WorldWideScience

Sample records for preheating phase narrow

  1. Phase change material thermal storage for biofuel preheating in micro trigeneration application: A numerical study

    International Nuclear Information System (INIS)

    Wu, Dawei; Chen, Junlong; Roskilly, Anthony P.

    2015-01-01

    Highlights: • Engine exhaust heat driven phase change material thermal storage. • Fuel preheating for direct use of straight plant oil on diesel engine. • CFD aided design of the phase change material thermal storage. • Melting and solidification model considering natural convection. - Abstract: A biofuel micro trigeneration prototype has been developed to utilise local energy crop oils as fuel in rural areas and developing countries. Straight plant oils (SPOs) only leave behind very little carbon footprint during its simply production process compared to commercial biodiesels in refineries, but the high viscosity of SPOs causes difficulties at engine cold starts, which further results in poor fuel atomisation, compromised engine performance and fast engine deterioration. In this study, a phase change material (PCM) thermal storage is designed to recover and store engine exhaust heat to preheat SPOs at cold starts. High temperature commercial paraffin is selected as the PCM to meet the optimal preheating temperature range of 70–90 °C, in terms of the SPO property study. A numerical model of the PCM thermal storage is developed and validated by references. The PCM melting and solidification processes with the consideration of natural convection in liquid zone are simulated in ANSYS-FLUENT to verify the feasibility of the PCM thermal storage as a part of the self-contained biofuel micro trigeneration prototype

  2. Liquid-phase synthesis of vertically aligned carbon nanotubes and related nanomaterials on preheated alloy substrates

    Science.gov (United States)

    Yamagiwa, Kiyofumi

    2018-02-01

    Carbon nanotubes (CNTs) and related nanocarbons were selectively synthesized on commercially available alloy substrates by a simple liquid-phase technique. Fe- and Ni-rich stainless-steel (JIS SUS316L and Inconel®600, respectively) and Ni-Cu alloy (Monel®400) substrates were used for the synthesis, and each substrate was preheated in air to promote the self-formation of catalyst nanolayers on the surface. The substrates were resistance heated in ethanol without any addition of catalysts to grow CNTs. The yield of the CNTs effectively increased when the preheating process was employed. Highly aligned CNT arrays grew on the SUS316L substrate, while non-aligned CNTs and distinctive twisted fibers were observed on the other substrates. An Fe oxide layer was selectively formed on the preheated SUS316L substrate promoting the growth of the CNT arrays. Characterizations including cyclic voltammetry for the arrays revealed that the CNTs possess a comparatively defect-rich surface, which is a desirable characteristic for its application such as electrode materials for capacitors.

  3. Gravity mediated preheating

    International Nuclear Information System (INIS)

    Maity, Debaprasad

    2015-01-01

    In this work we propose a mechanism of natural preheating of our universe induced by the inflation field dependent effective mass term for the gravitational wave. For any single field inflationary model, the inflation must go through the oscillatory phase after the end of inflation. As has recently been shown, if the gravitational fluctuation has inflation dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflation though parametric resonance. Because of this large enhancement of the amplitude of the gravitational wave, we show that universe can be naturally pre-heated through a minimally coupled matter field with gravity. Therefore, during the pre-heating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflation. (author)

  4. Inflation After Preheating

    CERN Document Server

    Felder, G; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2000-01-01

    Preheating after inflation may lead to nonthermal phase transitions with symmetry restoration. These phase transitions may occur even if the total energy density of fluctuations produced during reheating is relatively small as compared with the vacuum energy in the state with restored symmetry. As a result, in some inflationary models one encounters a secondary, nonthermal stage of inflation due to symmetry restoration after preheating. We review the theory of nonthermal phase transitions and make a prediction about the expansion factor during the secondary inflationary stage. We then present the results of lattice simulations which verify these predictions, and discuss possible implications of our results for the theory of formation of topological defects during nonthermal phase transitions.

  5. Review on two-phase flow instabilities in narrow spaces

    International Nuclear Information System (INIS)

    Tadrist, L.

    2007-01-01

    Instabilities in two-phase flow have been studied since the 1950s. These phenomena may appear in power generation and heat transfer systems where two-phase flow is involved. Because of thermal management in small size systems, micro-fluidics plays an important role. Typical processes must be considered when the channel hydraulic diameter becomes very small. In this paper, a brief review of two-phase flow instabilities encountered in channels having hydraulic diameters greater than 10 mm are presented. The main instability types are discussed according to the existing experimental results and models. The second part of the paper examines two-phase flow instabilities in narrow spaces. Pool and flow boiling cases are considered. Experiments as well as theoretical models existing in the literature are examined. It was found that several experimental works evidenced these instabilities meanwhile only limited theoretical developments exist in the literature. In the last part of the paper an interpretation of the two-phase flow instabilities linked to narrow spaces are presented. This approach is based on characteristic time scales of the two-phase flow and bubble growth in the capillaries

  6. Single frequency narrow linewidth 2 micron laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs narrow linewidth lasers in the 1.5 or 2 micron wavelength regime for coherent Lidar applications. The laser should be tunable by several nm and frequency...

  7. Phase tracking system for ultra narrow bandwidth applications

    NARCIS (Netherlands)

    Hill, M.T.; Cantoni, A.

    2002-01-01

    Recent advances make it possible to mitigate a number of drawbacks of conventional phase locked loops. These advances permit the design of phase tracking systems with much improved characteristics that are sought after in modern communication system applications. A new phase tracking system is

  8. Enhanced preheating after multi-field inflation: on the importance of being special

    International Nuclear Information System (INIS)

    Battefeld, Thorsten; Eggemeier, Alexander; Giblin, John T. Jr.

    2012-01-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense

  9. Enhanced preheating after multi-field inflation: on the importance of being special

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Thorsten; Eggemeier, Alexander [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Goettingen (Germany); Giblin, John T. Jr., E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: a.eggemeier@stud.uni-goettingen.de, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, Gambier, OH 43022 (United States)

    2012-11-01

    We discuss preheating after multi-field inflation in the presence of several preheat matter fields that become light in the vicinity of (but not at) the inflatons' VEV, at distinct extra-species-points (ESP); this setup is motivated by inflationary models that include particle production during inflation, e.g. trapped inflation, grazing ESP encounters or modulated trapping, among others. While de-phasing of inflatons tends to suppress parametric resonance, we find two new effects leading to efficient preheating: particle production during the first in-fall (efficient if many preheat matter fields are present) and a subsequent (narrow) resonance phase (efficient if an ESP happens to be at one of several distinct distances from the inflatons' VEV). Particles produced during the first in-fall are comprised of many species with low occupation number, while the latter are made up of a few species with high occupation number. We provide analytic descriptions of both phases in the absence of back-reaction, which we test numerically. We further perform lattice simulations to investigate the effects of back-reaction. We find resonances to be robust and the most likely cause of inflaton decay in multi-field trapped inflation if ESP distributions are dense.

  10. Effects of dissipation and fluctuation in preheating

    International Nuclear Information System (INIS)

    Vartuli, Rodrigo; Ramos, Rudnei de O.

    2006-01-01

    In this paper, we study the effects of dissipation and fluctuation in preheating after inflation. The effective equation of motion for a scalar field χ interacting with lighter fields is derived using the field theoretical method of closed time path due to Schwinger, winch is suitable to study nonequilibrium and time dependent process. In this derivation the emergent equation is intrinsically dissipative and stochastic in nature. The resulting dynamics is then studied both analytically and numerically. The results obtained are then discussed for then relevance for the reheating epoch right after an inflationary phase(preheating) for the case of the evolution of the scalar field χ and its decay into fermion. (author)

  11. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  12. Preheating in new inflation

    International Nuclear Information System (INIS)

    Desroche, Mariel; Felder, Gary N.; Kratochvil, Jan M.; Linde, Andrei

    2005-01-01

    During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We investigate preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field into other particles, which can be described by the perturbative approach to reheating after inflation. The resulting reheating temperature typically is rather low

  13. Preheating with extra dimensions

    International Nuclear Information System (INIS)

    Tsujikawa, S.

    2000-01-01

    We investigate preheating in a higher-dimensional generalized Kaluza-Klein theory with a quadratic inflaton potential V(/φ) = /frac12 m 2 /φ 2 including metric perturbations explicitly. The system we consider is the multi-field model where there exists a dilaton field /σ which corresponds to the scale of compactifications and another scalar field /χ coupled to inflaton with the interaction frac12 g 2 /φ 2 /χ 2 +/g-tilde 2 /φ 3 /χ. In the case of g-tilde=0, we find that the perturbation of dilaton does not undergo parametric amplification while the χ field fluctuation can be enhanced in the usual manner by parametric resonance. In the presence of the /g-tilde 2 /φ 3 /χ coupling, the dilaton fluctuation in sub-Hubble scales is modestly amplified by the growth of metric perturbations for the large coupling g-tilde. In super-Hubble scales, the enhancement of the dilaton fluctuation as well as metric perturbations is weak, taking into account the backreaction effect of created /χ particles. We argue that not only is it possible to predict the ordinary inflationary spectrum in large scales but extra dimensions can be held static during preheating in our scenario. (author)

  14. Phase distribution measurements in narrow rectangular channels using image processing techniques

    International Nuclear Information System (INIS)

    Bentley, C.; Ruggles, A.

    1991-01-01

    Many high flux research reactor fuel assemblies are cooled by systems of parallel narrow rectangular channels. The HFIR is cooled by single phase forced convection under normal operating conditions. However, two-phase forced convection or two phase mixed convection can occur in the fueled region as a result of some hypothetical accidents. Such flow conditions would occur only at decay power levels. The system pressure would be around 0.15 MPa in such circumstances. Phase distribution of air-water flow in a narrow rectangular channel is examined using image processing techniques. Ink is added to the water and clear channel walls are used to allow high speed still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh 2ci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time averaged spatial liquid distribution to formulate the combined temporally and spatially averaged fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity

  15. Experimental study on downward two-phase flow in narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.H.; Jeong, J.H. [Pusan National Univ., Busan (Korea, Republic of)

    2014-07-01

    Adiabatic vertical two-phase flow of air and water through narrow rectangular channels was investigated. This study involved the observation of flow using a high speed camera and flow regimes were determined by image processing program using a MATLAB. The flows regimes in channel with downward flow are similar to those found by previous studies with upward flow. The flow regimes in downward flow at low liquid velocity are different from the previous studies in upward flow. The flow regimes can be classified into bubbly, cap-bubbly, slug and churn flow. (author)

  16. Preheating curvaton perturbations

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2005-01-01

    We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3

  17. Are black holes overproduced during preheating?

    International Nuclear Information System (INIS)

    Suyama, Teruaki; Tanaka, Takahiro; Bassett, Bruce; Kudoh, Hideaki

    2005-01-01

    We provide a simple but robust argument that primordial black hole production generically does not exceed astrophysical bounds during the resonant preheating phase after inflation. This conclusion is supported by fully nonlinear lattice simulations of various models in two and three dimensions which include rescattering but neglect metric perturbations. We examine the degree to which preheating amplifies density perturbations at the Hubble scale and show that, at the end of the parametric resonance, power spectra are universal, with no memory of the power spectrum at the end of inflation. In addition, we show how the probability distribution of density perturbations changes from exponential on very small scales to Gaussian when smoothed over the Hubble scale - the crucial length for studies of primordial black hole formation - hence justifying the standard assumption of Gaussianity

  18. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  19. Metric preheating and limitations of linearized gravity

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Tamburini, Fabrizio; Kaiser, David I.; Maartens, Roy

    1999-01-01

    During the preheating era after inflation, resonant amplification of quantum field fluctuations takes place. Recently it has become clear that this must be accompanied by resonant amplification of scalar metric fluctuations, since the two are united by Einstein's equations. Furthermore, this 'metric preheating' enhances particle production, and leads to gravitational rescattering effects even at linear order. In multi-field models with strong preheating (q>>1), metric perturbations are driven non-linear, with the strongest amplification typically on super-Hubble scales (k→0). This amplification is causal, being due to the super-Hubble coherence of the inflaton condensate, and is accompanied by resonant growth of entropy perturbations. The amplification invalidates the use of the linearized Einstein field equations, irrespective of the amount of fine-tuning of the initial conditions. This has serious implications on all scales - from large-angle cosmic microwave background (CMB) anisotropies to primordial black holes. We investigate the (q,k) parameter space in a two-field model, and introduce the time to non-linearity, t nl , as the timescale for the breakdown of the linearized Einstein equations. t nl is a robust indicator of resonance behavior, showing the fine structure in q and k that one expects from a quasi-Floquet system, and we argue that t nl is a suitable generalization of the static Floquet index in an expanding universe. Backreaction effects are expected to shut down the linear resonances, but cannot remove the existing amplification, which threatens the viability of strong preheating when confronted with the CMB. Mode-mode coupling and turbulence tend to re-establish scale invariance, but this process is limited by causality and for small k the primordial scale invariance of the spectrum may be destroyed. We discuss ways to escape the above conclusions, including secondary phases of inflation and preheating solely to fermions. The exclusion principle

  20. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions

    International Nuclear Information System (INIS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Jin, Guangyuan; Tan, Sichao

    2013-01-01

    Highlights: ► Two-phase flow frictional resistance in narrow duct in rolling is studied. ► Frictional resistance behaviors in rolling are divided into three regions. ► Transient frictional pressure drop fluctuates synchronously with rolling motion. ► Conventional correlations are evaluated against experimental data in rolling motion. ► New correlation for transient frictional resistance in rolling motion is developed. - Abstract: Frictional resistance of air-water two-phase flow in a narrow rectangular duct subjected to rolling motion was investigated experimentally. Time-averaged and transient frictional pressure drop under rolling condition were compared with conventional correlation in laminar flow region (Re l l ⩽ 1400) and turbulent flow region (Re l > 1400) respectively. The result shows that, despite no influence on time-averaged frictional resistance, rolling motion does induce periodical fluctuation of the pressure drop in laminar and transition flow regions. Transient frictional pressure drop fluctuates synchronously with the rolling motion both in laminar and in transition flow region, while it is nearly invariable in turbulent flow region. The fluctuation amplitude of the Relative frictional pressure gradient decreases with the increasing of the superficial velocities. Lee and Lee (2002) correlation and Chisholm (1967) correlation could satisfactorily predict time-averaged frictional pressure drop under rolling conditions, whereas poorly predict the transient frictional pressure drop when it fluctuates periodically. A new correlation with better accuracy for predicting the transient frictional pressure drop in rolling motion is achieved by modifying the Chisholm (1967) correlation on the basis of analyzing the present experimental results with a great number of data points

  1. On the prediction of single-phase forced convection heat transfer in narrow rectangular channels

    International Nuclear Information System (INIS)

    Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe

    2014-01-01

    In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer

  2. Gravitational-wave mediated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-04-09

    We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  3. Effect on two-phase flow frictional pressure drop characteristic in narrow rectangular channel at fluctuant condition

    International Nuclear Information System (INIS)

    Li Changwei; Cao Xiaxin; Sun Licheng; Jin Guangyuan

    2013-01-01

    Based on the data of two-phase flow in narrow rectangular channel, the influence of the two-phase flow friction characteristic under the different fluctuant states was analyzed. Through analyzing the experimental data, it is shown that the fluctuant amplitude of the friction pressure drop is affected slightly by the fluctuant period in narrow rectangular channel, but the frequency of the friction pressure drop fluctuation is changed. However, the change of fluctuant period is of little effect on the average frictional pressure drop. Comparing the φ l 2 (φ g 2 )-X variation curves at static condition with the ones at fluctuant condition, using the L-M method, it's found that the two phase frictional pressure drop in the narrow rectangular channel under the fluctuant state can be calculated by the φ l 2 (φ g 2 )-X variation curve at static condition. (authors)

  4. From (p)reheating to nucleosynthesis

    International Nuclear Information System (INIS)

    Jedamzik, Karsten

    2002-01-01

    This paper gives a brief qualitative description of the possible evolution of the early universe between the end of an inflationary epoch and the end of big-bang nucleosynthesis. After a general introduction, establishing the minimum requirements cosmologists impose on this cosmic evolutionary phase, namely, successful baryogenesis, the production of cosmic dark matter and successful light-element nucleosynthesis, a more detailed discussion on some recent developments follows. This latter includes the physics of preheating, the putative production of (alternative) dark matter and the current status of big bang nucleosynthesis

  5. Impedance self-matching ultra-narrow linewidth fiber resonator by use of a tunable π-phase-shifted FBG.

    Science.gov (United States)

    Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang

    2017-05-15

    In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

  6. Conditions and phase shift of fluid resonance in narrow gaps of bottom mounted caissons

    Science.gov (United States)

    Zhu, Da-tong; Wang, Xing-gang; Liu, Qing-jun

    2017-12-01

    This paper studies the viscid and inviscid fluid resonance in gaps of bottom mounted caissons on the basis of the plane wave hypothesis and full wave model. The theoretical analysis and the numerical results demonstrate that the condition for the appearance of fluid resonance in narrow gaps is kh=(2 n+1)π ( n=0, 1, 2, 3, …), rather than kh= nπ ( n=0, 1, 2, 3, …); the transmission peaks in viscid fluid are related to the resonance peaks in the gaps. k and h stand for the wave number and the gap length. The combination of the plane wave hypothesis or the full wave model with the local viscosity model can accurately determine the heights and the locations of the resonance peaks. The upper bound for the appearance of fluid resonance in gaps is 2 b/ Lreason for the phase shift of the resonance peaks is the inductive factors. The number of resonance peaks in the spectrum curve is dependent on the ratio of the gap length to the grating constant. The heights and the positions of the resonance peaks predicted by the present models agree well with the experimental data.

  7. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao

    2012-01-01

    Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on

  8. Theoretical investigation of flow regime for boiling water two-phase flow in horizontal rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua

    2005-01-01

    The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)

  9. Narrow Wavelength, Frequency Modulated Source at 1.5 Wavelength, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrastable, narrow linewidth, tunable, high reliability sources at 1.5 or 2mm are needed for high performance LIDARs for several NASA applications, including wind...

  10. Effect of void fraction correlations on two-phase pressure drop during flow boiling in narrow rectangular channel

    International Nuclear Information System (INIS)

    Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu

    2013-01-01

    Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel

  11. Experimental study on saturated boiling of two phase natural circulation under low pressure in narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zi-chao; Qi, Shi; Zhou, Tao; Li, Bing; Shahzad, Muhammad Ali [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Huang, Yan-ping [Nuclear Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-12-15

    Saturated boiling of two-phase natural circulation has been experimentally investigated based on a natural circulation device with narrow rectangular channels. When heating power reaches a certain range, it is possible to observe the phenomenon of saturated boiling and flow pattern transition in the system. The results show the heat transfer coefficient of saturated boiling decreases with the increasing of pressure, heating power and size of narrow rectangle channels. The buoyancy force causing mixed convection decreases the heat transfer coefficient. Finally, a dimensionless number is introduced, which reflects length to width ratio of rectangular narrow section and Rayleigh number, in order to revise the presented correlation. All errors fall within the range of ±15%.

  12. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  13. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    Science.gov (United States)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  14. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  15. Experimental investigation of single-phase flow friction in narrow annuli

    International Nuclear Information System (INIS)

    Sun Zhongning; Sun Licheng; Yan Changqi; Huang Weitang

    2004-01-01

    Experimental investigations of water flow friction in horizontal narrow annuli, with gap sizes of 0.57-3.08 mm, were carried out. The tests involved both laminar and turbulent flow regimes. The critical Reynolds number transited from laminar flow to turbulent flow was examed and observed. The friction factors obtained from experiments were compared with conventional correlations evaluated results, and the influences of channel scale and eccentricity on flow friction characteristics were discussed. It was found that fluid friction in turbulent regime could be predicted by conventional correlations with satisfied degree, but both values and varying trend of that vs. r i /r o in laminar regime were obviously departure from theoretically results when the gap sizes were less than 2.0 mm, and the critical Reynolds number was slightly less then 2300 when the gap sizes were less than 1.0 mm

  16. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    Science.gov (United States)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  17. Preheat operating experiences at the FFTF

    International Nuclear Information System (INIS)

    Tucker, W.R.

    1978-01-01

    The rather extensive test program performed on the FFTF preheat control system resulted in successful sodium fill of one secondary heat transport loop on July 2, 1978. The data obtained during testing and the attendant operating experience gained resulted in some design changes and provided the information necessary to fully characterize system performance. Temperature excursions and deviations from preset limits of only a minor nature were encountered during preheat for sodium fill. The addition of the rate alarm feature was beneficial to operation of the preheat system and allowed early detection and correction of impending excursions

  18. Products cooked in preheated versus non-preheated ovens. Baking times, calculated energy consumption, and product quality compared.

    Science.gov (United States)

    Odland, D; Davis, C

    1982-08-01

    Plain muffins, yellow cake, baked custard, apple pie, tuna casserole, frozen tuna casserole, cheese soufflé, and meat loaf were baked in preheated and non-preheated standard gas, continuous-clean gas, standard electric, and self-cleaning electric ovens. Products generally required 5 min. or less extra baking time when cooked in non-preheated rather than in preheated ovens. The variability in baking times often was less between preheated and non-preheated ovens than among oven types. Calculated energy consumption values showed that usually less energy was required to bake products in non-preheated than in preheated ovens; savings averaged about 10 percent. Few significant differences were found in physical measurements or eating quality either between preheated and non-preheated ovens or among oven types. Overall, for the products tested, findings confirmed that preheating the oven is not essential for good product quality and, therefore, is an unnecessary use of energy.

  19. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  20. Preheating Mechanism in F-term SUSY Hybrid Inflation

    International Nuclear Information System (INIS)

    Mazumdar, Arindam

    2012-01-01

    Supersymmetric F-term hybrid inflation is one of the most popular models of inflation. Preheating process occurs in this model via two different mechanism. Firstly the standard parametric resonance and secondly, the tachyonic preheating. Generally tachyonic preheating dominates the parametric resonance for this type of models. For different values of the parameters of the theory dominance of tachyonic preheating can vary.

  1. Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions

    Science.gov (United States)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2016-10-01

    The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.

  2. A New Laser Preheat Protocol For Maglif

    Science.gov (United States)

    Weis, M. R.; Harvey-Thompson, A. J.; Geissel, M.; Jennings, C. A.; Peterson, K. J.; Glinsky, M. E.; Awe, T. J.; Bliss, D. E.; Gomez, M. R.; Harding, E. C.; Hansen, S. B.; Kimmel, M. W.; Knapp, P. F.; Lewis, S. M.; Porter, J. L.; Rochau, G. A.; Schollmeier, M.; Schwarz, J.; Shores, J. E.; Slutz, S. A.; Sinars, D. B.; Smith, I. C.; Speas, C. S.

    2017-10-01

    Previous Magnetized Liner Inertial Fusion experiments at Sandia National Labs have preheated the fuel with the unsmoothed 2 ω Z-Beamlet Laser. A new low intensity laser configuration, using phase plate smoothing and a low-power pulse shape, improved laser propagation and reduced stimulated Brillouin scattering in offline laser experiments. This allows for more efficient use of laser energy and better spot reproducibility. The new laser protocol is estimated to couple at least 650 J to the fuel, sufficient to produce comparable neutron yields with the previous unsmoothed configuration. Mid-Z dopants were also fielded on the underside of the window. Observation of these dopants provided evidence of window material mixing into the fuel with both the unsmoothed and smoothed beam, consistent with MHD simulation predictions. Sandia National Laboratories is a multi-mission laboratory managed and operated by NTESS, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's NNSA under contract DE-NA0003525.

  3. Elevated temperature forming method and preheater apparatus

    Science.gov (United States)

    Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing

    2013-06-11

    An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.

  4. Gravitational radiation from preheating with many fields

    International Nuclear Information System (INIS)

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier

    2010-01-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields

  5. Gravitational radiation from preheating with many fields

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier, E-mail: giblinj@kenyon.edu, E-mail: larry@gravity.phys.uwm.edu, E-mail: siemens@gravity.phys.uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin — Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  6. Modification of conventional X-ray diffractometer for the measurement of phase distribution in a narrow region

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Soon; Han, Sun-Ho; Kim, Jong-Goo; Jee, Kwang-Yong; Kim, Won-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2006-10-15

    An X-ray diffractometer for spatially resolved X-ray diffraction measurements was developed to identify phase in the narrow (micron-scaled) region of high burn-up fuels and some nuclear materials. The micro-SRD was composed of an X-ray microbeam alignment system and a sample micro translation system instead of a normal slit and a fixed sample stage in a commercial XRD. The X-ray microbeam alignment system was fabricated with a microbeam concentrator having two Ni deposited mirrors, a vertical positioner, and a tilt table for the generation of a concentrated microbeam. The sample micro translation system was made with a sample holder and a horizontal translator, allowing movement of a specimen at 5 {mu}m steps. The angular intensity profile of the microbeam generated through a concentrator was symmetric and not distorted. The size of the microbeam was 4,000 x 20{mu}m and the spatial resolution of the beam was 47 {mu}m at the sample position. When the diffraction peaks were measured for a UO{sub 2} pellet specimen by this system, the reproducibility (2{theta} = {+-}0.01 .deg.) of the peaks was as good as a conventional X-ray diffractometer. For the cross section of oxidized titanium metal, not only TiO{sub 2} in an outer layer but also TiO near an oxide-metal interface was observed.

  7. Influence of single-phase heat transfer correlations on safety analysis of research reactors with narrow rectangular fuel channels

    International Nuclear Information System (INIS)

    Rawashdeh, A.; Altamimi, R.; Lee, B.; Chung, Y. J.; Park, S.

    2013-01-01

    The influence of different single-phase heat transfer correlations on the fuel temperature and minimum critical heat flux ratio (MCHFR) during a typical accident of a 5 MW research reactor is investigated. A reactor uses plate type fuel, of which the cooling channels have a narrow rectangular shape. RELAP5/MOD3.3 tends to over-predict the Nusselt number (Nu) at a low Reynolds number (Re) region, and therefore the correlation set is modified to properly describe the thermal behavior at that region. To demonstrate the effect of Nu at a low-Re region on an accident analysis, a two-pump failure accident was chosen as a sample problem. In the accident, the downward core flow decreases by a pump coast-down, and then reverses upward by natural convection. During the pump coast-down and flow reversal, the flow undergoes a laminar flow regime which has a different Nu with respect to the correlation sets. Compared to the results by the original RELAP5/MOD3.3, the modified correlation set predicts the fuel temperature to be a little higher than the original value, and the MCHFR to be a little lower than the original value. Although the modified correlation set predicts the fuel temperature and the MCHFR to be less conservative than those calculated from the original correlation of RELAP5/MOD3.3, the maximum fuel temperature and the MCHFR still satisfy the safety acceptance criteria

  8. Simple air collectors for preheating fresh air

    NARCIS (Netherlands)

    Hensen, J.L.M.; Wit, de M.H.; Ouden, den C.

    1984-01-01

    In dwellings with mechanical ventilation systems the fresh air can easily be preheated by means of simple solar air systems. These can be an integral part of the building facade or roof and the costs are expected to be low. By means of computer experiments a large number of systems were evaluated.

  9. 7 CFR 58.919 - Pre-heat, pasteurization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pre-heat, pasteurization. 58.919 Section 58.919... Procedures § 58.919 Pre-heat, pasteurization. When pasteurization is intended or required by either the vat... requirements outlined in § 58.128. Pre-heat temperatures prior to ultra pasteurization will be those that have...

  10. Ultra-narrow bandpass filters for long range optical telecommunications at 1064nm and 1550nm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-narrow bandpass filters with high off-band rejection are needed to maximize signal to noise for free space communications. Omega Optical is developing NIR...

  11. Influence of preheating on grindability of coal

    Science.gov (United States)

    Lytle, J.; Choi, N.; Prisbrey, K.

    1992-01-01

    Enormous quantities of coal must be ground as feed to power generation facilities. The energy cost of grinding is significant at 5 to 15 kWh/ton. If grindability could be increased by preheating the coal with waste heat, energy costs could be reduced. The objective of this work was to determine how grindability was affected by preheating. The method was to use population balance grinding models to interpret results of grinding coal before and after a heat treatment. Simulation of locked cycle tests gave a 40% increase in grindability. Approximately 40% grinding energy saving can be expected. By using waste heat for coal treatment, the targeted energy savings would be maintained. ?? 1992.

  12. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  13. Preheating of tap water with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Granum, H; Raaen, H

    1992-05-05

    In 1991 SINTEF Architecture and Building Technology won the second prize in 'The Nordic Competition for Low Energy Buildings' with a project proposal named 'LOWe'. The paper gives a description of the energy-saving features of this project, particularly the use of a solar collector for preheating of tap water. Compared with the economic profitability of other saving efforts in the project, such as good thermal insulation and efficient heat recovering system, the system for solar preheating of tap water does not seem very attractive for the time being. Loose estimates indicate a cost of close of NOK 1.00 per kWh for the produced energy in the solar collector, while the present price for electricity in Norway is about NOK 0.50 per kWh. Compared with a heat pump solution however the energy cost is not unreasonable.

  14. Pre-heating mitigates composite degradation.

    Science.gov (United States)

    Silva, Jessika Calixto da; Rogério Vieira, Reges; Rege, Inara Carneiro Costa; Cruz, Carlos Alberto dos Santos; Vaz, Luís Geraldo; Estrela, Carlos; Castro, Fabrício Luscino Alves de

    2015-01-01

    Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey's tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (pheated specimens presented higher radiopacity values than non-pre-heated specimens (pheated specimens (pheating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  15. Spectroscopic Measurements of Target Preheating on OMEGA

    International Nuclear Information System (INIS)

    Elton, R.C.; Griem, H.R.; Iglesias, E.J.

    2000-01-01

    The preheating of laser-heated microballoon targets has been measured by time-resolved x-ray and extreme ultraviolet (euv) spectroscopy on the 30 kJ, 351 nm, 60-beam laser-fusion system at the University of Rochester Laboratory for Laser Energetics. Thin coatings of aluminum overcoated with magnesium served as indicators. both the sequence of the x-ray line emission and the intensity of euv radiation were used to determine a preheating peaking at ∼ 10 ns prior to onset of the main laser pulse, with a power density ≅1% of the main pulse. The measurements are supported by numerical modeling. Further information is provided by absorption spectra from the aluminum coating, backlighted by continuum from the heated surface. The exact source of the preheating energy remains unknown at present, but most likely arrives from early laser leakage through the system. The present target diagnostic is particularly useful when all beams cannot be monitored directly at all laser wavelengths

  16. Sintering uranium oxide using a preheating step

    International Nuclear Information System (INIS)

    Jensen, N.J.; Nivas, Y.; Packard, D.R.

    1977-01-01

    Compacted pellets of uranium oxide or uranium oxide with one or more additives are heated in a kiln in a process having a preheating step, a sintering step, a reduction step, and a cooling step in a controlled atmosphere. The process is practiced to give a range of temperature and atmosphere conditions for obtaining optimum fluoride removal from the compacted pellets along with optimum sintering in a single process. The preheating step of this process is conducted in a temperature range of about 600 0 to about 900 0 C and the pellets are held for at least twenty min, and preferably about 60 min, in an atmosphere having a composition in the range of about 10 to about 75 vol % hydrogen with the balance being carbon dioxide. The sintering step is conducted at a temperature in the range of about 900 0 C to 1500 0 C in the presence of an atmosphere having a composition in the range of about 0.5 to about 90 vol % hydrogen with the balance being carbon dioxide. The reduction step reduces the oxygen to metal ratio of the pellets to a range of about 1.98 to 2.10:1 and this is accomplished by gradually cooling the pellets for about 30 to about 120 min from the temperature of the sintering step to about 1100 0 C in an atmosphere of about 10 to 90 vol % hydrogen with the balance being carbon dioxide. Thereafter the pellets are cooled to about 100 0 C under a protective atmosphere, and in one preferred practice the same atmosphere used in the reduction step is used in the cooling step. The preheating, sintering and reduction steps may also be conducted with their respective atmospheres having an initial additional component of water vapor and the water vapor can comprise up to about 20 vol %

  17. When can preheating affect the CMB?

    Science.gov (United States)

    Tsujikawa, Shinji; Bassett, Bruce A.

    2002-05-01

    We discuss the principles governing the selection of inflationary models for which preheating can affect the CMB. This is a (fairly small) subset of those models which have nonnegligible entropy/isocurvature perturbations on large scales during inflation. We study new models which belong to this class-two-field inflation with negative nonminimal coupling and hybrid/double/supernatural inflation models where the tachyonic growth of entropy perturbations can lead to the variation of the curvature perturbation, /R, on super-Hubble scales. Finally, we present evidence against recent claims for the variation of /R in the absence of substantial super-Hubble entropy perturbations.

  18. Rapid cell cycle analysis by measurement of the radioactivity per cell in a narrow window in S phase (RCSsub(i))

    International Nuclear Information System (INIS)

    Gray, J.W.; Carver, J.H.; George, Y.S.; Mendelsohn, M.L.

    1977-01-01

    A new rapid method for the cell cycle analysis of asynchronously growing cells is presented. The new method is an alternative to the more time consuming and subjective fraction of labeled mitoses (FLM) method. Like the FLM method, all cells in the S phase of the cell cycle are marked by pulse labeling with a radioactive DNA precursor. The subsequent progress of the cohort of cells thus labeled is monitored through a narrow window in the cell cycle. The window is defined by a narrow range of DNA contents corresponding to cells in mid-S phase and is designated Ssub(i). The cellular DNA content is measured by flow cytometry and the cells in the window Ssub(i) are selected by electronic cell sorting. The radioactivity per cell in Ssub(i) (RCSsub(i)) is determined by liquid scintillation counting. The duration of S phase and of the total cycle and the dispersions therein are determined from the oscillation of the RCSsub(i) values with time. The complete cell cycle analysis can be accomplished in as little as 1 day following the collection of samples. Exponentially growing Chinese hamster ovary (CHO) cells were analyzed according to the RCSsub(i) method and the FLM method. It is demonstrated that the two techniques give essentially the same results. (author)

  19. Preheating the universe in hybrid inflation

    CERN Document Server

    García-Bellido, J

    1998-01-01

    One of the fundamental problems of modern cosmology is to explain the origin of all the matter and radiation in the Universe today. The inflationary model predicts that the oscillations of the scalar field at the end of inflation will convert the coherent energy density of the inflaton into a large number of particles, responsible for the present entropy of the Universe. The transition from the inflationary era to the radiation era was originally called reheating, and we now understand that it may consist of three different stages: preheating, in which the homogeneous inflaton field decays coherently into bosonic waves (scalars and/or vectors) with large occupation numbers; backreaction and rescattering, in which different energy bands get mixed; and finally decoherence and thermalization, in which those waves break up into particles that thermalize and acquire a black body spectrum at a certain temperature. These three stages are non-perturbative, non-linear and out of equilibrium, and we are just beginning ...

  20. Development of gas-liquid two-phase flow measurement technique in narrow channel. Application of micro wire-mesh sensor to the flow between parallel plates

    International Nuclear Information System (INIS)

    Ito, Daisuke; Kikura, Hiroshige; Aritomi, Masanori

    2009-01-01

    A novel two-phase flow measuring technique based on local electrical conductivity measurement was developed for clarifications of three-dimensional flow structure in gas-liquid two-phase flow in a narrow channel. The measuring method applies the principle of conventional wire-mesh tomography, which can measure the instantaneous void fraction distributions in a cross-section of a flow channel. In this technique, the electrodes are fixed on the inside of the walls facing each other, and the local void fractions were obtained by the electrical conductivity measurement between electrodes arranged on each wall. Therefore, the flow structure and the bubble behavior can be investigated by three-dimensional void fraction distributions in the channel with narrow gap. In this paper, a micro Wire-Mesh Sensor (μWMS) which has the gap of 3 mm was developed, and the instantaneous void fraction distributions were measured. From the measured distributions, three-dimensional bubble distributions were reconstructed, and bubble volumes and bubble velocities were estimated. (author)

  1. Prediction of liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube development of analytical method under BWR conditions

    International Nuclear Information System (INIS)

    Utsuno, Hideaki; Kaminaga, Fumito

    1998-01-01

    A method was developed based on the conservation lows to predict critical heat flux (CHF) causing liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube under BWR conditions. The applicable range of the method is within the pressure of 3-9 MPa, mass flux of 500-2,000 kg/m 2 ·s, heat flux of 0.33-2.0 MW/m 2 and boiling length-to-tube diameter ratio of 200-800. The two-phase annular-mist flow was modeled with the three-fluid streams with liquid film, entrained droplets and gas flow. Governing equations of the method are mass continuity and energy conservation on the three-fluid streams. Constitutive equations on the mass transfer which consist of the entrainment fraction at equilibrium and the mass transfer coefficient were newly proposed in this study. Confirmation of the present method were performed in comparison with the available film flow measurements and various CHF data from experiments in uniformly heated narrow tubes under high pressure steam-water conditions. In the heat flux range (q'' 2 ) practical for a BWR, agreement of the present method with CHF data was obtained as, (Averaged ratio) ± (Standard deviation) = 0.984 ± 0.077, which was shown to be the same or better agreement than the widely-used CHF correlations. (author)

  2. Experimental and numerical study on single-phase flow characteristics of natural circulation system with heated narrow rectangular channel under rolling motion condition

    International Nuclear Information System (INIS)

    Yu, Shengzhi; Wang, Jianjun; Yan, Ming; Yan, Changqi; Cao, Xiaxin

    2017-01-01

    Highlights: • The phasic difference between flow rate and frictional pressure drop is negligible. • Effect mechanism of rolling motion on flow behaviors of NC is interpreted. • The startup model is proposed and verified. • Steady-state correlations are feasible to predict transient resistance. • The in-house code can simulate instantaneous flow behaviors of NC correctly. - Abstract: Effects of rolling motion on flow characteristics in a natural circulation system were investigated experimentally and numerically. The numerical results from validated code were mainly used to provide detailed information for the discussion and analysis of experimental results. The results indicate that under rolling motion condition, the phasic difference between flow rate and frictional pressure drop of narrow rectangular channel is negligible. Angular acceleration is the eigenvalue for the effects of rolling motion on flow rate under single-phase natural circulation condition. When angular acceleration is approximately equal, even though either the angle or the period of rolling motion is different, peak, trough and time-averaged values of flow rate are approximately equal. Under rolling motion and single-phase natural circulation conditions, the phenomenon that dimensionless time-averaged mass flow rate is smaller than that under steady state condition is controlled by the nonlinear relationship between mass flow rate and the resistance of loop. The factor also causes the result that the absolute difference of dimensionless flow rate between peak and steady state is smaller than that between trough and steady state. The startup model which is proposed in present paper can be used to predict the flow characteristics of single-phase natural circulation system at startup stage of rolling motion favorably. The self-developed code can simulate instantaneous flow characteristics of single-phase natural circulation system under rolling motion and steady state conditions

  3. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    International Nuclear Information System (INIS)

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be 133 Xe, and 198 Au (on carbonized resin or as an aqueous colloidal suspension) will be used as the slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing

  4. Nonequilibrium theory of dirty, current-carrying superconductors: Phase-slip oscillators in narrow filaments near T/sub c/

    International Nuclear Information System (INIS)

    Watts-Tobin, R.J.; Kraehenbuehl, Y.; Kramer, L.

    1981-01-01

    General equations for the dynamic behavior of dirty superconductors in the Ginzburg--Landau regime Vertical BarT/sub c/-TVertical Bar<< T/sub c/ are derived from microscopic theory. In the immediate vicinity of T/sub c/ a local equilibrium approximation leads to a simple generalized time-dependent Ginzburg--Landau equation. The oscillatory phase-slip solutions presented previously are discussed in greater detail

  5. Effect of the Preheating Temperature on Process Time in Friction Stir Welding of Al 6061-T6

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    2013-01-01

    This paper presents the results obtained and the deductions made from an analytical modeling involving friction stir welding of Al 6061-T6. A new database was developed to simulate the contact temperature between the tool and the workpiece. A second-order equation is proposed for simulating...... the temperature in the contact boundary and the thermal history during the plunge phase. The effect of the preheating temperature on the process time was investigated with the proposed model. The results show that an increase of the preheating time leads to a decrease in the process time up to the plunge...

  6. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  7. Gravitational wave production from preheating: parameter dependence

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Daniel G. [Theory Division, CERN, 1211 Geneva (Switzerland); Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es [Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. (Spain)

    2017-10-01

    Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q . The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q . We present an analytical derivation of the GW amplitude dependence on q , valid for any scenario, which we confront against numerical results. By running lattice simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q . The GW signal can be rather large, as h {sup 2Ω}{sub GW}( f {sub p} ) ∼< 10{sup −11}, but it is always peaked at high frequencies f {sub p} ∼> 10{sup 7} Hz. We also discuss the case of spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  8. Restored symmetries, quark puzzle, and the Pomeron as a Josephson current. [Clustering effects, quantum supercurrents, cross sections, phase transitions, narrowing gap mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, R V [Instituto de Fisica e Matematica, Lisbon (Portugal)

    1976-07-01

    A special type of symmetry is studied, wherein manifest invariance is restored by direct integration over a set of spontaneously broken ground states. In addition to invariant states and multiplets these symmetry realizations are shown to lead, in general, to clustering effects and quantum supercurrents. A systematic exploration of these symmetry realizations is proposed, mostly in physical situations where it has so far been believed that the only consequences of the symmetry are invariant states and multiplets. An application of these ideas to the quark system yields a possible explanation for the unobservability of free quarks and an interpretation of the Pomeron as a generalized Josephson current. Furthermore, the 'narrowing gap mechanism' suggests an explanation for the behavior of the e/sup +/ e/sup -/ ..-->.. hadrons cross section and a speculation on an approaching phase transition in hadronic production and the observation of free quarks.

  9. Prediction of flame formation in highly preheated air combustion

    International Nuclear Information System (INIS)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool; Katsuki, Masashi

    2008-01-01

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  10. Prediction of flame formation in highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool [Pusan National University, Busan (Korea, Republic of); Katsuki, Masashi [Osaka University, Osaka (Japan)

    2008-11-15

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  11. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh–Taylor Instability

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Ying-Jun, Li

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh–Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T) = κ SH [1 + f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse [Phys. Rev. Lett. 98 (2007) 245001]. (physics of gases, plasmas, and electric discharges)

  12. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang Lifeng; Ye Wenhua; Li Yingjun

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)

  13. Effect of inflation on parametric resonance during preheating

    International Nuclear Information System (INIS)

    Hirai, Shiro

    2002-01-01

    The effect of inflation on parametric resonance during preheating is investigated. The behaviour of the preheating scalar field during inflation is investigated and is found to become squeezed in cases ranging from small-scale cases to large-scale cases. However, the positive-frequency solution is usually adopted in the initial condition of the scalar field at preheating. Although large squeezing occurs during inflation, the difference in the comoving occupation number of particles n k between two initial conditions is shown to be not so large. Rather, the ratio n k varies from 0.2 to 5.0, depending on k. In order to clarify this situation, we introduce the squeeze formulation. The squeeze parameters r and φ are calculated not only in preheating, but also in inflation. Since the squeeze parameters are calculated from inflation to preheating, we can clarify the behaviour of the parametric resonance. In preheating, the behaviour of r is shown to remain relatively unchanged with respect to k; however, the squeeze angle φ displays different behaviour for large-scale cases and small-scale cases

  14. Behavior of the turbine - regenerating preheaters functional assembly

    International Nuclear Information System (INIS)

    Bigu, Melania; Nita, Iulian Pavel; Tenescu, Mircea

    2004-01-01

    In the classical calculation of pressure distribution in the turbine-regenerating heaters' assembly a uniform distribution of feedwater enthalpy rise at each regenerating preheating step is usually assumed. This is accurately enough as a basis of designing of the preheating installation operating at rated power regime. But at partial regimes this is not totally valid since the preheaters are already shaped and the quasi-equal distribution does not satisfy the equation system describing the heat transfer correlations in these installations. A more detailed analysis shows that pressure in the feeding line preheaters and the bleeding steam flow rates at the turbine outlets are described physically by solving simultaneously the equations of hydrodynamic flow through the turbine and the equations of the heat transfer in the preheaters of the feedwater preheating line. This work approaches this more accurate solving method at least from a theoretical standing point; two cases are illustrated in the annexes of the work: a case of a secondary circuit with a single regenerating inlet and a case with two regenerating inlets. A classical - Panzer method of transformation of a many regenerative stages scheme may lead to one or another of the above cases. (authors)

  15. Susceptibility of CANDU steam generator preheater to cavitation erosion

    International Nuclear Information System (INIS)

    Laroche, S.L.; Sun, L.; Pietralik, J.M.

    2012-01-01

    In 2009, Darlington Steam Generator (SG) tube inspections revealed some tubes had degraded in the preheater. The tube degradation occurred at the clearance gap between the tube and the preheater baffle and reached up to 50% through-wall depth at the baffles in the middle portion of the preheater. The general pattern of the damage and the elemental composition analysis suggested that the degradation was the result of a hydrodynamic process, such as cavitation erosion. Cavitation erosion occurs when vapour bubbles exist or form in the flowing liquid and then these bubbles collapse violently in the vicinity of the wall. These bubbles collapse when steam bubbles contact water that is sufficiently subcooled, below the saturation temperature. In the gap between the tube and the preheater baffle, low flow will exist due to the pressure difference across the baffle plate. In addition, heat transfer occurs from the primary-side fluid to the secondary-side fluid within this clearance gap that is driven by the primary-to-secondary temperature difference. Factors, such as the tube position in the baffle hole and fouling, influence the local conditions and can cause subcooled boiling that result in cavitation. This paper presents a study of flow and heat transfer phenomena to determine the factors contributing to cavitation erosion in SG preheaters. The analysis used the THIRST1 code for a 3-dimensional thermalhydraulic simulation of the steam generators and the ANSYS FLUENT®2 code for detailed calculations of flow and heat transfer in the clearance gaps. This study identifies that tubes in the preheater region are susceptible to cavitation erosion and indicates that this area should be part of the station inspection program because, regardless of preheater design, some tubes may experience the thermalhydraulic conditions and undergo degradations similar to those observed for the tubes in Darlington SGs. (author)

  16. Experimental and Theoretical Study of Dryout and Post-Dryout Heat Transfer of Steam-Water Two-Phase Flow in the Annular Channel with Narrow Gap

    International Nuclear Information System (INIS)

    Aye Myint

    2004-10-01

    Two-phase annular flow with heat transfer is prevalent in many processes such as industrial and energy reformation processes. Recently, advances in high performance electronic chips and the miniaturisation of electronic circuits in which high heat flux will be created and other compact systems such as Integrated Nuclear Power Device (INPD), the refrigeration/air conditioning, automobile environment control systems have resulted in a great demand for developing efficient heat transfer techniques to accommodate these high heat fluxes. It has been studied by many researchers because of its successful application in many areas, but its influence factor and mechanism of heat transfer remain somewhat unknown yet. In order to understand the heat transfer and flow mechanism in the narrow annular channel, experimental and theoretical study of dryout and post-dryout heat transfer of steam-water two-phase flow in annular channel with narrow gap (1.0 mm and 1.5 mm) have been carried out. The working fluid is deionized water. The range of experimental pressure is 1.0 ∼ 6.OMPa. In correspondence with two different narrow gaps, two kinds of test sections were designed. The test sections were made of specially processed straight stainless steel tubes with linearity error less than 0.01% to form narrow concentric annuli. It also needs a good sealed performance at high pressure and high temperature. The experiments were carried out to investigate the characteristics and occurring conditions of the dryout point. The former Soviet researcher Kutateladse's correlation, based on round tube, was quoted and modified to apply barrow annuli under low flow conditions. At full conditions of the influencing factors, such as geometry of test section, pressure, mass flux, heat flux etc., an empirical correlation was developed to apply to bilaterally heated annuli and it had a good agreement with the experimental data A new analytical model for the dryout point of critical quality in

  17. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  18. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  19. The effect of preheating on the IRSL signal from feldspar

    DEFF Research Database (Denmark)

    Murray, A.S.; Buylaert, J.P.; Thomsen, Kristina Jørkov

    2009-01-01

    between the loss of blue IRSL and TL signals with preheating, and the effect of prior IRSL on the TL signal. Using IRSL measured at 50 °C and a SAR protocol, we then examine the dependence on preheat temperature of equivalent dose (De), laboratory fading rate (g), and the resulting luminescence age, from...... is consistent with a kinetic analysis of sensitivity-corrected IRSL data. The corollary to our observations is that shallow (unstable) traps do not give rise to a significant IRSL signal....

  20. Effects of Preheat on Weldments of NICOP Steel.

    Science.gov (United States)

    1983-09-01

    percent Nital solution (nitric acid (HNO3) ,* and ethanol (C2HsOH) which revealed the weld area, heat affected zone and base metal. A section 25.2mm (1 inch...electrolyte, consisting of 10% per- cloric acid (HC104 ) and 90% methanal (CH30H) was maintained at a temperature of -450C (-49 0 F). The Polipower was set...Preheated Weidment. N on Non-Preheated Weidment. Figre3. Loaton o McrhadnssTrvese I17 ~.4. .9 G° s s E 43 C 0 CL 44’ 00 Hda *SBUPJQH Figure 4. Comparison

  1. Feed water pre-heater with two steam spaces

    International Nuclear Information System (INIS)

    Tratz, H.; Kelp, F.; Netsch, E.

    1976-01-01

    A feed water pre-heater for the two stage heating of feed water by condensing steam, having a low installed height is described, which can be installed in the steam ducts of turbines of large output, as in LWRs in nuclear power stations. The inner steam space is closed on one side by the water vessel, while the tubes of the inner steam space go straight from the water vessel, and the tubes of the outer steam space are bent into a U shape and open out into the water vessel. The two-stage preheater is thus surrounded by feedwater in two ways. (UWI) [de

  2. Gravity waves from tachyonic preheating after hybrid inflation

    Energy Technology Data Exchange (ETDEWEB)

    Dufaux, Jean-Francois [Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Felder, Gary [Department of Physics, Clark Science Center, Smith College, Northampton, MA 01063 (United States); Kofman, Lev [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Navros, Olga, E-mail: jeff.dufaux@uam.es, E-mail: gfelder@email.smith.edu, E-mail: kofman@cita.utoronto.ca, E-mail: navros@email.unc.edu [Department of Mathematics, University of North Carolina Chapel Hill, CB3250 Philips Hall, Chapel Hill, NC 27599 (United States)

    2009-03-15

    We study the stochastic background of gravitational waves produced from preheating in hybrid inflation models. We investigate different dynamical regimes of preheating in these models and we compute the resulting gravity wave spectra using analytical estimates and numerical simulations. We discuss the dependence of the gravity wave frequencies and amplitudes on the various potential parameters. We find that large regions of the parameter space leads to gravity waves that may be observable in upcoming interferometric experiments, including Advanced LIGO, but this generally requires very small coupling constants.

  3. Method for pre-heating lmfbr type reactors

    International Nuclear Information System (INIS)

    Yokozawa, Atsushi; Kataoka, Hajime.

    1978-01-01

    Purpose: To enable pre-heating for the inside of the reactor container and the inside of the coolant recycling system with no additional facilities. Method: The coolant recycling system is composed of a heat exchanger, a mechanical pump, a check valve, a flow meter or the like and it is connected in series by way of a pipe line to a reactor container. The mechanical pump is used as a gas recycling device upon pre-heating and it is designed so that a blower such as a fan can be replaced for the impeller of the pump. The inside of the reactor container and the inside of the coolant recycling system is at first filled with an inert gas such as for use with cover gas. Then, nuclear fuels are loaded to attain criticality. Simultaneously, the blower is started and the control rods are operated while cooling the nuclear fuel with the inert gas thus to obtain heat required for pre-heating the pipe line or the like from the nuclear fuels. After the completion of the pre-heating, the liquid metal is charged. (Ikeda, J.)

  4. Constraints on variations in inflaton decay rate from modulated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, Arindam [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India); Modak, Kamakshya Prasad, E-mail: arindam.mazumdar@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India)

    2016-06-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  5. Constraints on variations in inflaton decay rate from modulated preheating

    International Nuclear Information System (INIS)

    Mazumdar, Arindam; Modak, Kamakshya Prasad

    2016-01-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  6. Gauge-preheating and the end of axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter; Sfakianakis, Evangelos I. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States); Giblin, John T. Jr.; Scully, Timothy R., E-mail: adshead@illinois.edu, E-mail: giblinj@kenyon.edu, E-mail: tscully2@illinois.edu, E-mail: esfaki@illinois.edu [Department of Physics, Kenyon College, 201 North College Rd, Gambier, Ohio 43022 (United States)

    2015-12-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m{sup 2φ2} inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.

  7. Gauge-preheating and the end of axion inflation

    International Nuclear Information System (INIS)

    Adshead, Peter; Sfakianakis, Evangelos I.; Giblin, John T. Jr.; Scully, Timothy R.

    2015-01-01

    We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, U(1), gauge field via a Chern-Simons interaction term. We focus primarily on m 2φ2 inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton transfers all of its energy to the gauge fields within a few oscillations. In most cases, we find that the gauge fields on sub-horizon scales end preheating in an unpolarized state due to the existence of strong rescattering between the inflaton and gauge-field modes. We also present a preliminary study of an axion monodromy model coupled to U(1) gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons

  8. Theory and numerics of gravitational waves from preheating after inflation

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Kofman, Lev; Bergman, Amanda; Felder, Gary; Uzan, Jean-Philippe

    2007-01-01

    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity-wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity-wave interferometric experiments

  9. Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

    Science.gov (United States)

    Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

    2018-02-01

    The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

  10. On the generation of a non-gaussian curvature perturbation during preheating

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori; Lyth, David H. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Valenzuela-Toledo, Cesar A., E-mail: k.kohri@lancaster.ac.uk, E-mail: d.lyth@lancaster.ac.uk, E-mail: cavalto@ciencias.uis.edu.co [Escuela de Física, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia)

    2010-02-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case.

  11. On the generation of a non-gaussian curvature perturbation during preheating

    International Nuclear Information System (INIS)

    Kohri, Kazunori; Lyth, David H.; Valenzuela-Toledo, Cesar A.

    2010-01-01

    The perturbation of a light field might affect preheating and hence generate a contribution to the spectrum and non-gaussianity of the curvature perturbation ζ. The field might appear directly in the preheating model (curvaton-type preheating) or indirectly through its effect on a mass or coupling (modulated preheating). We give general expressions for ζ based on the δN formula, and apply them to the cases of quadratic and quartic chaotic inflation. For the quadratic case, curvaton-type preheating is ineffective in contributing to ζ, but modulated preheating can be effective. For quartic inflation, curvaton-type preheating may be effective but the usual δN formalism has to be modified. We see under what circumstances the recent numerical simulation of Bond et al. [0903.3407] may be enough to provide a rough estimate for this case

  12. Production of gravitational waves during preheating with nonminimal coupling

    Science.gov (United States)

    Fu, Chengjie; Wu, Puxun; Yu, Hongwei

    2018-04-01

    We study the preheating and the in-process production of gravitational waves (GWs) after inflation in which the inflaton is nonminimally coupled to the curvature in a self-interacting quartic potential with the method of lattice simulation. We find that the nonminimal coupling enhances the amplitude of the density spectrum of inflaton quanta, and as a result, the peak value of the GW spectrum generated during preheating is enhanced as well and might reach the limit of detection in future GW experiments. The peaks of the GW spectrum not only exhibit distinctive characteristics as compared to those of minimally coupled inflaton potentials but also imprint information on the nonminimal coupling and the parametric resonance, and thus the detection of these peaks in the future will provide us a new avenue to reveal the physics of the early universe.

  13. Thermographic study of the preheating plugs in diesel engines

    OpenAIRE

    Royo Pastor, Rafael; Albertos Arranz, M.A.; CÁRCEL CUBAS, JUAN ANTONIO; Payá Herrero, Jorge

    2012-01-01

    The use of direct injection diesel engines has been widely applied during the past ten years. In such engines, the preheating plugs are a key element which has a significant contribution in the pollutant emissions. In this paper, two different plug designs from Renault are analyzed. The new plug reduces substantially the required electrical consumption. Nevertheless, the pollutant emissions are higher (fundamentally CO and HCs) and hereby a thorough analysis is required to underst...

  14. DEFROST: a new code for simulating preheating after inflation

    International Nuclear Information System (INIS)

    Frolov, Andrei V

    2008-01-01

    At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. This paper presents a new code for simulating scalar field dynamics in an expanding universe written for that purpose. Compared to available alternatives, it significantly improves both the speed and the accuracy of calculations, and is fully instrumented for 3D visualization. We reproduce previously published results on preheating in simple chaotic inflation models, and further investigate non-linear dynamics of the inflaton decay. Surprisingly, we find that the fields do not 'want' to thermalize in quite the way that one would think. Instead of directly reaching equilibrium, the evolution appears to be stuck in a rather simple but quite inhomogeneous state. In particular, a one-point distribution function of total energy density appears to be universal among various two-field preheating models, and is exceedingly well described by a log-normal distribution. It is tempting to attribute this state to scalar field turbulence

  15. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  16. Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation

    Science.gov (United States)

    Barnaby, Neil; Cline, James M.

    2006-05-01

    We show that in hybrid inflation it is possible to generate large second-order perturbations in the cosmic microwave background due to the instability of the tachyonic field during preheating. We carefully calculate this effect from the tachyon contribution to the gauge-invariant curvature perturbation, clarifying some confusion in the literature concerning nonlocal terms in the tachyon curvature perturbation; we show explicitly that such terms are absent. We quantitatively compute the non-Gaussianity generated by the tachyon field during the preheating phase and translate the experimental constraints on the nonlinearity parameter fNL into constraints on the parameters of the model. We also show that nonscale-invariant second-order perturbations from the tachyon field with spectral index n=4 can become larger than the inflaton-generated first-order perturbations, leading to stronger constraints than those coming from non-Gaussianity. The width of the excluded region in terms of the logarithm of the dimensionless coupling g, grows linearly with the log of the ratio of the Planck mass to the tachyon VEV, log⁡(Mp/v); hence very large regions are ruled out if the inflationary scale v is small. We apply these results to string-theoretic brane-antibrane inflation, and find a stringent upper bound on the string coupling, gs<10-4.5.

  17. Regenerative heat exchanger for cowper combustion air preheating

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, R.; Otterbach, G.

    1986-01-13

    The waste gas leaving cowper units at a temperature of 200/sup 0/C to 300/sup 0/C was previously discharged unused into the atmosphere. By providing a suitable heat exchanger, the heat content of the waste gas can be used to preheat the combustion agents of cowpers to an extent allowing both to increase the efficiency of cowpers and to decrease the amount of rich gas required. The operating results confirm to a large extent the theoretical assumptions and calculations. One may therefore expect the entire investment to have been fully redeemed in a little more than two years. (orig.).

  18. Bruce NGS A Unit 4 preheater divider plate failure

    International Nuclear Information System (INIS)

    Landridge, M.; McInnes, D.

    1995-01-01

    On May 19, 1995, without any prior operational indications, Bruce A discovered preheater divider plate damage in Unit 4 that had the potential to have a major impact on the continued safe operation of the station. Further investigations indicated that Unit 4 may have been operating with this damage for as long as ten years. In the two months following the discovery, Bruce A has procured and replaced the 4 divider plates, located most of the missing pieces, retrieved pieces from the PHT system, investigated historical operational information, performed detailed analytical investigations, investigated root cause, performed in-situ and mock-up testing, updated operational procedures and installed DP monitoring equipment

  19. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  20. Fresh fuel pre-heating device in reactor facility

    International Nuclear Information System (INIS)

    Samejima, Asakuni.

    1988-01-01

    Purpose: To simplify the structure of a fresh nuclear fuel pre-heating device and improve the reliability to gas supply. Constitution: Fresh fuels taken out from a fresh fuel stredge rack and contained in a fuel strage pipe of a fuel transportation cask are pre-heated at the pre-stage of transfer by sending heating gases from the outside. Gas outlet pipes of the device are led out from the lower portion of the strage pipe, disposed side by side at the top of the strage pipe and opened upwardly. Further, gas supply pipes are connected to the inside of a movable guiding cylinder on the side of the floor surface and the opening end of return pipes are opposed to the exit opening end of the strage pipe. In such a constitution, a gas recycling loop can be formed between the strage pipe and the gas heating device by way of the movable guiding cylinder only by the operation of combining the fuel strage pipe of the transportation cask and the movable guiding pipe disposed on the side of the floor surface. Thus, the coupling structure is facilitated, the connection operation can surely be conducted to improve the reliability as compared with the conventional case. (Horiuchi, T.)

  1. Jihadism, Narrow and Wide

    DEFF Research Database (Denmark)

    Sedgwick, Mark

    2015-01-01

    The term “jihadism” is popular, but difficult. It has narrow senses, which are generally valuable, and wide senses, which may be misleading. This article looks at the derivation and use of “jihadism” and of related terms, at definitions provided by a number of leading scholars, and at media usage....... It distinguishes two main groups of scholarly definitions, some careful and narrow, and some appearing to match loose media usage. However, it shows that even these scholarly definitions actually make important distinctions between jihadism and associated political and theological ideology. The article closes...

  2. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness

    Science.gov (United States)

    Baek, Gyeong Yun; Lee, Ki Yong; Park, Sang Hu; Shim, Do Sik

    2017-11-01

    This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.

  3. Correlates of Narrow Bracketing

    DEFF Research Database (Denmark)

    Koch, Alexander; Nafziger, Julia

    We examine whether different phenomena of narrow bracketing can be traced back to some common characteristic and whether and how different phenomena are related. We find that making dominated lottery choices or ignoring the endowment when making risky choices are related phenomena and are both as...

  4. Reheating the D-brane universe via instant preheating

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Thongkool, I.

    2010-01-01

    We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10 8 GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.

  5. Study on the preheating duration of Cu{sub 2}SnS{sub 3} thin films using RF magnetron sputtering technique for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuchen; He, Jun; Li, Xinran; Chen, Ye; Sun, Lin, E-mail: lsun@ee.ecnu.edu.cn; Yang, Pingxiong; Chu, Junhao

    2016-04-25

    Cu{sub 2}SnS{sub 3} (CTS) thin films are prepared by sulfurization the stacked metallic precursors deposited by raido-frequency magnetron sputtering method on molybdenum-coated soda lime glass substrates. The details of sulfurization process and the effect of preheating duration on the properties of CTS thin films have been investigated. It is found that the content of element tin strongly depend on the preheating duration. X-ray diffraction patterns identify that the CTS thin films exhibit the monoclinic structure. Raman scattering spectra make a further confirmation for the crystal structure. Fourier transform infrared reflectance spectroscopy (FTIR) is first used to study the properties of CTS thin films. The assigned active modes in Raman scattering spectra is consistent with the analysis in FTIR. Morphology analysis reveals long preheating duration would make the quality of films deteriorate. The thin film solar cell (TFSC) fabricated using the CTS absorber layer synthesized at preheating duration of 15 min shows that a power conversion efficiency up to 0.76% for a 0.19 cm{sup 2} area. The electrical characterization of CTS TFSC is first studied by electrochemical impedance spectroscopy, which implies the existence of MoS{sub x} and defects in the CTS/CdS interface. - Highlights: • CTS thin films and solar cells prepared by RF magnetron sputtering. • Preheating duration is a critical way to remain the Sn content in CTS thin film. • XRD, Raman, FTIR and XPS confirmed the single phase of CTS thin film. • The device characterization of CTS solar cell has been systematically investigated.

  6. Powertrain preheating system of tracked hybrid electric vehicle in cold weather

    International Nuclear Information System (INIS)

    Wang, Rui; Wang, Yichun; Feng, Chaoqing; Zhang, Xilong

    2015-01-01

    In order to make sure that the heavy duty tracked vehicle can work in various conditions, especially severe cold weather, preheating system of powertrain should be adopted, and a novel preheating system is presented for the tracked hybrid electric vehicle (HEV) in which heat is generated by the low-speed drive motor. The new preheating system can meet the need of cold start without adding any additional device. The characteristic of heat generation by motor is tested when the rotor of motor is rotated in very low speed. The heat loss from power cabin to external environment has been simulated, and the relevant test has been done to verify the simulation results. Combining the characteristic of heat generation and heat loss situation about preheating system, the heat transfer model of preheating system was implemented by MATLAB. The total energy required for preheating in different ambient temperature was calculated by this model. The results showed that: the minimum heating power was 70 kW and energy required was about 180 MJ when the HEV worked in −46 °C. If lithium ferrous phosphate (LFP) battery was used in power system, the minimum battery capacity is about 290 A h. - Highlights: • A novel preheating method was proposed for heavy duty tracked HEV. • Thermal energy in preheating system is produced by the PMSM in driving system. • This method can achieve preheating target by its own components without any adding. • Analyzing low temperature performance of power battery and select its capacity.

  7. Measurement of preheat in aluminium target in indirect drive using the SGIII prototype facilities

    International Nuclear Information System (INIS)

    Zhang, C; Zheng, J; Wang, Z B; Liu, H; Peng, X S; Wang, F; Ding, Y K

    2016-01-01

    The velocity interferometer system for any reflector (VISAR) is used to demonstrate preheat effect in aluminium in indirect drive. The rear surface motion prior to shock front was observed and compared with a multi-group calculation. By properly adjusting the hard x-ray portion of the radiation source, the calculated rear surface motion fits well with the experimental results, which gives us confidence to predict the preheated temperature of the sample by hard x-rays. Further, the effect of hohlraum geometry is compared and discussed experimentally. The result suggests gas-filled hohlraum or hohlraum with low Z substrates should be considered to further reduce preheating. (paper)

  8. Effect of pre-heat treatment on a Fischer-Tropsch iron catalyst

    International Nuclear Information System (INIS)

    Rao, K.R.P.M.; Huggins, F.E.; Ganguly, B.; Mahajan, V.; Huffman, G.P.; Davis, B.; O'Brien, R.J.; Xu Liguang; Rao, V.U.S.

    1994-01-01

    Moessbauer spectroscopy was used to investigate the effect of heating the Fischer-Tropsch catalyst 100 Fe/5 Cu/4.2 K/24 SiO 2 in two different atmospheres while ramping the temperature of the catalyst from room temperature to 280 C in 5.5 h prior to pretreatment of the catalyst. Preheating in H 2 /CO = 0.7 gave rise to an iron (Fe 2+ ) silicate, while preheating in helium resulted in the formation of ε'-carbide Fe 2.2 C. Iron oxides and χ-carbide Fe 5 C 2 were also formed in both preheat treatments. (orig.)

  9. Calculation and design of natural gas preheater equipments. Berechnung und Auslegung von Erdgas-Vorwaermeanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fasold, H G [Ruhrgas AG, Essen (Germany); Wahle, H N [Ruhrgas AG, Essen (Germany)

    1994-04-01

    A greatly simplified model of a regulating station - consisting of the station components ''preheater'' and ''control unit'' - is used for the calculation and design of natural gas preheating plants. It is hereby possible to calculate the Joule-Thomson effect which occurs on the expansion of natural gas in the controller, the resulting drop in temperature and the thermal output required to compensate this which is to be supplied to the gas flow by the preheating plant. The calculation method and procedure are explained using a programming flowchart. The computational model presented was converted into a personal computer program, whose functioning is elucidated using a numerical example. (orig.)

  10. arXiv Gravitational wave production from preheating -- parameter dependence

    CERN Document Server

    Figueroa, Daniel G.

    2017-10-31

    Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q. The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q. We present an analytical derivation of the GW amplitude dependence on q, valid for any scenario, which we confront against numerical results. By running lattice simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q. The GW si...

  11. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  12. Preheat-induced signal enhancement in the infrared stimulated luminescence of young and bleached sediment samples

    International Nuclear Information System (INIS)

    Richardson, C.A.

    2000-01-01

    Natural and laboratory bleached surface and young samples of potassium feldspar sand separates and polymineral silt had their infrared stimulated luminescence (IRSL) signal measured before and after preheating at 220 deg. C for 10 min or 160 deg. C for 16 h. For both preheats, the laboratory bleached sand samples underwent a signal enhancement which was stable with laboratory storage. The youngest samples also showed natural signal enhancement. The silt sample showed no recuperation of bleached signal on preheating, but some in the natural signal. A range of filtered bleaches was applied to one surface sand sample. Signal levels before and after preheating were reduced by filtering out the UV from the bleaching spectrum. The unfiltered bleach, however, most closely reproduced the behaviour of the natural sample

  13. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2014-05-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ~800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  14. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    International Nuclear Information System (INIS)

    Fat'yanov, O V; Asimow, P D

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ∼800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  15. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)

    2008-06-15

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  16. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  17. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    OpenAIRE

    Dolianitis Ioannis; Giannakopoulos Dionysios; Hatzilau Christina-Stavrula; Karellas Sotirios; Kakaras Emmanuil; Nikolova Evelina; Skarpetis Georgios; Christodoulou Nikolaos; Giannoulas Nikolaos; Zitounis Theodoros

    2016-01-01

    A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized containe...

  18. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)]. E-mail: morisho@ynu.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)]. E-mail: fukanot@cc.kurume-it.ac.jp

    2006-05-15

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail.

  19. Relation between the occurrence of Burnout and differential pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2006-01-01

    If a flow obstacle such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions the spacer has a cooling effect, and under other conditions the spacer causes dryout of the cooling water film on the heating surface, resulting in burnout of the tube. The burnout mechanism near the spacer, however, remains unclear. In a previous paper (Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90), we reported that the disturbance wave has a significant effect on dryout occurrence. Therefore, in the present paper, the relation between dryout, burnout occurrence, and interval between two successive disturbance waves obtained from the differential pressure fluctuation caused by the disturbance waves passing by a spacer, is further discussed in detail

  20. Narrow-band emission with 0.5 to 3.5 Hz varying frequency in the background of the main phase of the 17 March 2013 magnetic storm

    Directory of Open Access Journals (Sweden)

    Potapov A.S.

    2016-12-01

    Full Text Available We present results of the analysis of an unusually long narrow-band emission in the Pc1 range with increasing carrier frequency. The event was observed against the background of the main phase of a strong magnetic storm caused by arrival of a high-speed solar wind stream with a shock wave in the stream head and a long interval of negative vertical component of the interplanetary magnetic field. Emission of approximately 9-hour duration had a local character, appearing only at three stations located in the range of geographical longitude λ=100–130 E and magnetic shells L=2.2–3.4. The signal carrier frequency grew in a stepped mode from 0.5 to 3.5 Hz. We propose an emission interpretation based on the standard model of the generation of ion cyclotron waves in the magnetosphere due to the resonant wave-particle interaction with ion fluxes of moderate energies. We suppose that a continuous shift of the generation region, located in the outer area of the plasmasphere, to smaller L-shell is able to explain both the phenomenon locality and the range of the frequency increase. A narrow emission frequency band is associated with the formation of nose-like structures in the energy spectrum of ion fluxes penetrating from the geomagnetic tail into the magnetosphere. We offer a possible scenario of the processes leading to the generation of the observed emission. The scenario contains specific values of the generation region position, plasma density, magnetic field, and resonant proton energies. We discuss morphological differences of the emissions considered from known types of geomagnetic pulsations, and reasons for the occurrence of this unusual event.

  1. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  2. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  3. Narrow beam neutron dosimetry.

    Science.gov (United States)

    Ferenci, M Sutton

    2004-01-01

    Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.

  4. Corrosion on air preheaters and economisers; Korrosion hos luftfoervaermare och ekonomisrar

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-05-15

    Combustion plants in Sweden are exposed to considerable stress regarding low temperature corrosion, and failures due to low temperature corrosion occur regularly. Particularly common is corrosion problems connected to air preheaters and economisers. The number of combustion plants having air preheaters and economisers is however large, and the result of a collection of experiences regarding corrosion on air preheaters and economisers therefore has the potential to give a broad knowledge base. The summary of collection of experiences that has been done here, complemented with a literature survey, is expected to give plant owners and plant constructors a valuable tool to prevent corrosion on the flue gas side of air preheaters and economisers. The choice of plants for the inquiry was made using a list from the Swedish Naturvaardsverket (Environmental Protection Agency) indicating the emissions of NO{sub x}gases from Swedish combustion plants. From that list mainly the plants with the largest emissions were chosen, resulting in a number of 30 plants. Depending on that most of the plants have several boilers, and that the connected tubes often have several economisers and air preheaters, the number of economisers and air preheaters in this experience collection is at least 85. The study was however not limited to economisers and air preheaters, but also experiences connected to corrosion of other units were collected when mentioned, and the most interesting information here is also included in the report. Also a number of the plants were visited to improve the basis of the report, e.g. by photographing the most interesting parts. As the insight of the extension of the problem increased, renewed interview rounds were made, and the last one was made in August 2011.

  5. Narrow, duplicated internal auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, T. [Servico de Neurorradiologia, Hospital Garcia de Orta, Avenida Torrado da Silva, 2801-951, Almada (Portugal); Shayestehfar, B. [Department of Radiology, UCLA Oliveview School of Medicine, Los Angeles, California (United States); Lufkin, R. [Department of Radiology, UCLA School of Medicine, Los Angeles, California (United States)

    2003-05-01

    A narrow internal auditory canal (IAC) constitutes a relative contraindication to cochlear implantation because it is associated with aplasia or hypoplasia of the vestibulocochlear nerve or its cochlear branch. We report an unusual case of a narrow, duplicated IAC, divided by a bony septum into a superior relatively large portion and an inferior stenotic portion, in which we could identify only the facial nerve. This case adds support to the association between a narrow IAC and aplasia or hypoplasia of the vestibulocochlear nerve. The normal facial nerve argues against the hypothesis that the narrow IAC is the result of a primary bony defect which inhibits the growth of the vestibulocochlear nerve. (orig.)

  6. Efficacy and Safety of Sarecycline, a Novel, Once-Daily, Narrow Spectrum Antibiotic for the Treatment of Moderate to Severe Facial Acne Vulgaris: Results of a Phase 2, Dose-Ranging Study.

    Science.gov (United States)

    Leyden, James J; Sniukiene, Vilma; Berk, David R; Kaoukhov, Alexandre

    2018-03-01

    There is a need for new oral antibiotics for acne with improved safety profiles and targeted antibacterial spectra. Sarecycline is a novel, tetracycline-class antibiotic specifically designed for acne, offering a narrow spectrum of activity compared with currently available tetracyclines, including less activity against enteric Gram-negative bacteria. This phase 2 study evaluated the efficacy and safety of three doses of sarecycline for moderate to severe facial acne vulgaris. In this multicenter, double-blind, placebo-controlled study, patients aged 12 to 45 years were randomized to once-daily sarecycline 0.75 mg/kg, 1.5 mg/kg, 3.0 mg/kg, or placebo. Efficacy analyses included change from baseline in inflammatory and noninflammatory lesion counts at week 12, with between-group comparisons using analysis of covariance. Safety assessments included adverse events (AEs), clinical laboratories, vital signs, electrocardiograms, and physical examinations. Overall, 285 randomized patients received at least one dose of study drug. At week 12, sarecycline 1.5 mg/kg and 3.0 mg/kg groups demonstrated significantly reduced inflammatory lesions from baseline (52.7% and 51.8%, respectively) versus placebo (38.3%; P=0.02 and P=0.03, respectively). Sarecycline was safe and well tolerated, with similar gastrointestinal AE rates in sarecycline and placebo groups. Vertigo and photosensitivity AEs occurred in less than 1% of patients when pooling sarecycline groups; no vulvovaginal candidiasis AEs occurred. Discontinuation rates due to AEs were low. No serious AEs occurred. Once-daily sarecycline 1.5 mg/kg significantly reduced inflammatory lesions versus placebo and was safe and well tolerated with low rates of AEs, including gastrointestinal AEs. Sarecycline 3.0 mg/kg did not result in additional efficacy versus 1.5 mg/kg. Sarecycline may represent a novel, once-daily treatment for patients with moderate to severe acne. It offers a narrow antibacterial spectrum relative to other

  7. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin

    Directory of Open Access Journals (Sweden)

    Matthias Richard Kramer

    2016-01-01

    Full Text Available To test the impact of preheating (25, 37, 54, or 68 °C of TetricEvoCeram (TEC, FiltekSupremeXT (FSXT, and Venus (V on flexural strength (FS, shear bond strength (SBS and interfacial tension (IFT. FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC. SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05. Preheated TEC (37–68 °C showed higher FS compared to the control-group (25 °C (p < 0.001. FSXT presented higher FS than TEC (p < 0.001. For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015. TEC showed higher values than V and FSXT (p < 0.001. IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001.

  8. Effect of pre-heating on the viscosity and microhardness of a resin composite.

    LENUS (Irish Health Repository)

    Lucey, S

    2010-04-01

    The effect of pre-heating resin composite on pre-cured viscosity and post-cured surface hardness was evaluated. Groups of uncured specimens were heated to 60 degrees C and compared with control groups (24 degrees C) with respect to viscosity and surface hardness. Mean (SD) viscosities of the pre-heated specimens (n = 15) were in the range of 285 (13)-377 (11) (Pa) compared with 642 (35)-800 (23) (Pa) at ambient temperature. There was a statistically significant difference between the two groups (P < 0.001). Mean (SD) Vickers microhardness (VHN) of the pre-heated group (n = 15) was 68.6 (2.3) for the top surface and 68.7 (1.8) for the bottom surface measured at 24 h post curing (specimen thickness = 1.5 mm). The corresponding values for the room temperature group were 60.6 (1.4) and 59.0 (3.5). There was a statistically significant difference between corresponding measurements taken at the top and bottom for the pre-heated and room temperature groups (P < 0.001). There was no significant difference between top and bottom measurements within each group. Pre-heating resin composite reduces its pre-cured viscosity and enhances its subsequent surface hardness. These effects may translate as easier placement together with an increased degree of polymerization and depth-of-cure.

  9. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  10. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    International Nuclear Information System (INIS)

    Wang Hongyue; Zhao Lingling; Zhou Qiangtai; Xu Zhigao; Kim, Hyung Taek

    2008-01-01

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters

  11. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  12. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  13. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    OpenAIRE

    Zheng, Bin; Liu, Yongqi; Liu, Ruixiang; Meng, Jian; Mao, Mingming

    2015-01-01

    This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h) and catalytic oxidation bed average temperature (20°C to 560°C) within the preheated catalytic oxidation reactor. The pressure drop and res...

  14. Solar pre-heating of water for steam generation in the friendship textile mill

    International Nuclear Information System (INIS)

    Sid -Ahmed, M.O.; Hussien, T.

    1994-01-01

    The technology of solar water heating is simple and can be used for pre-heating of water entering a boiler. In this paper the economics of solar pre-heating of water was calculated. The calculations were based on the performance and cost of a locally-made flat plate collector, and the performance and fuel consumption of a boiler in a textile mill. The results showed that a collector area of about 800 meter square with initial cost of about LS 5,000,000, could save annually about 130 tons of furnace oil. ( Author )

  15. EFFECT OF PRE-HEAT TREATMENT ON MECHANICAL PROPERTIES OF Ti-6Al-4V WELDS

    Directory of Open Access Journals (Sweden)

    Gnofam Jacques TCHEIN

    2016-11-01

    Full Text Available The work presented here is related to the optimization of the Friction Stir Welding (FSW process. The objective is to study the influence of some parameters used in the production of welded joints by FSW. The most important parameters are the welding speed and the rotational speed of the tool. The effect of pre-heat treatment on the plates to be welded is also studied by the design of experimental methods. These pre-heat treatments result not only in a change of mechanical properties of plates to be welded, but also of their microstructure. The experiments were performed following a 16 lines fractional Taguchi table.

  16. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts

    Science.gov (United States)

    Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.

    Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.

  17. Flooding correlations in narrow channel

    International Nuclear Information System (INIS)

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  18. Narrow n anti n resonances

    International Nuclear Information System (INIS)

    Bogdanova, L.N.; Dalkarov, O.D.; Kerbikov, B.O.; Shapiro, I.S.

    1975-01-01

    The present status of the problem of quasinuclear states in systems of nucleons and antinucleons is reviewed. The theoretical predictions are compared with experimental data on narrow meson resonances near N anti N threshold which appeared in 1971-74

  19. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  20. Experimental Investigation of the Effects of Concrete Alkalinity on Tensile Properties of Preheated Structural GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Hwasung Roh

    2017-01-01

    Full Text Available The combined effects of preexposure to high temperature and alkalinity on the tensile performance of structural GFRP reinforcing bars are experimentally investigated. A total of 105 GFRP bar specimens are preexposed to high temperature between 120°C and 200°C and then immersed into pH of 12.6 alkaline solution for 100, 300, and 660 days. From the test results, the elastic modulus obtained at 300 immersion days is almost the same as those of 660 immersion days. For all alkali immersion days considered in the test, the preheated specimens provide slightly lower elastic modulus than the unpreheated specimens, showing only 8% maximum difference. The tensile strength decreases for all testing cases as the increase of the alkaline immersing time, regardless of the prehearing levels. The tensile strength of the preheated specimens is about 90% of the unpreheated specimen for 300 alkali immersion days. However, after 300 alkali immersion days the tensile strengths are almost identical to each other. Such results indicate that the tensile strength and elastic modulus of the structural GFRP reinforcing bars are closely related to alkali immersion days, not much related to the preheating levels. The specimens show a typical tensile failure around the preheated location.

  1. Preheating to around 100°C under endcap blocks before welding at KHI.

    CERN Multimedia

    Loveless, D

    2000-01-01

    The 600mm thick sector blocks of the CMS endcaps are made from three layers of 200mm plates welded together. During the manufacture at KHI, the blocks are preheated to around 100°C to prevent cracks in the welds.

  2. Effect of air preheat temperature on the MILD combustion of syngas

    International Nuclear Information System (INIS)

    Huang, Mingming; Zhang, Zhedian; Shao, Weiwei; Xiong, Yan; Liu, Yan; Lei, Fulin; Xiao, Yunhan

    2014-01-01

    Highlights: • MILD combustion is achieved with reaction zone covering the entire combustion chamber. • Critical equivalence ratio for the occurrence of MILD combustion is identified. • MILD regime can be established for syngas fuel under air preheating conditions. - Abstract: The effect of air preheat temperature on MILD (Moderate or Intense Low-oxygen Dilution) combustion of coal-derived syngas was examined in parallel jet forward flow combustor. The results were presented on flow field using numerical simulations and on global flame signatures, OH ∗ radicals distribution and exhaust emissions using experiments. The discrete and high speed air/fuel injections into the combustor is necessary for the establishment of MILD conditions, because they cause strong gas recirculation and form large mixing region between the air and fuel jets. The critical equivalence ratio above which MILD combustion occurred was identified. The MILD regime was established for syngas fuel under air preheating conditions with lean operational limit and suppressed NO x and CO emissions. In the MILD combustion regime, the air preheating resulted in higher NO x but lower CO emissions, while the increase of equivalence ratio led to the increase of NO x and the decrease of CO emissions

  3. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    Science.gov (United States)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  4. Effect of pre-heating on the thermal decomposition kinetics of cotton

    Science.gov (United States)

    The effect of pre-heating at low temperatures (160-280°C) on the thermal decomposition kinetics of scoured cotton fabrics was investigated by thermogravimetric analysis under nonisothermal conditions. Isoconversional methods were used to calculate the activation energies for the pyrolysis after one-...

  5. Symbiotic potential: the integration of preheating and dry cooling in cokemaking

    Energy Technology Data Exchange (ETDEWEB)

    Barker, J E

    1978-06-01

    In the USSR and Japan, heat recovered from the dry cooling of coke is used to raise steam for power generation or process use. This heat could be used to dry and preheat coal to improve both coke quality and oven productivity.

  6. Reproducibility of LiF:Mg, Cup thermoluminescent dosimeter on kilo voltage and megavoltage photon beam using different preheat rate:A glow curve study

    International Nuclear Information System (INIS)

    Mohd Fahmi Mohd Yusof; Robert, T.S.B.; Puteri Norkhatijah Abdul Hamid; Nor Shazleen Abdul Shukor; Mohd Sazarman Mohd Salleh

    2013-01-01

    Full-text: Post-irradiation annealing or preheat of the LiF based TLD prior readout is commonly practiced for routine dosimetry to eliminate low temperature glow peaks. The aim of this study is to determine the effect of different preheating rate technique prior readout on the reproducibility and glow curve structure of LiF:Mg, Cu, P or TLD-1OOH exposed to low (109kVp) energy and high energy (6MV) photon beam. TLD chips were read after 24 hours of irradiation with three different preheat techniques; no preheat, low preheat rate (100 degree Celsius/ 10 minutes) and high preheat rate (135 degree Celsius/ 10 seconds) and reproducibility of TL signals were assessed in term of Standard Deviation (SD) and glow curve peaks. The high preheat rate technique was the most reproducible method for low energy photon with 1.05 % of mean reproducibility followed by low preheat rate (1.16 %) and no-preheat (1.33 %) techniques. The high preheat rate techniques was also the most reproducible method for high energy photon with 0.767 % of mean reproducibility as compared to low preheat rate (1.281 %). However the high preheat technique record highest TL signal lost with 10.35 % and 6.04 % for 24 and 72 hours of delayed TLD readout with respectively compared to 9.27 % and 4.51 % for 24 and 72 hours by low preheat rate. The low preheat was found to be optimal to eliminate low peaks (peak 1 and 2) but enable to remove peak 3 as it was shifted up word to combine with the main peak 4 of TL glow peak. It can be concluded that the reproducibility and structure of glow curve was strongly influenced by preheat technique prior readout. (author)

  7. Preheating in an asymptotically safe quantum field theory

    DEFF Research Database (Denmark)

    Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert

    2016-01-01

    . High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...

  8. Preheating of manure utilizing heat exchanger and flue gas. Forvarmning af gylle ved varmeveksling med roeggas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.

    1987-07-15

    It has been shown that preheating of manures in biomass conversion plants to a temperature of 50-60 deg. C, before the anaerobic digestion takes place at a temperature of 35-45 deg. C, results in an increase of methane production. But the method normally involves an increase in energy consumption. The aim of the project was to develope methods of utilizing heat from flue gas emitted from the boiler connected to the plant, with the help of a heat exchanger. The heat thus recovered would be used to preheat the manure. The chosen method was to inject the flue gas directly into the manure mass, following this up with heat exchanging and condensing. In order to mix the flue gas thoroughly into the manure an ejector was used, this was driven by the manure flow. Results were satisfactory. (AB).

  9. A pre-heating method based on sinusoidal alternating current for lithium-ion battery

    Science.gov (United States)

    Fan, Wentao; Sun, Fengchun; Guo, Shanshan

    2018-04-01

    In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.

  10. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    Science.gov (United States)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  11. Influence of the Previous Preheating Temperature on the Static Coefficient of Friction with Lubrication

    Directory of Open Access Journals (Sweden)

    M. Živković

    2016-12-01

    Full Text Available Experimental investigations static coefficient of friction in lubricated conditions and pre-heating of the sample pin at high temperatures is discussed in this paper. The static coefficient of friction was measured in the sliding steel copper pins per cylinder of polyvinylchloride. Pins are previously heated in a special chamber from room temperature to a temperature of 800 oC with a step of 50 °C. Tribological changes in the surface layer of the pins caused by pre-heating the pins at high temperatures and cooling systems have very significantly influenced the increase in the coefficient of static friction. The results indicate the possibility of improving the friction characteristics of metal materials based on their thermal treatment at elevated temperatures.

  12. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  13. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    Science.gov (United States)

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  14. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of

  15. Energetic, Exergetic, and Economic Analysis of MED-TVC Water Desalination Plant with and without Preheating

    Directory of Open Access Journals (Sweden)

    Nuri Eshoul

    2018-03-01

    Full Text Available Desalination is the sole proven technique that can provide the necessary fresh water in arid and semi-arid countries in sufficient quantities and meet the modern needs of a growing world population. Multi effect desalination with thermal vapour compression (MED-TVC is one of most common applications of thermal desalination technologies. The present paper presents a comprehensive thermodynamic model of a 24 million litres per day thermal desalination plant, using specialised software packages. The proposed model was validated against a real data set for a large-scale desalination plant, and showed good agreement. The performance of the MED-TVC unit was investigated using different loads, entrained vapour, seawater temperature, salinity and number of effects in two configurations. The first configuration was the MED-TVC unit without preheating system, and the second integrated the MED-TVC unit with a preheating system. The study confirmed that the thermo-compressor and its effects are the main sources of exergy destruction in these desalination plants, at about 40% and 35% respectively. The desalination plant performance with preheating mode performs well due to high feed water temperature leading to the production of more distillate water. The seawater salinity was proportional to the fuel exergy and minimum separation work. High seawater salinity results in high exergy efficiency, which is not the case with membrane technology. The plant performance of the proposed system was enhanced by using a large number of effects due to greater utilisation of energy input and higher generation level. From an economic perspective, both indicators show that using a preheating system is more economically attractive.

  16. Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2004-01-01

    The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)

  17. Effect of preheating and light-curing unit on physicochemical properties of a bulk fill composite

    Directory of Open Access Journals (Sweden)

    Theobaldo JD

    2017-05-01

    Full Text Available Jéssica Dias Theobaldo,1 Flávio Henrique Baggio Aguiar,1 Núbia Inocencya Pavesi Pini,2 Débora Alves Nunes Leite Lima,1 Priscila Christiane Suzy Liporoni,3 Anderson Catelan3 1Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, 2Ingá University Center, Maringá, 3Departament of Dentistry, University of Taubaté, Taubaté, Brazil Objective: The aim of this study is to evaluate the effect of composite preheating and polymerization mode on degree of conversion (DC, microhardness (KHN, plasticization (P, and depth of polymerization (DP of a bulk fill composite.Methods: Forty disc-shaped samples (n = 5 of a bulk fill composite were prepared (5 × 4 mm thick and randomly divided into 4 groups according to light-curing unit (quartz–tungsten–halogen [QTH] or light-emitting diode [LED] and preheating temperature (23 or 54 °C. A control group was prepared with a flowable composite at room temperature. DC was determined using a Fourier transform infrared spectrometer, KHN was measured with a Knoop indenter, P was evaluated by percentage reduction of hardness after 24 h of ethanol storage, and DP was obtained by bottom/top ratio. Data were statistically analyzed by analysis of variance and Tukey’s test (α = 0.05.Results: Regardless of light-curing, the highest preheating temperature increased DC compared to room temperature on bottom surface. LED showed a higher DC compared to QTH. Overall, DC was higher on top surface than bottom. KHN, P, and DP were not affected by curing mode and temperature, and flowable composite showed similar KHN, and lower DC and P, compared to bulk fill.Conclusion: Composite preheating increased the polymerization degree of 4-mm-increment bulk fill, but it led to a higher plasticization compared to the conventional flowable composite evaluated. Keywords: composite resins, physicochemical phenomena, polymerization, hardness, heating

  18. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  19. Experimental investigation of laminar LPG-H{sub 2} jet diffusion flame with preheated reactants

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Mishra; P. Kumar [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-10-15

    This paper presents an experimental investigation of the effect of H{sub 2} addition on flame length, soot free length fraction (SFLF), flame radiant fraction, gas temperature and emission level in LPG-H{sub 2} composite fuel jet diffusion flame for two preheated cases namely, (i) preheated air and (ii) preheated air and fuel. Results show that the H{sub 2} addition leads to a reduction in flame length which may be caused due to an increased gas temperature. Besides this, the flame length is also observed to be reduced with increasing reactants temperature. The soot free length fraction (SFLF) increases as H{sub 2} is added to fuel stream. This might have been caused by decrease in the C/H ratio in the flame and is favorable to attenuate PAH formation rate. Interestingly, the SFLF is observed to be reduced with increasing reactants temperature that may be due to reduction in induction period of soot formation caused by enhanced flame temperature. Moreover, the decreased radiant heat fraction with hydrogen addition is pertinent with the reduction in soot concentration level. The reduction in NOx emission level with H{sub 2} addition to the fuel stream is also observed. On the contrary, NOx emission level is found to be enhanced significantly with reactant temperature that can be attributed to the increase in thermal NOx through Zeldovich mechanism. 31 refs., 4 figs., 2 tabs.

  20. Delayed coking unit preheat train optimization; Otimizacao do preaquecimento das Unidades de Coque

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Edson R; Geraldelli, Washington O; Barros, Francisco C [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The oil industry has been investing in research and development of new techniques and process improvements with the objective to increase the residual fraction profitability and to fulfill the market demands. The adequacy of the refining scheme has led to the development of bottom of the barrel processes that has the objective to convert heavy fractions into products of higher aggregate value. In this context, the process of Delayed Coking presents a great importance in the production of distillates in the diesel range as well as the processing of heavy residues, mostly in the markets where the fuel oil consumption is being reduced. With the approach to help PETROBRAS decide which route to follow during new designs of Delayed Coking units, this work presents a comparative study of the preheat train performance among the energy recovery to preheat the feed, in contrast with preheating the feed and generating steam, simultaneously. In this study the Pinch Technology methodology was used as a procedure for heat integration with the objective of getting the maximum energy recovery from the process, finding the best trade-off between operational cost and investment cost. The alternative of steam generation aims to provide an appropriate flexibility in Delayed Coking units design and operation. (author)

  1. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    Science.gov (United States)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  2. Modelling of preheated regenerative chain in Cernavoda NPP using MMS calculation code

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Prisecaru, I.; Dupleac, D.

    2005-01-01

    Full text: In this work it was studied operation of preheated regenerative chain from NPP Cernavoda. To obtain this analysis coupled analyses of condensate system, water supply system, and drain cooler system were effected. The analysis boundaries are: Upstream: - Steam condensers - Turbine Bleed Steam Downstream: - Steam Generators. The analysis was made in two steps: 1) Getting of hydraulic characteristic of pipe network from steam condensers to steam generators at nominal regime; this step was obtained with hydraulic package called PIPENET. 2) Real thermal hydraulic analyses were done based on hydraulic characteristic of pipe network and supplementary data required for heat transfer calculation in equipment of preheated regenerative chain. Thermal analyses were done using MMS package and refered to normal operating regimes, namely, nominal operating regime required for calibration of calculating model, shutdown regime, start-up regime from zero power hot to nominal power and to abnormal operating regimes, namely, turbine trip, reactor trip and loss of two condensate pumps. The results were compared with already existing analysis and showed the largest differences at interface areas (i.e. 5%). This led us to idea of extending analysis to all secondary circuits in order to reduce the number of boundary conditions which can generate uncertainty in analysis. In this analysis we obtained an advanced model of preheated regenerative chain of secondary circuit in Cernavoda NPP which could be extended up to cover the whole secondary circuit by including the analysis of steam generators, turbine, and steam condenser. (authors)

  3. Modelling of preheated regenerative chain in Cernavoda NPP using MMS calculation code

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Prisecaru, I.; Dupleac, D.

    2005-01-01

    In this work it was studied operation of preheated regenerative chain from NPP Cernavoda. To obtain this analysis coupled analyses of condensate system, water supply system, and drain cooler system were effected. The analysis boundaries are: Upstream: - Steam condensers - Turbine Bleed Steam Downstream: - Steam Generators. The analysis was made in two steps: 1) Getting of hydraulic characteristic of pipe network from steam condensers to steam generators at nominal regime; this step was obtained with hydraulic package called PIPENET. 2) Real thermal hydraulic analyses were done based on hydraulic characteristic of pipe network and supplementary data required for heat transfer calculation in equipment of preheated regenerative chain. Thermal analyses were done using MMS package and referred to normal operating regimes, namely, nominal operating regime required for calibration of calculating model, shutdown regime, start-up regime from zero power hot to nominal power and to abnormal operating regimes, namely, turbine trip, reactor trip and loss of two condensate pumps. The results were compared with already existing analysis and showed the largest differences at interface areas (i.e. 5%). This led US to idea of extending analysis to all secondary circuits in order to reduce the number of boundary conditions which can generate uncertainty in analysis. In this analysis we obtained an advanced model of preheated regenerative chain of secondary circuit in Cernavoda NPP which could be extended up to cover the whole secondary circuit by including the analysis of steam generators, turbine, and steam condenser. (authors)

  4. Plasma formation and target preheating by prepulse of PW laser light

    Science.gov (United States)

    Sentoku, Yasuhiko; Iwata, Natsumi; Koga, James; Dover, Nicholas; Nishiuchi, Mamiko

    2017-10-01

    An intense short pulse laser with intensity over 1021 W/cm2 has become available, i.e. J-KAREN-P at QST. Although the contrast of the short pulse is improved to be of the order of 10-11, there is an unavoidable prepulse, which has multiple spikes (ps) on top of an exponential profile with intensity greater than 1014 W/cm2 about 50 ps in front of the main pulse. The prepulse preheats the target and also produces tenuous plasmas in front of a target before the main pulse arrives. It is critical to understand such preheating of the target, where the nonlocal heat transport is essential at intensity >1014 W/cm2, since the target condition might totally change before the interaction with the main pulse. Using a hydro code, FLASH, and a collisional particle-in-cell code, PICLS, we study the preplasma formation and target preheating over tens of picoseconds timescale, and discuss the prepulse effects on the main pulse interaction. Work supported by the JSPS KAKENHI under Grant No. JP15K21767.

  5. Tekken tests in a steel 'ASTM A 514 GR B' to determine the preheating temperature

    International Nuclear Information System (INIS)

    Quesada, Hector Juan; Zalazar, Monica; Asta, Eduardo Pablo

    2004-01-01

    Cold fissure tests are used to determine the proper preheating temperature in order to prevent fissures during the steel welding process. Tekken tests were carried out on a quenched and tempered high resistance 25.4 mm thick steel (ASTM A514 Gr.B) used in structural applications. The welding was carried out using a FCAW semiautomatic process with gas protection and low hydrogen tubular electrode E110T5-K4. Similar parameters and splicing design were later applied in production. The microstructures of the base material and the welding were determined by optic and electron microscopy. The thermal cycles of the welding were recorded in order to relate the preheating temperature with the cooling time from 800 o C - 500 o C (t 8/5 ) and from 800 o C - 100 o C (tg/1) and the presence or not of fissures. Preheating at 150 o C and t 8/5 greater than 17 s was found to guarantee fissure free welding (CW)

  6. Tekken testing to determine the preheating temperature on ASTM A514 GR B steel

    International Nuclear Information System (INIS)

    Asta, Eduardo; Zalazar, Monica; Quesada, Hector

    2003-01-01

    The cold cracking test methods are used to determine the preheating temperature in order to avoid cracking in steel welding.In this work Tekken tests on high strength quenching and tempering (ASTM A514 GrB) structural steel with a thickness of 25 mm have been made.The welds were done using a FCAW process with gas shielding and basic low hydrogen cored wire E 110T5-K4.The welding parameters and joint design applied in this work are similar to the ones used on site production.The base metal, HAZ and weld metal microstructure have been evaluated by optical and SEM microscopy.Thermal cycles records of each welding have been made to relate preheat temperature with the cooling time on the range of 800-500 degC (t8/5) or 800-100degC (t8/1) and the evidence of crack or no crack condition.Finally, a preheat temperature of 150degC and the cooling time larger than 17 s improve a welding integrity without cracks

  7. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  8. QSOs with narrow emission lines

    International Nuclear Information System (INIS)

    Baldwin, J.A.; Mcmahon, R.; Hazard, C.; Williams, R.E.

    1988-01-01

    Observations of two new high-redshift, narrow-lined QSOs (NLQSOs) are presented and discussed together with observations of similar objects reported in the literature. Gravitational lensing is ruled out as a possible means of amplifying the luminosity for one of these objects. It is found that the NLQSOs have broad bases on their emission lines as well as the prominent narrow cores which define this class. Thus, these are not pole-on QSOs. The FWHM of the emission lines fits onto the smoothly falling tail of the lower end of the line-width distribution for complete QSO samples. The equivalent widths of the combined broad and narrow components of the lines are normal for QSOs of the luminosity range under study. However, the NLQSOs do show ionization differences from broader-lined QSOs; most significant, the semiforbidden C III/C IV intensity ratio is unusually low. The N/C abundance ratio in these objects is found to be normal; the Al/C abundance ratio may be quite high. 38 references

  9. The effect of preheated tendon as a lean meat replacement on the properties of fine emulsion sausages.

    Science.gov (United States)

    Sadler, D H; Young, O A

    1993-01-01

    Tendon from beef hind leg muscles was used to replace some of the lean in a conventional emulsion formulation. The tendon was homogenized and either used raw or preheated for 2·5 h at a range of temperatures (50, 60, 70, 80°C) before use. Texture analysis and sensory evaluation were performed on cylinders of cooked sausage. Texture analysis was carried out on formulations which had 20% of meat protein replaced by 20% tendons which were raw or had been preheated to 50, 60, 70, or 80°C. Fracturability decreased by about 40% with raw tendon, but was restored to within 20% of the no-replacement control if the tendon had been preheated. Hardness was approximately doubled by replacement with raw tendon or tendon heated at 50°C. At temperatures higher than that, hardness returned to approximately no-replacement levels. For sensory evaluation (0-25% replacement; preheating at 70°C), sausages were assessed by a 12-member panel for texture, flavour and overall acceptability. All attributes decreased with increasing collagen content, the decrease being less marked with preheated tendon. Thus more connective tissue could be added for the same panel score if the tissue was preheated. Comparison of the texture profile and the panel scores for texture at the same lean replacement level suggested that reduced fracturability was the texture parameter that panellists objected to when heated tendon replaced some of the lean. Other researchers have shown that connective tissue preheated to 100°C before addition in emulsion sausages results in improved yields and better sensory attributes, but the present results show that temperatures as low as 60°C can be effective for beef tendon. Copyright © 1993. Published by Elsevier Ltd.

  10. Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler

    International Nuclear Information System (INIS)

    Shahin, Hamed; Hassanpour, Saeid; Saboonchi, Ahmad

    2016-01-01

    Highlights: • The integrated model for lime production unit which includes cooler, preheater and rotary kiln is developed. • The effect of residence time in each section on efficiency is investigated. • Influence of material feed rate and excess air on specific fuel consumption is analyzed. • The significant effect of particle size on efficiency and specific fuel consumption is shown. - Abstract: In this paper, thermal energy analysis of three zones of a lime production process, which are preheater, rotary kiln and cooler, is performed. In order to perform a proper quantitative estimation, the system was modeled using energy balance equations including coupled heat transfer and chemical reaction mechanisms. A mathematical model was developed, and consequently, the thermal and chemical behavior of limestone was investigated. The model was verified using empirical data. After model confirmation, the variation of Specific Fuel Consumption (SFC) versus production rate was predicted and the optimum condition was determined. Subsequently, fuel consumption was calculated regarding to altered residence time inside each zone of lime production process, for a constant output. Results indicate that increasing the residence time inside each zone of lime production process, will enhance thermal efficiency and saves fuel consumption. Relative enhancement will be the same for different sizes of limestone. It was found that a 10-min increase in material residence time inside the preheater or rotary kiln can reduce fuel consumption by around two percent. Whereas, a 5-min increase in material residence time inside the cooler would be enough to obtain a similar result. Finally, the ratio of air-to-fuel and production rate are changed in such a way that the same product is achieved. The model predicts that lowering excess air from 15% to 10% leads to a 2.5% reduction of Specific Fuel Consumption (SFC).

  11. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-01-01

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model κ(T)=κ SH [1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where κ SH is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  12. Damage to Preheated Tungsten Targets after Multiple Plasma Impacts Simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlay, V.A.; Tereshin, V.I. [Kharkov Inst. of Physics and Technology, Inst. of Plasma Physics of National Science Center, Akademicheskaya street, 1, 61108 Kharkov (Ukraine); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Postfach 3640, D-7602 1 Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: The energy loads onto ITER divertor surfaces associated with the Type I ELMs are expected to be up to 1 MJ/m{sup 2} during 0.1-0.5 ms, with the number of pulses about 103 per discharge. Tungsten is a candidate material for major part of the surface, but its brittleness can result in substantial macroscopic erosion after the repetitive heat loads. To minimize the brittle destruction, tungsten may be preheated above the ductile-to-brittle transition temperature. In this work the behavior of preheated tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 450 pulses of the duration 0.25 ms and the heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is respectively below and above the melting threshold. During the exposures the targets were permanently kept preheated at 650 deg. C by a heater at target backside. In the course of exposures the irradiated surfaces were examined after regular numbers of pulses using the SEM and the optical microscopy. The profilometry, XRD, microhardness and weight loss measurements have been performed, as well as comparisons of surface damages after the heat loads both below and above the melting threshold. It is obtained that macro-cracks do not develop on the preheated surface. After the impacts with surface melting, a fine mesh of intergranular microcracks has appeared. The width of fine intergranular cracks grows with pulse number, achieving 1-1.5 microns after 100 pulses, and after 210 pulses the crack width increases up to 20 microns, which is comparable with grain sizes. Threshold changes in surface morphology resulting in corrugation structures and pits on the surface as well as importance of surface tension in resulted 'micro-brush' structures are discussed. Further evolution of the surface pattern is caused by loss of separated grains on exposed

  13. Experimental and analytical evaluation of preheating temperature during multipass repair welding

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2017-01-01

    Full Text Available Experimental measurement and analytical calculation of preheating, i. e. interpass temperature during multi-pass repair welding has been presented. Analytical calculation is based on heat transfer analysis, whereas measurements have been performed by thermovision camera. Repair welding was performed on crane wheels in the Steelworks Smederevo. Comparison of results indicated that analytical calculation is good enough as the first approximation, but it needs further elaboration, e. g. taking into account the radiation component of heat dissipation and/or temperature dependence of material thermomechanical properties.

  14. Pretreatment and preheating of scrap. Tarkastelu koskien romun esikaesittely- ja esikuumennusmenetelmiae

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, P.; Hanni, J. (Outokumpu Oy Tornion Tehtaat, Tornio (Finland))

    1990-01-01

    As a background for this study has been those demands for scrap treatments and transportation, which are coming with increasing production of melting shop of Outokumpu Oy's Tornio works and also problems caused by snow among productionrate. Different pretreatment-, transport-, and preheatingmethods and some alternatives has been studied to arrange those as a functioning complete. Also very exact plannings for some pretreatmentmethods has been made. From preheatingmethods some methods, which are concerned to be effective and possible in the future has been studied. In addition those parameters, which are involved to the effectivity of preheating process in melting shop of Outokumpu Oy's Tornio works has been examined.

  15. Pretreatment and preheating of scrap; Tarkastelu koskien romun esikaesittely- ja esikuumennusmenetelmiae

    Energy Technology Data Exchange (ETDEWEB)

    Hooli, P.; Hanni, J. [Outokumpu Oy Tornion Tehtaat, Tornio (Finland)

    1990-12-31

    As a background for this study has been those demands for scrap treatments and transportation, which are coming with increasing production of melting shop of Outokumpu Oy`s Tornio works and also problems caused by snow among productionrate. Different pretreatment-, transport-, and preheatingmethods and some alternatives has been studied to arrange those as a functioning complete. Also very exact plannings for some pretreatmentmethods has been made. From preheatingmethods some methods, which are concerned to be effective and possible in the future has been studied. In addition those parameters, which are involved to the effectivity of preheating process in melting shop of Outokumpu Oy`s Tornio works has been examined.

  16. High SBS-Threshold Er/Yb Co-Doped Phosphate Glass Fiber Amplifiers for High Power, Sub-us Pulsed, Narrow Linewidth, All Fiber-Based Laser Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, NP Photonics has achieved 1.2 kW peak power for 105 ns fiber laser pulses, and successfully demonstrated the feasibility to produce monolithic high SBS...

  17. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    International Nuclear Information System (INIS)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu; Zhang, Baohan; Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming

    2016-01-01

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  18. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Gu, Yuqiu, E-mail: yqgu@caep.cn; Zhang, Baohan [Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Peng, Xiaoshi; Xu, Tao; Wang, Feng; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); and others

    2016-06-15

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  19. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations.

    Science.gov (United States)

    Alizadeh Oskoee, Parnian; Pournaghi Azar, Fatemeh; Jafari Navimipour, Elmira; Ebrahimi Chaharom, Mohammad Esmaeel; Naser Alavi, Fereshteh; Salari, Ashkan

    2017-01-01

    Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90]) and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C). Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P composite resin type, preheating and interactive effect of these variables on gap formation were significant (Pcomposite resins (Pcomposite resins at room temperature compared to composite resins after 40 preheating cycles (Pcomposite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  20. Narrow-width mechanism of a=5 Ξ-state

    International Nuclear Information System (INIS)

    Kumagai-Fuse, I.; Akaishi, Y.

    1995-04-01

    Narrow-width mechanism of ≡ 5 H is discussed by calculating conversion widths to all its possible decay channels. Since the conversion processes have small reaction Q values, the three- and four- body decays are strongly suppressed owing to small phase volumes available. Decay widths to the two-body channels are significantly reduced by the distortion of emitted-particle waves. This mechanism brings about a narrow width of ≡ 5 H. The total width is estimated to be 0.87 MeV, in which the largest contribution comes from the decay into the Λ 4 H * +Λ channel. (author)

  1. Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Franz; Nagle, Marcus; Leis, Hermann; Mueller, Joachim [Institute of Agricultural Engineering 440e, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart (Germany); Janjai, Serm [Department of Physics, Silpakorn University, Nakhon Pathom (Thailand); Mahayothee, Busarakorn [Department of Food Technology, Silpakorn University, Nakhon Pathom (Thailand); Haewsungcharoen, Methinee [Department of Food Engineering, Chiang Mai University, Chiang Mai (Thailand)

    2009-07-15

    Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 ({approx}US$ 1800 at US$ 1 THB 31). (author)

  2. Experimental study of a single fuel jet in conditions of highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lille, Simon; Blasiak, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Highly Preheated Air Combustion (HPAC) is a technique to reduce consumption of fuel and decrease NO{sub x} formation in furnaces. The main change that occur in the furnace chamber is that the flow pattern of flue gases changes dramatically resulting in a more uniform heat transfer. The usefulness of regenerative combustion is very clear, but the advantages have so far been accompanied by high levels of pollutants, such as NO{sub x}. The combination of the regeneration technique and internal flue gas recirculation, thus decreasing NO{sub x} and keeping the other advantages, has made HPAC a very attractive combustion technology with application to heat treatment reheating and melting processes. This work gives an introduction to regenerative combustion with diluted air, including theory on flame stabilization. Furthermore, a description of a new test furnace is given with results from a parametric study and from tests using schlieren color visualization, direct photography, and laser Doppler anemometry. In the parametric study NO{sub x}-emission, CO-emission, lift-off, fluctuations, and some flame characteristics are related to nozzle diameter, oxygen concentration, and preheat temperature. For the schlieren technique and direct photography, both still and high-speed cameras were used.

  3. Instrumentation strategies for energy conservation in broiler barns with ventilation air solar pre-heaters

    Energy Technology Data Exchange (ETDEWEB)

    Cordeau, Sebastien; Barrington, Suzelle [Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore, Ste Anne de Bellevue, Quebec H9X 3V9 (Canada)

    2010-08-15

    At the present consumption rate, world fossil-fuel reserves are expected to be depleted by 2050 unless their consumption is optimized and supplemented with renewable energy sources. The objective of this project was to evaluate the performance of a simple data acquisition system installed to conduct an energy balance and identify energy saving strategies in two commercial broilers barns with ventilation air solar pre-heaters. Located near Montreal, Canada, the two identical barns were instrumented for inside and outside air conditions, ventilation rate and energy recovery by the solar air pre-heaters. Whereas the temperature, relative humidity and radiation sensors were reliable, inside air temperature stratification complicated energy balance analyses and broiler heat production rate calculations. Lack of room air mixing resulted in the loss of 25 and 15% of the generated heater load and recovered solar energy. The proper monitoring of all environmental conditions required their measurement every 5 rather than 20 min. Instead of using a data transmission service found to be unreliable in rural areas, all data loggers were downloaded onto a portable computer every 45 days during regular instrument maintenance. Accordingly, room air mixing is recommended to facilitate energy balance studies and improve the efficient use of heating energies. (author)

  4. Gravitational waves from Abelian gauge fields and cosmic strings at preheating

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Figueroa, Daniel G.; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.

  5. Symbiotic potential: the integration of preheating and dry cooling in cokemaking

    Energy Technology Data Exchange (ETDEWEB)

    Barker, J E [British Carbonization Research Association, England; Bruce, J M; Kemmetmueller, R

    1978-06-01

    The expression closed energy cycle has become popular in the last decade as descriptive of industrial systems in which exhaust heat is recovered from a primary energy-conversion stage and utilized either recuperatively or regeneratively within the overall complex. An old and well-proven means of utilizing the sensible heat of the incandescent coke discharged from coke ovens is known as dry cooling. This is being practiced widely in the USSR and Japan, but not yet to any significant extent in the western world. The waste heat recovered by this system is normally used to raise steam for power generation and process use. A recent advance in the carbonization of coal for the manufacture of metallurgical coke has been the application of the technique of coal drying and preheating as a means of improving both coke quality and oven productivity, and this is usually energized by burning gas as a fuel. An alternative configuration, having practical advantages in relation to efficiency of utilization of recovered energy and to safety in operation, is represented by a combination of coal drying and preheating with dry cooling of the coke. This paper is concerned with the case for this combination and the means whereby it may be effected in practice. The energy cycle of cokemaking would thus be more nearly closed.

  6. Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air.

    Science.gov (United States)

    Guangul, Fiseha M; Sulaiman, Shaharin A; Ramli, Anita

    2012-12-01

    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    Science.gov (United States)

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (Pcomposite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (Pcomposite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  8. Modification of preheated tungsten surface after irradiation at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Arzhannikov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Huber, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Ivanov, I.A. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kuklin, K.N. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V.; Postupaev, V.V.; Sinitsky, S.L. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vasilyev, A.A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-12-15

    Highlights: • Preheated tungsten was irradiated at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. • The crack pattern and the quantity of bubbles depend on the initial temperatures of the target. • The orientation of major crack networks correlates with the direction of machining of the samples. • Dust impact craters were found. - Abstract: The study is devoted to tungsten surface modification after irradiation at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. In order to emulate heating with a steady plasma flux in the ITER divertor, some of the tungsten samples were preheated up to 500 °C. It was found out that the behavior of the surface modification (the crack pattern and the number of bubbles) depends on the initial temperature of the targets. While the orientation of major crack networks correlates with the direction of machining of the samples. Afterwards we have observed the process of craters’ formation caused by dust particle impacts.

  9. Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel

    Science.gov (United States)

    Suzuki, Masahiro; Sakuma, Yutaka

    Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.

  10. Impact of preheating on the behavior of Listeria monocytogenes in a broth that mimics Camembert cheese composition.

    Science.gov (United States)

    Helloin, E; Bouttefroy, A; Gay, M; Phan Thanh, L

    2003-02-01

    The effect of preheating on the survival of L. monocytogenes in Richard's broth, which mimics the composition of Camembert cheese composition, was examined. Experiments were carried out to reproduce contamination of cheese with environmental heat-stressed cells of L. monocytogenes surviving hot-cleaning procedures. Cells in mid-log phase were heated for 30 min at 56 degrees C before being inoculated into Richard's broth. The pHs and temperatures of Richard's broth were chosen to recreate the conditions of curd dripping (pH 5, 25 degrees C), of the beginning of cheese ripening (pH 5, 12 degrees C), and of the beginning (pH 5, 4 degrees C) and the end (pH 7, 4 degrees C) of cheese storage. Immediately after heat treatment, the viability loss was especially high for strain 306715, which exhibited only 0.6% +/- 0.2% survival, compared with 22% +/- 8.7% for strain EGD. The percentages of the surviving heated cells that were injured were 93% +/- 8% for strain 306715 and 98% +/- 3% for strain EGD. The destruction of the surviving L. monocytogenes cells was accelerated when they encountered the pH and temperature conditions of Camembert cheese during manufacturing, ripening, and cold storage (pH 5 at 25, 12, and 4 degrees C, respectively). The multiplication of the surviving heated cells was retarded under favorable growth conditions similar to those of storage by the distributor and the consumer (pH 7 at 4 and 12 degrees C, respectively).

  11. Narrow gap electronegative capacitive discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  12. Bandwidth-narrowed Bragg gratings inscribed in double-cladding fiber by femtosecond laser.

    Science.gov (United States)

    Shi, Jiawei; Li, Yuhua; Liu, Shuhui; Wang, Haiyan; Liu, Ningliang; Lu, Peixiang

    2011-01-31

    Bragg gratings with the bandwidth(FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

  13. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-04-30

    The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.

  14. New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching

    Directory of Open Access Journals (Sweden)

    Cong Chunxiao

    2009-01-01

    Full Text Available Abstract We report a low-cost and simple method for fabrication of nonspherical colloidal lithographic nanopatterns with a long-range order by preheating and oxygen reactive ion etching of monolayer and double-layer polystyrene spheres. This strategy allows excellent control of size and morphology of the colloidal particles and expands the applications of the colloidal patterns as templates for preparing ordered functional nanostructure arrays. For the first time, various unique nanostructures with long-range order, including network structures with tunable neck length and width, hexagonal-shaped, and rectangular-shaped arrays as well as size tunable nanohole arrays, were fabricated by this route. Promising potentials of such unique periodic nanostructures in various fields, such as photonic crystals, catalysts, templates for deposition, and masks for etching, are naturally expected.

  15. New pre-heating system for natural gas pressure regulating stations

    International Nuclear Information System (INIS)

    Zullo, G.; Vertuani, C.; Borghesani, O.; Vignoli, F.

    1999-01-01

    Costs for running natural gas pressure regulating stations are mainly due to operation and maintenance of a natural gas preheating system, usually equipment with a hot water boiler or an armour-plated electric resistance immersed in a fluid. The article describe a system, considering a natural circulation boiler which uses steam/condensate (at 100 degrees C and 0,5 bar) as a thermal conductor, in thermodynamic balance and in absence of un condensable. This new boiler, already operating with satisfactory results in heating system for industrial buildings, does not require testing, notifications, periodical inspections by the competent authorities, constant monitoring by trained or patented staff. Besides, it allows easier installations procedures and running cost savings. The system, to be considered as static because it has no moving parts, is a good alternative to conventional forced hot water circulation or electric heating system [it

  16. Preheat effect on titanium plate fabricated by sputter-free selective laser melting in vacuum

    Science.gov (United States)

    Sato, Yuji; Tsukamoto, Masahiro; Shobu, Takahisa; Yamashita, Yorihiro; Yamagata, Shuto; Nishi, Takaya; Higashino, Ritsuko; Ohkubo, Tomomasa; Nakano, Hitoshi; Abe, Nobuyuki

    2018-04-01

    The dynamics of titanium (Ti) melted by laser irradiation was investigated in a synchrotron radiation experiment. As an indicator of wettability, the contact angle between a selective laser melting (SLM) baseplate and the molten Ti was measured by synchrotron X-rays at 30 keV during laser irradiation. As the baseplate temperature increased, the contact angle decreased, down to 28° at a baseplate temperature of 500 °C. Based on this result, the influence of wettability of a Ti plate fabricated by SLM in a vacuum was investigated. It was revealed that the improvement of wettability by preheating suppressed sputtering generation, and a surface having a small surface roughness was fabricated by SLM in a vacuum.

  17. Solid state NMR studies for a new carbonization process with high temperature preheating

    Science.gov (United States)

    Saito, Koji; Hatakeyama, Moriaki; Komaki, Ikuo; Katoh, Kenji

    2002-01-01

    A new carbonization process with rapid preheating and coke discharging at medium temperature has been developed in Japan. The result of this process shows that even when no or slightly coking coal is by 50 wt% the coking property is improved and a coking coke with cold strength usable at blast furnace can be manufactured with the new carbonization process. The mechanism of the coking property improvement was examined by coal properties using mainly solid state NMR ( 1H CRAMPS and 13C SPE/MAS, CP/MAS) and NMR imaging (single point imaging, in-situ imaging). It has been clarified that the molecular structure of coal is relaxed by the rapid heating treatment and, in addition, there is a close relation between hydrogen bonding and relaxation of the molecular structure of coal.

  18. Study of sensitivity change of OSL signals from quartz and feldspars as a function of preheat temperature

    DEFF Research Database (Denmark)

    Jungner, H.; Bøtter-Jensen, L.

    1994-01-01

    and as a result, the equivalent dose (ED) would be underestimated. A study of sensitivity changes in feldspars and quartz was carried out with emphasis on the effect of preheat and annealing on the OSL signal. Measurement results obtained are presented, and possible elimination of errors in dating caused...

  19. Experimental and Modeling Investigation of the Effect of Air Preheat on the Formation of NOx in an RQL Combustor

    Science.gov (United States)

    Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.

    2012-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.

  20. Utilization of biogas released from palm oil mill effluent for power generation using self-preheated reactor

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2015-01-01

    Highlights: • A lab-scale reactor called self-preheating flameless combustion (SPFC) system is experimented. • Feasibility of power generation by POME biogas is modeled using SPFC system. • 4 MW power is available by POME biogas utilization in a typical palm oil mill with 300,000 tons production. • The rate of power generation increases when 2% hydrogen is added to POME biogas ingredients. - Abstract: In palm oil mills, for one ton crude palm oil (CPO) production, 70 m"3 biogas is released from palm oil mill effluent (POME) which can endanger the environment. Palm oil mills without appropriate strategies for biogas collection can participate in greenhouse gases (GHGs) generation actively. In this paper, a typical palm oil mill with annual capacity of 300,000 ton oil palm production and 3 MW electricity demand is considered as a pilot plant and feasibility of power generation by POME biogas is modeled by Aspen Plus considering flameless mode in combustion system. A new design of lab-scale flameless reactor called self-preheated flameless combustion (SPFC) system is presented and employed in power generation modeling. In SPFC system, the flameless chamber is employed as a heater to preheat an oxidizer over the self-ignition temperature of the fuel. A helical stainless steel pipe (called self-preheating pipe) is installed inside the chamber to conduct the oxidizer from exhaust zone to the combustion zone inside the chamber and preheat oxidizer. In the flameless mode, the diluted oxidizer is injected to the helical pipe from the exhaust zone and the preheated oxidizer at the burner is conducted to the flameless furnace through a distributor. In SPFC system external heater for preheating oxidizer is removed and the rate of power generation increases. The results show that 10.8 MW power could be generated in ultra-lean POME biogas SPFC. However, the rate of pollutant especially CO_2 and NO_x is high in this circumstances. In stoichiometric condition, 4 MW power

  1. Hydrogen preheating through waste heat recovery of an open-cathode PEM fuel cell leading to power output improvement

    International Nuclear Information System (INIS)

    Mohamed, W.A.N.W.; Kamikl, M. Haziq M.

    2016-01-01

    Highlights: • A study on the effect of hydrogen preheating using waste heat for low temperature PEM fuel cells. • Theoretical, experimental and analytical framework was established. • The maximum electrical power output increases by 8–10% under specific operating conditions. • Open loop hydrogen supply gives a better performance than closed loop. • The waste heat utilization is less than 10% due to heat capacity limitations. - Abstract: The electrochemical reaction kinetics in a Polymer Electrolyte Membrane (PEM) fuel cell is highly influenced by the reactants supply pressures and electrode temperatures. For an open cathode PEM fuel cell stack, the power output is constrained due to the use of air simultaneously as reactant and coolant. Optimal stack operation temperatures are not achieved especially at low to medium power outputs. Based on the ideal gas law, higher reactant temperatures would lead to higher pressures and subsequently improve the reaction kinetics. The hydrogen supply temperature and its pressure can be increased by preheating; thus, slightly offsetting the limitation of low operating stack temperatures. The exit air stream offers an internal source of waste heat for the hydrogen preheating purpose. In this study, a PEM open-cathode fuel cell was used to experimentally evaluate the performance of hydrogen preheating based on two waste heat recovery approaches: (1) open-loop and (2) closed loop hydrogen flow. The stack waste heat was channelled into a heat exchanger to preheat the hydrogen line before it is being supplied (open loop) or resupplied (closed loop) into the stack. At a constant 0.3 bar hydrogen supply pressure, the preheating increases the hydrogen temperature in the range of 2–13 °C which was dependant on the stack power output and cathode air flow rates. The achievable maximum stack power was increased by 8% for the closed loop and 10% for the open loop. Due to the small hydrogen flow rates, the waste heat utilization

  2. Relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a flow obstacle in a vertical boiling two-phase upward flow in a narrow annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2003-01-01

    If a flow obstacle such as a spacer is set in a boiling two-phase flow within an annular channel, where the inner tube is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some case the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. The burnout mechanism near the spacer, however, is not still clear. In the present paper we focus our attention on the occurrence of the burnout near a spacer, and discuss the occurrence location of dryout and burnout and the relation between the occurrence of burnout and differential-pressure fluctuation characteristics caused by the disturbance waves passing by a spacer. (author)

  3. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  4. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  5. Experimental Study on CHF in a Hemispherical Narrow Gap

    International Nuclear Information System (INIS)

    Jeong, J.H.; Park, R.J.; Kang, K.H.; Kim, S.B.; Kim, H.D.

    1999-01-01

    As a part of the SONATA-IV program, KAERI is conducting an experimental investigation of critical heat flux(CHF) in hemispherical narrow gaps. A visualization experiment, VISU-II, was done as the first step to get a visual observation of the flow behaviour inside a hemispherical gap and to understand the CHF-triggering mechanism. It was observed that the counter-current flow limitation (CCFL) phenomenon prevented water from wetting the heater surface and induced CHF. The CHFG (Critical Heat Flux in Gap) test is now being performed to measure the CHF and to investigate the inherent cooling mechanism in hemispherical narrow gaps. Temperature measurements over the heater surface show that the two-phase flow behaviour inside the gaps could be quite different from the other usual CHF experiments. The measured CHF points are lower than the predictions by existing empirical correlations based on the data measured with small-scale horizontal plates and vertical annulus. (authors)

  6. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-Ray Preheat

    International Nuclear Information System (INIS)

    Colvin, Jeffrey D.; Kalantar, Daniel H.

    2006-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, <<1013 W/cm2, compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flash-coating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  7. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-ray Preheat

    International Nuclear Information System (INIS)

    Colvin, J D; Kalantar, D H

    2005-01-01

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, 13 W/cm 2 , compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flashcoating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe

  8. X-ray emission, ablation pressure, and preheating for foils irradiated at 0. 26. mu. m wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-11-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 ..mu..m laser at intensities approx.10/sup 15/ W cm/sup -2/ are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 ..mu..m), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant.

  9. X-ray emission, ablation pressure, and preheating for foils irradiated at 0.26 μm wavelength

    International Nuclear Information System (INIS)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-01-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 μm laser at intensities approx.10 15 W cm -2 are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 μm), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant

  10. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  11. An economic and performance design study of solar preheaters for domestic hot water heaters in North Carolina

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1977-01-01

    The performance and estimated material costs for several solar preheaters for domestic hot water heaters using isolation levels present in North Carolina are presented. The effects of monthly variations in isolation and the direction of incident radiation are included. Demand is assumed at 13 gallons (49.2 liters) per day per person. The study shows that a closed circulation system with 82 gallons (310 liters) of preheated storage and 53.4 cu ft (4.94 cu m) of collector surface with single cover can be expected to cost about $800 and to repay it capital cost and interest (at 8%) in 5.2 years, assuming present electric rates increase at 5% per year.

  12. Modeling of crude oil fouling in preheat exchangers of refinery distillation units

    Energy Technology Data Exchange (ETDEWEB)

    Jafari Nasr, Mohammad Reza; Majidi Givi, Mehdi [National Petrochemical Research and Technology Company (NPC-RT), P.O. Box 14385, Tehran (Iran)

    2006-10-15

    The aim of this paper is to propose a new model for crude oil fouling in preheat exchangers of crude distillation units. The experimental results of Australian light crude oil with the tube side surface temperature between 200 and 260{sup o}C and fluid velocity ranged 0.25-0.4m/s were used [Z. Saleh, R. Sheikholeslami, A.P. Watkinson, Heat exchanger fouling by a light australian crude oil, in: Heat Exchanger Fouling and Cleaning Fundamentals and Applications, Santa Fe, 2003]. The amount of activation energy depends on the surface temperature has been calculated. A new model including a term for fouling formation and a term for fouling removal due to chemical and tube wall shear stress was proposed, respectively. The main superiority of the model are independent to Pr number, thermal fouling removal and determination of {beta} based on experimental tests. Finally using the proposed model the fouling rate of Australian light crude oil has been calculated and the threshold curves to identify fouling and no fouling formation zones have been drawn. (author)

  13. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    International Nuclear Information System (INIS)

    Tang, Dapei

    2015-01-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained. (paper)

  14. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  15. Synthesis and physical properties of zinc-oxide textured films by using a filtered preheated hydrothermal

    International Nuclear Information System (INIS)

    Qiu, Jijun; Shin, Dongmyeong; He, Weizhen; Kim, Hyungkook; Hwang, Yoonhwae; Li, Xiaomin; Gao, Xiangdong

    2014-01-01

    Axially (c-axis)-oriented ZnO thick films with a ∼8.1 μm thickness were fabricated on ZnO seed layer coated substrates by using a filtered preheated hydrothermal solution. The thick films composed of single-crystal ZnO microrods with various diameters were formed by coalescing each nanorod together along their side surfaces. From the X-ray diffraction result a biaxial stress exists was found to exist in the as-grown thick films, and the stress gradually increased with increasing annealing temperatures from 200 to 550 .deg. C due to a degradation in the crystalline quality. The biaxial stress is responsible for the red-shift of the optical band gap of the ZnO thick films. Photoluminescence and Hall results revealed that the optical and the electrical properties of the thick films were degenerated after high-temperature annealing (> 200 .deg. C), which was due to the introduction of point defects, such as oxygen interstitials and zinc vacancies.

  16. Ways to achieve optimum utilization of waste gas heat in cement kiln plants with cyclone preheaters

    Energy Technology Data Exchange (ETDEWEB)

    Steinbiss, E

    1986-02-01

    Kiln exit gases and the exhaust gases from clinker coolers often cannot be fully utilized in drying plants. In such cases a part of the heat content of the gases should be utilized for water heating. In addition, it is possible to utilize the waste gas heat in conventional steam boilers, with which, depending on design, it is possible to generate electricity at a rate of between 10-30 kWh/t (net output). A new and promising method of utilization of waste gas heat is provided by precalcining systems with bypass, in which up to 100% of the kiln exit gases can be economically bypassed and be utilized in a steam boiler, without requiring any cooling. A development project, already started, gives information on the operational behaviour of such a plant and on the maximum energy recoverable. Alternatively, the bypass gases may, after partial cooling with air or preheater exit gas, be dedusted and then utilized in a grinding/drying plant. Furthermore, they can be used in the cement grinding process for the drying of wet granulated blastfurnace slag or other materials. For this it is not necessary to dedust the bypass gases.

  17. Synthesis and physical properties of zinc-oxide textured films by using a filtered preheated hydrothermal

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jijun [Pusan National University, Busan (Korea, Republic of); Shin, Dongmyeong; He, Weizhen; Kim, Hyungkook; Hwang, Yoonhwae [Pusan National University, Miryang (Korea, Republic of); Li, Xiaomin; Gao, Xiangdong [Chinese Academy of Sciences, Shanghai (China)

    2014-11-15

    Axially (c-axis)-oriented ZnO thick films with a ∼8.1 μm thickness were fabricated on ZnO seed layer coated substrates by using a filtered preheated hydrothermal solution. The thick films composed of single-crystal ZnO microrods with various diameters were formed by coalescing each nanorod together along their side surfaces. From the X-ray diffraction result a biaxial stress exists was found to exist in the as-grown thick films, and the stress gradually increased with increasing annealing temperatures from 200 to 550 .deg. C due to a degradation in the crystalline quality. The biaxial stress is responsible for the red-shift of the optical band gap of the ZnO thick films. Photoluminescence and Hall results revealed that the optical and the electrical properties of the thick films were degenerated after high-temperature annealing (> 200 .deg. C), which was due to the introduction of point defects, such as oxygen interstitials and zinc vacancies.

  18. Combustion analysis of preheated crude sunflower oil in an IDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, Mustafa; Ozsezen, Ahmet Necati; Turkcan, Ali [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2009-05-15

    In this study, preheated crude sunflower oil (PCSO) was tested for combustion and emission properties against petroleum based diesel fuel (PBDF) in a naturally aspirated, indirect injection (IDI) engine. The cylinder gas pressure and heat release curves for PCSO at 75 C were similar to those of PBDF. The ignition delays for the PCSO were longer and the start of injection timing was earlier than for PBDF. The difference in the average brake torque was a decrease of 1.36% for PCSO though this was statistically insignificant. The brake specific fuel consumption increased by almost 5% more or less in proportion to the difference in calorific value, so that the 1.06% increase in thermal efficiency was again statistically insignificant. The emission test results showed that the decreases in CO{sub 2} emissions and smoke opacity 2.05% and 4.66%, respectively; however, this was not statistically significant, though in line with the apparent increase in thermal efficiency. There was a significant 34% improvement in the emissions of unburnt hydrocarbons. Carbon monoxide increased by 1.77% again the result was not statistically significant given the small number of repeat tests. The use of PCSO does not have any negative effects on the engine performance and emissions in short duration engine testing. (author)

  19. Useful work and the thermal efficiency in the ideal Lenolr cycle with regenerative preheating

    Science.gov (United States)

    Georgiou, Demos P.

    2000-11-01

    In the existing thermal engine concepts negative work transfer (usually needed to drive a compression process) is supplied by the work produced by the engine itself. The remaining difference (i.e., the net work transfer) becomes the useful work, since it is available for external consumption. The thermal efficiency is the parameter that compares this against the heat input into the system. It forms the main optimization parameter in any engine design. The objective of the present study is to show that for the case of the Lenoir cycle with regenerative preheating the entire positive work is available for external consumption, since the negative (i.e., the compression) work is supplied by the atmospheric air. Not only this, but, during the compression process and due to the pressure difference across the two sides of the moving piston, an additional (useful) work transfer may be generated. Thus, the proposed power plant may be considered as a combination of a thermal engine and a wind turbine. In the ideal cycle limit (at least), the total amount of useful work exceeds the heat entering the system. This leads to the definition of a new parameter for the efficiency (called the technical efficiency), which compares the combined positive work transfer (i.e., the useful one) against the heat entering the system and which may exceed the 100% level.

  20. Application of ground-to-air heat exchanger for preheating of supply air

    Science.gov (United States)

    Sorokins, Juris; Borodinecs, Anatolijs; Zemitis, Jurgis

    2017-10-01

    This study focuses on assessing the contribution of the passive ground-coupled air heat exchanger system to decreasing the energy consumption of air conditioning and ventilation systems for office buildings in the Latvian climate conditions. The theoretical part of the thesis deals with methods of office building ventilation, supply air preheating and heat recovery as well as particularities of using ground-coupled air heat exchangers, their design parameters and their joint impact on the thermal performance. The engineering project part includes a ventilation system for an office building with an integrated ground-coupled air heat exchanger. By simulating energy consumption of the ventilation system for a duration of one year, the thesis analyzes the contribution of the heat exchanger to the overall energy consumption, which totals 9.53 MWh and 4.02 MWh a year, according to the desired parameters of the indoor climate. The possible alternative heat recovery solutions are investigated to reach by European Regional Development Fund project Nr.1.1.1.1/16/A/048 “NEARLY ZERO ENERGY SOLUTIONS FOR UNCLASSIFIED BUILDINGS”.

  1. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  2. Establishment of welding process without PWHT and preheating in SGV480 plate for nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Watanabe, Nozomu; Higashikubo, Tomohiro; Nagamura, Takafumi; Yoshimoto Kentaro

    2000-01-01

    Ordinances of Japan's Ministry of International Trade and Industry provide that welded joints more than 38 mm thick used in nuclear reactor containment vessels undergo Post Weld Heat Treatment (PWHT). PWHT is difficult to apply in the field, however. We made SGV480 plate tougher and more weldable by using a Thermo-Mechanical Control Process (TMCP) in rolling. Such plate can be used without PWHT or preheating up to 55 mm thick at lowest service temperature -19degC. (author)

  3. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre

    2015-04-09

    Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  5. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  6. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    Science.gov (United States)

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  7. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  8. Energy, exergy, environmental and economic analysis of industrial fired heaters based on heat recovery and preheating techniques

    International Nuclear Information System (INIS)

    Shekarchian, M.; Zarifi, F.; Moghavvemi, M.; Motasemi, F.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • 4-E analysis of a typical industrial grade fired heater unit is studied. • This analysis is accomplished for the first time in this study. • Heat recovery and air preheating lead to substantial reduction in the fuel consumption. • The company’s current costs are tremendously reduced by these methods. • The methods lead to mitigation in GHG emission and to reduction in the associated taxes. - Abstract: Fired heaters are ubiquitous in both the petroleum and petrochemical industries, due to it being vital in their day to day operations. They form major components in petroleum refineries, petrochemical facilities, and processing units. This study was commissioned in order to analyze the economic benefits of incorporating both heat recovery and air preheating methods into the existing fired heater units. Four fired heater units were analyzed from the energy and environmental point of views. Moreover, the second law efficiency and the rate of irreversibility were also analyzed via the exergy analysis. Both analyses was indicative of the fact that the heat recovery process enhances both the first and second law efficiencies while simultaneously assisting in the production of high and low pressure water steam. The implementation and usage of the process improves the thermal and exergy efficiencies from 63.4% to 71.7% and 49.4%, to 54.8%, respectively. Additionally, the heat recovery and air preheating methods leads to a substantial reduction in fuel consumption, in the realm of up to 7.4%, while also simultaneously decreasing heat loss and the irreversibility of the unit. Nevertheless, the results of the economic analysis posits that although utilizing an air preheater unit enhances the thermal performance of the system, due to the air preheater’s capital and maintenance costs, incorporating an air preheater unit to an existing fired heater is not economically justifiable. Furthermore, the results of the sensitivity analysis and payback period

  9. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  10. Performance and emission study of preheated Jatropha oil on medium capacity diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Bhupendra Singh; Du Jun, Yong; Lee, Kum Bae [Division of Automobile and Mechanical Engineering, Kongju National University (Korea); Kumar, Naveen [Department of Mechanical Engineering, Delhi Technological University, Bawana Road, Delhi 42 (India)

    2010-06-15

    Diesel engines have proved their utility in transport, agriculture and power sector. Environmental norms and scared fossil fuel have attracted the attention to switch the energy demand to alternative energy source. Oil derived from Jatropha curcas plant has been considered as a sustainable substitute to diesel fuel. However, use of straight vegetable oil has encountered problem due to its high viscosity. The aim of present work is to reduce the viscosity of oil by heating from exhaust gases before fed to the engine, the study of effects of FIT (fuel inlet temperature) on engine performance and emissions using a dual fuel engine test rig with an appropriately designed shell and tube heat exchanger (with exhaust bypass arrangement). Heat exchanger was operated in such a way that it could give desired FIT. Results show that BTE (brake thermal efficiency) of engine was lower and BSEC (brake specific energy consumption) was higher when the engine was fueled with Jatropha oil as compared to diesel fuel. Increase in fuel inlet temperature resulted in increase of BTE and reduction in BSEC. Emissions of NO{sub x} from Jatropha oil during the experimental range were lower than diesel fuel and it increases with increase in FIT. CO (carbon monoxide), HC (hydrocarbon), CO{sub 2} (carbon dioxide) emissions from Jatropha oil were found higher than diesel fuel. However, with increase in FIT, a downward trend was observed. Thus, by using heat exchanger preheated Jatropha oil can be a good substitute fuel for diesel engine in the near future. Optimal fuel inlet temperature was found to be 80 C considering the BTE, BSEC and gaseous emissions. (author)

  11. Seawater feed reverse osmosis preheating appraisal, Part I: leading element performance

    International Nuclear Information System (INIS)

    Karameldin, A.; Saadawy, M.S.

    2006-01-01

    This paper is concerned with the seawater reverse osmosis preheating process, and presents a parametric study of the process. The basic transport equations describing the leading element are exhibited and appraised. The leading element, which governs the whole system performance, is studied and analysed. The incorporated and investigated operating parameters are the feed pressure and the temperature for different feed salt concentrations. In addition, different feed flow rates, effects on permeate flux and permeator salt rejection, together with the permeator recovery, are studied. A seawater membrane of a well-known data, for instance FT30SW380HR, is used to perform the study. The membrane water permeability coefficient K w is determined and correlated. Furthermore, the membrane salt permeability coefficient K s from the manufacturer system analysis program (ROSA) is given and discussed. The transport governing equations are programmed in a way that facilitates the achievement of a realistic parametric study. The results showed that the permeate flux increases significantly as the feed pressure increases. Also, it increases significantly as the feed salt concentration decreases, and also as the feed temperature and pressure increase. Meanwhile, the permeator salt rejection increases significantly as the feed pressure increases, and decreases significantly as the feed temperature increases. The study of the leading element of the array showed that there are constraints that must be considered, such as maximum membrane flux, maximum applied feed pressure, maximum feed flow rate and maximum feed temperature. Therefore, to attain the maximum membrane flux, the applied feed pressure must be lowered when the feed temperature is increased. In the case where the feed temperature is increased from 18 deg.. C to 45 deg.. C, a pressure saving of between 7% and 26% is achieved, according to the feed salt concentration and feed flow rate. (author)

  12. Natural Convective Heat Transfer from Narrow Plates

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.

  13. A naturally narrow positive-parity Θ+

    International Nuclear Information System (INIS)

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Nazaryan, Vahagn

    2004-01-01

    We present a consistent color-flavor-spin-orbital wave function for a positive-parity Θ + that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive-parity Θ + lighter than its negative-parity counterpart. We consider decays of the Θ + and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths

  14. Narrow Escape of Interacting Diffusing Particles

    Science.gov (United States)

    Agranov, Tal; Meerson, Baruch

    2018-03-01

    The narrow escape problem deals with the calculation of the mean escape time (MET) of a Brownian particle from a bounded domain through a small hole on the domain's boundary. Here we develop a formalism which allows us to evaluate the nonescape probability of a gas of diffusing particles that may interact with each other. In some cases the nonescape probability allows us to evaluate the MET of the first particle. The formalism is based on the fluctuating hydrodynamics and the recently developed macroscopic fluctuation theory. We also uncover an unexpected connection between the narrow escape of interacting particles and thermal runaway in chemical reactors.

  15. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...

  16. Narrow thermal hysteresis of NiTi shape memory alloy thin films with submicrometer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Huilong; Hamilton, Reginald F., E-mail: rfhamilton@psu.edu; Horn, Mark W. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-09-15

    NiTi shape memory alloy (SMA) thin films were fabricated using biased target ion beam deposition (BTIBD), which is a new technique for fabricating submicrometer-thick SMA thin films, and the capacity to exhibit shape memory behavior was investigated. The thermally induced shape memory effect (SME) was studied using the wafer curvature method to report the stress-temperature response. The films exhibited the SME in a temperature range above room temperature and a narrow thermal hysteresis with respect to previous reports. To confirm the underlying phase transformation, in situ x-ray diffraction was carried out in the corresponding phase transformation temperature range. The B2 to R-phase martensitic transformation occurs, and the R-phase transformation is stable with respect to the expected conversion to the B19′ martensite phase. The narrow hysteresis and stable R-phase are rationalized in terms of the unique properties of the BTIBD technique.

  17. Effect of Pre-heating on Microtensile Bond Strength of Composite Resin to Dentin.

    Directory of Open Access Journals (Sweden)

    Abdolrahim Davari

    2014-10-01

    Full Text Available Direct composite resin restorations are widely used and the impact of different storage temperatures on composites is not well understood. The purpose of this study was to evaluate the microtensile bond strength of composite to dentin after different pre-curing temperatures.Occlusal surfaces of 44 human molars were ground with diamond burs under water coolant and polished with 600 grit silicon carbide papers to obtain flat dentin surfaces. The dentin was etched with 37% phosphoric acid and bonded with Adper Single Bond 2 according to the manufacturer's instructions. The specimens were randomly divided into two groups (n=22 according to the composite resin applied: FiltekP60 and Filtek Z250. Each group included three subgroups of composite resin pre-curing temperatures (4°C, 23°C and 37°C. Composite resins were applied to the dentin surfaces in a plastic mold (8mm in diameter and 4mm in length incrementally and cured. Twenty-two composite-to-dentin hour-glass sticks with one mm(2 cross-sectional area per group were prepared. Microtensile bond strength measurements were made using a universal testing machine at a crosshead speed of one mm/min. For statistical analysis, t-test, one-way and two-way ANOVA were used. The level of significance was set at P<0.05.Filtek P60 pre-heated at 37ºC had significantly higher microtensile bond strength than Filtek Z250 under the same condition. The microtensile bond strengths were not significantly different at 4ºC, 23ºC and 37ºC subgroups of each composite resin group.Filtek P60 and Filtek Z250 did not have significantly different microtensile bond strengths at 4ºC and 23ºC but Filtek P60 had significantly higher microtensile bond strength at 37 ºC. Composite and temperature interactions had significant effects on the bond strength.

  18. Establishment of welding process without PWHT and preheating in SGV480 plate for nuclear reactor containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nozomu; Higashikubo, Tomohiro; Nagamura, Takafumi [Mitsubishi Heavy Industries. Ltd., Kobe Shipyard and Machinery Works (Japan); Yoshimoto Kentaro [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan). Takasago Research and Development Center

    2000-07-01

    Ordinances of Japan's Ministry of International Trade and Industry provide that welded joints more than 38 mm thick used in nuclear reactor containment vessels undergo Post Weld Heat Treatment (PWHT). PWHT is difficult to apply in the field, however. We made SGV480 plate tougher and more weldable by using a Thermo-Mechanical Control Process (TMCP) in rolling. Such plate can be used without PWHT or preheating up to 55 mm thick at lowest service temperature -19degC. (author)

  19. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    OpenAIRE

    Fat'yanov, Oleg V.; Asimow, P. D.

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority ...

  20. Evolution of deformation velocity in narrowing for Zircaloy 2

    Energy Technology Data Exchange (ETDEWEB)

    Cetlin, P R [Minas Gerais Univ., Belo Horizonte (Brazil). Dept. de Engenharia Metalurgica; Okuda, M Y [Goias Univ., Goiania (Brazil). Inst. de Matematica e Fisica

    1980-09-01

    Some studies on the deformation instability in strain shows that the differences in this instability may lead to localized narrowing or elongated narrowing, for Zircaloy-2. The variation of velocity deformation with the narrowing evolution is expected to be different for these two cases. The mentioned variation is discussed, a great difference in behavior having been observed for the case of localized narrowing.

  1. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  2. Analytical approximations for wide and narrow resonances

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  3. Analytical approximations for wide and narrow resonances

    Energy Technology Data Exchange (ETDEWEB)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  4. Dose evaluation of narrow-beam

    International Nuclear Information System (INIS)

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  5. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  6. Effect of preheating on the damage to tungsten targets after repetitive ITER ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Makhlay, V A [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Tereshin, V I [Institute of Plasma Physics of the NSC KIPT 1, Akademicheskaya, 61108 Kharkov (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany)

    2007-03-15

    The behaviour of a preheated tungsten target under repetitive pulsed plasma impacts of the energy density 0.75 MJ m{sup -2} with the pulse duration of 0.25 ms was studied with the quasi-stationary plasma accelerator (QSPA) Kh-50. Two identical samples of pure sintered tungsten have been exposed to numbers of pulses exceeding 100. One sample was maintained at room temperature and the other sample preheated at 650 deg. C. The experiments demonstrated that on the cold surface some macro-cracks dominate, but on the hot surface they do not develop. However, in both cases some fine meshes of micro-cracks are observed. With increasing the number of exposures, the width of the micro-cracks gradually increases, achieving 0.8-1.5 {mu}m after 100 pulses. In addition, the SEM shows some cellular structure with the cell sizes about 0.3 {mu}m, and after large numbers of exposures some blisters of sizes up to 100-150 {mu}m appear.

  7. Preliminary studies of using preheated carrier gas for on-line membrane extraction of semivolatile organic compounds.

    Science.gov (United States)

    Liu, Xinyu; Pawliszyn, Janusz

    2007-04-01

    In this paper, we present results for the on-line determination of semivolatile organic compounds (SVOCs) in air using membrane extraction with a sorbent interface-ion mobility spectrometry (MESI-IMS) system with a preheated carrier (stripping) gas. The mechanism of the mass transfer of SVOCs across a membrane was initially studied. In comparison with the extraction of volatile analytes, the mass transfer resistance that originated from the slow desorption from the internal membrane surface during the SVOC extraction processes should be taken into account. A preheated carrier gas system was therefore built to facilitate desorption of analytes from the internal membrane surface. With the benefit of a temperature gradient existing between the internal and external membrane surfaces, an increase in the desorption rate of a specific analyte at the internal surface and the diffusion coefficient within the membrane could be achieved while avoiding a decrease of the distribution constant on the external membrane interface. This technique improved both the extraction rate and response times of the MESI-IMS system for the analysis of SVOCs. Finally, the MESI-IMS system was shown to be capable of on-site measurement by monitoring selected polynuclear aromatic hydrocarbons emitted from cigarette smoke.

  8. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    Science.gov (United States)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  9. Measurement of Preheat and Shock Melting in Be Ablators During the First Few ns of the NIF Ignition Pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D K; Prisbrey, S T; Page, R H; Braun, D G; Edwards, M J; Hibbard, R L; Moreno, K A; Mauldin, M P; Nikroo, A

    2008-05-28

    We have developed a scaled hohlraum platform to experimentally measure preheat in ablator materials during the first few nanoseconds of the radiation drive proposed for ignition experiments at the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, et al., Laser Focus World 30, 75 (1994)]. The platform design approximates the radiation environment of the pole of the capsule by matching both the laser spot intensity and illuminated hohlraum wall fraction in scaled halfraums driven by the OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton, et al., Optics Communications 133, 495 (1997)]. A VISAR reflecting from the rear surface of the sample was used to measure sample motion prior to shock breakout. The experiments show that the first {approx}20 {micro}m of a Be ablator will be melted by radiation preheat, with subsequent material melted by the initial shock, in agreement with simulations. The experiments also show no evidence of anomalous heating of buried high-z doped layers in the ablator.

  10. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  11. Experimental study on the operating characteristics of an inner preheating transpiring wall reactor for supercritical water oxidation: Temperature profiles and product properties

    International Nuclear Information System (INIS)

    Zhang, Fengming; Xu, Chunyan; Zhang, Yong; Chen, Shouyan; Chen, Guifang; Ma, Chunyuan

    2014-01-01

    A new process to generate multiple thermal fluids by supercritical water oxidation (SCWO) was proposed to enhance oil recovery. An inner preheating transpiring wall reactor for SCWO was designed and tested to avoid plugging in the preheating section. Hot water (400–600 °C) was used as auxiliary heat source to preheat the feed to the reaction temperature. The effect of different operating parameters on the performance of the inner preheating transpiring wall reactor was investigated, and the optimized operating parameters were determined based on temperature profiles and product properties. The reaction temperature is close to 900 °C at an auxiliary heat source flow of 2.79 kg/h, and the auxiliary heat source flow is determined at 6–14 kg/h to avoid the overheating of the reactor. The useful reaction time is used to quantitatively describe the feed degradation efficiency. The outlet concentration of total organic carbon (TOC out ) and CO in the effluent gradually decreases with increasing useful reaction time. The useful reaction time needed for complete oxidation of the feed is 10.5 s for the reactor. - Highlights: • A new process to generate multiple thermal fluids by SCWO was proposed. • An inner preheating transpiring wall reactor for SCWO was designed and tested. • Hot water was used as auxiliary heat source to preheat the feed at room temperature. • Effect of operating parameters on the performance of the reactor was investigated. • The useful reaction time required for complete oxidation of the feed is 10.5 s

  12. Cervical spinal canal narrowing in idiopathic syringomyelia

    International Nuclear Information System (INIS)

    Struck, Aaron F.; Carr, Carrie M.; Shah, Vinil; Hesselink, John R.; Haughton, Victor M.

    2016-01-01

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  13. Cervical spinal canal narrowing in idiopathic syringomyelia

    Energy Technology Data Exchange (ETDEWEB)

    Struck, Aaron F. [Massachusetts General Hospital, Department of Neurology, Boston, MA (United States); Carr, Carrie M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Shah, Vinil [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Hesselink, John R. [University of California San Diego, Department of Radiology, San Diego, CA (United States); Haughton, Victor M. [University of Wisconsin, Department of Radiology, Madison, WI (United States)

    2016-08-15

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  14. Volume dips; spot price ranges narrow

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the September 1994 uranium market summary. Volume in the spot concentrates market fell below 1 million lbs U3O8. In total, twelve deals took place compared to 28 deals in August. Of the twelve deals, three took place in the spot concentrates market, two took place in the medium and long-term market, three in the conversion market, and four in the enrichment market. Restricted prices weakened, but unrestricted prices firmed slightly. The enrichment price range narrowed a bit

  15. f-band narrowing in uranium intermetallics

    International Nuclear Information System (INIS)

    Dunlap, B.D.; Litterst, F.J.; Malik, S.K.; Kierstead, H.A.; Crabtree, G.W.; Kwok, W.; Lam, D.J.; Mitchell, A.W.

    1987-01-01

    Although the discovery of heavy fermion behavior in uranium compounds has attracted a great deal of attention, relatively little work has been done which is sufficiently systematic to allow an assessment of the relationship of such behavior to more common phenomena, such as mixed valence, narrow-band effects, etc. In this paper we report bulk property measurements for a number of alloys which form a part of such a systematic study. The approach has been to take relatively simple and well-understood materials and alter their behavior by alloying to produce heavy fermion or Kondo behavior in a controlled way

  16. Itinerant ferromagnetism in the narrow band limit

    CERN Document Server

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  17. Critical unpairing currents in narrow niobium films

    International Nuclear Information System (INIS)

    Gershenzon, M.E.; Gubankov, V.N.

    1979-01-01

    Investigated are the dependences of critical currents of narrow ( with the width of W=0.5-15 μm) superconducting niobium films on temperature and a magnetic field. The proposed method of film production with the width of the 1μm order and with small edge inhomogeneities ((<=500 A) permitted to realize the Ginsburg-Landau unpairing currents in the wide range of temperatures. The correct comparison with the theory showed that the unpairing currents are observed if W(< or approximately) 2delta, where delta is the effective depth of the penetration of the perpendicular magnetic field

  18. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  19. Narrow-Bicliques: Cryptanalysis of Full IDEA

    DEFF Research Database (Denmark)

    Khovratovich, D.; Leurent, G.; Rechberger, C.

    2012-01-01

    We apply and extend the recently introduced biclique framework to IDEA and for the first time describe an approach to noticeably speed-up key-recovery for the full 8.5 round IDEA.We also show that the biclique approach to block cipher cryptanalysis not only obtains results on more rounds, but also...... extended with ways to allow for a significantly reduced data complexity with everything else being equal. For this we use available degrees of freedom as known from hash cryptanalysis to narrow the relevant differential trails. Our cryptanalysis is of high computational complexity, and does not threaten...

  20. Ultra narrow bore thick film capillaries for microcolumn separations. Part 1. GC experiments

    NARCIS (Netherlands)

    Steenackers, D.; Sandra, P.J.F.; Sandra, P.; Devos, G.

    1993-01-01

    Ultra narrow bore (50 mum 1.0.) fused silica columns were statically coated with apolar stationary phases to obtain beta values ranging from 6.25 to 50 (filmthickness 2 to 0.25 mum). Performance of the 1 and 2 mum columns in Capillary Gas Chromatography (CGC) is highlighted.

  1. Study on application of two-fluid model in narrow annular channel

    International Nuclear Information System (INIS)

    Chen Jun; Yang Yanhua; Zhao Hua

    2007-01-01

    The Chexal-Harrison two-phase wall and inter-phase friction models developed by EPRI newly and the simple two-phase wall and inter-phase heat transfer models put forward by the paper are used to set up the two-fluid model which is fitted for boiling heat transfer and flow in narrow annular channel. On the base of the two-fluid model, a thermal hydraulic code-THYME is accomplished. Then the thermal hydraulic characteristic of narrow annular channel is analyzed by RELAP5/MOD3.2 code and THYME code. Compared with experimental data, RELAP5/MOD3.2 underestimates the outlet steam, and the results of THYME is agreed with the experimental data. (authors)

  2. Formation And Distribution of Brittle Structures in Friction Stir Welding of AA 6061 To Copper. Influence of Preheat

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Safi

    2016-06-01

    Full Text Available In this paper, apart from introducing brand – new warm friction stir welding (WFSW method, the effect of preheating on friction stir welded of copper and aluminum alloys sheets and its influence on improving the mechanical properties of the weld were investigated. Sheets of aluminum alloy 6061 and copper with thickness of 5mm were used. The tool was made of tool steel of grade H13 with a threaded cone shape. Rotational speeds (w of 1200-1400 rpm and traverse speeds (v of 50-100 mm/min were used for better understanding the behavior of the tools during the heat input. The sheets were kept in furnace with temperature of 75 ˚C and 125˚C and welding was done afterwards. At last, tensile and micro hardness tests were done to compare the mechanical properties of the welds. Considering to the high thermal conductivity of both copper and aluminum, the reason of increase in strength of the joints could be related to the low temperature gradient between the weld zone and base metal because the heat gets out of the stir zone with lower steep. A significant increase in hardness is observed in the SZ for the following reasons: (i the presence of concentric grains with intensely refined recrystallization and (ii the presence of intermetallic compounds. The tensile test results showed 85% increase in the strength of preheated joints. The maximum strength occurs for preheating of 75˚C, rotational speed of 1200 rpm and traverse speed of 50 mm/min. In the present study, intermetallic compounds and the precipitates are moved to the grain boundaries during the welding process. These precipitates act as strong obstacles to the movements of dislocations and increase the deformation resistance of material. This phenomenon may result in locking of grain boundaries and consequently decrease of grain size. This grain refinement can improve the mechanical properties of welds. Accordingly, hardness and strength of the material will be increased.

  3. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  4. Dosimetry of narrow band UVB treatments

    International Nuclear Information System (INIS)

    Goode, D.H.; Mannering, D.M.

    1996-01-01

    Full text: For many years psoriasis has been treated with broad band UVB lamps. These lamps have a bell shaped spectrum which peaks at 305 nm and extends from 280 nm to 350 nm. However research with monochromatic UV radiation has shown that wavelengths between 300 nm and 320 nm are the most efficacious for clearing psoriasis while wavelengths below 305 nm are most effective for producing the undesirable side effect of erythema (sunburn). In response to these findings Philips developed a narrow band UVB tube in which a large fraction of the output was confined to a narrow peak (bandwidth 2.5 nm) situated at 311 nm. Christchurch Hospital replaced broad band UVB with narrow band treatments in August 1995 and as this required UV exposures to be substantially increased new protocols had to be developed. Three aspects needed to be addressed. These were translating the dose from broad band to narrow band for current patients, determining the initial dose for new patients and developing a formula for increasing subsequent exposures to both types of patient. To translate doses the spectral irradiance (μW/cm 2 /nm) that would fall on the patient was measured in both the old broad band and the new narrow band treatment units and from this UV doses were calculated. All doses were expressed in mJ/cm 2 of unweighted UV over the range 250 nm to 400 nm. The erythemal effectiveness of the two units were compared by using the CIE 1987 curve to express doses in terms of the equivalent exposure of monochromatic 297 nm radiation. It was found that an exposure of 3.96 mJ/cm 2 from the broad band FS40 tubes and 12.79 mJ/cm 2 from the narrow band TL/01 tubes were both equivalent to 1.00 mJ/cm 2 of monochromatic 297 nm radiation so when transferring patients all broad band doses needed to be increased by a factor of 3.2. Before transferring any patients this factor was confirmed by conducting two minimal erythema dose (MED) tests on a normal subject, one in each unit. For new patients a

  5. A methodology to enlarge narrow stability windows

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Ewerton M.P.; Pastor, Jorge A.S.C.; Fontoura, Sergio A.B. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo

    2004-07-01

    The stability window in a wellbore design is defined by the difference between fracture pressure and collapse pressure. Deep water environments typically present narrow stability windows, because rocks have low strength due to under-compaction process. Often also, horizontal wells are drilled to obtain a better development of reservoirs placed in thin layers of sandstone. In this scenario, several challenges are faced when drilling in deep water. The traditional approach for predicting instabilities is to determine collapses and fractures at borehole wall. However, the initiation of rupture does not indicate that the borehole fails to perform its function as a wellbore. Thus, a methodology in which the stability window may be enlarged is desirable. This paper presents one practical analytical methodology that consists in allowing wellbore pressures smaller than the conventional collapse pressure, i.e., based upon failure on the borehole wall. This means that a collapse region (shear failure) will be developed around the borehole wall. This collapse region is pre-defined and to estimate its size is used a failure criterion. The aforementioned methodology is implemented in a user-friendly software, which can perform analyses of stress, pore pressure, formation failure, mud weight and mud salinity design for drilling in shale formations. Simulations of a wellbore drilling in a narrow stability window environment are performed to demonstrate the improvements of using the methodology. (author)

  6. Narrow resonances and short-range interactions

    International Nuclear Information System (INIS)

    Gelman, Boris A.

    2009-01-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  7. A study on pre-heat conditions in equivalent-dose estimation of holocene loess using single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2007-01-01

    Through various arrangements of pre-heat and cut-heat temperatures in the equivalent-dose estimation of Holocene loess using a Double-SAR dating protocol, the paper estimated the equivalent-doses from several loess samples by application of IRSL and Post-IR OSL signals, respectively. The measured results present that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, showing the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears at the 200-300 degree C preheat temperatures and the 200-240 degree C cut-heat temperatures, furthermore, the equivalent-doses estimated by IRSL and Post-IR OSL signals respectively are close to each other, which resulted from the similar sensitivity change directions of optical stimulated signals and their smaller change ranges in the measurement cycles using the various temperatures of pre-heat and cut-heat. This suggests that the 200-300 degree C pre-heat temperatures and the 200-240 degree C cut-heat temperatures are fit for dating young Holocene loess samples. (authors)

  8. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NO(x) in the Quick-Mix Sections of an Axially Staged Combustor

    Science.gov (United States)

    Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.

    1999-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.

  9. A computer simulation of the transient response of a 4 cylinder Stirling engine with burner and air preheater in a vehicle

    Science.gov (United States)

    Martini, W. R.

    1981-01-01

    A series of computer programs are presented with full documentation which simulate the transient behavior of a modern 4 cylinder Siemens arrangement Stirling engine with burner and air preheater. Cold start, cranking, idling, acceleration through 3 gear changes and steady speed operation are simulated. Sample results and complete operating instructions are given. A full source code listing of all programs are included.

  10. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    International Nuclear Information System (INIS)

    Bari, S.; Lim, T.H.; Yu, C.W.

    2002-01-01

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  11. Analysis of narrow effects in pp annihilations

    CERN Document Server

    Defoix, C

    1972-01-01

    The author describes briefly some methods of analysis that final states involving a number of like particles require. A first method consists of separating two competing channels to minimize the reflections due to the undesirable one. Later techniques of analysis lead to the isolation of the only channel of interest and circumvention of the problems of background and reflections due to irrelevant final states. Generally, all these processes are based on the presence of a narrow and identified resonance, for example the eta /sup 0/ or omega /sup 0/ ( to pi /sup +/ pi /sup -/ pi /sup 0/). To be efficient, it is necessary that the observed width of such a basic resonance not be increased too much by experimental errors. (6 refs).

  12. Search for narrow four-baryon states

    International Nuclear Information System (INIS)

    Badelek, B.

    1981-01-01

    Highly excited (4.10 2 ) four-baryon resonances have been searched for in the missing-mass spectrum of the reaction π - + 4 He → π - + X at 5 GeV/c in the region of small four-momentum transfer (0.005 2 ), where one of the decay products of the X is either proton or deuteron or triton. No resonance signal is seen in the mass spectrum of X. Within our limited acceptance, the cross section for the production of a narrow (GAMMA approx. 20 MeV/c 2 ) four-baryon state with mass 4.9 GeV/c 2 is estimated to be smaller than approx. 100 nb. (orig.)

  13. Active Brownian motion in a narrow channel

    Science.gov (United States)

    Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.

    2014-12-01

    We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

  14. The effect of narrow provider networks on health care use.

    Science.gov (United States)

    Atwood, Alicia; Lo Sasso, Anthony T

    2016-12-01

    Network design is an often overlooked aspect of health insurance contracts. Recent policy factors have resulted in narrower provider networks. We provide plausibly causal evidence on the effect of narrow network plans offered by a large national health insurance carrier in a major metropolitan market. Our econometric design exploits the fact that some firms offer a narrow network plan to their employees and some do not. Our results show that narrow network health plans lead to reductions in health care utilization and spending. We find evidence that narrow networks save money by selecting lower cost providers into the network. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Spectral narrowing of a 980 nm tapered diode laser bar

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  16. TESTS AND METHODOLOGIES FOR THE SURVEY OF NARROW SPACES

    Directory of Open Access Journals (Sweden)

    L. Perfetti

    2017-02-01

    Full Text Available The research illustrated in this article aimed at identifying a good standard methodology to survey very narrow spaces during 3D investigation of Cultural Heritage. It is an important topic in today’s era of BIM modelling applied to Cultural Heritage. Spaces like staircases, corridors and passages are very common in the architectural or archaeological fields, and obtaining a 3D-oriented survey of those areas can be a very complex task when completeness of the model and high precision are requested. Photogrammetry appears to be the most promising solution in terms of versatility and manoeuvrability also considering the quality of the required data. Fisheye lenses were studied and tested in depth because of their significant advantage in the field of view if compared with rectilinear lenses. This advantage alone can be crucial to reduce the total amount of photos and, as a consequence, to obtain manageable data, to simplify the survey phase and to significantly reduce the elaboration time. In order to overcome the main issue that arise when using fisheye lenses, which is the lack of rules that can be employed to design the survey, a general mathematical formulation to precisely estimate the GSD (Ground Sampling Distance for every optical projection is presented here. A complete survey of a real complex case study was performed in order to test and stress the proposed methodology, and to handle a fisheye-based survey from beginning to end: the photogrammetric survey of the Minguzzi Staircase. It is a complex service spiral-staircase located in the Duomo di Milano with a total height of 25 meters and characterized by a narrow walkable space about 70 centimetres wide.

  17. II-VI Narrow-Bandgap Semiconductors for Optoelectronics

    Science.gov (United States)

    Baker, Ian

    The field of narrow-gap II-VI materials is dominated by the compound semiconductor mercury cadmium telluride, (Hg1-x Cd x Te or MCT), which supports a large industry in infrared detectors, cameras and infrared systems. It is probably true to say that HgCdTe is the third most studied semiconductor after silicon and gallium arsenide. Hg1-x Cd x Te is the material most widely used in high-performance infrared detectors at present. By changing the composition x the spectral response of the detector can be made to cover the range from 1 μm to beyond 17 μm. The advantages of this system arise from a number of features, notably: close lattice matching, high optical absorption coefficient, low carrier generation rate, high electron mobility and readily available doping techniques. These advantages mean that very sensitive infrared detectors can be produced at relatively high operating temperatures. Hg1-x Cd x Te multilayers can be readily grown in vapor-phase epitaxial processes. This provides the device engineer with complex doping and composition profiles that can be used to further enhance the electro-optic performance, leading to low-cost, large-area detectors in the future. The main purpose of this chapter is to describe the applications, device physics and technology of II-VI narrow-bandgap devices, focusing on HgCdTe but also including Hg1-x Mn x Te and Hg1-x Zn x Te. It concludes with a review of the research and development programs into third-generation infrared detector technology (so-called GEN III detectors) being performed in centers around the world.

  18. Properties of Narrow line Seyfert 1 galaxies

    Science.gov (United States)

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line 10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  19. Thermoelectricity in correlated narrow-gap semiconductors

    Science.gov (United States)

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  20. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  1. Hull loss accident model for narrow body commercial aircraft

    Directory of Open Access Journals (Sweden)

    Somchanok Tiabtiamrat

    2010-10-01

    Full Text Available Accidents with narrow body aircraft were statistically evaluated covering six families of commercial aircraft includingBoeing B737, Airbus A320, McDonnell Douglas MD80, Tupolev TU134/TU154 and Antonov AN124. A risk indicator for eachflight phase was developed based on motion characteristics, duration time, and the presence of adverse weather conditions.The estimated risk levels based on these risk indicators then developed from the risk indicator. Regression analysis indicatedvery good agreement between the estimated risk level and the accident ratio of hull loss cases per number of delivered aircraft.The effect of time on the hull loss accident ratio per delivered aircraft was assessed for B737, A320 and MD80. Equationsrepresenting the effect of time on hull loss accident ratio per delivered aircraft were proposed for B737, A320, and MD80,while average values of hull loss accident ratio per delivered aircraft were found for TU134, TU154, and AN 124. Accidentprobability equations were then developed for each family of aircraft that the probability of an aircraft in a hull loss accidentcould be estimated for any aircraft family, flight phase, presence of adverse weather factor, hour of day, day of week, monthof year, pilot age, and pilot flight hour experience. A simplified relationship between estimated hull loss accident probabilityand unsafe acts by human was proposed. Numerical investigation of the relationship between unsafe acts by human andfatality ratio suggested that the fatality ratio in hull loss accident was dominated primarily by the flight phase media.

  2. Narrow Networks on the Individual Marketplace in 2017.

    Science.gov (United States)

    Polski, Daniel; Weiner, Janet; Zhang, Yuehan

    2017-09-01

    This Issue Brief describes the breadth of physician networks on the ACA marketplaces in 2017. We find that the overall rate of narrow networks is 21%, which is a decline since 2014 (31%) and 2016 (25%). Narrow networks are concentrated in plans sold on state-based marketplaces, at 42%, compared to 10% of plans on federally-facilitated marketplaces. Issuers that have traditionally offered Medicaid coverage have the highest prevalence of narrow network plans at 36%, with regional/local plans and provider-based plans close behind at 27% and 30%. We also find large differences in narrow networks by state and by plan type.

  3. Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell

    Science.gov (United States)

    Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.

    2017-10-01

    Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.

  4. Exploiting the use of compact heat exchangers on preheating trains; Avaliacao de desempenho de trocadores compactos em bateria de pre-aquecimento - REDUC

    Energy Technology Data Exchange (ETDEWEB)

    Villas Boas, Alan Trugilho; Bolsoni, Adair [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Refinaria de Duque de Caxias (REDUC); Kuboski, Claudio; Cesario, Diomedes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The U-1210 distillation unit of Holding has being expected to suffer a metallurgical adaptation in order to process petroleum with higher naphthenic acids concentration. A heat integration study (pinch analysis) was realized, with the restriction of limited plot area and shut-down time. A full compabloc preheat train was preliminary concept. During conceptual design, REDUC found it to be a good idea to have a performance test. A compabloc CP30 unit has been installed, in order to evaluate the performance of this equipment under unit conditions. The operation service chosen was vacuum residue preheating crude before the dessalter, low crude temperature (100 deg C to 115 deg C). The objective was operational and maintenance experience. (author)

  5. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.

    Science.gov (United States)

    Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W

    2018-02-02

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700  μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14}  W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14}  W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  6. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    Science.gov (United States)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.

    2018-01-01

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  7. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique.

    Science.gov (United States)

    Lee, YoungJu; Won, Yuho; Kang, Kidoo

    2015-04-01

    Passive integrating dosemeters [thermoluminescent dosimeter (TLD) and optically stimulated luminescence (OSL)] are the only legally permitted individual dosemeters for occupational external radiation exposure monitoring in Korea. Also its maximum issuing cycle does not exceed 3 months, and the Korean regulations require personal dosemeters for official assessment of external radiation exposure to be issued by an approved or rather an accredited dosimetry service according to ISO/IEC 17025. KHNP (Korea Hydro & Nuclear Power, LTD), a unique operating company of nuclear power plants (NPPs) in Korea, currently has a plan to extend a TLD issuing cycle from 1 to 3 months under the authors' fading error criteria, ±10%. The authors have performed a feasibility study that minimises post-irradiation fading effects within their maximum reading cycle employing pre-heating technique. They repeatedly performed irradiation/reading a bare TLD chip to determine optimum pre-heating conditions by analysing each glow curve. The optimum reading conditions within the maximum reading cycle of 3 months were decided: a pre-heating temperature of 165°C, a pre-heating time of 9 s, a heating rate of 25°C s(-1), a reading temperature of 300°C and an acquisition time of 10 s. The fading result of TLD-600 and TLD-700 carried by newly developed time temperature profile (TTP) showed a much smaller fading effect than that of current TTP. The result showed that the fading error due to a developed TTP resulted in a ∼5% signal loss, whereas a current TTP caused a ∼15% loss. The authors also carried out a legal performance test on newly developed TTP to confirm its possibility as an official dosemeter. The legal performance tests that applied the developed TTP satisfied the criteria for all the test categories. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  9. From Narrow to Wide Band Normalizer for LHC

    CERN Document Server

    Vismara, Giuseppe

    1997-01-01

    The narrow band normalizer (NBN) based on the phase processor is working to full satisfaction in the LEP BOM system for almost 10 years. Recently a new idea for a wide band normaliser (WBN) based on a time processor exploiting a single oscillation period has been developed. The position information is converted into a time difference between the zero crossing of two recombined and shaped electrode signals. It appears that the NBN can be easily adapted to perform as a wide band processor. To do so, the BP filter and the 90° Hybrid are replaced by low pass filter and delay lines. A prototype based on the present NBN has been developed and tested to prove the feasibility of the new idea. The paper gives an overview of the advantages and limitations of the BOM NB processor. It summarizes the useful LHC parameters and describes the specifications for the beam position acquisition system. After describing the basic principles, it analyzes in detail all the blocks of the processing chain and presents the measurem...

  10. Narrow-line laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  11. Structural properties of hard disks in a narrow tube

    International Nuclear Information System (INIS)

    Varga, S; Gurin, P; Balló, G

    2011-01-01

    Positional ordering of a two-dimensional fluid of hard disks is examined in tubes so narrow that only nearest neighbor interactions take place. Using the exact transfer-matrix method the transverse and longitudinal pressure components and the correlation function are determined numerically. Fluid–solid phase transition does not occur even in the widest tube, where the method just loses its exactness, but the appearance of a dramatic change in the equation of state and the longitudinal correlation function shows that the system undergoes a structural change from a fluid to a solid-like order. The pressure components show that the collisions are dominantly longitudinal at low densities, while they are transverse in the vicinity of the close packing density. The transverse correlation function shows that the size of solid-like domains grows exponentially with increasing pressure and the correlation length diverges at close packing. It is possible to find an analytically solvable model by expanding the contact distance up to first order. The approximate model, which corresponds to a system of hard parallel rhombuses, behaves very similarly to the system of hard disks

  12. The study on pre-heat conditions in the equivalent-dose estimation of holocene loess using the single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2008-01-01

    The thermal treatment in the equivalent-dose estimation often is carried in the OSL dating, and pre-heat is a main thermal treatment. Due to which will originate the problems of thermal transfer and thermal activation, the thermal treatment and the setup of their conditions are key problems influencing the accuracy of OSL dating. The paper combined the temperature of pre-heat and cut-heat used in the routine measurement of IRSL and Post-IR OSL, and then estimated the equivalent-dose of several loess samples. The estimated result presents that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, which is to say that the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears when using the 200-240 degree C cut-heat in the range of 200-300 degree C pre-heat, and the equivalent-doses estimated by IRSL and Post-IR OSL respectively are close to each other, which resulted from the similar sensitivity change direction of optical stimulated signals and its smaller change range in the measurement cycles using the combined temperature of pre- heat and cut-heat, and the incomplete calibration of sensitivity change of optical stimulated signals in the whole measurement cycles caused the variation of estimated equivalent-dose corresponding to the cut-heat temperature. (authors)

  13. PSpectRe: a pseudo-spectral code for (P)reheating

    International Nuclear Information System (INIS)

    Easther, Richard; Finkel, Hal; Roth, Nathaniel

    2010-01-01

    PSpectRe is a C++ program that uses Fourier-space pseudo-spectral methods to evolve interacting scalar fields in an expanding universe. PSpectRe is optimized for the analysis of parametric resonance in the post-inflationary universe and provides an alternative to finite differencing codes, such as Defrost and LatticeEasy. PSpectRe has both second- (Velocity-Verlet) and fourth-order (Runge-Kutta) time integrators. Given the same number of spatial points and/or momentum modes, PSpectRe is not significantly slower than finite differencing codes, despite the need for multiple Fourier transforms at each timestep, and exhibits excellent energy conservation. Further, by computing the post-resonance equation of state, we show that in some circumstances PSpectRe obtains reliable results while using substantially fewer points than a finite differencing code. PSpectRe is designed to be easily extended to other problems in early-universe cosmology, including the generation of gravitational waves during phase transitions and pre-inflationary bubble collisions. Specific applications of this code will be described in future work

  14. Q2 anti Q2 states with relatively narrow widths

    International Nuclear Information System (INIS)

    Ono, Seiji.

    1978-09-01

    Using the mass formulas which correctly predict the mass of mesons and baryons the mass of diquark states is computed. From this mass spectrum the existance of the observed narrow baryonia and wide baryonia can be naturally understood. Other relatively narrow Q 2 anti Q 2 states are predicted to exist. (orig.) [de

  15. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    Science.gov (United States)

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  16. Melting, casting, and alpha-phase extrusion of the uranium-2.4 weight percent niobium alloy

    International Nuclear Information System (INIS)

    Anderson, R.C.; Beck, D.E.; Kollie, T.G.; Zorinsky, E.J.; Jones, J.M.

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature

  17. Artificial neural network applied to ONB in vertical narrow annulus experiment

    International Nuclear Information System (INIS)

    Yun Guo; Guanghui Su; Dounan Jia; Jiaqiang Wang

    2005-01-01

    Full text of publication follows: It is very important to study the onset of nucleate boiling (ONB) in narrow channel. Engineering applications of the narrow channel are used more and more widely. The narrow channel is used in microelectronics. Narrow annular channel is also adopted to design the new type of heat exchanger. The ONB is usually regarded as the point of demarcation between the single-phase flow and two phase flow. So it is significant to study the onset of nucleate boiling in the judgment of the flow pattern and engineering design. Although the researches showed that the ONB in narrow space channel were different from that in common pipe, most of them did not study the bilateral heated effect on the ONB. The ONB was investigated for water flowing in the annular channel which gap is 1.2 mm at the pressure range from 0.10 to 5.0 MPa. The effect of some parameters on the ONB, such as the mass flux, pressure, inlet subcooled temperature, bilateral heating was analyzed. But the experiment has not been carried in great wide range of the pressure and flow flux. So the artificial neural networks were used to predict the ONB at wide range parameter. Recently artificial neural networks (ANNs) have been used widely in the field of reactor thermal-hydraulics because they can solve very complex multivariable and high non-linearity problems. The researchers can pay attention to the output results and be unaware of the inside characters of the networks. Most of them are used to predict the critical heat flux and some other accident problems. In fact some small-scale artificial neural networks can be used in thermal-hydraulic experiments easily. Based on the ONB experimental data, an artificial neural network (BP) is built to specify the ONB. According to a lot of experiments data another middle scale ANN is built to predict the ONB of narrow gap annular channels. The results are compared with other correlations. It was concluded that the power density of ONB in the

  18. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kommoshvili, K [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Cuperman, S [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Bruma, C [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  19. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Kommoshvili, K; Cuperman, S; Bruma, C

    2003-01-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects

  20. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Science.gov (United States)

    Kommoshvili, K.; Cuperman, S.; Bruma, C.

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  1. Are narrow mesons, baryons and dibaryons evidence for multiquark states?

    International Nuclear Information System (INIS)

    Tatischeff, B.; Yonnet, J.

    2000-01-01

    Several narrow structures have been progressively observed since the last fifteen years, in di-baryonic invariant mass spectra or in missing mass spectra. More recently, narrow structures were observed in baryonic and now in mesonic mass spectra. Since these small peaks appear at fixed masses, independently of the experiment, they are associated with real states. There is no room to explain these states within classical nuclear physics taking into account baryonic and mesonic degrees of freedom. An interpretation is proposed, which associate these narrow structures with two coloured quark clusters. (authors)

  2. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  3. Bubble growth in a narrow horizontal space

    International Nuclear Information System (INIS)

    Stutz, Benoit; Goulet, Remi; Passos, Julio Cesar

    2009-01-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  4. Experimental study on transition characteristics of pulsating flow in narrow rectangular channel

    International Nuclear Information System (INIS)

    Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong

    2013-01-01

    Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)

  5. What's in a name? Expiratory tracheal narrowing in adults explained

    International Nuclear Information System (INIS)

    Leong, P.; Bardin, P.G.; Lau, K.K.

    2013-01-01

    Tracheomalacia, tracheobronchomalacia, and excessive dynamic airway collapse are all terms used to describe tracheal narrowing in expiration. The first two describe luminal reduction from cartilage softening and the latter refers to luminal reduction from exaggerated posterior membrane movement. Expiratory tracheal narrowing is a frequent occurrence that can cause symptoms of airway obstruction, such as dyspnoea, wheeze, and exercise intolerance. The accurate diagnosis and quantification of expiratory tracheal narrowing has important aetiological, therapeutic, and prognostic implications. The reference standard for diagnosis has traditionally been bronchoscopy; however, this method has significant limitations. Expiratory tracheal disorders are readily detected by four-dimensional dynamic volume multidetector computed tomography (4D-CT), an emerging, non-invasive method that will potentially enable detection and quantification of these conditions. This review discusses the morphological forms of expiratory tracheal narrowing and demonstrates the utility of 4D-CT in the diagnosis, quantification, and treatment of these important conditions

  6. Subglottic cysts and asymmetrical subglottic narrowing on neck radiograph

    International Nuclear Information System (INIS)

    Holinger, L.D.; Torium, D.M.; Anandappa, E.C.

    1988-01-01

    The congenital subglottic hemangioma typically appears as an asymmetric subglottic narrowing or mass on frontal neck radiograph. Therefore, soft tissue neck radiography has been advocated as a definitive non-operative approach for diagnosing these lesions. However, we have noted similar asymmetric subglottic narrowing in patients with acquired subglottic cysts. These retention cysts occur following long-term intubation in the neonate. The mechanism probably involves subglottic fibrosis which obstructs glands with subsequent cyst formation. Acquired subglottic cysts typically appear as an asymmetric narrowing on frontal or lateral soft tissue neck radiographs. These lesions may produce airway compromise but are effectively treated by forceps or laser removal. Acquired subglottic cysts must be included in the differential diagnosis of asymmetric subglottic narrowing. The definitive diagnosis is made by direct laryngoscopy, not soft tissue neck radiograph. (orig.)

  7. THE TREATMENT OF OPEN- AND NARROW-ANGLE GLAUCOMA

    African Journals Online (AJOL)

    1971-04-10

    Apr 10, 1971 ... glaucoma will be considered: narrow-angle glaucoma. (acute glaucoma) and ... emotional or a physical crisis. The pain is in the distribu- .... ness, not increased pressure, haunts people suffering from glaucoma'.' The saga of ...

  8. Comment on the narrow structure reported by Amaryan et al

    OpenAIRE

    Anghinolfi, M.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Bellis, M.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Bosted, P.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.

    2012-01-01

    The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.

  9. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq; Al-Naffouri, Tareq Y.; Al-Ghadhban, Samir N.

    2012-01-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous

  10. Narrow Framing and Long-Term Care Insurance

    OpenAIRE

    Daniel Gottlieb; Olivia S. Mitchell

    2015-01-01

    We propose a model of narrow framing in insurance and test it using data from a new module we designed and fielded in the Health and Retirement Study. We show that respondents subject to narrow framing are substantially less likely to buy long-term care insurance than average. This effect is distinct from, and much larger than, the effects of risk aversion or adverse selection, and it offers a new explanation for why people underinsure their later-life care needs.

  11. Ocular Biometrics of Myopic Eyes With Narrow Angles.

    Science.gov (United States)

    Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay

    2016-02-01

    The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.

  12. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  13. Intramyocardial arterial narrowing in dogs with subaortic stenosis.

    Science.gov (United States)

    Falk, T; Jönsson, L; Pedersen, H D

    2004-09-01

    Earlier studies have described intramyocardial arterial narrowing based on hyperplasia and hypertrophy of the vessel wall in dogs with subaortic stenosis (SAS). In theory, such changes might increase the risk of sudden death, as they seem to do in heart disease in other species. This retrospective pathological study describes and quantifies intramyocardial arterial narrowing in 44 dogs with naturally occurring SAS and in eight control dogs. The majority of the dogs with SAS died suddenly (n=27); nine had died or been euthanased with signs of heart failure and eight were euthanased without clinical signs. Dogs with SAS had significantly narrower intramyocardial arteries (Pdogs. Male dogs and those with more severe hypertrophy had more vessel narrowing (P=0.02 and P=0.02, respectively), whereas dogs with dilated hearts had slightly less pronounced arterial thickening (P=0.01). Arterial narrowing was not related to age, but fibrosis increased with age (P=0.047). Dogs that died suddenly did not have a greater number of arterial changes than other dogs with SAS. This study suggests that most dogs with SAS have intramyocardial arterial narrowing and that the risk of dying suddenly is not significantly related to the overall degree of vessel obliteration.

  14. Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater

    International Nuclear Information System (INIS)

    Hamid, Mohammed O.A.; Zhang, Bo; Yang, Luopeng

    2014-01-01

    The big problems facing solar-assisted MED (multiple-effect distillation) desalination unit are the low efficiency and bulky heat exchangers, which worsen its systematic economic feasibility. In an attempt to develop heat transfer technologies with high energy efficiency, a mathematical study is established, and optimization analysis using FSP (field synergy principle) is proposed to support meaning of heat transfer enhancement of a pre-heater in a solar-assisted MED desalination unit. Numerical simulations are performed on fluid flow and heat transfer characteristics in a circular and elliptical tube bundle. The numerical results are analyzed using the concept of synergy angle and synergy number as an indication of synergy between velocity vector and temperature gradient fields. Heat transfer in elliptical tube bundle is enhanced significantly with increasing initial velocity of the feed seawater and field synergy number and decreasing of synergy angle. Under the same operating conditions of the two designs, the total average synergy angle is 78.97° and 66.31° in circular and elliptical tube bundle, respectively. Optimization of the pre-heater by FSP shows that in case of elliptical tube bundle design, the average synergy number and heat transfer rate are increased by 22.68% and 35.98% respectively. - Highlights: • FSP (field synergy principle) is used to investigate heat transfer enhancement. • Numerical simulations are performed in circular and elliptical tubes pre-heater. • Numerical results are analyzed using concept of synergy angle and synergy number. • Optimization of elliptical tube bundle by FSP has better performance

  15. Feasibility and economic analysis of solid desiccant wheel used for dehumidification and preheating in blast furnace: A case study of steel plant, Nanjing, China

    International Nuclear Information System (INIS)

    Guan, Yipeng; Zhang, Yufeng; Sheng, Ying; Kong, Xiangrui; Du, Song

    2015-01-01

    To overcome the shortcomings of huge energy consumption from conventional dehumidification using lithium bromide adsorption refrigerating (LBARD) system, a novel desiccant wheel dehumidification and preheating (DWDP) system using two-stage desiccant wheel for blast furnace is brought forward. The DWDP system was designed for dehumidification and preheating in blast furnace of steel plant. It takes waste heat in the slag flushing water as desiccant regeneration and preheating energy. To validate the feasibility of the new DWDP system, experimental studies were conducted based on a steel plant in Nanjing, China. The experiment was designed to use DWDP system in humid outdoor climates e.g. summer seasons. The experimental results indicate that the moisture removal capacity of DWDP system can reach 8.7 g/kg which will lead to the improvement of steel production by 0.9% and the coal is saved of about 2100 tons per year. With the DWDP system, the energy consumed by cooling tower of slag flushing water can decrease 7.3%. All of these energy saved equates to 10.3 million CNY annually. A comparison of initial investment and operating cost between DWDP system and LBRAD system was then carried out. The results show that the initial investment and operating cost of DWDP system is 37% and 57% of present LBARD system, and the payback period is shortened 66%. - Highlights: • A novel two-stage desiccant wheel dehumidification system for blast furnace is proposed. • Average moisture removal of 8.7 g/kg is achieved and dehumidification efficiency is 47%. • Outlet humidity ratio is less than 10 g/kg that satisfies the requirement of blast air. • Waste heat in slag flushing water is utilized and 61.4 million kJ is saved annually. • The investment and operating cost is 37% and 57% of former dehumidification system

  16. An Analysis of the Microstructure, Macrostructure and Microhardness of Nicr-Ir Joints Produced by Laser Welding with and without Preheat

    Directory of Open Access Journals (Sweden)

    Różowicz S.

    2016-06-01

    Full Text Available This paper discusses some of the basic problems involved in laser welding of dissimilar materials with significant differences in melting points. It focuses on the micro and macrostructure of laser welded NiCr-Ir microjoints used in central spark plug electrodes. The joints were produced by welding with and without preheat using an Nd,YAG laser. The structure and composition of the welded joints were analyzed by means of a light microscope (LM and a scanning electron microscope (SEM equipped with an energy dispersive X-ray (EDX spectrometer. The microhardness of the weld area was also studied.

  17. A CHF Model in Narrow Gaps under Saturated Boiling

    International Nuclear Information System (INIS)

    Park, Suki; Kim, Hyeonil; Park, Cheol

    2014-01-01

    Many researchers have paid a great attention to the CHF in narrow gaps due to enormous industrial applications. Especially, a great number of researches on the CHF have been carried out in relation to nuclear safety issues such as in-vessel retention for nuclear power plants during a severe accident. Analytical studies to predict the CHF in narrow gaps have been also reported. Yu et al. (2012) developed an analytical model to predict the CHF on downward facing and inclined heaters based on the model of Kandlikar et al. (2001) for an upward facing heater. A new theoretical model is developed to predict the CHF in narrow gaps under saturated pool boiling. This model is applicable when one side of coolant channels or both sides are heated including the effects of heater orientation. The present model is compared with the experimental CHF data obtained in narrow gaps. A new analytical CHF model is proposed to predict CHF for narrow gaps under saturated pool boiling. This model can be applied to one-side or two-sides heating surface and also consider the effects of heater orientation on CHF. The present model is compared with the experimental data obtained in narrow gaps with one heater. The comparisons indicate that the present model shows a good agreement with the experimental CHF data in the horizontal annular tubes. However, it generally under-predicts the experimental data in the narrow rectangular gaps except the data obtained in the gap thickness of 10 mm and the horizontal downward facing heater

  18. NMR imaging of solids with multiple-pulse line narrowing and radiofrequency gradients

    International Nuclear Information System (INIS)

    Werner, M.H.

    1993-01-01

    The usual methods of magnetic resonance imaging fail in rigid solids due to the line-shape contributions of dipolar coupling, chemical shift dispersion and anisotropy, and bulk magnetic susceptibility. This dissertation presents a new method of solid-stage imaging by nuclear magnetic resonance which averages away these contributions with multiple-pulse line-narrowing and encodes spatial information with pulsed radiofrequency field gradients. This method is closely related to simultaneously developed methods utilizing pulsed DC gradients, and offers similar improvements in sensitivity and resolution. The advantage of rf gradients is that they can be rapidly switched without inducing eddy currents in the probe or the magnet. In addition, the phases and amplitudes of the rf gradients can be switched by equipment which is already part of an NMR spectrometer capable of solid-state spectroscopy. The line-narrowing and gradient pulses originate in separate rf circuits tuned to the same frequency. Interactions between the circuits have been minimized by a method of active Q-switching which employs PIN diodes in the matching networks of these circuits. Both one- and two-dimensional images are presented. The latter are obtained by a novel method in which the two dimensions of imaging transverse to the static magnetic field are encoded by two orthogonal components of a single rf gradient. A π/2 phase shift of the rf phase relative to that of the line-narrowing pulses selects one component or the other. This arrangement allows the solid-state analogs of versatile imaging sequences based on Fourier imaging and eliminates the need for sample rotation and back-projection methods. Coherent averaging theory is used to analyze this imaging technique and exact numerical simulations on several coupled spins are discussed. These lend insight to the residual linewidth and its dependence on pixel position as well as to the range of applicability of this technique

  19. Cuttings-liquid frictional pressure loss model for horizontal narrow annular flow with rotating drillpipe

    International Nuclear Information System (INIS)

    Ofei, T N; Irawan, S; Pao, W

    2015-01-01

    During oil and gas drilling operations, frictional pressure loss is experienced as the drilling fluid transports the drilled cuttings from the bottom-hole, through the annulus, to the surface. Estimation of these pressure losses is critical when designing the drilling hydraulic program. Two-phase frictional pressure loss in the annulus is very difficult to predict, and even more complex when there is drillpipe rotation. Accurate prediction will ensure that the correct equivalent circulating density (ECD) is applied in the wellbore to prevent formation fracture, especially in formations with narrow window between the pore pressure and fracture gradient. Few researchers have attempted to propose cuttings-liquid frictional pressure loss models, nevertheless, these models fail when they are applied to narrow wellbores such as in casing- while-drilling and slimhole applications. This study proposes improved cuttings-liquid frictional pressure loss models for narrow horizontal annuli with drillpipe rotation using Dimensional Analysis. Both Newtonian and non-Newtonian fluids were considered. The proposed model constants were fitted by generated data from a full-scale simulation study using ANSYS-CFX. The models showed improvement over existing cuttings-liquid pressure loss correlations in literature. (paper)

  20. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei

    2014-01-01

    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  1. Control of fibre laser mode-locking by narrow-band Bragg gratings

    International Nuclear Information System (INIS)

    Laegsgaard, J

    2008-01-01

    The use of narrow-band high-reflectivity fibre Bragg gratings (FBGs) as end mirrors in a fibre laser cavity with passive mode-locking provided by a semiconductor saturable absorber mirror (SESAM) is investigated numerically. The FBG is found to control the energy range of stable mode-locking, which may be shifted far outside the regime of SESAM saturation by a suitable choice of FBG and cavity length. The pulse shape is controlled by the combined effects of FBG dispersion and self-phase modulation in the fibres, and a few ps pulses can be obtained with standard uniform FBGs

  2. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Directory of Open Access Journals (Sweden)

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  3. CT demonstration of pharyngeal narrowing in adult obstructive sleep apnea

    International Nuclear Information System (INIS)

    Bohlman, M.E.; Haponik, E.F.; Smith, P.L.; Allen, R.P.; Bleecker, E.R.; Goldman, S.M.

    1983-01-01

    Sleep apnea is a major cause of daytime hypersomnolence. Among the proposed etiologies, focal obstruction of the airways at the level of the pharynx has been suggested but not proven. Using computed tomography, the cross-sectional area of the airway can be readily assessed. Thirty-three adults with clinically proven sleep apnea and 12 normal adults underwent systematic computed tomography of the neck. Significant airway narrowing was demonstrated in all the patients with obstructive sleep apnea, whereas no such narrowing was seen in the controls. In 11, the narrowing was at a single level, whereas in 22 patients two or more levels were affected. This study has shown that a structurally abnormal airway may serve as an anatomic substrate for the development of sleep apnea. On the basis of this evidence, uvulopalatopharyngoplasty has been performed in two patients with relief of symptoms in one

  4. MRI of surgically created pulmonary artery narrowing in the dog

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B. (Michigan Univ., Ann Arbor (USA). Dept. of Radiology)

    1989-11-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.).

  5. MRI of surgically created pulmonary artery narrowing in the dog

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B.

    1989-01-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.)

  6. High pressure phases of terbium: Possibility of a thcp phase

    International Nuclear Information System (INIS)

    Staun Olsen, J.; Steenstrup, S.; Gerward, L.

    1985-01-01

    High pressure phases of trivalent Tb studied by energy dispersive X-ray diffraction with synchrotron radiation exhibits the closed packed sequence (hcp -> Sm -> dhcp -> fcc) typical of the trivalent rare earth metals. Furthermore, a phase consistent with a triple hexagonal closed packed (thcp) structure was observed in a narrow pressure range around 30 GPa. (orig.)

  7. The Argument for a Narrow Conception of 'Religious Autonomy'

    DEFF Research Database (Denmark)

    Christoffersen, Lisbet

    2015-01-01

    This article argues for a both horizontal and vertical narrow concept of collective freedom of Religion. The most recent ECtHR judgments as well as the US Supreme Court Hosanna-Tabor case leads theory to establish religious autonomy based on parallel legal roders. Nordic theory has been based...

  8. Predicting soil nitrogen content using narrow-band indices from ...

    African Journals Online (AJOL)

    Optimal fertiliser applications for sustainable forest stand productivity management, whilst protecting the environment, is vital. This study estimated soil nitrogen content using leaf-level narrow-band vegetation indices derived from a hand-held 350–2 500 nm spectroradiometer. Leaf-level spectral data were collected and ...

  9. Nonstationary Narrow-Band Response and First-Passage Probability

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The notion of a nonstationary narrow-band stochastic process is introduced without reference to a frequency spectrum, and the joint distribution function of two consecutive maxima is approximated by use of an envelope. Based on these definitions the first passage problem is treated as a Markov po...

  10. Free-Molecular Gas Flow in Narrow (Nanoscale) Channel

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Roldugin, V.I.; Žďanov, V.M.; Ždímal, Vladimír

    2014-01-01

    Roč. 87, č. 4 (2014), s. 802-814 ISSN 1062-0125 Grant - others:BRFFI(BY) T12P-018; RFBR(RU) 12-08-90009 Institutional support: RVO:67985858 Keywords : narrow channels * free-molecular gas flow * surface diffusion Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Experimental Study on Critical Power in a Hemispherical Narrow Gap

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Sang-Baik; Kim, Hee-Dong; Jeong, Ji-Hwan

    2002-01-01

    An experimental study of critical heat flux in gap (CHFG) has been performed to investigate the inherent cooling mechanism in a hemispherical narrow gap. The objectives of the CHFG test are to measure critical power from a critical heat removal rate through the hemispherical narrow gap using distilled water with experimental parameters of system pressure and gap width. The CHFG test results have shown that a countercurrent flow limitation (CCFL) brings about local dryout at the small edge region of the upper part and finally global dryout in a hemispherical narrow gap. Increases in the gap width and pressure lead to an increase in critical power. The measured values of critical power are lower than the predictions made by other empirical CHF correlations applicable to flat plate, annuli, and small spherical gaps. The measured data on critical power in the hemispherical narrow gaps have been correlated using nondimensional parameters with a range of approximately ±20%. The developed correlation has been expanded to apply the spherical geometry using the Siemens/KWU correlation

  12. Career Attainment among Healthcare Executives: Is the Gender Gap Narrowing?

    Science.gov (United States)

    Branin, Joan Julia

    2009-01-01

    Health care occupations are expected to be among the fastest growing professions in the next ten years. With such incredible growth expected in employment and wages, and with women's participation in the industry remaining strong, are women in the health care industry, particularly those in health care administration, experiencing a narrowing of…

  13. Narrow-Band Imaging: Clinical Application in Gastrointestinal Endoscopy

    Directory of Open Access Journals (Sweden)

    Sandra Barbeiro

    2018-03-01

    Full Text Available Narrow-band imaging is an advanced imaging system that applies optic digital methods to enhance endoscopic images and improves visualization of the mucosal surface architecture and microvascular pattern. Narrow-band imaging use has been suggested to be an important adjunctive tool to white-light endoscopy to improve the detection of lesions in the digestive tract. Importantly, it also allows the distinction between benign and malignant lesions, targeting biopsies, prediction of the risk of invasive cancer, delimitation of resection margins, and identification of residual neoplasia in a scar. Thus, in expert hands it is a useful tool that enables the physician to decide on the best treatment (endoscopic or surgical and management. Current evidence suggests that it should be used routinely for patients at increased risk for digestive neoplastic lesions and could become the standard of care in the near future, at least in referral centers. However, adequate training programs to promote the implementation of narrow-band imaging in daily clinical practice are needed. In this review, we summarize the current scientific evidence on the clinical usefulness of narrow-band imaging in the diagnosis and characterization of digestive tract lesions/cancers and describe the available classification systems.

  14. Note: Folded optical system for narrow forward looking probe

    International Nuclear Information System (INIS)

    Hou, Hsuan-Chao; Hah, Dooyoung; Kim, Jeonghwan; Feldman, M.

    2014-01-01

    An optical system is described in which a laser beam makes three passes through a single graded index lens, forming a focus along the optic axis. It has important applications in endoscopic probes, where the forward looking characteristic permits the avoidance of obstacles and the narrow structure makes it minimally invasive

  15. Modeling of air flow through a narrow crack

    International Nuclear Information System (INIS)

    Trojek, T.; Cechak, T.; Moucka, L.; Fronka, A.

    2004-01-01

    Radon transport in dwellings is governed to a significant extent by pressure differences and properties of transport pathways. A model of air flow through narrow cracks was created in order to facilitate prediction of air velocity and air flow. Theoretical calculations, based on numerical solution of a system of differential equations, were compared with measurements carried out on a window crack. (P.A.)

  16. Measurements of Narrow Mg II Associated Absorption Doublets with ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The measurement of the variations of absorption lines over time is a good method to study the physical conditions of absorbers. In this paper, we measure the variations of the line strength of 36 narrow Mg II2796, 2803 associated absorption doublets, which are imprinted on 31 quasar spectra with two ...

  17. Japanese VLBI Network Observations of a Gamma-Ray Narrow ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2014) 35, 215–218 c Indian Academy of Sciences. Japanese VLBI Network Observations of a Gamma-Ray. Narrow-Line Seyfert 1 Galaxy 1H 0323+342. Kiyoaki Wajima1,∗. , Kenta Fujisawa2, Masaaki Hayashida3. & Naoki Isobe4. 1Shanghai Astronomical Observatory, Chinese Academy of Sciences,.

  18. Extrinsic stretching narrowing and anterior indentation of the rectosigmoid junction

    International Nuclear Information System (INIS)

    Schulman, A.; Fataar, S.

    1979-01-01

    Thirty-five cases of extrinsic narrowing or anterior indentation of the rectosigmoid junction (RSJ) have been studied. The RSJ lies directly behind the pouch of Douglas which is a favoured site for peritoneal metastasis, abscess and endometriosis. Any space-occupying lesion of sufficient size at this site will indent the anterior aspects of the RSJ. Causes include distension or tumour of the ileum or sigmoid colon, gross ascites (when the patient is erect), and tumours below the pelvic peritonium, such as gynaecological neoplasm and internal iliac artery aneurysm. When a desmoplastic metastasis in the pouch of Douglas infiltrates the outer layers of the RSJ, the fibrosis produces an eccentric shortening on its anterior aspect, which in turn causes a pleating of the mucosa with the folds radiating towards the shortened area. This is also seen with primary pelvic carcinomas directly adherent to the rectum, endometriosis with repeated bleeding and increasing eccentric, submucosal fibrosis, and chronic abscess in the pouch of Douglas. Not all extrinsic narrowing of the RSJ are pathological. One case of anterior indentation followed operation for rectal prolapse. Ten additional cases showed narrowing due to a technical artefact air-distended colon rising into the upper abdomen to cause stretching at the RSJ. As with ascites, this narrowing due to 'high-rise sigmoid' disappeared when the patients became recumbent and the colonic air redistributed. (author)

  19. Narrow coherent effects in πNN-dynamics

    International Nuclear Information System (INIS)

    Kudryavtsev, A.E.; Obrant, G.Z.

    1990-01-01

    Coherent effect production is considered in πNN-dynamics with resonant pion-nucleon interaction via Brueckner theory and Faddev equations. It is shown that the narrow energy and final momentum dependence can arise in the inelastic S-wave πd-scattering. The energy dependence peculiarities can have a width an order magnitude less than πN-resonance one

  20. A "Narrowing of Inquiry" in American Moral Psychology and Education

    Science.gov (United States)

    Richardson, Michael J.; Slife, Brent D.

    2013-01-01

    We explore the possibility that a priori philosophical commitments continue to result in a narrowing of inquiry in moral psychology and education where theistic worldviews are concerned. Drawing from the theories of Edward L. Thorndike and John Dewey, we examine naturalistic philosophical commitments that influenced the study of moral psychology…

  1. Oscillatory Dynamics Underlying Perceptual Narrowing of Native Phoneme Mapping from 6 to 12 Months of Age.

    Science.gov (United States)

    Ortiz-Mantilla, Silvia; Hämäläinen, Jarmo A; Realpe-Bonilla, Teresa; Benasich, April A

    2016-11-30

    During the first months of life, human infants process phonemic elements from all languages similarly. However, by 12 months of age, as language-specific phonemic maps are established, infants respond preferentially to their native language. This process, known as perceptual narrowing, supports neural representation and thus efficient processing of the distinctive phonemes within the sound environment. Although oscillatory mechanisms underlying processing of native and non-native phonemic contrasts were recently delineated in 6-month-old infants, the maturational trajectory of these mechanisms remained unclear. A group of typically developing infants born into monolingual English families, were followed from 6 to 12 months and presented with English and Spanish syllable contrasts varying in voice-onset time. Brain responses were recorded with high-density electroencephalogram, and sources of event-related potential generators identified at right and left auditory cortices at 6 and 12 months and also at frontal cortex at 6 months. Time-frequency analyses conducted at source level found variations in both θ and γ ranges across age. Compared with 6-month-olds, 12-month-olds' responses to native phonemes showed smaller and faster phase synchronization and less spectral power in the θ range, and increases in left phase synchrony as well as induced high-γ activity in both frontal and left auditory sources. These results demonstrate that infants become more automatized and efficient in processing their native language as they approach 12 months of age via the interplay between θ and γ oscillations. We suggest that, while θ oscillations support syllable processing, γ oscillations underlie phonemic perceptual narrowing, progressively favoring mapping of native over non-native language across the first year of life. During early language acquisition, typically developing infants gradually construct phonemic maps of their native language in auditory cortex. It is well

  2. Frontal Plane Modelling of Human Dynamics during Standing in Narrow-Stance

    Science.gov (United States)

    Sonobe, M.; Yamaguchi, H.; Hino, J.

    2016-09-01

    Standing ride type vehicles like electric skateboards have been developed in recent years. Although these vehicles have advantages as being compact and low cost due to their simple structure, it is necessary to improve the riding quality. Therefore, the system aiding riders to keep their balance on a skateboard by feedback control or feedforward control has been required. To achieve it, a human balance model should be built as simple as possible. In this study, we focus on the human balance modelling during standing when the support surface moves largely. We restricted the model on frontal plane and narrow stance because the restrictions allow us to assume single-degree-of-freedom model. The balance control system is generally assumed as a delayed feedback control system. The model was identified through impulse response test and frequency response test. As a result, we found the phase between acceleration of the skateboard and posture angle become opposite phase in low frequency range.

  3. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K [Tel Aviv University, Ramat Aviv (Israel); Cuperman, S [Tel Aviv University, Ramat Aviv (Israel); Bruma, C [Tel Aviv University, Ramat Aviv (Israel)

    2007-09-15

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined.

  4. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K; Cuperman, S; Bruma, C

    2007-01-01

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined

  5. Development of an expert system for preheating temperatures determination. Desarrollo dse uns sistema experto para la determinacion de temperatura de precalentamiento

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, E; Silva, M; Gonalvez, P; Fernandez, A A [Oporto Univ. (Portugal) Facultad de Ingenieria

    1989-01-01

    This work describes the development of an expert system designed to control the cold fissuration phenomenon caused by H{sup 2} on welded joints of carbonated, C-Mn and light alloy steels, obtained through fusion welding (manual electric arc, MIG/MAG, TIG and submerged arc). This system, implemented in PROLOG language, allows a quick and simple calculation of preheating temperatures. The aim of this system, which does not require programming knowledge to be updated, is to help welding engineers to design welding procedures which are safe as regards to the joint resistance to cold fissuration. Being an expert system, the user has the opportunity to obtain interactive explanations about the way any conclusions are obtained, as well as information about the concepts and parameters on which the reasoning is based.(Author)

  6. Narrow power deposition profiles on the JET divertor target

    International Nuclear Information System (INIS)

    Lingertat, J.; Laux, M.; Monk, R.

    2001-01-01

    One of the key unresolved issues in the design of a future fusion reactor is the power handling capability of the divertor target plates. Earlier we reported on the existence of narrow power deposition profiles in JET, obtained mainly from Langmuir probe measurements. We repeated these measurements in the MkI, MkII and MkIIGB divertor configurations with an upgraded probe system, which allowed us to study the profile shape in more detail. The main results of this study are: In NB heated discharges the electron temperature and power flux at the outer target show a distinct peak of ∼5 mm half-width near the separatrix strike point. The corresponding profiles on the inner target do not show a similar feature. The height of the narrow peak increases with NB heating power and decreases with deuterium and impurity gas puffing. Ion orbit losses are suggested as a possible explanation of the observed profile shape

  7. Experimental research on flow instability in vertical narrow annuli

    Institute of Scientific and Technical Information of China (English)

    WU Geping; QIU Suizheng; SU Guanghui; JIA Dounan

    2007-01-01

    A narrow annular test section of 1.5mm gap and 1800mm length was designed and manufactured, with good tightness and insulation. Experiments were carried out to investigate characteristics of flow instability of forced-convection in vertical narrow annuli. Using distilled water as work fluid, the experiments were conducted at pressures of 1.0~3.0 MPa, mass flow rates of 3.0~25 kg/h, heating power of 3.0~ 6.5kW and inlet fluid temperature of 20 ℃, 40 ℃ or 60℃. It was found that flow instability occured with fixed inlet condition and heating power when mass flow rate was below a special value. Effects of inlet subcooling, system pressure and mass flow rate on the system behavior were studied and the instability region was given.

  8. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Directory of Open Access Journals (Sweden)

    J. Marganiec

    2016-08-01

    Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  9. Period effects, cohort effects, and the narrowing gender wage gap.

    Science.gov (United States)

    Campbell, Colin; Pearlman, Jessica

    2013-11-01

    Despite the abundance of sociological research on the gender wage gap, questions remain. In particular, the role of cohorts is under investigated. Using data from the Current Population Survey, we use age-period-cohort analysis to uniquely estimate age, period, and cohort effects on the gender wage gap. The narrowing of the gender wage gap that occurred between 1975 and 2009 is largely due to cohort effects. Since the mid-1990s, the gender wage gap has continued to close absent of period effects. While gains in female wages contributed to declines in the gender wage gap for cohorts born before 1950, for later cohorts the narrowing of the gender wage gap is primarily a result of declines in male wages. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Period Effects, Cohort Effects, and the Narrowing Gender Wage Gap

    Science.gov (United States)

    Campbell, Colin; Pearlman, Jessica

    2015-01-01

    Despite the abundance of sociological research on the gender wage gap, questions remain. In particular, the role of cohorts is under investigated. Using data from the Current Population Survey, we use Age-Period-Cohort analysis to uniquely estimate age, period, and cohort effects on the gender wage gap. The narrowing of the gender wage gap that occurred between 1975 and 2009 is largely due to cohort effects. Since the mid-1990s, the gender wage gap has continued to close absent of period effects. While gains in female wages contributed to declines in the gender wage gap for cohorts born before 1950, for later cohorts the narrowing of the gender wage gap is primarily a result of declines in male wages. PMID:24090861

  11. New technology for the control of narrow-gap semiconductors

    International Nuclear Information System (INIS)

    Antoniou, I.; Bozhevolnov, V.; Melnikov, Yu.; Yafyasov, A.

    2003-01-01

    We present the results of the year work in the frame of the EU ESPRIT Project 28890 NTCONGS 'New technology for the control of narrow-gap semiconductors'. This work has involved both theoretical and experimental study, as well as the development of new specific equipment, towards the creation of a new generation of nanoelectronic devices able to operate at 77 K and even at room temperature

  12. US images encoding envelope amplitude following narrow band filtering

    International Nuclear Information System (INIS)

    Sommer, F.G.; Stern, R.A.; Chen, H.S.

    1986-01-01

    Ultrasonic waveform data from phantoms having differing scattering characteristics and from normal and cirrhotic human liver in vivo were recorded within a standardized dynamic range and filtered with narrow band filters either above or below the mean recorded ultrasonic center frequency. Images created by mapping the amplitudes of received ultrasound following such filtration permitted dramatic differentiation, not discernible in conventional US images, of phantoms having differing scattering characteristics, and of normal and cirrhotic human livers

  13. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...

  14. Cervical spinal canal narrowing and cervical neurologi-cal injuries

    Directory of Open Access Journals (Sweden)

    ZHANG Ling

    2012-04-01

    Full Text Available 【Abstract】Cervical spinal canal narrowing can lead to injury of the spinal cord and neurological symptoms in-cluding neck pain, headache, weakness and parasthesisas. According to previous and recent clinical researches, we investigated the geometric parameters of normal cervical spinal canal including the sagittal and transverse diameters as well as Torg ratio. The mean sagittal diameter of cervical spinal canal at C 1 to C 7 ranges from 15.33 mm to 20.46 mm, the mean transverse diameter at the same levels ranges from 24.45 mm to 27.00 mm and the mean value of Torg ratio is 0.96. With respect to narrow cervical spinal canal, the following charaterstics are found: firstly, extension of the cervical spine results in statistically significant stenosis as compared with the flexed or neutral positions; secondly, females sustain cervical spinal canal narrowing more easily than males; finally, the consistent narrowest cervical canal level is at C 4 for all ethnicity, but there is a slight variation in the sagittal diameter of cervical spinal stenosis (≤14 mm in Whites, ≤ 12 mm in Japanese, ≤13.7 mm in Chinese. Narrow sagittal cervical canal diameter brings about an increased risk of neurological injuries in traumatic, degenerative and inflam-matory conditions and is related with extension of cervical spine, gender, as well as ethnicity. It is hoped that this re-view will be helpful in diagnosing spinal cord and neuro-logical injuries with the geometric parameters of cervical spine in the future. Key words: Spinal cord injuries; Spinal stenosis; Trauma, nervous system

  15. Generation of narrow peaks in spectroscopy of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Dubbers, Dirk, E-mail: dubbers@physi.uni-heidelberg.de; Schmidt, Ulrich, E-mail: ulrich.schmidt@physi.uni-heidelberg.de

    2016-11-21

    In spectroscopy of charged particles, narrow peaks may appear in continuous spectra if magnetic transport of the particles is involved. These artefacts, which so far have escaped the attention of investigators, can develop whenever geometric detection efficiency is less than 100%. As such peaks may be misinterpreted as new physics, their generation is investigated, both analytically and experimentally, for various detector configurations, including those used in searches for the spontaneous decay of the vacuum in heavy-ion collisions.

  16. The 1987 Whittier Narrows, California, earthquake: A Metropolitan shock

    OpenAIRE

    Hauksson, Egill; Stein, Ross S.

    1989-01-01

    Just 3 hours after the Whittier Narrows earthquake struck, it became clear that a heretofore unseen geological structure was seismically active beneath metropolitan Los Angeles. Contrary to initial expectations of strike-slip or oblique-slip motion on the Whittier fault, whose north end abuts the aftershock zone, the focal mechanism of the mainshock showed pure thrust faulting on a deep gently inclined surface [Hauksson et al., 1988]. This collection of nine research reports spans the spectru...

  17. Analysis of ultra-narrow ferromagnetic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  18. Three-Prong Distribution of Massive Narrow QCD Jets

    CERN Document Server

    Field, Matan; Kosower, David A; Mannelli, Lorenzo; Perez, Gilad

    2013-01-01

    We study the planar-flow distributions of narrow, highly boosted, massive QCD jets. Using the factorization properties of QCD in the collinear limit, we compute the planar-flow jet function from the one-to-three splitting function at tree-level. We derive the leading-log behavior of the jet function analytically. We also compare our semi-analytic jet function with parton-shower predictions using various generators.

  19. Present status of heat transfer in narrow gap rectangular channel

    International Nuclear Information System (INIS)

    Sudo, Yukio; Kaminaga, Masanori

    1990-01-01

    In the safety evaluation for research nuclear reactors, at the time of abnormal transient change and accidents, after the tripping of a primary coolant pump, such event that the flow direction of coolant in a core reverses from steady downward flow to rising flow is supposed. In this case, the coexisting convection field, in which free convection and forced convection coexist, arises in place of forced convection, and especially in the research reactors using plate type fuel like JRR-3, it is important to grasp the heat transfer characteristics in the coexisting convection field in a narrow channel. Jackson et al. proposed the heat transfer correlation equation which can be applied to wide conditions including the coexisting convection zone, but its applicability to a narrow channel has not been confirmed. Based on the experimental results, in this study, the effect that the decrease of gap exerts to the convection heat transfer characteristics reported so far was investigated. The experiment and the results are reported. In this experiment on the coexisting convection zone in a narrow gap, the effect of main flow acceleration arose sufficiently large as compared with the effect of buoyancy, and heat transfer was promoted. (K.I.)

  20. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  1. Heavy drinking, impulsivity and attentional narrowing following alcohol cue exposure.

    Science.gov (United States)

    Hicks, Joshua A; Fields, Sherecce; Davis, William E; Gable, Philip A

    2015-08-01

    Research shows that alcohol-related stimuli have the propensity to capture attention among individuals motivated to consume alcohol. Research has further demonstrated that impulsive individuals are especially prone to this type of attentional bias. Recently, it is suggested that alcohol cue exposure can also produce a general narrowing of attention consistent with the activation of approach motivational states. Based on previous models of addiction and recent research on the activation of approach motivational states, we predicted that impulsive individuals would demonstrate a constriction of attentional focus in response to alcohol cue exposure. Participants (n = 392) completed a task assessing attentional breadth in response to alcohol and non-alcohol cues, followed by measures of alcohol use and impulsivity. The findings revealed that impulsivity scores predicted narrowing of attentional scope following the presentation of alcohol cues for heavier drinkers but not for light drinkers. These results suggest that impulsive individuals who drink more heavily demonstrate a narrowing of attention in the presence of alcohol-related incentive cues. Implications for how these findings might account for the link between impulsivity and alcohol use and misuse are discussed.

  2. Experimental study on occupant evacuation in narrow seat aisle

    Science.gov (United States)

    Huang, Shenshi; Lu, Shouxiang; Lo, Siuming; Li, Changhai; Guo, Yafei

    2018-07-01

    Narrow seat aisle is an important area in the train car interior due to the large passenger population, however evacuation therein has not gained enough concerns. In this experimental study, the occupant evacuation of the narrow seat aisle area is investigated, with the aisle width of 0.4-0.6 m and the evacuation direction of forward and backward. The evacuation behaviors are analyzed based on the video record, and the discussion is carried out in the aspect of evacuation time, crowdedness, evacuation order, and aisle conflicts. The result shows that with the increasing aisle width, total evacuation time and the average specific evacuation rate decrease. The aisle is crowded for some time, with a large linear occupant densities. The evacuation order of each occupant is mainly related to the seat position. Moreover, it is found that the aisle conflicts can be well described by Burstedde's model. This study gives a useful benchmark for evacuation simulation of narrow seat aisle, and provides reference to safety design of seat area in train cars.

  3. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  4. Novel structural flexibility identification in narrow frequency bands

    International Nuclear Information System (INIS)

    Zhang, J; Moon, F L

    2012-01-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method. (paper)

  5. Joint Space Narrowing in Patients With Pisotriquetral Osteoarthritis.

    Science.gov (United States)

    Ten Berg, Paul W L; Heeg, Erik; Strackee, Simon D; Streekstra, Geert J

    2017-09-01

    Patients with suspected pisotriquetral osteoarthritis may show joint space narrowing. However, the extent of joint space narrowing and its deviation from the joint space width (JSW) in normal anatomy is unknown. In this pathoanatomic study, we therefore compared the JSW in the pisotriquetral joint between osteoarthritic patient wrists and healthy wrists. We reviewed preoperative computed tomography (CT) scans of 8 wrists of patients with ulnar-sided wrist pain who underwent a pisiformectomy with confirmed pisotriquetral osteoarthritis at surgery. We also reviewed CT scans of 20 normal wrists from healthy volunteers serving as control group. Three-dimensional CT models of the pisiform and triquetrum were obtained from both affected and normal wrists, after which the minimum JSW was calculated in an automated fashion. In the patient group, the median (interquartile range) of the minimum JSW was 0.1 mm (0.0-0.2), and in the control group, 0.8 mm (0.3-0.9) ( P = .007). We showed that the pisotriquetral joint space in osteoarthritic patient wrists was significantly narrowed compared with healthy wrists. These results suggest that JSW evaluation has a potential diagnostic value in the work-up of patients with suspected pisotriquetral osteoarthritis. This is an interesting area for future clinical research, especially because no gold standard for diagnosing pisotriquetral osteoarthritis has been established yet.

  6. High prevalence of narrow angles among Filipino-American patients.

    Science.gov (United States)

    Seider, Michael I; Sáles, Christopher S; Lee, Roland Y; Agadzi, Anthony K; Porco, Travis C; Weinreb, Robert N; Lin, Shan C

    2011-03-01

    To determine the prevalence of gonioscopically narrow anterior chamber angles in a Filipino-American clinic population. The records of 122 consecutive, new, self-declared Filipino-American patients examined in a comprehensive ophthalmology clinic in Vallejo, California were reviewed retrospectively. After exclusion, 222 eyes from 112 patients remained for analysis. Data were collected for anterior chamber angle grade as determined by gonioscopy (Shaffer system), age, sex, manifest refraction (spherical equivalent), intraocular pressure, and cup-to-disk ratio. Data from both eyes of patients were included and modeled using standard linear mixed-effects regression. As a comparison, data were also collected from a group of 30 consecutive White patients from the same clinic. After exclusion, 50 eyes from 25 White patients remained for comparison. At least 1 eye of 24% of Filipino-American patients had a narrow anterior chamber angle (Shaffer grade ≤ 2). Filipino-American angle grade significantly decreased with increasingly hyperopic refraction (P=0.007) and larger cup-to-disk ratio (P=0.038). Filipino-American women had significantly decreased angle grades compared with men (P=0.028), but angle grade did not vary by intraocular pressure or age (all, P≥ 0.059). Narrow anterior chamber angles are highly prevalent in Filipino-American patients in our clinic population.

  7. A Monte Carlo multiple source model applied to radiosurgery narrow photon beams

    International Nuclear Information System (INIS)

    Chaves, A.; Lopes, M.C.; Alves, C.C.; Oliveira, C.; Peralta, L.; Rodrigues, P.; Trindade, A.

    2004-01-01

    Monte Carlo (MC) methods are nowadays often used in the field of radiotherapy. Through successive steps, radiation fields are simulated, producing source Phase Space Data (PSD) that enable a dose calculation with good accuracy. Narrow photon beams used in radiosurgery can also be simulated by MC codes. However, the poor efficiency in simulating these narrow photon beams produces PSD whose quality prevents calculating dose with the required accuracy. To overcome this difficulty, a multiple source model was developed that enhances the quality of the reconstructed PSD, reducing also the time and storage capacities. This multiple source model was based on the full MC simulation, performed with the MC code MCNP4C, of the Siemens Mevatron KD2 (6 MV mode) linear accelerator head and additional collimators. The full simulation allowed the characterization of the particles coming from the accelerator head and from the additional collimators that shape the narrow photon beams used in radiosurgery treatments. Eight relevant photon virtual sources were identified from the full characterization analysis. Spatial and energy distributions were stored in histograms for the virtual sources representing the accelerator head components and the additional collimators. The photon directions were calculated for virtual sources representing the accelerator head components whereas, for the virtual sources representing the additional collimators, they were recorded into histograms. All these histograms were included in the MC code, DPM code and using a sampling procedure that reconstructed the PSDs, dose distributions were calculated in a water phantom divided in 20000 voxels of 1x1x5 mm 3 . The model accurately calculates dose distributions in the water phantom for all the additional collimators; for depth dose curves, associated errors at 2σ were lower than 2.5% until a depth of 202.5 mm for all the additional collimators and for profiles at various depths, deviations between measured

  8. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    Science.gov (United States)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  9. Narrow Bandwidth Top-Emitting OLEDs Designed for Rhodamine 6G Excitation in Biological Sensing Applications

    Directory of Open Access Journals (Sweden)

    Matthias Jahnel

    2015-11-01

    Full Text Available Organic light emitting diodes (OLED are promising candidates offering in optical sensor applications to detect different gas compositions and excitable optical marker groups in chemical and biological processes. They enable attractive solutions for monitoring the gas phase composition of e.g., dissolved molecular oxygen (O2 species in bio reactors or excitation of fluorescent markers. In this work, we investigate different OLED devices for biomedical applications to excite the fluorescent dye rhodamine 6G (R6G. The OLED devices are built in top emission geometry comprising a distributed Bragg reflector (DBR acting as optical mirror. The OLED is optimized to provide a very narrow emission characteristic to excite the R6G at 530 nm wavelength and enabling the possibility to minimize the optical crosstalk between the OLED electroluminescence and the fluorescence of R6G. The DBR includes a thin film encapsulation and enables the narrowing of the spectral emission band depending on the number of DBR pairs. The comparison between optical simulation data and experimental results exhibits good agreement and proves process stability.

  10. Application of a narrow-diameter implant in a limited space

    Directory of Open Access Journals (Sweden)

    Chia-Yun Tsai

    2010-06-01

    Full Text Available This report presents a case of inadequate space distribution after orthodontic treatment, when a narrow-diameter implant was placed in a limited mandibular anterior space (ridge and prosthetic. A 26-year-old female patient presented with a purulent discharge from the mandibular right posterior area. Radiographic and clinical evaluations revealed a four-unit bridge spanning teeth 42 to 43 and acute apical periodontitis with root resorption around tooth 42. After careful evaluation, tooth 42 was extracted, and orthodontic treatment was performed to align the posterior teeth and create a dimensionally appropriate space between teeth 41 and 43. A 3i MicroMiniplant with dimensions of 3.25 mm (diameter × 11.5 mm was implanted in the edentulous area of tooth 42 because of the small size of tooth 42. Autogenous bone particles were placed on the buccal crestal defect, and a healing abutment was attached. After an 8-month healing phase, a final impression was made and an all-ceramic crown was delivered. This case demonstrates that osseous sites with significant dimensional space limitations can be successfully utilized to receive and integrate a narrow-diameter implant that will satisfy esthetic, phonetic and functional requirements.

  11. Handling difficult anastomosis. Tips and tricks in obese patients and narrow pelvis

    Directory of Open Access Journals (Sweden)

    Srinivas Samavedi

    2014-01-01

    Full Text Available Vesico-urethral anastomosis (VUA is a technically challenging step in robotic-assisted laparoscopic prostatectomy (RALP in obese individuals. We describe technical modifications to facilitate VUA encountered in obese individuals and in patients with a narrow pelvis. A Pubmed literature search was performed between 2000 and 2012 to review all articles related to RALP, obesity and VUA for evaluation of technique, complications and outcomes of VUA in obese individuals. In addition to the technical modifications described in the literature, we describe our own experience to encounter the technical challenges induced by obesity and narrow pelvis. In obese patients, technical modifications like use of air seal trocar technology, steep Trendlenburg positioning, bariatric trocars, alterations in trocar placement, barbed suture and use of modified posterior reconstruction facilitate VUA in robotic-assisted radical prostatectomy. The dexterity of the robot and the technical modifications help to perform the VUA in challenging patients with lesser difficulty. The experience of the surgeon is a critical factor in outcomes in these technically challenging patients, and obese individuals are best avoided during the initial phase of the learning curve.

  12. Premature and stable critical heat flux for downward flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon; Jo, Daeseong

    2014-01-01

    It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date. In this regards, subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In this study, CHF for downward flow of water under low pressure in narrow rectangular channel was experimentally investigated. For conditions such as downward flow, narrow rectangular channel and low pressure, it has been deduced from literature that flow instability could largely influence on triggering CHF at lower heat flux, i. e. premature CHF. Total 54 CHF data, which includes premature and stable data was obtained for various fluid conditions and system configurations including inlet stiffness. The upper and lower boundaries of CHF were newly proposed based on the experiment

  13. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  14. Nasal base narrowing: the combined alar base excision technique.

    Science.gov (United States)

    Foda, Hossam M T

    2007-01-01

    To evaluate the role of the combined alar base excision technique in narrowing the nasal base and correcting excessive alar flare. The study included 60 cases presenting with a wide nasal base and excessive alar flaring. The surgical procedure combined an external alar wedge resection with an internal vestibular floor excision. All cases were followed up for a mean of 32 (range, 12-144) months. Nasal tip modification and correction of any preexisting caudal septal deformities were always completed before the nasal base narrowing. The mean width of the external alar wedge excised was 7.2 (range, 4-11) mm, whereas the mean width of the sill excision was 3.1 (range, 2-7) mm. Completing the internal excision first resulted in a more conservative external resection, thus avoiding any blunting of the alar-facial crease. No cases of postoperative bleeding, infection, or keloid formation were encountered, and the external alar wedge excision healed with an inconspicuous scar that was well hidden in the depth of the alar-facial crease. Finally, the risk of notching of the alar rim, which can occur at the junction of the external and internal excisions, was significantly reduced by adopting a 2-layered closure of the vestibular floor (P = .01). The combined alar base excision resulted in effective narrowing of the nasal base with elimination of excessive alar flare. Commonly feared complications, such as blunting of the alar-facial crease or notching of the alar rim, were avoided by using simple modifications in the technique of excision and closure.

  15. Investigating the Temperature Problem in Narrow Line Emitting AGN

    Science.gov (United States)

    Jenkins, Sam; Richardson, Chris T.

    2018-06-01

    Our research investigates the physical conditions in gas clouds around the narrow line region of AGN. Specifically, we explore the necessary conditions for anomalously high electron temperatures, Te, in those clouds. Our 321 galaxy data set was acquired from SDSS DR14 after requiring S/N > 5.0 in [OIII] 4363 and S/N > 3.0 in all BPT diagram emission lines, to ensure both accurate Te and galaxy classification, with 0.04 study the effects these conditions have on gas cloud Te.

  16. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  17. Bubble departure diameter in narrow rectangular channel under rolling condition

    Energy Technology Data Exchange (ETDEWEB)

    Xie, T.; Chen, B.; Yan, X.; Xu, J.; Huang, Y.; Xiao, Z. [Nuclear Power Inst. of China, Chengdu, Sichuan (China)

    2014-07-01

    Forced convective subcooled boiling flow experiments were conducted in a vertical upward narrow rectangular channel under rolling motion. A high-speed digital video camera was used to capture the dynamics of the bubble nucleation process. Bubble departure diameters were obtained from the images. A bubble departure model based on force balance analysis was proposed to predict the bubble departure size under rolling condition by considering the additional centrifugal, tangential and Coriolis force. The proposed model agreed well with the experimental data within the averaged relative deviation of 5%. (author)

  18. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... and that there is a major change in morphology between 850 – 900 °C. The effects of system pressure and precursor partial pressure are also studied, and were found to have relevance to the tantalum distribution along the substrates but little effect on the structural morphology of the deposited layer. In the implemented...

  19. Period Effects, Cohort Effects, and the Narrowing Gender Wage Gap

    OpenAIRE

    Campbell, Colin; Pearlman, Jessica

    2013-01-01

    Despite the abundance of sociological research on the gender wage gap, questions remain. In particular, the role of cohorts is under investigated. Using data from the Current Population Survey, we use Age-Period-Cohort analysis to uniquely estimate age, period, and cohort effects on the gender wage gap. The narrowing of the gender wage gap that occurred between 1975 and 2009 is largely due to cohort effects. Since the mid-1990s, the gender wage gap has continued to close absent of period effe...

  20. Regioregular narrow-bandgap-conjugated polymers for plastic electronics

    Science.gov (United States)

    Ying, Lei; Huang, Fei; Bazan, Guillermo C.

    2017-03-01

    Progress in the molecular design and processing protocols of semiconducting polymers has opened significant opportunities for the fabrication of low-cost plastic electronic devices. Recent studies indicate that field-effect transistors and organic solar cells fabricated using narrow-bandgap regioregular polymers with translational symmetries in the direction of the backbone vector often outperform those containing analogous regiorandom polymers. This review addresses the cutting edge of regioregularity chemistry, in particular how to control the spatial distribution in the molecular structures and how this order translates to more ordered bulk morphologies. The effect of regioregularity on charge transport and photovoltaic properties is also outlined.

  1. The role of rare earths in narrow energy gap semiconductors

    International Nuclear Information System (INIS)

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  2. Are Narrow Line Seyfert 1 Galaxies Viewed Pole-on?

    Science.gov (United States)

    2011-04-01

    0.2’’ respectively. Figure 1 displays the position of each slit over a Barbosa et al. (2009) GMOS IFU image of the [S III] flux (which originates...C. Winge, H. Schmitt: Gemini/ GMOS IFU gas velocity ’tomography’ of the narrow line region of nearby active galaxies, MNRAS, 396 (2009) 2. [2] D...1995) 81. 4 P o S ( N L S 1 ) 0 5 0 Are NLS1s Pole-on? Travis C. Fischer 5 Figure 1: NGC 4051 GMOS IFU image showing integrated [SIII] flux

  3. New narrow baryon resonances in pp inelastic scattering

    International Nuclear Information System (INIS)

    Tatischeff, B.; Willis, N.; Comets, M.P.; Courtat, P.; Gacougnolle, R.; Le Bornec, Y.; Loireleux, E.; Reide, F.; Yonnet, J.; Boivin, M.

    1999-01-01

    The reaction pp → pπ + X has been studied at 3 energies (T p 1520, 1805 and 2100 MeV) and 6 angles from 0 angle up to 17 angle (lab.). Several narrow states have been observed in missing mass spectra at: 1004, 1044, 1094 MeV. Their widths are typically one order of magnitude smaller than the widths of N * of Δ. Possible biases are discussed. These masses are in agreement with those calculated within a simple phenomenological mass formula based on color magnetic interaction between two colored quark clusters. (authors)

  4. Experimental study on the boiling phenomena within a narrow gap

    International Nuclear Information System (INIS)

    Aoki, S.; Inoue, A.; Aritomi, M.; Sakamoto, Y.

    1982-01-01

    Experiments were carried out with annular narrow gaps having the gap widths 0.2,0.3,0.4,0.5,1.0 and 1.5 mm for the following two cases: (a) for the ''open bottom'' case, the heat transfer coefficient was improved as the gap width decreases, but it was not affected by gap lengths in the range 40 <= L <= 100 mm. (b) for the ''closed bottom'' case, the heat transfer coefficient was not affected by gap width or length. The transition heat flux could be correlated by the equivalent gap length defined in terms of the cross-sectional area of the open end. (author)

  5. The Meteorology of Storms that Produce Narrow Bipolar Events

    Science.gov (United States)

    Lang, Timothy; McCaul, Bill; Fuchs, Brody; Cummer, Steve

    2013-01-01

    Narrow Bipolar Event's (NBE) are compact ( 10 kW in VHF), and impulsive (approx 10 micro s) electrical discharges in thunderstorms, also known as compact intracloud discharges (CIDs). Can be either positive or negative polarity and have distinctive broadband waveform signatures sometimes confused for +CGs in the past by NLDN and other networks. NBEs are related to lightning but are likely optically "dark". As revealed by VHF sensors (both satellite and ground): (1) The most powerful lightning-­-related VHF sources observed (2) Tend to occur at the beginning of intracloud discharges (3) Difficult to estimate altitude properly due to receiver saturation.

  6. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  7. Narrow Quasar Absorption Lines and the History of the Universe

    Science.gov (United States)

    Liebscher, Dierck-Ekkehard

    In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.

  8. BIS-2 spectrometer for search and investigation of narrow resonances

    International Nuclear Information System (INIS)

    Aleev, A.N.; Aref'ev, V.A.; Balandin, V.P.

    1989-01-01

    The configuration and main characteristics of the BIS-2 spectrometer are described. The spectrometer was intended to search for and to investigate charmed particles and narrow resonances produced in neutron-nucleus interactions. It was placed on a neutron beam of the Serpukhov accelerator. The Monte-Carlo simulated and experimentally measured characteristics of individual elements and the spectrometer as a whole are described. A brief review of the principal results based on the analysis of more than 10 7 neutron-nucleus interactions registered by means of the BIS-2 spectrometer is given. 34 refs.; 8 figs.; 5 tabs

  9. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  10. Evidence for a narrow anti-charmed baryon state

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J. C.; Böhme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Bröker, H.-B.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J. G.; Coppens, Y. R.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E. A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flucke, G.; Flügge, G.; Fomenko, A.; Foresti, I.; Formánek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grässler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K. H.; Höting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kückens, J.; Kuhr, T.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laycock, P.; Lebedev, A.; Leißner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakyt≐, R.; Pöschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlák, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L. N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, M.; Usik, A.; Utkin, D.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.; H1 Collaboration

    2004-05-01

    A narrow resonance in D∗ -p and D∗ +p¯ invariant mass combinations is observed in inelastic electron-proton collisions at centre-of-mass energies of 300 GeV and 320 GeV at HERA. The resonance has a mass of 3099±3(stat.)±5(syst.) MeV and a measured Gaussian width of 12±3(stat.) MeV, compatible with the experimental resolution. The resonance is interpreted as an anti-charmed baryon with a minimal constituent quark composition of uuddc¯, together with the charge conjugate.

  11. Narrow groove gas metal-arc welding of aluminum

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1975-01-01

    The Gas Metal-Arc (GMA) welding process is explained and the equipment used described with an analysis of power supply function and the action of the arc, followed by discussion of general applications and problems. GMA braze welding of beryllium is then described, as is the development of a special high purity filler wire and a narrow deep groove joint design for improved weld strength in beryllium. This joint design and the special wire are applied in making high strength welds in high strength aluminum for special applications. High speed motion pictures of the welding operation are shown to illustrate the talk. (auth)

  12. Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin

    2011-01-01

    Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.

  13. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  14. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  15. Tunable, Narrow Line Width Mid-Infrared Laser Source, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technology of interband cascade (IC) lasers and their facet coatings and to design, build, and deliver to NASA a...

  16. Tunable, Narrow Line Width Mid-Infrared Laser Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Maxion Technologies, Inc. (Maxion) and Professor Mario Dagenais and his group at the University of Maryland (UMD) jointly propose to develop a compact, efficient,...

  17. High thermal stability solution-processable narrow-band gap molecular semiconductors.

    Science.gov (United States)

    Liu, Xiaofeng; Hsu, Ben B Y; Sun, Yanming; Mai, Cheng-Kang; Heeger, Alan J; Bazan, Guillermo C

    2014-11-19

    A series of narrow-band gap conjugated molecules with specific fluorine substitution patterns has been synthesized in order to study the effect of fluorination on bulk thermal stability. As the number of fluorine substituents on the backbone increase, one finds more thermally robust bulk structures both under inert and ambient conditions as well as an increase in phase transition temperatures in the solid state. When integrated into field-effect transistor devices, the molecule with the highest degree of fluorination shows a hole mobility of 0.15 cm(2)/V·s and a device thermal stability of >300 °C. Generally, the enhancement in thermal robustness of bulk organization and device performance correlates with the level of C-H for C-F substitution. These findings are relevant for the design of molecular semiconductors that can be introduced into optoelectronic devices to be operated under a wide range of conditions.

  18. Narrow-band radio flares from red dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    White, S.M.; Kundu, M.R.; Jackson, P.D.

    1986-12-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles. 22 references.

  19. Narrow-band radio flares from red dwarf stars

    Science.gov (United States)

    White, Stephen M.; Kundu, Mukul R.; Jackson, Peter D.

    1986-01-01

    VLA observations of narrow-band behavior in 20 cm flares from two red dwarf stars, L726 - 8A and AD Leo, are reported. The flare on L726 - 8A was observed at 1415 and 1515 MHz; the flux and the evolution differed significantly at the two frequencies. The flare on AD Leo lasted for 2 hr at 1415 MHz but did not appear at 1515 MHz. The AD Leo flare appears to rule out a source drifting through the stellar corona and is unlikely to be due to plasma emission. In the cyclotron maser model the narrow-band behavior reflects the range of magnetic fields present within the source. The apparent constancy of this field for 2 hr is difficult to understand if magnetic reconnection is the source of energy for the flare. The consistent polarization exhibited by red dwarf flares at 20 cm may be related to stellar activity cycles, and changes in this polarization will permit measuring the length of these cycles.

  20. Extended Narrow-Line Region in Seyfert Galaxies

    Directory of Open Access Journals (Sweden)

    Enrico Congiu

    2017-10-01

    Full Text Available We present our recent results about the extended narrow-line region (ENLR of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212 obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1 galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a the contribution of shocks in ionizing the high velocity gas, (b the complex kinematics showed by the profile of the emission lines, (c the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  1. Experiment on transient heat transfer in closed narrow channel

    International Nuclear Information System (INIS)

    Ochiai, Masaaki

    1985-01-01

    Heat transfer coefficients and transient pressures in closed narrow channels were obtained experimentally, in order to assess the gap heat transfer models in the computer code WTRLGD which were devised to analyze the internal pressure behavior of waterlogged fuel rods. Gap widths of channels are 0.1--0.5mm to simulate the gap region of waterlogged fuel rods, and test fluids are water (7--89.2 0 C) and Freon-113 (9.2 0 C). The results show that the heater temperature and the pressure measured in the experiments without the DNB occurrence are simulated fairly well by the calculational model of WTRLGD where the heat transfer in a closed narrow channel is evaluated with one-dimensional transient thermal conduction equation and Jens and Lottes' correlation for nucleate boiling. Consequently, it is also suggested that the above equations are available for evaluation of heat flux from fuel to internal water of waterlogged fuel rods. The film boiling heat transfer coefficient was in the same order of that evaluated by Bromley's correlation and the DNB heat flux was smaller than that obtained in quasi-steady experiments with ordinary systems, although the experimental data for them were not enough. (author)

  2. Extended Narrow-Line Region in Seyfert Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Contini, Marcella [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Ciroi, Stefano; Cracco, Valentina [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Di Mille, Francesco [Las Campanas Observatory, La Serena (Chile); Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: enrico.congiu@phd.unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy)

    2017-10-24

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  3. Flow of pedestrians through narrow doors with different competitiveness

    International Nuclear Information System (INIS)

    Garcimartín, A; Pastor, J M; Zuriguel, I; Parisi, D R; Martín-Gómez, C

    2016-01-01

    We report a thorough analysis of the intermittent flow of pedestrians through a narrow door. The observations include five different sets of evacuation drills with which we have investigated the effect of door size and competitiveness on the flow dynamics. Although the outcomes are in general compatible with the existence of the faster-is-slower effect, the temporal evolution of the instantaneous flow rate provides evidence of new features. These stress the crucial role of the number of people performing the tests, which has an influence on the obtained results. Once the transients at the beginning and end of the evacuation are removed, we have found that the time lapses between the passage of two consecutive pedestrians display heavy-tailed distributions in all the scenarios studied. Meanwhile, the distribution of burst sizes decays exponentially; this can be linked to a constant probability of finding a long-lasting clog during the evacuation process. Based on these results, a discussion is presented on the caution that should be exercised when measuring or describing the intermittent flow of pedestrians through narrow doors. (paper: interdisciplinary statistical mechanics)

  4. Extended Narrow-Line Region in Seyfert Galaxies

    International Nuclear Information System (INIS)

    Congiu, Enrico; Contini, Marcella; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  5. Compact Probe for Power Detection from the Narrow Side of the Waveguide

    International Nuclear Information System (INIS)

    Kung, C.C.; Bernabei, S.; Gumbas, J.; Greenough, N.; Fredd, E.; Wilson, J.R.; Hosea, J.

    2004-01-01

    Phased array antennas with high directivity have a variety of applications. One of their applications is in RF heating for magnetically confined plasma fusion research. Among these RF heating schemes, waveguide arrays with careful phase control on each waveguide can act as a phased array antenna to deliver megawatts of power for heating fusion plasmas in the lower-hybrid range of frequencies (1 GHz-10 GHz). In order to achieve compactness, it is common to stack reduced height waveguide together to form the waveguide array. As long as the delivered power does not cause arcing in the waveguide, the waveguide height can be quite small. Due to this confined space in a stack of reduced height waveguides, power detection of the incident and reflected wave in the reduced height waveguide is extremely difficult. A new compact probe, which employs current loops, to monitor the incident and reflected wave from the narrow side of the reduced height waveguide has been developed. Its theory and performance will be reported in this paper

  6. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution

    Directory of Open Access Journals (Sweden)

    Pellach Michal

    2011-12-01

    Full Text Available Abstract Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  7. A phase change processor method for solving a one-dimensional phase change problem with convection boundary

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2010-08-15

    A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)

  8. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon; Kang, Sun Kil; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Kumaresan, Yogeenth; Lee, Sungeun; Lee, Chaedeok; Ham, Moon-Ho; Jung, Gun Young

    2017-01-01

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  9. The effect of pre-heating and pre-irradiation with gamma rays on thermal annealing in bis [n-benzoil-n-phenyl hydroxilaminate] copper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1988-10-01

    The main purpose of this work was to make a contribution to the study of the chemical effects of the (n,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gamma-rays on the retention and thermal annealing of bis-[N-benzoil-N-phenlhydroxilaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-Point, elemental analysis, infra-red and vesible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis and radiolysis on the retention. It seems that heat gamma-radiation can produce deffects which will lower the susceptibility of the compound to thermal annealing. On the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing aasuming the capture of free electrons and also the existence of holes. (author) [pt

  10. The effect of pre-heating and pre-irradiation with gamma-rays on thermal annealing in-bis-[n-benzoil-n-(o) tolylhydroxylaminate] cooper (II)

    International Nuclear Information System (INIS)

    Nakanishi, C.; Silva, C.P.G. da.

    1990-02-01

    The main purpose of this work was to make a contribution on the study of the chemical effects of the (N,γ) reaction on copper chelate. The influence of some factors such as pre-heating and pre-irradiation with gama-rays on the retention and thermal annealing of bis [N-benzoyl-N-(o)tolylhydroxylaminate] copper (II) was investigated. The complex was synthesized and later characterized by means of: determination of the melting-point, elemental analysis, infra-red and visible range absortion spectrophotometry. The compound was heated and also irradiated with gamma-rays in order to verify the effect of thermolysis on the retention. It seems that heat and gamma-radiaition can produce deffects which will lower the susceptibility of the compound to thermal annealling. On the basis on the model envolving electronic species some explanation of ours results were made and a mechanism was proposed for the retention and thermal annealing assuming the capture of free electrons and also the existence of holes. (author) [pt

  11. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon

    2017-08-05

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  12. [Risk Factors for Oxaliplatin-Induced Phlebitis and Venous Pain, and Evaluation of the Preventive Effect of Preheating with a Hot Compress for Administration of Oxaliplatin].

    Science.gov (United States)

    Nakauchi, Kana; Kawazoe, Hitoshi; Miyajima, Risa; Waizumi, Chieko; Rokkaku, Yuki; Tsuneoka, Kikue; Higuchi, Noriko; Fujiwara, Mitsuko; Kojima, Yoh; Yakushijin, Yoshihiro

    2015-11-01

    Venous pain induced by oxaliplatin(L-OHP)is a clinical issue related to adherence to the Cape OX regimen. To prevent LOHP- induced venous pain, we provided nursing care to outpatients who were administered a preheated L -OHP diluted solution using a hot compress. We retrospectively evaluated the risk factors for colorectal cancer patients who had L -OHP induced phlebitis and venous pain. Furthermore, the preventive effect of nursing care was compared between inpatients and outpatients from January 2010 to March 2012. At the L-OHP administration site, any symptoms were defined as phlebitis, whereas pain was defined as venous pain. A total of 132 treatment courses among 31 patients were evaluated. Multivariate logistic regression analysis revealed that both phlebitis and venous pain were significantly more common in female patients (adjusted odds ratio, 2.357; 95%CI: 1.053-5.418; and adjusted odds ratio, 5.754; 95%CI: 2.119-18.567, respectively). The prevalence of phlebitis and venous pain did not differ between inpatients and outpatients (phlebitis, 61.3% vs 67.7%; venous pain, 29.0%vs 19.4%). These results suggest that administration of L-OHP via a central venous route should be considered in female patients.

  13. The combined toroidicity, ellipticity and triangularity effects on the energy deposition of Alfven modes in pre-heated, low aspect ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); Bruma, C. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel) and College of Judea and Samaria, 44837 Ariel (Israel)]. E-mail: edycb@post.tau.ac.il; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, 69978 Tel-Aviv (Israel); College of Judea and Samaria, 44837 Ariel (Israel)

    2007-03-05

    The combined plasma non-uniformity effects on the energy deposition of Alfven waves launched by an external antenna in pre-heated spherical tokamaks are investigated. The following relevant physical processes are here possible: (a) the emergence of gaps in the shear Alfven continuum spectrum and the generation of discrete global Alfven eigenmodes with frequencies inside the gaps; (b) multi-wave interactions, interactions of gaps of the same kind (e.g., toroidicity induced) and of different kinds (toroidicity, ellipticity and triangularity induced) as well as of secondary order gaps arising when a pair of modes is coupled to one or more modes through other coupling parameters; (c) basic wave-plasma interactions as propagation, reflection, mode-conversion, tunneling and deposition. Thus, we solved numerically the full 2D wave equations for the vector and scalar potentials, using a quite general two-fluid resistive tensor-operator, without any geometrical limitations. The results obtained indicate the existence of antenna-launched wave characteristics for which the power is most efficiently coupled in outer regions of plasmas, which is of special interest for low aspect ratio tokamaks, e.g., for the generation of non-inductive current drive as well as for turbulence suppression and transport barriers formation.

  14. Dependence of the fast waves-plasma interactions in pre-heated spherical tokamaks on the antenna location and poloidal extension

    International Nuclear Information System (INIS)

    Komoshvili, K.; Bruma, C.; Cuperman, S.

    2004-01-01

    Full Text:In the magnetically confined fusion devices, externally launched e.m. waves are used, e.g., for heating, non-inductive current drive and turbulent transport suppression barriers. In view of the complexity of these processes, it is desirable to assist the planning of the actual experiments by reliable theoretical (computational) studies. This work aims to (i) assess the effect of antenna position and extension on the fast waves-plasma interactions in pre-heated spherical tokamaks and consequently, (ii) to further the physical understanding as well as to determine optimal conditions in order to achieve the imposed goals. Thus, using as a study case the spherical tokamak START, we considered the following antenna positions and extensions: (a) low field side location and i T ±π/4 poloidal extension; (b) above and below middle-plane locations (two separate sections) and extending (each) π/2; (c) (hypothetical) circular, 2π-extension. We solved the full wave equations in order to consistently determine the global e.m. field for Alfvinic modes in inhomogeneous, non-uniformly magnetized, resistive, small aspect ratio tokamak plasma in the presence of externally launched fast waves. The global approach consists of simultaneous treatment of the plasma-vacuum-external RF source-vacuum-metal wall configuration with the appropriate consideration of wave propagation, transmission, absorption and mode conversion; in this, no simplifying approximations or small parameter extension are used. Illustrative results of these investigations will be presented and discussed

  15. Magnetization states and switching in narrow-gapped ferromagnetic nanorings

    Directory of Open Access Journals (Sweden)

    Jie Li

    2012-03-01

    Full Text Available We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy (MFM. The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures.

  16. Plasma Reflection in Multigrain Layers of Narrow-Bandgap Semiconductors

    Science.gov (United States)

    Zhukov, N. D.; Shishkin, M. I.; Rokakh, A. G.

    2018-04-01

    Qualitatively similar spectral characteristics of plasma-resonance reflection in the region of 15-25 μm were obtained for layers of electrodeposited submicron particles of InSb, InAs, and GaAs and plates of these semiconductors ground with M1-grade diamond powder. The most narrow-bandgap semiconductor InSb (intrinsic absorption edge ˜7 μm) is characterized by an absorption band at 2.1-2.3 μm, which is interpreted in terms of the model of optical excitation of electrons coupled by the Coulomb interaction. The spectra of a multigrain layer of chemically deposited PbS nanoparticles (50-70 nm) exhibited absorption maxima at 7, 10, and 17 μm, which can be explained by electron transitions obeying the energy-quantization rules for quantum dots.

  17. Charging dynamics of supercapacitors with narrow cylindrical nanopores

    Science.gov (United States)

    Lee, Alpha A.; Kondrat, Svyatoslav; Oshanin, Gleb; Kornyshev, Alexei A.

    2014-08-01

    We present a coarse-grained, continuum kinetic theory for charging supercapacitors with narrow cylindrical nanopores. The theory reveals that the occupancy of a nonpolarized pore and the energy barrier for ion-ion interdiffusion are the key issues controlling the different regimes of dynamic response. For ‘ionophobic’ pores, where the pore is empty at no applied voltage, charge density advances into the pore via diffusion-like dynamics. The mechanism of charging an ‘ionophilic’ pore is starkly different: for moderate ionophilicities, co-ions are expelled from the pore in a front-like manner, with significant ‘congestion’ at the pore entrance predicted for strong ionophilicity. We thus show that pore ionophilicity is detrimental to the speed of charging/discharging cycles, whereas making pores more ionophobic can substantially accelerate charging and cyclic recharging.

  18. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq

    2012-06-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.

  19. Narrow bandwidth detection of vibration signature using fiber lasers

    Science.gov (United States)

    Moore, Sean; Soh, Daniel B.S.

    2018-05-08

    The various technologies presented herein relate to extracting a portion of each pulse in a series of pulses reflected from a target to facilitate determination of a Doppler-shifted frequency for each pulse and, subsequently, a vibration frequency for the series of pulses. Each pulse can have a square-wave configuration, whereby each pulse can be time-gated to facilitate discarding the leading edge and the trailing edge (and associated non-linear effects) of each pulse and accordingly, capture of the central portion of the pulse from which the Doppler-shifted frequency, and ultimately, the vibration frequency of the target can be determined. Determination of the vibration velocity facilitates identification of the target being in a state of motion. The plurality of pulses can be formed from a laser beam (e.g., a continuous wave), the laser beam having a narrow bandwidth.

  20. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    Directory of Open Access Journals (Sweden)

    Kim Nygård

    2016-02-01

    Full Text Available Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  1. Velocity Profiles of Slow Blood Flow in a Narrow Tube

    Science.gov (United States)

    Chen, Jinyu; Huang, Zuqia; Zhuang, Fengyuan; Zhang, Hui

    1998-04-01

    A fractal model is introduced into the slow blood motion. When blood flows slowly in a narrow tube, red cell aggregation results in the formation of an approximately cylindrical core of red cells. By introducing the fractal model and using the power law relation between area fraction φ and distance from tube axis ρ, rigorous velocity profiles of the fluid in and outside the aggregated core and of the core itself are obtained analytically for different fractal dimensions. It shows a blunted velocity distribution for a relatively large fractal dimension (D ˜ 2), which can be observed in normal blood; a pathological velocity profile for moderate dimension (D = 1), which is similar to the Segre-Silberberg effect; and a parabolic profile for negligible red cell concentration (D = 0), which likes in the Poiseuille flow. The project supported by the National Basic Research Project "Nonlinear Science", National Natural Science Foundation of China and the State Education Commission through the Foundation of Doctoral Training

  2. Narrow Field of View Zenith Radiometer (NFOV) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C; Marshak, A; Hodges, G; Barnard, JC; Schmelzer, J

    2008-11-01

    The two-channel narrow field-of-view radiometer (NFOV2) is a ground-based radiometer that looks straight up and measures radiance directly above the instrument at wavelengths of 673 and 870 nm. The field-of-view of the instrument is 1.2 degrees, and the sampling time resolution is one second. Measurements of the NFOV2 have been used to retrieve optical properties for overhead clouds that range from patchy to overcast. With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in cloud optical properties at the natural time scale of cloud evolution.

  3. Main features of narrow sociological theories explaining mental disorders

    Directory of Open Access Journals (Sweden)

    Opalić Petar

    2006-01-01

    Full Text Available In the introduction, the author states that sociological theories explaining mental disorders in the narrow sense have originated as an opposition to medical, i.e. biological model of interpreting mental disorders. With regard to this, the following sociological theories explaining mental disorders are presented in more detail: theory of anomie by Durkheim and Merton (with Merton’s typology of deviant behavior, social roles theory by Parsons, labeling theory by Scheff and other authors, theoretical career model of the mentally ill, the concept of psychic disorder of etnomethodology and finally, the anti-psychiatric interpretation of mental disorders. It is concluded that, although historically older, sociological theories of the onset of mental disorders are filling the epistemological void that occurred in understanding the role of society on the whole and a series of social factors particularly on the different aspects of understanding mental disorders.

  4. Model for diffusion of a narrow beam of charged particles

    International Nuclear Information System (INIS)

    Eisenhauer, C.

    1980-01-01

    A simple analytic expression is presented to describe the three-dimensioned spatial distribution of flux or energy deposition by a narrow beam of charged particles. In this expression distances are expressed in terms of a scaling parameter that is proportional to the mean square scattering angle in a single collision. Finite ranges are expressed in terms of the continuous-slowing-down range. Track-length distributions for one-velocity particles and energy deposition for electrons are discussed. Comparisons with rigorous Monte Carlo calculations show that departures from the analytic expression can be expressed as a slowly varying function of order unity. This function can be used as a basis for interpolation over a wide range of source energies and materials

  5. Motion tracking in narrow spaces: a structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...... the system to a standard optical motion tracker based on a rigid tracking tool. Our system achieves an angular RMSE of 0.11 degrees demonstrating its relevance for motion compensated 3D scan image reconstructions as well as its competitiveness against the standard optical system with an RMSE of 0.08 degrees...... point clouds are matched to a reference surface using a robust iterative closest point algorithm. A main challenge is the narrow geometry requiring a compact structured light system and an oblique angle of observation. The system is validated using a mannequin head mounted on a rotary stage. We compare...

  6. Implementation of Industrial Narrow Band Communication System into SDR Concept

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2008-12-01

    Full Text Available The rapid expansion of the digital signal processing has penetrated recently into a sphere of high performance industrial narrow band communication systems which had been for long years dominated by the traditional analog circuit design. Although it brings new potential to even increase the efficiency of the radio channel usage it also forces new challenges and compromises radio designers have to face. In this article we describe the design of the IF sampling industrial narrowband radio receiver, optimize a digital receiver structure implemented in a single FPGA circuit and study the performance of such radio receiver architecture. As an evaluation criterion the communication efficiency in form of maximum usable receiver sensitivity, co-channel rejection, adjacent channel selectivity and radio blocking measurement have been selected.

  7. Gain-switched all-fiber laser with narrow bandwidth

    DEFF Research Database (Denmark)

    Larsen, Casper; Giesberts, M.; Nyga, S.

    2013-01-01

    pulse energy is 20 μJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 μJ while keeping......Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted...

  8. The narrow range of perceived predation: a 19 group study

    Directory of Open Access Journals (Sweden)

    Olivier Mesly

    2013-05-01

    Full Text Available This paper rests largely on the works of Mesly (1999 to 2012. It argues that the phenomenon of perceived predation as a functional behavioural phenomenon is subjected to certain limits, a finding based on studies performed on 19 different groups spread over a four-year span. It also finds a constant of k = 1.3 which reflects the invariant nature of perceived predation. These findings add to the theory of financial predation which stipulates that financial predators operate below the limits of detection pertaining to their customers (and market regulators. They are experts at minimizing the perception that clients could have that they are after their money, causing them financial harm, by surprise (perceived predation. Understanding the narrow range in which financial predators operate is setting the grounds to offer better protection to investors and to implementing better control and punitive measures.

  9. Flow regimes and heat transfer in vertical narrow annuli

    International Nuclear Information System (INIS)

    Ulke, A.; Goldberg, I.

    1993-01-01

    In shell side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local thermal-hydraulic conditions which differ significantly from bulk fluid conditions. Understanding of the processes of boiling and dryout in flow restricted crevices can help in designing of tube support geometries to minimize the likelihood of tube support plate and tube corrosion observed in commercial power plant steam generators. This paper describes a one dimensional thermal-hydraulic model of a vertical crevice between a tube and a support plate with cylindrical holes. The annulus formed by the support plate hole and an eccentrically located tube has been represented by vertical strips. The formation, growth and collapse of a steam bubble in each strip has been determined. Based on the bubble history, and flow regimes characterized by ''isolated'' bubbles, ''coalesced'' bubbles and liquid deficient regions have been defined

  10. Water self-diffusion through narrow oxygenated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Striolo, Alberto [School of Chemical Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2007-11-28

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a

  11. Water self-diffusion through narrow oxygenated carbon nanotubes

    International Nuclear Information System (INIS)

    Striolo, Alberto

    2007-01-01

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a few oxygenated active

  12. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    Science.gov (United States)

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  13. Validation of system codes RELAP5 and SPECTRA for natural convection boiling in narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Stempniewicz, M.M., E-mail: stempniewicz@nrg.eu; Slootman, M.L.F.; Wiersema, H.T.

    2016-10-15

    Highlights: • Computer codes RELAP5/Mod3.3 and SPECTRA 3.61 validated for boiling in narrow channels. • Validated codes can be used for LOCA analyses in research reactors. • Code validation based on natural convection boiling in narrow channels experiments. - Abstract: Safety analyses of LOCA scenarios in nuclear power plants are performed with so called thermal–hydraulic system codes, such as RELAP5. Such codes are validated for typical fuel geometries applied in nuclear power plants. The question considered by this article is if the codes can be applied for LOCA analyses in research reactors, in particular exceeding CHF in very narrow channels. In order to answer this question, validation calculations were performed with two thermal–hydraulic system codes: RELAP and SPECTRA. The validation was based on natural convection boiling in narrow channels experiments, performed by Prof. Monde et al. in the years 1990–2000. In total 42 vertical tube and annulus experiments were simulated with both codes. A good agreement of the calculated values with the measured data was observed. The main conclusions are: • The computer codes RELAP5/Mod 3.3 (US NRC version) and SPECTRA 3.61 have been validated for natural convection boiling in narrow channels using experiments of Monde. The dimensions applied in the experiments were performed for a range that covers the values observed in typical research reactors. Therefore it is concluded that both codes are validated and can be used for LOCA analyses in research reactors, including natural convection boiling. The applicability range of the present validation is: hydraulic diameters of 1.1 ⩽ D{sub hyd} ⩽ 9.0 mm, heated lengths of 0.1 ⩽ L ⩽ 1.0 m, pressures of 0.10 ⩽ P ⩽ 0.99 MPa. In most calculations the burnout was predicted to occur at lower power than that observed in the experiments. In several cases the burnout was observed at higher power. The overprediction was not larger than 16% in RELAP and 15% in

  14. Experimental investigation on hydrodynamic phenomena associated with a sudden gas expansion in a narrow channel

    International Nuclear Information System (INIS)

    Semeraro, Emanuele

    2014-01-01

    This work aims at improving the understanding of hydrodynamic phenomena associated with the sudden vaporization of superheated liquid (postulated by the DAC scenario with vapor/liquid sodium). This phenomenon is suspected to be at the origin of the automatic shutdown for negative reactivity, occurred in the Phenix reactor at the end of the eighties. An experimental apparatus has been designed and operated to reproduce the expansion of over pressurized air (6 liters), superposed to a water volume (1 m high) in a narrow vertical rectangular cross section channel (120 mm large, 2 mm deep, 1 m high). Air and water are used to simulate vapor and liquid sodium. The analysis is focused on hydrodynamic aspects. Thus heat and mass transfer phenomena have been omitted in the present investigation and air and water have been used to simulate sodium vapor and liquid. When the gas expansion begins, the initial flat interface separating the two fluids becomes corrugated under the development of two-dimensional Rayleigh-Taylor instabilities (new analytical approach on RT instabilities modeling). Since the channel is very narrow, instabilities along the channel depth do not develop. Instead we observe the presence of a very thin liquid film pinned to the wall. During the gas expansion, the interface area increases significantly and may become even 50 times larger than the initial value (120 x 2 mm) at the end of the examined transient (60 cm of travelled distance by the mean interface). Moreover we observed the detachment of several secondary structures from the main interface. This contributes significantly to the increase of the interface area between the gas and liquid phase. The gas expansion in a narrow channel can be divided into two main phases: Rayleigh-Taylor (linear and non-linear) and multi-structures (transition and disorderly) phases. The former is characterized by the dynamic of corrugated profile and the interface length results proportional to the amplitude of

  15. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    International Nuclear Information System (INIS)

    Piot, P.; Maxwell, T. J.; Sun, Y.-E; Ruan, J.; Lumpkin, A. H.; Thurman-Keup, R.; Rihaoui, M. M.

    2011-01-01

    We experimentally demonstrate the production of narrow-band (δf/f≅20% at f≅0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  16. Computational analysis of sedimentation of two particles in a narrow channel

    Science.gov (United States)

    Aidun, Cyrus K.; Ding, Ejiang

    1998-11-01

    The motion and interaction of two spherical bodies of diameter d in a narrow channel (width 4d) is simulated by Lattice-Boltzmann method at Reynolds numbers between 0 and 10. The initial positions of the particles are midway between the centerline of the channel and the side wall while one particle is 2d above the other. At low Reynolds numbers, the particles oscillate around the centerline of the channel while they approach each other, and eventually settle in contact. At higher Reynolds numbers, the trailing particle approaches the leading one; jointly, the particles enter into a damping oscillation without contacting each other. This motion has been described as drafting, kissing and tumbling (Hu, Joseph, and Crochet, Theoret. Comput. Fluid Dyn. 3 1992; Feng, Hu, and Joseph, J. Fluid Mech. 261 1994). In the phase space, constructed by the distances between each particle and the side wall, the attractor is a fixed point, representing a steady state. At even higher Reynolds number the dynamics changes into a stable limit cycle. The amplitude of the limit cycle increases as the Reynolds number increases in value. As Reynolds number increases further the motion becomes more complex. The trajectory in the phase space suggests the existence of a strange attractor. The dynamics of two particle sedimentation at this range of Reynolds number will be presented.

  17. Fisheye Photogrammetry: Tests and Methodologies for the Survey of Narrow Spaces

    Science.gov (United States)

    Perfetti, L.; Polari, C.; Fassi, F.

    2017-02-01

    The research illustrated in this article aimed at identifying a good standard methodology to survey very narrow spaces during 3D investigation of Cultural Heritage. It is an important topic in today's era of BIM modelling applied to Cultural Heritage. Spaces like staircases, corridors and passages are very common in the architectural or archaeological fields, and obtaining a 3D-oriented survey of those areas can be a very complex task when completeness of the model and high precision are requested. Photogrammetry appears to be the most promising solution in terms of versatility and manoeuvrability also considering the quality of the required data. Fisheye lenses were studied and tested in depth because of their significant advantage in the field of view if compared with rectilinear lenses. This advantage alone can be crucial to reduce the total amount of photos and, as a consequence, to obtain manageable data, to simplify the survey phase and to significantly reduce the elaboration time. In order to overcome the main issue that arise when using fisheye lenses, which is the lack of rules that can be employed to design the survey, a general mathematical formulation to precisely estimate the GSD (Ground Sampling Distance) for every optical projection is presented here. A complete survey of a real complex case study was performed in order to test and stress the proposed methodology, and to handle a fisheye-based survey from beginning to end: the photogrammetric survey of the Minguzzi Staircase. It is a complex service spiral-staircase located in the Duomo di Milano with a total height of 25 meters and characterized by a narrow walkable space about 70 centimetres wide.

  18. The critical power that can be removed through a hemispherical narrow gap

    International Nuclear Information System (INIS)

    Jeong, J. H.; Park, R. J.; Kang, K. H.; Kim, S. B.; Kim, H. D.

    1998-01-01

    KAERI launched a research program named SONATA-IV (Simulation Of Naturally Arrested Thermal Attack In Vessel) to investigate the possibility of in-vessel debris cooling through a narrow gap that can be formed between reactor pressure vessel and relocated corium. The CHFG (Critical Heat Flux in Gap) experiments, one of the major experiments of the program, are being carried out. The purpose of the CHFG experiments is to assess the heat removal capacity through a hemispherical narrow gap. The experiments were performed using distilled water and the measurements were made in the range of 1 to 5 atm. The dryout of the heater surface is detected using 66 K-type thermocouples embedded in a heated copper shell. Even if local dryout occurs, there exists a quasi-steady state and the temperature of the dryout region is limited within a certain value. When the heater power is large enough, however, there is no quasi-steady state. The dryout region expands by itself without an increase in heater power and the temperature of the heater surface monotonically increase. Temperature measurements over the heater surface show that the two-phase flow behaviour inside the gaps could be quite different from the other usual CHF experiments. The temperature of the local dryout region is much lower than the minimum film boiling temperature that is measured under the pool boiling condition. The cause seems to be the excellent heat conduction of the copper shell. In order to verify this, numerical heat transfer analysis was performed on the copper shell. The results of the analysis supports the postulate. The measured global dryout points are lower than the predictions by existing empirical CHF correlations based on the data measured with small-scale horizontal plates and verical annulus

  19. CONSTRAINING JET PRODUCTION SCENARIOS BY STUDIES OF NARROW-LINE RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Stasinska, Grazyna [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, Place Jules Janssen, F-92190 Meudon (France); Koziel-Wierzbowska, Dorota [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Asari, Natalia V., E-mail: sikora@camk.edu.pl [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-03-01

    We study a large sample of narrow-line radio galaxies (NLRGs) with extended radio structures. Using 1.4 GHz radio luminosities L {sub 1.4}, narrow optical emission line luminosities L {sub [OIII]} and L{sub H{sub {alpha}}}, as well as black hole masses M {sub BH} derived from stellar velocity dispersions measured from the optical spectra obtained with the Sloan Digital Sky Survey, we find that (1) NLRGs cover about four decades of the Eddington ratio, {lambda} {identical_to} L {sub bol}/L {sub Edd}{proportional_to}L {sub line}/M {sub BH}; (2) L {sub 1.4}/M {sub BH} strongly correlates with {lambda}; and (3) radio loudness, R{identical_to}L{sub 1.4}/L{sub line}, strongly anti-correlates with {lambda}. A very broad range of the Eddington ratio indicates that the parent population of NLRGs includes both radio-loud quasars (RLQs) and broad-line radio galaxies (BLRGs). The correlations they obey and their high jet production efficiencies favor a jet production model which involves the so-called magnetically choked accretion scenario. In this model, production of the jet is dominated by the Blandford-Znajek mechanism, and the magnetic fields in the vicinity of the central black hole are confined by the ram pressure of the accretion flow. Since large net magnetic flux accumulated in central regions of the accretion flow required by the model can take place only via geometrically thick accretion, we speculate that the massive, 'cold' accretion events associated with luminous emission-line active galactic nucleus can be accompanied by an efficient jet production only if preceded by a hot, very sub-Eddington accretion phase.

  20. Associations between Narrow Angle and Adult Anthropometry: The Liwan Eye Study

    Science.gov (United States)

    Jiang, Yuzhen; He, Mingguang; Friedman, David S.; Khawaja, Anthony P.; Lee, Pak Sang; Nolan, Winifred P.; Yin, Qiuxia; Foster, Paul J.

    2015-01-01

    Purpose To assess the associations between narrow angle and adult anthropometry. Methods Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Results Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p<0.001; vs height p<0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Conclusion Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women. PMID:24707840

  1. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  2. Clinical outcome of narrow diameter implants inserted into allografts

    Directory of Open Access Journals (Sweden)

    Maurizio Franco

    2009-08-01

    Full Text Available OBJECTIVE: Narrow diameter implants (NDI (i.e. diameter <3.75 mm are a potential solution for specific clinical situations, such as reduced interradicular bone, thin alveolar crest and replacement of teeth with small cervical diameter. NDI have been available in clinical practice since the 1990s, but only few studies have analyzed their clinical outcome and no study have investigated NDI inserted in fresh-frozen bone (FFB grafts. Thus, a retrospective study on a series of NDI placed in homologue FFB was designed to evaluate their clinical outcome. MATERIAL AND METHODS: In the period between December 2003 and December 2006, 36 patients (22 females and 14 males, mean age 53 years with FFB grafts were selected and 94 different NDI were inserted. The mean follow-up was 25 months. To evaluate the effect of several host-, surgery-, and implant-related factors, marginal bone loss (MBL was considered an indicator of success rate (SCR. The Kaplan Meier algorithm and Cox regression were used. RESULTS: Only 5 out of 94 implants were lost (i.e. survival rate - SVR 95.7% and no differences were detected among the studied variables. On the contrary, the Cox regression showed that the graft site (i.e. maxilla reduced MBL. CONCLUSIONS: NDI inserted in FFB have a high SVR and SCR similar to those reported in previous studies on regular and NDI inserted in non-grafted jaws. Homologue FFB is a valuable material in the insertion of NDI.

  3. Advantages and successful use of TIG narrow-gap welding

    International Nuclear Information System (INIS)

    Loehberg, R.; Pellkofer, D.; Schmidt, J.

    1986-01-01

    Narrow-gap welding, an advancement of the mechanized TIG impulse welding process with conventional seam geometry (V-shaped and/or U-shaped welds), not only assures great economic efficiency on account of the low weld volume but also offers considerable benefits in terms of quality. Thanks to the low number of beads, the following advantages are gained: less axial and radial shrinkage which reduces the strain in the root area, total heat input and, thus, the dwell time in the critical temperature range from 500 to 800 0 C leading to a chromium depletion at the grain boundaries during the welding process is minimized which markedly reduces the sensitivity of non-stabilized steels to intercrystalline stress corrosion cracking, and a relatively favourable residual welding stress profile in the heat affected zone. The process was used successfully in the past for welds of ferritic and austenitic steel pipes in the construction of nuclear power plants and in the remote-controlled welding during the replacement of piping in plants already in operation. (orig.) [de

  4. Voicing Strategies Employed in Narrow Listening Among Iranian Female Freshmen

    Directory of Open Access Journals (Sweden)

    Mohsen Shahrokhi

    2013-05-01

    Full Text Available This study discusses the findings of a qualitative study on the strategies used by Iranian female freshmen in narrow listening. The data collected through semi-structured interview with 12 female freshmen (four learners as  advanced, four as intermediate and four as low chosen purposefully based on their scores in the Oxford Placement Test administered. Six out of 12 freshmen were identified for the think-aloud protocol to draw out the strategies they used. The data collected were analyzed using open, axial, and selective-coding. The analysis of the participants’ interview and think-aloud protocol data generated 12 major themes. Five themes (attention, readiness, evaluating, autonomous learning, and change the speech rate described meta-cognitive; five themes (imitating and repeating, references, visualization, making notes while listening and word-by-word and sentence-by-sentence attention described cognitive strategies and two themes (asking for help, self-talk described socio-affective strategies. These strategies need to be taught explicitly to increase learners’ understanding of the spoken texts in the second/foreign language. This study recommends that Iranian EFL female freshman university learners’ top-down, bottom-up processing and listening strategy awareness should be cultivated and integrated into the teaching of listening to improve the learners’ listening ability.

  5. Numerical Simulation for Mechanism of Airway Narrowing in Asthma

    Science.gov (United States)

    Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi

    A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.

  6. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  7. Narrower bottlenecks could be more efficient for concentrating choanoflagellates

    Science.gov (United States)

    Sparacino, J.; Miño, G.; Koehl, M. A. R.; King, N.; Stocker, R.; Banchio, A. J.; Marconi, V. I.

    2015-11-01

    In evolutionary biology choanoflagellates are broadly investigated as the closest living relatives of the animal ancestors. Under diverse environmental cues, choanoflagellate Salpingoeca rosetta can differentiate in two types of solitary swimming cells: slow and fast microswimmers. Here we present a first phenomenological 2D-model for the choanoflagellates dynamics confined into a flat device divided by a wall of asymmetric microconstrictions. The model allow us to optimize the geometry of the microchannels for directing and concentrating cell populations under strict control. We solve our set of dynamical equations using Langevin dynamics. Experimental parameters for the motility of the slow and fast cells were measured and used for our numerical estimations of the directed transport efficiency, otherwise we have no adjustable parameters. We find remarkable differences in the rectification results for slow and fast choanoflagellates, which give us a strategy to develop a suitable microfluidic sorting device. For a given population velocity, narrower bottlenecks, of similar size to the cell dimension, show to be more efficient as concentrator of populations. Experiments and simulations are in good agreement.

  8. Electrohydrodynamic channeling effects in narrow fractures and pores

    Science.gov (United States)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  9. Prosodic Marking of Narrow Focus in Seoul Korean

    Directory of Open Access Journals (Sweden)

    Hae-Sung Jeon

    2017-01-01

    Full Text Available This paper explores prosodic marking of narrow (corrective focus in Seoul Korean. Korean lacks lexical stress and it has a phonologized association between the Accentual Phrase (AP initial segment and intonation. In the experiment, 4 speakers read sentences including a two-item list which were designed to elicit either an L or H AP-initial tone. The durational variations, the pitch events at prosodic boundaries, and 'F''0 'span in 32 sentences read neutrally and 64 sentences read with one of the items under focus were analyzed. The results show that the focused constituent consistently initiates a new prosodic phrase. In comparison to the neutrally spoken or defocused counterpart, the focused constituent was more likely to be realized as an Intonational Phrase (IP in some contexts. Bitonal IP boundary tones were more likely to occur under focus than monotonal tones. In addition, in focused constituents, durational expansion particularly at the phrase-edges, expansion in 'F''0 'span, and raising of the phrase-initial pitch were observed. On the other hand, defocused constituents were not phonetically reduced compared to the neutral counterparts. The results imply that the phonetic cues spreading over the focused constituent complement the exaggerated prosodic boundaries.

  10. Peak Source Power Associated with Positive Narrow Bipolar Lightning Pulses

    Science.gov (United States)

    Bandara, S. A.; Marshall, T. C.; Karunarathne, S.; Karunarathne, N. D.; Siedlecki, R. D., II; Stolzenburg, M.

    2017-12-01

    During the summer of 2016, we deployed a lightning sensor array in and around Oxford Mississippi, USA. The array system comprised seven lightning sensing stations in a network approximately covering an area of 30 km × 30 km. Each station is equipped with four sensors: Fast antenna (10 ms decay time), Slow antenna (1.0 s decay time)), field derivative sensor (dE/dt) and Log-RF antenna (bandwidth 187-192 MHz). We have observed 319 Positive NBPs and herein we report on comparisons of the NBP properties measured from the Fast antenna data with the Log-RF antenna data. These properties include 10-90% rise time, full width at half maximum, zero cross time, and range-normalized amplitude at 100 km. NBPs were categorized according to the fine structure of the electric field wave shapes into Types A-D, as in Karunarathne et al. [2015]. The source powers of NBPs in each category were determined using single station Log-RF data. Furthermore, we also categorized the NBPs in three other groups: initial event of an IC flash, isolated, and not-isolated (according to their spatiotemporal relationship with other lightning activity). We compared the source powers within each category. Karunarathne, S., T. C. Marshall, M. Stolzenburg, and N. Karunarathna (2015), Observations of positive narrow bipolar pulses, J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023150.

  11. Azimuthal critical heat flux in narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Hoon; Noh, Sang Woo; Kim, Sung Joong; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2003-07-01

    Tests were conducted to examine the critical heat flux (CHF) on the one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under the atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10mm, and the surface orientation angles from the downward-facing position (180{sup o}) to the vertical position (90{sup o}), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at the atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle above which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis.

  12. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  13. Preliminary Study of ONB in Narrow-Vertical Rectangular Channel

    International Nuclear Information System (INIS)

    Omar, S. AL-Yahia; Jo, Daeseong

    2015-01-01

    The location where the vapor bubble can first exist at the heated surface is called 'onset of nucleate boiling (ONB). The subcooled boiling is highly efficient to remove the heat owing to the high heat transfer coefficient. The heat transfer is affected by the motion of the bulk liquid as well as the latent heat transport of the liquid microlayer between the bubble and the heated wall. However, with increasing in the wall temperature, the bubble growth will increase and may they aggregate at the heated surface forming a vapor film, which will prevent the heat transport from the wall and that leads to highly rise in wall temperature. This phenomenon called departure from nucleate boiling (DNB). Many experimental and numerical CFD methods were carried out to investigate the subcooled boiling because of its importance in the industrial applications. In the present study, vertical narrow rectangular channel heated from both side was simulated by using CFX-14 to investigate the subcooled wall boiling, and identical simulation is done by using TMAP to compare the ONB location between numerical simulation and empirical correlations that implemented in TMAP. The numerical results using CFX-14 are discussed and compared with the results obtained from TMAP. The coolant temperature increases gradually (linearly) in the downward direction owing to the uniform applied heat flux.

  14. Preliminary Study of ONB in Narrow-Vertical Rectangular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Omar, S. AL-Yahia; Jo, Daeseong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The location where the vapor bubble can first exist at the heated surface is called 'onset of nucleate boiling (ONB). The subcooled boiling is highly efficient to remove the heat owing to the high heat transfer coefficient. The heat transfer is affected by the motion of the bulk liquid as well as the latent heat transport of the liquid microlayer between the bubble and the heated wall. However, with increasing in the wall temperature, the bubble growth will increase and may they aggregate at the heated surface forming a vapor film, which will prevent the heat transport from the wall and that leads to highly rise in wall temperature. This phenomenon called departure from nucleate boiling (DNB). Many experimental and numerical CFD methods were carried out to investigate the subcooled boiling because of its importance in the industrial applications. In the present study, vertical narrow rectangular channel heated from both side was simulated by using CFX-14 to investigate the subcooled wall boiling, and identical simulation is done by using TMAP to compare the ONB location between numerical simulation and empirical correlations that implemented in TMAP. The numerical results using CFX-14 are discussed and compared with the results obtained from TMAP. The coolant temperature increases gradually (linearly) in the downward direction owing to the uniform applied heat flux.

  15. A narrow quasi-bound state of the DNN system

    International Nuclear Information System (INIS)

    Doté, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E.

    2013-01-01

    We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ c (2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K ¯ N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J π =0 − ,I=1/2) is found to be a narrow quasi-bound state below Λ c (2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J π =1 − state is considered to be a scattering state of Λ c (2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J π =0 − ,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson

  16. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  17. Effect of regulatory architecture on broad versus narrow sense heritability.

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    Full Text Available Additive genetic variance (VA and total genetic variance (VG are core concepts in biomedical, evolutionary and production-biology genetics. What determines the large variation in reported VA /VG ratios from line-cross experiments is not well understood. Here we report how the VA /VG ratio, and thus the ratio between narrow and broad sense heritability (h(2 /H(2 , varies as a function of the regulatory architecture underlying genotype-to-phenotype (GP maps. We studied five dynamic models (of the cAMP pathway, the glycolysis, the circadian rhythms, the cell cycle, and heart cell dynamics. We assumed genetic variation to be reflected in model parameters and extracted phenotypes summarizing the system dynamics. Even when imposing purely linear genotype to parameter maps and no environmental variation, we observed quite low VA /VG ratios. In particular, systems with positive feedback and cyclic dynamics gave more non-monotone genotype-phenotype maps and much lower VA /VG ratios than those without. The results show that some regulatory architectures consistently maintain a transparent genotype-to-phenotype relationship, whereas other architectures generate more subtle patterns. Our approach can be used to elucidate these relationships across a whole range of biological systems in a systematic fashion.

  18. Narrow nuclear resonance profiling of Al with subnanometric depth resolution

    International Nuclear Information System (INIS)

    Rosa, E.B.O. da; Krug, C.; Stedile, F.C.; Morais, J.; Baumvol, I.J.R.

    2002-01-01

    We report on the use of the narrow and isolated resonance at 404.9 keV in the cross-section curve of the 27 Al(p,γ) 28 Si nuclear reaction for profiling Al in ultrathin aluminum oxide films on Si. The samples were characterized as-deposited and after thermal annealing, so that Al transport could be studied. An estimated depth resolution of approximately 0.4 nm near the surface of the films could be obtained owing to: (i) the very small resonance width; (ii) the high stopping power of Al 2 O 3 for 404.9 keV protons; (iii) the high energy stability of the proton beam provided by the 500 kV HVEE ion implanter at Porto Alegre; and (iv) an apparent thickness magnification by a factor between 2.0 and 2.4 with the use of glancing incidence. This technique is compared to other methods for Al profiling like medium energy ion scattering and some sputtering-based techniques

  19. Numerical simulation of wind wave surface profiles with tuned phase spectra

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    It is known that the phases of the individual harmonic components in a linear narrow band wave spectrum are uniformly random. It has been suggested by some workers that some sort of phase coupling and `locking' between the different spectral...

  20. Orbital Evolution and Orbital Phase Resolved Spectroscopy of the ...

    Indian Academy of Sciences (India)

    binary. We have carried out orbital phase resolved spectroscopy to mea- ... agreement with a simple model of a spherically symmetric stellar wind from the .... has a set of Narrow Field Instruments (NFI) comprising one Low Energy Concen-.

  1. The principal factors contributing to the flux of salt in a narrow, partially stratified estuary

    Science.gov (United States)

    Lewis, R. E.; Lewis, J. O.

    1983-06-01

    Observations of the velocity and salinity structure of the Tees estuary were made at eight stations along the estuary axis between Victoria Bridge and the sea during the summer of 1975. The measurements were made on ten separate tidal periods covering neap and spring tides. The data were collected over a period of relatively low freshwater flows and the residual current was found to have a strong dependence on the Stokes drift. At the upstream stations, the residuals were more than an order of magnitude greater than the currents anticipated from the freshwater discharge. Although the mean stratification decreased as the tidal range increased, the vertical circulation was stronger on spring tides than on neaps. Vertical variations in the amplitude and phase of the tidal current results in a current which strengthens the vertical circulation. However, this effect only made a relatively small contribution to the observed vertical circulation. The relative contribution of the individual salt flux terms to the net upstream transport of salt varies along the estuary. As the estuary narrows, the contribution by the oscillatory terms dominates that from the shear in the steady state flow. Of these oscillatory terms, the correlation of velocity and salinity fluctuations plays a key rôle in the salt transport. The depth mean values make a greater contribution than deviations from the depth mean and the flux due to phase variations over depth is smaller than either of these. Since the Stokes drift is compensated by a down-stream steady state flow, it does not contribute to the tidal mean transport of salt. At the seaward end of the estuary, the salt fluxes due to the steady state vertical shear and the convariance of the tidal fluctuations act in a complementary way to counter the seaward transport of salt by the freshwater flow. With the possible exceptions of the wide or narrow reaches of the Tees, the longitudinal fluxes of salt due to transverse variations in velocity

  2. Illegal "no prescription" internet access to narrow therapeutic index drugs.

    Science.gov (United States)

    Liang, Bryan A; Mackey, Tim K; Lovett, Kimberly M

    2013-05-01

    Narrow therapeutic index (NTI) drugs, because of proximity of therapeutic amounts to toxic amounts, require close professional oversight, particularly when switching formulations. However, safe use may be compromised by unsupervised switching through access to online "no prescription" Web sites. We assessed no prescription online availability of NTI drugs, using an academically published list (core NTI drugs). Using the Google search term "buy DRUG no prescription," we reviewed the first 5 search result pages for marketing of no prescription NTI drugs. We further assessed if National Association of Boards of Pharmacy (NABP) Not Recommended vendors were marketing NTI drugs. Searches were conducted from November 3, 2012 to January 3, 2013. For core NTI drugs, we found 13 of 14 NTI drugs (92%) marketed as available without prescription, all from NABP Not Recommended vendors. On the basis of these initial findings, we expanded our core list to 12 additional NTI drugs; 11 of 12 of these drugs (92%) were available from no prescription Web sites. Overall, 24 of 26 NTI drugs (92%) were illegally marketed as available online without the need for a prescription. Suspect online NTI drug access from no prescription vendors represents a significant patient safety risk because of potential patient drug switching and risk of counterfeit versions. Further, state health care exchanges with coverage limitations may drive patients to seek formulations online. Food and Drug Administration harmonization with tighter international NTI drug standards should be considered, and aggressive action against suspect online marketers should be a regulatory and public health priority. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.

  3. The narrow-band imaging examination method in otorhinolaryngology

    Directory of Open Access Journals (Sweden)

    Robert Šifrer

    2013-10-01

    Full Text Available Early diagnostics could improve the prognosis of patients with squamous-cell carcinomas of the head and neck. Narrow-Band Imaging (NBI is the latest examination method in the group of biologic endoscopies. NBI improves the distinction between malignant and benign mucosal lesions. Early suspect oncologic lesions that may otherwise be missed by normal white light illumination can also be diagnosed. The biggest benefit of NBI technology is achieved by using it together with a HDTV camera that enables better contrast and higher resolution. NBI is based on better imaging of superficial mucosal vasculature. The biologic potential of mucosal lesions could be predicted from vascular changes. The colour of normal mucosa under NBI is blue and green and the vessels show no pathological features. Well-demarcated brownish areas and scattered thick dark spots and abnormal winding and branching out of vessels on the mucosa are all oncologically suspicious features. Authors report the experience from literature on the use of NBI to identify carcinomas of the oral cavity, epipharynx, oropharynx, hypopharynx and larynx and evaluation of unknown primaries. In addition, the literature reports the benefit of NBI in identifying early stage carcinomas in previously irradiated patients. Persistence and recurrence of carcinoma and the development of new primary tumour could easily be missed by using only standard white-light illumination. The method proved to be highly sensitive and specific for predicting malignant changes in the above-mentioned circumstances. Authors report their own experience with NBI technology as well. For further improvement of the method, new technologic development is expected to enable the connection of NBI and HDTV with flexible endoscopes.

  4. NARROW-K-BAND OBSERVATIONS OF THE GJ 1214 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Colón, Knicole D.; Gaidos, Eric, E-mail: colonk@hawaii.edu [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2013-10-10

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (<0.7 μm) and in the K band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 μm) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7 × 10{sup –3} (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158 ± 0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenario where GJ 1214b has an H-rich envelope with heavy elements that are sequestered below a cloud/haze layer, we compare K-band observations with models of H{sub 2} collision-induced absorption in an atmosphere for a range of temperatures. While we find no evidence for deviation from a flat spectrum (slope s = 0.0016 ± 0.0038), an H{sub 2}-dominated upper atmosphere (<60 mbar) cannot be excluded. More precise observations at <0.7 μm and in the K band, as well as a uniform analysis of all published data, would be useful for establishing more robust limits on atmosphere models for GJ 1214b.

  5. Narrowing the uncertainty for deep-ocean injection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Orr, J.C.; Aumont, O. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS, Gif-sur-Yvette (France); Yool, A. [Southampton Oceanography Centre, Southampton (United Kingdom); Plattner, G.K.; Joos, F. [Bern Univ., Bern (Switzerland). Physics Inst.; Maier-Reimer, E. [Max Planck Inst. fuer Meteorologie, Hamburg (Germany); Weirig, M.F.; Schlitzer, R. [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany); Caldeira, K.; Wickett, M.E. [Lawrence Livermore National Laboratory, CA (United States); Matear, R.J. [Australian Commonwealth Scientific and Research Organization, Hobart (Australia); Mignone, B.K.; Sarmiento, J.L. [Princeton Univ., Princeton, NJ (United States). AOS Program

    2005-07-01

    Ten ocean general circulation models (OCGMs) were compared as part of an international study investigating the ocean's ability to efficiently sequester carbon dioxide (CO{sub 2}). The models were selected for their ability to simulate radiocarbon and CFC-11. All of the model simulations neglected the influence of marine biota, and the simulations used only dissolved inorganic carbon (DIC) as a tracer in order to conserve computing resources. The models were integrated using standard ocean carbon-cycle model intercomparison project (OCMIP) formulations for gas exchange boundary conditions to obtain pre-industrial conditions. All models used the same predefined atmospheric CO{sub 2} records compiled from 1765 to 2000, as well as future scenarios in which atmospheric CO{sub 2} was stabilized at 650 ppm. Injections occurred over a period of 100 years. Results of the study showed that global budgets for CFC-11 and radiocarbon were correlated with global efficiencies for a 3000 m injection simulation. The 3000 m injection efficiency was then correlated with the global mean for deep natural radiocarbon. Results showed that simultaneously accounting for constraints from both CFC-11 and natural radiocarbon narrowed the range for a 3000 m injection efficiency in the year 2500 by a factor of 4. The study showed that models must be able to simulate global inventories for CFC-11 as well as global means for radiocarbon in deep ocean scenarios in order to be credible. It was concluded that models using both constraints will more accurately simulate global injection efficiencies.

  6. The narrow therapeutic window of glycated hemoglobin and assay variability.

    Science.gov (United States)

    Hosseini, S S; Bibler, I; Charles, M A

    1999-12-01

    Glycated hemoglobin is measured by a variety of assays, each of which has a unique normal level. Our purpose is to show that among the different assays available in the United States, using the same patient's blood sample, assay results may vary widely and may more or less easily achieve a glycated hemoglobin value within the normal range. The following assays were compared using the same patient's blood sample for each pair of assays: glycohemoglobin affinity assay (GHB Reader; Isolab, Akron, OH) versus gel electrophoresis assay (n = 76); Isolab versus ion capture assay (IMX; Abbott Laboratories, Irving, TX) (n = 57); monoclonal antibody assay (DCA2000; Bayer Diagnostics, Pittsburgh, PA) versus IMX (n = 100); and high-performance liquid chromatography (HPLC) assay (Bio-Rad Variant A1c; Bio-Rad Laboratories, Richmond, CA) versus IMX assay (n = 55). Our analyses indicate that a relative ranking can be established for the ease of achieving a normal glycated hemoglobin level. The ranking indicates that the most stringent or difficult assays for achieving a normal level are the Isolab and DCA2000 assays. The intermediate assays are the IMX and Bio-Rad Variant, and the easiest method for achieving a normal value is the gel electrophoresis assay. Our results indicate that various glycated hemoglobin assays vary widely and are associated with more or less difficulty for an individual patient to achieve a glycated hemoglobin level within the normal range. These results are especially significant with respect to (1) the clinically narrow therapeutic window of glycated hemoglobin values in type 1 diabetes to avoid rapidly advancing severe hypoglycemia rates and chronic microvascular complication rates, and (2) the glycated hemoglobin threshold for rapidly advancing macrovascular disease in both type 1 and type 2 patients.

  7. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  8. A search for narrow states in radiative upsilon decays

    International Nuclear Information System (INIS)

    Lowe, S.T.

    1986-12-01

    A search for new states produced in radiative Υ(1S) decays is accomplished by observing the inclusive photon energy spectrum. A narrow resonance in the energy spectrum indicates the existence of a new state X produced by the process Υ → γX. The analysis is based on approximately 0.44 x 10 6 Υ(1S) events produced at the DORIS II e + e - storage ring. These data were collected with the Crystal Ball detector between April 1983 and May 1986. This analysis finds no evidence for a new state, so upper limits on the branching ratio BR(Υ → γX) are derived, assuming the state X decays primarily to high-multiplicity hadronic final states. In particular, if the state X were a minimal Higgs particle, its primary decay mode would be to the heaviest fermion-antifermion pair energetically available. For the radiative Υ(1S) decays studied here, the heavy fermions would be c anti c or s anti s quark states, over most of the relevant Higgs' mass range. The resulting upper limit for BR(Υ(1S) → γX) is highly energy dependent but for X mass between 1.5 GeV and 8.0 GeV, the 90% confidence level upper limit is better than 8.0 x 10 -4 . For a Higgs' mass near 5.0 GeV, the upper limit is about 2.0 x 10 -4 which is approximately equal to the lowest order calculation for the Wilczek mechanism. The Wilczek calculation with QCD radiative corrections predict branching ratios below the limits set here for all Higgs' masses

  9. Alcohol advertising and public health: systems perspectives versus narrow perspectives.

    Science.gov (United States)

    Petticrew, M; Shemilt, I; Lorenc, T; Marteau, T M; Melendez-Torres, G J; O'Mara-Eves, A; Stautz, K; Thomas, J

    2017-03-01

    Alcohol consumption is influenced by a complex causal system of interconnected psychological, behavioural, social, economic, legal and environmental factors. These factors are shaped by governments (eg, licensing laws and taxation), by consumers (eg, patterns of alcohol consumption drive demand) and by alcohol industry practices, such as advertising. The marketing and advertising of alcoholic products contributes to an 'alcogenic environment' and is a modifiable influence on alcohol consumption and harm. The public health perspective is that there is sufficient evidence that alcohol advertising influences consumption. The alcohol industry disputes this, asserting that advertising only aims to help consumers choose between brands. We review the evidence from recent systematic reviews, including their theoretical and methodological assumptions, to help understand what conclusions can be drawn about the relationships between alcohol advertising, advertising restrictions and alcohol consumption. A wide evidence base needs to be drawn on to provide a system-level overview of the relationship between alcohol advertising, advertising restrictions and consumption. Advertising aims to influence not just consumption, but also to influence awareness, attitudes and social norms; this is because advertising is a system-level intervention with multiple objectives. Given this, assessments of the effects of advertising restrictions which focus only on sales or consumption are insufficient and may be misleading. For this reason, previous systematic reviews, such as the 2014 Cochrane review on advertising restrictions (Siegfried et al ) contribute important, but incomplete representations of 'the evidence' needed to inform the public health case for policy decisions on alcohol advertising. We conclude that an unintended consequence of narrow, linear framings of complex system-level issues is that they can produce misleading answers. Systems problems require systems perspectives

  10. Recovering physical properties from narrow-band photometry

    Science.gov (United States)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  11. Large-amplitude and narrow-band vibration phenomenon of a foursquare fix-supported flexible plate in a rigid narrow channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Lu Daogang, E-mail: ludaogang@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Li Yang, E-mail: qinxiuyi@sina.com [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Zhang Pan, E-mail: zhangpan@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Niu Fenglei, E-mail: niufenglei@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2011-08-15

    Highlights: > FIV of a foursquare fix-supported flexible plate exposed to axial flow was studied. > Special designed test section and advanced measuring equipments were adopted. > The narrow-band vibration phenomenon with large amplitude was observed. > Line of plate's vibration amplitude and flow rate was investigated. > The phenomenon and the measurement error were analyzed. - Abstract: An experiment was performed to analyze the flow-induced vibration behavior of a foursquare fix-supported flexible plate exposed to the axial flow within a rigid narrow channel. The large-amplitude and narrow-band vibration phenomenon was observed in the experiment when the flow velocity varied with the range of 0-5 m/s. The occurring condition and some characteristics of the large-amplitude and narrow-band vibrations were investigated.

  12. Nonlinear narrow Doppler-free resonances for optical transitions and annihilation radiation of a positronium atom

    International Nuclear Information System (INIS)

    Letokhov, V.S.; Minogin, V.G.

    1976-01-01

    The possibilities of obtaining narrow resonances without the Doppler broadening for transition between the fine structure levels of the ground and first excited states of a positronium atom are considered. An analysis is carried out of the conditions required for observation of the narrow resonances of saturation of single quantum absorption in the 1S-2P transitions and observation of narrow two-photon absorption resonances in the 1S-2S transitions. It is shown that narrow 2γ annihilation radiation lines of a positronium atom may be obtained with a width much smaller than the Doppler one

  13. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    International Nuclear Information System (INIS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-01-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  14. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope...... been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order......, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation...

  15. Measuring skin necrosis in a randomised controlled feasibility trial of heat preconditioning on wound healing after reconstructive breast surgery: study protocol and statistical analysis plan for the PREHEAT trial.

    Science.gov (United States)

    Cro, Suzie; Mehta, Saahil; Farhadi, Jian; Coomber, Billie; Cornelius, Victoria

    2018-01-01

    Essential strategies are needed to help reduce the number of post-operative complications and associated costs for breast cancer patients undergoing reconstructive breast surgery. Evidence suggests that local heat preconditioning could help improve the provision of this procedure by reducing skin necrosis. Before testing the effectiveness of heat preconditioning in a definitive randomised controlled trial (RCT), we must first establish the best way to measure skin necrosis and estimate the event rate using this definition. PREHEAT is a single-blind randomised controlled feasibility trial comparing local heat preconditioning, using a hot water bottle, against standard care on skin necrosis among breast cancer patients undergoing reconstructive breast surgery. The primary objective of this study is to determine the best way to measure skin necrosis and to estimate the event rate using this definition in each trial arm. Secondary feasibility objectives include estimating recruitment and 30 day follow-up retention rates, levels of compliance with the heating protocol, length of stay in hospital and the rates of surgical versus conservative management of skin necrosis. The information from these objectives will inform the design of a larger definitive effectiveness and cost-effectiveness RCT. This article describes the PREHEAT trial protocol and detailed statistical analysis plan, which includes the pre-specified criteria and process for establishing the best way to measure necrosis. This study will provide the evidence needed to establish the best way to measure skin necrosis, to use as the primary outcome in a future RCT to definitively test the effectiveness of local heat preconditioning. The pre-specified statistical analysis plan, developed prior to unblinded data extraction, sets out the analysis strategy and a comparative framework to support a committee evaluation of skin necrosis measurements. It will increase the transparency of the data analysis for the

  16. Coal-fired MHD combustor development project: Phase 3D

    Science.gov (United States)

    1985-05-01

    This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.

  17. Eilat virus displays a narrow mosquito vector range.

    Science.gov (United States)

    Nasar, Farooq; Haddow, Andrew D; Tesh, Robert B; Weaver, Scott C

    2014-12-17

    mosquito host. As a consequence, EILV displays a narrow vector range in mosquito species responsible for the maintenance of other alphaviruses in nature.

  18. Observations and computations of narrow Kelvin ship wakes

    Directory of Open Access Journals (Sweden)

    Francis Noblesse

    2016-01-01

    Full Text Available Computations of far-field ship waves, based on linear potential flow theory and the Hogner approximation, are reported for monohull ships and catamarans. Specifically, far-field ship waves are computed for six monohull ships at four Froude numbers F≡V/gL=0.58, 0.68, 0.86, 1.58 and for six catamarans with nondimensional hull spacing s≡S/L=0.25 at two Froude numbers Fs≡V/gS=1 and 2.5. Here, g is the gravitational acceleration, V and L denote the ship speed and length, and S is the separation distance between the twin hulls of a catamaran. The computations show that, although the amplitudes of the waves created by a ship are strongly influenced by the shape of the ship hull, as well known, the ray angles where the largest waves are found are only weakly influenced by the hull shape and indeed are mostly a kinematic feature of the flow around a ship hull. An important practical consequence of this flow feature is that the apparent wake angle of general monohull ships or catamarans (with arbitrarily-shaped hulls can be estimated, without computations, by means of simple analytical relations; these relations, obtained elsewhere via parametric computations, are given here. Moreover, the influence of the two parameters Fs and s that largely determine the ray angles of the dominant waves created by a catamaran is illustrated via computations for three catamarans with hull spacings s=0.2, 0.35, 0.5 at four Froude numbers Fs=1, 1.5, 2, 2.5. These computations confirm that the largest waves created by wide and/or fast catamarans are found at ray angles that only depend on Fs (i.e. that do not depend on the hull spacing s in agreement with an elementary analysis of lateral interference between the dominant waves created by the bows (or sterns of the twin hulls of a catamaran. The dominant-waves ray angles predicted by the theory of wave-interference effects for monohull ships and catamarans are also compared with the observations of narrow Kelvin ship

  19. Revisiting "Narrow Bipolar Event" intracloud lightning using the FORTE satellite

    Science.gov (United States)

    Jacobson, A. R.; Light, T. E. L.

    2012-02-01

    The lightning stroke called a "Narrow Bipolar Event", or NBE, is an intracloud discharge responsible for significant charge redistribution. The NBE occurs within 10-20 μs, and some associated process emits irregular bursts of intense radio noise, fading at shorter timescales, sporadically during the charge transfer. In previous reports, the NBE has been inferred to be quite different from other forms of lightning strokes, in two ways: First, the NBE has been inferred to be relatively dark (non-luminous) compared to other lightning strokes. Second, the NBE has been inferred to be isolated within the storm, usually not participating in flashes, but when it is in a flash, the NBE has been inferred to be the flash initiator. These two inferences have sufficiently stark implications for NBE physics that they should be subjected to further independent test, with improved statistics. We attempt such a test with both optical and radio data from the FORTE satellite, and with lightning-stroke data from the Los Alamos Sferic Array. We show rigorously that by the metric of triggering the PDD optical photometer aboard the FORTE satellite, NBE discharges are indeed less luminous than ordinary lightning. Referred to an effective isotropic emitter at the cloud top, NBE light output is inferred to be less than ~3 × 108 W. To address isolation of NBEs, we first expand the pool of geolocated intracloud radio recordings, by borrowing geolocations from either the same flash's or the same storm's other recordings. In this manner we generate a pool of ~2 × 105 unique and independent FORTE intracloud radio recordings, whose slant range from the satellite can be inferred. We then use this slant range to calculate the Effective Radiated Power (ERP) at the radio source, in the passband 26-49 MHz. Stratifying the radio recordings by ERP into eight bins, from a lowest bin (140 kW), we document a trend for the radio recordings to become more isolated in time as the ERP increases. The highest

  20. Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine.

    Science.gov (United States)

    Warlow, Shelley M; Robinson, Mike J F; Berridge, Kent C

    2017-08-30

    Addiction is often characterized by intense motivation for a drug, which may be narrowly focused at the expense of other rewards. Here, we examined the role of amygdala-related circuitry in the amplification and narrowing of motivation focus for intravenous cocaine. We paired optogenetic channelrhodopsin (ChR2) stimulation in either central nucleus of amygdala (CeA) or basolateral amygdala (BLA) of female rats with one particular nose-poke porthole option for earning cocaine infusions (0.3 mg/kg, i.v.). A second alternative porthole earned identical cocaine but without ChR2 stimulation. Consequently, CeA rats quickly came to pursue their CeA ChR2-paired cocaine option intensely and exclusively, elevating cocaine intake while ignoring their alternative cocaine alone option. By comparison, BLA ChR2 pairing failed to enhance cocaine motivation. CeA rats also emitted consummatory bites toward their laser-paired porthole, suggesting that higher incentive salience made that cue more attractive. A separate progressive ratio test of incentive motivation confirmed that CeA ChR2 amplified rats' motivation, raising their breakpoint effort price for cocaine by 10-fold. However, CeA ChR2 laser on its own lacked any reinforcement value: laser by itself was never self-stimulated, not even by the same rats in which it amplified motivation for cocaine. Conversely, CeA inhibition by muscimol/baclofen microinjections prevented acquisition of cocaine self-administration and laser preference, whereas CeA inhibition by optogenetic halorhodopsin suppressed cocaine intake, indicating that CeA circuitry is needed for ordinary cocaine motivation. We conclude that CeA ChR2 excitation paired with a cocaine option specifically focuses and amplifies motivation to produce intense pursuit and consumption focused on that single target. SIGNIFICANCE STATEMENT In addiction, intense incentive motivation often becomes narrowly focused on a particular drug of abuse. Here we show that pairing central

  1. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  2. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  3. Dynamics of vortex–antivortex pair in a superconducting thin strip with narrow slits*

    International Nuclear Information System (INIS)

    He An; Xue Cun; Zhou You-He

    2017-01-01

    In the framework of phenomenological time-dependent Ginzburg–Landau (TDGL) formalism, the dynamical properties of vortex–antivortex (V-Av) pair in a superconductor film with a narrow slit was studied. The slit position and length can have a great impact not only on the vortex dynamical behavior but also the current–voltage ( I – V ) characteristics of the sample. Kinematic vortex lines can be predominated by the location of the slit. In the range of relatively low applied currents for a constant weak magnetic field, kinematic vortex line appears at right or left side of the slit by turns periodically. We found such single-side kinematic vortex line cannot lead to a jump in the I – V curve. At higher applied currents the phase-slip lines can be observed at left and right sides of the slit simultaneously. The competition between the vortex created at the lateral edge of the sample and the V-Av pair in the slit will result in three distinctly different scenarios of vortex dynamics depending on slit length: the lateral vortex penetrates the sample to annihilate the antivortex in the slit; the V-Av pair in the slit are driven off and expelled laterally; both the lateral vortex and the slit antivortex are depinned and driven together to annihilation in the halfway. (paper)

  4. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    Science.gov (United States)

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  5. Experimental investigation and optimisation of burner systems for glass melting ends with regenerative air preheating. Final report; Experimentelle Untersuchung und Optimierung von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Flamme, M.; Kremer, H.

    2000-02-15

    The project comprised experiments on burner systems for glass melting ends with regenerative air preheating for the purpose of optimisation. The experimental set-up was to reflect realistic conditions. In the first stage of the investigations, modern burner systems were installed in a GWI test facility and investigated. [German] Ziel des oben genannten Forschungsvorhabens war die Durchfuehrung experimenteller Untersuchungen von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung sowie deren Optimierung. Dazu war es notwendig, einen experimentellen Aufbau zu realisieren, mit dessen Hilfe die Stroemungs-, Mischungs- und Umsetzungsphaenomene von Glasschmelzoefen realistisch nachgestellt und aussagekraeftige Untersuchungen durchgefuehrt werden koennen. In einem ersten Untersuchungsschritt wurden moderne Brennerlanzen an der GWI-Versuchsanlage installiert und untersucht. (orig.)

  6. Membrane fusion and inverted phases

    International Nuclear Information System (INIS)

    Ellens, H.; Siegel, D.P.; Alford, D.; Yeagle, P.L.; Boni, L.; Lis, L.J.; Quinn, P.J.; Bentz, J.

    1989-01-01

    We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31 P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31 P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates

  7. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    Science.gov (United States)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  8. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis.

    Science.gov (United States)

    Bordin, Dimorvan; Bergamo, Edmara T P; Fardin, Vinicius P; Coelho, Paulo G; Bonfante, Estevam A

    2017-07-01

    To assess the probability of survival (reliability) and failure modes of narrow implants with different diameters. For fatigue testing, 42 implants with the same macrogeometry and internal conical connection were divided, according to diameter, as follows: narrow (Ø3.3×10mm) and extra-narrow (Ø2.9×10mm) (21 per group). Identical abutments were torqued to the implants and standardized maxillary incisor crowns were cemented and subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves, and reliability for a mission of 50,000 and 100,000 cycles at 50N, 100, 150 and 180N were calculated. For the finite element analysis (FEA), two virtual models, simulating the samples tested in fatigue, were constructed. Loading at 50N and 100N were applied 30° off-axis at the crown. The von-Mises stress was calculated for implant and abutment. The beta (β) values were: 0.67 for narrow and 1.32 for extra-narrow implants, indicating that failure rates did not increase with fatigue in the former, but more likely were associated with damage accumulation and wear-out failures in the latter. Both groups showed high reliability (up to 97.5%) at 50 and 100N. A decreased reliability was observed for both groups at 150 and 180N (ranging from 0 to 82.3%), but no significant difference was observed between groups. Failure predominantly involved abutment fracture for both groups. FEA at 50N-load, Ø3.3mm showed higher von-Mises stress for abutment (7.75%) and implant (2%) when compared to the Ø2.9mm. There was no significant difference between narrow and extra-narrow implants regarding probability of survival. The failure mode was similar for both groups, restricted to abutment fracture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Narrowing the Gap in Outcomes: Early Years (0-5 Years)

    Science.gov (United States)

    Springate, Ian; Atkinson, Mary; Straw, Suzanne; Lamont, Emily; Grayson, Hilary

    2008-01-01

    This report was commissioned by the Local Government Association (LGA) to inform the Department for Children, Schools and Families (DCSF) and LGA work on "Narrowing the Gap." It focuses on early years' provision and presents findings from a review of the best evidence on narrowing the gap in outcomes across the five Every Child Matters…

  10. Brief Daily Exposures to Asian Females Reverses Perceptual Narrowing for Asian Faces in Caucasian Infants

    Science.gov (United States)

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Heron-Delaney, Michelle; Tanaka, James W.; Lee, Kang

    2012-01-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate…

  11. 76 FR 60733 - Drawbridge Operation Regulations; Narrow Bay, Smith Point, NY

    Science.gov (United States)

    2011-09-30

    ... Operation Regulations; Narrow Bay, Smith Point, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of the Smith Point Bridge, 6.1, across Narrow Bay, between Smith Point and Fire Island, New York. The deviation is necessary to facilitate bridge...

  12. 78 FR 23845 - Drawbridge Operation Regulations; Narrow Bay, Smith Point, NY

    Science.gov (United States)

    2013-04-23

    ... Operation Regulations; Narrow Bay, Smith Point, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of the Smith Point Bridge, mile 6.1, across Narrow Bay, between Smith Point and Fire Island, New York. The deviation is necessary to facilitate the Smith Point...

  13. 77 FR 32938 - Narrow Woven Ribbons With Woven Selvedge From Taiwan: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-06-04

    ... ribbons subject to the order include all narrow woven fabrics, tapes, and labels that fall within this... the manufacture of typewriter or printer ribbons; (5) Narrow woven labels and apparel tapes, cut-to... 1994 U.S.C.C.A.N. 4040, 4198-99. Furthermore, ``affirmative evidence of bad faith on the part of a...

  14. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    Science.gov (United States)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  15. Occurrence and Global Properties of Narrow CIV lambda 1549 Absorption Lines in Moderate-Redshift Quasars

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2003-01-01

    A statistical study is presented of (a) the frequency of narrow CIV lambda 1549 absorption lines in 1.5 ~50%) of narrow CIV absorbers is detected for the radio-quiet and radio-loud quasars, and a constant ~25% of all the quasars, irrespective of radio type display associated CIV absorbers stronger...

  16. Formation of Electron Strings in Narrow Band Polar Semiconductors

    Science.gov (United States)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  17. Narrow Gap, High Mobility, and Stable Pi Conjugated Polymers

    Science.gov (United States)

    2012-09-20

    wide-angle X-ray scattering (2D-WAXS) of P5.1 (extruded at 210oC). This trend is reflected in conventional bulk- heterojunction OPV devices as shown...Additives in Molecular Bulk Heterojunction Solar Cells Using a bithiophene capped, isoindigo core, DAD molecule as the donor phase, and PCBM as the...PCE values of 3.7% as illustrated in Figure 11. Figure 11. Combining interface control using MoOx as an electron transport material and PDMS

  18. Influence of the narrow {111} planes on axial and planar ion channeling.

    Science.gov (United States)

    Motapothula, M; Dang, Z Y; Venkatesan, T; Breese, M B H; Rana, M A; Osman, A

    2012-05-11

    We report channeling patterns where clearly resolved effects of the narrow {111} planes are observed in axial and planar alignments for 2 MeV protons passing through a 55 nm [001] silicon membrane. At certain axes, such as and , the offset in atomic rows forming the narrow {111} planes results in shielding from the large potential at the wide {111} planes, producing a region of shallow, asymmetric potential from which axial channeling patterns have no plane of symmetry. At small tilts from such axes, different behavior is observed from the wide and narrow {111} planes. At planar alignment, distinctive channeling effects due to the narrow planes are observed. As a consequence of the shallow potential well at the narrow planes, incident protons suffer dechanneled trajectories which are excluded from channeling within the wide planes, resulting in an anomalously large scattered beam at {111} alignment.

  19. Effect of microthreads on coronal bone healing of narrow-diameter implants with reverse-tapered design in beagle dogs.

    Science.gov (United States)

    Chang, Yun-Young; Kim, Su-Hwan; Park, Keun-Oh; Yun, Jeong-Ho

    2017-12-01

    The objective of this study was to investigate the effect of microthreads on the coronal bone healing of narrow-diameter implants with reverse-tapered design. A total of 52 implants were classified into two groups according to presence or absence of coronal microthreads, the reverse-tapered narrow-diameter implant (RTN) group, and the reverse-tapered narrow-diameter implant with microthreads (RTNM) group. The implants were installed in split-mouth design in the edentulous mandible of six dogs. Three animals were sacrificed at 4 weeks and three at 8 weeks. Resonance frequency analysis, bone measurement using microcomputed tomography (micro-CT), removal torque test, and histometric analysis were performed. No significant differences in implant stability quotient value were observed between the groups at baseline, 4 weeks, or 8 weeks. Bone measurement using micro-CT showed that bone-implant contact volume (BICV) and bone-implant contact volume ratio (BICVR) in the coronal part of RTNM were statistically higher than those in RTN at 4 and 8 weeks. Histometric analysis showed statistically higher bone-implant contact length (BICL) in the coronal part of RTNM than in RTN at 4 weeks; however, bone-implant contact ratio (BICR) was not significantly different between the groups. At 8 weeks, the BICL and BICR did not differ significantly between the groups. Removal torque test showed no significant differences between the groups at 4 and 8 weeks. The microthreads might facilitate more coronal bone-implant contact due to increased surface areas at an early healing phase; however, they did not significantly affect coronal bone healing at 8 weeks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Narrow-band 1, 2, 3, 4, 8, 16 and 24 cycles/360o angular frequency filters

    Directory of Open Access Journals (Sweden)

    Simas M.L.B.

    2002-01-01

    Full Text Available We measured human frequency response functions for seven angular frequency filters whose test frequencies were centered at 1, 2, 3, 4, 8, 16 or 24 cycles/360º using a supra-threshold summation method. The seven functions of 17 experimental conditions each were measured nine times for five observers. For the arbitrarily selected filter phases, the maximum summation effect occurred at test frequency for filters at 1, 2, 3, 4 and 8 cycles/360º. For both 16 and 24 cycles/360º test frequencies, maximum summation occurred at the lower harmonics. These results allow us to conclude that there are narrow-band angular frequency filters operating somehow in the human visual system either through summation or inhibition of specific frequency ranges. Furthermore, as a general result, it appears that addition of higher angular frequencies to lower ones disturbs low angular frequency perception (i.e., 1, 2, 3 and 4 cycles/360º, whereas addition of lower harmonics to higher ones seems to improve detection of high angular frequency harmonics (i.e., 8, 16 and 24 cycles/360º. Finally, we discuss the possible involvement of coupled radial and angular frequency filters in face perception using an example where narrow-band low angular frequency filters could have a major role.