 min, 1 min, 3 min, 10 min and 30 min...

  14. Global warming

    Science.gov (United States)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  15. Pre-fermentative addition of an enzymatic grape seed hydrolysate in warm climate winemaking. Effect on the differential colorimetry, copigmentation and polyphenolic profiles.

    Science.gov (United States)

    Cejudo-Bastante, María Jesús; Rodríguez-Morgado, Bruno; Jara-Palacios, M José; Rivas-Gonzalo, Julián C; Parrado, Juan; Heredia, Francisco J

    2016-10-15

    The effect of adding an enzymatic hydrolysate of grape seeds (EH-GS) during Syrah wine fermentation in a warm climate has been evaluated. We focused on the polyphenolic composition as well as the application of differential and tristimulus colorimetry to colour data. This is the first attempt at using this oenological alternative to avoid common colour losses of red wines elaborated in a warm climate. The addition of 250g (simple dose, SW) of EH-GS to 120kg of fermentation material promoted a significant (p3 CIELAB units).

  16. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    NARCIS (Netherlands)

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite d

  17. Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds

    Directory of Open Access Journals (Sweden)

    Mona M.Y. Elghandour

    2014-04-01

    Full Text Available The objective of this study was to evaluate the effects of Saccharomyces cerevisiae on in vitro gas production (GP kinetics and degradability of corn stover, oat straw, sugarcane bagasse and sorghum straw. Feedstuffs were incubated with different doses of yeast [0, 4, 8 and 12 mg/g dry matter (DM] at direct addition or 72 h pre-incubation. Rumen GP was recorded at 2, 4, 6, 8, 10, 12, 14, 24, 30, 48, 54 and 72 h of incubation. After 72 h, rumen pH and methane were determined and contents were filtrated for DM, neutral (NDF and acid detergent fibre (ADF degradability. Fibrous species×method of application×yeast interactions occurred (P<0.001 for all measured ruminal GP parameters and degradability. The direct addition or 72 h pre-incubation of S. cerevisiae with corn stover improved (P<0.05 GP and methane and decreased (P<0.05 the lag time (L and NDF degradability (NDFD. The direct addition of S. cerevisiae to oat straw increased (P<0.05 rate of GP (c and decreased (P<0.05 asymptotic GP (b. However, 72 h pre-incubation increased (P<0.05 c with linearly decreased b, DM degradability (DMD and NDFD. Applying S. cerevisiae for 72 h pre-incubation decreased (P<0.001 methane emission. The direct addition or 72 h pre-incubation of S. cerevisiae to sorghum straw increased (P<0.05 b, c, L, DMD and NDFD. Overall, the effect of dose varied among different feedstuffs and different application methods. Results suggested that the direct addition of S. cerevisiae could support and improve ruminal fermentation of lowquality forages at 4 to 12 g/kg DM.

  18. Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white Leghorn chicken embryos.

    Science.gov (United States)

    Lahijani, Maryam Shams; Bigdeli, Mohammad Reza; Kalantary, Sima

    2011-09-01

    There are several reports indicating linkages between exposures to 50-60 Hz electromagnetic fields and abnormalities in the early stages of chicken embryonic development. Based on our previous published research carried out at the Department of Animal Sciences, Faculty of Biological Sciences, Shahid Beheshti University, effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white leghorn hen eggs were investigated. Three hundred healthy fresh fertilized eggs (55-65 gr) were divided into three groups of experimental (n = 50), control (n = 75), and sham (n = 75). Experimental eggs (inside the coil) were exposed to 3 different intensities of 1.33, 2.66, and 7.32 mT and sham groups were located inside the same coil with no exposure, for 24 h before incubation. Control, sham, and experimental groups were all incubated in an incubator (38 ± 0.5(°)C, 60% humidity) for 14 days. 14-day old chicken embryos were removed by C-sections, and the brains of all embryos of all groups were fixed in formalin(10%), stained with H&E and TUNEL assay, for studying the histopatholog and process of apoptosis. The brains of other embryos were prepared for Scanning Electeron Microscope. Results showed electromagnetic fields have toxic effects on brain cells by increasing the number of apoptotic cells and degeneration of brains' tissues of exposed chicken embryos. These findings suggest that the electromagnetic fields induce brain damages at different levels.

  19. Global warming

    CERN Document Server

    Hulme, M

    1998-01-01

    Global warming-like deforestation, the ozone hole and the loss of species- has become one of the late 20the century icons of global environmental damage. The threat, is not the reality, of such a global climate change has motivated governments. businesses and environmental organisations, to take serious action ot try and achieve serious control of the future climate. This culminated last December in Kyoto in the agreement for legally-binding climate protocol. In this series of three lectures I will provide a perspective on the phenomenon of global warming that accepts the scientific basis for our concern, but one that also recognises the dynamic interaction between climate and society that has always exited The future will be no different. The challenge of global warning is not to pretend it is not happening (as with some pressure groups), nor to pretend it threatens global civilisation (as with other pressure groups), and it is not even a challenge to try and stop it from happening-we are too far down the ro...

  20. Warm Breeze

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Middle-aged female painter Wang Yingchun is a first-grade artist at the Research Instituteof Chinese Painting. With a solid foundation in: Chinese painting, oil painting andsculpture she began to experiment in the early 1980s with stone carving, murals, folkart, landscapes, flowers and birds, cubism, expressionism and abstractionism. Living ina time of social transformation, she felt pressed to create her own artistic style. Aftervisiting South America, she produced a batch of works which drew the essence of theBeast Group and used a new technique, without sketching the contours of flowers, sothat the paintings look wild, romantic and exuberant. This painting Warm Breeze displaysWang’s style: While extensively studying the paintings of various schools, she makes hertraditional Chinese ink paintings tinted with modern color.

  1. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15. I. Line profiles, physical conditions, and H2O abundance

    Science.gov (United States)

    Kristensen, L. E.; van Dishoeck, E. F.; Mottram, J. C.; Karska, A.; Yıldız, U. A.; Bergin, E. A.; Bjerkeli, P.; Cabrit, S.; Doty, S.; Evans, N. J.; Gusdorf, A.; Harsono, D.; Herczeg, G. J.; Johnstone, D.; Jørgensen, J. K.; van Kempen, T. A.; Lee, J.-E.; Maret, S.; Tafalla, M.; Visser, R.; Wampfler, S. F.

    2017-09-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still not understood. Aims: We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods: Observations are presented of the highly excited CO line J = 16-15 (Eup/kB = 750 K) with the Herschel Heterodyne Instrument for the Far Infrared (HIFI) toward a sample of 24 low-mass protostellar objects. The sources were selected from the Herschel "Water in Star-forming regions with Herschel" (WISH) and "Dust, Ice, and Gas in Time" (DIGIT) key programs. Results: The spectrally resolved line profiles typically show two distinct velocity components: a broad Gaussian component with an average FWHM of 20 km s-1 containing the bulk of the flux, and a narrower Gaussian component with a FWHM of 5 km s-1 that is often offset from the source velocity. Some sources show other velocity components such as extremely-high-velocity features or "bullets". All these velocity components were first detected in H2O line profiles. The average rotational temperature over the entire profile, as measured from comparison between CO J = 16-15 and 10-9 emission, is 300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is 0.02, suggesting a total H2O abundance of 2 × 10-6, independent of velocity. Conclusions: Two distinct velocity profiles observed in the HIFI line profiles suggest that the high-J CO ladder observed with PACS consists of two excitation components. The warm PACS component (300 K) is associated with the broad HIFI component, and the hot PACS component (700 K) is associated with the offset HIFI

  2. Pre-incubation with cyclosporine A potentiates its inhibitory effects on pitavastatin uptake mediated by recombinantly expressed cynomolgus monkey hepatic organic anion transporting polypeptide.

    Science.gov (United States)

    Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2016-11-01

    Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC50 values toward R values (1 + [unbound inhibitor]inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Production of reactive oxygen species by phagocytic cells after exposure to glass wool and stone wool fibres - effect of fibre preincubation in aqueous solution.

    Science.gov (United States)

    Zoller, T; Zeller, W J

    2000-04-03

    The potential of four man-made vitreous fibres (MMVFs) (glass wool Code A, stone wool Code G, HT-N and MMVF 21) and of two natural mineral fibres (crocidolite, erionite) to induce production of reactive oxygen species (ROS) by differentiated HL-60 cells (HL-60-M cells) was investigated by determination of luminol-enhanced chemiluminescence (CL). Quartz served as positive control. The same system was used to uncover possible influences of fibre preincubation in aqueous solutions on the ROS-generating potential. Following preincubation in unbuffered saline over about 4 weeks, Code A and G fibres showed decreased ROS-generating potential as compared to freshly suspended fibres. On the other hand, MMVF 21 and HT-N fibres as well as crocidolite and erionite showed no decreased CL after incubation in aqueous solutions. The observed decrease of the ROS-generating potential of Code A and G fibres after preincubation may be an expression of fibre surface alterations (leaching, initiation of dissolution) that influences the response of exposed phagocytic cells. After incubation of both fibres in buffered solutions at different pH values (5.0, 7.4) a reduced ROS-generating potential was still discernible as compared to freshly suspended fibres.

  4. Preincubation of pneumococci with beta-lactams alone or combined with levofloxacin prevents quinolone-induced resistance without increasing intracellular levels of levofloxacin.

    Science.gov (United States)

    Cottagnoud, Philippe; Johnson, Maggie; Cottagnoud, Marianne; Piddock, Laura

    2005-08-01

    Preincubation of pneumococci with sub-MIC concentrations of ceftriaxone (1/16x MIC), cefotaxime (1/8x MIC), and meropenem (1/4x MIC) alone or combined with levofloxacin (1/8x MIC) over 6 h prevents the emergence of levofloxacin-resistant mutants after 96 h of incubation but does not affect the intracellular accumulation of levofloxacin in two penicillin-resistant pneumococcal strains, suggesting a link between the mechanism of action of beta-lactams and the emergence of quinolone-induced resistance in pneumococci.

  5. Preincubation of serum aspartate aminotransferase with pyridoxal 5'-phosphate in the SMAC: comparison with revised DuPont aca method and recommended IFCC method.

    Science.gov (United States)

    Garber, C C; Feldbruegge, D H; Hoessel, M

    1981-04-01

    The method for continuous-flow assay of aspartate aminotransferase with the Technicon SMAC was modified to include preincubation of the serum enzyme with pyridoxal 5'-phosphate, to be consistent with the recommendations of IFCC and the Standards Committee of AACC. Preliminary estimates of the imprecision of the modified method on SMAC gave day-to-day standard deviations of 5.3 U/L at mean of 48 U/L (n = 66) and 6.2 U/L at 155 U/L (n = 61). Added bilirubin, sodium pyruvate, ascorbic acid, and endogenous lipids did not interfere. Comparison of results for 50 samples by this method with those by the manual IFCC method gave y = 1.1113x - 0.3 U/L, Sy/x = 4.4 U/L, and r = 0.997. Similar data are presented for the revised AST method for the DuPont aca discrete analyzer. Clinical data show that AST activities increase by as much as 200% when the serum is preincubated with pyridoxal 5'-phosphate.

  6. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  7. Fatty acid profiles of varietal virgin olive oils (Olea europaea L. from mature orchards in warm arid valleys of Northwestern Argentina (La Rioja

    Directory of Open Access Journals (Sweden)

    Rousseaux, M. C.

    2011-12-01

    Full Text Available The olive industry in Northwestern Argentina has experienced substantial growth during the past two decades to produce virgin olive oil for export. To assess the fatty acid profiles of the main varietal olive oils, 563 oil samples from 17 varieties cultivated in the province of La Rioja were analyzed from 2005-2008. Olive varieties were ranked according to oleic acid content as low (65%; Manzanilla, Empeltre, Leccino, Coratina, Changlot, Picual. Using data from this study and the literature, the fatty acid composition of Spanish (Arbequina, Picual and Italian (Coratina, Frantoio varieties indicated consistently lower oleic acid contents when grown in NW Argentina versus the Mediterranean. For Arbequina, the oleic content decreased with increasing temperature during oil accumulation (-2% per °C. The classification of varieties should be useful in the selection of virgin olive oils for corrective blending and for choosing varieties for new orchards in order to meet IOOC requirements. The differences in fatty acid composition between NW Argentina and the Mediterranean Basin are most likely to be related to a genotype produced by environmental interaction, and the negative effect of the high seasonal mean temperature during oil accumulation will need further research.La industria oleícola del noroeste de Argentina creció sustancialmente durante las últimas dos décadas para producir aceite de oliva virgen exportable. Para evaluar el perfil de ácidos grasos de los principales aceites varietales, se analizaron 563 muestras de aceite de 17 variedades en la provincia de La Rioja durante 2005-2008. Las variedades se clasificaron de acuerdo a su contenido de ácido oleico en bajo (65%; Manzanilla, Empeltre, Leccino, Coratina, Changlot, Picual. Utilizando datos de este trabajo y de la literatura, los aceites de variedades de origen español (Arbequina y Picual e italiano (Coratina y Frantoio mostraron consistentemente menor contenido de ácido oleico

  8. On Global Warming

    Institute of Scientific and Technical Information of China (English)

    Brad Franklin

    2010-01-01

    @@ There is a huge argument going on in the world these days and it is centered on the notion that our planet is warming up. It's celled global warming and it postulates1 that our use of fossil fuels such as coal and oil and our destruction of large areas of forest across the world have combined to create so-celled greenhouse gases.

  9. Keeping Warm Without Coal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Heat-pump technology offers a clean heating alternative to coal With no air conditioning or indoor heating, families in southeast Beijing’s Fangzhuang neighbor-hood still enjoy refreshing warm air all year round. The secret is in the pump technology. Heat pumps cool the homes in summer and warm them in winter just like a central air-conditioning system.

  10. Warm autoimmune hemolytic anemia.

    Science.gov (United States)

    Naik, Rakhi

    2015-06-01

    Warm autoimmune hemolytic anemia (AIHA) is defined as the destruction of circulating red blood cells (RBCs) in the setting of anti-RBC autoantibodies that optimally react at 37°C. The pathophysiology of disease involves phagocytosis of autoantibody-coated RBCs in the spleen and complement-mediated hemolysis. Thus far, treatment is aimed at decreasing autoantibody production with immunosuppression or reducing phagocytosis of affected cells in the spleen. The role of complement inhibitors in warm AIHA has not been explored. This article addresses the diagnosis, etiology, and treatment of warm AIHA and highlights the role of complement in disease pathology.

  11. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  12. Cellular Apoptosis and Blood Brain Barrier Permeability Changes in the Pre-Incubated Chicken Embryo’s Brain by Effect of Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Sima Kalantari

    2015-02-01

    Full Text Available Background: Electromagnetic fields (EMF have teratogenic effects during the embryonic development. In current study, histopathological and physiological effects of sinusoidal EMF on the brain were investigated. We sought to determine the apoptosis level and changes in blood brain barrier permeability in brain tissue of pre-incubated white leghorn hen eggs in the field of EMF. Materials and Methods: In this experimental study, 300 healthy, fresh, and fertilized eggs (55-65 g were divided into experimental (3 groups, N=50, control (N=75 and sham (N=75 groups. Experimental eggs (inside the coil were exposed to 3 different intensities of 1.33, 2.66 and 7.32 mT and sham groups were also located inside the same coil but with no exposure, for 24 hrs before incubation. Control, sham and experimental groups were incubated in an incubator (38±0.5ºC, 60% humidity. Brains of 14 day old chicken embryos of all groups were removed, fixed in formalin (10%, stained with H & E and TUNEL, apoptotic cells were studied under light microscope. Brains of other embryos were prepared for scanning electron microscope. By injections of Evans blue, any possible changes in brain vessels were also investigated. Results: Our results showed electromagnetic fields have toxic effects on cell organelles and cell membranes. EMF would increase the level of cellular apoptosis in the brain. They also would tear up the blood vessels. Thereafter, they would affect the permeability of blood brain barrier of exposed chicken embryos. Conclusion: These findings suggest that electromagnetic fields induce different degrees of brain damages in chicken embryos brain tissue.

  13. Global warming yearbook: 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arris, L. [ed.

    1999-02-01

    The report brings together a year`s worth of global warming stories - over 280 in all - in one convenient volume. It provides a one-stop report on the scientific, political and industrial implications of global warming. The report includes: detailed coverage of negotiations on the Kyoto Protocol; scientific findings on carbon sources and sinks, coral bleaching, Antarctic ice shelves, plankton, wildlife and tree growth; new developments on fuel economy, wind power, fuel cells, cogeneration, energy labelling and emissions trading.

  14. Polar Warming Drivers

    Science.gov (United States)

    McDunn, T. L.; Bougher, S. W.; Mischna, M. A.; Murphy, J. R.

    2012-12-01

    Polar warming is a dynamically induced temperature enhancement over mid-to-high latitudes that results in a reversed (poleward) meridional temperature gradient. This phenomenon was recently characterized over the 40-90 km altitude region [1] based on nearly three martian years of Mars Climate Sounder observations [2, 3]. Here we investigate which forcing mechanisms affect the magnitude and distribution of the observed polar warming by conducting simulations with the Mars Weather Research and Forecasting General Circulation Model [4, 5]. We present simulations confirming the influence topography [6] and dust loading [e.g., 7] have upon polar warming. We then present simulations illustrating the modulating influence gravity wave momentum deposition exerts upon polar warming, consistent with previous modeling studies [e.g., 8]. The results of this investigation suggest the magnitude and distribution of polar warming in the martian middle atmosphere is modified by gravity wave activity and that the characteristics of the gravity waves that most significantly affect polar warming vary with season. References: [1] McDunn, et al., 2012 (JGR), [2]Kleinböhl, et al., 2009 (JGR), [3] Kleinböhl, et al., 2011 (JQSRT), [4] Richardson, et al., 2007 (JGR), [5] Mischna, et al., 2011 (Planet. Space Sci.), [6] Richardson and Wilson, 2002 (Nature), [7] Haberle, et al., 1982 (Icarus), [8] Barnes, 1990 (JGR).

  15. Reality of Global Warming

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Global warming is today heard in the international arena as frequently and with the same brooding concern as terrorism, nuclear weapons and the Iraq war. Zou Ji, Vice Dean of the School of Environment, Renmin University of China in Beijing, has been a me

  16. Application of the differential colorimetry and polyphenolic profile to the evaluation of the chromatic quality of Tempranillo red wines elaborated in warm climate. Influence of the presence of oak wood chips during fermentation.

    Science.gov (United States)

    Gordillo, Belén; Cejudo-Bastante, María Jesús; Rodríguez-Pulido, Francisco J; González-Miret, M Lourdes; Heredia, Francisco J

    2013-12-01

    The effect of adding American oak wood chips during fermentation on Tempranillo red wines elaborates in a warm climate has been studied. Our attention was focused on the tristimulus colorimetry, differential colorimetry and phenolic compounds related to wine colour. This technique was applied as an oenological alternative to the conventional winemaking for avoiding the common fall of colour of red wines elaborated in warm climates. The addition of oak wood chips promoted the colour enhancement and stabilisation, producing wines with a notably darker colour and with more bluish tonality. This fact was also related to the significantly higher content of some phenolic compounds. On the basis of the results, it could be affirmed that the addition of oak wood chips during fermentation induced visually perceptible colour changes (by the analysis of ΔEab(*), %Δ(2)L, %Δ(2)C and %Δ(2)H), mainly in a quantitative way, and also a lower percentage of diminution of colour.

  17. Warm Springs pupfish recovery plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document gives a history of pupfish and focuses on the warm springs pupfish. The warm springs pupfish is endangered, and this is a plan to help recover the...

  18. Warm Little Inflaton.

    Science.gov (United States)

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O; Rosa, João G

    2016-10-07

    We show that inflation can naturally occur at a finite temperature T>H that is sustained by dissipative effects, when the inflaton field corresponds to a pseudo Nambu-Goldstone boson of a broken gauge symmetry. Similar to the Little Higgs scenarios for electroweak symmetry breaking, the flatness of the inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We show that, nevertheless, nonlocal dissipative effects are naturally present and are able to sustain a nearly thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational predictions are in very good agreement with the latest Planck results. This model constitutes the first realization of warm inflation requiring only a small number of fields; in particular, the inflaton is directly coupled to just two light fields.

  19. Warm Little Inflaton

    CERN Document Server

    Bastero-Gil, Mar; Ramos, Rudnei O; Rosa, Joao G

    2016-01-01

    We show that inflation can naturally occur at a finite temperature T>H that is sustained by dissipative effects, when the inflaton field corresponds to a pseudo-Nambu Goldstone boson of a broken gauge symmetry. Similarly to "Little Higgs" scenarios for electroweak symmetry breaking, the flatness of the inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We show that, nevertheless, non-local dissipative effects are naturally present and are able to sustain a nearly-thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational predictions are in very good agreement with the latest Planck results. This model constitutes the first realization of warm inflation where the inflaton is directly coupled to only two light fields.

  20. Liquid Cooling/Warming Garment

    Science.gov (United States)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2010-01-01

    The NASA liquid cooling/ventilating garment (LCVG) currently in use was developed over 40 years ago. With the commencement of a greater number of extra-vehicular activity (EVA) procedures with the construction of the International Space Station, problems of astronaut comfort, as well as the reduction of the consumption of energy, became more salient. A shortened liquid cooling/warming garment (SLCWG) has been developed based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal sections of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The SLCWG has been designed and completed, based on extensive testing in rest, exercise, and antiorthostatic conditions. It is more energy efficient than the LCVG currently used by NASA. The total length of tubing in the SLCWG is approximately 35 percent less and the weight decreased by 20 percent compared to the LCVG. The novel features of the innovation are: 1. The efficiency of the SLCWG to maintain thermal status under extreme changes in body surface temperatures while using significantly less tubing than the LCVG. 2. The construction of the garment based on physiological principles of heat transfer. 3. The identification of the body areas that are most efficient in heat transfer. 4. The inclusion of a hood as part of the garment. 5. The lesser consumption of energy.

  1. Military Implications of Global Warming.

    Science.gov (United States)

    2007-11-02

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  2. Global Warming And Meltwater

    Science.gov (United States)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  3. 对接大学与孵化器:预孵化的理论与实践%Docking University to Incubators: Theory and Practice of Pre-incubation

    Institute of Scientific and Technical Information of China (English)

    李宇

    2012-01-01

    This article attempts to find the reason why there are so high employment pressure and so low rate of entrepreneurship success for Chinese graduate on the perspective of docking mechanism from universities to career. Based above, this article contrasts and summaries theory and experience of pre-incubation in Europe and America, as well as the pilot of some higher education institutions of exploration and practice from three levels: pre-incubation form of University's entrepreneurship education,pre-incubation process of business incubators, pre-incubation network of regional innovation system,believes that pre-incubation mechanisms should band University Science Park building together which is high advanced in china now, not only seen as conventional means to deal employment and self-entrepreneurship,but also playing an important role in the regional innovation system as innovation source.%从大学与职场的对接机制视角寻找中国大学生巨大就业压力和极低创业成功率的产生原因,发现相比之下欧美发达国家将创业教育纳入高等教育建立的预孵化机制能够有效减少毕业生择业与创业的选择成本和再教育成本。基于此,从大学创业教育的预孵化形式、企业孵化器的预孵化过程、区域创新体系的预孵化网络三个层面对比和总结欧美发达国家的预孵化理论和经验,以及我国部分高等教育机构先导性的探索实践,预孵化机制应该同我国大力推进的大学科技园建设结合起来,不仅要作为解决大学生就业和自主创业的常规手段,而且要在区域创新体系中发挥重要的创新源作用。

  4. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence the gree......The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...... nature of the natural and the human system calls for an extremely complex analysis, in order to predict the outcome of various proposed changes in human behavior. This includes halting activities that most influence the climate and finding workable alternatives to these activities, or adapting to climate...

  5. Global Warming on Triton

    Science.gov (United States)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; Buie, M. W.; Pasachoff, J. M.; Babcock, B. A.; McConnochie, T. H.

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  6. Competent and Warm?

    Science.gov (United States)

    Hansen, Karolina; Rakić, Tamara; Steffens, Melanie C

    2017-01-01

    Most research on ethnicity has focused on visual cues. However, accents are strong social cues that can match or contradict visual cues. We examined understudied reactions to people whose one cue suggests one ethnicity, whereas the other cue contradicts it. In an experiment conducted in Germany, job candidates spoke with an accent either congruent or incongruent with their (German or Turkish) appearance. Based on ethnolinguistic identity theory, we predicted that accents would be strong cues for categorization and evaluation. Based on expectancy violations theory we expected that incongruent targets would be evaluated more extremely than congruent targets. Both predictions were confirmed: accents strongly influenced perceptions and Turkish-looking German-accented targets were perceived as most competent of all targets (and additionally most warm). The findings show that bringing together visual and auditory information yields a more complete picture of the processes underlying impression formation.

  7. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  8. Committed warming inferred from observations

    Science.gov (United States)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  9. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  10. AIRS-observed warm core structures of tropical cyclones over the western North Pacific

    Science.gov (United States)

    Gao, Si; Chen, Baiqing; Li, Tim; Wu, Naigeng; Deng, Wenjian

    2017-03-01

    Atmospheric Infrared Sounder (AIRS) temperature profiles during the period 2003-2013 are used to examine the warm core structures and evolution characteristics associated with the formation and development of western North Pacific (WNP) tropical cyclones (TCs). The warm core with a steady 1.5-K warming in the layer of 500-300 hPa occurs 24 h prior to tropical storm formation. Apparent eye warming extends upward to upper troposphere and downward to near surface after tropical storm formation. TC intensity shows a robust positive correlation with the warm core strength and has a weaker but still significant positive correlation with the warm core height (the weaker correlation is primarily attributed to the scattered warm core heights of weak TCs). Future 24-h intensity change of TCs has little correlation with the warm core height while it has a significant negative correlation with the warm core strength. Weak to moderate warm core at 500-200 hPa may be a necessary but not sufficient initial condition for TC rapid intensification. AIRS-observed warm core structures, in combination with other environmental factors, have the potential to improve the prediction of tropical storm formation and rapid intensification of WNP TCs.

  11. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  12. Global warming: the complete briefing

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, J.

    1994-01-01

    The science of global warming, its impacts, and what action might be taken, are described in this book, in a way which the intelligent non-scientist can understand. It also examines ethical and moral issues of concern about global warming, considering mankind as stewards of the earth. Chapter headings of the book are: global warming and climate change; the greenhouse effect; the greenhouse gases; climates of the past; modelling the climate; climate change and business-as-usual; the impacts of climate change; why should we be concerned ; weighing the uncertainty; action to slow and stabilize climate change; energy and transport for the future; and the global village.

  13. A Warm and Cleaner Winter

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Beijing municipal and district governments have taken measures to keep residents warm and the winter sky blue In a bungalow in Xisi North Fifth Alley in the Xicheng District of Beijing,Li has lived for nearly seven decades.

  14. Arctic dimension of global warming

    Directory of Open Access Journals (Sweden)

    G. V. Alekseev

    2014-01-01

    Full Text Available A brief assessment of the global warming in the Arctic climate system with the emphasis on sea ice is presented. The Arctic region is coupled to the global climate system by the atmosphere and ocean circulation that providesa major contribution to the Arctic energy budget. On this basis using of special indices it is shown that amplification of warming in the Arctic is associated with the increasing of meridional heat transport from the low latitudes.

  15. Media narratives of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, M. [Syracuse Univ., Syracuse, NY (United States)

    2000-06-01

    The way in which the North American print media are representing global warming was the focus of this paper. It was suggested that the way in which the media presents the issue and proposed responses to it, will influence how the public and decision-makers perceive and respond to the problem. This paper also presented examples demonstrating how nature and humanity's relationship to nature are being presented and what types of responses to global warming are being presented. The issue of who is responsible for acting to prevent or mitigate climate change was also discussed. It was shown that media narratives of global warming are not just stories of scientists debating the existence of global warming, but that they now largely accept global warming as a reality. However, the media continue to construct the problem in narrow technical, economic and anthropocentric terms. Mass media interpretation of global warming offer up a limited selection of problem definitions, reasons for acting and ways of addressing the problem. It was cautioned that this approach will likely promote futility, denial and apathy on the part of the public. 21 refs.

  16. How warm days increase belief in global warming

    Science.gov (United States)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  17. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods.

    Science.gov (United States)

    Bransburg-Zabary, Sharron; Virozub, Alexander; Mimouni, Francis B

    2015-01-01

    Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60 ml and 178 ml) to demonstrate that large milk portions are overheated (above 40°C). It seems that the contemporary storage method (upright feeding tool, i.e. bottle) and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast.

  18. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods.

    Directory of Open Access Journals (Sweden)

    Sharron Bransburg-Zabary

    Full Text Available Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60 ml and 178 ml to demonstrate that large milk portions are overheated (above 40°C. It seems that the contemporary storage method (upright feeding tool, i.e. bottle and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast.

  19. Rain initiation in warm clouds

    CERN Document Server

    Dallas, Vassilios

    2010-01-01

    Assuming perfect collision efficiency, we demonstrate that turbulence can initiate and sustain rapid growth of very small water droplets in air even when these droplets are too small to cluster, and even without having to take gravity and small-scale intermittency into account. This is because the range of local Stokes numbers of identical droplets in the turbulent flow field is broad enough even when small-scale intermittency is neglected. This demonstration is given for turbulence which is one order of magnitude less intense than typically in warm clouds but with a volume fraction which, even though small, is nevertheless large enough for an estimated a priori frequency of collisions to be ten times larger than in warm clouds. However, the time of growth in these conditions turns out to be one order of magnitude smaller than in warm clouds.

  20. Global Warming: Physics and Facts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, B.G. [Physics Today, New York, NY (United States); Hafemeister, D. [Committee on Foreign Relations (U.S. Senate), Washington, DC (United States); Scribner, R. [Georgetown Univ., Washington, DC (United States)] [eds.

    1992-05-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

  1. Global Warming: Physics and Facts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, B.G. (Physics Today, New York, NY (United States)); Hafemeister, D. (Committee on Foreign Relations (U.S. Senate), Washington, DC (United States)); Scribner, R. (Georgetown Univ., Washington, DC (United States)) (eds.)

    1992-01-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

  2. Issues concerning global warming today

    Institute of Scientific and Technical Information of China (English)

    Zhenqiu REN

    2008-01-01

    The global weather of today is growing significantly warmer; this is an indisputable fact.However,the scientific community has not yet reached consensus on the causes of global warming and its possible consequences.This paper introduces the causes of global warming and summarizes its results,which both involve a series of huge and complex system issues.Our top priority is to pinpoint the main reason and the interrelated links between causative factors by adopting a macro-approach,or comprehensive comparison analysis.Its physical mechanism was then determined and its digital model established after quantitative study.

  3. Global warming at the summit

    Science.gov (United States)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  4. GLOBAL WARMING: A NEW PERSPECTIVE

    Energy Technology Data Exchange (ETDEWEB)

    Ritesh Arya [Arya Drillers, 405, GH7A, Sector 20, Panchkula, Haryana (India)

    2008-09-30

    A lot has been said about global warming, various models projected and debated to show its importance in the present day. All these have actually made the issue more complex and confusing. Present paper is based on the observations made by the author during the drilling operations for providing sustainable water solutions based on developing groundwater resources in the various hydrostraigraphic zones identified by Arya,(1996) for the last 15 years in Himachal Pradesh and the high altitude, cold mountain, deserts of Ladakh in NW Indian Himalayas. The author tends to redefine global warming as phenomenon for transporting the weathered and eroded material which had been accumulated during the global cooling phase in the past. The agents can be biotic (man and living organisms) and abiotic (geological, geomorphologic, climatologic, planetary). The author also tends to introduce a biogeologic cycle which will explain in a very simple way the relevance of global warming in shaping the earth now and in future. The paper also discuses the fact that no phenomenon can be understood in isolation and the history and its cycle has to be understood to enjoy the concept in totality. Present paper will focus on these issues and try to touch the genesis of the problem in a very simple but scientific manner. Last but not the least the paper will end with an optimistic note ''Global warming is natural, Enjoy it''.

  5. Acid Rain Limits Global Warming

    Institute of Scientific and Technical Information of China (English)

    Will Knight; 张林玲

    2004-01-01

    @@ Acid rain restricts global warming by reducing methane① emissions from natural wetland areas, suggests a global climate study. Acid rain is the result of industrial pollution,which causes rainwater to carry small quantities of acidic compoumds② such as sulphuric and nitric acid③. Contaminated rainwater can upset rivers and lakes, killing fish and other organisms and also damage plants, trees and buildings.

  6. Plant movements and climate warming

    DEFF Research Database (Denmark)

    De Frenne, Pieter; Coomes, David A.; De Schrijver, An

    2014-01-01

    •Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting therma...

  7. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from

  8. Global warming: Clouds cooled the Earth

    Science.gov (United States)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  9. Arctic climate change: Greenhouse warming unleashed

    Science.gov (United States)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  10. Effects of 50 Hz electromagnetic fields on the histology, apoptosis, and expression of c-Fos and β-catenin on the livers of preincubated white Leghorn chicken embryos.

    Science.gov (United States)

    Lahijani, Maryam Shams; Farivar, Shirin; Khodaeian, Mehrnoosh

    2011-09-01

    Reports have demonstrated occurrences of abnormalities in the early stages of chicken embryonic development due to the exposure to electromagnetic fields (EMFs). This article was designed to investigate the effects of sinusoidal EMF on the histopathology, apoptosis, and expressions of c-Fos and β-Catenin genes of the livers of preincubated White Leghorn chicken embryos, based on our published experiments. 300 healthy, fresh fertilized eggs were divided into control (n = 70), sham (n = 70), and four experimental (1-4,days 13, 14, 5, and 19, n = 40) groups. Experimental eggs were exposed to the most effective intensity in a coil with 7.32 mT density, and sham groups were also located in the same coil with no exposure, both for 24 h before incubation. Control, sham, and experimental groups were then incubated in an incubator (37°C, humidity 60%) for 13,14,15, and 19 days. Livers of 13-15 and 19 day-old chicken embryos were removed by C-section and fixed in formalin (10%), stained with Hematoxylin-Eosin and TUNEL for histopathological and apoptosis studies. Others were used for investigating c-Fos and β-Catenin expressions, using RT-PCR. Results showed extensive hemorrhages all over the chicken embryos' bodies and livers, more lymphoid tissues, disturbed parenchymal tissues, sinusoid denaturation, vesiculizad cytoplasm, an increase in the number of apoptotic cells, and a decrease on the levels of expressions of c-Fos and β-Catenin genes in experimental groups of 1-4, comparing control and sham groups.

  11. Hydrological consequences of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  12. Global Warming and Financial Umbrellas

    Energy Technology Data Exchange (ETDEWEB)

    Dosi, C.; Moretto, M. [Department of Economics, University of Padova, Padova (Italy)

    2001-10-01

    A new instrument for hedging weather risks has made its appearance in the financial arena. Trade in 'weather derivatives' has taken off in the US, and interest is growing elsewhere. Whilst such contracts may be simply interpreted as a new tool for solving a historical problem, the question addressed in this paper is if, besides other factors, the appearance of weather derivatives is somehow related to anthropogenic climate change. Our tentative answer is positive. Since 'global warming' does not simply mean an increase in averaged temperatures, but increased climate variability, and increased frequency and magnitude of weather extremes, derivative contracts may potentially become a useful tool for hedging some weather risks, insofar as they may provide coverage at a lower cost than standard insurance schemes. Keywords: Global warming, climate variability, insurance coverage, weather derivatives.

  13. MCCB warm adjustment testing concept

    Science.gov (United States)

    Erdei, Z.; Horgos, M.; Grib, A.; Preradović, D. M.; Rodic, V.

    2016-08-01

    This paper presents an experimental investigation in to operating of thermal protection device behavior from an MCCB (Molded Case Circuit Breaker). One of the main functions of the circuit breaker is to assure protection for the circuits where mounted in for possible overloads of the circuit. The tripping mechanism for the overload protection is based on a bimetal movement during a specific time frame. This movement needs to be controlled and as a solution to control this movement we choose the warm adjustment concept. This concept is meant to improve process capability control and final output. The warm adjustment device design will create a unique adjustment of the bimetal position for each individual breaker, determined when the testing current will flow thru a phase which needs to trip in a certain amount of time. This time is predetermined due to scientific calculation for all standard types of amperages and complies with the IEC 60497 standard requirements.

  14. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  15. Global Warming Blame the Sun

    CERN Document Server

    Calder, N

    1997-01-01

    Concern about climate change reaches a political peak at a UN conference in Kyoto, 1-10 December, but behind the scenes the science is in turmoil. A challenge to the hypothesis that greenhouse gases are responsible for global warming comes from the discovery that cosmic rays from the Galaxy are involved in making clouds (Svensmark and Friis-Christensen, 1997). During the 20th Century the wind from the Sun has grown stronger and the count of cosmic rays has diminished. With fewer clouds, the EarthÕs surface has warmed up. This surprising mechanism explains the link between the Sun and climate change that astronomers and geophysicists have suspected for 200 years.

  16. PR Software: Warm Water Energie met grafieken

    NARCIS (Netherlands)

    Kanis, J.; Verstappen-Boerekamp, J.

    1999-01-01

    Het computerprogramma Warm Water Energie (WWE) berekent het verbruik van (warm) water, energie en reinigingsmiddelen bij de melkwinning. De nieuwste versie bevat grafieken die in één oogopslag de productie en het verbruik van warm water weergeven. In de overzichtelijke rapportage staan nu ook de sub

  17. Global warming and greenhouse gases

    OpenAIRE

    Belić Dragoljub S.

    2006-01-01

    Global warming or Climate change refers to long-term fluctuations in temperature, precipitation, wind, and other elements of the Earth's climate system. Natural processes such as solar-irradiance variations, variations in the Earth's orbital parameters, and volcanic activity can produce variations in climate. The climate system can also be influenced by changes in the concentration of various gases in the atmosphere, which affect the Earth's absorption of radiation.

  18. Debating about the climate warming

    Institute of Scientific and Technical Information of China (English)

    WANG Shaowu; LUO Yong; ZHAO Zongci; DONG Wenje; YANG Bao

    2006-01-01

    Debating about the climate warming is reviewed. Discussions have focused on the validity of the temperature reconstruction for the last millennium made by Mann et al. Arguments against and for the reconstruction are introduced. Temperature reconstructions by other authors are examined, including the one carried out by Wang et al. in 1996. It is concluded that: (1) Ability of reproducing temperature variability of time scale less than 10 a is limited, so no sufficient evidence proves that the 1990s was the warmest decade, and 1998 was the warmest year over the last millennium. (2) All ofthe temperature reconstructions by different authors demonstrate the occurrence of the MWP (Medieval Warm Period) and LIA (Little Ice Age) in low frequency band of temperature variations, though the peak in the MWP and trough in LIA varies from one reconstruction to the others. Therefore, terms of MWP and LIA can be used in studies of climate change. (3) The warming from 1975 to 2000 was significant, but we do not know if it was the strongest for the last millennium, which needs to be proved by more evidence.

  19. Global warming: Economic policy responses

    Energy Technology Data Exchange (ETDEWEB)

    Dornbusch, R.; Poterba, J.M. (eds.)

    1991-01-01

    This volume contains the proceedings of a conference that brought together economic experts from Europe, the US, Latin America, and Japan to evaluate key issues in the policy debate in global warming. The following issues are at the center of debates on alternative policies to address global warming: scientific evidence on the magnitude of global warming and the extent to which it is due to human activities; availability of economic tools to control the anthropogenic emissions of greenhouse gases, and how vigorously should they be applied; and political economy considerations which influence the design of an international program for controlling greenhouse gases. Many perspectives are offered on the approaches to remedying environmental problems that are currently being pursued in Europe and the Pacific Rim. Deforestation in the Amazon is discussed, as well as ways to slow it. Public finance assessments are presented of both the domestic and international policy issues raised by plans to levy a tax on the carbon emissions from various fossil fuels. Nine chapters have been processed separately for inclusion in the appropriate data bases.

  20. The Discovery of Global Warming

    Science.gov (United States)

    MacCracken, Michael C.

    2004-07-01

    At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).

  1. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  2. Methods of patient warming during abdominal surgery.

    Directory of Open Access Journals (Sweden)

    Li Shao

    Full Text Available BACKGROUND: Keeping abdominal surgery patients warm is common and warming methods are needed in power outages during natural disasters. We aimed to evaluate the efficacy of low-cost, low-power warming methods for maintaining normothermia in abdominal surgery patients. METHODS: Patients (n = 160 scheduled for elective abdominal surgery were included in this prospective clinical study. Five warming methods were applied: heated blood transfusion/fluid infusion vs. unheated; wrapping patients vs. not wrapping; applying moist dressings, heated or not; surgical field rinse heated or not; and applying heating blankets or not. Patients' nasopharyngeal and rectal temperatures were recorded to evaluate warming efficacy. Significant differences were found in mean temperatures of warmed patients compared to those not warmed. RESULTS: When we compared temperatures of abdominal surgery patient groups receiving three specific warming methods with temperatures of control groups not receiving these methods, significant differences were revealed in temperatures maintained during the surgeries between the warmed groups and controls. DISCUSSION: The value of maintaining normothermia in patients undergoing abdominal surgery under general anesthesia is accepted. Three effective economical and practically applicable warming methods are combined body wrapping and heating blanket; combined body wrapping, heated moist dressings, and heating blanket; combined body wrapping, heated moist dressings, and warmed surgical rinse fluid, with or without heating blanket. These methods are practically applicable when low-cost method is indeed needed.

  3. Global warming and obesity: a systematic review.

    Science.gov (United States)

    An, R; Ji, M; Zhang, S

    2017-10-04

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  4. Warm compacting behavior of stainless steel powders

    Institute of Scientific and Technical Information of China (English)

    肖志瑜; 柯美元; 陈维平; 召明; 李元元

    2004-01-01

    The warm compacting behaviors of four different kinds of stainless steel powders, 304L, 316L, 410L and 430L, were studied. The results show that warm compaction can be applied to stainless steel powders. The green densities and strengths of compacts obtained through warm compaction are generally higher than those obtained through cold compaction. The compacting behaviors in warm compaction and cold compaction are similar.Under the compacting pressure of 700 MPa, the warm compacted densities are 0. 10 - 0.22 g/cm3 higher than the cold compacted ones, and the green strengths are 11.5 %-50 % higher. The optimal warm compacting temperature is 100 - 110 ℃. In the die wall lubricated warm compaction, the optimum internal lubricant content is 0.2%.

  5. Cutaneous warming promotes sleep onset.

    Science.gov (United States)

    Raymann, Roy J E M; Swaab, Dick F; Van Someren, Eus J W

    2005-06-01

    Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period in humans and the polyphasic sleep periods in rodents tend to be initiated when core body temperature is declining. This decline is mainly due to an increase in skin blood flow and consequently skin warming and heat loss. We have proposed that these intrinsically occurring changes in core and skin temperatures could modulate neuronal activity in sleep-regulating brain areas (Van Someren EJW, Chronobiol Int 17: 313-54, 2000). We here provide results compatible with this hypothesis. We obtained 144 sleep-onset latencies while directly manipulating core and skin temperatures within the comfortable range in eight healthy subjects under controlled conditions. The induction of a proximal skin temperature difference of only 0.78 +/- 0.03 degrees C (mean +/- SE) around a mean of 35.13 +/- 0.11 degrees C changed sleep-onset latency by 26%, i.e., by 3.09 minutes [95% confidence interval (CI), 1.91 to 4.28] around a mean of 11.85 min (CI, 9.74 to 14.41), with faster sleep onsets when the proximal skin was warmed. The reduction in sleep-onset latency occurred despite a small but significant decrease in subjective comfort during proximal skin warming. The induction of changes in core temperature (delta = 0.20 +/- 0.02 degrees C) and distal skin temperature (delta = 0.74 +/- 0.05 degrees C) were ineffective. Previous studies have demonstrated correlations between skin temperature and sleep-onset latency. Also, sleep disruption by ambient temperatures that activate thermoregulatory defense mechanisms has been shown. The present study is the first to experimentally demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations within the normal nocturnal fluctuation range. Circadian and sleep-appetitive behavior-induced variations in skin temperature might act as an input signal to sleep-regulating systems.

  6. Vascular plants promote ancient peatland carbon loss with climate warming.

    Science.gov (United States)

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.

  7. The properties of warm dark matter haloes

    Science.gov (United States)

    Lovell, Mark R.; Frenk, Carlos S.; Eke, Vincent R.; Jenkins, Adrian; Gao, Liang; Theuns, Tom

    2014-03-01

    Well-motivated elementary particle candidates for the dark matter, such as the sterile neutrino, behave as warm dark matter (WDM). For particle masses of the order of a keV, free streaming produces a cutoff in the linear fluctuation power spectrum at a scale corresponding to dwarf galaxies. We investigate the abundance and structure of WDM haloes and subhaloes on these scales using high resolution cosmological N-body simulations of galactic haloes of mass similar to the Milky Way's. On scales larger than the free-streaming cutoff, the initial conditions have the same power spectrum and phases as one of the cold dark matter (CDM) haloes previously simulated by Springel et al. as part of the Virgo consortium Aquarius project. We have simulated four haloes with WDM particle masses in the range 1.5-2.3 keV and, for one case, we have carried out further simulations at varying resolution. N-body simulations in which the power spectrum cutoff is resolved are known to undergo artificial fragmentation in filaments producing spurious clumps which, for small masses (Frenk-White or Einasto profiles. Their central densities are lower for lower WDM particle masses and none of the models we have considered suffering from the `too big to fail' problem recently highlighted by Boylan-Kolchin et al.

  8. A sudden stratospheric warming compendium

    Science.gov (United States)

    Butler, Amy H.; Sjoberg, Jeremiah P.; Seidel, Dian J.; Rosenlof, Karen H.

    2017-02-01

    Major, sudden midwinter stratospheric warmings (SSWs) are large and rapid temperature increases in the winter polar stratosphere are associated with a complete reversal of the climatological westerly winds (i.e., the polar vortex). These extreme events can have substantial impacts on winter surface climate, including increased frequency of cold air outbreaks over North America and Eurasia and anomalous warming over Greenland and eastern Canada. Here we present a SSW Compendium (SSWC), a new database that documents the evolution of the stratosphere, troposphere, and surface conditions 60 days prior to and after SSWs for the period 1958-2014. The SSWC comprises data from six different reanalysis products: MERRA2 (1980-2014), JRA-55 (1958-2014), ERA-interim (1979-2014), ERA-40 (1958-2002), NOAA20CRv2c (1958-2011), and NCEP-NCAR I (1958-2014). Global gridded daily anomaly fields, full fields, and derived products are provided for each SSW event. The compendium will allow users to examine the structure and evolution of individual SSWs, and the variability among events and among reanalysis products. The SSWC is archived and maintained by NOAA's National Centers for Environmental Information (NCEI, http://dx.doi.org/10.7289/V5NS0RWP" target="_blank">doi:10.7289/V5NS0RWP).

  9. Population growth and global warming

    Science.gov (United States)

    Short, R.V.

    2009-01-01

    When I was born in 1930, the human population of the world was a mere 2 billion. Today, it has already reached 6.8 billion, and is projected to reach 9.1 billion by 2050. That is unsustainable. It is slowly beginning to dawn on us that Global Warming is the result of increasing human CO2 emissions, and the more people there are in the world, the worse it will become. Ultimately, it is the sky that will prove to be the limit to our numbers. The developed countries of the world are the most affluent, and also the most effluent, so we must lead by example and contain our own population growth and per capita emissions. We also have a big debt to repay to former colonial territories in Africa, Asia and South America, who desperately need our help to contain their excessive rates of population growth. Belgian and Dutch obstetricians and gynaecologists can play a critical role in this endeavour. After all, we already have a pill that will stop global warming – the oral contraceptive pill. PMID:25478068

  10. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems.

    Science.gov (United States)

    Rousk, Johannes; Smith, Andrew R; Jones, Davey L

    2013-12-01

    We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long-term (>10 years) field experiments across Europe (EU-FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre-incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short-term ecosystem studies thereby providing a clear evidence base to allow long-term, broad-scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying-rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil. © 2013 John Wiley & Sons Ltd.

  11. Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming?

    Science.gov (United States)

    Gorsuch, Peter A; Pandey, Subedar; Atkin, Owen K

    2010-07-01

    We quantified a broad range of Arabidopsis thaliana (Col-0) leaf phenotypes for initially warm-grown (25/20 degrees C day/night) plants that were exposed to cold (5 degrees C) for periods of a few hours to 45 d before being transferred back to the warm, where leaves were allowed to mature. This allowed us to address the following questions: (1) For how long do warm-grown plants have to experience cold before developing leaves become irreversibly cold acclimated? (2) To what extent is the de-acclimation process associated with changes in leaf anatomy and physiology? We show that leaves that experience cold for extended periods during early development exhibit little plasticity in either photosynthesis or respiration, and they do not revert to a warm-associated carbohydrate profile. The eventual expansion rate in the warm was inversely related to the duration of previous cold treatment. Moreover, cold exposure of immature/developing leaves for as little as 5 d resulted in irreversible changes in the morphology of leaves that subsequently matured in the warm, with 15 d cold being sufficient for a permanent alteration of leaf anatomy. Collectively, these results highlight the impact of transitory cold during early leaf development in determining the eventual phenotype of leaves that mature in the warm.

  12. Two decades of warming increases diversity of a potentially lignolytic bacterial community.

    Science.gov (United States)

    Pold, Grace; Melillo, Jerry M; DeAngelis, Kristen M

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming.

  13. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh

    DEFF Research Database (Denmark)

    Flury, Sabine; Gessner, Mark

    2011-01-01

    obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had......Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions...... of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles...

  14. Stratospheric sudden warming and lunar tide

    Science.gov (United States)

    Yamazaki, Yosuke; Kosch, Michael

    2016-07-01

    A stratospheric sudden warming is a large-scale disturbance in the middle atmosphere. Recent studies have shown that the effect of stratospheric sudden warnings extends well into the upper atmosphere. A stratospheric sudden warming is often accompanied by an amplification of lunar tides in the ionosphere/theremosphere. However, there are occasionally winters when a stratospheric sudden warming occurs without an enhancement of the lunar tide in the upper atmosphere, and other winters when large lunar tides are observed without a strong stratospheric sudden warming. We examine the winters when the correlation breaks down and discuss possible causes.

  15. Ecological stability in response to warming

    Science.gov (United States)

    Fussmann, Katarina E.; Schwarzmüller, Florian; Brose, Ulrich; Jousset, Alexandre; Rall, Björn C.

    2014-03-01

    That species’ biological rates including metabolism, growth and feeding scale with temperature is well established from warming experiments. The interactive influence of these changes on population dynamics, however, remains uncertain. As a result, uncertainty about ecological stability in response under warming remains correspondingly high. In previous studies, severe consumer extinction waves in warmed microcosms were explained in terms of warming-induced destabilization of population oscillations. Here, we show that warming stabilizes predator-prey dynamics at the risk of predator extinction. Our results are based on meta-analyses of a global database of temperature effects on metabolic and feeding rates and maximum population size that includes species of different phylogenetic groups and ecosystem types. To unravel population-level consequences we parameterized a bioenergetic predator-prey model and simulated warming effects within ecological, non-evolutionary timescales. In contrast to previous studies, we find that warming stabilized population oscillations up to a threshold temperature, which is true for most of the possible parameter combinations. Beyond the threshold level, warming caused predator extinction due to starvation. Predictions were tested in a microbial predator-prey system. Together, our results indicate a major change in how we expect climate change to alter natural ecosystems: warming should increase population stability while undermining species diversity.

  16. Warm Absorbers in Active Galactic Nuclei

    CERN Document Server

    Komossa, S

    2000-01-01

    We first provide a review of the properties of warm absorbers concentrating on what we have learned from ROSAT and ASCA. This includes dusty and dust-free warm absorbers, non-X-ray emission and absorption features of warm absorbers, and the possible warm absorber interpretation of the peculiar 1.1 keV features. We then discuss facets of warm absorbers by a more detailed investigation of individual objects: In a first part, we discuss several candidates for dusty warm absorbers. In a second part, we review and extend our earlier study of a possible relation between warm absorber and CLR in NGC 4051, and confirm that both components are of different origin (the observed coronal lines are underpredicted by the models, the warm absorber is too highly ionized). We then suggest that a potential overprediction of these lines in more lowly ionized absorbers can be avoided if these warm absorbers are dusty. In a third part, we present first results of an analysis of a deep ROSAT PSPC observation of the quasar MR2251-1...

  17. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  18. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  19. Warm gas in protoplanetary disks

    Science.gov (United States)

    van der Plas, Gerrit

    2010-12-01

    This thesis presents a study of warm CO, [OI] and H2 gas coming from the disks around Herbig Ae/Be stars. These various gas tracers are each a proxy for a different radial and vertical region of the PP disk surface. Our sample consists of disks whose shape (based on modeling of the the disk dust emission) can be divided into flaring and self-shadowed (flat). We find [1] evidence for the vertical decoupling of gas and dust in one disks (Chapter 2); [2] That disk geometry has a large influence on the spatial distribution and excitation mechanism of the CO emission (chapters 3,4); [3] Near-IR H 2 emission around 2 (out of 14) HAEBE stars, probably originating from large (±50AU) radii of the disk (chapter 5). In chapter 6 we investigate the trends between CO emission and disk geometry as noted in Chapter 3 and 4.

  20. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  1. Aerosols indirectly warm the Arctic

    Directory of Open Access Journals (Sweden)

    T. Mauritsen

    2010-07-01

    Full Text Available On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.

  2. Automobility: Global Warming as Symptomatology

    Directory of Open Access Journals (Sweden)

    Gary Backhaus

    2009-04-01

    Full Text Available The argument of this paper is that sustainability requires a new worldview-paradigm. It critically evaluates Gore’s liberal-based environmentalism in order to show how “shallow ecologies” are called into question by deeper ecologies. This analysis leads to the notion that global warming is better understood as a symptom indicative of the worldview that is the source for environmental crises. Heidegger’s ontological hermeneutics and its critique of modern technology show that the modern worldview involves an enframing (a totalizing technological ordering of the natural. Enframing reveals entities as standing reserve (on demand energy suppliers. My thesis maintains that enframing is geographically expressed as automobility. Because of the energy needs used to maintain automobility, reaching the goal of sustainability requires rethinking the spatial organization of life as a function of stored energy technologies.

  3. Long-term forest soil warming alters microbial communities in temperate forest soils.

    Science.gov (United States)

    DeAngelis, Kristen M; Pold, Grace; Topçuoğlu, Begüm D; van Diepen, Linda T A; Varney, Rebecca M; Blanchard, Jeffrey L; Melillo, Jerry; Frey, Serita D

    2015-01-01

    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.

  4. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices....... Contaminant removal effectiveness and air change efficiency were used to evaluate ventilation effectiveness. No significant risk of thermal discomfort due to vertical air temperature differences or draught was found. When the room was heated by warm air, buoyancy forces were important for ventilation...

  5. Deep time evidence for climate sensitivity increase with warming:Climate Sensitivity Rise With Warming

    OpenAIRE

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto; Pedersen, Jens Olaf Pepke

    2016-01-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleoce...

  6. Deep time evidence for climate sensitivity increase with warming:Climate Sensitivity Rise With Warming

    OpenAIRE

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto; Pedersen, Jens Olaf Pepke

    2016-01-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleoce...

  7. Warming: mechanism and latitude dependence

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    Introduction. In the work it is shown, that in present warming of climate of the Earth and in style of its display a fundamental role the mechanism of the forced swing and relative oscillations of eccentric core of the Earth and its mantle plays. Relative displacements of the centers of mass of the core and the mantle are dictated by the features of orbital motions of bodies of solar system and nonineriality of the Earth reference frame (or ot the mantle) at the motion of the Earth with respect to a baricenter of solar system and at rotation of the planet. As a result in relative translational displacements of the core and the mantle the frequencies characteristic for orbital motion of all bodies of solar system, and also their combination are shown. Methods of a space geodesy, gravimetry, geophysics, etc. unequivocally and clearly confirm phenomenon of drift of the center of mass of the Earth in define northern direction. This drift is characterized by the significant velocity in about 5 mm/yr. The unique opportunity of its explanation consists in the natural assumption of existence of the unidirectional relative displacement (drift) the center of mass of the core and the center of mass of the mantle of the Earth. And this displacement (at superfluous mass of the core in 16.7 % from the mass of full the Earth) is characterized still more significant velocity in 2.6 cm/yr and occurs on our geodynamic studies in a direction to Taimyr peninsula. The dynamic explanation to century drift for today does not exist. It is possible to note, however, that data of observations of last years, indirectly testifying that similar drifts of the centers of mass in present epoch occur on other bodies of Solar system have been obtain: the Sun, Mars, the Titan, Enceladus, the Neptune, etc. We connect with mentioned phenomena the observed secular variations of natural processes on this celestial bodies. I.e. it is possible to assume, that observable eccentric positions of the centers

  8. Global warming: Evidence from satellite observations

    National Research Council Canada - National Science Library

    Prabhakara, C; Iacovazzi, R; Yoo, J.‐M; Dalu, G

    2000-01-01

    ...‐weighted global‐mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13±0.05 Kdecade −1 during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite‐deduced result.

  9. Strategies for mitigation of global warming

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed.......The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed....

  10. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  11. Exploring the Sociopolitical Dimensions of Global Warming

    Science.gov (United States)

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  12. Turkish Students' Ideas about Global Warming

    Science.gov (United States)

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  13. Global Warming: Understanding and Teaching the Forecast.

    Science.gov (United States)

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  14. Strategies for mitigation of global warming

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed.......The paper analyses the international negotions on climate change leading up to COP15 in Copenhagen. Supplementary policies for mitigation of global warming are proposed....

  15. Global Warming: How Much and Why?

    Science.gov (United States)

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  16. Global Warming: Understanding and Teaching the Forecast.

    Science.gov (United States)

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  17. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  18. Exploring the Sociopolitical Dimensions of Global Warming

    Science.gov (United States)

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  19. Warming of Water in a Glass

    Science.gov (United States)

    Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris

    2016-01-01

    The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…

  20. Consistency of warm k-inflation

    CERN Document Server

    Peng, Zhi-Peng; Zhang, Xiao-Min; Zhu, Jian-Yang

    2016-01-01

    We extend the k-inflation which is a type of kinetically driven inflationary model under the standard inflationary scenario to a possible warm inflationary scenario. The dynamical equations of this warm k-inflation model are obtained. We rewrite the slow-roll parameters which are different from the usual potential driven inflationary models and perform a linear stability analysis to give the proper slow-roll conditions in the warm k-inflation. Two cases, a power-law kinetic function and an exponential kinetic function, are studied, when the dissipative coefficient $\\Gamma=\\Gamma_0$ and $\\Gamma=\\Gamma(\\phi)$, respectively. A proper number of e-folds is obtained in both concrete cases of warm k-inflation. We find a constant dissipative coefficient ($\\Gamma=\\Gamma_0$) is not a workable choice for these two cases while the two cases with $\\Gamma=\\Gamma(\\phi)$ are self-consistent warm inflationary models.

  1. Urban warming reduces aboveground carbon storage

    DEFF Research Database (Denmark)

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert Roberdeau

    2016-01-01

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon...... photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future....... sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because...

  2. Eurasian Arctic abyssal waters are warming

    Science.gov (United States)

    Schauer, Ursula; von Appen, Wilken-Jon; Somavilla Cabrillo, Raquel; Behrendt, Axel; Rabe, Benjamin

    2016-04-01

    In the past decades, not only the upper water layers, but also the deepest layers of the Arctic Ocean have been warming. Observations show that the rate of warming varies markedly in the different basins with the fastest warming in the deep Greenland Sea (ca. 0.11°C per decade) and the Eurasian Basin featuring an average rate of ca. 0.01°C per decade. While the warming in the Greenland Sea is attributed to ongoing export of relatively warmer deep waters from the Arctic Ocean in combination with the halt of deep convection, the reason of Eurasian Basin deep warming is less clear. We discuss possible causes such as changes in the abyssal ventilation through slope convection, advection from other basins and/or geothermal heating through various sources.

  3. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  4. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative...

  5. Radionuclides in ornithogenic sediments as evidence for recent warming in the Ross Sea region, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Yaguang [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031 (China); Xu, Liqiang [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Liu, Xiaodong, E-mail: ycx@ustc.edu.cn [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Emslie, Steven D. [Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403 (United States)

    2016-07-01

    Radionuclides including {sup 210}Pb, {sup 226}Ra and {sup 137}Cs were analyzed in eight ornithogenic sediment profiles from McMurdo Sound, Ross Sea region, East Antarctica. Equilibration between {sup 210}Pb and {sup 226}Ra were reached in all eight profiles, enabling the determination of chronology within the past two centuries through the Constant Rate of Supply (CRS) model. Calculated fluxes of both {sup 210}Pb and {sup 137}Cs varied drastically among four of the profiles (MB4, MB6, CC and CL2), probably due to differences in their sedimentary environments. In addition, we found the flux data exhibiting a clear decreasing gradient in accordance with their average deposition rate, which was in turn related to the specific location of the profiles. We believe this phenomenon may correspond to global warming of the last century, since warming-induced surface runoff would bring more inflow water and detritus to the coring sites, thus enhancing the difference among the profiles. To verify this hypothesis, the deposition rate against age of the sediments was calculated based on their determined chronology, which showed ascending trends in all four profiles. The significant increase in deposition rates over the last century is probably attributable to recent warming, implying a potential utilization of radionuclides as environmental indicators in this region. - Highlights: • {sup 210}Pb, {sup 226}Ra and {sup 137}Cs were measured in ornithogenic sediment profiles. • Chronology within 200 years was determined through Constant Rate of Supply model. • Calculated nuclide fluxes decreased with average deposition rate and locations. • Deposition rate over time indicated warming which caused the flux gradient.

  6. Global warming and reproductive health.

    Science.gov (United States)

    Potts, Malcolm; Henderson, Courtney E

    2012-10-01

    The largest absolute numbers of maternal deaths occur among the 40-50 million women who deliver annually without a skilled birth attendant. Most of these deaths occur in countries with a total fertility rate of greater than 4. The combination of global warming and rapid population growth in the Sahel and parts of the Middle East poses a serious threat to reproductive health and to food security. Poverty, lack of resources, and rapid population growth make it unlikely that most women in these countries will have access to skilled birth attendants or emergency obstetric care in the foreseeable future. Three strategies can be implemented to improve women's health and reproductive rights in high-fertility, low-resource settings: (1) make family planning accessible and remove non-evidenced-based barriers to contraception; (2) scale up community distribution of misoprostol for prevention of postpartum hemorrhage and, where it is legal, for medical abortion; and (3) eliminate child marriage and invest in girls and young women, thereby reducing early childbearing.

  7. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.E. [Nuclear and Particle Physics Laboratory, Department of Physics, Oxford Univ., Oxford (United Kingdom)

    1999-09-01

    The concentration of carbon dioxide in the atmosphere is steadily increasing and it is widely believed that this will lead to global warming that will have serious consequences for life on earth. The Intergovernmental Panel on Climate Change has estimated that the temperature of the earth will increase by between 1 and 3.5 degrees in the next century. This will melt some of the Antarctic ice cap, raise the sea level and flood many low-lying countries, and also produce unpredictable changes in the earth's climate. The possible ways of reducing carbon dioxide emission are discussed. It is essential to reduce the burning of fossil fuels, but then how are we to obtain the energy we need? We can try to reduce energy use, but we will still need to generate large amounts energy. Some possible ways of doing this are by using wind and solar generators, by hydroelectric and tidal plants, and also by nuclear power. These possibilities will be critically examined. (author)

  8. Warm storage for arc magmas.

    Science.gov (United States)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  9. Responses of soil microbial community to experimental warming and precipitation manipulation

    Science.gov (United States)

    Li, G.; Kim, S.; Park, M. J.; Han, S. H.; Lee, J.; Son, Y.

    2015-12-01

    An experimental nursery was established with two-year-old Pinus densiflora seedlings at Korea University to study soil microbial community responses to air warming (+3°C) and precipitation manipulation (-30% and +30%). Soil samplings were collected monthly from July to November, 2014. Substrate utilization profile of microbial community was examined using BIOLOG EcoPlate. Microbial community composition was assessed by high-throughput sequencing technology. The results showed that warming significantly affected the substrate utilization profile of microbial community (P0.05). In contrast, compared with unwarmed and precipitation control treatment, the bacterial community richness in the others were increased, but community abundance and diversity in those treatments were decreased (all P>0.05). These changes in microbial community structure resulted in the changes in community functional composition, which microbial metabolic functions were higher in warming plots than unwarmed plots. Since microorganisms differ in their susceptibility to stressors, changes in the soil environment affect the microbial community. Therefore, the results indicated that effects of warming and precipitation manipulation on soil microbial community might be related to warming and precipitation manipulation-induced changes in soil moisture. We suggested that shifts in the microbial community may be important implications for soil carbon and nitrogen dynamics in a warmer world. This study was supported by National Research Foundation of Korea (NRF-2013R1A1A2012242).

  10. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    Science.gov (United States)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  11. Global metabolic impacts of recent climate warming.

    Science.gov (United States)

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  12. Studies of temperature disturbances of lower and middle atmosphere during stratospheric warmings 2006-2013

    Science.gov (United States)

    Medvedev, Andrey; Medvedeva, Irina; Ratovsky, Konstantin; Tolstikov, Maxim

    This paper was devoted to study of sudden winter stratospheric warmings 2006-2013. Initial data were vertical temperature profiles obtained by the Microwave Limb Sounder (MLS) aboard the spacecraft EOS Aura. Shown that the temperature disturbances, propagated during stratospheric warmings are result of interference of at least two waves. Two-wave interference model of stratospheric warming was developed. Characteristics of planetary waves were obtained by using this model. Periods of disturbances vary from 5 to 45 days. Vertical wave numbers range is 20-150 km. Amplitudes and horizontal wave numbers obtained by the two-wave model vary smoothly in space and time, forming vorticity-like structure. We compared warmings 2006-2013 by using global amplitude. Comparison of variations of ionospheric parameters and characteristics of planetary waves in the stratosphere during warmings was done. On the basis of regular, continuous observations of the Irkutsk ionosonde DSP-4, was shown that number of traveling ionospheric disturbances (TIDs) tend to increase during stratospheric warmings. Found correlations between the amount of traveling ionospheric disturbances and the temperature at 80 km, between the daily maximum electron concentration and global amplitude of wave with upward phase velocity between the ion temperature and the amplitude of wave with downward phase velocity over Irkutsk. The work was supported by Russian Foundation for Basic Research Grant 13-05-00153 and RF President Grant of Public Support for RF Leading Scientific Schools (NSh-2942.2014.5).

  13. On Orderly Adaptation to Global Warming

    Institute of Scientific and Technical Information of China (English)

    YE Duzheng; YAN Zhongwei

    2009-01-01

    @@ Global warming during the last century has been a well-known fact. Despite arguments and uncertainties in explanations, most scientists agree that this century-scale warming trend is attributable to human activities. According to the recent assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2007) based on worldwide scientific results, a major factor of the present global warming was in association with the enhanced concentration of atmospheric greenhouse gases such as CO2 released from human activities; and current observations showed an on-going increasing trend in the anthropogenic emission and atmospheric concentration of greenhouse gases.

  14. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  15. Ecological stability in response to warming

    NARCIS (Netherlands)

    Fussmann, Katarina E.; Schwarzmueller, Florian; Brose, Ulrich; Jousset, Alexandre; Rall, Bjoern C.

    2014-01-01

    That species' biological rates including metabolism, growth and feeding scale with temperature is well established from warming experiments(1). The interactive influence of these changes on population dynamics, however, remains uncertain. As a result, uncertainty about ecological stability in respon

  16. Chamberless residential warm air furnace design

    Energy Technology Data Exchange (ETDEWEB)

    Godfree, J. [Product Design consultant, Pugwash (Canada)

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  17. Reconciling controversies about the 'global warming hiatus'.

    Science.gov (United States)

    Medhaug, Iselin; Stolpe, Martin B; Fischer, Erich M; Knutti, Reto

    2017-05-03

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the 'global warming hiatus', caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of 'hiatus' and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  18. Ecological stability in response to warming

    NARCIS (Netherlands)

    Fussmann, Katarina E.; Schwarzmueller, Florian; Brose, Ulrich; Jousset, Alexandre|info:eu-repo/dai/nl/370632656; Rall, Bjoern C.

    That species' biological rates including metabolism, growth and feeding scale with temperature is well established from warming experiments(1). The interactive influence of these changes on population dynamics, however, remains uncertain. As a result, uncertainty about ecological stability in

  19. Palaeoclimate: Volcanism caused ancient global warming

    Science.gov (United States)

    Meissner, Katrin J.; Bralower, Timothy J.

    2017-08-01

    A study confirms that volcanism set off one of Earth's fastest global-warming events. But the release of greenhouse gases was slow enough for negative feedbacks to mitigate impacts such as ocean acidification. See Letter p.573

  20. The gravitino problem in supersymmetric warm inflation

    CERN Document Server

    Sanchez, Juan C Bueno; Berera, Arjun; Dimopoulos, Konstantinos; Kohri, Kazunori

    2010-01-01

    The warm inflation paradigm considers the continuous production of radiation during inflation due to dissipative effects. In its strong dissipation limit, warm inflation gives way to a radiation dominated Universe. High scale inflation then yields a high reheating temperature, which then poses a severe gravitino overproduction problem for the supersymmetric realisations of warm inflation. In this paper we show that in certain class of supersymmetric models the dissipative dynamics of the inflaton is such that the field can avoid its complete decay after inflation. In some cases, the residual energy density stored in the field oscillations may come to dominate over the radiation bath at a later epoch. If the inflaton field finally decays much later than the onset of the matter dominated phase, the entropy produced in its decay may be sufficient to counteract the excess of gravitinos produced during the last stages of warm inflation.

  1. Warm compaction powder metallurgy of Cu

    Institute of Scientific and Technical Information of China (English)

    NGAI Tungwai Leo; WANG Shang-lin; LI Yuan-yuan; ZHOU Zho-yao; CHEN Wei-ping

    2005-01-01

    A series of experiments were carried out using different admixed lubricant contents,different compaction pressures and temperatures in order to study the warm compaction of copper powder.Results show that too much admixed lubricant will lead to the squeeze out of the lubricant from the compact during the warm compaction processing of Cu powder.Results also show that blisters can be found in sintered samples that contain lubricant less than 0.15% (mass fraction).Optimal warm compaction parameters for producing high density powder metallurgy copper material are obtained.Compacts with green density of 8.6 g/cm3 and a sintered density of 8.83 g/cm3 can be produced by warm compacting the Cu powder,which contains 0.2% admixed lubricant,and is compacted at 145 ℃ with a pressure of 700 Mpa.

  2. Carbon cycle: Global warming then and now

    Science.gov (United States)

    Stassen, Peter

    2016-04-01

    A rapid warming event 55.8 million years ago was caused by extensive carbon emissions. The rate of change of carbon and oxygen isotopes in marine shelf sediments suggests that carbon emission rates were much slower than anthropogenic emissions.

  3. The Tropical Western Hemisphere Warm Pool

    Science.gov (United States)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  4. Global warming: a vicious circle.

    Science.gov (United States)

    Sinclair, J

    1991-01-01

    The problem of global warming (GW) is larger than it was originally suspected. The release of carbon dioxide (CO2), methane (ME), and nitrous oxide (NO2) by the activities of humans will do more than simply raise the global temperature. It will also trigger a variety of feedback loops that will accelerate the GW process. The extent of these feedback loops is currently impossible to incorporate into the computer models because they are not fully understood. But, from what we do know, it is clear that reductions in greenhouse gas (GG) emissions must be halted immediately. We are already committed to regional droughts, storms, water shortages, fishery disruptions and plant and animal extinctions. But the response of the oceans, forest, and ice masses has not yet been incorporated into our predictions. Almost all the feedbacks identified promise to increase GG concentrations. The carbon cycle is going to be affected in a variety of ways. Plants and soil store almost 3 times the CO2 as found in the atmosphere. Increased temperatures will increase plant respiration, thus increasing CO2 emissions. Forests will die, permafrost will melt and the result will be increased releases of CO2 and ME. The oceans and plankton can not absorb as much CO2 as the water temperature rises. At present levels GG concentrations will double by 2025. Thus scientists are calling for an immediate 60-80% reduction in CO2 and other GG emissions. It is up to the industrialized nations to solve this problem since they are the ones who created it. 75% of all human made CO2 comes from these countries. They also have the ability to help developing nations to do the same. 20 nations have already announced plans to stabilize or reduce their GG emissions, but it is attitudes and lifestyles that must be changed. This is the largest problem to ever face the human race and never before have we acted as we now must act in order to avoid a worldwide catastrophe.

  5. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    -fold reduction might be attained. Even the first such halving of carbon intensivity of stationary-source energy production world-wide might permit continued slow power-demand growth in the highly developed countries and rapid development of the other 80% of the world, both without active governmental suppression of fossil fuel usage - while also stabilizing carbon input-rates into the Earth`s atmosphere. The second two-fold reduction might obviate most global warming concerns.

  6. Is global warming harmful to health?

    Science.gov (United States)

    Epstein, P R

    2000-08-01

    Projections from computer models predict that global warming will expand the incidence and distribution of many serious medical disorders. Global warming, aside from indirectly causing death by drowning or starvation, promotes by various means the emergence, resurgence, and spread of infectious diseases. This article addresses the health effects of global warming and disrupted climate patterns in detail. Among the greatest health concerns are diseases transmitted by mosquitoes, such as malaria, dengue fever, yellow fever, and several kinds of encephalitis. Such disorders are projected to become increasingly prevalent because their insect carriers are very sensitive to meteorological conditions. In addition, floods and droughts resulting from global warming can each help trigger outbreaks by creating breeding grounds for insects whose desiccated eggs remain viable and hatch in still water. Other effects of global warming on health include the growth of opportunist populations and the increase of the incidence of waterborne diseases because of lack of clean water. In view of this, several steps are cited in order to facilitate the successful management of the dangers of global warming.

  7. Is global warming already changing ocean productivity?

    Directory of Open Access Journals (Sweden)

    S. A. Henson

    2009-11-01

    Full Text Available Global warming is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on the global distribution of ocean productivity comes from satellite ocean colour data. Now that over ten years of SeaWiFS data have accumulated, can we begin to detect and attribute global warming trends in productivity? Here we compare recent trends in SeaWiFS data to longer-term records from three biogeochemical models (GFDL, IPSL and NCAR. We find that detection of real trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global warming. Instead, our analyses suggest that a time series of ~40 yr length is needed to distinguish a global warming trend from natural variability. Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the global warming trend will not be unambiguously separable from decadal variability until ~2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decades-long data record must be established if the impact of climate change on ocean productivity is to be definitively detected.

  8. Could cirrus clouds have warmed early Mars?

    Science.gov (United States)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  9. Book ReviewL Global Warming

    Directory of Open Access Journals (Sweden)

    Nadia Astriani

    2015-04-01

    Full Text Available Global Warming is part of Greenhaven’s Contemporary Issues Companion series published by, Thomson Gale on 2005. Each volume of the anthologyseries focuses on a topic of current interest, presenting informative and thought-provoking selection written from wide-variety viewpoints. It is an ideal launching point for research on a particular topic. Each anthology in the series is composed of readings taken from an extensive gamut of resources, including periodical, newspapers, books, governmentdocuments, the publications of private and public organization an internet website. Readers will find factual support suitable for use in reports, debate, speeches and research papers. In understanding Environmental Law, student must understand the environmental issues first. Global warming is the latest issue in Environmental Law field, it has been discuss for more than a decade. It is hard for law student, who don’t have any scientific background to understand this issue. That’s why this anthology series is perfect start for student to understanding Global Warming Issue. This book consist of three part, namely: Understanding Global Warming, The Consequences of Global warming and Solving the Global warming Problem. Each chapter contains 6-7 articles.

  10. Lipid Profile

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Lipid Profile Share this page: Was this page helpful? Also ... as: Lipid Panel; Coronary Risk Panel Formal name: Lipid Profile Related tests: Cholesterol ; HDL Cholesterol ; LDL Cholesterol ; Triglycerides ; ...

  11. Data Profiling

    OpenAIRE

    Hladíková, Radka

    2010-01-01

    Title: Data Profiling Author: Radka Hladíková Department: Department of Software Engineering Supervisor: Ing. Vladimír Kyjonka Supervisor's e-mail address: Abstract: This thesis puts mind on problems with data quality and data profiling. This Work analyses and summarizes problems of data quality, data defects, process of data quality, data quality assessment and data profiling. The main topic is data profiling as a process of researching data available in existing...

  12. Excess heat in the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Directory of Open Access Journals (Sweden)

    M. P. Lüthi

    2014-10-01

    Full Text Available Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this excess heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  13. Excess heat in the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Science.gov (United States)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2014-10-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flowline passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this excess heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  14. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    Science.gov (United States)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-02-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  15. Microbial responses to experimental warming in a peatland forest ecosystem

    Science.gov (United States)

    Kluber, L. A.; Hanson, P. J.; Schadt, C. W.

    2016-12-01

    The Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) experiment is a ten-year ecosystem manipulation experiment examining how peatland forests respond to increased temperature and CO2 levels. This experiment is expected to lead to various changes in ecosystem processes, including microbially mediated biogeochemical cycles that may ultimately alter the overall C balance of these ecosystems. The initial phase of this experiment began over the summer of 2014 by heating deep subsurface peat to +2.25, +4.5, +6.75 and +9.0 °C above ambient plots with a target heating zone of 1.5-2 meters depth. Whole ecosystem warming began the summer of 2015 with the addition of aboveground heating to the same target temperatures. The response of microbial communities to in-situ warming is assessed with qPCR and rRNA amplicon sequencing at eleven discrete depths across the peat profile to a depth of 200 cm. Additionally, metagenomic sequencing is used to characterize microbial metabolic and functional potential on four depths per profile. After one year of deep peat warming, microbial community structure and abundance of bacterial, archaeal, fungal, and methanogenic populations showed strong vertical stratification across the peat depth profile yet no clear response to the temperature treatments. In an effort to identify factors that may be limiting decomposition and microbial community change in deep peat, we conducted a microcosm incubation of deep peat (150-200 cm depth) at 6 and 15 °C to mimic ambient and +9 °C SPRUCE conditions. Additional treatments included elevated pH and the addition of N and P. Microcosms were monitored for CO2 and CH4 production, and microbial community dynamics were assessed using qPCR and amplicon sequencing. Increasing temperature elevated both CO2 and CH4 production while elevated pH only resulted in greater CH4 production. The effects of elevating temperature and pH in combination with N, P, or N+P additions were more

  16. The Interstellar Medium of IRAS 08572+3915 NW: H3+ and Warm High Velocity CO

    CERN Document Server

    Geballe, T R; McCall, B J; Oka, T; Usuda, T

    2006-01-01

    We confirm the first detection of the molecular ion H3+ in an extragalactic object, the highly obscured ultraluminous galaxy IRAS 08572+3915 NW. We also have detected absorption lines of the fundamental band of CO in this galaxy. The CO absorption consists of a cold component close to the systemic velocity and warm, highly blueshifted and redshifted components. The warm blueshifted component is remarkably strong and broad and extends at least to -350 km/s. Some analogies can be drawn between the H3+ and cold CO in IRAS08572+3915 NW and the same species seen toward the Galactic center. The profiles of the warm CO components are not those expected from a dusty torus of the type thought to obscure active galactic nuclei. They are probably formed close to the dust continuum surface near the buried and active nucleus and are probably associated with an unusual and energetic event there.

  17. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    Science.gov (United States)

    Hong, Wei-Li; Torres, Marta E.; Carroll, Jolynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  18. The Tsushima Warm Current from a High Resolution Ocean Prediction Model, HYCOM

    Directory of Open Access Journals (Sweden)

    Seongbong Seo

    2013-06-01

    Full Text Available This study investigates the characteristic of the Tsushima Warm Current from an assimilated high resolution global ocean prediction model, 1/12o Global HYbrid Coordiate Ocean Model (HYCOM. The model results were verified through a comparison with current measurements obtained by acoustic Doppler current profiler (ADCP mounted on the passenger ferryboat between Busan, Korea, and Hakata, Japan. The annual mean transport of the Tsushima Warm Current was 2.56 Sverdrup (Sv (1 Sv = 106 m3s−1, which is similar to those from previous studies (Takikawa et al. 1999; Teague et al. 2002. The volume transport time series of the Tsushima Warm Current from HYCOM correlates to a high degree with that from the ADCP observation (the correlation coefficient between the two is 0.82. The spatiotemporal structures of the currents as well as temperature and salinity from HYCOM are comparable to the observed ones.

  19. Can Global Warming be Stopped?

    Science.gov (United States)

    Luria, M.

    2013-12-01

    Earlier this year, the CO2 levels exceeded the 400 ppm level and there is no sign that the 1-2 ppm annual increase is going to slow down. Concerns regarding the danger of global warming have been reported in numerous occasions for more than a generation, ever since CO2 levels reached the 350 ppm range in the mid 1980's. Nevertheless, all efforts to slow down the increase have showed little if any effect. Mobile sources, including surface and marine transportation and aviation, consist of 20% of the global CO2 emission. The only realistic way to reduce the mobile sources' CO2 signature is by improved fuel efficiency. However, any progress in this direction is more than compensated by continuous increased demand. Stationary sources, mostly electric power generation, are responsible for the bulk of the global CO2 emission. The measurements have shown, that the effect of an increase in renewable sources, like solar wind and geothermal, combined with conversion from coal to natural gas where possible, conservation and efficiency improvement, did not compensate the increased demand mostly in developing countries. Increased usage of nuclear energy can provide some relief in carbon emission but has the potential of even greater environmental hazard. A major decrease in carbon emission can be obtained by either significant reduction in the cost of non-carbon based energy sources or by of carbon sequestration. The most economical way to make a significant decrease in carbon emission is to apply carbon sequestration technology at large point sources that use coal. Worldwide there are about 10,000 major sources that burn >7 billion metric tons of coal which generate the equivalent of 30 trillion kwh. There is a limited experience in CO2 sequestration of such huge quantities of CO2, however, it is estimated that the cost would be US$ 0.01-0.1 per kwh. The cost of eliminating this quantity can be estimated at an average of 1.5 trillion dollars annually. The major emitters, US

  20. Estimating the potential for adaptation of corals to climate warming.

    Directory of Open Access Journals (Sweden)

    Nikolaus B M Császár

    Full Text Available The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D and one less tolerant symbiont type (Symbiodinium C2. In both symbiont types, pulse amplitude modulated (PAM fluorometry and high performance liquid chromatography (HPLC analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.

  1. Karolinske psychodynamic profile (KAPP)

    DEFF Research Database (Denmark)

    Mathiesen, Birgit Bork; Søgaard, Ulf

    2006-01-01

    psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil......psykologiske testmetoder, assesment, Karolinska psychodynamic profile (KAPP), psykodynamisk profil...

  2. Temperature profiles from XBT casts from NOAA Ship ALBATROSS IV and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) and WARM CORE RINGS projects from 1981-09-23 to 1982-11-29 (NODC Accession 8200241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from NOAA Ship ALBATROSS IV and other platforms from 23 September 1981 to 29 November 1982. Data were collected by...

  3. Extraordinarily Warm Northeast Pacific Surface Waters: 2014 Observations

    Science.gov (United States)

    Mihaly, S. F.; Dewey, R. K.; Freeland, H.

    2015-12-01

    Analysis of sea surface temperatures (SST) from January 2014 revealed a massive region in the northeast Pacific with extraordinarily warm conditions, exceeding all anomalies over the last several decades. Profile data from both Argo and Line-P surveys supports the Reynolds SSTa analysis and further indicates that the anomaly was, and continues to be, confined to the upper ocean, above approximately 100 m depth. The anomaly has lasted for many months, exceeding 4 standard deviations above the multi-decadal mean, a feature that would not be expected more than once in several millennia. The "blob", as it is dubbed, drifted first off and then towards shore during the spring and fall of 2014 driven by, among other forces, the seasonal up and down-welling winds, respectively that occur along the west coast of North America. By November 2014, when winter down-welling winds became prevalent, the warm surface waters encroached all the way into Barkley Sound along western Vancouver Island, as measured by the continuous temperature measurements on the NEPTUNE ocean observatory of Ocean Networks Canada. The analysis includes some of the known dynamical variations which contributed to the formation of the blob, with an emphasis on mid to high latitude atmosphere-ocean conditions, avoiding the temptation to link the development processes occurring in the Gulf of Alaska in the winter of 2013 to equatorial phenomena.

  4. THE CLIMATE FEATURES OF THE SOUTH CHINA SEA WARM POOL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There exists a warm pool in the South China Sea (SCS). The temporal and spatial distribution and evolution of SCS warm pool is investigated using water temperatures at a depth of 20 m in the sea. The formation of the warm pool is discussed by combining water temperatures with geostrophic currents and simulated oceanic circulation. It is found that there are significant seasonal and interannual changes in the warm pool and in association with the general circulation of the atmosphere. The development of SCS warm pool is also closely related to the gyre activities in the sea and imported warm water from Indian Ocean (Java Sea) besides radiative warming.

  5. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  6. Detecting Urban Warming Signals in Climate Records

    Institute of Scientific and Technical Information of China (English)

    HE Yuting; JIA Gensuo; HU Yonghong; ZHOU Zijiang

    2013-01-01

    Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale.With support of historical remote sensing data,this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing,Tianjin,and Hebei Province over the last three decades.There were significant positive relations between the two factors at all stations.Stronger warming was detected at the meteorological stations that experienced greater urbanization,i.e.,those with a higher urbanization rate.While the total urban area affects the absolute temperature values,the change of the urban area (urbanization rate) likely affects the temperature trend.Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13℃ rise in air temperature records in addition to regional climate warming.This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions.Generally,the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years,and the regional climate warming was 0.30℃ (10 yr)-1 in the last three decades.

  7. Light accelerates plant responses to warming.

    Science.gov (United States)

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; De Schrijver, An; Coomes, David A; Hermy, Martin; Vangansbeke, Pieter; Verheyen, Kris

    2015-08-17

    Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities.

  8. Global warming without global mean precipitation increase?

    Science.gov (United States)

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  9. Warm Indian Ocean, Weak Asian Monsoon

    Science.gov (United States)

    Koll Roxy, Mathew; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Nath Goswami, Buphendra

    2015-04-01

    There are large uncertainties looming over the status and fate of the South Asian monsoon in a changing climate. Observations and climate models have suggested that anthropogenic warming in the past century has increased the moisture availability and the land-sea thermal contrast in the tropics, favoring an increase in monsoon rainfall. In contrast, we notice that South Asian subcontinent experienced a relatively subdued warming during this period. At the same time, the tropical Indian Ocean experienced a nearly monotonic warming, at a rate faster than the other tropical oceans. Using long-term observations and coupled model experiments, we suggest that the enhanced Indian Ocean warming along with the suppressed warming of the subcontinent weaken the land-sea thermal contrast throughout the troposphere, dampen the monsoon Hadley circulation, and reduce the rainfall over South Asia. As a result, the summer monsoon rainfall during 1901-2012 shows a significant weakening trend over South Asia, extending from Pakistan through central India to Bangladesh.

  10. Could Cirrus Clouds Have Warmed Early Mars?

    CERN Document Server

    Ramirez, Ramses M

    2016-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2-H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radiative-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ~75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more real...

  11. Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections

    OpenAIRE

    Li, Tony W.; Noel C. Baker

    2016-01-01

    The observed slow-down in the global-mean surface temperature (GST) warming from 1998 to 2012 has been called a “warming hiatus.” Certain climate models, operating under experiments which simulate warming by increasing radiative forcing, have been shown to reproduce periods which resemble the observed hiatus. The present study provides a comprehensive analysis of 38 CMIP5 climate models to provide further evidence that models produce warming hiatus periods during warming experiments. GST rate...

  12. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Jonasson, Sven Evert

    2008-01-01

    Climatic warming leads to the expansion of deciduous shrubs and trees in the Arctic. This leads to higher leaf litter inputs, which together with warming may alter the rate of carbon and nutrient cycling in the arctic ecosystems. We assessed effects of factorial warming and additional litter...... on the soil ecosystem of a subarctic heath in a 7-year-long field experiment. Fine root biomass, dissolved organic carbon (DOC) and total C concentration increased in response to warming, which probably was a result of the increased vegetation cover. Litter addition increased the concentration of inorganic P...... in the uppermost 5 cm soil, while decreasing the pool of total P per unit area of the organic profile and having no significant effects on N concentrations or pools. Microbial biomass C and N were unaffected by the treatments, while the microbial biomass P increased significantly with litter addition. Soil...

  13. Vertical structure of recent Arctic warming.

    Science.gov (United States)

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  14. Springback characteristics of steel sheets for warm U-draw bending

    Science.gov (United States)

    Seo, Dae Gyo; Chang, Sung Ho; Lee, Sang Moo

    2003-10-01

    The purpose of this study is to investigate the characteristics of springback for various process conditions of the U-draw bending operation. The process variables are the forming temperature and the tool geometry, including punch profile radius (Rp) and die profile radius (Rd). In order to control springback, the use of a warm forming method is applied. For the warm draw-bending, five steps of temperature ranges, from room temperature to 200°C, were adopted. Two kinds of steel sheets, cold rolled carbon steel (SCP1, for general purposes in the automobile industries) and TRIP (transformation-induced plasticity) steel, were adopted. TRIP steel was the newly developed high-strength steel sheet. The results indicated that elevated temperature and the geometry of tools in the two kinds of steel sheet affected the springback.

  15. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  16. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  17. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  18. Timing the warm absorber in NGC 4051

    Science.gov (United States)

    Silva, C. V.; Uttley, P.; Costantini, E.

    2016-12-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results of the extensive 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051 whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed in NGC 4051, is able to produce soft lags, up to 100 s, on timescales of hours. The time delay is associated with the response of the gas to changes in the ionizing source, either by photoionization or radiative recombination, which is dependent on its density. The range of radial distances that, under our assumptions, yield longer time delays are distances r 0.3-1.0 × 1016 cm, and hence gas densities n 0.4-3.0 × 107 cm-3. Since these ranges are comparable to the existing estimates of the location of the warm absorber in NGC 4051, we suggest that it is likely that the observed X-ray time lags may carry a signature of the warm absorber response time to changes in the ionizing continuum. Our results show that the warm absorber in NGC 4051 does not introduce lags on the short timescales associated with reverberation, but will likely modify the hard continuum lags seen on longer timescales, which in this source have been measured to be on the order of 50 s. Hence, these

  19. Ecology: global warming and amphibian losses.

    Science.gov (United States)

    Alford, Ross A; Bradfield, Kay S; Richards, Stephen J

    2007-05-31

    Is global warming contributing to amphibian declines and extinctions by promoting outbreaks of the chytrid fungus Batrachochytrium dendrobatidis? Analysing patterns from the American tropics, Pounds et al. envisage a process in which a single warm year triggers die-offs in a particular area (for instance, 1987 in the case of Monteverde, Costa Rica). However, we show here that populations of two frog species in the Australian tropics experienced increasing developmental instability, which is evidence of stress, at least two years before they showed chytrid-related declines. Because the working model of Pounds et al. is incomplete, their test of the climate-linked epidemic hypothesis could be inconclusive.

  20. Qualitative models of global warming amplifiers

    NARCIS (Netherlands)

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    There is growing interest from ecological experts to create qualitative models of phenomena for which numerical information is sparse or missing. We present a number of successful models in the field of environmental science, namely, the domain of global warming. The motivation behind the effort is

  1. Arctic decadal variability in a warming world

    NARCIS (Netherlands)

    Linden, van der Eveline C.; Bintanja, Richard; Hazeleger, Wilco

    2017-01-01

    Natural decadal variability of surface air temperature might obscure Arctic temperature trends induced by anthropogenic forcing. It is therefore imperative to know how Arctic decadal variability (ADV) will change as the climate warms. In this study, we evaluate ADV characteristics in three

  2. The global warming hiatus: Slowdown or redistribution?

    Science.gov (United States)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  3. Climate response: Strong warming at high emissions

    Science.gov (United States)

    Frölicher, Thomas L.

    2016-09-01

    The ratio of global temperature change to cumulative emissions is relatively constant up to two trillion tonnes of carbon emissions. Now a new modelling study suggests that the concept of a constant ratio is even applicable to higher cumulative carbon emissions, with important implications for future warming.

  4. Desert Amplification in a Warming Climate

    Science.gov (United States)

    Zhou, Liming

    2016-08-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  5. Should Patients With Haemorrhage Be Kept Warm?

    Science.gov (United States)

    2010-01-01

    and upward shift of the Starling relationship by way of a compensatory sympathetic excitation ( Braunwald et al. 1967). The resultant increase in...to volume status should be mandated in re-warming protocols. References Braunwald E, Ross J Jr & Sonnenblick EH (1967). N Engl J Med 277, 794–800

  6. CERN plans global-warming experiment

    CERN Multimedia

    De Laine, M

    1998-01-01

    A controversial theory that proposes that cosmic rays are responsible for global warming, is going to be tested at CERN. Experimentalists will use a cloud chamber to mimic the Earth's atmosphere in order to try and find out if cloud formation is influenced by solar activity (1 page).

  7. Warm absorbers in active galactic nuclei

    CERN Document Server

    Reynolds, C S; Reynolds, C S; Fabian, A C

    1995-01-01

    Recent {\\it ASCA} observations confirm the presence of X-ray absorption due to partially ionized gas in many Seyfert 1 galaxies; the so-called warm absorber. Constraints on the location of the warm material are presented with the conclusion that this material lies at radii coincident with, or just outside, the broad-line region. The stability of this warm material to isobaric perturbations under the assumptions of thermal and photoionization equilibrium is also studied. It is shown that there is a remarkably small range of ionization parameter, \\xi, for which the warm absorber state is stable. The robustness of this result to changes in the shape of the primary continuum, the assumed density and optical depth is investigated. Given the constraints on the location and the stability properties of the material, several models for the environments of Seyfert nuclei are discussed. These attempt to explain the presence of significant amounts of partially ionized material. In particular, various models of the broad-...

  8. The recent warming trend in North Greenland

    Science.gov (United States)

    Orsi, Anais J.; Kawamura, Kenji; Masson-Delmotte, Valerie; Fettweis, Xavier; Box, Jason E.; Dahl-Jensen, Dorthe; Clow, Gary D.; Landais, Amaelle; Severinghaus, Jeffrey P.

    2017-06-01

    The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multidecadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30 year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here we present a surface temperature reconstruction over 1982-2011 at NEEM (North Greenland Eemian Ice Drilling Project, 51°W, 77°N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7 ± 0.33°C over the past 30 years, from the long-term 1900-1970 average of -28.55 ± 0.29°C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses.

  9. Qualitative models of global warming amplifiers

    NARCIS (Netherlands)

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    There is growing interest from ecological experts to create qualitative models of phenomena for which numerical information is sparse or missing. We present a number of successful models in the field of environmental science, namely, the domain of global warming. The motivation behind the effort is

  10. Warm-plus-hot neutrino dark matter

    CERN Document Server

    Malaney, R A; Widrow, L M; Malaney, R A; Starkman, G D; Widrow, L

    1995-01-01

    We investigate a new hybrid-model universe containing two types of dark matter, one ``warm'' and the other ``hot''. The hot component is an ordinary light neutrino with mass \\sim 25h^2~eV while the warm component is a sterile neutrino with mass \\sim 700h^2~eV. The two types of dark matter arise entirely within the neutrino sector and do not require separate physical origins. We calculate the linear transfer functions for a representative sample of warm-plus-hot models. The transfer functions, and results from several observational tests of structure formation, are compared with those for the cold-plus-hot models that have been studied extensively in the literature. On the basis of these tests, we conclude that warm-plus-hot dark matter is essentially indistinguishable from cold-plus-hot dark matter, and therefore provides a viable scenario for large scale structure. We demonstrate that a neutrino mass matrix can be constructed which provides the requisite dark matter constituents, while remaining consistent w...

  11. Thermophysical properties of warm dense hydrogen

    CERN Document Server

    Holst, Bastian; Desjarlais, Michael P

    2007-01-01

    We study the thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. New results are presented for the pair distribution functions, the equation of state, the Hugoniot curve, and the reflectivity. We compare with available experimental data and predictions of the chemical picture. Especially, we discuss the nonmetal-to-metal transition which occurs at about 40 GPa in the dense fluid.

  12. Arctic decadal variability in a warming world

    Science.gov (United States)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco

    2017-06-01

    Natural decadal variability of surface air temperature might obscure Arctic temperature trends induced by anthropogenic forcing. It is therefore imperative to know how Arctic decadal variability (ADV) will change as the climate warms. In this study, we evaluate ADV characteristics in three equilibrium climates with present-day, double, and quadrupled atmospheric CO2 forcing. The dominant region of variability, which is located over the Barents and Greenland Sea at present, shifts to the central Arctic and Siberian regions as the climate warms. The maximum variability in sea ice cover and surface air temperature occurs in the CO2 doubling climate when sea ice becomes more vulnerable to melt over vast stretches of the Arctic. Furthermore, the links between dominant atmospheric circulation modes and Arctic surface climate characteristics vary strongly with climate change. For instance, a positive Arctic Oscillation index is associated with a colder Arctic in warmer climates, instead of a warmer Arctic at present. Such changing relationships are partly related to the retreat of sea ice because altered wind patterns influence the sea ice distribution and hence the associated local surface fluxes. The atmospheric pressure distributions governing ADV and the associated large-scale dynamics also change with climate warming. The changing character of the ADV shows that it is vital to consider (changes in) ADV when addressing Arctic warming in climate model projections.

  13. Global warming in the public sphere.

    Science.gov (United States)

    Corfee-Morlot, Jan; Maslin, Mark; Burgess, Jacquelin

    2007-11-15

    Although the science of global warming has been in place for several decades if not more, only in the last decade and a half has the issue moved clearly into the public sphere as a public policy issue and a political priority. To understand how and why this has occurred, it is essential to consider the history of the scientific theory of the greenhouse effect, the evidence that supports it and the mechanisms through which science interacts with lay publics and other elite actors, such as politicians, policymakers and business decision makers. This article reviews why and how climate change has moved from the bottom to the top of the international political agenda. It traces the scientific discovery of global warming, political and institutional developments to manage it as well as other socially mediated pathways for understanding and promoting global warming as an issue in the public sphere. The article also places this historical overview of global warming as a public issue into a conceptual framework for understanding relationships between society and nature with emphasis on the co-construction of knowledge.

  14. Carbonyl sulfide: No remedy for global warming

    Science.gov (United States)

    Taubman, Steven J.; Kasting, James F.

    1995-04-01

    The enhancement of the stratospheric aerosol layer caused by the eruption of Mt. Pinatubo (June 15, 1991), and the subsequent cooling of the earth's lower atmosphere [Dutton and Christy, 1992; Minnis et al., 1993] shows that stratospheric aerosols can have a strong effect on the earth's climate. This supports the notion that the intentional enhancement of the stratospheric aerosol layer through increased carbonyl sulfide (OCS) emissions might be an effective means for counteracting global warming. Through the use of a one-dimensional photochemical model, we investigate what effect such a program might have on global average stratospheric ozone. In addition, we consider the impact of enhanced OCS emissions on rainwater acidity and on the overall health of both plants and animals. We find that while the warming produced by a single CO2 doubling (1 to 4°C) might be offset with ozone losses of less than 5%, any attempt to use carbonyl sulfide as a permanent solution to global warming could result in depletion of global average ozone by 30% or more. We estimate that in order to achieve cooling of 4°C rainwater pH would fall to between 3.5 and 3.8. Finally, a 4°C cooling at the surface will require that ambient near ground OCS levels rise to above 10 ppmv which is probably greater than the safe exposure limit for humans. Thus, enhanced OCS emissions do not provide an environmentally acceptable solution to the problem of global warming.

  15. Can Global Warming Heat Up Environmental Education?

    Science.gov (United States)

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  16. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Rouault, M

    2016-01-01

    Full Text Available speeds above the eddies at the instantaneous scale; 20 % of cases had incomplete data due to partial global coverage by the scatterometer for one path. For cases where the wind is stronger above warm eddies, there is no relationship between the increase...

  17. Abrupt warming of the Red Sea

    KAUST Repository

    Raitsos, D. E.

    2011-07-19

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  18. NASA: Black soot fuels global warming

    CERN Multimedia

    2003-01-01

    New research from NASA's Goddard Space Center scientists suggests emissions of black soot have been altering the way sunlight reflects off Earth's snow. The research indicates the soot could be responsible for as much as 25 percent of global warming over the past century (assorted news items, 1 paragraph each).

  19. Warm Absorbing Gas in Cooling Flows

    OpenAIRE

    Buote, David A.

    2000-01-01

    We summarize the discovery of oxygen absorption and warm (10^5-10^6 K) gas in cooling flows. Special attention is given to new results for M87 for which we find the strongest evidence to date for ionized oxygen absorption in these systems. We briefly discuss implications for observations of cooling flows with Chandra and XMM.

  20. Timing the warm absorber in NGC 4051

    CERN Document Server

    Silva, Catia; Costantini, Elisa

    2016-01-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ~ 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051, whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas due to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed ...

  1. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important factors in

  2. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important

  3. Can Global Warming Heat Up Environmental Education?

    Science.gov (United States)

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  4. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2012-01-01

    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  5. Global Warming without Global Mean Precipitation Increase?

    Science.gov (United States)

    Salzmann, Marc

    2017-04-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large (3-4% per kelvin). This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7%K-1 decrease of the water vapor concentration with cooling from anthropogenic aerosol since the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean hydrological response to GHG warming has until recently been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHGs increases in the future, a clear signal will emerge.

  6. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Roualt, M

    2016-10-01

    Full Text Available )C to the surrounding ocean. The analysis of 960 twice daily instantaneous charts of equivalent stability neutral wind speed estimates from the SeaWinds scatterometer onboard the QuikScat satellite collocated with SST during the lifespan of six warm eddies show stronger...

  7. The warm pool in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.

    ) a single maximum/minimum (northern and southern part of the Pacific warm pool and the south Indian Ocean), (iii) two maxima/minima (Arabian Sea, western equatorial Indian Ocean and Southern Bay of Bengal), and (iv) a rapid rise, a steady phase and a...

  8. Global Warming, A Tragedy of the Commons

    Science.gov (United States)

    Philander, S. G.

    2016-12-01

    What is the appropriate balance between our responsibilities towards future generations, and our obligations to those who live in abject poverty today? Global warming, a tragedy of the commons, brings such ethical questions to the fore but, whether "matured" or not, is itself mute on ethical issues.

  9. Impact of warm winters on microbial growth

    Science.gov (United States)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  10. Frequency of Deep Convective Clouds and Global Warming

    Science.gov (United States)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  11. Deep time evidence for climate sensitivity increase with warming

    DEFF Research Database (Denmark)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto

    2016-01-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming...... world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8Ma ago, a possible future...... indicates climate sensitivity increase with global warming....

  12. Frequency of Deep Convective Clouds and Global Warming

    Science.gov (United States)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  13. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather

    DEFF Research Database (Denmark)

    MacLean, Heidi J.; Penick, Clint A.; Dunn, Robert R.

    2017-01-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness...... outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal...... performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3–5 °C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants...

  14. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    Science.gov (United States)

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-03

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  15. Respiratory muscle specific warm-up and elite swimming performance.

    Science.gov (United States)

    Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E

    2014-05-01

    Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, pswim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.

  16. Leadership Profiles.

    Science.gov (United States)

    Morgan, Robert M.; And Others

    1992-01-01

    Presents profiles of three leaders in the field of educational media and technology: Robert Mills Gagne, Florida State University; Robert Heinich, Indiana University; and Charles Francis Schuller, University of Georgia. (SLW)

  17. Profiling cancer

    DEFF Research Database (Denmark)

    Ciro, Marco; Bracken, Adrian P; Helin, Kristian

    2003-01-01

    In the past couple of years, several very exciting studies have demonstrated the enormous power of gene-expression profiling for cancer classification and prediction of patient survival. In addition to promising a more accurate classification of cancer and therefore better treatment of patients......, gene-expression profiling can result in the identification of novel potential targets for cancer therapy and a better understanding of the molecular mechanisms leading to cancer....

  18. Profiling cancer

    DEFF Research Database (Denmark)

    Ciro, Marco; Bracken, Adrian P; Helin, Kristian

    2003-01-01

    In the past couple of years, several very exciting studies have demonstrated the enormous power of gene-expression profiling for cancer classification and prediction of patient survival. In addition to promising a more accurate classification of cancer and therefore better treatment of patients......, gene-expression profiling can result in the identification of novel potential targets for cancer therapy and a better understanding of the molecular mechanisms leading to cancer....

  19. Science and Politics: Strategies to Address Global Warming

    OpenAIRE

    尹, 虎

    2013-01-01

    Global warming poses one of the most serious threats to the globalenvironment ever faced in human history. We have recognized the issue intime to do something about it, and we have methods and resources tomitigate global warming. Every decade we delay in taking action, we arecommitting the planet to additional warming that future generations have todeal with offer compelling evidence from a large body of information thatglobal climate change caused by global warming is already underway andreq...

  20. Science and Politics: Strategies to Address Global Warming

    OpenAIRE

    2013-01-01

    Global warming poses one of the most serious threats to the globalenvironment ever faced in human history. We have recognized the issue intime to do something about it, and we have methods and resources tomitigate global warming. Every decade we delay in taking action, we arecommitting the planet to additional warming that future generations have todeal with offer compelling evidence from a large body of information thatglobal climate change caused by global warming is already underway andreq...

  1. Management of drought risk under global warming

    Science.gov (United States)

    Zhang, Qiang; Han, Lanying; Jia, Jianying; Song, Lingling; Wang, Jinsong

    2016-07-01

    Drought is a serious ecological problem around the world, and its impact on crops and water availability for humans can jeopardize human life. Although drought has always been common, the drought risk has become increasingly prominent because of the climatic warming that has occurred during the past century. However, it still does not comprehensively understand the mechanisms that determine the occurrence of the drought risk it poses to humans, particularly in the context of global climate change. In this paper, we summarize the progress of research on drought and the associated risk, introduce the principle of a drought "transition" from one stage to another, synthesize the characteristics of key factors and their interactions, discuss the potential effect of climatic warming on drought risk, and use this discussion to define the basic requirements for a drought risk management system. We also discuss the main measures that can be used to prevent or mitigate droughts in the context of a risk management strategy.

  2. Viscous warm inflation: Hamilton-Jacobi formalism

    Science.gov (United States)

    Akhtari, L.; Mohammadi, A.; Sayar, K.; Saaidi, Kh.

    2017-04-01

    Using Hamilton-Jacobi formalism, the scenario of warm inflation with viscous pressure is considered. The formalism gives a way of computing the slow-rolling parameter without extra approximation, and it is well-known as a powerful method in cold inflation. The model is studied in detail for three different cases of the dissipation and bulk viscous pressure coefficients. In the first case where both coefficients are taken as constant, it is shown that the case could not portray warm inflationary scenario compatible with observational data even it is possible to restrict the model parameters. For other cases, the results shows that the model could properly predicts the perturbation parameters in which they stay in perfect agreement with Planck data. As a further argument, r -ns and αs -ns are drown that show the acquired result could stand in acceptable area expressing a compatibility with observational data.

  3. Cognitive Egocentrism Differentiates Warm and Cold People.

    Science.gov (United States)

    Boyd, Ryan L; Bresin, Konrad; Ode, Scott; Robinson, Michael D

    2013-02-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in an assimilation-related manner. Such effects reflect a tendency to assume that the self's incidental state provides meaningful information concerning the external world. Cognitive egocentrism was evident at high, but not low, levels of interpersonal coldness. The findings reveal a basic difference between warm and cold people, encouraging future research linking cognitive egocentrism to variability in relationship functioning.

  4. [LEVEL 1--a new blood warming device].

    Science.gov (United States)

    Arndt, M; Hofmockel, R; Benad, G

    1994-01-01

    Hypothermia of less than 35 degrees C, which frequently occurs in connection with massive blood transfusion, is a serious problem in many patients, in particular in those with polytrauma. The restoration of normal body temperature is very important and requires the use of a rapidly-acting, efficient and safe blood warmer, which is able to work effectively at high flow-rates. The LEVEL 1 (Technologies, Rockland, MA) is such a new blood warmer and works as a heat-exchanger via an aluminium column. This system is highly effective. Six hundred ml of sodium chloride 0.9% are warmed from 4 to 35 degrees C within one minute. This device is quickly operational and has a low priming volume. The LEVEL 1 is the only device currently available which is able to warm blood sufficiently during a very rapid blood transfusion.

  5. The importance of being warm (during inflation)

    Energy Technology Data Exchange (ETDEWEB)

    Bartrum, Sam, E-mail: sam.bartrum@ed.ac.uk [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Bastero-Gil, Mar, E-mail: mbg@ugr.es [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada 18071 (Spain); Berera, Arjun, E-mail: ab@ph.ed.ac.uk [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Cerezo, Rafael, E-mail: cerezo@ugr.es [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada 18071 (Spain); Ramos, Rudnei O., E-mail: rudnei@uerj.br [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil); Rosa, João G., E-mail: joao.rosa@ua.pt [Departamento de Física da Universidade de Aveiro and I3N, Campus de Santiago, 3810-183 Aveiro (Portugal)

    2014-05-01

    The amplitude of primordial curvature perturbations is enhanced when a radiation bath at a temperature T>H is sustained during inflation by dissipative particle production, which is particularly significant when a non-trivial statistical ensemble of inflaton fluctuations is also maintained. Since gravitational modes are oblivious to dissipative dynamics, this generically lowers the tensor-to-scalar ratio and yields a modified consistency relation for warm inflation, as well as changing the tilt of the scalar spectrum. We show that this alters the landscape of observationally allowed inflationary models, with for example the quartic chaotic potential being in very good agreement with the Planck results for nearly-thermal inflaton fluctuations, whilst essentially ruled out for an underlying vacuum state. We also discuss other simple models that are in agreement with the Planck data within a renormalizable model of warm inflation.

  6. Giant natural fluctuation models and anthropogenic warming

    Science.gov (United States)

    Lovejoy, S.; Rio Amador, L.; Hébert, R.; Lima, I.

    2016-08-01

    Explanations for the industrial epoch warming are polarized around the hypotheses of anthropogenic warming (AW) and giant natural fluctuations (GNFs). While climate sceptics have systematically attacked AW, up until now they have only invoked GNFs. This has now changed with the publication by D. Keenan of a sample of 1000 series from stochastic processes purporting to emulate the global annual temperature since 1880. While Keenan's objective was to criticize the International Panel on Climate Change's trend uncertainty analysis (their assumption that residuals are only weakly correlated), for the first time it is possible to compare a stochastic GNF model with real data. Using Haar fluctuations, probability distributions, and other techniques of time series analysis, we show that his model has unrealistically strong low-frequency variability so that even mild extrapolations imply ice ages every ≈1000 years. Helped by statistics, the GNF model can easily be scientifically rejected.

  7. Competitive warm-up in basketball: literature review and proposal

    Directory of Open Access Journals (Sweden)

    Daniel Berdejo-del-Fresno

    2011-05-01

    Full Text Available Abstract Warm-up is used, accepted and performed by every participant before practising any sport. Warm-up is also considered by most sportmen as fundamental to achieve optimal performance. However, there is little scientific evidence supporting its effectiveness. This lack of evidence, together with the diversity of sports, requires the standardisation of common warm-up patterns for each sport activity. As elite basketball is concerned, a large scientific gap has been found, which the present article will attempt to fill in. Therefore, the objectives of this paper are: first, conducting a literature review on all aspects of warm-up, i.e. warm-up definition, warm up types, warm-up benefits, warm-up structure (intensity, duration, recovery and specificity, influential factors, as well as what kind of stretching must be included in the warm-up; and secondly, from the conclusions obtained,  describing and proposing a methodology which is adapted to competitive warm-up for high-level basketball, so this methodology serves as a justified reference guide when going through the pre-game phase.Key Words: static stretching, dynamic stretching, generic warm-up, specific warm-up, basketball.

  8. Warm-up practices in elite snowboard athletes.

    Science.gov (United States)

    Sporer, Ben C; Cote, Anita; Sleivert, Gordon

    2012-09-01

    The purpose of this project was to observe current warm-up practices in snowboard athletes and evaluate their physiological impact before competition. An observational design was used to monitor 4 athletes (2 female) at an Open National Snowboard Cross Championships. Activity patterns, core temperature, heart rate (HR), and time between warm-up and competition were measured. Athlete ratings of thermal comfort (TC) and thermal sensation (TS) were recorded before competition. Significant barriers and challenges to an optimal warm-up included delays, environment, and logistics. Time gaps between structured warm-up and competition start time were in excess of 1 h (median=68.8 min). Median average HR for 10 min (HR10) did not exceed 120 beats/min in the hour preceding competition, suggesting a suboptimal warm-up intensity. Athletes rated their TC between comfortable and slightly uncomfortable and TS as neutral to slightly warm before the start of qualifications and finals. The observations of this project suggest significant gaps in current warm-up strategies used in snowboarding. These include inadequate general aerobic warm-up (based on intensity and duration), excessive time between warm-up and competition, and lack of a consistent and structured warm-up protocol. Future work is needed to evaluate the effectiveness of different warm-up strategies on muscle temperature and performance while determining the optimal length of time between warm-up and competition.

  9. Quantifying global soil carbon losses in response to warming

    NARCIS (Netherlands)

    Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; Blair, J.M.; Bridgham, S.D.; Burton, A.J.; Carrillo, Y.; Reich, P.B.; Clark, J.S.; Classen, A.T.; Dijkstra, F.A.; Elberling, B.; Emmett, B.A.; Estiarte, M.; Frey, S.D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B.R.; Kröel-Dulay, G.; Larsen, K.S.; Laudon, H.; Lavallee, J.M.; Luo, Y.; Lupascu, M.; Ma, L.N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L.L.; Schmidt, I.K.; Sistla, S.; Sokol, N.W.; Templer, P.H.; Treseder, K.K.; Welker, J.M.; Bradford, M.A.

    2016-01-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil the net global balance between

  10. Quantifying global soil carbon losses in response to warming

    NARCIS (Netherlands)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-01-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming1, 2, 3, 4. Despite evidence that warming enhances carbon fluxes to and from the soil5, 6, the net global

  11. Quantifying global soil carbon losses in response to warming

    NARCIS (Netherlands)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-01-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming1, 2, 3, 4. Despite evidence that warming enhances carbon fluxes to and from the soil5, 6, the net global balan

  12. Quantifying global soil carbon losses in response to warming

    NARCIS (Netherlands)

    Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.; Fang, S.; Zhou, G.; Allison, S.D.; Blair, J.M.; Bridgham, S.D.; Burton, A.J.; Carrillo, Y.; Reich, P.B.; Clark, J.S.; Classen, A.T.; Dijkstra, F.A.; Elberling, B.; Emmett, B.A.; Estiarte, M.; Frey, S.D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B.R.; Kröel-Dulay, G.; Larsen, K.S.; Laudon, H.; Lavallee, J.M.; Luo, Y.; Lupascu, M.; Ma, L.N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L.L.; Schmidt, I.K.; Sistla, S.; Sokol, N.W.; Templer, P.H.; Treseder, K.K.; Welker, J.M.; Bradford, M.A.

    2016-01-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil the net global balance between thes

  13. The Effects of Global Warming on Fisheries

    OpenAIRE

    Medel, Carlos A.

    2011-01-01

    This paper develops two fisheries models in order to estimate the effect of global warming (GW) on firm value. GW is defined as an increase in the average temperature of the earth's surface because of CO₂ emissions. It is assumed that (i) GW exists, and (ii) higher temperatures negatively affect biomass. The literature on biology and GW supporting these two crucial assumptions is reviewed. The main argument presented is that temperature increase has two effects on biomass, both of which have ...

  14. Cognitive Egocentrism Differentiates Warm and Cold People

    OpenAIRE

    Ryan L. Boyd; Bresin, Konrad; Ode, Scott; Robinson, Michael D.

    2013-01-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in ...

  15. Response to Skeptics of Global Warming.

    Science.gov (United States)

    Kellogg, William W.

    1991-04-01

    The majority of the scientific community involved in climate research is convinced of the reality of a current and future global warming due to the greenhouse effect, a change that must be largely caused by human activities. However, a minority of scientists is still skeptical of the notion that mankind is significantly influencing the climate of the earth, and it therefore argues against taking certain measures to avert this alleged global warming. In recent years the media have given considerable coverage to the statements of these skeptics. Reasons for their statements range from a simple argument that we do not understand the earth's climate system well enough to predict the future, to more complex arguments involving negative feed-backs and changes of solar activity. They question whether the global temperature increase in this century of up to 0.6 K is primarily a result of worldwide burning of fossil fuels. The purpose of this article is to show that the statements of this skeptical school of thought need to be critically analyzed (and in some cases refuted) in the light of current understanding of the planetary system that determines our climate. There is also another school of thought that agrees about the reality of present and future global warming, and claims that this will be beneficial for most of mankind and that it should be encouraged. The policy implications of the latter view are in many respects similar to those of the group that are not convinced that a significant global warming will occur. Both schools of thought argue against taking immediate steps to slow the climate change.

  16. Atmospheric footprint of the recent warming slowdown

    Science.gov (United States)

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013 however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability.

  17. Effects of Global Warming on Vibrio Ecology.

    Science.gov (United States)

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  18. Global warming and allergy in Asia Minor.

    Science.gov (United States)

    Bajin, Munir Demir; Cingi, Cemal; Oghan, Fatih; Gurbuz, Melek Kezban

    2013-01-01

    The earth is warming, and it is warming quickly. Epidemiological studies have demonstrated that global warming is correlated with the frequency of pollen-induced respiratory allergy and allergic diseases. There is a body of evidence suggesting that the prevalence of allergic diseases induced by pollens is increasing in developed countries, a trend that is also evident in the Mediterranean area. Because of its mild winters and sunny days with dry summers, the Mediterranean area is different from the areas of central and northern Europe. Classical examples of allergenic pollen-producing plants of the Mediterranean climate include Parietaria, Olea and Cupressaceae. Asia Minor is a Mediterranean region that connects Asia and Europe, and it includes considerable coastal areas. Gramineae pollens are the major cause of seasonal allergic rhinitis in Asia Minor, affecting 1.3-6.4 % of the population, in accordance with other European regions. This article emphasizes the importance of global climate change and anticipated increases in the prevalence and severity of allergic disease in Asia Minor, mediated through worsening air pollution and altered local and regional pollen production, from an otolaryngologic perspective.

  19. Global Warming: Evidence from Satellite Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  20. The phenology of Arctic Ocean surface warming

    Science.gov (United States)

    Steele, Michael; Dickinson, Suzanne

    2016-09-01

    In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.

  1. Seaweed communities in retreat from ocean warming.

    Science.gov (United States)

    Wernberg, Thomas; Russell, Bayden D; Thomsen, Mads S; Gurgel, C Frederico D; Bradshaw, Corey J A; Poloczanska, Elvira S; Connell, Sean D

    2011-11-08

    In recent decades, global climate change [1] has caused profound biological changes across the planet [2-6]. However, there is a great disparity in the strength of evidence among different ecosystems and between hemispheres: changes on land have been well documented through long-term studies, but similar direct evidence for impacts of warming is virtually absent from the oceans [3, 7], where only a few studies on individual species of intertidal invertebrates, plankton, and commercially important fish in the North Atlantic and North Pacific exist. This disparity of evidence is precarious for biological conservation because of the critical role of the marine realm in regulating the Earth's environmental and ecological functions, and the associated socioeconomic well-being of humans [8]. We interrogated a database of >20,000 herbarium records of macroalgae collected in Australia since the 1940s and documented changes in communities and geographical distribution limits in both the Indian and Pacific Oceans, consistent with rapid warming over the past five decades [9, 10]. We show that continued warming might drive potentially hundreds of species toward and beyond the edge of the Australian continent where sustained retreat is impossible. The potential for global extinctions is profound considering the many endemic seaweeds and seaweed-dependent marine organisms in temperate Australia.

  2. Toward international law on global warming

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, E.B. Jr.; Johns, C.; Pauken, M.T. (Washington Univ., St. Louis, MO (United States))

    1991-01-01

    Legal precedent in the history of international environmental law is considered. Then, the legal principles, rights and obligations related to transboundary environmental interference are drawn from the precedent. From this legal and historical background, and a brief overview of the principal technical aspects of the emerging global warming problem, the authors suggest a number of possible international protocols. These include outlines of multilateral treaties on energy efficiency, reduction in utilization of coal, increased adoption efficiency, reduction in utilization of coal, increased adoption of renewable and solar energy, and stimulation of several types of forestation, with creation of practical regimes and remedies. Each protocol has its own environmental social and economic merits and urgency, apart from the prevention of global warming. In each suggested protocol, the political obstacles are analyzed. Suggestions are presented for reduction of levels of disagreement standing in the way of obtaining viable treaties likely to be upheld in practice by the signatories. An agenda for study and action is presented, on the assumption that prudence dictates that international environmental law must be expanded as soon as feasible to regulate global warming.

  3. Scientists' views about attribution of global warming.

    Science.gov (United States)

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  4. The existence of warm and optically thick dissipative coronae above accretion disks

    CERN Document Server

    Rozanska, A; Belmont, R; Czerny, B; Petrucci, P -O

    2015-01-01

    In the past years, several observations of AGN and X-ray binaries have suggested the existence of a warm T around 0.5-1 keV and optically thick, \\tau ~ 10-20, corona covering the inner parts of the accretion disk. These properties are directly derived from spectral fitting in UV to soft-X-rays using Comptonization models. However, whether such a medium can be both in radiative and hydrostatic equilibrium with an accretion disk is still uncertain. We investigate the properties of such warm, optically thick coronae and put constraints on their existence. We solve the radiative transfer equation for grey atmosphere analytically in a pure scattering medium, including local dissipation as an additional heating term in the warm corona. The temperature profile of the warm corona is calculated assuming it is cooled by Compton scattering, with the underlying dissipative disk providing photons to the corona. Our analytic calculations show that a dissipative thick, (\\tau_{cor} ~ 10-12) corona on the top of a standard ac...

  5. Retrieving latent heating vertical structure from cloud and precipitation Profiles—Part I: Warm rain processes

    Science.gov (United States)

    Min, Qilong; Li, Rui; Wu, Xiaoqing; Fu, Yunfei

    2013-06-01

    An exploratory study on physical based latent heat (LH) retrieval algorithm is conducted by parameterizing the physical linkages of hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water. Specifically, rain events are segregated into three rain types: warm, convective, and stratiform, based on their dynamical and thermodynamical characteristics. As the first of the series, only the warm rain LH algorithm is presented and evaluated here. The major microphysical processes of condensation and evaporation for warm rain are parameterized through traditional rain growth theory, with the aid of Cloud Resolving Model (CRM) simulations. The evaluation or the self-consistency tests indicate that the physical based retrievals capture the fundamental LH processes associated with the warm rain life cycle. There is no significant systematic bias in terms of convection strength, illustrated by the month-long CRM simulation as the mesoscale convective systems (MCSs) experience from initial, mature, to decay stages. The overall monthly-mean LH comparison showed that the total LH, as well as condensation heating and evaporation cooling components, agree with the CRM simulation.

  6. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  7. Can cirrus clouds warm early Mars?

    Science.gov (United States)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  8. GLOBAL WARMING: IS A NEW THREAT?

    Energy Technology Data Exchange (ETDEWEB)

    Ayca Eminoglu

    2008-09-30

    In the Post Cold War era, the concepts of ''security'', ''national security'', and ''international security'' have changed with regard to their contents and meanings. Such developments made states to renew their national security policies. Security is a special form of politics as well. All security issues are political problems but not all political conflicts are security issues. In the Post Cold War era, differentiating and increasing numbers of elements that constitutes threat changed the concept of threat and widen the capacity of security. In this term, many elements lost its effect of being a threat but also new threatening elements emerged. Environmental problems, human rights, mass migration, micro nationalism, ethnic conflicts, religious fundamentalism, contagious diseases, international terrorism, economic instabilities, drug and weapon smuggling and human trafficking are the new problems emerged in international security agenda. Environmental problems no longer take place in security issues and can be mentioned as a ''low security'' issue. They are threats to the global commons i.e. the oceans, the seas, the ozone layer and the climate system, which are life supports for mankind as a whole. Global warming is one of the most important environmental issues of our day that effects human life in every field and can be defined as a 'serious threat to international security'. Because of global warming, environmental changes will occur and these changes will cause conflicting issues in international relations. Because of global warming dwindling freshwater supplies, food shortages, political instability and other conflicts may take place. Some IR scholars see a need for global cooperation in order to face the threat. At the background of global warming and its effects, states have to get preventive measures and normally, each state form its own measures, therefore as a

  9. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields

    Science.gov (United States)

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.

    2016-12-01

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.

  10. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather.

    Science.gov (United States)

    MacLean, Heidi J; Penick, Clint A; Dunn, Robert R; Diamond, Sarah E

    2017-07-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3-5°C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants. Experimental winter warming significantly altered thermal performance for running speed at high (26 and 36°C) but not low test temperatures (6 and 16°C). Although we saw little differentiation in thermal performance at cooler test temperatures, we saw a marked increase in running speed at the hotter test temperatures for ants that experienced warmer winters compared with those that experienced cooler winters. Our results provide evidence that overwintering temperatures can substantially influence organismal performance, and suggest that we cannot ignore overwintering effects when forecasting organismal responses to environmental changes in temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Profile summary.

    Science.gov (United States)

    2003-01-01

    All drugs appearing in the Adis Profile Summary table have been selected based on information contained in R&D Insight trade mark, a proprietary product of Adis International. The information in the profiles is gathered from the world's medical and scientific literature, at international conferences and symposia, and directly from the developing companies themselves. The emphasis of Drugs in R&D is on the clinical potential of new drugs, and selection of agents for inclusion is based on products in late-phase clinical development that have recently had a significant change in status.

  12. Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections

    Directory of Open Access Journals (Sweden)

    Tony W. Li

    2016-01-01

    Full Text Available The observed slow-down in the global-mean surface temperature (GST warming from 1998 to 2012 has been called a “warming hiatus.” Certain climate models, operating under experiments which simulate warming by increasing radiative forcing, have been shown to reproduce periods which resemble the observed hiatus. The present study provides a comprehensive analysis of 38 CMIP5 climate models to provide further evidence that models produce warming hiatus periods during warming experiments. GST rates are simulated in each model for the 21st century using two experiments: a moderate warming scenario (RCP4.5 and high-end scenario (RCP8.5. Warming hiatus periods are identified in model simulations by detecting (1 ≥15-year periods lacking a statistically meaningful trend and (2 rapid changes in the GST rate which resemble the observed 1998–2012 hiatus. Under the RCP4.5 experiment, all tested models produce warming hiatus periods. However, once radiative forcing exceeds 5 W/m2—about 2°C GST increase—as simulated in the RCP8.5 experiment after 2050, nearly all models produce only positive warming trends. All models show evidence of rapid changes in the GST rate resembling the observed hiatus, showing that the climate variations associated with warming hiatus periods are still evident in the models, even under accelerated warming conditions.

  13. Effect of pre-incubation and incubation conditions on hatchability ...

    African Journals Online (AJOL)

    ACSS

    There was a significant influence (P<0.05) of breeder age on hatchability. Also, ... kitchen diet and agricultural waste, and ... abundant in villages, into human protein ... In modern hatcheries, with a fixed ... performance and health during rearing.

  14. Deep time evidence for climate sensitivity increase with warming

    Science.gov (United States)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto; Pepke Pedersen, Jens Olaf

    2016-06-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warming world, but past warming events may provide insight. Here we employ paleoreconstructions and new climate-carbon model simulations in a novel framework to explore a wide scenario range for the Paleocene-Eocene Thermal Maximum (PETM) carbon release and global warming event 55.8 Ma ago, a possible future warming analogue. We obtain constrained estimates of CO2 and climate sensitivity before and during the PETM and of the PETM carbon input amount and nature. Sensitivity increased from 3.3-5.6 to 3.7-6.5 K (Kelvin) into the PETM. When taken together with Last Glacial Maximum and modern estimates, this result indicates climate sensitivity increase with global warming.

  15. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    Directory of Open Access Journals (Sweden)

    Rehmani Muhammad

    2011-12-01

    Full Text Available Abstract To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time.

  16. Punishments and Prizes for Explaining Global Warming

    Science.gov (United States)

    Somerville, R. C.

    2006-12-01

    Some few gifted scientists, the late Carl Sagan being an iconic example, are superbly skilled at communicating science clearly and compellingly to non-scientists. Most scientists, however, have serious shortcomings as communicators. The common failings include being verbose, addicted to jargon, caveat- obsessed and focused on details. In addition, it is far easier for a scientist to scoff at the scientific illiteracy of modern society than to work at understanding the viewpoints and concerns of journalists, policymakers and the public. Obstacles await even those scientists with the desire and the talent to communicate science well. Peer pressure and career disincentives can act as powerful deterrents, discouraging especially younger scientists from spending time on non-traditional activities. Scientists often lack mentors and role models to help them develop skills in science communication. Journalists also face real difficulties in getting science stories approved by editors and other gatekeepers. Climate change science brings its own problems in communication. The science itself is unusually wide- ranging and complex. The contentious policies and politics of dealing with global warming are difficult to disentangle from the science. Misinformation and disinformation about climate change are widespread. Intimidation and censorship of scientists by some employers is a serious problem. Polls show that global warming ranks low on the public's list of important issues. Despite all the obstacles, communicating climate change science well is critically important today. It is an art that can be learned and that brings its own rewards and satisfactions. Academic institutions and research funding agencies increasingly value outreach by scientists, and they provide resources to facilitate it. Society needs scientists who can clearly and authoritatively explain the science of global warming and its implications, while remaining objective and policy-neutral. This need will

  17. Indentifying the Molecular Origin of Global Warming

    Science.gov (United States)

    Bera, P. P.; Lee, T. J.; Francisco, J.

    2009-12-01

    Indentifying the Molecular Origin of Global Warming Partha P. Bera, Joseph S. Francisco and Timothy J. Lee NASA Ames Research Center, Space Science and Astrobiology Division, Moffett Field, California 94035, and Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907-1393 Abstract The physical characteristics of greenhouse gases (GHGs) have been investigated to assess which properties are most important in determining the radiative efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), hydrofluoroethers, fluoroethers, nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central carbon atom becoming more positive. This leads to a linear increase in the total or integrated X-F bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change and a new design strategy for more environmentally friendly industrial materials from a molecular quantum chemistry perspective will be discussed.

  18. Global Warming and Caspian Sea Level Fluctuations

    CERN Document Server

    Ardakanian, Reza

    2013-01-01

    Coastal regions have a high social, economical and environmental importance. Due to this importance the sea level fluctuations can have many bad consequences. In this research the correlation between the increasing trend of temperature in coastal stations due to Global Warming and the Caspian Sea level has been established. The Caspian Sea level data has been received from the Jason-1 satellite. It was resulted that the monthly correlation between the temperature and sea level is high and also positive and almost the same for all the stations. But the yearly correlation was negative. It means that the sea level has decreased by the increase in temperature.

  19. Maori People’s Warm Friendship Recalled

    Institute of Scientific and Technical Information of China (English)

    Liu; Gengyin

    2015-01-01

    In 1981,at the invitation of the New Zealand-China Friendship Association,I had a chance to join a delegation headed by then CPAFFC President Wang Bingnan to pay my first visit to New Zealand.There,the CPAFFC delegation was accorded a warm and friendly reception,particularly by the Maori people.They are New Zealand’s aboriginal people,belonging to the Polynesian race.Since the beginning of the 19th Century,great numbers of Europeans

  20. Global warming and carbon dioxide through sciences.

    Science.gov (United States)

    Florides, Georgios A; Christodoulides, Paul

    2009-02-01

    Increased atmospheric CO(2)-concentration is widely being considered as the main driving factor that causes the phenomenon of global warming. This paper attempts to shed more light on the role of atmospheric CO(2) in relation to temperature-increase and, more generally, in relation to Earth's life through the geological aeons, based on a review-assessment of existing related studies. It is pointed out that there has been a debate on the accuracy of temperature reconstructions as well as on the exact impact that CO(2) has on global warming. Moreover, using three independent sets of data (collected from ice-cores and chemistry) we perform a specific regression analysis which concludes that forecasts about the correlation between CO(2)-concentration and temperature rely heavily on the choice of data used, and one cannot be positive that indeed such a correlation exists (for chemistry data) or even, if existing (for ice-cores data), whether it leads to a "severe" or a "gentle" global warming. A very recent development on the greenhouse phenomenon is a validated adiabatic model, based on laws of physics, forecasting a maximum temperature-increase of 0.01-0.03 degrees C for a value doubling the present concentration of atmospheric CO(2). Through a further review of related studies and facts from disciplines like biology and geology, where CO(2)-change is viewed from a different perspective, it is suggested that CO(2)-change is not necessarily always a negative factor for the environment. In fact it is shown that CO(2)-increase has stimulated the growth of plants, while the CO(2)-change history has altered the physiology of plants. Moreover, data from palaeoclimatology show that the CO(2)-content in the atmosphere is at a minimum in this geological aeon. Finally it is stressed that the understanding of the functioning of Earth's complex climate system (especially for water, solar radiation and so forth) is still poor and, hence, scientific knowledge is not at a level to

  1. Atom Interferometry in a Warm Vapor

    CERN Document Server

    Biedermann, G W; Rakholia, A V; Jau, Y -Y; Wheeler, D R; Sterk, J D; Burns, G R

    2016-01-01

    We demonstrate matterwave interference in a warm vapor of rubidium atoms. Established approaches to light pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  2. Global warming without global mean precipitation increase?

    OpenAIRE

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aeroso...

  3. Anthropogenic global warming threatens world cultural heritage

    OpenAIRE

    Cazenave, A.

    2014-01-01

    1748-9326; Numerous cultural sites of the United Nations Educational, Scientific and Cultural Organization (UNESCO) world cultural Heritage are located in low-lying coastal regions. Because of anthropogenic global warming and induced sea level rise, many of these sites will be partially or totally flooded in the coming centuries/millennia. This is shown in a recent study by Marzeion and Levermann (2014 Environ. Res. Lett. 9 [http://dx.doi.org/10.1088/1748-9326/9/3/034001] 034001 ). Projecting...

  4. Warm inflation in presence of magnetic fields

    CERN Document Server

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-01-01

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

  5. Resource Letter: GW-1: Global warming

    Science.gov (United States)

    Firor, John W.

    1994-06-01

    This Resource Letter provides a guide to the literature on the possibility of a human-induced climate change—a global warming. Journal articles and books are cited for the following topics: the Greenhouse Effect, sources of infrared-trapping gases, climate models and their uncertainties, verification of climate models, past climate changes, and economics, ethics, and politics of policy responses to climate change. [The letter E after an item indicates elementary level or material of general interest to persons becoming informed in the field. The letter I, for intermediate level, indicates material of somewhat more specialized nature, and the letter A indicates rather specialized or advanced material.

  6. Ionospheric disturbances in Asian region of Russia during sudden stratospheric warmings

    Science.gov (United States)

    Kurkin, Vladimir; Chernigovskaya, Marina; Medvedeva, Irina; Orlov, Igor

    This paper presents an investigation of the subauroral and mid-latitude ionosphere variations in the Asian region of Russia during stratospheric warmings in 2008, 2009 and 2010. We used the data from network of vertical and oblique-incidence sounding ionosounders of ISTP SB RAS. Irkutsk chirp-sounder (vertical incidence sounding) run every 1 minute on 24-hour basis for 30 days in winter of 2008, 2009 and 2010 to study small-scale and medium-scale distur-bances. The experiments on the radio paths Magadan-Irkutsk, Khabarovsk-Irkutsk and Norilsk -Irkutsk were conducted in order to study large-scale ionospheric disturbances. The frequency range was from 4 to 30 MHz, the sweep rate used 500 kHz/sec. To identify the stratospheric warming events the Berlin Meteorological University data (http://strat-www.met.fu-berlin.de) on stratospheric warming at standard isobaric levels and the atmospheric temperature height profiles measured by the Microwave Limb Sounder (MLS) aboard the EOS Aura spacecraft were used. The increase of wave activity in upper ionosphere over Asian region of Russia has recorded during stratospheric warmings. Spectrums of multi-scale variations were derived from the data obtained during the prolonged experiments. The analysis of experimental data has revealed the amplitudes of planetary waves in ionosphere during stratospheric warmings in 2008 and 2010 larger than ones in winter 2009 as opposed to amplitude variations of temperature in stratosphere. This work was supported by Russian Foundation for Basic Research (grant 08-05-00658).

  7. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    Science.gov (United States)

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  8. Merger histories in warm dark matter structure formation scenarios

    Science.gov (United States)

    Knebe, Alexander; Devriendt, Julien E. G.; Mahmood, Asim; Silk, Joseph

    2002-02-01

    Observations on galactic scales seem to be in contradiction with recent high-resolution N-body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy haloes. In this paper, we explore a different approach that consists of filtering the dark matter power spectrum on small scales, thereby altering the formation history of low-mass objects. The physical motivation for damping these fluctuations lies in the possibility that the dark matter particles have a different nature, i.e. are warm (WDM) rather than cold. We show that this leads to some interesting new results in terms of the merger history and large-scale distribution of low-mass haloes, compared with the standard CDM scenario. However, WDM does not appear to be the ultimate solution, in the sense that it is not able to fully solve the CDM crisis, even though one of the main drawbacks, namely the abundance of satellites, can be remedied. Indeed, the cuspiness of the halo profiles still persists, at all redshifts, and for all haloes and sub-haloes that we investigated. Despite the persistence of the cuspiness problem of DM haloes, WDM seems to be still worth taking seriously, as it alleviates the problems of over-abundant sub-structures in galactic haloes and possibly the lack of angular momentum of simulated disc galaxies. WDM also lessens the need to invoke strong feedback to solve these problems, and may provide a natural explanation of the clustering properties and ages of dwarfs.

  9. A Comparison of Symmetric and Asymmetric Warming Regimes on the Soil Carbon and Nitrogen Dynamics of Grassland Ecosystems

    Science.gov (United States)

    Wig, J.; Lajtha, K.; Gregg, J. W.

    2010-12-01

    Global mean temperatures have increased 0.10 to 0.16°C per decade over the last 50 years, and continued increases in atmospheric greenhouse gas concentrations are expected to cause temperatures to increase by more than 3°C by the middle of the 21st century. While many warming experiments have been performed, most have determined impacts of equal increases in day and night temperatures on production, diversity, or ecosystem carbon dynamics. However, there have been faster increases in daily minimum temperature (Tmin) than daily maximum temperature (Tmax), a phenomenon commonly referred to as asymmetric warming. Photosynthesis and respiration are differentially affected by altered day and night temperatures, and thus the ecological effects of alterations in Tmin could differ from alterations in Tmax. Therefore, it is imperative that we expand our understanding of potential impacts of global warming to include the effects of asymmetrically elevated temperature profiles. To examine the affects of asymmetric vs. symmetric warming, we used Terracosm chambers with planted grassland communities native to Oregon’s Willamette Valley. The warmed chambers are subjected to an average increase of +3.5°C/day, with asymmetrically warmed chambers having an increase of dawn Tmin of +5°C, and an increase of midday Tmax of +2°C; and with symmetrically warmed chambers having a constant increase of +3.5°C. The goals of this project are to assess (1) whether patterns of increased NPP, changes in species composition and altered C, H2O and nutrient cycles shown for symmetric warming are similar in the asymmetric profiles, or whether entirely different patterns emerge unique to the asymmetrically elevated temperature treatments, and (2) whether the impacts of asymmetric and symmetric warming differ for soil C stabilization and destabilization processes. Our data indicate that whole ecosystem carbon balance was negative, with higher respiration than photosynthesis, for both symmetric

  10. Urban amplification of the global warming in Moscow megacity

    Science.gov (United States)

    Kislov, Alexander; Konstantinov, Pavel; Varentsov, Mikhail; Samsonov, Timofey; Gorlach, Irina; Trusilova, Kristina

    2015-04-01

    Climate changes in the large cities are very important and requires better understanding. The focus of this paper is climate change of the Moscow megacity. Its urban features strongly influence the atmospheric boundary layer above the Moscow agglomeration area and determine the microclimatic features of the local environment, such as urban heat island (UHI). Available meteorological observations within the Moscow urban area and surrounding territory allow us to assess the natural climate variations and human-induced climate warming separately. To obtain more precisely viewing on the UHI structure we have included into the analysis the satellite data (Meteosat-10), providing temperature and humidity profiles with high resolution. To investigate the mechanism of the urban amplification we realized the regional climate model COSMO-CLM+TEB. Apart from detailed climate research the model runs will be planned for climate projecting of Moscow agglomeration area. Climate change differences between urban and rural areas are determined by changes of the shape of the UHI and their relationships with changes of building height and density. Therefore, the urban module of COSMO-CLM+TEB model is fed by information from special GIS database contenting both geometric characteristics of the urban canyons and other characteristics of the urban surface. The sources of information were maps belonging to the OpenStreetMap, and digital elevation models SRTM90 and ASTER GDEM v.2 as well. The multiscale GIS database allows us to generate such kind of information with different spatial resolution (200, 500 and 1000 meters).

  11. Merger Histories in Warm Dark Matter Structure Formation Scenario

    CERN Document Server

    Knebe, A; Mahmood, A; Silk, J; Knebe, Alexander; Devriendt, Julien; Mahmood, Asim; Silk, Joseph

    2002-01-01

    Observations on galactic scales seem to be in contradiction with recent high resolution N-body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy halos. In this paper, we explore a somewhat different approach which consists of filtering the dark matter power spectrum on small scales, thereby altering the formation history of low mass objects. The physical motivation for damping these fluctuations lies in the possibility that the dark matter particles have a different nature i.e. are warm (WDM) rather than cold. We show that this leads to some interesting new results in terms of the merger history and large-scale distribution of low mass halos, as compared to the standard ...

  12. Warmth Elevating the Depths: Shallower Voids with Warm Dark Matter

    CERN Document Server

    Yang, Lin F; Aragon-Calvo, Miguel A; Silk, Joseph

    2014-01-01

    Warm dark matter (WDM) has been proposed as an alternative to cold dark matter (CDM), to resolve issues such as the apparent lack of satellites around the Milky Way. Even if WDM is not the answer to observational issues, it is essential to constrain the nature of the dark matter. The effect of WDM on haloes has been extensively studied, but the small-scale initial smoothing in WDM also affects the present-day cosmic web and voids. It suppresses the cosmic "sub-web" inside voids, and the formation of both void haloes and subvoids. In N-body simulations run with different assumed WDM masses, we identify voids with the zobov algorithm, and cosmic-web components with the origami algorithm. As dark-matter warmth increases, the initial-conditions smoothing increases, and the number of voids and subvoids is suppressed. Also, void density profiles change, their shapes become flatter inside the void radius, while edges of the voids remain unchanged. Also, filaments and walls become cleaner, as the sub-structures in be...

  13. Cold months in a warming climate

    Science.gov (United States)

    Räisänen, Jouni; Ylhäisi, Jussi S.

    2011-11-01

    The frequency of cold months in the 21st century is studied using the CMIP3 ensemble of climate model simulations, using month-, location- and model-specific threshold temperatures derived from the simulated 20th century climate. Unsurprisingly, cold months are projected to become less common, but not non-existent, under continued global warming. As a multi-model mean over the global land area excluding Antarctica and under the SRES A1B scenario, 14% of the months during the years 2011-2050 are simulated to be colder than the 20th century median for the same month, 1.3% colder than the 10th percentile, and 0.1% record cold. The geographic and seasonal variations in the frequency of cold months are strongly modulated by variations in the magnitude of interannual variability. Thus, for example, cold months are most infrequently simulated over the tropical oceans where the variability is smallest, not over the Arctic where the warming is largest.

  14. Rethinking the costs related to global warming

    Energy Technology Data Exchange (ETDEWEB)

    Ekins, P. (Birkbeck Coll., London (United Kingdom))

    1994-03-01

    The economic analysis of global warming seeks to balance the costs of damage from or adaptation to it with the costs of mitigating it. The costs of adaptation and damage have been estimated using techniques of environmental evaluation, but are subject to a wide margin of uncertainty. The costs of mitigation, principally by reducing the emissions of CO[sub 2], have been estimated using different kinds of economic models, some of the results of which have suggested that very little abatement of carbon emissions is justified before the costs of abatement exceed the benefits of it in terms of foregone damage and adaptation costs. The paper analyses the extent to which this conclusion is a function of the modelling assumptions and techniques used, rather than likely practical outcomes. It concludes that, with different and arguably more appropriate treatment of the issues, especially when the secondary benefits of reducing CO[sub 2] emissions are also taken into account, it is not clear that even substantial reductions in the use of fossil fuels will incur net costs, especially if there is the prospect of even moderate costs from global warming. (Author)

  15. Soft radiative strength in warm nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A; Voinov, A; Agvaanluvsan, U; Algin, E; Becker, J; Belgya, T; Bernstein, L; Chankova, R; Garrett, P E; Guttormsen, M; Mitchell, G E; Nelson, R O; Rekstad, J; Siem, S; Sunde, A C

    2005-09-29

    We present data on the soft (E{sub {gamma}} < 3-4 MeV) radiative strength function (RSF) for electromagnetic transitions between warm states (i.e. states several MeV above the yrast line) from two different types of experiments. The Oslo method provides data on the total level density and the sum (over all multipolarities) of all RSFs by sequential extraction from primary-{gamma} spectra. Measurements of two-step-decay spectra following neutron capture yields two-step-cascade (TSC) intensities which are roughly proportional to the product of two RSFs. Investigations on {sup 172}Yb and {sup 57}Fe have produced unexpected results. In the first case, a strong (B(M1 {up_arrow}) = 6.5 {mu}{sub N}{sup 2}) resonance at E = 3.3 MeV was identified. In the second case, a large (more than a factor of 10) enhancement compared to theoretical estimates of the very soft (E{sub {gamma}} {le} 3 MeV), summed RSF for transitions between warm states was observed. A somewhat weaker (factor {approx} 3) enhancement of the RSF in Mo isotopes observed within the Oslo method still awaits confirmation from TSC experiments.

  16. Identifying the Molecular Origin of Global Warming

    Science.gov (United States)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  17. Global warming and cyanobacterial harmful algal blooms.

    Science.gov (United States)

    Paul, Valerie J

    2008-01-01

    The Earth and the oceans have warmed significantly over the past four decades, providing evidence that the Earth is undergoing long-term climate change. Increasing temperatures and changing rainfall patterns have been documented. Cyanobacteria have a long evolutionary history, with their first occurrence dating back at least 2.7 billion years ago. Cyanobacteria often dominated the oceans after past mass extinction events. They evolved under anoxic conditions and are well adapted to environmental stress including exposure to UV, high solar radiation and temperatures, scarce and abundant nutrients. These environmental conditions favor the dominance of cyanobacteria in many aquatic habitats, from freshwater to marine ecosystems. A few studies have examined the ecological consequences of global warming on cyanobacteria and other phytoplankton over the past decades in freshwater, estuarine, and marine environments, with varying results. The responses of cyanobacteria to changing environmental patterns associated with global climate change are important subjects for future research. Results of this research will have ecological and biogeochemical significance as well as management implications.

  18. Post-Babesiosis Warm Autoimmune Hemolytic Anemia.

    Science.gov (United States)

    Woolley, Ann E; Montgomery, Mary W; Savage, William J; Achebe, Maureen O; Dunford, Kathleen; Villeda, Sarah; Maguire, James H; Marty, Francisco M

    2017-03-09

    Background Babesiosis, a tickborne zoonotic disease caused by intraerythrocytic protozoa of the genus babesia, is characterized by nonimmune hemolytic anemia that resolves with antimicrobial treatment and clearance of parasitemia. The development of warm-antibody autoimmune hemolytic anemia (also known as warm autoimmune hemolytic anemia [WAHA]) in patients with babesiosis has not previously been well described. Methods After the observation of sporadic cases of WAHA that occurred after treatment of patients for babesiosis, we conducted a retrospective cohort study of all the patients with babesiosis who were cared for at our center from January 2009 through June 2016. Data on covariates of interest were extracted from the medical records, including any hematologic complications that occurred within 3 months after the diagnosis and treatment of babesiosis. Results A total of 86 patients received a diagnosis of babesiosis during the 7.5-year study period; 18 of these patients were asplenic. WAHA developed in 6 patients 2 to 4 weeks after the diagnosis of babesiosis, by which time all the patients had had clinical and laboratory responses to antimicrobial treatment of babesiosis, including clearance of Babesia microti parasitemia. All 6 patients were asplenic (Pbabesiosis WAHA in patients who did not have a history of autoimmunity; asplenic patients appeared to be particularly at risk.

  19. Soil crusts to warm the planet

    Science.gov (United States)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  20. Global warming and thermohaline circulation stability.

    Science.gov (United States)

    Wood, Richard A; Vellinga, Michael; Thorpe, Robert

    2003-09-15

    The Atlantic thermohaline circulation (THC) plays an important role in global climate. Theoretical and palaeoclimatic evidence points to the possibility of rapid changes in the strength of the THC, including a possible quasi-permanent shutdown. The climatic impacts of such a shutdown would be severe, including a cooling throughout the Northern Hemisphere, which in some regions is greater in magnitude than the changes expected from global warming in the next 50 years. Other climatic impacts would likely include a severe alteration of rainfall patterns in the tropics, the Indian subcontinent and Europe. Modelling the future behaviour of the THC focuses on two key questions. (i) Is a gradual weakening of the THC likely in response to global warming, and if so by how much? (ii) Are there thresholds beyond which rapid or irreversible changes in the THC are likely? Most projections of the response of the THC to increasing concentrations of greenhouse gases suggest a gradual weakening over the twenty-first century. However, there is a wide variation between different models over the size of the weakening. Rapid or irreversible THC shutdown is considered a low-probability (but high-impact) outcome; however, some climate models of intermediate complexity do show the possibility of such events. The question of the future of the THC is beset with conceptual, modelling and observational uncertainties, but some current and planned projects show promise to make substantial progress in tackling these uncertainties in future.

  1. Photochemical aerosols in warm exoplanetary atmospheres

    Science.gov (United States)

    Imanaka, Hiroshi; Smith, Mark A.; McKay, Christopher P.; Cruikshank, Dale P.; Marley, Mark S.

    2016-10-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. We have conducted a series of laboratory simulations to investigate how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. The mass production rates in the H2-CH4-CO gas mixtures are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed in a H2-CO gas mixture even without CH4. The complex refractive indices of the aerosol analogue from the H2-CO gas mixture show strong absorption at the visible/near-IR wavelengths. These experimental facts imply that substantial carbonaceous aerosols may be generated in warm H2-CO-CH4 exoplanetary atmospheres, and that it might be responsible for the observed dark albedos at the visible wavelengths.

  2. Acting green elicits a literal warm glow

    Science.gov (United States)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  3. Waiting for warm water - how long? Pipelines; Warten auf warmes Wasser - wie lange? Rohrleitung

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M.

    2006-11-15

    How long should it take until warm water is available at the tap? Since 2004, this question has been discussed in the catalogue of technical rules, with varying answers. This contribution outlines the current situation and presents some thoughts of the author that highlight new aspects. Practical hints are given for daily practice. (orig.)

  4. Interactive effects of elevated CO2 and warming on soil respiration in a mountain grassland

    Science.gov (United States)

    Reinthaler, David; Gstir, Claudia; Herndl, Markus; Pötsch, Erich; Bahn, Michael

    2017-04-01

    Soil respiration is the largest source of CO2 emitted from terrestrial ecosystems to the atmosphere. In grasslands, which cover over 30% of the global land area and around 70% of the world's agricultural acreage, the contribution of soil respiration to total ecosystem respiration is particularly high. The ClimGrass experiment aims to understand individual and combined effects of multi-level changes in temperature and atmospheric CO2 concentrations and of extreme drought on the biogeochemical cycles of a managed C3 grassland typical for European mountain regions. The ClimGrass experiment, based at AREC Raumberg Gumpenstein in Central Austria, comprises a total of 54 plots subjected to different combinations of experimental warming (ambient, +1.5°C, +3°C) and elevated CO2 (ambient, +150°C, +300 ppm), as well as extreme drought and heatwave. Here, we present first results concerning the interactive effects of warming and elevated CO2 on soil respiration. For this study we combined measurements of an automated system (LiCor 8100) with manual measurements of soil respiration (PP-Systems EGM4), in plots exposed to ambient and elevated CO2, both under ambient temperature conditions and +3°C warming. Our results from the first year of treatment indicate a significant increase of soil CO2 efflux caused by warming and a decrease under elevated CO2, with a strong interactive effect leading to a dampened warming effect under elevated CO2. Interestingly, elevated CO2 had stronger indirect than direct effects on soil respiration, mediated by altered soil moisture under elevated CO2. In the second and third year, however, all treatments increased soil CO2 efflux, with higher flux rates under elevated CO2 than under warming. Overall, elevated CO2 and warming had additive effects on soil moisture, but non-additive effects on soil respiration. Analyses of isotopic signatures of soil respired CO2, of the contribution of the heterotrophic component to total soil respiration and of

  5. Overwinter Transport of Subsurface Warm Water around the Arctic Chukchi Borderland

    Science.gov (United States)

    Watanabe, E.; Onodera, J.; Nishino, S.; Kikuchi, T.

    2016-02-01

    Ocean heat transport is a possible important factor for recent sea ice decline, especially in the western Arctic Ocean. It has been indicated that vertical hydrographic profiles in the Canada Basin were characterized by three temperature maxima. The near-surface temperature maximum was the shallowest one arising from summer solar heat absorption and subsequent autumn Ekman downwelling. The subsurface temperature maximum reflected intrusion of Pacific summer water. The deepest maximum was located in the Atlantic layer. Substantial parts of upper ocean heat would eventually affect sea ice freezing/melting. However, spatial and temporal variabilities of these warm layers still remain uncertainties. JAMSTEC field campaign deployed the bottom-tethered year-long mooring with a sediment trap in the Chukchi Abyssal Plain (Station CAP: 75.21°N, 172.55°W, 447 m) of the Chukchi Borderland. The temperature time series at 95 m of Station CAP showed a rapid warming event (from -1.6 to -0.8°C) for December 2012 to March 2013. During this period, high sea level pressure (i.e., anti-cyclones) covering the Canadian Basin induced strong easterly wind near the mooring station, where the sinking flux of lithogenic materials remarkably increased at the sediment trap depth (270 m). These situations suggest that lateral advection of shelf-origin warm water is a key factor for the subsurface warming in the CAP region. To address overwinter transport of subsurface warm water, a pan-Arctic sea ice-ocean modeling was also performed. The horizontal grid size was approximately 5 km to resolve mesoscale eddies and narrow jets. In the interannual experiments, the strong easterly wind produced a westward shelf-break jet along the northern edge of Chukchi shelf in winter of 2012-2013. Warm eddies generated north of the Barrow Canyon were still located east of the Northwind Ridge. Therefore, the subsurface warming event observed at Station CAP would have been attributed to shelf-break jet streams

  6. The Impact of Global Warming on the Global Climate

    OpenAIRE

    Abdulnaser S. Alseni

    2017-01-01

    Global warming is the gradual rise in environmental temperature due to depletion of the Ozone layer. The increase in the environmental temperatures is due to amplified rate of industrial development. In this case, most industries have contributed to the dangers associated with warming. The paper seeks to discuss global warming from various perspectives. It commences with an introduction highlighting the general information about the topic. The second part focuses on both natural and artificia...

  7. GLOBAL WARMING AND ITS IMPACT ON WATER RESOURCES

    OpenAIRE

    Debu Mukherjee

    2016-01-01

    Global warming is the gradual heating of earth's surface, oceans and atmosphere. Global warming is primarily a problem of too much carbon dioxide in the atmosphere which acts as a blanket, trapping heat and warming the planet. The relationship between water, energy, agriculture and climate is a significant one. As the earth’s temperature continues to rise, we can expect a significant impact on our fresh water supplies with the potential for devastating effects on these resources.&nb...

  8. The impact of global warming on Mount Everest.

    Science.gov (United States)

    Moore, G W K; Semple, John L

    2009-01-01

    Global warming impacts a wide range of human activities and ecosystems. One unanticipated consequence of the warming is an increase in barometric pressure throughout the troposphere. Mount Everest's extreme height and resulting low barometric pressure places humans near its summit in an extreme state of hypoxia. Here we quantify the degree with which this warming is increasing the barometric pressure near Everest's summit and argue that it is of such a magnitude as to make the mountain, over time, easier to climb.

  9. 100 LPW 800 Lm Warm White LED

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Decai [Philips Lumileds Lighting Company, San Jose, CA (United States)

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramica and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package

  10. Mechanisms for stronger warming over drier ecoregions observed since 1979

    Science.gov (United States)

    Zhou, Liming; Chen, Haishan; Hua, Wenjian; Dai, Yongjiu; Wei, Nan

    2016-11-01

    Previous research found that the warming rate observed for the period 1979-2012 increases dramatically with decreasing vegetation greenness over land between 50°S and 50°N, with the strongest warming rate seen over the driest regions such as the Sahara desert and the Arabian Peninsula, suggesting warming amplification over deserts. To further this finding, this paper explores possible mechanisms for this amplification by analyzing observations, reanalysis data and historical simulations of global coupled atmosphere-ocean general circulation models. We examine various variables, related to surface radiative forcing, land surface properties, and surface energy and radiation budget, that control the warming patterns in terms of large-scale ecoregions. Our results indicate that desert amplification is likely attributable primarily to enhanced longwave radiative forcing associated with a stronger water vapor feedback over drier ecoregions in response to the positive global-scale greenhouse gas forcing. This warming amplification and associated downward longwave radiation at the surface are reproduced by historical simulations with anthropogenic and natural forcings, but are absent if only natural forcings are considered, pointing to new potential fingerprints of anthropogenic warming. These results suggest a fundamental pattern of global warming over land that depend on the dryness of ecosystems in mid- and low- latitudes, likely reflecting primarily the first order large-scale thermodynamic component of global warming linked to changes in the water and energy cycles over different ecosystems. This finding may have important implications in interpreting global warming patterns and assessing climate change impacts.

  11. Global warming and neurodegenerative disorders: speculations on their linkage.

    Science.gov (United States)

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  12. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport

    Science.gov (United States)

    Armour, Kyle C.; Marshall, John; Scott, Jeffery R.; Donohoe, Aaron; Newsom, Emily R.

    2016-07-01

    The Southern Ocean has shown little warming over recent decades, in stark contrast to the rapid warming observed in the Arctic. Along the northern flank of the Antarctic Circumpolar Current, however, the upper ocean has warmed substantially. Here we present analyses of oceanographic observations and general circulation model simulations showing that these patterns--of delayed warming south of the Antarctic Circumpolar Current and enhanced warming to the north--are fundamentally shaped by the Southern Ocean's meridional overturning circulation: wind-driven upwelling of unmodified water from depth damps warming around Antarctica; greenhouse gas-induced surface heat uptake is largely balanced by anomalous northward heat transport associated with the equatorward flow of surface waters; and heat is preferentially stored where surface waters are subducted to the north. Further, these processes are primarily due to passive advection of the anomalous warming signal by climatological ocean currents; changes in ocean circulation are secondary. These findings suggest the Southern Ocean responds to greenhouse gas forcing on the centennial, or longer, timescale over which the deep ocean waters that are upwelled to the surface are warmed themselves. It is against this background of gradual warming that multidecadal Southern Ocean temperature trends must be understood.

  13. MPI Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Han, D K; Jones, T R

    2005-02-11

    The Message Passing Interface (MPI) is the de facto message-passing standard for massively parallel programs. It is often the case that application performance is a crucial factor, especially for solving grand challenge problems. While there have been many studies on the scalability of applications, there have not been many focusing on the specific types of MPI calls being made and their impact on application performance. Using a profiling tool called mpiP, a large spectrum of parallel scientific applications were surveyed and their performance results analyzed.

  14. Quantum profiles

    CERN Document Server

    Bernstein, Jeremy

    1991-01-01

    For the prominent science writer Jeremy Bernstein, the profile is the most congenial way of communicating science. Here, in what he labels a "series of conversations carried on in the reader's behalf and my own," he evokes the tremendous intellectual excitement of the world of modern physics, especially the quantum revolution. Drawing on his well-known talent for explaining the most complex scientific ideas for the layperson, Bernstein gives us a lively sense of what the issues of quantum mechanics are and of various ways in which individual physicists approached them.The author begins this se

  15. Warm Dark Matter from keVins

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F.; Merle, Alexander, E-mail: S.F.King@soton.ac.uk, E-mail: A.Merle@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom)

    2012-08-01

    We propose a simple model for Warm Dark Matter (WDM) in which two fermions are added to the Standard Model: (quasi-) stable ''keVins'' (keV inert fermions) which account for WDM and their unstable brothers, the ''GeVins'' (GeV inert fermions), both of which carry zero electric charge and zero lepton number, and are (approximately) ''inert'', in the sense that their only interactions are via suppressed couplings to the Z. We consider scenarios in which stable keVins are thermally produced and their abundance is subsequently diluted by entropy production from the decays of the heavier unstable GeVins. This mechanism could be implemented in a wide variety of models, including E{sub 6} inspired supersymmetric models or models involving sterile neutrinos.

  16. "Smashing the Moon" Accelerating Global Warming

    Institute of Scientific and Technical Information of China (English)

    Xuexiang Yang; Dianyou Chen

    2003-01-01

    The existence of the lunar has its advantages as well as disadvantages. Many dynamic phenomena are related to the lunar due to the rate of masses of the earth and the lunar is maximum. That is probably the reason for the life existence on the earth. The tide resulted from the moon gravitational force is the root of some disasters. However, it can also reduce the green house effect and regulate the temperature. It is proved that the moon is the thermostat of the earth. The greenhouse effect would be out of control without the moon, and the tendency for the global warming up would be critical. It is a risk to smash the moon without understanding clearly the advantage and disadvantage.

  17. On the warm absorber in AGN outflow

    CERN Document Server

    Adhikari, T P; Sobolewska, M; Czerny, B

    2016-01-01

    Warm absorber (WA) is an ionised gas present in the line of sight to the AGN central engine. The effect of the absorber is imprinted in the absorption lines observed in X-ray spectra of AGN. In this work, we model the WA in Seyfert 1 galaxy Mrk 509 using its recently published shape of broad band spectral energy distribution (SED) as a continuum illuminating the absorber. Using the photoionization code {\\sc Titan}, recently we have shown that the absorption measure distribution (AMD) found for this object can be successfully modelled as a single slab of gas in total pressure (radiation+gas) equilibrium, contrary to the usual models of constant density multiple slabs. We discuss the transmitted spectrum that would be recorded by an observer after the radiation from the nucleus passes through the WA.

  18. Frictionally decaying frontal warm-core eddies

    CERN Document Server

    Rubino, Angelo

    2016-01-01

    The dynamics of nonstationary, nonlinear, axisymmetric, warm-core geophysical surface frontal vortices affected by Rayleigh friction is investigated semi-analytically using the nonlinear, nonstationary reduced-gravity shallow-water equations. In this frame, it is found that vortices characterized by linear distributions of their radial velocity and arbitrary structures of their section and azimuthal velocity can be described exactly by a set of nonstationary, nonlinear coupled ordinary differential equations. The first-order problem (i.e., that describing vortices characterized by a linear azimuthal velocity field and a quadratic section) consists of a system of 4 differential equations, and each further order introduces in the system three additional ordinary differential equations and two algebraic equations. In order to illustrate the behavior of the nonstationary decaying vortices, the system's solution for the first-order and for the second-order problem is then obtained numerically using a Runge-Kutta m...

  19. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  20. Global Warming and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available In the work, the importance of assigning the microwave background to the Earth is ad- dressed while emphasizing the consequences for global climate change. Climate mod- els can only produce meaningful forecasts when they consider the real magnitude of all radiative processes. The oceans and continents both contribute to terrestrial emis- sions. However, the extent of oceanic radiation, particularly in the microwave region, raises concerns. This is not only since the globe is covered with water, but because the oceans themselves are likely to be weaker emitters than currently believed. Should the microwave background truly be generated by the oceans of the Earth, our planet would be a much less efficient emitter of radiation in this region of the electromagnetic spectrum. Furthermore, the oceans would appear unable to increase their emissions in the microwave in response to temperature elevation, as predicted by Stefan’s law. The results are significant relative to the modeling of global warming.

  1. Global warming: the truth behind the myth

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, M.L.

    1995-12-31

    This book presents a discussion of global climate and the greenhouse effect, the computer models that are used to predict global warming, the source and balance of the most important greenhouse gases, and the factors left out of the greenhouse models. It discusses the `hysteria` generated by an overreaction to scientific speculation and the resulting governmental policy implications. The book attempts to put the facts associated with global climate into proper perspective with other environmental problems, such as over-population, depletion of nonrenewable energy resources, and pollution. It presents the scientific facts on both sides of the various issues and documents them so that the reader will be able to form an intelligent and unbiased opinion.

  2. Revaluating ocean warming impacts on global phytoplankton

    Science.gov (United States)

    Behrenfeld, Michael J.; O'Malley, Robert T.; Boss, Emmanuel S.; Westberry, Toby K.; Graff, Jason R.; Halsey, Kimberly H.; Milligan, Allen J.; Siegel, David A.; Brown, Matthew B.

    2016-03-01

    Global satellite observations document expansions of the low-chlorophyll central ocean gyres and an overall inverse relationship between anomalies in sea surface temperature and phytoplankton chlorophyll concentrations. These findings can provide an invaluable glimpse into potential future ocean changes, but only if the story they tell is accurately interpreted. Chlorophyll is not simply a measure of phytoplankton biomass, but also registers changes in intracellular pigmentation arising from light-driven (photoacclimation) and nutrient-driven physiological responses. Here, we show that the photoacclimation response is an important component of temporal chlorophyll variability across the global ocean. This attribution implies that contemporary relationships between chlorophyll changes and ocean warming are not indicative of proportional changes in productivity, as light-driven decreases in chlorophyll can be associated with constant or even increased photosynthesis. Extension of these results to future change, however, requires further evaluation of how the multifaceted stressors of a warmer, higher-CO2 world will impact plankton communities.

  3. Climate Warming: Is There Evidence in Africa?

    Directory of Open Access Journals (Sweden)

    Hector Carcel

    2015-01-01

    Full Text Available We have examined the temperature time series across several locations in Africa. In particular, we focus on three countries, South Africa, Kenya, and Côte d’Ivoire, examining the monthly averaged temperatures from three weather stations at different locations in each country. We examine the presence of deterministic trends in the series in order to check if the hypothesis of warming trends for these countries holds; however, instead of using conventional approaches based on stationary I(0 errors, we allow for fractional integration, which seems to be a more plausible approach in this context. Our results indicate that temperatures have only significantly increased during the last 30 years for the case of Kenya.

  4. Sea ice thickness and recent Arctic warming

    Science.gov (United States)

    Lang, Andreas; Yang, Shuting; Kaas, Eigil

    2017-01-01

    The climatic impact of increased Arctic sea ice loss has received growing attention in the last years. However, little focus has been set on the role of sea ice thickness, although it strongly determines surface heat fluxes. Here ensembles of simulations using the EC-Earth atmospheric model (Integrated Forecast System) are performed and analyzed to quantify the atmospheric impacts of Arctic sea ice thickness change since 1982 as revealed by the sea ice model assimilation Global Ice-Ocean Modeling and Assimilation System. Results show that the recent sea ice thinning has significantly affected the Arctic climate, while remote atmospheric responses are less pronounced owing to a high internal atmospheric variability. Locally, the sea ice thinning results in enhancement of near-surface warming of about 1°C per decade in winter, which is most pronounced over marginal sea ice areas with thin ice. This leads to an increase of the Arctic amplification factor by 37%.

  5. Ocean deoxygenation in a warming world.

    Science.gov (United States)

    Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas

    2010-01-01

    Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.

  6. Climate changes instead of global warming

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2014-01-01

    Full Text Available Air temperature changes on Earth in recent years are the subject of numerous and increasingly interdisciplinary research. In contrast to, conditionally speaking, generally accepted views that these changes are conditioned primarily by anthropogenic activity, more results appear to suggest that it is dominant natural processes about. Whether because of the proven existence of areas in which downtrends are registered or the stagnation of air temperature, as opposed to areas where the increase is determined, in scientific papers, as well as the media, the increasingly present is the use of the term climate changes instead of the global warming. In this paper, we shall try to present arguments for the debate relating to the official view of the IPCC, as well as research indicating the opposite view.

  7. Thermal stability of warm-rolled tungsten

    DEFF Research Database (Denmark)

    Alfonso Lopez, Angel

    Pure tungsten is considered as armor material for the most critical parts of fusion reactors (thedivertor and the blanket first wall), mainly due to its high melting point (3422 °C). This is becauseboth the divertor and the first wall have to withstand high temperatures during service which...... and recrystallization occur in tungsten, and quantifying the kinetics and microstructuralaspects of these restoration processes. Two warm-rolled tungsten plates are annealed attemperatures between 1100 °C and 1350 °C, under vacuum conditions or argon atmosphere. Theeffects of annealing on the microstructure...... on these activation energies) to lower annealingtemperatures allows predicting the lifespan of these tungsten plates under fusion reactor conditions.A much longer lifetime at normal operating temperatures was found for the plate W67 (e.g. at least1 million years at 800 °C) as compared to the plate W90 (e.g 71 years...

  8. Competitive advantage on a warming planet.

    Science.gov (United States)

    Lash, Jonathan; Wellington, Fred

    2007-03-01

    Whether you're in a traditional smokestack industry or a "clean" business like investment banking, your company will increasingly feel the effects of climate change. Even people skeptical about global warming's dangers are recognizing that, simply because so many others are concerned, the phenomenon has wide-ranging implications. Investors already are discounting share prices of companies poorly positioned to compete in a warming world. Many businesses face higher raw material and energy costs as more and more governments enact policies placing a cost on emissions. Consumers are taking into account a company's environmental record when making purchasing decisions. There's also a burgeoning market in greenhouse gas emission allowances (the carbon market), with annual trading in these assets valued at tens of billions of dollars. Companies that manage and mitigate their exposure to the risks associated with climate change while seeking new opportunities for profit will generate a competitive advantage over rivals in a carbon-constrained future. This article offers a systematic approach to mapping and responding to climate change risks. According to Jonathan Lash and Fred Wellington of the World Resources Institute, an environmental think tank, the risks can be divided into six categories: regulatory (policies such as new emissions standards), products and technology (the development and marketing of climate-friendly products and services), litigation (lawsuits alleging environmental harm), reputational (how a company's environmental policies affect its brand), supply chain (potentially higher raw material and energy costs), and physical (such as an increase in the incidence of hurricanes). The authors propose a four-step process for responding to climate change risk: Quantify your company's carbon footprint; identify the risks and opportunities you face; adapt your business in response; and do it better than your competitors.

  9. Perihelion precession, polar ice and global warming

    Science.gov (United States)

    Steel, Duncan

    2013-03-01

    The increase in mean global temperature over the past 150 years is generally ascribed to human activities, in particular the rises in the atmospheric mixing ratios of carbon dioxide and other greenhouse gases since the Industrial Revolution began. Whilst it is thought that ice ages and interglacial periods are mainly initiated by multi-millennial variations in Earth's heliocentric orbit and obliquity, shorter-term orbital variations and consequent observable climatic effects over decadal/centurial timescales have not been considered significant causes of contemporary climate change compared to anthropogenic influences. Here it is shown that the precession of perihelion occurring over a century substantially affects the intra-annual variation of solar radiation influx at different locations, especially higher latitudes, with northern and southern hemispheres being subject to contrasting insolation changes. This north/south asymmetry has grown since perihelion was aligned with the winter solstice seven to eight centuries ago, and must cause enhanced year-on-year springtime melting of Arctic (but not Antarctic) ice and therefore feedback warming because increasing amounts of land and open sea are denuded of high-albedo ice and snow across boreal summer and into autumn. The accelerating sequence of insolation change now occurring as perihelion moves further into boreal winter has not occurred previously during the Holocene and so would not have been observed before by past or present civilisations. Reasons are given for the significance of this process having been overlooked until now. This mechanism represents a supplementary - natural - contribution to climate change in the present epoch and may even be the dominant fundamental cause of global warming, although anthropogenic effects surely play a role too.

  10. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate

    Science.gov (United States)

    Rasmussen, Tine L.; Thomsen, Erik; Moros, Matthias

    2016-02-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas.

  11. Considering time in LCA: dynamic LCA and its application to global warming impact assessments.

    Science.gov (United States)

    Levasseur, Annie; Lesage, Pascal; Margni, Manuele; Deschênes, Louise; Samson, Réjean

    2010-04-15

    The lack of temporal information is an important limitation of life cycle assessment (LCA). A dynamic LCA approach is proposed to improve the accuracy of LCA by addressing the inconsistency of temporal assessment. This approach consists of first computing a dynamic life cycle inventory (LCI), considering the temporal profile of emissions. Then, time-dependent characterization factors are calculated to assess the dynamic LCI in real-time impact scores for any given time horizon. Although generally applicable to any impact category, this approach is developed here for global warming, based on the radiative forcing concept. This case study demonstrates that the use of global warming potentials for a given time horizon to characterize greenhouse gas emissions leads to an inconsistency between the time frame chosen for the analysis and the time period covered by the LCA results. Dynamic LCA is applied to the US EPA LCA on renewable fuels, which compares the life cycle greenhouse gas emissions of different biofuels with fossil fuels including land-use change emissions. The comparison of the results obtained with both traditional and dynamic LCA approaches shows that the difference can be important enough to change the conclusions on whether or not a biofuel meets some given global warming reduction targets.

  12. Polio chronicles: warm springs and disability politics in the 1930s.

    Science.gov (United States)

    Rogers, Naomi

    2009-01-01

    During the 1920s and 1930s, disabled polio survivors initiated a campaign which made them active, dissenting subjects in public discourse about disease and disability. Its source was a core of Warm Springs patients who wanted more than a healing refuge. They were well aware of the need to construct a new image of the disabled, and saw the resort's high public profile as a potent weapon in a cultural war to remake popular images of the disabled, whether as pathetic charitable objects or as horrific movie villains. Drawing on their own, disheartening experiences, this group of activists boldly critiqued the medical care offered most disabled patients as well as the training and attitudes of doctors, nurses and physical therapists. Protesting the narrow, medicalized definition of rehabilitation, they provocatively posed the need to "rehabilitate" prejudiced, able-bodied employers and health professionals. And most of all, they consciously designed the polio center at Warm Springs to function not as an inward-looking refuge but as an exemplar of the way polio survivors and other disabled people should be allowed to live, work and love. This story begins and ends in the 1930s. It traces a rise and fall: the rise of an activist community at the rehabilitative center at Warm Springs; and its decline with the creation of the National Foundation for Infantile Paralysis (known popularly as the March of Dimes) in 1937.

  13. Winter positions of Arctic front during periods of cooling and warming

    Directory of Open Access Journals (Sweden)

    A. Yu. Mikhailov

    2016-01-01

    Full Text Available Winter positions of the Arctic front (AF during the known periods of the climate cooling (1949–1980 and warming (1981–2012 were analyzed within the sector 10° W – 60° E. The AF positios were determined by the following indicators: 1 a surface pressure; 2 horizontal wind divergence; 3 geostrophic vortex; 4 geostrophic heat advection. The main extrema of these four dynamic characteristics coincide and fall on the latitude 72.5° N. This corresponds to the average position of the AF for a given resolution and confirms correctness of our choice of these characteristics as the AF indicators. Relative differences between mean profiles of all values of the above warm and cold periods were calculated using method of normalization of each value for the corresponding latitude by the standard deviation for the entire period (1949–2012. To study variability of the AF position we used mean yearly winter profiles of the variables under investigation together with the statistical analysis of positions of the extrema within the latitude degrees. For pressure and geostrophic advection positions of the absolute minima were determined while for geostrophic vortex and divergence – positions of the absolute maxima. The data show that according to different criteria the AF average positions for the period 1949–2012 lie within the zone 72.4–73.4 N. The interannual variability of the AF positions lies within the 1–2 degrees of latitude and corresponds to the range of the air temperature variability above the zone of maximal changes in the sea ice area. According to the standard deviation values of the divergence and the geostrophic vortex are the most stable in region of the AF passage. Comparison of differences of the studied characteristics between the warm and cold periods shows that the changes in the AF positions are not statistically significant (P(t < 91% t‑criterion unlike the changes in positions of isolines which characterize

  14. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    Science.gov (United States)

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-09-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921-2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998-2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the "hiatus" period 1998-2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951-2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  15. Lyman-alpha constraints on warm and on warm-plus-cold dark matter models

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg; Viel, Matteo

    2009-01-01

    We revisit Lyman-alpha bounds on the dark matter mass in Lambda Warm Dark Matter (Lambda-WDM) models, and derive new bounds in the case of mixed Cold plus Warm models (Lambda-CWDM), using a set up which is a good approximation for several theoretically well-motivated dark matter models. We combine WMAP5 results with two different Lyman-alpha data sets, including observations from the Sloan Digital Sky Survey. We pay a special attention to systematics, test various possible sources of error, and compare the results of different statistical approaches. Expressed in terms of the mass of a non-resonantly produced sterile neutrino, our bounds read m_NRP > 8 keV (frequentist 99.7% confidence limit) or m_NRP > 12.1 keV (Bayesian 95% credible interval) in the pure Lambda-WDM limit. For the mixed model, we obtain limits on the mass as a function of the warm dark matter fraction F_WDM. Within the mass range studied here (5 keV < m_NRP < infinity), we find that any mass value is allowed when F_WDM < 0.6 (freque...

  16. Seagrass ecophysiological performance under ocean warming and acidification.

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  17. Decomposition of recalcitrant carbon under experimental warming in boreal forest.

    Science.gov (United States)

    Romero-Olivares, Adriana L; Allison, Steven D; Treseder, Kathleen K

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition.

  18. Precompetition warm-up in elite and subelite rhythmic gymnastics.

    Science.gov (United States)

    Guidetti, Laura; Di Cagno, Alessandra; Gallotta, Maria Chiara; Battaglia, Claudia; Piazza, Marina; Baldari, Carlo

    2009-09-01

    The aim of this study was to investigate which precompetition warm-up methodologies resulted in the best overall performance in rhythmic gymnastics. The coaches of national and international clubs (60 elite and 90 subelite) were interviewed. The relationship between sport performance and precompetition warm-up routines was examined. A total of 49% of the coaches interviewed spent more than 1 hour to prepare their athletes for the competition, including 45 minutes dedicated to warm-up exercises. In spite of previous studies' suggestions, the time between the end of warm-up and the beginning of competition was more than 5 minutes for 68% of those interviewed. A slow run was the activity of choice used to begin the warm-up (96%). Significant differences between elite and subelite gymnasts were found concerning the total duration of warm-up, duration of slow running, utilization of rhythmic steps and leaps during the warm-up, the use of dynamic flexibility exercises, competition performances repetition (p gymnastics would include static stretching exercises at least 60 minutes prior to the competition starting time and the active stretching exercises alternated with analytic muscle strengthening aimed at increasing muscle temperature. Rhythmic gymnastics coaches at all levels can use this data as a review of precompetition warm-up practices and a possible source of new ideas.

  19. Global Warming Threatens National Interests in the Arctic

    Science.gov (United States)

    2009-03-26

    Global warming has impacted the Arctic Ocean by significantly reducing the extent of the summer ice cover allowing greater access to the region...increased operations in the Arctic region, and DoD must continue to research and develop new and alternate energy sources for its forces. Global warming is

  20. Waste Reduction Model (WARM) Resources for Small Businesses and Organizations

    Science.gov (United States)

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by small businesses and organizations. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  1. Glaciers as indicators of the carbon dioxide warming

    NARCIS (Netherlands)

    Oerlemans, J.

    1986-01-01

    During the past 150 years, mountain glaciers have shown a worldwide retreat. It has been argued that this is related to the warming which is predicted to result from increased carbon dioxide levels in the atmosphere; however, this warming has not been detected in a statistically significant way from

  2. Effects of Warm-Up Stretching Exercises on Sprint Performance

    Science.gov (United States)

    Makaruk, Hubert; Makaruk, Beata; Kedra, Stanislaw

    2008-01-01

    Study aim: To assess direct effects of warm-up consisting of static and dynamic stretching exercises on sprint results attained by students differing in sprint performance. Material and methods: A group of 24 male and 19 female physical education students, including 12 and 9 sprinters, respectively. They performed warm-ups consisting of dynamic…

  3. Seagrass ecophysiological performance under ocean warming and acidification

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-01-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming. PMID:28145531

  4. Seagrass ecophysiological performance under ocean warming and acidification

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  5. Glaciers as indicators of the carbon dioxide warming

    NARCIS (Netherlands)

    Oerlemans, J.

    1986-01-01

    During the past 150 years, mountain glaciers have shown a worldwide retreat. It has been argued that this is related to the warming which is predicted to result from increased carbon dioxide levels in the atmosphere; however, this warming has not been detected in a statistically significant way from

  6. Effects of Warm-Up Stretching Exercises on Sprint Performance

    Science.gov (United States)

    Makaruk, Hubert; Makaruk, Beata; Kedra, Stanislaw

    2008-01-01

    Study aim: To assess direct effects of warm-up consisting of static and dynamic stretching exercises on sprint results attained by students differing in sprint performance. Material and methods: A group of 24 male and 19 female physical education students, including 12 and 9 sprinters, respectively. They performed warm-ups consisting of dynamic…

  7. Artificial warming of arctic meadow under pollution stress: Experimental design

    Science.gov (United States)

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the larg...

  8. Deep time evidence for climate sensitivity increase with warming

    DEFF Research Database (Denmark)

    Shaffer, Gary; Huber, Matthew; Rondanelli, Roberto;

    2016-01-01

    Future global warming from anthropogenic greenhouse gas emissions will depend on climate feedbacks, the effect of which is expressed by climate sensitivity, the warming for a doubling of atmospheric CO2 content. It is not clear how feedbacks, sensitivity, and temperature will evolve in our warmin...

  9. Temperature in warm inflation in non minimal kinetic coupling model

    CERN Document Server

    Goodarzi, Parviz

    2014-01-01

    Warm inflation in the non minimal derivative coupling model with a general dissipation coefficient is considered. We investigate conditions for the existence of the slow roll approximation and study cosmological perturbations. The spectral index, and the power spectrum are calculated and the temperature of the universe at the end of the slow roll warm inflation is obtained.

  10. An aftereffect of global warming on tropical Pacific decadal variability

    Science.gov (United States)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2017-05-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  11. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, S.C.; Henry, G.H.R.; Bjorkman, A.D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this ap...

  12. Conserving host-parasitoid interactions in a warming world

    NARCIS (Netherlands)

    Harvey, Jeffrey A.

    2015-01-01

    Anthropogenic global warming (AGW) represents a major threat to biodiversity at all levels of organization. Attendant changes with climate warming are abiotic effects such as changes in the duration and intensity of precipitation events, wind intensity and heat waves. Most importantly, AGW may unrav

  13. Recent warming at Summit, Greenland: Global context and implications

    Science.gov (United States)

    McGrath, Daniel; Colgan, William; Bayou, Nicolas; Muto, Atsuhiro; Steffen, Konrad

    2013-05-01

    at Summit, Greenland suggest that the annual mean near-surface air temperature increased at 0.09 ± 0.01°C/a over the 1982-2011 climatology period. This rate of warming, six times the global average, places Summit in the 99th percentile of all globally observed warming trends over this period. The rate of warming at Summit is increasing over time. During the instrumental period (1987-2011), warming has been greatest in the winter season, although the implications of summer warming are more acute. The annual maximum elevation of the equilibrium line and dry snow line has risen at 44 and 35 m/a over the past 15 and 18 years, respectively. Extrapolation of this observed trend now suggests, with 95% confidence intervals, that the dry snow facies of the Greenland Ice Sheet will inevitably transition to percolation facies. There is a 50% probability of this transition occurring by 2025.

  14. Effects of sea surface warming on marine plankton.

    Science.gov (United States)

    Lewandowska, Aleksandra M; Boyce, Daniel G; Hofmann, Matthias; Matthiessen, Birte; Sommer, Ulrich; Worm, Boris

    2014-05-01

    Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi-trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient-replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.

  15. Dynamic response of wind turbine towers in warm permafrost

    Institute of Scientific and Technical Information of China (English)

    Benjamin Still; ZhaoHui Joey Yang; Simon Evans; FuJun Niu

    2014-01-01

    Wind is a great source of renewable energy in western Alaska. Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season, when the energy demand is the highest. Foundation engineering in warm permafrost has always been a challenge in wind energy development. Degrading warm permafrost poses engineering issues to design, construction, and operation of wind turbines. This paper describes the foundation design of a wind turbine built in western Alaska. It presents a sys-tem for response monitoring and load assessment, and data collected from September 2013 to March 2014. The dynamic proper-ties are assessed based on the monitoring data, and seasonal changes in the dynamic properties of the turbine tower-foundation system and likely resonance between the spinning blades and the tower structure are discussed. These analyses of a wind turbine in warm permafrost are valuable for designing or retrofitting of foundations in warm permafrost.

  16. Key Parameter Study of 65Mn Steel in Warm Rolling

    Directory of Open Access Journals (Sweden)

    Zhi-Jie Li

    2013-02-01

    Full Text Available For study warm rolling process, warm compression experiment of ferrite combined with pearlite colony was conducted using the Gleeble-3500 thermal/mechanical simulator system. The warm deformation was carried out at temperature (500~700°C and the strain rate (0.001~10/sec. Based on the flow stress data, the key parameter was calculated. The results show that the warm-working process of carbon steel conforms to hyperbolic sine equation. The relationship of and T could be described by parameter Z (temperature compensation of strain rate factor. The value of apparent n (stress index and Q (deformation activation energy was calculated, the draught pressure calculated was 1.87×104 t during warm rolling process at 600°C.

  17. Tracking ocean heat uptake during the surface warming hiatus.

    Science.gov (United States)

    Liu, Wei; Xie, Shang-Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep into the Atlantic and Southern Oceans during the recent hiatus of global warming. Here we show that the deep heat penetration in these two basins is not unique to the hiatus but is characteristic of anthropogenic warming and merely reflects the depth of the mean meridional overturning circulation in the basin. We find, however, that heat redistribution in the upper 350 m between the Pacific and Indian Oceans is closely tied to the surface warming hiatus. The Indian Ocean shows an anomalous warming below 50 m during hiatus events due to an enhanced heat transport by the Indonesian throughflow in response to the intensified trade winds in the equatorial Pacific. Thus, the Pacific and Indian Oceans are the key regions to track ocean heat uptake during the surface warming hiatus.

  18. Phenology and global warming research in Brazil

    Science.gov (United States)

    Morellato, L. P. C.

    2009-04-01

    A recent review on South American phenology research has shown an increase in phenology papers over the last two decades, especially in this new 21st century. Nevertheless, there is a lack of long term data sets or monitoring systems, or of papers addressing plant phenology and global warming. The IPCC AR4 report from 2007 has offered indisputable evidence of regional to global-scale change in seasonality, but it is supported by plant and animal phenological data from North Hemisphere and temperate species. Information from tropical regions in general and South America in particular are sparse or lacking. Here I summarize the recent outcomes of our ongoing tropical phenology research in Brazil and its potential contribution to integrate fields and understand the effects of global warming within the tropics. The Phenology Laboratory (UNESP) is located at Rio Claro, São Paulo State, Southeastern Brazil. We are looking for trends and shifts on tropical vegetation phenology, and are exploring different methods for collecting and analyzing phenology data. The phenological studies are developed in collaboration with graduate and undergraduate students, post-docs and researchers from Brazil and around the world. We established three long term monitoring programs on Southeastern Brazil from 2000 onwards: trees from an urban garden, semideciduous forest trees, and savanna cerrado woody vegetation, all based on direct weekly to monthly observation of marked plants. We have collected some discontinuous data from Atlantic rain forest trees ranging from 5 to 8 years long. I collaborate with the longest tropical wet forest phenology monitoring system in Central Amazon, and with another long term monitoring system on semi deciduous forest from South Brazil. All research programs aim, in the long run, to monitor and detect shifts on tropical plant phenology related to climatic changes. Our first preliminary findings suggest that: (i) flowering and leafing are more affected by

  19. Global Warming and Its Health Impact.

    Science.gov (United States)

    Rossati, Antonella

    2017-01-01

    Since the mid-19th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence. Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable. Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far as to speed it up

  20. Global Warming and 21st Century Drying

    Science.gov (United States)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  1. Global Warming and Its Health Impact

    Directory of Open Access Journals (Sweden)

    Antonella Rossati

    2017-01-01

    Full Text Available Since the mid-19th century, human activities have increased greenhouse gases such as carbon dioxide, methane, and nitrous oxide in the Earth's atmosphere that resulted in increased average temperature. The effects of rising temperature include soil degradation, loss of productivity of agricultural land, desertification, loss of biodiversity, degradation of ecosystems, reduced fresh-water resources, acidification of the oceans, and the disruption and depletion of stratospheric ozone. All these have an impact on human health, causing non-communicable diseases such as injuries during natural disasters, malnutrition during famine, and increased mortality during heat waves due to complications in chronically ill patients. Direct exposure to natural disasters has also an impact on mental health and, although too complex to be quantified, a link has even been established between climate and civil violence. Over time, climate change can reduce agricultural resources through reduced availability of water, alterations and shrinking arable land, increased pollution, accumulation of toxic substances in the food chain, and creation of habitats suitable to the transmission of human and animal pathogens. People living in low-income countries are particularly vulnerable. Climate change scenarios include a change in distribution of infectious diseases with warming and changes in outbreaks associated with weather extreme events. After floods, increased cases of leptospirosis, campylobacter infections and cryptosporidiosis are reported. Global warming affects water heating, rising the transmission of water-borne pathogens. Pathogens transmitted by vectors are particularly sensitive to climate change because they spend a good part of their life cycle in a cold-blooded host invertebrate whose temperature is similar to the environment. A warmer climate presents more favorable conditions for the survival and the completion of the life cycle of the vector, going as far

  2. Warm Jupiters from Secular Planet–Planet Interactions

    Science.gov (United States)

    Petrovich, Cristobal; Tremaine, Scott

    2016-10-01

    Most warm Jupiters (gas-giant planets with 0.1 {{au}}≲ a≲ 1 au) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model, the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation, but are typically observed at lower eccentricities. We show that in this model the steady-state eccentricity distribution of the warm Jupiters is approximately flat, which is consistent with the observed distribution if we restrict the sample to warm Jupiters with detected outer planetary companions. The eccentricity distribution of warm Jupiters without companions exhibits a peak at e≲ 0.2 that must be explained by a different formation mechanism. Based on a population synthesis study, we find that high-eccentricity migration excited by an outer planetary companion (1) can account for ∼ 20 % of the warm Jupiters and most of the warm Jupiters with e≳ 0.4; and (2) can produce most of the observed population of hot Jupiters, with a semimajor axis distribution that matches the observations, but fails to account adequately for ∼ 60 % of hot Jupiters with projected obliquities ≲ 20^\\circ . Thus ∼ 20 % of the warm Jupiters and ∼ 60 % of the hot Jupiters can be produced by high-eccentricity migration. We also provide predictions for the expected mutual inclinations and spin-orbit angles of the planetary systems with hot and warm Jupiters produced by high-eccentricity migration.

  3. 75 FR 57976 - Designation of Service Area for Confederated Tribes of the Warm Springs of Oregon

    Science.gov (United States)

    2010-09-23

    ... Bureau of Indian Affairs Designation of Service Area for Confederated Tribes of the Warm Springs of... Tribes of Warm Springs of Oregon, Warm Springs, Oregon (Warm Springs Tribe) for financial assistance and...: The Warm Springs Tribe submitted to BIA a request with supporting documentation to modify its...

  4. Effects of warming on stream biofilm organic matter use capabilities.

    Science.gov (United States)

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels.

  5. Atmospheric degradation and global warming potentials of three perfluoroalkenes

    Science.gov (United States)

    Acerboni, G.; Beukes, J. A.; Jensen, N. R.; Hjorth, J.; Myhre, G.; Nielsen, C. J.; Sundet, J. K.

    The vapour phase reactions of perfluoropropene, CF 3CFCF 2, and perfluorobuta-1,3-diene, CF 2CFCFCF 2, with OH, NO 3 and O 3 were studied at 298±4 K and 740±5 Torr using long-path FT-IR detection. The reactions with ozone are very slow, kCF 3CFCF 2+O 3=(6.2±1.5)×10 -22 and kCF 2CFCFCF 2+O 3=(6.5±0.2)×10 -21 cm 3 molecules -1 s -1, and upper limits of 3×10 -15 cm 3 molecules -1 s -1 are reported for the NO 3 reaction rate coefficients. The OH reaction rate coefficients were determined as kCF 3CFCF 2+OH =(2.6±0.7)×10 -12 and kCF 2CFCFCF 2+OH =(1.1±0.3)×10 -11 cm 3 molecules -1 s -1; perfluoropropene gave a nearly quantitative yield of CF 3CFO and CF 2O as organic products, while perfluorobuta-1,3-diene gave from 130% to 170% of CF 2O. A chemistry transport model was applied to calculate the atmospheric distributions and lifetimes of the perfluoroalkenes; the global and yearly averaged lifetimes were calculated as 1.9 day for C 2F 4 and C 4F 6 and 6 days for C 3F 6. Quantitative infrared cross-sections of perfluoroethene, perfluoropropene, and perfluorobuta-1,3-diene have been obtained at 298 K in the region 100-2600 cm -1. Radiative forcing calculations have been performed for these gases assuming either constant vertical profiles or the distribution derived from the chemistry transport model. The results show that the Global Warming Potentials are totally negligible for these compounds.

  6. Constraints of fossil fuels depletion on global warming projections

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Luca, E-mail: chiari@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy); Zecca, Antonio, E-mail: zecca@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy)

    2011-09-15

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO{sub 2} concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO{sub 2} emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO{sub 2} concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: > CO{sub 2} and global temperature are projected under fossil fuels exhaustion scenarios. > Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. > Temperature projections are possibly lower than the IPCC ones. > Fossil fuels exhaustion will not avoid dangerous global warming.

  7. X-band radar field campaign data analysis for orographic/warm-rain precipitation processes

    Science.gov (United States)

    Porcacchia, Leonardo; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Anagnostou, Marios N.; Anagnostou, Emmanouil N.; Bousquet, Olivier; Cheong, Boon-Leng; Maggioni, Viviana; Hong, Yang

    2016-04-01

    Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows. It is usually hard to obtain reliable weather radar information in mountainous areas, due to difficulties connected to non-meteorological scattering and the elevation of the study sites. Such regions are particularly interested by orographic/warm-rain precipitation processes, characterized by no ice phase in the cloud and prevailing concentration of small drops in the drop size distribution. Field campaigns are able to provide complete and solid datasets in mountainous regions, thanks to mobile radars and the complementary information provided by rain gauges and disdrometers. This study analyzes datasets collected during the Hymex, IPHEX, and Colorado field campaigns in mountainous areas in Italy, France, North Carolina, and Colorado. Mobile X-band radars from the NOAA National Severe Storm Laboratory and the Advanced Radar Research Center at the University of Oklahoma are utilized. The X-band dual polarimetric radar data are corrected for attenuation through the SCOP algorithm, and evaluated against disdrometer and rain-gauge data. Warm-rain events are identified by looking at the Gorgucci, Cao-Zhang, and Kumjian-Ryzhkov parameter spaces relating polarimetric radar variables to precipitation development processes in the cloud and rain size distributions. A conceptual model for the vertical profile of precipitation and microphysical structure of the cloud is also derived, to be contrasted against other typical convective and stratiform profiles.

  8. An upper ocean current jet and internal waves in a Gulf Stream warm core ring

    Science.gov (United States)

    Joyce, T. M.; Stalcup, M. C.

    1984-01-01

    On June 22, 1982, the R/V Endeavor, while participating in a multi-ship study of a warm core ring 82B, encountered a strong front in the core of the ring. The vessel was headed on a radial section outward from ring center while a CTD was repeatedly raised and lowered between 10 and 300 m. Current profiles in the upper 100 m were obtained continuously with a Doppler acoustic profiling system. Above the shallow 45 m seasonal thermocline, a current jet of 4 km width was encountered having a central core of relatively light water and a maximum current of 1.1 m/s. This jet was both highly nonlinear and totally unexpected. A high frequency packet of directional internal waves was acoustically observed in the seasonal thermocline at the outer edge of the jet. Vertical velocities were large enough (6 cm/s) as to be directly observable in the Doppler returns. The waves were propagating from the northeast, parallel to the ship track, and orthogonal to the jet toward the center of the warm core ring. While a nonlinear, centrifugal term was required for the force balance of the jet, the high-frequency internal wave packet could be explained with linear, gravest-mode wave dynamics.

  9. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO2 -eq m(-2) to a source of 105 to 144 g CO2 -eq m(-2) . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2 , we provide here the first in situ evidence of increasing N2 O emissions from tundra soils with warming. Warming promoted N2 O release not only from bare peat, previously identified as a strong N2 O source, but also from the abundant, vegetated peat surfaces that do not emit N2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  10. The properties of warm dark matter haloes

    CERN Document Server

    Lovell, Mark R; Eke, Vincent R; Jenkins, Adrian; Gao, Liang; Theuns, Tom

    2013-01-01

    Well-motivated elementary particle candidates for the dark matter, such as the sterile neutrino, behave as warm dark matter (WDM).For particle masses of order a keV, free streaming produces a cutoff in the linear fluctuation power spectrum at a scale corresponding to dwarf galaxies. We investigate the abundance and structure of WDM haloes and subhaloes on these scales using high resolution cosmological N-body simulations of galactic haloes of mass similar to the Milky Way's. On scales larger than the free-streaming cutoff, the initial conditions have the same power spectrum and phases as one of the cold dark matter (CDM) haloes previously simulated by Springel et al as part of the Virgo consortium Aquarius project. We have simulated four haloes with WDM particle masses in the range 1.4-2.3keV and, for one case, we have carried out further simulations at varying resolution. N-body simulations in which the power spectrum cutoff is resolved are known to undergo artificial fragmentation in filaments producing spu...

  11. Interhemispheric coupling and warm Antarctic interglacials

    Directory of Open Access Journals (Sweden)

    P. B. Holden

    2009-12-01

    Full Text Available Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than pre-industrial (CO2 ~280 ppm in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3 000 years and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs. We here present transient 800 kyr simulations using the intermediate complexity model GENIE-1 which suggest that WPTs could be explained as a consequence of the meltwater-forced slowdown of the Atlantic Meridional Overturning Circulation (AMOC during glacial terminations. It is well known that a slowed AMOC would increase southern Sea Surface Temperature (SST through the bipolar seesaw. Observational data supports this hypothesis, suggesting that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. In order to investigate model and boundary condition uncertainty, we additionally present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP and three snapshot HadCM3 simulations at 130 000 Before Present (BP. These simulations together reproduce both the timing and magnitude of WPTs, and point to the potential importance of an albedo feedback associated with West Antarctic Ice Sheet (WAIS retreat.

  12. Talking about Climate Change and Global Warming.

    Science.gov (United States)

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  13. Transient reducing greenhouse warming on early Mars

    Science.gov (United States)

    Wordsworth, R.; Kalugina, Y.; Lokshtanov, S.; Vigasin, A.; Ehlmann, B.; Head, J.; Sanders, C.; Wang, H.

    2017-01-01

    The evidence for abundant liquid water on early Mars despite the faint young Sun is a long-standing problem in planetary research. Here we present new ab initio spectroscopic and line-by-line climate calculations of the warming potential of reduced atmospheres on early Mars. We show that the strength of both CO2-H2 and CO2-CH4 collision-induced absorption (CIA) has previously been significantly underestimated. Contrary to previous expectations, methane could have acted as a powerful greenhouse gas on early Mars due to CO2-CH4 CIA in the critical 250-500 cm-1 spectral window region. In atmospheres of 0.5 bar CO2 or more, percent levels of H2 or CH4 raise annual mean surface temperatures by tens of degrees, with temperatures reaching 273 K for pressures of 1.25-2 bars and 2-10% of H2 and CH4. Methane and hydrogen produced following aqueous alteration of Mars' crust could have combined with volcanically outgassed CO2 to form transient atmospheres of this composition 4.5-3.5 Ga. Our results also suggest that inhabited exoplanets could retain surface liquid water at significant distances from their host stars.

  14. Microbial diseases of corals and global warming.

    Science.gov (United States)

    Rosenberg, Eugene; Ben-Haim, Yael

    2002-06-01

    Coral bleaching and other diseases of corals have increased dramatically during the last few decades. As outbreaks of these diseases are highly correlated with increased sea-water temperature, one of the consequences of global warming will probably be mass destruction of coral reefs. The causative agent(s) of a few of these diseases have been reported: bleaching of Oculina patagonica by Vibrio shiloi; black band disease by a microbial consortium; sea-fan disease (aspergillosis) by Aspergillus sydowii; and coral white plague possibly by Sphingomonas sp. In addition, we have recently discovered that Vibrio coralyticus is the aetiological agent for bleaching the coral Pocillopora damicornis in the Red Sea. In the case of coral bleaching by V. shiloi, the major effect of increasing temperature is the expression of virulence genes by the pathogen. At high summer sea-water temperatures, V. shiloi produces an adhesin that allows it to adhere to a beta-galactoside-containing receptor in the coral mucus, penetrate into the coral epidermis, multiply intracellularly, differentiate into a viable-but-not-culturable (VBNC) state and produce toxins that inhibit photosynthesis and lyse the symbiotic zooxanthellae. In black band disease, sulphide is produced at the coral-microbial biofilm interface, which is probably responsible for tissue death. Reports of newly emerging coral diseases and the lack of epidemiological and biochemical information on the known diseases indicate that this will become a fertile area of research in the interface between microbial ecology and infectious disease.

  15. Warm Molecular Gas in Luminous Infrared Galaxies

    CERN Document Server

    Lu, N; Xu, C K; Gao, Y; Armus, L; Mazzarella, J M; Isaak, K G; Petric, A O; Charmandaris, V; Diaz-Santos, T; Evans, A S; Howell, J; Appleton, P; Inami, H; Iwasawa, K; Leech, J; Lord, S; Sanders, D B; Schulz, B; Surace, J; van der Werf, P P

    2014-01-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the $J$ to $J$$-$1 transitions from $J=4$ up to $13$ from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). The observed SLEDs change on average from one peaking at $J \\le 4$ to a broad distribution peaking around $J \\sim\\,$6$-$7 as the IRAS 60-to-100 um color, $C(60/100)$, increases. However, the ratios of a CO line luminosity to the total infrared luminosity, $L_{\\rm IR}$, show the smallest variation for $J$ around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-$J$ regime ($5 \\lesssim J \\lesssim 10$). As a result, the logarithmic ratios of the CO line luminosity summed over CO (5$-$4), (6$-$5), (7$-$6), (8$-$7) and (10$-$9) transitions to $L_{\\rm IR}$, $\\log R_{\\rm midCO}$, remain largely independent of $C(60/100)$, ...

  16. Halocarbon ozone depletion and global warming potentials

    Science.gov (United States)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  17. Title: Freshwater phytoplankton responses to global warming.

    Science.gov (United States)

    Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian

    2016-09-20

    Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Ion Beam Driven Warm Dense Matter Experiments

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Leitner, M. A.; Lidia, S. M.; Logan, B. G.; More, R. M.; Ni, P. A.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.

    2008-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments use a 0.3 MeV K+ beam from the NDCX-I accelerator. The WDM conditions are to be achieved by longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a 1-mm beam spot size, and 2-ns pulse length. As a technique for heating matter to high energy density, intense ion beams can deliver precise and uniform beam energy deposition, in a relatively large sample size, and can heat any solid-phase target material. The range of the beams in solid targets is less than 1 micron, which can be lengthened by using reduced density porous targets. We have developed a WDM target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial experiments will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  19. Global warming: Take action or wait?

    Institute of Scientific and Technical Information of China (English)

    W.S.Broecder

    2006-01-01

    A serious split in opinion exists with regard to how to deal with the ongoing buildup of CO2in our atmosphere. One group contends that, until the warming has more clearly expressed itself, we should put off costly actions. The other group contends that,even if we were to take immediate action, the buildup of CO2 is likely to reach an unacceptable level. Hence action must not be delayed. I stand with the second group. My opinion has been molded by the failure of model simulations to yield the impacts anywhere near as large as those attributable to orbital cycles, to ocean reorganizations, or to solar irradiance. These impacts are well documented in the paleoclimate record. This suggests to me that the models lack important feedbacks and amplifiers present in the real world. Hence they are more likely to underestimate the impacts of CO2 than overestimate them as the critics contend. The world's energy consumption will continue to rise. Because it is so cheap and so abundant, coal will dominate as a supplier. It is also my opinion that CO2 capture and burial will have to play a key role in the struggle to bring the CO2 rise to a halt. Fortunately, it appears that capture and burial are technically and economically feasible. The big question is whether the world can come together and make this happen before CO2 has reached an unacceptable level.

  20. Microphysical imprint of entrainment in warm cumulus

    Directory of Open Access Journals (Sweden)

    Jennifer D. Small

    2013-07-01

    Full Text Available We analyse the cloud microphysical response to entrainment mixing in warm cumulus clouds observed from the CIRPAS Twin Otter during the GoMACCS field campaign near Houston, Texas, in summer 2006. Cloud drop size distributions and cloud liquid water contents from the Artium Flight phase-Doppler interferometer in conjunction with meteorological observations are used to investigate the degree to which inhomogeneous versus homogeneous mixing is preferred as a function of height above cloud base, distance from cloud edge and aerosol concentration. Using four complete days of data with 101 cloud penetrations (minimum 300 m in length, we find that inhomogeneous mixing primarily explains liquid water variability in these clouds. Furthermore, we show that there is a tendency for mixing to be more homogeneous towards the cloud top, which we attribute to the combination of increased turbulent kinetic energy and cloud drop size with altitude which together cause the Damköhler number to increase by a factor of between 10 and 30 from cloud base to cloud top. We also find that cloud edges appear to be air from cloud centres that have been diluted solely through inhomogeneous mixing. Theory predicts the potential for aerosol to affect mixing type via changes in drop size over the range of aerosol concentrations experienced (moderately polluted rural sites to highly polluted urban sites. However, the observations, while consistent with this hypothesis, do not show a statistically significant effect of aerosol on mixing type.

  1. Talking about Climate Change and Global Warming

    Science.gov (United States)

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  2. Transient reducing greenhouse warming on early Mars

    CERN Document Server

    Wordsworth, Robin; Lokshtanov, Sergei; Vigasin, Andrei; Ehlmann, Bethany; Head, James; Sanders, Cecilia; Wang, Huize

    2016-01-01

    The evidence for abundant liquid water on early Mars despite the faint young Sun is a long-standing problem in planetary research. Here we present new ab initio spectroscopic and line-by-line climate calculations of the warming potential of reduced atmospheres on early Mars. We show that the strength of both CO2-H2 and CO2-CH4 collision-induced absorption (CIA) has previously been significantly underestimated. Contrary to previous expectations, methane could have acted as a powerful greenhouse gas on early Mars due to CO2-CH4 CIA in the critical 250-500 cm^-1 spectral window region. In atmospheres of 0.5 bar CO2 or more, percent levels of H2 or CH4 raise annual mean surface temperatures by tens of degrees, with temperatures reaching 273 K for pressures of 1.25-2 bar and 2-10% of H2 and CH4. Methane and hydrogen produced following aqueous alteration of Mars' crust could have combined with volcanically outgassed CO2 to form transient atmospheres of this composition 4.5-3.5 Ga. This scenario for the late Noachia...

  3. Immunotherapy Treatments of Warm Autoimmune Hemolytic Anemia

    Directory of Open Access Journals (Sweden)

    Bainan Liu

    2013-01-01

    Full Text Available Warm autoimmune hemolytic anemia (WAIHA is one of four clinical types of autoimmune hemolytic anemia (AIHA, with the characteristics of autoantibodies maximally active at body temperature. It produces a variable anemia—sometimes mild and sometimes severe. With respect to the absence or presence of an underlying condition, WAIHA is either idiopathic (primary or secondary, which determines the treatment strategies in practice. Conventional treatments include immune suppression with corticosteroids and, in some cases, splenectomy. In recent years, the number of clinical studies with monoclonal antibodies and immunosuppressants in the treatment of WAIHA increased as the knowledge of autoimmunity mechanisms extended. This thread of developing new tools of treating WAIHA is well exemplified with the success in using anti-CD20 monoclonal antibody, Rituximab. Following this success, other treatment methods based on the immune mechanisms of WAIHA have emerged. We reviewed these newly developed immunotherapy treatments here in order to provide the clinicians with more options in selecting the best therapy for patients with WAIHA, hoping to stimulate researchers to find more novel immunotherapy strategies.

  4. Star forming filaments in warm dark models

    CERN Document Server

    Gao, Liang; Springel, Volker

    2014-01-01

    We performed a hydrodynamical cosmological simulation of the formation of a Milky Way-like galaxy in a warm dark matter (WDM) cosmology. Smooth and dense filaments, several co-moving mega parsec long, form generically above z 2 in this model. Atomic line cooling allows gas in the centres of these filaments to cool to the base of the cooling function, resulting in a very striking pattern of extended Lyman-limit systems (LLSs). Observations of the correlation function of LLSs might hence provide useful limits on the nature of the dark matter. We argue that the self-shielding of filaments may lead to a thermal instability resulting in star formation. We implement a sub-grid model for this, and find that filaments rather than haloes dominate star formation until z 6. Reionisation decreases the gas density in filaments, and the more usual star formation in haloes dominates below z 6, although star formation in filaments continues until z=2. Fifteen per cent of the stars of the z=0 galaxy formed in filaments. At hi...

  5. Talking about Climate Change and Global Warming.

    Directory of Open Access Journals (Sweden)

    Maurice Lineman

    Full Text Available The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV patterns for global warming (GW and Climate change (CC to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  6. Evaluating the dominant components of warming in Pliocene climate simulations

    Directory of Open Access Journals (Sweden)

    D. J. Hill

    2013-03-01

    Full Text Available The Pliocene Model Intercomparison Project is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 °C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean–atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with cloud albedo feedbacks enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere mid-latitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with cloud albedo feedbacks in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that high latitude albedo feedbacks provide the most significant enhancements to Pliocene greenhouse warming.

  7. Continental warming preceding the Palaeocene-Eocene thermal maximum.

    Science.gov (United States)

    Secord, Ross; Gingerich, Philip D; Lohmann, Kyger C; Macleod, Kenneth G

    2010-10-21

    Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.

  8. Experimental warming effects on the bacterial community structure and diversity

    Science.gov (United States)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  9. Robust cloud feedback over tropical land in a warming climate

    Science.gov (United States)

    Kamae, Youichi; Ogura, Tomoo; Watanabe, Masahiro; Xie, Shang-Ping; Ueda, Hiroaki

    2016-03-01

    Cloud-related radiative perturbations over land in a warming climate are of importance for human health, ecosystem, agriculture, and industry via solar radiation availability and local warming amplification. However, robustness and physical mechanisms responsible for the land cloud feedback were not examined sufficiently because of the limited contribution to uncertainty in global climate sensitivity. Here we show that cloud feedback in general circulation models over tropical land is robust, positive, and is relevant to atmospheric circulation change and thermodynamic constraint associated with water vapor availability. In a warming climate, spatial variations in tropospheric warming associated with climatological circulation pattern result in a general weakening of tropical circulation and a dynamic reduction of land cloud during summer monsoon season. Limited increase in availability of water vapor also reduces the land cloud. The reduction of land cloud depends on global-scale oceanic warming and is not sensitive to regional warming patterns. The robust positive feedback can contribute to the warming amplification and drying over tropical land in the future.

  10. Does the climate warming hiatus exist over the Tibetan Plateau?

    Science.gov (United States)

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  11. Does the climate warming hiatus exist over the Tibetan Plateau?

    Science.gov (United States)

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  12. Tropospheric circulation during the early twentieth century Arctic warming

    Science.gov (United States)

    Wegmann, Martin; Brönnimann, Stefan; Compo, Gilbert P.

    2016-06-01

    The early twentieth century Arctic warming (ETCAW) between 1920 and 1940 is an exceptional feature of climate variability in the last century. Its warming rate was only recently matched by recent warming in the region. Unlike recent warming largely attributable to anthropogenic radiative forcing, atmospheric warming during the ETCAW was strongest in the mid-troposphere and is believed to be triggered by an exceptional case of natural climate variability. Nevertheless, ultimate mechanisms and causes for the ETCAW are still under discussion. Here we use state of the art multi-member global circulation models, reanalysis and reconstruction datasets to investigate the internal atmospheric dynamics of the ETCAW. We investigate the role of boreal winter mid-tropospheric heat transport and circulation in providing the energy for the large scale warming. Analyzing sensible heat flux components and regional differences, climate models are not able to reproduce the heat flux evolution found in reanalysis and reconstruction datasets. These datasets show an increase of stationary eddy heat flux and a decrease of transient eddy heat flux during the ETCAW. Moreover, tropospheric circulation analysis reveals the important role of both the Atlantic and the Pacific sectors in the convergence of southerly air masses into the Arctic during the warming event. Subsequently, it is suggested that the internal dynamics of the atmosphere played a major role in the formation in the ETCAW.

  13. The impact of extratropical warming on the tropical precipitation

    Science.gov (United States)

    Yoshimori, Masakazu; Abe-Ouchi, Ayako; Tatebe, Hiroaki; Nozawa, Toru

    2017-04-01

    From paleoclimate evidence to future climate projections, it has been reported that the asymmetric warming (or cooling) between the northern and southern hemisphere extratropics induces the meridional shift in the tropical precipitation. Such a shift is often understood by the energy-flux framework in that the extra energy is transported from more warming to less warming hemispheres through the change in the Hadley circulation. As the Hadley circulation transports energy in opposite direction to the moisture, the tropical precipitation tends to be intensified in the hemisphere of a larger warming. This framework is shown to be particularly useful for modelling results without ocean dynamical feedback. In the current study, a fully coupled atmosphere-ocean model is used to investigate the impact of extratropical warming on the tropical precipitation under the realistic RCP4.5 scenario. It is shown that the mid-high latitude warming alone in the poleward of 40° (56% global warming) can significantly affect the tropical precipitation change in the equatorward of 20° (38% hemispheric contrast) from late autumn to early winter. High-latitude warming alone affects much less. This meridional change in the tropical precipitation is largely explained by the circulation change, rather than the humidity change. The reduced northward eddy momentum and heat fluxes in the northern hemisphere induces anomalous Hadley circulation in the northern tropics. This change seems to weaken the equatorial upwelling in the Pacific, which leads to the equatorial SST rise. The equatorial sea surface warming induces the meridionally symmetric pattern of the anomalous Hadley circulation (though, asymmetric in strength), resulting in the northward migration of the tropical precipitation. The larger change in the ocean heat transport near the equator, relative to the atmosphere, requires a more refined theory than the conventional energy-flux framework.

  14. Quantifying global soil carbon losses in response to warming.

    Science.gov (United States)

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  15. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  16. Quantifying global soil carbon losses in response to warming

    Science.gov (United States)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  17. Hatcheries, Harvest and Wild Fish: An Integrated Program at Warm Springs National Fish Hatchery, Oregon

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Warm Springs National Fish Hatchery is operated by the U.S. Fish and Wildlife Service and is located on the Warm Springs River within the Warm Springs Indian...

  18. Global genetic change tracks global climate warming in Drosophila subobscura.

    Science.gov (United States)

    Balanyá, Joan; Oller, Josep M; Huey, Raymond B; Gilchrist, George W; Serra, Luis

    2006-09-22

    Comparisons of recent with historical samples of chromosome inversion frequencies provide opportunities to determine whether genetic change is tracking climate change in natural populations. We determined the magnitude and direction of shifts over time (24 years between samples on average) in chromosome inversion frequencies and in ambient temperature for populations of the fly Drosophila subobscura on three continents. In 22 of 26 populations, climates warmed over the intervals, and genotypes characteristic of low latitudes (warm climates) increased in frequency in 21 of those 22 populations. Thus, genetic change in this fly is tracking climate warming and is doing so globally.

  19. The dynamics of the warming hiatus over the Northern Hemisphere

    Science.gov (United States)

    Huang, Jianping; Xie, Yongkun; Guan, Xiaodan; Li, Dongdong; Ji, Fei

    2017-01-01

    A warming hiatus is a period of relatively little change in global mean surface air temperatures (SAT). Many studies have attributed the current warming hiatus to internal climate variability (ICV). But there is less work on discussion of the dynamics about how these ICV modes influence cooling over land in the Northern Hemisphere (NH). Here we demonstrate the warming hiatus was more significant over the continental NH. We explored the dynamics of the warming hiatus from a global perspective and investigated the mechanisms of the reversing from accelerated warming to hiatus, and how ICV modes influence SAT change throughout the NH land. It was found that these ICV modes and Arctic amplification can excite a decadal modulated oscillation (DMO), which enhances or suppresses the long-term trend on decadal to multi-decadal timescales. When the DMO is in an upward (warming) phase, it contributes to an accelerated warming trend, as in last 20 years of twentieth-century. It appears that there is a downward swing in the DMO occurring at present, which has balanced or reduced the radiative forced warming and resulted in the recent global warming hiatus. The DMO modulates the SAT, in particular, the SAT of boreal cold months, through changes in the asymmetric meridional and zonal thermal forcing (MTF and ZTF). The MTF represents the meridional temperature gradients between the mid- and high-latitudes, and the ZTF represents the asymmetry in temperatures between the extratropical large-scale warm and cold zones in the zonal direction. Via the different performance of combined MTF and ZTF, we found that the DMO's modulation effect on SAT was strongest when both weaker (stronger) MTF and stronger (weaker) ZTF occurred simultaneously. And the current hiatus is a result of a downward DMO combined with a weaker MTF and stronger ZTF, which stimulate both a weaker polar vortex and westerly winds, along with the amplified planetary waves, thereby facilitating southward invasion of

  20. Respiratory muscle specific warm-up and elite swimming performance

    OpenAIRE

    Wilson, Emma Elizabeth; Mckeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R.; Shaw, Dominick E.

    2014-01-01

    Background: Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. Aim: To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. Methods: A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times...

  1. Respiratory muscle specific warm-up and elite swimming performance

    OpenAIRE

    Wilson, Emma Elizabeth; Mckeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R.; Shaw, Dominick E.

    2014-01-01

    Background: Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated.\\ud Aim: To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial.\\ud Methods: A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times...

  2. The Impact of Global Warming on the Global Climate

    Directory of Open Access Journals (Sweden)

    Abdulnaser S. Alseni

    2017-06-01

    Full Text Available Global warming is the gradual rise in environmental temperature due to depletion of the Ozone layer. The increase in the environmental temperatures is due to amplified rate of industrial development. In this case, most industries have contributed to the dangers associated with warming. The paper seeks to discuss global warming from various perspectives. It commences with an introduction highlighting the general information about the topic. The second part focuses on both natural and artificial causes while the last part discusses the effects on both humans and atmosphere

  3. Evolution of the curvature perturbations during warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tomohiro, E-mail: matsuda@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)

    2009-06-15

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.

  4. Population risk perceptions of global warming in Australia.

    Science.gov (United States)

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of

  5. Evolution of the curvature perturbations during warm inflation

    Science.gov (United States)

    Matsuda, Tomohiro

    2009-06-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.

  6. Cloudy Skies: Assessing Public Understanding of Global Warming

    OpenAIRE

    Sterman, John; Booth Sweeney, Linda

    2002-01-01

    Surveys show most Americans believe global warming is real. But many advocate delaying action until there is more evidence that warming is harmful. The stock and flow structure of the climate, however, means "wait and see" policies guarantee further warming. Atmospheric CO 2 concentration is now higher than any time in the last 420,000 years, and growing faster than any time in the past 20,000 years. The high concentration of CO 2 and other greenhouse gases (GHGs) generates significant radiat...

  7. Somali Jet Changes under the Global Warming

    Institute of Scientific and Technical Information of China (English)

    LIN Meijing; FAN Ke; WANG Huijun

    2008-01-01

    Somali Jet changes will influence the variability of Asian monsoon and climate. How would Somali Jet changes respond to the global warming in the future climate? To address this question, we first evaluate the ability of IPCC-AR4 climate models and perform the 20th century climate in coupled models (20C3M) experiments to reproduce the observational features of the low level Somali Jet in JJA (June-July-August) for the period 1976-1999. Then, we project and discuss the changes of Somali Jet under the climate change of Scenario A2 (SRESA2) for the period 2005-2099. The results show that 18 IPCC-AR4 models have performed better in describing the climatological features of Somali Jet in the present climate simulations. Analysis of Somali Jet intensity changes from the multi-model ensemble results for the period 2005-2099 shows a weakened Somali Jet in the early 21st century (2010-2040), the strongest Somali Jet in the middle 21st century (2050-2060), as well as the weakest Somali Jet at the end of the 21st century (2070-2090). Compared with the period 1976-1999, the intensity of Somali Jet is weakening in general, and it becomes the weakest at the end of the 21st century. The results also suggest that the relationship between the intensity of Somali Jet in JJA and the increment of global mean surface air temperature is nonlinear, which is reflected differently among the models, suggesting the uncertainty of the IPCC-AR4 models. Considering the important role of Somali Jet in the Indian monsoon and East Asian monsoon and climate of China, the variability of Somali Jet and its evolvement under the present climate or future climate changes need to be further clarified.

  8. Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models

    Directory of Open Access Journals (Sweden)

    A-Ra Choi

    2013-06-01

    Full Text Available In this study we investigated changes in the Tsushima Warm Current (TWC under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program’s (WCRP Coupled Model Intercomparison Project Phase 5 (CMIP5. Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

  9. Modeling contemporary climate profiles of whitebark pine (Pinus albicaulis) and predicting responses to global warming

    Science.gov (United States)

    Marcus V. Warwell; Gerald E. Rehfeldt; Nicholas L. Crookston

    2006-01-01

    The Random Forests multiple regression tree was used to develop an empirically-based bioclimate model for the distribution of Pinus albicaulis (whitebark pine) in western North America, latitudes 31° to 51° N and longitudes 102° to 125° W. Independent variables included 35 simple expressions of temperature and precipitation and their interactions....

  10. Keeping warm and staying well: findings from the qualitative arm of the Warm Homes Project.

    Science.gov (United States)

    Harrington, Barbara E; Heyman, Bob; Merleau-Ponty, Nick; Stockton, H; Ritchie, Neil; Heyman, Anna

    2005-05-01

    This paper presents findings from the qualitative arm of the Warm Homes Project, a programme of research concerned with the nature of fuel poverty, its alleviation and its relationship to family health. Much of the research into fuel poverty, which results from various combinations of low income and fuel inefficiency, has drawn upon quantitative paradigms. Experiences of, and coping with, fuel poverty have not been well explored. Data for the present study were obtained through qualitative interviews with household members about the above issues. The findings suggest that the expectations of those in fuel poverty about staying warm, and their beliefs about the relationship between warmth and health, vary considerably. Fuel poverty often had wider ramifications, impacting on quality of life in complex ways. The respondents took steps to alleviate cold, but their strategies varied. Coping was affected by informational limitations as well as cost constraints. Measures designed to alleviate fuel poverty should take into account its wider social meaning within the lives of household members.

  11. Livestock breeding for sustainability to mitigate global warming, with ...

    African Journals Online (AJOL)

    Livestock breeding for sustainability to mitigate global warming, with the emphasis ... is essential in implementing efficient breeding systems to cope with climate change. Sophisticated statistical models continue to support animal breeding and ...

  12. Warm spells in Northern Europe in relation to atmospheric circulation

    Science.gov (United States)

    Tomczyk, Arkadiusz M.; Piotrowski, Piotr; Bednorz, Ewa

    2017-05-01

    This study describes warm spells in Northern Europe and determines the synoptic situations that cause their occurrence. In this article, a relatively warm day was defined as a day when the maximum temperature exceeded the 95th annual percentile, and a warm spell (WS) was considered to be a sequence of at least five relatively warm days. In the analysed multiannual period and within the investigated area, 24 (Kallax) to 53 (Oslo) WSs were observed. The occurrence of WSs was mainly connected with positive anomalies of sea level pressure and a 500-hPa isobaric surface, displaying the presence of high-pressure systems. This occurrence was also accompanied by positive T850 anomalies.

  13. Warming Endotracheal Tube in Blind Nasotracheal Intubation throughout Maxillofacial Surgeries

    Directory of Open Access Journals (Sweden)

    Hamzeh Hosseinzadeh

    2013-12-01

    Conclusion: In conclusion, our study showed that using an endotracheal tube softened by warm water could reduce the incidence and severity of epistaxis during blind nasotracheal intubation; however it could not facilitate blind nasotracheal intubation.

  14. Effect of automobiles on global warming: A modeling study

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2017-09-01

    Full Text Available Global warming threatens our environment as well as basic human needs. In the present scenario, increasing demand and excessive use of automobiles have increased the level of carbon dioxide emission in the environment, providing a significant contribution to increase the global warming. This paper deals with the modeling of the effect of automobiles on global warming. For this, three nonlinearly interacting variables namely; density of human population, density of automobiles and the concentration of carbon dioxide have been taken into account. In the modeling process, it is assumed that the density of automobiles increases in proportion to human population following a logistic growth. The model is analyzed using stability theory of ordinary differential equations. Local and global stability conditions are established to study the feasibility of the model system. It is shown that with increase in human population, the demand for automobiles increases which has significant effect on global warming increase.

  15. The Climate Policy Narrative for a Dangerously Warming World

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, Todd [Union of Concerned Scientists; Frumhoff, Peter [Union of Concerned Scientists; Luers, Amy [Skoll Global Threats Fund; Gulledge, Jay [ORNL

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  16. Warm-Needling Technique for Peripheral Facial Paralysis

    Institute of Scientific and Technical Information of China (English)

    WANG Chuan-nian; ZHOU Jing; SHAO Ming-hai

    2007-01-01

    Objective: To observe the therapeutic effects of warm-needling technique on peripheral facial paralysis. Methods: Warm-needling technique and electroacupuncture were employed to treat 30 cases of facial paralysis, respectively. The same acupoints, Cuanzhu(BL 2)towards Yuyao(Ex-HN 4), Yingxiang(LI 20) towards Xiaguan(ST 7), Taiyang(Ex-HN 5)towards Xuanlu(GB 5), Dicang(ST 4) towards Jiache(ST 6), and Chengjiang(CV 24) towards Daying(ST 5), were used. Results: After 33 treatments, the warm-needling technique has an effective rate of 83.3%, while the electroacupuncture 67.7%. Conclusion: The therapeutic effect of warm-needling technique was better than that of electroacupuncture method.

  17. Reconciling controversies about the ‘global warming hiatus’

    Science.gov (United States)

    Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto

    2017-05-01

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  18. Climate heterogeneity modulates impact of warming on tropical insects.

    Science.gov (United States)

    Bonebrake, Timothy C; Deutsch, Curtis A

    2012-03-01

    Evolutionary history and physiology mediate species responses to climate change. Tropical species that do not naturally experience high temperature variability have a narrow thermal tolerance compared to similar taxa at temperate latitudes and could therefore be most vulnerable to warming. However, the thermal adaptation of a species may also be influenced by spatial temperature variations over its geographical range. Spatial climate gradients, especially from topography, may also broaden thermal tolerance and therefore act to buffer warming impacts. Here we show that for low-seasonality environments, high spatial heterogeneity in temperature correlates significantly with greater warming tolerance in insects globally. Based on this relationship, we find that climate change projections of direct physiological impacts on insect fitness highlight the vulnerability of tropical lowland areas to future warming. Thus, in addition to seasonality, spatial heterogeneity may play a critical role in thermal adaptation and climate change impacts particularly in the tropics.

  19. The Geologic Evidence for a Warm and Wet Early Mars

    Science.gov (United States)

    Craddock, R. A.; Irwin, R. P.; Howard, A. D.; Morgan, A. M.

    2017-10-01

    The geologic evidence supporting a warm and wet climate on early Mars is presented. The case against an "icy highlands" scenario is also made. Climate models are converging to a solution, but any theoretical data must explain the empirical data.

  20. Strong delayed interactive effects of metal exposure and warming

    DEFF Research Database (Denmark)

    Debecker, Sara; Dinh, Khuong Van; Stoks, Robby

    2017-01-01

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species......’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...

  1. Steelhead returns to Warm Springs National Fish Hatchery, 1978 - 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Warm Springs River is a major tributary of the Deschutes River in north-central Oregon, and supports a population of wild summer steelhead (Oncorhynchusmykiss)....

  2. Warming countermeasure law carries it out; Ondanka taisakuho ga seko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Law about the promotion of the global warming countermeasure was enforced on April 8. And, a Cabinet meeting decided the basic policy related to the global warming countermeasure on April 9 as the government based on the same law. A country settled on an executive plan for five years, and included grappling with the promotion of saving energy, the development of the new energy and the collection of the fron to attain the goal for a greenhouse effect gas discharge reduction for which to decide it by Kyoto fixed calligraphy with a basic policy. A global warming countermeasure was concluded by law of world for the purpose of prevention of global warming in October, the 10th year of Heisei how to promote it. (translated by NEDO)

  3. Anesthesia and global warming: the real hazards of theoretic science

    Directory of Open Access Journals (Sweden)

    Mychaskiw II George

    2012-03-01

    Full Text Available Abstract Recent speculative articles in the medical literature have indicted certain inhalational anesthetics as contributing to global warming. This unfounded speculation may have deleterious patient impact

  4. Global energy budget: Elusive origin of warming slowdown

    Science.gov (United States)

    Allan, Richard P.

    2017-04-01

    Global surface warming was slower than expected in the first decade of the twenty-first century. Research attributes similar events to ocean or atmosphere fluctuations, but the subtle origins of these events may elude observational detection.

  5. Global Warming Potential Of A Waste Refinery Using Enzymatic Treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    and fossil resources. This is especially important with respect to the residual waste (i.e. the remains after source-separation and separate collection) which is typically incinerated or landfilled. In this paper the energy and Global Warming performance of a pilot-scale waste refinery for the enzymatic...... plants and utilization of the liquid fraction for biogas production turned out to be the best options with respect to energy and Global Warming performance....

  6. Plausible rice yield losses under future climate warming.

    Science.gov (United States)

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population(1-3). Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K(-1). Local crop models give a similar sensitivity (-6.3 ± 0.4% K(-1)), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K(-1), respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K(-1)). The constraint implies a more negative response to warming (-8.3 ± 1.4% K(-1)) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K(-1)) (ref. 4). Our study suggests that without CO2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  7. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    Science.gov (United States)

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important

  8. Anthropogenic warming has increased drought risk in California.

    Science.gov (United States)

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  9. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric; Gonder, Jeff

    2017-03-28

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  10. Extreme warm temperatures alter forest phenology and productivity in Europe.

    Science.gov (United States)

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V

    2016-09-01

    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered.

  11. Global Warming and Energy Transition: A Public Policy Imperative

    Science.gov (United States)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  12. Global Warming Potential Of A Waste Refinery Using Enzymatic Treatment

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas

    2010-01-01

    and fossil resources. This is especially important with respect to the residual waste (i.e. the remains after source-separation and separate collection) which is typically incinerated or landfilled. In this paper the energy and Global Warming performance of a pilot-scale waste refinery for the enzymatic...... plants and utilization of the liquid fraction for biogas production turned out to be the best options with respect to energy and Global Warming performance....

  13. Warming effect of dust aerosols modulated by overlapping clouds below

    Science.gov (United States)

    Xu, Hui; Guo, Jianping; Wang, Yuan; Zhao, Chuanfeng; Zhang, Zhibo; Min, Min; Miao, Yucong; Liu, Huan; He, Jing; Zhou, Shunwu; Zhai, Panmao

    2017-10-01

    Due to the substantial warming effect of dust aerosols overlying clouds and its poor representation in climate models, it is imperative to accurately quantify the direct radiative forcing (DRF) of above-cloud dust aerosols. When absorbing aerosol layers are located above clouds, the warming effect of aerosols strongly depends on the cloud macro- and micro-physical properties underneath, such as cloud optical depth and cloud fraction at visible wavelength. A larger aerosol-cloud overlap is believed to cause a larger warming effect of absorbing aerosols, but the influence of overlapping cloud fraction and cloud optical depth remains to be explored. In this study, the impact of overlapping cloud properties on the shortwave all-sky DRF due to springtime above-cloud dust aerosols is quantified over northern Pacific Ocean based on 10-year satellite measurements. On average, the DRF is roughly 0.62 Wm-2. Furthermore, the warming effect of dust aerosols linearly increases with both overlapping cloud fraction and cloud optical depth. An increase of 1% in overlapping cloud fraction will amplify this warming effect by 1.11 Wm-2τ-1. For the springtime northern Pacific Ocean, top-of-atmosphere cooling by dust aerosols turns into warming when overlapping cloud fraction is beyond 0.20. The variation of critical cloud optical depth beyond which dust aerosols switch from exerting a net cooling to a net warming effect depends on the concurrent overlapping cloud fraction. When the overlapping cloud coverage range increases from 0.2 to -0.4 to 0.6-0.8, the corresponding critical cloud optical depth reduces from 6.92 to 1.16. Our results demonstrate the importance of overlapping cloud properties for determining the springtime warming effect of dust aerosols.

  14. The European climate under a 2 degrees C global warming

    OpenAIRE

    Vautard, R.; A. Gobiet; S. Sobolowski; Kjellström, E; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; D. Jacob

    2014-01-01

    A global warming of 2 °C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresp...

  15. Impact of Global Warming on Streamflow Drought in Europe

    OpenAIRE

    Feyen, Luc; Dankers, Rutger

    2009-01-01

    Recent developments in climate modeling suggest that global warming is likely to favor conditions for the development of droughts in many regions of Europe. Studies evaluating possible changes in drought hazard typically have employed indices that are derived solely from climate variables such as temperature and precipitation, whereas many of the impacts of droughts are more related to hydrological variables such as river flow. This study examines the impact of global warming o...

  16. Effects of lubricant's friction coefficient on warm compaction powder metallurgy

    Institute of Scientific and Technical Information of China (English)

    LI Yuan-yuan; NGAI Tungwai Leo; WANG Shng-lin; ZHU Min; CHEN Wei-ping

    2005-01-01

    The correct use of lubricant is the key of warm compaction powder metallurgy.Different lubricants produce different lubrication effects and their optimal application temperature will be different.Three different lubricants were used to study the effects of friction coefficient on warm compaction process.Friction coefficients of these lubricants were measured at temperatures ranging from ambient temperature to 200 ℃.Iron-base samples were prepared using different processing temperatures and their green compact densities were studied.

  17. Measurement of Electron-Ion Relaxation in Warm Dense Copper

    Science.gov (United States)

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; Correa, A. A.; Ping, Y.; Lee, J. W.; Bae, L. J.; Prendergast, D.; Falcone, R. W.; Heimann, P. A.

    2016-01-01

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. Data are compared with various theoretical models.

  18. Evaluating Arctic warming mechanisms in CMIP5 models

    Science.gov (United States)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2016-07-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  19. Warm pool thermodynamics from the Arabian Sea Monsoon Experiment (ARMEX)

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, D.; Parampil, S.R.; Bhat, G.S.; Murty, V.S.N.; RameshBabu, V.; Sudhakar, T.; Premkumar, K.; Pradhan, Y.

    driven upper ocean currents (e.g. Sun and Liu [1996]; Loschnigg and Webster [2000]; Clement et al. [2005]), and (c) enhanced evaporation over warm SST and redistribution of boundary-layer moisture or of elevated latent heating by large scale atmospheric... observations show the presence of shallow mixed layers, barrier layers and temperature inversions (Shenoi et al [2004], Shankar et al [2004]). In addition to salinity effects, the north Indian Ocean warm pool also becomes increasingly stably stratified...

  20. COMPENDEX Profiling Guide.

    Science.gov (United States)

    Standera, Oldrich

    This manual provides instructions for completing the COMPENDEX (Computerized Engineering Index) Profile Submission Form used to prepare Current Information Selection (CIS) profiles. An annotated bibliography lists nine items useful in searching for proper profile words. (AB)

  1. Expansion of World Drylands Under Global Warming

    Science.gov (United States)

    Feng, S.; Fu, Q.; Hu, Q. S.

    2012-12-01

    The world drylands including both semi-arid and arid regions comprise of one-third of the global land surfaces, which support 14% of the world's inhabitants and a significant share of the world agriculture. Because of meager annual precipitation and large potential evaporative water loss, the ecosystems over drylands are fragile and sensitive to the global change. By analyzing the observations during 1948-2008 and 20 fully coupled climate model simulations from CMIP5 for the period 1900-2100, this study evaluated the changes of the world drylands that are defined with a modified form of the Thornthwaite's moisture index. The results based on observational data showed that the world drylands are steadily expanding during the past 60 years. The areas occupied by drylands in 1994-2008 is about 2.0×10^6km^2 (or 4%) larger than the average during the 1950s. Such an expansion is also a robust feature in the simulations of the 20 global climate models, though the rate is much smaller in the models. A stronger expanding rate is projected during the first half of this century than the simulations in the last century, followed by accelerating expansion after 2050s under the high greenhouse gas emission scenario (RCP8.5). By the end of this century, the world drylands are projected to be over 58×10^6km^2 (or 11% increase compared to the 1961-1990 climatology). The projected expansion of drylands, however, is not homogeneous over the world drylands, with major expansion of arid regions over the southwest North America, the northern fringe of Africa, southern Africa and Australia. Major expansions of semi-arid regions are projected over the north side of the Mediterranean, southern Africa, North and South America. The global warming is the main factor causing the increase of potential evapotranspiration estimated by Penman-Monteith algorithm, which in turn dominants the expansion of drylands. The widening of Hadley cell, which has impact on both temperature and precipitation

  2. The Seasonal Timing of Stratospheric Sudden Warmings

    Science.gov (United States)

    Horan, Matthew; Reichler, Thomas

    2017-04-01

    We aim to diagnose causes for the differences in the seasonal distribution of stratospheric sudden warmings (SSWs) between reanalysis and models. Observations over the past 60 years indicate that most SSWs occur during mid-winter (January), but climate models tend to simulate the maximum number of SSWs during late-winter or early-spring. This discrepancy has led to the speculation that models might be flawed and that the simulation of a January maximum represents a measure of model performance. However, the relatively short observational record and rare occurrence of SSWs also implies considerable uncertainty in the observation derived result. The goal of this work is to understand the seasonal distribution of SSWs using a simple statistical model, to test the model using a variety of data sets, and to answer the questions when SSWs are most likely to occur and what the reasons for it are. Our analysis is based on Charlton and Polvani's (2007) criteria for SSWs and on the assumption that the polar vortex wind approximately follows a normal distribution. The statistical model successfully predicts the day-to-day variations in the empirically derived occurrence frequency of SSWs, demonstrating that the seasonal distribution of SSWs can be almost entirely understood in terms of the climatological seasonal cycle of the polar vortex wind. The statistical model indicates that the maximum frequency of SSWs in climate models and reanalysis occurs during late-winter, and not during mid-winter as implied by the observations. This strongly suggests that sampling uncertainty is responsible for the January maximum seen in the reanalysis and that the simulation of a January maximum does not represent a metric of model performance. The reason for the late-winter maximum is the decreasing strength of the polar vortex, making it more likely that the winds of the polar vortex reach the zero-threshold required by the WMO definition for SSWs. This further suggests that climatological

  3. IMPACT OF Global Warming on Trees

    Energy Technology Data Exchange (ETDEWEB)

    Nasrullah Khan [COMSATS Institute of Information Technology, Islamabad (Pakistan); Naeem Abas [2Department of Electrical Engineering, University of Gujrat, Gujrat (Pakistan); Norman Mariun [University Putra Malaysia, Faculty of Engineering, UPM Serdang, Serdang (Malaysia)

    2008-09-30

    Trees store CO{sub 2}, drive food chain, produce oxygen and cause cooling effects through the transpiration process. However, increasing forests to cool the planet needs a lot of care regarding locations and types of trees. Initially it was thought that the city trees fight climate change but later it was found that only tropical trees do the best. Ozone absorption in soil affects its natural carbon sequestration capability. Interaction of plants and soil with changing atmosphere and climate is very complex and not yet understood. Some crops like cotton, wheat and rice are more productive in elevated CO{sub 2} but their response at high temperatures needs further studies (GWDTR, 1997-2007; ITGW, 1990-2008). Use of CO{sub 2} as input raw material in fuel cells might be a revolutionary innovation but there is a long way to go ahead. At this moment we can only start energy education to cope up the time to come. On average CO{sub 2} concentration has been increasing at rate of 2.25ppm/yr from 2004 to 2008 but later from 2007 to 2008 it has been found increasing exponentially at rate of 4ppm/yr. It continues to increase at this rate even after oil peaking then it might exceed 500ppm by 2040-2050. CO{sub 2} concentration in atmosphere was 280 ppm before industrial revolution and in last few centuries it has increased to 385 ppm at an average annual rate of 2 ppm. Weeds normally show poor response to high CO{sub 2} concentrations but crops, fruits and vegetables flourish well. Previous draught cycle was only three years long but recent draught cycle is much longer than earlier (IGWT, 1997-2008). However, few trees in the same constellation are still quite healthy and alive. Some trees were seen dead even close to water canals. Based on literature review and observations recorded in this study it is concluded that high CO{sub 2} induced heat wave (global warming) is responsible for helping beetles and wood ants to eat trees roots and stem to kill them by starvation. The

  4. Warm World Ocean Thermohaline Circulation Model

    Science.gov (United States)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  5. Global warming, energy use, and economic growth

    Science.gov (United States)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  6. Causes of differences in model and satellite tropospheric warming rates

    Science.gov (United States)

    Santer, Benjamin D.; Fyfe, John C.; Pallotta, Giuliana; Flato, Gregory M.; Meehl, Gerald A.; England, Matthew H.; Hawkins, Ed; Mann, Michael E.; Painter, Jeffrey F.; Bonfils, Céline; Cvijanovic, Ivana; Mears, Carl; Wentz, Frank J.; Po-Chedley, Stephen; Fu, Qiang; Zou, Cheng-Zhi

    2017-07-01

    In the early twenty-first century, satellite-derived tropospheric warming trends were generally smaller than trends estimated from a large multi-model ensemble. Because observations and coupled model simulations do not have the same phasing of natural internal variability, such decadal differences in simulated and observed warming rates invariably occur. Here we analyse global-mean tropospheric temperatures from satellites and climate model simulations to examine whether warming rate differences over the satellite era can be explained by internal climate variability alone. We find that in the last two decades of the twentieth century, differences between modelled and observed tropospheric temperature trends are broadly consistent with internal variability. Over most of the early twenty-first century, however, model tropospheric warming is substantially larger than observed; warming rate differences are generally outside the range of trends arising from internal variability. The probability that multi-decadal internal variability fully explains the asymmetry between the late twentieth and early twenty-first century results is low (between zero and about 9%). It is also unlikely that this asymmetry is due to the combined effects of internal variability and a model error in climate sensitivity. We conclude that model overestimation of tropospheric warming in the early twenty-first century is partly due to systematic deficiencies in some of the post-2000 external forcings used in the model simulations.

  7. Echinococcus granulosus: in vitro effectiveness of warm water on protoscolices.

    Science.gov (United States)

    Moazeni, Mohammad; Alipour-Chaharmahali, Mohammad-Reza

    2011-01-01

    Hydatid disease is one of the most important helminthic diseases worldwide. Hydatid cysts may be found anywhere in the body. The most effective treatment of hydatid cyst is surgical operation. Spillage of live protoscolices during the operation is the major cause of recurrence. Instillation of scolicidal agent into hydatid cyst is the most commonly employed measure to prevent this complication. To date, many scolicidal agents have been used for inactivation of the hydatid cyst content, however, most common scolicidal agents may cause unacceptable side-effects, limiting their use. In this study the scolicidal effect of warm water (45, 50, 55, and 60 °C) at different exposure times (1, 2, 3, 4, 5, 6, 8, 10, 12, and 15 min) is investigated. Protoscolices were collected aseptically from sheep livers containing hydatid cyst. Viability of protoscolices was determined by 0.1% eosin staining. Even though the highest scolicidal activity of warm water at 45 °C was 40.4% at the end of 15 min, the best scolicidal effect (100%) of warm water at 50, 55, and 60 °C was obtained after 5, 2, and 1 min, respectively. The results of this in vitro study showed that warm water at 50-60 °C can be regarded as an effective scolicidal agent. Warm water is commonly available, easily prepared, and inexpensive. In vivo scolicidal activity of warm water and also the possible side effects need further investigation.

  8. Rationale for implementation of warm cardiac surgery in pediatrics

    Directory of Open Access Journals (Sweden)

    Yves eDurandy

    2016-05-01

    Full Text Available Cardiac surgery was developed thanks to the introduction of hypothermia and cardiopulmonary bypass in the early 1950s. The deep hypothermia protective effect has been essential to circulatory arrest complex cases repair. During the early times of open-heart surgery, a major concern was to decrease mortality and to improve short-term outcomes. Both mortality and morbidity dramatically decreased over a few decades. As a consequence, the drawbacks of deep hypothermia, with or without circulatory arrest, became more and more apparent. The limitation of hypothermia was particularly evident for the brain and regional perfusion was introduced as a response to this problem. Despite a gain in popularity, the results of regional perfusion were not fully convincing.In the 1990s, warm surgery was introduced in adults and proved to be safe and reliable. This option eliminates the deleterious effect of ischemia reperfusion injuries through a continuous, systemic coronary perfusion with warm oxygenated blood. Intermittent warm blood cardioplegia was introduced later, with impressive results.We were convinced by the easiness, safety and efficiency of warm surgery and shifted to warm pediatric surgery in a two-step program.This article outlines the limitations of hypothermic protection and the basic reasons that led us to implement pediatric warm surgery. After tens of thousands of cases performed across several centers, this reproducible technique proved a valuable alternative to hypothermic surgery.

  9. The effect of global warming on infectious diseases.

    Science.gov (United States)

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  10. How warm was Greenland during the last interglacial period?

    Science.gov (United States)

    Landais, Amaelle; Masson-Delmotte, Valérie; Capron, Emilie; Langenbroeck, Petra; Bakker, Pepijn; Stone, Emma; Fischer, Hubertus; Vinther, Bo; Dahl-Jensen, Dorthe

    2016-04-01

    The last interglacial period (LIG, ~129-116 thousand years ago) provides the most recent evidence for the response of Greenland and Antarctic ice sheets to polar warming above pre-industrial level, and a valuable test bed for ice sheet models. Key constraints on past changes in both ice sheet topography and surface temperature are derived from Greenland ice cores. The large warming estimated from the recent NEEM ice core drilled in northwest Greenland (8 ±4°C above pre-industrial) together with the evidence for limited local ice thinning have led to the "NEEM paradox", suggesting more stability of the ice sheet than simulated by ice flow models in response to such large warming. Here, we provide a new assessment of the LIG warming using ice core air isotopic composition (d15N) together with available relationships for Greenland between accumulation rate and temperature. The temperature at the upstream NEEM deposition site is estimated to be between -20°C to -24°C which is consistent with the 8±4°C warming relative to pre-industrial previously determined from water isotopic records measured on the NEEM ice, although we feel the lower end of this range to be more likely. Moreover, we show that under such warm temperature, melting of snow probably led to a significant firn shrinking by 15 m. We show that confirmation of this high temperature range for the LIG in Greenland is difficult to reconcile with climate modeling experiments

  11. Small Inner Companions of Warm Jupiters: Lifetimes and Legacies

    CERN Document Server

    Van Laerhoven, Christa

    2014-01-01

    Although warm jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exc...

  12. Diminished response of arctic plants to warming over time.

    Directory of Open Access Journals (Sweden)

    Kelseyann S Kremers

    Full Text Available The goal of this study is to determine if the response of arctic plants to warming is consistent across species, locations and time. This study examined the impact of experimental warming and natural temperature variation on plants at Barrow and Atqasuk, Alaska beginning in 1994. We considered observations of plant performance collected from 1994-2000 "short-term" and those from 2007-2012 "long-term". The plant traits reported are the number of inflorescences, inflorescence height, leaf length, and day of flower emergence. These traits can inform us about larger scale processes such as plant reproductive effort, plant growth, and plant phenology, and therefore provide valuable insight into community dynamics, carbon uptake, and trophic interactions. We categorized traits of all species monitored at each site into temperature response types. We then compared response types across traits, plant growth forms, sites, and over time to analyze the consistency of plant response to warming. Graminoids were the most responsive to warming and showed a positive response to temperature, while shrubs were generally the least responsive. Almost half (49% of response types (across all traits, species, and sites combined changed from short-term to long-term. The percent of plants responsive to warming decreased from 57% (short-term to 46% (long-term. These results indicate that the response of plants to warming varies over time and has diminished overall in recent years.

  13. Consistency of the tachyon warm inflationary universe models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Min; Zhu, Jian-Yang, E-mail: zhangxm@mail.bnu.edu.cn, E-mail: zhujy@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2014-02-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ{sub 0} and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε{sub H}, and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ{sub 0}) is usually not a suitable assumption for a warm inflationary model.

  14. Recent warming trend in the coastal region of Qatar

    Science.gov (United States)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  15. Warm Jupiters from secular planet-planet interactions

    CERN Document Server

    Petrovich, Cristobal

    2016-01-01

    Most warm Jupiters (gas-giant planets with $0.1~{\\rm AU}\\lesssim a \\lesssim1$ AU) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation when the pericenter distance is small, but are typically observed at much lower eccentricities. We show that the steady-state eccentricity distribution of the warm Jupiters migrating by this mechanism is approximately flat, which is consistent with the observed distribution if and only if we restrict the sample to warm Jupiters that have outer companions detected by radial-velocity surveys. The eccentricity distribution of warm Jupiters without companions exhibits a peak at low eccentricities ($e\\lesssim 0.2$) that must be explained by a di...

  16. Variability and Expansion of the Tropical Ocean Warm Pool

    Science.gov (United States)

    Hoyos, C. D.; Webster, P. J.

    2007-12-01

    The tropical warm pool plays a determining role in the global climate since it acts as a sorce of thermodynamic forcing for the atmospheric general circulation. The warm pools (SST>28°C) extend from the Indian Ocean, across the Indonesian Archipelago into the western Pacific with a secondary area crossing Central America into the Caribbean and the central Atlantic ocean. The heating in the atmosphere above the warm pool influences climate over wide ranges of the planet. As there are zonal asymmetries in the extent of the warm pool, and hence variations in the locations of total heating of the atmospheric column, the warm pools also create centers of diabatic heating along the equator which set up the position and strength of the east-west Circulations which play integral roles in the coupled ocean-atmosphere tropical climate. In fact, almost all of the global vertically integrated heating resides over waters >27°C. The tropical warm pool is characterized by large-scale variations of SST on time scales that range from intraseasonal to interdecadal, considerably altering the forcing to the atmosphere. In addition to the existence of the large variability of the tropical warm pool SST, there is an upward trend in the tropical warm pool area, which is evident in the Atlantic, Indian and Pacific oceans with the area encompassed by the 28C isotherm groewing by 67% since 1920. Changes in the zonal and meridional circulation associated with the variability and expansion of the warm pool are studied using NCEP-NCAR and ERA40 reanalsysis. It is found that the impacts extend around the tropics and are associated with a slowing down of the Asian monsoon circulation and modulation of the of the equatorial Walker cells. Analysis of the IPCC-CMIP3 models for the 20th century show similar changes in the warm pool extent suggesting that changes that occur under different future emission scenarios may poossess credence. With greenhouse warming it is found that the warm pool

  17. Alpine proglacial suspended sediment dynamics in warm and cool ablation seasons: Implications for global warming

    Science.gov (United States)

    Stott, Tim; Mount, Nick

    2007-01-01

    SummaryData on suspended sediment dynamics and loads obtained from the Torrent du Glacier Noir, Ecrins Massif, SE France, during the unusually warm 2003 and cooler 2004 ablation seasons are used to indicate the likely future impacts of climate warming on suspended sediment transport processes in temperate Alpine proglacial zones. Suspended sediment concentration (SSC) and discharge ( Q) were continuously monitored for 16-day periods during July 2003 and July 2004. SSC was monitored by automated pump sampling during diurnal events in each season and supplemented by a 10 min turbidity record. Q was monitored at a range of flows and a rating curve used to convert a 10 min water level record into Q. Air temperature (AT) was also logged at 10 min intervals throughout the study. Comparison of the 2003 and 2004 monitoring periods showed that daily mean AT measured at the site was 1.2 °C higher in 2003, mean Q was 2.3 times higher, and the suspended sediment load (SSL) was between 3.1 and 4.1 times greater in July 2003 than for the same period in the 2004 ablation season. There is an increase in SSC during the 2004 observation period which is less apparent in 2003, most likely because higher ATs and consequently higher Q earlier in the 2003 melt season had removed available sediment before the study took place in July. The rating curve method for estimating SSL produced a total load for the 16-day study period in 2003 which, when corrected upwards to account for statistical bias, was 10 314 ± 743 t or 95% of the load estimated from the turbidity record for the same period. In 2004 the corrected SSC- Q rating curve estimate was 2504 ± 126 t while the estimate from the turbidity record was 743 ± 112 t though a more sensitive turbidity sensor produced a higher estimate of 3474 ± 302 t. While the different SSL estimation methods in 2004 are not in perfect agreement, the contrast between the two seasons is nevertheless very clear, and is largely attributed to a mean

  18. Cropping system innovation for coping with climatic warming in China

    Directory of Open Access Journals (Sweden)

    Aixing Deng

    2017-04-01

    Full Text Available China is becoming the largest grain producing and carbon-emitting country in the world, with a steady increase in population and economic development. A review of Chinese experiences in ensuring food self-sufficiency and reducing carbon emission in the agricultural sector can provide a valuable reference for similar countries and regions. According to a comprehensive review of previous publications and recent field observations, China has experienced on average a larger and faster climatic warming trend than the global trend, and there are large uncertainties in precipitation change, which shows a non-significantly increasing trend. Existing evidence shows that the effects of climatic warming on major staple crop production in China could be markedly negative or positive, depending on the specific cropping region, season, and crop. However, historical data analysis and field warming experiments have shown that moderate warming, of less than 2.0 °C, could benefit crop production in China overall. During the most recent warming decades, China has made successful adaptations in cropping systems, such as new cultivar breeding, cropping region adjustment, and cropping practice optimization, to exploit the positive rather than to avoid the negative effects of climatic warming on crop growth. All of these successful adaptations have greatly increased crop yield, leading to higher resource use efficiency as well as greatly increased soil organic carbon content with reduced greenhouse gas emissions. Under the warming climate, China has not only achieved great successes in crop production but also realized a large advance in greenhouse gas emission mitigation. Chinese experiences in cropping system innovation for coping with climatic warming demonstrate that food security and climatic warming mitigation can be synergized through policy, knowledge, and technological innovation. With the increasingly critical status of food security and climatic warming

  19. How warm was the year 2010? Background; Wie warm war das Jahr 2010? Hintergrund

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-05-06

    In the background paper under consideration, the Federal Environment Agency (Dessau-Rosslau, Federal Republic of Germany) reports on a global measurement of the surface air temperature in order to obtain a global mean temperature. The global mean temperature of the year 2010 is not very significant. The deviation of the global mean temperature of the year 2010 from the mean temperature in a recent, extended period of time is more significant. The long-term trend in the global mean temperature shows a progressive global warming. The year 2010 was the warmest calendar year with the largest amount of rainfall since the records began in the 19th century. The global mean surface air temperature was very slight above the average temperature of the previous record year 2005.

  20. Direct Imaging of Warm Extrasolar Planets

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  1. Atmospheric General Circulation Changes under Global Warming

    Science.gov (United States)

    Palipane, Erool

    The work in this thesis is mainly two-fold. First we study the internal variability of the general circulation and focus our study on the annular modes and how important it is to simulate the subsynoptic scales in the circulation. In the next major section we will try to understand the mechanisms of the forced response and the mechanisms leading towards the jet shift from transient evolution in Atmospheric general circulation models. In the first part, in an attempt to assess the benefit of resolving the sub-synoptic to mesoscale processes, the spatial and temporal characteristics of the Annular Modes (AMs), in particular those related to the troposphere-stratosphere interaction, are evaluated for moderate- and high-horizontal resolution simulations with a global atmospheric general circulation model (AGCM), in comparison with the ERA40 re- analysis. Relative to the CMIP-type climate models, the IFS AGCM demonstrates notable improvement in capturing the key characteristics of the AMs. Notably, the performance with the high horizontal resolution version of the model is systematically superior to the moderate resolution on all metrics examined, including the variance of the AMs at different seasons of the year, the intrinsic e-folding time scales of the AMs, and the downward influence from the stratosphere to troposphere in the AMs. Moreover, the high-resolution simulation with a greater persistence in the intrinsic variability of the SAM projects an appreciably larger shift of the surface westerly wind during the Southern Hemisphere summer under climate change. In the second part, the response of the atmospheric circulation to greenhouse gas-induced SST warming is investigated using large ensemble experiments with two AGCMs, with a focus on the robust feature of the poleward shift of the eddy driven jet. In these experiments, large ensembles of simulations are conducted by abruptly switching the SST forcing on from January 1st to focus on the wintertime circulation

  2. Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record

    Science.gov (United States)

    Maturilli, Marion; Kayser, Markus

    2017-04-01

    Compared to global warming, the feedback mechanisms of Arctic Amplification lead to an increase of surface temperature in the Arctic by a factor of two. Yet, the vertical structure of Arctic warming and its resulting radiative feedbacks are poorly understood. Here, we focus on the analysis of the atmospheric column above Ny-Ålesund (78.9° N, 11.9° E), Svalbard. At Ny-Ålesund, radiosondes have been launched on a daily basis since 1993 in support of synoptic observations. The obtained radiosonde measurements 1993 to 2014 have been homogenized accounting for instrumentation discontinuities and known errors in the manufacturer provided profiles. From the homogenized data record, a first upper-air climatology of wind, humidity and temperature above Ny-Ålesund is presented, forming the background for the analysis of changes detected during the 22-year period. Particularly during the winter season, a strong increase in atmospheric humidity and temperature is observed, with a significant warming of the free troposphere in January and February of up to 3 K per decade. This winter warming is even more pronounced in the boundary layer below 1 km, presumably amplified by local conditions including e.g. orographic effects or the boundary layer capping inversion. Also the largest contribution to the increasing atmospheric water vapour column originates from the lowermost 2 km of the atmosphere where specific humidity inversions are frequently observed. Yet, no increase in the water vapour contribution by humidity inversions is detected. Instead, we find an increase in the humidity content of the large scale background humidity profiles to be responsible for the observed increase in winter integrated water vapour. The observed difference in the frequency occurrence of wind directions in the free troposphere between the first and second half of the 22-year period implies that the large scale synoptic flow over Svalbard has changed over the years. During the winter season, the

  3. Marine Ecosystem Response to Rapid Climate Warming on the West Antarctic Peninsula (Invited)

    Science.gov (United States)

    Ducklow, H.; Baker, K. S.; Doney, S. C.; Fraser, B.; Martinson, D. G.; Meredith, M. P.; Montes-Hugo, M. A.; Sailley, S.; Schofield, O.; Sherrell, R. M.; Stammerjohn, S. E.; Steinberg, D. K.

    2010-12-01

    The Palmer, Antarctica LTER builds on meteorological, ocean color and seabird observations since the late 1970s. It occupies annually in summer a regional-scale grid extending 700 km northward from Charcot Island to Anvers Island, and 200 km cross-shelf from the coast to the shelfbreak. In addition to routine CTD profiles and zooplankton tows throughout the grid, the observing system also includes Slocum Glider surveys and thermistor moorings. Geophysical changes include +6C atmospheric warming in winter since 1950, a 20% increase in heat content over the continental shelf since 1990, a surface ocean warming of +1C since 1950, an 83-day reduction in sea ice duration (advance 48 days later, retreat 35 days earlier) over the greater southern Bellingshausen Sea region from 1979-2007, intensification of westerly winds and differential changes in cloudiness. In response to these large changes in the regional climate, the marine ecosystem of the western Peninsula is changing at all trophic levels from diatoms to penguins. Ocean color indicates differential changes in phytoplankton stocks in response to regional decreases in sea ice cover. Surface chlorophyll has declined 89% in the north and increased 67% in the south. Antarctic krill and salps have declined and increased in our study area, respectively. Penguin diet sampling suggests changes in populations or distributions of the Antarctic Silverfish in the Anvers Island vicinity, possibly in response to ocean warming. Adélie penguins have declined 75% from 15000 to penguin breeding populations in the Anvers Island vicinity of the West Antarctic Peninsula

  4. salinity Budget analysis of of Western Pacific Warm Pool

    Science.gov (United States)

    Gao, Shan; nie, xunwei; Qu, Tangdong

    2013-04-01

    Western pacific warm pool plays an important role in governing global climate variability. In particular, the unique salinity structures of warm pool, barrier layer and salinity front, have significant impacts on the heat content accumulation and zonal migration of warm pool surface water, which further modulate the formation and development of tropical climate phenomenon, such as El Niño, MJO and EAM. In order to have better understanding of how warm pool salinity contributes to climate change the salinity budget of warm pool are investigated using results from a model of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO). The results show that the salinity budget of warm pool and its components have significant seasonal and annual variability. The surface freshwater flux is the dominant element of salinity budget, which is well balanced by the other ocean dynamic terms. However among all the terms of ocean dynamics, mixing is most significant, whereas advection and entrainment are not dominant, unlike most other region. The further analysis of lagged correlation coefficient between the salinity budget, salinity budget components and NIÑO 3.4 reveals that the salinity budget is highly related to El Niño and Southern Oscillation (ENSO). The results indicate that the annual variability of warm pool salinity budget has a notable correlation coefficient with NIÑO 3.4 (0.7); Mealwhile,variabilities of each components of Ocean dynamics,including diffusion, advection and mixing are found to be highly correlated to ENSO.The local barrier layer is believed to be a major reason.

  5. Temperature response of soil respiration largely unaltered with experimental warming.

    Science.gov (United States)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  6. [Warming up with endotrainer prior to laparoscopic cholecystectomy].

    Science.gov (United States)

    Troncoso-Bacelis, Alicia; Soto-Amaro, Jaime; Ramírez-Velázquez, Carlos

    Laparoscopic cholecystectomy is a safe and effective treatment and remains the gold standard in patients with benign disease. However it presents difficulties such as: the limited movement range of the instruments, the loss of depth perception, haptic feedback and the fulcrum effect. Previous training can optimize surgical performance in patients to master basic skills. Assess the effectiveness of surgeons warming up with an endotrainer before performing laparoscopic cholecystectomy. Single-blind controlled clinical trial with 16 surgeons who performed 2 laparoscopic cholecystectomies, the first according to standard practice and the second with warm-up comprising 5 MISTELS system exercises. Patient and surgeon demographics were recorded, in addition to findings and complications during and after surgery for each procedured. We found a decrease in surgical time of 76.88 (±18.87) minutes in the group that did not warm up to prior to surgery compared with 72.81 (±35.5) minutes in the group with warm-up (p=0.0196). In addition, increased bleeding occurred in the procedures performed with warm-up 31.25 (±30.85) ml compared with the group that had no warm-up 23.94 (±15.9) (p=0.0146). Performing warm up on a MISTELS system endotrainer before performing laparoscopic cholecystectomy reduces the operating time of surgery for all surgeons. Surgery bleeding increases in operations performed by surgeons with less experience in laparoscopic surgery. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  7. Warm water geothermal and cold energy in western Canada

    Energy Technology Data Exchange (ETDEWEB)

    Peachey, B. [New Paradigm Engineering Ltd., Edmonton, AB (Canada)]|[Petroleum Technology Alliance Canada, Calgary, AB (Canada)

    2007-07-01

    The Petroleum Technology Alliance of Canada's low carbon futures study was discussed along with a study in which scenarios were developed for three resources, notably bitumen in carbonate reservoirs; conventional heavy oil; and warm water geothermal energy from operating oil wells. The presentation provided an overview of geothermal systems including hot dry rock; dry steam resources; hot water resources; warm water resources; and low temperature systems. A warm water geothermal study for the Western Canada Sedimentary Basin (WCSB) was also presented. Although high quality geothermal energy sources are rare in Canada, there are large warm water geothermal reservoirs, ranging in temperature from 50 to 180 degrees C in the WCSB. This presentation focused on the potential for recovery of the warm water geothermal energy already being brought to surface from the WCSB's oil wells. Several energy approaches were also presented, such as warm geothermal or produced water being used for heating an oil reservoir; using produced mechanical energy for field pumping; and producing renewable electricity from binary plants with propane. Illustrations were also provided for the organic Rankine cycle; low pump geothermal power; and no pump geothermal system. Combined geothermal and oil production were also discussed. Other topics that were presented included industrial cooling; municipal cooling; mined oilsands barriers and tailings; containment of in-situ oilsands; and rural freeze desalination. The report concluded with discussions of the Canadian minerals industry; cold Arctic construction; and ice roads in the North. It was concluded that there is potential for warm water geothermal in existing oilfield operations in Canada. tabs., figs.

  8. Thermal adaptation of decomposer communities in warming soils

    Directory of Open Access Journals (Sweden)

    Mark Alexander Bradford

    2013-11-01

    Full Text Available Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function of both enzymes and membranes. I review the basis for these trade-offs and show that they, like substrate depletion, are plausible mechanisms explaining soil respiration responses to warming. I argue that controversies over whether soil microbes adapt to warming stem from disregarding the evolutionary physiology of cellular metabolism, and confusion arising from the term thermal acclimation to represent phenomena at the organism- and ecosystem-levels with different underlying mechanisms. Measurable physiological adjustments of the soil microbial biomass reflect shifts from colder- to warmer-adapted taxa. Hypothesized declines in the growth efficiency of soil microbial biomass under warming are controversial given limited data and a weak theoretical basis. I suggest that energy spilling (aka waste metabolism is a more plausible mechanism for efficiency declines than the commonly invoked increase in maintenance-energy demands. Energy spilling has many fitness benefits for microbes and its response to climate warming is uncertain. Modeled responses of soil carbon to warming are sensitive to microbial growth efficiency, but declines in efficiency mitigate warming-induced carbon losses in microbial models and exacerbate them in conventional models. Both modeling structures assume that microbes regulate soil carbon turnover, highlighting the need for a third structure where microbes are not regulators. I conclude that microbial physiology must be considered if we are to have confidence in projected feedbacks between soil carbon stocks, atmospheric CO2, and

  9. Mineralization of organic matter with warming in boreal forest soils is influenced by nitrogen dynamics

    Science.gov (United States)

    Li, J.; Ziegler, S. E.; Lane, C. S.; Billings, S. A.

    2011-12-01

    Temperature is an important factor in regulating soil organic matter (SOM) decomposition, but the drivers of microbial substrate choice with changing temperature regimes remain poorly elucidated. For example, nitrogen (N) dynamics play a key role in dictating activity levels of different microbial groupings, which in turn may influence who in a microbial community is better able to take advantage of more favorable energetics in a warmer soil profile. These issues are particularly important for large SOM reservoirs, such as those in the boreal biome. To address these issues, we collected soils in organic horizons from two forested sites along the Newfoundland-Labrador Boreal Ecosystem Latitude Transect (NL-BELT) in eastern Canada. Sites differ in latitude and mean annual temperature, but are similar in forest cover and soil type. We incubated humified Oe+Oa materials and replaced Oi with low or high C:N coniferous litter possessing a distinct δ13C signature for 120 days at 15°C and 20°C. During the incubation, we assessed respiratory CO2 losses and its origin via δ13C of CO2, microbial biomass, and the activity of multiple exo-enzymes associated with the mineralization of slow-turnover and more labile substrates. As predicted by enzyme kinetics, warming positively influenced respiratory loss and the proportion of CO2 derived from more humified SOM, particularly in late stages of the incubation. We observed no interaction effect of warming and Oi C:N on respired CO2 or microbial biomass C or N in soil from either site. Oi C:N influenced respiratory loss from higher latitude soils, with lower C:N Oi input dampening respiration rates early in the incubation, and promoting it at later stages. Late in the incubation, when the positive effect of warming on CO2 release from more humified SOM was most pronounced, the warming-induced increase in phenol oxidase activity was further enhanced when Oi material had a relatively low C:N by factors of 1.87 and 17 for lower vs

  10. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    Science.gov (United States)

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  11. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    Science.gov (United States)

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  12. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-01-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. In contrast, even small human-induced perturbations in cloud coverage, lifetime, height or optical properties can change the instantaneous radiative energy flux by hundreds of watts per unit area, and this forcing can be either warming or cooling. Clouds and aerosols form a complex coupled system that, unlike greenhouse gases, have relatively short lifetime (hours to days and inhomogeneous distribution. This and the inherent complexity of cloud microphysics and dynamics, and the strong coupling with meteorology explain why the estimation of the overall effect of aerosol on climate is so challenging.

    Here we focus on the effect of aerosol on cloud top properties of deep convective clouds over the tropical Atlantic. The tops of these vertically developed clouds consist of mostly ice and can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    This study demonstrates the deep link between cloud shape and aerosol loading and that the overall aerosol effect in regions of deep convective clouds might be warming. Moreover we show how averaging the cloud height and optical properties over large regions may lead to a false cooling estimation.

  13. Climate and environment reconstruction during the Medieval Warm Period in Lop Nur of Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    MA ChunMei; WANG FuBao; CAO QiongYing; XIA XunCheng; LI ShengFeng; Li XuSheng

    2008-01-01

    We made multi-proxy analysis of 14C, grain size, microfossils, plant seeds, and geochemical elements on samples from a profile in the central West Lake of Lop Nur. The grain size suggests relatively stable sedimentary environment around the Medieval Warm Period (MWP) with weak storm effect, which is followed by frequent strong storm events. Abundant microfossils and plant seeds in this stage indicate a warm and humid fresh to brackish lake environment. C, N, and stable elements are high in content in the sediments while Rb/Sr, Ba/Sr, and Ti/Sr are in a steady low level. In addition, plenty of red willows lived here prior to about 700 a B.P., indicating a favorable environmental condition. The results indicate that the environment in Lop Nur and its west bank turned to be favorable at about 2200 a B.P., where the Loulan Culture began to thrive. Then the climate and environment came to be in the good condition in the Tang and Song Dynasties, when the storm effect became weaker, rainfall increased and the salty lake water turned to be brackish to fresh lake water. Hence, Iimnic biomass increased with higher spe-cies diversity.

  14. DESENVOLVIMENTO DE TERMINOLOGIA DESCRITIVA PARA WARMED-OVER FLAVOR EM CARNE ASSADA BOVINA

    Directory of Open Access Journals (Sweden)

    Moacir Evandro Lage

    2014-06-01

    Full Text Available We evaluated the warmed-over flavor development (WOF in bovine roast-beef through adescriptive sensory analysis using the Longissimus dorsi, Semitendinosus and Supraspinatus muscles of Nellore steers. There was a pre-selection for recruitment of assessors. Forty-five individuals were registered, being 35 preselected, from these, 24 were evaluated by difference tests (triangular tests to determine the ability to discriminate WOF's differences in roast-beef samples. After the tests, 13 individuals were selected to determine the sensory profile of each sample. Initially, the sensory team proposed 70 terms for the quantitative descriptive analysis, but terms that were not relevant for the product, or did not contribute for WOF's discrimination in roast-beef as well as the ones that were not easily differentiated by the selected assessors were eliminated. The remained 18 terms were used in the three kinds of analyzed muscles. We concluded that quantitative descriptive analysis can be accomplished to obtain satisfactory results for warmed-over flavor research in roast-beef in both scientific experiments and product development.

  15. Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate

    Science.gov (United States)

    Banerjee, Argha

    2017-01-01

    Recent geodetic mass-balance measurements reveal similar thinning rates on glaciers with or without debris cover in the Himalaya-Karakoram region. This comes as a surprise as a thick debris cover reduces the surface melting significantly due to its insulating effects. Here we present arguments, supported by results from numerical flowline model simulations of idealised glaciers, that a competition between the changes in the surface mass-balance forcing and that of the emergence/submergence velocities can lead to similar thinning rates on these two types of glaciers. As the climate starts warming, the thinning rate on a debris-covered glacier is initially smaller than that on a similar debris-free glacier. Subsequently, the rate on the debris-covered glacier becomes comparable to and then larger than that on the debris-free one. The time evolution of glacier-averaged thinning rates after an initial warming is strongly controlled by the time variation of the corresponding emergence velocity profile.

  16. Small-scale cyclones on the periphery of a Gulf Stream warm-core ring

    Science.gov (United States)

    Kennelly, M. A.; Evans, R. H.; Joyce, T. M.

    1985-01-01

    Small-scale cyclones found around Gulf Stream warm-core ring 82B are investigated by using infrared satellite images and current information obtained with an acoustic-Doppler velocimeter. Currents in these cyclones reveal speeds ranging from 20 to 80 cm/s. One small cyclone or 'ringlet' found in June 1982 was studied extensively by removing the basic rotational velocities of 82B. The azimuthal velocity field for this ringlet was used with the gradient current equation to calculate the absolute dynamic topography at 100 dbar. It was found that the ringlet was 13 dyn-cm lower than its surroundings. In addition, neglect of the centrifugal term would have changed the dynamic topography of the ringlet by 30 percent. From a comparison with CTD data the absolute reference level was determined, and a vertical profile of horizontal currents was calculated for the ringlet. Other cyclones were found throughout the slope water region around warm-core ring 82B with observable lifetimes of 1 to 2 weeks. The northeast quadrant of 82B was a favored generation site for ringlets. Two cyclones were observed to form in this region and were advected anticyclonically around 82B. Typically, at any one time, six cyclones with diameters of approximately 40 to 50 km can be detected north of the Gulf Stream by using satellite images.

  17. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    Science.gov (United States)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  18. Using Updated Climate Accounting to Slow Global Warming Before 2035

    Science.gov (United States)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  19. Global warming induced hybrid rainy seasons in the Sahel

    Science.gov (United States)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  20. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  1. Impacts of climate warming on terrestrial ectotherms across latitude.

    Science.gov (United States)

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-06

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  2. Warm Jupiters are less lonely than hot Jupiters: close neighbours

    CERN Document Server

    Huang, Chelsea X; Triaud, Amaury H M J

    2016-01-01

    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions, between systems that contain hot Jupiters (periods inward of 10 days) and those that host warm Jupiters (periods between 10 and 200 days). Hot Jupiters as a whole, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to $2 R_{\\rm Earth}$). Restricting ourselves to inner companions, our limits reach down to $1 R_{\\rm Earth}$. In stark contrast, half of the warm Jupiters are closely flanked by small companions. Statistically, the companion fractions for hot and warm Jupiters are mutually exclusive, in particular in regard to inner companions. The high companion fraction of warm Jupiters also yields clue to their formation. The warm Jupiters that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those ...

  3. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  4. Tracing Ram-Pressure Stripping with Warm Molecular Hydrogen Emission

    CERN Document Server

    Sivanandam, Suresh; Rieke, George H

    2014-01-01

    We use the Spitzer Infrared Spectrograph (IRS) to study four infalling cluster galaxies with signatures of on-going ram-pressure stripping. H$_2$ emission is detected in all four; two show extraplanar H$_2$ emission. The emission usually has a warm (T $\\sim$ $115 - 160$K) and a hot (T $\\sim$ 400 $-$ 600K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically $10^{19} - 10^{20}$ cm$^{-2}$ with masses of $10^6 - 10^8 M_\\odot$. The warm H$_2$ is anomalously bright compared with normal star-forming galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H$_2$ is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H$_2$ tail approximately 4 kpc in length. These results support the hypothesis that H$_2$ within these galaxies is shock-heated from th...

  5. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  6. Anthropogenic warming has caused hot droughts more frequently in China

    Science.gov (United States)

    Chen, Huopo; Sun, Jianqi

    2017-01-01

    Historical records have indicated an increase in high-impact drought occurrences across China during recent decades, but whether this increase is due to natural variability or anthropogenic change remains unclear. Thus, the shift toward dry conditions and their associated attributions across China are discussed in this study, primarily regarding the standardized precipitation evapotranspiration index (SPEI). The results show that drought occurrences across China increased consistently during 1951-2014, especially during the recent twenty years. Most of the increased drought events happened under warm-dry conditions that coincided with relatively high temperature anomalies but without large anomalies in annual precipitation, implying an increase in hot drought events across China. Further analysis revealed that the change in drought occurrences were mainly due to the combined activity of external natural forcings and anthropogenic changes across China. However, external natural forcings were mainly responsible for the variability of droughts and anthropogenic influences for their increasing trends, suggesting that anthropogenic warming has increased hot drought occurrences, associated risks and impacts across China. With continued warming in the future, the impact of anthropogenic warming on the increased hot drought events will be further amplified. The probability of warm years is projected to significantly increase, and the occurrence probability of hot drought events (SPEI precipitation is projected to increase across China in the future.

  7. Upper-ocean velocity structure of Gulf Stream warm-core ring 82B

    Science.gov (United States)

    Joyce, T. M.; Kennelly, M. A.

    1985-01-01

    Acoustic-Doppler current profiling of warm-core ring (WCR) 82B revealed changes in the velocity structure over much of the ring's 7-month lifespan. As ring diameter decreased, peak speeds in the high-velocity region decreased from 0.8 m/s in April 1982 to 0.5 m/s in August 1982. Azimuthally averaged velocities revealed the core of WCR 82B to be in near solid-body rotation, with little measurable horizontal divergence at 100 m. In addition, potential vorticity was conserved in the ring core despite interactions with the Gulf Stream and large changes in ring size. Deviations from symmetry in WCR 82B were caused by superposition with the shelf-slope front, small cyclonic eddies, and upper-layer mean flow.

  8. The same with less: The cosmic web of warm versus cold dark matter dwarf galaxies

    CERN Document Server

    Reed, Darren S; Smith, Robert E; Potter, Doug; Stadel, Joachim; Moore, Ben

    2014-01-01

    We explore fundamental properties of the distribution of low mass dark matter halos within the cosmic web using warm dark matter (WDM) and cold dark matter (CDM) cosmological simulations. Using self abundance-matched mock galaxy catalogs, we show that the distribution of dwarf galaxies in a WDM universe, wherein low mass halo formation is heavily suppressed, is nearly indistinguishable to that of a CDM universe whose low mass halos are not seen because galaxy formation is suppressed below some threshold halo mass. However, if the scatter between dwarf galaxy luminosity and halo properties is large enough, low mass CDM halos would sometimes host relatively bright galaxies thereby populating CDM voids with the occasional isolated galaxy and reducing the numbers of completely empty voids. Otherwise, without high mass to light scatter, all mock galaxy clustering statistics that we consider--the auto-correlation function, the numbers and radial profiles of satellites, the numbers of isolated galaxies, and the PDF ...

  9. Benchmark 3 - Springback of an Al-Mg alloy in warm forming conditions

    Science.gov (United States)

    Manach, Pierre-Yves; Coër, Jérémy; Jégata Hervé Laurent, Anthony; Yoon, Jeong Whan

    2016-08-01

    Accurate prediction of springback is a long-standing challenge in the field of warm forming of aluminium sheets. The objective of this benchmark is to predict the effect of temperature on the springback process through the use of the split-ring test [1] with an Al-Mg alloy. This test consists in determining the residual stress state by measuring the opening of a ring cut from the sidewall of a formed cylindrical cup. Cylindrical cups are drawn with a heated die and blank-holder at temperatures of 20, 150 and 240°C. The force-displacement response during the forming process, the thickness and the earing profiles of the cup as well as the ring opening and the temperature of the blank are used to evaluate numerical predictions submitted by the benchmark participants. Problem description, material properties, and simulation reports with experimental data are summarized.

  10. Identification of warm day and cool night conditions induced flowering-related genes in a Phalaenopsis orchid hybrid by suppression subtractive hybridization.

    Science.gov (United States)

    Li, D M; Lü, F B; Zhu, G F; Sun, Y B; Xu, Y C; Jiang, M D; Liu, J W; Wang, Z

    2014-02-14

    The influence of warm day and cool night conditions on induction of spikes in Phalaenopsis orchids has been studied with respect to photosynthetic efficiency, metabolic cycles and physiology. However, molecular events involved in spike emergence induced by warm day and cool night conditions are not clearly understood. We examined gene expression induced by warm day and cool night conditions in the Phalaenopsis hybrid Fortune Saltzman through suppression subtractive hybridization, which allowed identification of flowering-related genes in warm day and cool night conditions in spikes and leaves at vegetative phase grown under warm daily temperatures. In total, 450 presumably regulated expressed sequence tags (ESTs) were identified and classified into functional categories, including metabolism, development, transcription factor, signal transduction, transportation, cell defense, and stress. Furthermore, database comparisons revealed a notable number of Phalaenopsis hybrid Fortune Saltzman ESTs that matched genes with unknown function. The expression profiles of 24 genes (from different functional categories) have been confirmed by quantitative real-time PCR in induced spikes and juvenile apical leaves. The results of the real-time PCR showed that, compared to the vegetative apical leaves, the transcripts of genes encoding flowering locus T, AP1, AP2, KNOX1, knotted1-like homeobox protein, R2R3-like MYB, adenosine kinase 2, S-adenosylmethionine synthetase, dihydroflavonol 4-reductase, and naringenin 3-dioxygenase accumulated significantly higher levels, and genes encoding FCA, retrotransposon protein Ty3 and C3HC4-type RING finger protein accumulated remarkably lower levels in spikes of early developmental stages. These results suggested that the genes of two expression changing trends may play positive and negative roles in the early floral transition of Phalaenopsis orchids. In conclusion, spikes induced by warm day and cool night conditions were complex in

  11. Hydrographical and dynamical reconstruction of the Warm Core Cyprus Eddy from gliders data

    Science.gov (United States)

    Bosse, Anthony; Testor, Pierre; Hayes, Dan; Ruiz, Simon; Mauri, Elena; Charantonis, Anastase; d'Ortenzio, Fabrizio; Mortier, Laurent

    2016-04-01

    In the 80s, the POEM (Physical Oceanography of the Eastern Mediterranean) cruises in the Levantine Basin first revealed the presence of a very pronounced dynamical structure off Cyprus: The Cyprus Warm Core Eddy. Since then, a large amount of data have been collected thanks to the use of autonomous oceanic gliders (+8000 profiles since 2009). Part of those profiles were carried out in the upper layers down to 200 m, and we take benefit of a novel approach named ITCOMP SOM that uses a statistical approach to extend them down to 1000 m (see [1] for more details). This dataset have a particularly good spatio-temporal coverage in 2009 for about a month, thanks to simultaneous deployments of several gliders (up to 6). In this study, we present a set of 3D reconstruction of the dynamical and hydrographical characteristics of the Warm Core Cyprus Eddy between 2009 and 2015. Moreover, chlorophyll-a fluorescence data measured by the gliders give evidence to strong vertical velocities at the edge of the eddy. We discuss possible mechanisms (frontogenesis, symmetric instability) that could generate such signals and provide an assessment of the role of this peculiar circulation feature on the circulation and biogeochemistry of the Levantine basin. Reference: [1] Charantonis, A., P. Testor, L. Mortier, F. D'Ortenzio, S. Thiria (2015): Completion of a sparse GLIDER database using multi-iterative Self-Organizing Maps (ITCOMP SOM), Procedia Computer Science, 51(1):2198-2206. DOI: 10.1016/j.procs.2015.05.496

  12. Characteristics of Oxides in Argillic Soils of Warm Temperate Zone in China

    Institute of Scientific and Technical Information of China (English)

    AISUI-LONG; WEIQING-FENG

    1994-01-01

    Studies of seven typical soil profiles showed that in the argillic soils derived from loess in the warm temperate zone of China all the oxides of Fe,Mn,Aland Si were enriched with the accumulation of clay fraction in the profiles.But owing to the influence of oxidation-reduction process,the migration velocity of Fe and Mn was faster than that of clay,The free degrees of those metals were in the migration velocity of Fe and Mn was faster than that of clay.The free degrees of those metals were in the sequence Mn>Fe>Al,which reflected their different chemical activities in soil,In soils at the same level of development,the free degree of iron and its activity,the free degree of Al,Alo/Alt×100,SiO2/R2O3,Sio?Sit×100,and the magnetic susceptibility were relatively close to each other respectively.It might be considered that both the free degrees of Fe and Al and Alo/Alt×100 could serve as the distinctive indexes for argillic soils in warm temperate zone.The paleoclimate corresponidng to the fifth layer of paleosol(s5) in Luochuan,Shaanxi was warmer and more humid than the present,and the paleoecological landscape approximated to today's bioclimatic belt bewteen the temperate deciduous broadleaved forest and the semiarid forest types.The Moessbouer spectra of the colloidal fraction(<1μm)in the clayified horizon of argillic dark loessial soil,cinnamon soil.brown earth and (s5) paleosol indicated the superparamagnetic state at roon temperature.The magnetic splitting six line spectra were observed clearly at 80K.The results fitted with a computer .The proportion of hematite and goethite in soil colloids varied considerably with different climates.The higher the temperature,the larger the propotion of hematite.

  13. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    Science.gov (United States)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  14. From the warm magnetized atomic medium to molecular clouds

    CERN Document Server

    Hennebelle, P; Vázquez-Semadeni, E; Klessen, R; Audit, E

    2008-01-01

    {It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at $\\sim 2 \\times 10^{21} \\psc$ and decays rapidly at higher values; the magnetic intensity correlates weakly with density from $n \\sim 0.1$ to $10^4 \\pcc$, an...

  15. Downsizing a great observatory: reinventing Spitzer in the warm mission

    Science.gov (United States)

    Storrie-Lombardi, Lisa J.; Dodd, Suzanne R.

    2010-07-01

    The Spitzer Space Telescope transitioned from the cryogen mission to the IRAC warm mission during 2009. This transition involved changing several areas of operations in order to cut the mission annual operating costs to 1/3 of the cryogen mission amount. In spite of this substantial cut back, Spitzer continues to have one of the highest science return per dollar ratio of any of NASA's extended missions. This paper will describe the major operational changes made for the warm mission and how they affect the science return. The paper will give several measures showing that warm Spitzer continues as one of the most scientifically productive mission in NASA's portfolio. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.

  16. The Great Season Climatic Oscillation and the Global Warming

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    The present earth warming up is often explained by the atmosphere gas greenhouse effect. This explanation is in contradiction with the thermodynamics second law. The warming up by greenhouse effect is quite improbable. It is cloud reflection that gives to the earth s ground its 15 degres C mean temperature. Since the reflection of the radiation by gases is negligible, the role of the atmosphere greenhouse gases in the earth warming up by earth radiation reflection loses its importance. We think that natural climatic oscillations contribute more to earth climatic disturbances. The oscillation that we hypothesize to exist has a long period (800 to 1000 years). The glacier melting and regeneration cycles lead to variations in the cold region ocean water density and thermal conductibility according to their salinity. These variations lead one to think about a macro climate oscillating between maximum hot and minimum cold temperatures. This oscillation is materialized by the passages of the planet through hot, mil...

  17. Changes in Terrestrial Water Availability under Global Warming

    Science.gov (United States)

    Lan, C. W.; Lo, M. H.; Chou, C.

    2014-12-01

    Under global warming, the annual range of precipitation is widening (Chou and Lan, 2012; Chou et al., 2013) and the frequency of precipitation extreme events also increases. Due to nonlinear responses of land hydrological process to precipitation extremes, runoff can increase exponentially, and on the hard hand, soil water storage may decline. In addition, IPCC AR5 indicates that soil moisture decreases in most areas under the global warming scenario. In this study, we use NCAR Community Land Model version 4 (CLM4) to simulate changes in terrestrial available water (TAW, defined as the precipitation minus evaporation minus runoff, and then divided by the precipitation) under global warming. Preliminary results show that the TAW has clear seasonal variations. Compared to previous studies, which do not include the runoff in the calculations of the available water, our estimates on the TAW has much less available water in high latitudes through out the year, especially under extreme precipitation events.

  18. Laboratory measurements of the resistivity of warm dense plasmas

    Science.gov (United States)

    Booth, Nicola; Robinson, Alex; Hakel, Peter; Gregori, Ginaluca; Rajeev, Pattathil; Woolsey, Nigel

    2015-11-01

    In this talk we will present a method for studying material resistivity in warm dense plasmas in the laboratory in which we interrogate the microphysics of the low energy electron distributions associated with an anisotropic return current. Through experimental measurements of the polarization of the Ly- α doublet emission (2s1 / 2-2p1 / 2,3/2 transitions) of sulphur, we determine the resistivity of a sulphur-doped plastic target heated to warm dense conditions by an ultra-intense laser at relativistic intensities, I ~ 5 ×1020 Wcm-2. We describe a method of exploiting classical x-ray scattering to separately measure both the π- and σ- polarizations of Ly-α1 spectral emission in a single shot. These measurements make it possible to explore fundamental material properties such as resistivity in warm and hot dense plasmas through matching plasma physics modelling to atomic physics calculations of the experimentally measured large, positive, polarisation.

  19. Probing warm dense lithium by inelastic X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Saiz, E.; Riley, D. [School of Mathematics and Physics, Queen' s University of Belfast, Belfast (United Kingdom); Gregori, G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford (United Kingdom); Gregori, G.; Clarke, R.J.; Neely, D.; Notley, M.M.; Spindloe, C. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX (United Kingdom); Gericke, D.O.; Vorberger, J.; Wunsch, K. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Barbrel, B.; Koenig, M. [Laboratoire pour l' Utilisation des Laser Intenses, Ecole Polytechnique - Universite Paris-6, 91 - Palaiseau (France); Freeman, R.R.; Weber, R.L.; Van Woerkom, L. [Department of Physics, The Ohio State University, Columbus, Ohio (United States); Glenzer, S.H.; Landen, O.L.; Neumayer, P.; Price, D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Khattak, F.Y. [Department of Physics, Kohat University of Science and Technology, Kohat-26000, NWFP (Pakistan); Pelka, A.; Roth, M.; Schollmeier, M. [Institut fur Kernphysik, Technische Universitat Darmstadt (Germany)

    2008-10-15

    One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure. (authors)

  20. Extension of warm inflation to non-canonical scalar fields

    CERN Document Server

    Zhang, Xiao-Min

    2014-01-01

    We extend the warm inflationary scenario to the case of the non-canonical scalar fields. The equation of motion and the other basic equations of this new scenario are obtained. The Hubble damped term is enhanced in non-canonical inflation. A linear stability analysis is performed to give the proper slow roll conditions in warm non-canonical inflation. We study the density fluctuations in the new picture and obtain an approximate analytic expression of the power spectrum. The energy scale at the horizon crossing is depressed by both non-canonical effect and thermal effect, so does the tensor-to-scalar ratio. Besides the synergy, the non-canonical effect and the thermal effect are competing in the case of the warm non-canonical inflation.