WorldWideScience

Sample records for predicting species responses

  1. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    Science.gov (United States)

    Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  2. Species biogeography predicts drought responses in a seasonally dry tropical forest

    Science.gov (United States)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  3. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels.

    Science.gov (United States)

    Van der Putten, Wim H; Macel, Mirka; Visser, Marcel E

    2010-07-12

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change.

  4. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species

    DEFF Research Database (Denmark)

    Arndal, M.F.; Merrild, M.P.; Michelsen, A.

    2013-01-01

    Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal...... to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change....

  5. Are species' responses to global change predicted by past niche evolution?

    Science.gov (United States)

    Lavergne, Sébastien; Evans, Margaret E. K.; Burfield, Ian J.; Jiguet, Frederic; Thuiller, Wilfried

    2013-01-01

    Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change. PMID:23209172

  6. Predicting species-specific responses of fungi to climatic variation using historical records.

    Science.gov (United States)

    Diez, Jeffrey M; James, Timothy Y; McMunn, Marshall; Ibáñez, Inés

    2013-10-01

    Although striking changes have been documented in plant and animal phenology over the past century, less is known about how the fungal kingdom's phenology has been changing. A few recent studies have documented changes in fungal fruiting in Europe in the last few decades, but the geographic and taxonomic extent of these changes, the mechanisms behind these changes, and their relationships to climate are not well understood. Here, we analyzed herbarium data of 274 species of fungi from Michigan to test the hypotheses that fruiting times of fungi depend on annual climate and that responses depend on taxonomic and functional groups. We show that the fungal community overall fruits later in warmer and drier years, which has led to a shift toward later fruiting dates for autumn-fruiting species, consistent with existing evidence. However, we also show that these effects are highly variable among species and are partly explained by basic life-history characteristics. Resulting differences in climate sensitivities are expected to affect community structure as climate changes. This study provides a unique picture of the climate dependence of fungal phenology in North America and an approach for quantifying how individual species and broader fungal communities will respond to ongoing climate change. © 2013 John Wiley & Sons Ltd.

  7. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    Science.gov (United States)

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.

  8. Non-linear feeding functional responses in the Greater Flamingo (Phoenicopterus roseus) predict immediate negative impact of wetland degradation on this flagship species

    Science.gov (United States)

    Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Guillemain, Matthieu; Von Houwald, Friederike; Gardelli, Bruno; Béchet, Arnaud

    2013-01-01

    Accurate knowledge of the functional response of predators to prey density is essential for understanding food web dynamics, to parameterize mechanistic models of animal responses to environmental change, and for designing appropriate conservation measures. Greater flamingos (Phoenicopterus roseus), a flagship species of Mediterranean wetlands, primarily feed on Artemias (Artemia spp.) in commercial salt pans, an industry which may collapse for economic reasons. Flamingos also feed on alternative prey such as Chironomid larvae (e.g., Chironomid spp.) and rice seeds (Oryza sativa). However, the profitability of these food items for flamingos remains unknown. We determined the functional responses of flamingos feeding on Artemias, Chironomids, or rice. Experiments were conducted on 11 captive flamingos. For each food item, we offered different ranges of food densities, up to 13 times natural abundance. Video footage allowed estimating intake rates. Contrary to theoretical predictions for filter feeders, intake rates did not increase linearly with increasing food density (type I). Intake rates rather increased asymptotically with increasing food density (type II) or followed a sigmoid shape (type III). Hence, flamingos were not able to ingest food in direct proportion to their abundance, possibly because of unique bill structure resulting in limited filtering capabilities. Overall, flamingos foraged more efficiently on Artemias. When feeding on Chironomids, birds had lower instantaneous rates of food discovery and required more time to extract food from the sediment and ingest it, than when filtering Artemias from the water column. However, feeding on rice was energetically more profitable for flamingos than feeding on Artemias or Chironomids, explaining their attraction for rice fields. Crucially, we found that food densities required for flamingos to reach asymptotic intake rates are rarely met under natural conditions. This allows us to predict an immediate

  9. Confronting species distribution model predictions with species functional traits.

    Science.gov (United States)

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  10. Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change

    Science.gov (United States)

    Stephen N. Matthews; Louis R. Iverson; Anantha M. Prasad; Matthew P. Peters

    2011-01-01

    Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat...

  11. Competition, predation and species responses to environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lin; Kulczychi, A. [Rutgers Univ., Cook College, Dept. of Ecology, Evolution and Natural Resources, New Brunswick, NJ (United States)

    2004-08-01

    Despite much effort over the past decade on the ecological consequences of global warming, ecologists still have little understanding of the importance of interspecific interactions in species responses to environmental change. Models predict that predation should mitigate species responses to environmental change, and that interspecific competition should aggravate species responses to environmental change. To test this prediction, we studied how predation and competition affected the responses of two ciliates, Colpidiumstriatum and Parameciumtetraurelia, to temperature change in laboratory microcosms. We found that neither predation nor competition altered the responses of Colpidiumstratum to temperature change, and that competition but not predation altered the responses of Paramecium tetraurelia to temperature change. Asymmetric interactions and temperature-dependent interactions may have contributed to the disparity between model predictions and experimental results. Our results suggest that models ignoring inherent complexities in ecological communities may be inadequate in forecasting species responses to environmental change. (au)

  12. Phylogeny and species traits predict bird detectability

    Science.gov (United States)

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  13. Predictions For New, Exotic Actinide Species

    International Nuclear Information System (INIS)

    Pyykko, P.

    2002-01-01

    The approach. New, simple chemical species can be predicted by studying isoelectronic series using ab initio quantum chemistry. We currently use in most cases relativistic pseudopotentials and handle the electron correlation using density functional theory (DFT) or wave-function-based methods, from MP2 to CCSD(T). Typical codes are Gaussian 98, Turbomole or MolCas. For full four-component Dirac-Fock calculations, the DREAMS code of K. G. Dyall has been utilized. For mapping out the possible new species, complete maps of all possibilities are made, whenever possible, and the new species typically occur along the coast-line of the 'island of stability' of already known species

  14. Incorporating uncertainty in predictive species distribution modelling.

    Science.gov (United States)

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  15. Species interactions reverse grassland responses to changing climate.

    Science.gov (United States)

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  16. Predicting response to epigenetic therapy

    DEFF Research Database (Denmark)

    Treppendahl, Marianne B; Sommer Kristensen, Lasse; Grønbæk, Kirsten

    2014-01-01

    of good pretreatment predictors of response is of great value. Many clinical parameters and molecular targets have been tested in preclinical and clinical studies with varying results, leaving room for optimization. Here we provide an overview of markers that may predict the efficacy of FDA- and EMA...

  17. Modeling species’ realized climatic niche space and predicting their response to global warming for several western forest species with small geographic distributions

    Science.gov (United States)

    Marcus V. Warwell; Gerald E. Rehfeldt; Nicholas L. Crookston

    2010-01-01

    The Random Forests multiple regression tree was used to develop an empirically based bioclimatic model of the presence-absence of species occupying small geographic distributions in western North America. The species assessed were subalpine larch (Larix lyallii), smooth Arizona cypress (Cupressus arizonica ssp. glabra...

  18. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  19. Response of chironomid species (Diptera, Chironomidae to water temperature: effects on species distribution in specific habitats

    Directory of Open Access Journals (Sweden)

    L. Marziali

    2013-09-01

    Full Text Available The response of 443 chironomid species to water temperature was analyzed, with the aim of defining their thermal optimum, tolerance limits and thermal habitat. The database included 4442 samples mainly from Italian river catchments collected from the 1950s up to date. Thermal preferences were calculated separately for larval and pupal specimens and for different habitats: high altitude and lowland lakes in the Alpine ecoregion; lowland lakes in the Mediterranean ecoregion; heavily modified water bodies; kryal, krenal, rhithral and potamal in running waters. Optimum response was calculated as mean water temperature, weighted by species abundances; tolerance as weighted standard deviation; skewness and kurtosis as 3rd and 4th moment statistics. The responses were fitted to normal uni- or plurimodal Gaussian models. Cold stenothermal species showed: i unimodal response, ii tolerance for a narrow temperature range, iii optima closed to their minimum temperature values, iv leptokurtic response. Thermophilous species showed: i optima at different temperature values, ii wider tolerance, iii optima near their maximum temperature values, iv platikurtic response, often fitting a plurimodal model. As expected, lower optima values and narrower tolerance were obtained for kryal and krenal, than for rhithral, potamal and lakes. Thermal response curves were produced for each species and were discussed according to species distribution (i.e. altitudinal range in running water and water depth in lakes, voltinism and phylogeny. Thermal optimum and tolerance limits and the definition of the thermal habitat of species can help predicting the impact of global warming on freshwater ecosystems.

  20. Climatic extremes improve predictions of spatial patterns of tree species

    Science.gov (United States)

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  1. Caregiver Responsiveness to the Family Bereavement Program: What predicts responsiveness? What does responsiveness predict?

    OpenAIRE

    Schoenfelder, Erin N.; Sandler, Irwin N.; Millsap, Roger E.; Wolchik, Sharlene A.; Berkel, Cady; Ayers, Timothy S.

    2013-01-01

    The study developed a multi-dimensional measure to assess participant responsiveness to a preventive intervention, and applied this measure to study how participant baseline characteristics predict responsiveness and how responsiveness predicts program outcomes. The study was conducted with caregivers who participated in the parenting-focused component of the Family Bereavement Program (FBP), a prevention program for families that have experienced parental death. The sample consisted of 89 ca...

  2. Comparing bee species responses to chemical mixtures: Common response patterns?

    Directory of Open Access Journals (Sweden)

    Alex Robinson

    Full Text Available Pollinators in agricultural landscapes can be exposed to mixtures of pesticides and environmental pollutants. Existing mixture toxicity modelling approaches, such as the models of concentration addition and independent action and the mechanistic DEBtox framework have been previously shown as valuable tools for understanding and ultimately predicting joint toxicity. Here we apply these mixture models to investigate the potential to interpret the effects of semi-chronic binary mixture exposure for three bee species: Apis mellifera, Bombus terrestris and Osmia bicornis within potentiation and mixture toxicity experiments. In the potentiation studies, the effect of the insecticide dimethoate with added propiconazole fungicide and neonicotinoid insecticide clothianidin with added tau-fluvalinate pyrethroid acaricide showed no difference in toxicity compared to the single chemical alone. Clothianidin toxicity showed a small scale, but temporally conserved increase in exposure conducted in the presence of propiconazole, particularly for B. terrestris and O. bicornis, the latter showing a near three-fold increase in clothianidin toxicity in the presence of propiconazole. In the mixture toxicity studies, the dominant response patterns were of additivity, however, binary mixtures of clothianidin and dimethoate in A. mellifera, B. terrestris and male O. bicornis there was evidence of a predominant antagonistic interaction. Given the ubiquitous nature of exposures to multiple chemicals, there is an urgent need to consider mixture effects in pollinator risk assessments. Our analyses suggest that current models, particularly those that utilise time-series data, such as DEBtox, can be used to identify additivity as the dominant response pattern and also those examples of interactions, even when small-scale, that may need to be taken into account during risk assessment.

  3. Depletion of heterogeneous source species pools predicts future invasion rates

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Mark Kimberley; Jacqueline Beggs

    2017-01-01

    Predicting how increasing rates of global trade will result in new establishments of potentially damaging invasive species is a question of critical importance to the development of national and international policies aimed at minimizing future invasions. Centuries of historical movement and establishment of invading species may have depleted the supply of species...

  4. Transcriptional responses of Treponema denticola to other oral bacterial species.

    Directory of Open Access Journals (Sweden)

    Juni Sarkar

    Full Text Available The classic organization by Socransky and coworkers categorized the oral bacteria of the subgingival plaque into different complexes. Treponema denticola, Porphyromonas gingivalis and Tannerella forsythia are grouped into the red complex that is highly correlated with periodontal disease. Socransky's work closely associates red with orange complex species such as Fusobacterium nucleatum and Prevotella intermedia but not with members of the other complexes. While the relationship between species contained by these complexes is in part supported by their ability to physically attach to each other, the physiological consequences of these interactions and associations are less clear. In this study, we employed T. denticola as a model organism to analyze contact-dependent responses to interactions with species belonging to the same complex (P. gingivalis and T. forsythia, the closely associated orange complex (using F. nucleatum and P. intermedia as representatives and the unconnected yellow complex (using Streptococcus sanguinis and S. gordonii as representatives. RNA was extracted from T. denticola alone as well as after pairwise co-incubation for 5 hrs with representatives of the different complexes, and the respective gene expression profiles were determined using microarrays. Numerous genes related to motility, metabolism, transport, outer membrane and hypothetical proteins were differentially regulated in T. denticola in the presence of the tested partner species. Further analysis revealed a significant overlap in the affected genes and we identified a general response to the presence of other species, those specific to two of the three complexes as well as individual complexes. Most interestingly, many predicted major antigens (e.g. flagella, Msp, CTLP were suppressed in responses that included red complex species indicating that the presence of the most closely associated species induces immune-evasive strategies. In summary, the data

  5. Predicting responses from Rasch measures.

    Science.gov (United States)

    Linacre, John M

    2010-01-01

    There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.

  6. Model-based uncertainty in species range prediction

    DEFF Research Database (Denmark)

    Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel

    2006-01-01

    Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...

  7. Physiological response of selected eragrostis species to water ...

    African Journals Online (AJOL)

    Physiological response of selected eragrostis species to water-deficit stress. ... performing crop variety of Eragrostis tef under this stress, the responses of two varieties, ... Comparative study of closely related plant species might be a better ...

  8. Prediction of treatment response to adalimumab

    DEFF Research Database (Denmark)

    Krintel, S B; Dehlendorff, C; Hetland, M L

    2016-01-01

    At least 30% of patients with rheumatoid arthritis (RA) do not respond to biologic agents, which emphasizes the need of predictive biomarkers. We aimed to identify microRNAs (miRNAs) predictive of response to adalimumab in 180 treatment-naïve RA patients enrolled in the OPtimized treatment algori...... of low expression of miR-22 and high expression of miR-886.3p was associated with EULAR good response. Future studies to assess the utility of these miRNAs as predictive biomarkers are needed.The Pharmacogenomics Journal advance online publication, 5 May 2015; doi:10.1038/tpj.2015.30....

  9. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction.

    Science.gov (United States)

    Baker, Christopher M; Gordon, Ascelin; Bode, Michael

    2017-04-01

    Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone-predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka-Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem-wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication. © 2016 Society for Conservation Biology.

  10. Do predictions from Species Sensitivity Distributions match with field data?

    International Nuclear Information System (INIS)

    Smetanová, S.; Bláha, L.; Liess, M.; Schäfer, R.B.; Beketov, M.A.

    2014-01-01

    Species Sensitivity Distribution (SSD) is a statistical model that can be used to predict effects of contaminants on biological communities, but only few comparisons of this model with field studies have been conducted so far. In the present study we used measured pesticides concentrations from streams in Germany, France, and Finland, and we used SSD to calculate msPAF (multiple substance potentially affected fraction) values based on maximum toxic stress at localities. We compared these SSD-based predictions with the actual effects on stream invertebrates quantified by the SPEAR pesticides bioindicator. The results show that the msPAFs correlated well with the bioindicator, however, the generally accepted SSD threshold msPAF of 0.05 (5% of species are predicted to be affected) severely underestimated the observed effects (msPAF values causing significant effects are 2–1000-times lower). These results demonstrate that validation with field data is required to define the appropriate thresholds for SSD predictions. - Highlights: • We validated the statistical model Species Sensitivity Distribution with field data. • Good correlation was found between the model predictions and observed effects. • But, the generally accepted threshold msPAF 0.05 severely underestimated the effects. - Comparison of the SSD-based prediction with the field data evaluated with the SPEAR pesticides index shows that SSD threshold msPAF of 0.05 severely underestimates the effects observed in the field

  11. Predicting weed problems in maize cropping by species distribution modelling

    Directory of Open Access Journals (Sweden)

    Bürger, Jana

    2014-02-01

    Full Text Available Increasing maize cultivation and changed cropping practices promote the selection of typical maize weeds that may also profit strongly from climate change. Predicting potential weed problems is of high interest for plant production. Within the project KLIFF, experiments were combined with species distribution modelling for this task in the region of Lower Saxony, Germany. For our study, we modelled ecological and damage niches of nine weed species that are significant and wide spread in maize cropping in a number of European countries. Species distribution models describe the ecological niche of a species, these are the environmental conditions under which a species can maintain a vital population. It is also possible to estimate a damage niche, i.e. the conditions under which a species causes damage in agricultural crops. For this, we combined occurrence data of European national data bases with high resolution climate, soil and land use data. Models were also projected to simulated climate conditions for the time horizon 2070 - 2100 in order to estimate climate change effects. Modelling results indicate favourable conditions for typical maize weed occurrence virtually all over the study region, but only a few species are important in maize cropping. This is in good accordance with the findings of an earlier maize weed monitoring. Reaction to changing climate conditions is species-specific, for some species neutral (E. crus-galli, other species may gain (Polygonum persicaria or loose (Viola arvensis large areas of suitable habitats. All species with damage potential under present conditions will remain important in maize cropping, some more species will gain regional importance (Calystegia sepium, Setara viridis.

  12. Development of an Integrated Moisture Index for predicting species composition

    Science.gov (United States)

    Louis R. Iverson; Charles T. Scott; Martin E. Dale; Anantha Prasad

    1996-01-01

    A geographic information system (GIS) approach was used to develop an Integrated Moisture Index (IMI), which was used to predict species composition for Ohio forests. Several landscape features (a slope-aspect shading index, cumulative flow of water downslope, curvature of the landscape, and the water-holding capacity of the soil) were derived from elevation and soils...

  13. SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages

    DEFF Research Database (Denmark)

    Guisan, Antoine; Rahbek, Carsten

    2011-01-01

    Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts...

  14. Assembled cross-species perchlorate dose-response data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains dose-response data for perchlorate exposure in multiple species. These data were assembled from peer-reviewed studies. Species included in...

  15. Predicting continental-scale patterns of bird species richness with spatially explicit models

    DEFF Research Database (Denmark)

    Rahbek, Carsten; Gotelli, Nicholas J; Colwell, Robert K

    2007-01-01

    the extraordinary diversity of avian species in the montane tropics, the most species-rich region on Earth. Our findings imply that correlative climatic models substantially underestimate the importance of historical factors and small-scale niche-driven assembly processes in shaping contemporary species-richness......The causes of global variation in species richness have been debated for nearly two centuries with no clear resolution in sight. Competing hypotheses have typically been evaluated with correlative models that do not explicitly incorporate the mechanisms responsible for biotic diversity gradients....... Here, we employ a fundamentally different approach that uses spatially explicit Monte Carlo models of the placement of cohesive geographical ranges in an environmentally heterogeneous landscape. These models predict species richness of endemic South American birds (2248 species) measured...

  16. Predicting and measuring fluid responsiveness with echocardiography

    Directory of Open Access Journals (Sweden)

    Ashley Miller

    2016-06-01

    Full Text Available Echocardiography is ideally suited to guide fluid resuscitation in critically ill patients. It can be used to assess fluid responsiveness by looking at the left ventricle, aortic outflow, inferior vena cava and right ventricle. Static measurements and dynamic variables based on heart–lung interactions all combine to predict and measure fluid responsiveness and assess response to intravenous fluid esuscitation. Thorough knowledge of these variables, the physiology behind them and the pitfalls in their use allows the echocardiographer to confidently assess these patients and in combination with clinical judgement manage them appropriately.

  17. Invasive species unchecked by climate - response

    DEFF Research Database (Denmark)

    Burrows, Michael T.; Schoeman, David S.; Duarte, Carlos M.

    2012-01-01

    environments. This may be particularly true in the world's boreal oceans as melting sea ice facilitates new migratory passages between the Atlantic and Pacific Oceans. Moreover, as the ebb and flow of biodiversity intensifies under anthropogenic climate change, novel climates and communities of species......Hulme points out that observed rates of range expansion by invasive alien species are higher than the median speed of isotherm movement over the past 50 years, which in turn has outpaced the rates of climate-associated range changes of marine and terrestrial species. This is not surprising, given...... of climate-change-induced range shifts between native and alien species are meaningful only after the initial invasive spread has reached a stable range boundary. A focus on regions with high velocities of climate change, and on regions such as the tropics where novel thermal niches are being created, should...

  18. Response predictions using the observed autocorrelation function

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; H. Brodtkorb, Astrid; Jensen, Jørgen Juncher

    2018-01-01

    This article studies a procedure that facilitates short-time, deterministic predictions of the wave-induced motion of a marine vessel, where it is understood that the future motion of the vessel is calculated ahead of time. Such predictions are valuable to assist in the execution of many marine......-induced response in study. Thus, predicted (future) values ahead of time for a given time history recording are computed through a mathematical combination of the sample autocorrelation function and previous measurements recorded just prior to the moment of action. Importantly, the procedure does not need input...... show that predictions can be successfully made in a time horizon corresponding to about 8-9 wave periods ahead of current time (the moment of action)....

  19. Toxicological Response of Poecilia reticulata, Hyla species and ...

    African Journals Online (AJOL)

    PROF HORSFALL

    response of Poecilia reticulata, Hyla and Culex species was investigated using acute and chronic toxicity tests. ... responses over a 28 day period. .... sample. A control with only de-chlorinated tap water ..... landfills using luminescent bacteria.

  20. Prediction Models for Dynamic Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.

    2015-11-02

    As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D2R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D2R, which we address in this paper. Our first contribution is the formal definition of D2R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D2R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D2R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D2R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D2R. Also, prediction models require just few days’ worth of data indicating that small amounts of

  1. Predicting the geographical distribution of two invasive termite species from occurrence data.

    Science.gov (United States)

    Tonini, Francesco; Divino, Fabio; Lasinio, Giovanna Jona; Hochmair, Hartwig H; Scheffrahn, Rudolf H

    2014-10-01

    Predicting the potential habitat of species under both current and future climate change scenarios is crucial for monitoring invasive species and understanding a species' response to different environmental conditions. Frequently, the only data available on a species is the location of its occurrence (presence-only data). Using occurrence records only, two models were used to predict the geographical distribution of two destructive invasive termite species, Coptotermes gestroi (Wasmann) and Coptotermes formosanus Shiraki. The first model uses a Bayesian linear logistic regression approach adjusted for presence-only data while the second one is the widely used maximum entropy approach (Maxent). Results show that the predicted distributions of both C. gestroi and C. formosanus are strongly linked to urban development. The impact of future scenarios such as climate warming and population growth on the biotic distribution of both termite species was also assessed. Future climate warming seems to affect their projected probability of presence to a lesser extent than population growth. The Bayesian logistic approach outperformed Maxent consistently in all models according to evaluation criteria such as model sensitivity and ecological realism. The importance of further studies for an explicit treatment of residual spatial autocorrelation and a more comprehensive comparison between both statistical approaches is suggested.

  2. Using citizen science butterfly counts to predict species population trends.

    Science.gov (United States)

    Dennis, Emily B; Morgan, Byron J T; Brereton, Tom M; Roy, David B; Fox, Richard

    2017-12-01

    Citizen scientists are increasingly engaged in gathering biodiversity information, but trade-offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011-2014) of a short-duration citizen science project (Big Butterfly Count [BBC]) with those from long-running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3-week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3-week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short-duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species' flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass-participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass-participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land-use types), as well as serving to reconnect an increasingly urban human population with nature. © 2017 The Authors. Conservation Biology published

  3. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species

    OpenAIRE

    Bach, Dominik R

    2015-01-01

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and ins...

  4. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.

    Directory of Open Access Journals (Sweden)

    Ingo Titze

    2016-06-01

    Full Text Available Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size, range of fundamental frequency is facilitated by (1 laryngeal muscles that control elongation and by (2 nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid, so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers, increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.

  5. Prediction of psilocybin response in healthy volunteers.

    Science.gov (United States)

    Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X

    2012-01-01

    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.

  6. Prediction of psilocybin response in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Erich Studerus

    Full Text Available Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.

  7. Genetic analysis of Myanmar Vigna species in responses to salt ...

    African Journals Online (AJOL)

    Genetic analysis of Myanmar Vigna species in responses to salt stress at the ... of reduction was highly dependent on different genotypes and salinity levels. ... the mechanism of salt tolerance and for the provision of genetic resources for ...

  8. Bleaching response of coral species in the context of assemblage response

    Science.gov (United States)

    Swain, Timothy D.; DuBois, Emily; Goldberg, Scott J.; Backman, Vadim; Marcelino, Luisa A.

    2017-06-01

    Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon- α and - β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly sensitive to weak stress ( α > 0) but under-responsive compared to assemblage bleaching ( β bleaching ( β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.

  9. Mood Predicts Response to Placebo CPAP

    Directory of Open Access Journals (Sweden)

    Carl J. Stepnowsky

    2012-01-01

    Full Text Available Study Objectives. Continuous positive airway pressure (CPAP therapy is efficacious for treating obstructive sleep apnea (OSA, but recent studies with placebo CPAP (CPAP administered at subtherapeutic pressure have revealed nonspecific (or placebo responses to CPAP treatment. This study examined baseline psychological factors associated with beneficial effects from placebo CPAP treatment. Participants. Twenty-five participants were studied with polysomnography at baseline and after treatment with placebo CPAP. Design. Participants were randomized to either CPAP treatment or placebo CPAP. Baseline mood was assessed with the Profile of Mood States (POMS. Total mood disturbance (POMS-Total was obtained by summing the six POMS subscale scores, with Vigor weighted negatively. The dependent variable was changed in apnea-hypopnea index (ΔAHI, calculated by subtracting pre- from post-CPAP AHI. Negative values implied improvement. Hierarchical regression analysis was performed, with pre-CPAP AHI added as a covariate to control for baseline OSA severity. Results. Baseline emotional distress predicted the drop in AHI in response to placebo CPAP. Highly distressed patients showed greater placebo response, with a 34% drop (i.e., improvement in AHI. Conclusion. These findings underscore the importance of placebo-controlled studies of CPAP treatment. Whereas such trials are routinely included in drug trials, this paper argues for their importance even in mechanical-oriented sleep interventions.

  10. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  11. An approach to consider behavioral plasticity as a source of uncertainty when forecasting species' response to climate change.

    Science.gov (United States)

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2015-06-01

    The rapid ecological shifts that are occurring due to climate change present major challenges for managers and policymakers and, therefore, are one of the main concerns for environmental modelers and evolutionary biologists. Species distribution models (SDM) are appropriate tools for assessing the relationship between species distribution and environmental conditions, so being customarily used to forecast the biogeographical response of species to climate change. A serious limitation of species distribution models when forecasting the effects of climate change is that they normally assume that species behavior and climatic tolerances will remain constant through time. In this study, we propose a new methodology, based on fuzzy logic, useful for incorporating the potential capacity of species to adapt to new conditions into species distribution models. Our results demonstrate that it is possible to include different behavioral responses of species when predicting the effects of climate change on species distribution. Favorability models offered in this study show two extremes: one considering that the species will not modify its present behavior, and another assuming that the species will take full advantage of the possibilities offered by an increase in environmental favorability. This methodology may mean a more realistic approach to the assessment of the consequences of global change on species' distribution and conservation. Overlooking the potential of species' phenotypical plasticity may under- or overestimate the predicted response of species to changes in environmental drivers and its effects on species distribution. Using this approach, we could reinforce the science behind conservation planning in the current situation of rapid climate change.

  12. Predicting Environmental Suitability for a Rare and Threatened Species (Lao Newt, Laotriton laoensis) Using Validated Species Distribution Models

    Science.gov (United States)

    Chunco, Amanda J.; Phimmachak, Somphouthone; Sivongxay, Niane; Stuart, Bryan L.

    2013-01-01

    The Lao newt (Laotriton laoensis) is a recently described species currently known only from northern Laos. Little is known about the species, but it is threatened as a result of overharvesting. We integrated field survey results with climate and altitude data to predict the geographic distribution of this species using the niche modeling program Maxent, and we validated these predictions by using interviews with local residents to confirm model predictions of presence and absence. The results of the validated Maxent models were then used to characterize the environmental conditions of areas predicted suitable for L. laoensis. Finally, we overlaid the resulting model with a map of current national protected areas in Laos to determine whether or not any land predicted to be suitable for this species is coincident with a national protected area. We found that both area under the curve (AUC) values and interview data provided strong support for the predictive power of these models, and we suggest that interview data could be used more widely in species distribution niche modeling. Our results further indicated that this species is mostly likely geographically restricted to high altitude regions (i.e., over 1,000 m elevation) in northern Laos and that only a minute fraction of suitable habitat is currently protected. This work thus emphasizes that increased protection efforts, including listing this species as endangered and the establishment of protected areas in the region predicted to be suitable for L. laoensis, are urgently needed. PMID:23555808

  13. Response of plant species to coal-mine soil materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  14. Stress responsiveness predicts individual variation in mate selectivity.

    Science.gov (United States)

    Vitousek, Maren N; Romero, L Michael

    2013-06-15

    Steroid hormones, including glucocorticoids, mediate a variety of behavioral and physiological processes. Circulating hormone concentrations vary substantially within populations, and although hormone titers predict reproductive success in several species, little is known about how individual variation in circulating hormone concentrations is linked with most reproductive behaviors in free-living organisms. Mate choice is an important and often costly component of reproduction that also varies substantially within populations. We examined whether energetically costly mate selection behavior in female Galápagos marine iguanas (Amblyrhynchus cristatus) was associated with individual variation in the concentrations of hormones previously shown to differ between reproductive and non-reproductive females during the breeding season (corticosterone and testosterone). Stress-induced corticosterone levels - which are suppressed in female marine iguanas during reproduction - were individually repeatable throughout the seven-week breeding period. Mate selectivity was strongly predicted by individual variation in stress-induced corticosterone: reproductive females that secreted less corticosterone in response to a standardized stressor assessed more displaying males. Neither baseline corticosterone nor testosterone predicted variation in mate selectivity. Scaled body mass was not significantly associated with mate selectivity, but females that began the breeding period in lower body condition showed a trend towards being less selective about potential mates. These results provide the first evidence that individual variation in the corticosterone stress response is associated with how selective females are in their choice of a mate, an important contributor to fitness in many species. Future research is needed to determine the functional basis of this association, and whether transient acute increases in circulating corticosterone directly mediate mate choice behaviors

  15. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change.

    Directory of Open Access Journals (Sweden)

    Giovanni Rapacciuolo

    Full Text Available Conservation planners often wish to predict how species distributions will change in response to environmental changes. Species distribution models (SDMs are the primary tool for making such predictions. Many methods are widely used; however, they all make simplifying assumptions, and predictions can therefore be subject to high uncertainty. With global change well underway, field records of observed range shifts are increasingly being used for testing SDM transferability. We used an unprecedented distribution dataset documenting recent range changes of British vascular plants, birds, and butterflies to test whether correlative SDMs based on climate change provide useful approximations of potential distribution shifts. We modelled past species distributions from climate using nine single techniques and a consensus approach, and projected the geographical extent of these models to a more recent time period based on climate change; we then compared model predictions with recent observed distributions in order to estimate the temporal transferability and prediction accuracy of our models. We also evaluated the relative effect of methodological and taxonomic variation on the performance of SDMs. Models showed good transferability in time when assessed using widespread metrics of accuracy. However, models had low accuracy to predict where occupancy status changed between time periods, especially for declining species. Model performance varied greatly among species within major taxa, but there was also considerable variation among modelling frameworks. Past climatic associations of British species distributions retain a high explanatory power when transferred to recent time--due to their accuracy to predict large areas retained by species--but fail to capture relevant predictors of change. We strongly emphasize the need for caution when using SDMs to predict shifts in species distributions: high explanatory power on temporally-independent records

  16. Resting state functional connectivity predicts neurofeedback response

    Directory of Open Access Journals (Sweden)

    Dustin eScheinost

    2014-09-01

    Full Text Available Tailoring treatments to the specific needs and biology of individual patients – personalized medicine – requires delineation of reliable predictors of response. Unfortunately, these have been slow to emerge, especially in neuropsychiatric disorders. We have recently described a real-time functional magnetic resonance imaging (rt-fMRI neurofeedback protocol that can reduce contamination-related anxiety, a prominent symptom of many cases of obsessive-compulsive disorder (OCD. Individual response to this intervention is variable. Here we used patterns of brain functional connectivity, as measured by baseline resting-state fMRI (rs-fMRI, to predict improvements in contamination anxiety after neurofeedback training. Activity of a region of the orbitofrontal cortex (OFC and anterior prefrontal cortex, Brodmann area (BA 10, associated with contamination anxiety in each subject was measured in real time and presented as a neurofeedback signal, permitting subjects to learn to modulate this target brain region. We have previously reported both enhanced OFC/BA 10 control and improved anxiety in a group of subclinically anxious subjects after neurofeedback. Five individuals with contamination-related OCD who underwent the same protocol also showed improved clinical symptomatology. In both groups, these behavioral improvements were strongly correlated with baseline whole-brain connectivity in the OFC/BA 10, computed from rs-fMRI collected several days prior to neurofeedback training. These pilot data suggest that rs-fMRI can be used to identify individuals likely to benefit from rt-fMRI neurofeedback training to control contamination anxiety.

  17. Effects of oxygen on responses to heating in two lizard species sampled along an elevational gradient.

    Science.gov (United States)

    DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N

    2017-08-01

    Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.

  18. An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.

    Science.gov (United States)

    Wei, Xiaojing; Savage, Jessica A; Riggs, Charlotte E; Cavender-Bares, Jeannine

    2017-05-01

    Environmental filtering is an important community assembly process influencing species distributions. Contrasting species abundance patterns along environmental gradients are commonly used to provide evidence for environmental filtering. However, the same abundance patterns may result from alternative or concurrent assembly processes. Experimental tests are an important means to decipher whether species fitness varies with environment, in the absence of dispersal constraints and biotic interactions, and to draw conclusions about the importance of environmental filtering in community assembly. We performed an experimental test of environmental filtering in 14 closely related willow and poplar species (family Salicaceae) by transplanting cuttings of each species into 40 common gardens established along a natural hydrologic gradient in the field, where competition was minimized and herbivory was controlled. We analyzed species fitness responses to the hydrologic environment based on cumulative growth and survival over two years using aster fitness models. We also examined variation in nine drought and flooding tolerance traits expected to contribute to performance based on a priori understanding of plant function in relation to water availability and stress. We found substantial evidence that environmental filtering along the hydrologic gradient played a critical role in determining species distributions. Fitness variation of each species in the field experiment was used to model their water table depth optima. These optima predicted 68% of the variation in species realized hydrologic niches based on peak abundance in naturally assembled communities in the surrounding region. Multiple traits associated with water transport efficiency and water stress tolerance were correlated with species hydrologic niches, but they did not necessarily covary with each other. As a consequence, species occupying similar hydrologic niches had different combinations of trait values

  19. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  20. Differential responses of cryptic bat species to the urban landscape.

    Science.gov (United States)

    Lintott, Paul R; Barlow, Kate; Bunnefeld, Nils; Briggs, Philip; Gajas Roig, Clara; Park, Kirsty J

    2016-04-01

    Urbanization is a key global driver in the modification of land use and has been linked to population declines even in widespread and relatively common species. Cities comprise a complex assortment of habitat types yet we know relatively little about the effects of their composition and spatial configuration on species distribution. Although many bat species exploit human resources, the majority of species are negatively impacted by urbanization. Here, we use data from the National Bat Monitoring Programme, a long-running citizen science scheme, to assess how two cryptic European bat species respond to the urban landscape. A total of 124 × 1 km(2) sites throughout Britain were surveyed. The landscape surrounding each site was mapped and classified into discrete biotope types (e.g., woodland). Generalized linear models were used to assess differences in the response to the urban environment between the two species, and which landscape factors were associated with the distributions of P. pipistrellus and P. pygmaeus. The relative prevalence of P. pygmaeus compared to P. pipistrellus was greater in urban landscapes with a higher density of rivers and lakes, whereas P. pipistrellus was frequently detected in landscapes comprising a high proportion of green space (e.g., parklands). Although P. pipistrellus is thought to be well adapted to the urban landscape, we found a strong negative response to urbanization at a relatively local scale (1 km), whilst P. pygmaeus was detected more regularly in wooded urban landscapes containing freshwater. These results show differential habitat use at a landscape scale of two morphologically similar species, indicating that cryptic species may respond differently to anthropogenic disturbance. Even species considered relatively common and well adapted to the urban landscape may respond negatively to the built environment highlighting the future challenges involved in maintaining biodiversity within an increasingly urbanized

  1. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.

    Science.gov (United States)

    Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth

    2018-01-01

    There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.

  2. PREDICTING FIELD PERFORMANCE OF HERBACEOUS SPECIES FOR PHYTOREMEDIATION OF PERCHLORATE

    Science.gov (United States)

    Results of these short-term experiments coupled with ecological knowledge of the nine herbaceous plant species tested suggest that several species may by successful in on-site remediation of perchlorate. The two wetland species which appear to be most suitable for field experimen...

  3. A HIERARCHICAL SET OF MODELS FOR SPECIES RESPONSE ANALYSIS

    NARCIS (Netherlands)

    HUISMAN, J; OLFF, H; FRESCO, LFM

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  4. A hierarchical set of models for species response analysis

    NARCIS (Netherlands)

    Huisman, J.; Olff, H.; Fresco, L.F.M.

    1993-01-01

    Variation in the abundance of species in space and/or time can be caused by a wide range of underlying processes. Before such causes can be analysed we need simple mathematical models which can describe the observed response patterns. For this purpose a hierarchical set of models is presented. These

  5. Responses of Eucalyptus species to fertilizer applications made at ...

    African Journals Online (AJOL)

    Early research trials in South Africa have shown that Eucalyptus species generally respond positively to the addition of nutrients at planting. However, as most of these research trials were located in KwaZulu-Natal, it was important to investigate the nature of the response in other afforested regions of the country where this ...

  6. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.

    Science.gov (United States)

    Bach, Dominik R

    2015-04-07

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  7. Responses to Projected Changes in Climate and UV-B at the Species Level

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Cernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.

  8. Species richness alone does not predict cultural ecosystem service value

    Science.gov (United States)

    Graves, Rose A.; Pearson, Scott M.; Turner, Monica G.

    2017-01-01

    Many biodiversity-ecosystem services studies omit cultural ecosystem services (CES) or use species richness as a proxy and assume that more species confer greater CES value. We studied wildflower viewing, a key biodiversity-based CES in amenity-based landscapes, in Southern Appalachian Mountain forests and asked (i) How do aesthetic preferences for wildflower communities vary with components of biodiversity, including species richness?; (ii) How do aesthetic preferences for wildflower communities vary across psychographic groups?; and (iii) How well does species richness perform as an indicator of CES value compared with revealed social preferences for wildflower communities? Public forest visitors (n = 293) were surveyed during the summer of 2015 and asked to choose among images of wildflower communities in which flower species richness, flower abundance, species evenness, color diversity, and presence of charismatic species had been digitally manipulated. Aesthetic preferences among images were unrelated to species richness but increased with more abundant flowers, greater species evenness, and greater color diversity. Aesthetic preferences were consistent across psychographic groups and unaffected by knowledge of local flora or value placed on wildflower viewing. When actual wildflower communities (n = 54) were ranked based on empirically measured flower species richness or wildflower viewing utility based on multinomial logit models of revealed preferences, rankings were broadly similar. However, designation of hotspots (CES values above the median) based on species richness alone missed 27% of wildflower viewing utility hotspots. Thus, conservation priorities for sustaining CES should incorporate social preferences and consider multiple dimensions of biodiversity that underpin CES supply. PMID:28320953

  9. Different responses to reward comparisons by three primate species.

    Science.gov (United States)

    Freeman, Hani D; Sullivan, Jennifer; Hopper, Lydia M; Talbot, Catherine F; Holmes, Andrea N; Schultz-Darken, Nancy; Williams, Lawrence E; Brosnan, Sarah F

    2013-01-01

    Recently, much attention has been paid to the role of cooperative breeding in the evolution of behavior. In many measures, cooperative breeders are more prosocial than non-cooperatively breeding species, including being more likely to actively share food. This is hypothesized to be due to selective pressures specific to the interdependency characteristic of cooperatively breeding species. Given the high costs of finding a new mate, it has been proposed that cooperative breeders, unlike primates that cooperate in other contexts, should not respond negatively to unequal outcomes between themselves and their partner. However, in this context such pressures may extend beyond cooperative breeders to other species with pair-bonding and bi-parental care. Here we test the response of two New World primate species with different parental strategies to unequal outcomes in both individual and social contrast conditions. One species tested was a cooperative breeder (Callithrix spp.) and the second practiced bi-parental care (Aotus spp.). Additionally, to verify our procedure, we tested a third confamilial species that shows no such interdependence but does respond to individual (but not social) contrast (Saimiri spp.). We tested all three genera using an established inequity paradigm in which individuals in a pair took turns to gain rewards that sometimes differed from those of their partners. None of the three species tested responded negatively to inequitable outcomes in this experimental context. Importantly, the Saimiri spp responded to individual contrast, as in earlier studies, validating our procedure. When these data are considered in relation to previous studies investigating responses to inequity in primates, they indicate that one aspect of cooperative breeding, pair-bonding or bi-parental care, may influence the evolution of these behaviors. These results emphasize the need to study a variety of species to gain insight in to how decision-making may vary across

  10. Different responses to reward comparisons by three primate species.

    Directory of Open Access Journals (Sweden)

    Hani D Freeman

    Full Text Available Recently, much attention has been paid to the role of cooperative breeding in the evolution of behavior. In many measures, cooperative breeders are more prosocial than non-cooperatively breeding species, including being more likely to actively share food. This is hypothesized to be due to selective pressures specific to the interdependency characteristic of cooperatively breeding species. Given the high costs of finding a new mate, it has been proposed that cooperative breeders, unlike primates that cooperate in other contexts, should not respond negatively to unequal outcomes between themselves and their partner. However, in this context such pressures may extend beyond cooperative breeders to other species with pair-bonding and bi-parental care.Here we test the response of two New World primate species with different parental strategies to unequal outcomes in both individual and social contrast conditions. One species tested was a cooperative breeder (Callithrix spp. and the second practiced bi-parental care (Aotus spp.. Additionally, to verify our procedure, we tested a third confamilial species that shows no such interdependence but does respond to individual (but not social contrast (Saimiri spp.. We tested all three genera using an established inequity paradigm in which individuals in a pair took turns to gain rewards that sometimes differed from those of their partners.None of the three species tested responded negatively to inequitable outcomes in this experimental context. Importantly, the Saimiri spp responded to individual contrast, as in earlier studies, validating our procedure. When these data are considered in relation to previous studies investigating responses to inequity in primates, they indicate that one aspect of cooperative breeding, pair-bonding or bi-parental care, may influence the evolution of these behaviors. These results emphasize the need to study a variety of species to gain insight in to how decision-making may

  11. Differential reproductive responses to stress reveal the role of life-history strategies within a species.

    Science.gov (United States)

    Schultner, J; Kitaysky, A S; Gabrielsen, G W; Hatch, S A; Bech, C

    2013-11-22

    Life-history strategies describe that 'slow'- in contrast to 'fast'-living species allocate resources cautiously towards reproduction to enhance survival. Recent evidence suggests that variation in strategies exists not only among species but also among populations of the same species. Here, we examined the effect of experimentally induced stress on resource allocation of breeding seabirds in two populations with contrasting life-history strategies: slow-living Pacific and fast-living Atlantic black-legged kittiwakes. We tested the hypothesis that reproductive responses in kittiwakes under stress reflect their life-history strategies. We predicted that in response to stress, Pacific kittiwakes reduce investment in reproduction compared with Atlantic kittiwakes. We exposed chick-rearing kittiwakes to a short-term (3-day) period of increased exogenous corticosterone (CORT), a hormone that is released during food shortages. We examined changes in baseline CORT levels, parental care and effects on offspring. We found that kittiwakes from the two populations invested differently in offspring when facing stress. In response to elevated CORT, Pacific kittiwakes reduced nest attendance and deserted offspring more readily than Atlantic kittiwakes. We observed lower chick growth, a higher stress response in offspring and lower reproductive success in response to CORT implantation in Pacific kittiwakes, whereas the opposite occurred in the Atlantic. Our findings support the hypothesis that life-history strategies predict short-term responses of individuals to stress within a species. We conclude that behaviour and physiology under stress are consistent with trade-off priorities as predicted by life-history theory. We encourage future studies to consider the pivotal role of life-history strategies when interpreting inter-population differences of animal responses to stressful environmental events.

  12. In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    Science.gov (United States)

    The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...

  13. Predicting the dynamics of local adaptation in invasive species

    Science.gov (United States)

    An invasive plant species may restrict its spread to only one habitat, or, after some time, may continue to spread into a different, secondary, habitat. The question of whether evolution is required for an invasive species to spread from one habitat to another is currently hotly debated. In order fo...

  14. Moving Species Redundancy Toward a More Predictive Framework

    Science.gov (United States)

    Human activities are driving rapid changes in species diversity in a wide range of habitats globally. These changes in species diversity raise questions about the ability of altered systems to continue to offer valuable ecosystem services. Maintenance of ecosystem services unde...

  15. Predicted Changes in Climatic Niche and Climate Refugia of Conservation Priority Salamander Species in the Northeastern United States

    Directory of Open Access Journals (Sweden)

    William B. Sutton

    2014-12-01

    Full Text Available Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1 evaluating species-specific predictions (based on 2050 climate projections and vulnerabilities to climate change and (2 using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus, Cheat Mountain Salamander (Plethodon nettingi, Shenandoah Mountain Salamander (Plethodon virginia, Mabee’s Salamander (Ambystoma mabeei, and Streamside Salamander (Ambystoma barbouri predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch, whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.

  16. Sexual selection predicts species richness across the animal kingdom.

    Science.gov (United States)

    Janicke, Tim; Ritchie, Michael G; Morrow, Edward H; Marie-Orleach, Lucas

    2018-05-16

    Our improving knowledge of the animal tree of life consistently demonstrates that some taxa diversify more rapidly than others, but what contributes to this variation remains poorly understood. An influential hypothesis proposes that selection arising from competition for mating partners plays a key role in promoting speciation. However, empirical evidence showing a link between proxies of this sexual selection and species richness is equivocal. Here, we collected standardized metrics of sexual selection for a broad range of animal taxa, and found that taxonomic families characterized by stronger sexual selection on males show relatively higher species richness. Thus, our data support the hypothesis that sexual selection elevates species richness. This could occur either by promoting speciation and/or by protecting species against extinction. © 2018 The Author(s).

  17. Slot Machine Response Frequency Predicts Pathological Gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne

    2013-01-01

    . This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...... in individuals with exacerbated pathological gambling symptoms. These findings may have important implications for detecting behaviors underlying pathological gambling....

  18. Nonlinear piping damping and response predictions

    International Nuclear Information System (INIS)

    Severud, L.K.; Weiner, E.O.; Lindquist, M.R.; Anderson, M.J.; Wagner, S.E.

    1986-10-01

    The high level dynamic testing of four prototypic piping systems, used to provide benchmarks for analytical prediction comparisons, is overviewed. The size of pipe tested ranged from one-inch to six-inches in diameter and consisted of carbon steel or stainless steel material. Failure of the tested systems included progressive gross deformation or some combination of ratchetting-fatigue. Pretest failure predictions and post test comparisons using simplified elastic and elasto-plastic methods are presented. Detailed non-linear inelastic analyses are also shown, along with a typical ratchet-fatigue failure calculation. A simplified method for calculating modal equivalent viscous damping for snubbers and plastic hinges is also described. Conclusions are made regarding the applicability of the various analytical failure predictive methods and recommendations are made for future analytic and test efforts

  19. An observation on the variance of a predicted response in ...

    African Journals Online (AJOL)

    ... these properties and computational simplicity. To avoid over fitting, along with the obvious advantage of having a simpler equation, it is shown that the addition of a variable to a regression equation does not reduce the variance of a predicted response. Key words: Linear regression; Partitioned matrix; Predicted response ...

  20. SeqAPASS: Predicting chemical susceptibility to threatened/endangered species

    Science.gov (United States)

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/) application was devel...

  1. Extreme wave and wind response predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Olsen, Anders S.; Mansour, Alaa E.

    2011-01-01

    codes and the short duration of the time domain simulations needed (typically 60–300s to cover the hydro- and aerodynamic memory effects in the response) the calculation of the mean out-crossing rates of a given response is fast. Thus non-linear effects can be included. Furthermore, the FORM analysis...... also identifies the most probable wave episodes leading to given responses.Because of the linearization of the failure surface in the FORM procedure the results are only asymptotically exact and thus MCS often also needs to be performed. In the present paper a scaling property inherent in the FORM...

  2. Slot Machine Response Frequency Predicts Pathological Gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne

    2013-01-01

    Slot machines are among the most addictive forms of gambling, and pathological gambling slot machine players represent the largest group of treatment seekers, accounting for 35% to 93% of the population. Pathological gambling sufferers have significantly higher response frequency (games / time......) on slot machines compared with non-problem gamblers, which may suggest increased reinforcement of the gambling behavior in pathological gambling. However, to date it is unknown whether or not the increased response frequency in pathological gambling is associated with symptom severity of the disorder....... This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...

  3. Grassland invader responses to realistic changes in native species richness.

    Science.gov (United States)

    Rinella, Matthew J; Pokorny, Monica L; Rekaya, Romdhane

    2007-09-01

    The importance of species richness for repelling exotic plant invasions varies from ecosystem to ecosystem. Thus, in order to prioritize conservation objectives, it is critical to identify those ecosystems where decreasing richness will most greatly magnify invasion risks. Our goal was to determine if invasion risks greatly increase in response to common reductions in grassland species richness. We imposed treatments that mimic management-induced reductions in grassland species richness (i.e., removal of shallow- and/or deep-rooted forbs and/or grasses and/or cryptogam layers). Then we introduced and monitored the performance of a notorious invasive species (i.e., Centaurea maculosa). We found that, on a per-gram-of-biomass basis, each resident plant group similarly suppressed invader growth. Hence, with respect to preventing C. maculosa invasions, maintaining overall productivity is probably more important than maintaining the productivity of particular plant groups or species. But at the sites we studied, all plant groups may be needed to maintain overall productivity because removing forbs decreased overall productivity in two of three years. Alternatively, removing forbs increased productivity in another year, and this led us to posit that removing forbs may inflate the temporal productivity variance as opposed to greatly affecting time-averaged productivity. In either case, overall productivity responses to single plant group removals were inconsistent and fairly modest, and only when all plant groups were removed did C. maculosa growth increase substantially over a no-removal treatment. As such, it seems that intense disturbances (e.g., prolonged drought, overgrazing) that deplete multiple plant groups may often be a prerequisite for C. maculosa invasion.

  4. Theoretical predictions of arsenic and selenium species under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Monahan-Pendergast, M.T.; Przybylek, M.; Lindblad, M.; Wilcox, J. [Worcester Polytechnic Institute, Worcester, MA (United States). Dept. of Chemical Engineering

    2008-03-15

    Thermochemical properties of arsenic and selenium species thought to be released into the atmosphere during the coal combustion were examined using ab initio methods. At various levels of theory, calculated geometries and vibrational frequencies of the species were compared with experimental data, where available. Through a comparison of equilibrium constants for a series of gaseous arsenic and selenium oxidation reactions involving OH and HO{sub 2}, five thermodynamically favored reactions were found. In addition, it was determined that all favored reactions were more likely to go to completion tinder tropospheric, rather than stratospheric, conditions.

  5. Assessing Prediction Performance of Neoadjuvant Chemotherapy Response in Bladder Cancer

    OpenAIRE

    Cremer, Chris

    2016-01-01

    Neoadjuvant chemotherapy is a treatment routinely prescribed to patients diagnosed with muscle-invasive bladder cancer. Unfortunately, not all patients are responsive to this treatment and would greatly benefit from an accurate prediction of their expected response to chemotherapy. In this project, I attempt to develop a model that will predict response using tumour microarray data. I show that using my dataset, every method is insufficient at accurately classifying responders and non-respond...

  6. Predicting animal production on sourveld: a species-based approach

    African Journals Online (AJOL)

    The model was based upon measured ingestive and digestive characteristics of different grass species and incorporates an explicit digestive constraint based upon rumen mass and turnover rate. Illustrates with graphs, diagrams and tables. Keywords: ADG; Andropogon appendiculatus; Average daily gain; Cattle; Cynodon ...

  7. New flux based dose–response relationships for ozone for European forest tree species

    International Nuclear Information System (INIS)

    Büker, P.; Feng, Z.; Uddling, J.; Briolat, A.; Alonso, R.; Braun, S.; Elvira, S.; Gerosa, G.; Karlsson, P.E.; Le Thiec, D.

    2015-01-01

    To derive O 3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O 3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O 3 flux concept and represents a step forward in predicting O 3 damage to forests in a spatially and temporally varying climate. - Highlights: • We present new ozone flux based dose–response relationships for European trees. • The model-based study accounted for the soil water effect on stomatal flux. • Different statistically derived ozone flux thresholds were applied. • Climate region specific parameterisation often outperformed simplified parameterisation. • Findings could help redefining critical levels for ozone effects on trees. - New stomatal flux based ozone dose–response relationships for tree species are derived for the regional risk assessment of ozone effects on European forest ecosystems.

  8. Individualistic population responses of five frog species in two changing tropical environments over time.

    Directory of Open Access Journals (Sweden)

    Mason J Ryan

    Full Text Available Roughly 40% of amphibian species are in decline with habitat loss, disease, and climate change being the most cited threats. Heterogeneity of extrinsic (e.g. climate and intrinsic (e.g. local adaptations factors across a species' range should influence population response to climate change and other threats. Here we examine relative detectability changes for five direct-developing leaf litter frogs between 42-year sampling periods at one Lowland Tropical Forest site (51 m.a.s.l. and one Premontane Wet Forest site (1100 m.a.s.l. in southwest Costa Rica. We identify individualistic changes in relative detectability among populations between sampling periods at different elevations. Both common and rare species showed site-specific declines, and no species exhibited significant declines at both sites. Detection changes are correlated with changes in temperature, dry season rainfall, and leaf litter depth since 1969. Our study species share Least Concern conservation status, life history traits, and close phylogenetic relationship, yet their populations changed individualistically both within and among species. These results counter current views of the uniformity or predictability of amphibian decline response and suggest additional complexity for conservation decisions.

  9. Establishing endangered species recovery criteria using predictive simulation modeling

    Science.gov (United States)

    McGowan, Conor P.; Catlin, Daniel H.; Shaffer, Terry L.; Gratto-Trevor, Cheri L.; Aron, Carol

    2014-01-01

    Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S. Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions for removing a species from ESA protections, need to be closely related to extinction risk. Extinction probability is a population parameter estimated with a model that uses current demographic information to project the population into the future over a number of replicates, calculating the proportion of replicated populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains and estimated the relationship between extinction probability and various demographic parameters. We tested the fit of regression models linking initial abundance, productivity, or population growth rate to extinction risk, and then, using the regression parameter estimates, determined the conditions required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression models with mean population growth rate and the natural log of initial abundance were the best predictors of extinction probability 50 years into the future. For example, based on our regression models, an initial abundance of approximately 2400 females with an expected mean population growth rate of 1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides a straightforward way of developing specific and measurable recovery criteria linked directly to the core issue of extinction risk. Published by Elsevier Ltd.

  10. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Equal temperature-size responses of the sexes are widespread within arthropod species

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Horne, Curtis; Atkinson, David

    2015-01-01

    Sexual size dimorphism (SSD) is often affected by environmental conditions, but the effect of temperature on SSD in ectotherms still requires rigorous investigation. We compared the plastic responses of size-at-maturity to temperature between males and females within 85 diverse arthropod species...... of animal body sizes, variation in degree of SSD and differences in the sign of the T-S response. We find no support for Rensch's rule, which predicts greater variation in male size, or indeed the reverse, greater female size variation. SSD shows no systematic temperature dependence in any of the 17...

  12. Dynamic Seascapes Predict the Marine Occurrence of an Endangered Species

    Science.gov (United States)

    Breece, M.; Fox, D. A.; Dunton, K. J.; Frisk, M. G.; Jordaan, A.; Oliver, M. J.

    2016-12-01

    Landscapes are powerful environmental partitions that index complex biogeochemical processes that drive terrestrial species distributions. However, translating landscapes into seascapes requires that the dynamic nature of the fluid environment be reflected in spatial and temporal boundaries such that seascapes can be used in marine species distribution models and conservation decisions. A seascape product derived from satellite ocean color and sea surface temperature partitioned mid-Atlantic coastal waters on scales commensurate with the Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus coastal migration. The seascapes were then matched with acoustic telemetry records of Atlantic Sturgeon to determine seascape selectivity. To test our model, we used real-time satellite seascape maps to normalize the sampling of an autonomous underwater vehicle that resampled similar geographic regions with time varying seascape classifications. We found that Atlantic Sturgeon exhibited preference for one seascape class over those available in the coastal ocean, indicating selection for environmental properties that co-varied with the dynamic seascape class rather than geographical location. The recent listing of Atlantic Sturgeon as Endangered throughout much of their United States range has highlighted the need for improved understanding of their occurrence in marine waters to reduce interactions with various anthropogenic stressors. Narrow dynamic migration corridors may enable seascapes to be used as a daily decision tool by industry and managers to reduce interactions with this Endangered Species during coastal migrations.

  13. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.

    Science.gov (United States)

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-02-22

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Field Response Prediction: Framing the problem.

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Palmer, Belkis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Predicting the performance of radiation detection systems at field sites based on measured performance acquired under controlled conditions at test locations, e.g., the Nevada National Security Site (NNSS), remains an unsolved and standing issue within DNDO’s testing methodology. Detector performance can be defined in terms of the system’s ability to detect and/or identify a given source or set of sources, and depends on the signal generated by the detector for the given measurement configuration (i.e., source strength, distance, time, surrounding materials, etc.) and on the quality of the detection algorithm. Detector performance is usually evaluated in the performance and operational testing phases, where the measurement configurations are selected to represent radiation source and background configurations of interest to security applications.

  15. Predicting Footbridge Response using Stochastic Load Models

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2013-01-01

    Walking parameters such as step frequency, pedestrian mass, dynamic load factor, etc. are basically stochastic, although it is quite common to adapt deterministic models for these parameters. The present paper considers a stochastic approach to modeling the action of pedestrians, but when doing so...... decisions need to be made in terms of statistical distributions of walking parameters and in terms of the parameters describing the statistical distributions. The paper explores how sensitive computations of bridge response are to some of the decisions to be made in this respect. This is useful...

  16. Predicting response to incretin-based therapy

    Directory of Open Access Journals (Sweden)

    Agrawal N

    2011-04-01

    Full Text Available Sanjay Kalra1, Bharti Kalra2, Rakesh Sahay3, Navneet Agrawal41Department of Endocrinology, 2Department of Diabetology, Bharti Hospital, Karnal, India; 3Department of Endocrinology, Osmania Medical College, Hyderabad, India; 4Department of Medicine, GR Medical College, Gwalior, IndiaAbstract: There are two important incretin hormones, glucose-dependent insulin tropic polypeptide (GIP and glucagon-like peptide-1 (GLP-1. The biological activities of GLP-1 include stimulation of glucose-dependent insulin secretion and insulin biosynthesis, inhibition of glucagon secretion and gastric emptying, and inhibition of food intake. GLP-1 appears to have a number of additional effects in the gastrointestinal tract and central nervous system. Incretin based therapy includes GLP-1 receptor agonists like human GLP-1 analogs (liraglutide and exendin-4 based molecules (exenatide, as well as DPP-4 inhibitors like sitagliptin, vildagliptin and saxagliptin. Most of the published studies showed a significant reduction in HbA1c using these drugs. A critical analysis of reported data shows that the response rate in terms of target achievers of these drugs is average. One of the first actions identified for GLP-1 was the glucose-dependent stimulation of insulin secretion from islet cell lines. Following the detection of GLP-1 receptors on islet beta cells, a large body of evidence has accumulated illustrating that GLP-1 exerts multiple actions on various signaling pathways and gene products in the ß cell. GLP-1 controls glucose homeostasis through well-defined actions on the islet ß cell via stimulation of insulin secretion and preservation and expansion of ß cell mass. In summary, there are several factors determining the response rate to incretin therapy. Currently minimal clinical data is available to make a conclusion. Key factors appear to be duration of diabetes, obesity, presence of autonomic neuropathy, resting energy expenditure, plasma glucagon levels and

  17. Predicting response times for the Spotify backend

    OpenAIRE

    Yanggratoke, Rerngvit; Kreitz, Gunnar; Goldmann, Mikael; Stadler, Rolf

    2012-01-01

    We model and evaluate the performance of a distributed key-value storage system that is part of the Spotify backend. Spotify is an on-demand music streaming service, offering low-latency access to a library of over 16 million tracks and serving over 10 million users currently. We first present a simplified model of the Spotify storage architecture, in order to make its analysis feasible. We then introduce an analytical model for the distribution of the response time, a key metric in the Spoti...

  18. Regional climate model downscaling may improve the prediction of alien plant species distributions

    Science.gov (United States)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  19. A model for predicting lung cancer response to therapy

    International Nuclear Information System (INIS)

    Seibert, Rebecca M.; Ramsey, Chester R.; Hines, J. Wesley; Kupelian, Patrick A.; Langen, Katja M.; Meeks, Sanford L.; Scaperoth, Daniel D.

    2007-01-01

    Purpose: Volumetric computed tomography (CT) images acquired by image-guided radiation therapy (IGRT) systems can be used to measure tumor response over the course of treatment. Predictive adaptive therapy is a novel treatment technique that uses volumetric IGRT data to actively predict the future tumor response to therapy during the first few weeks of IGRT treatment. The goal of this study was to develop and test a model for predicting lung tumor response during IGRT treatment using serial megavoltage CT (MVCT). Methods and Materials: Tumor responses were measured for 20 lung cancer lesions in 17 patients that were imaged and treated with helical tomotherapy with doses ranging from 2.0 to 2.5 Gy per fraction. Five patients were treated with concurrent chemotherapy, and 1 patient was treated with neoadjuvant chemotherapy. Tumor response to treatment was retrospectively measured by contouring 480 serial MVCT images acquired before treatment. A nonparametric, memory-based locally weight regression (LWR) model was developed for predicting tumor response using the retrospective tumor response data. This model predicts future tumor volumes and the associated confidence intervals based on limited observations during the first 2 weeks of treatment. The predictive accuracy of the model was tested using a leave-one-out cross-validation technique with the measured tumor responses. Results: The predictive algorithm was used to compare predicted verse-measured tumor volume response for all 20 lesions. The average error for the predictions of the final tumor volume was 12%, with the true volumes always bounded by the 95% confidence interval. The greatest model uncertainty occurred near the middle of the course of treatment, in which the tumor response relationships were more complex, the model has less information, and the predictors were more varied. The optimal days for measuring the tumor response on the MVCT images were on elapsed Days 1, 2, 5, 9, 11, 12, 17, and 18 during

  20. Sexual selection predicts advancement of avian spring migration in response to climate change

    DEFF Research Database (Denmark)

    Spottiswoode, Claire N; Tøttrup, Anders P; Coppack, Timothy

    2006-01-01

    Global warming has led to earlier spring arrival of migratory birds, but the extent of this advancement varies greatly among species, and it remains uncertain to what degree these changes are phenotypically plastic responses or microevolutionary adaptations to changing environmental conditions. We...... suggest that sexual selection could help to understand this variation, since early spring arrival of males is favoured by female choice. Climate change could weaken the strength of natural selection opposing sexual selection for early migration, which would predict greatest advancement in species...... in the timing of first-arriving individuals, suggesting that selection has not only acted on protandrous males. These results suggest that sexual selection may have an impact on the responses of organisms to climate change, and knowledge of a species' mating system might help to inform attempts at predicting...

  1. Pre-treatment amygdala volume predicts electroconvulsive therapy response

    NARCIS (Netherlands)

    ten Doesschate, Freek; van Eijndhoven, Philip; Tendolkar, Indira; van Wingen, Guido A.; van Waarde, Jeroen A.

    2014-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for patients with severe depression. Knowledge on factors predicting therapeutic response may help to identify patients who will benefit most from the intervention. Based on the neuroplasticity hypothesis, volumes of the amygdala and

  2. A predictive framework to understand forest responses to global change.

    Science.gov (United States)

    McMahon, Sean M; Dietze, Michael C; Hersh, Michelle H; Moran, Emily V; Clark, James S

    2009-04-01

    Forests are one of Earth's critical biomes. They have been shown to respond strongly to many of the drivers that are predicted to change natural systems over this century, including climate, introduced species, and other anthropogenic influences. Predicting how different tree species might respond to this complex of forces remains a daunting challenge for forest ecologists. Yet shifts in species composition and abundance can radically influence hydrological and atmospheric systems, plant and animal ranges, and human populations, making this challenge an important one to address. Forest ecologists have gathered a great deal of data over the past decades and are now using novel quantitative and computational tools to translate those data into predictions about the fate of forests. Here, after a brief review of the threats to forests over the next century, one of the more promising approaches to making ecological predictions is described: using hierarchical Bayesian methods to model forest demography and simulating future forests from those models. This approach captures complex processes, such as seed dispersal and mortality, and incorporates uncertainty due to unknown mechanisms, data problems, and parameter uncertainty. After describing the approach, an example by simulating drought for a southeastern forest is offered. Finally, there is a discussion of how this approach and others need to be cast within a framework of prediction that strives to answer the important questions posed to environmental scientists, but does so with a respect for the challenges inherent in predicting the future of a complex biological system.

  3. [Effects of sampling plot number on tree species distribution prediction under climate change].

    Science.gov (United States)

    Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu

    2013-05-01

    Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.

  4. Costs of fear: Behavioral and life-history responses to risk and their demographic consequences vary across species

    Science.gov (United States)

    LaManna, Joseph A.; Martin, Thomas E.

    2016-01-01

    Behavioural responses to reduce predation risk might cause demographic ‘costs of fear’. Costs differ among species, but a conceptual framework to understand this variation is lacking. We use a life-history framework to tie together diverse traits and life stages to better understand interspecific variation in responses and costs. We used natural and experimental variation in predation risk to test phenotypic responses and associated demographic costs for 10 songbird species. Responses such as increased parental attentiveness yielded reduced development time and created benefits such as reduced predation probability. Yet, responses to increased risk also created demographic costs by reducing offspring production in the absence of direct predation. This cost of fear varied widely across species, but predictably with the probability of repeat breeding. Use of a life-history framework can aid our understanding of potential demographic costs from predation, both from responses to perceived risk and from direct predation mortality.

  5. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  6. Deterministic Predictions of Vessel Responses Based on Past Measurements

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2017-01-01

    The paper deals with a prediction procedure from which global wave-induced responses can be deterministically predicted a short time, 10-50 s, ahead of current time. The procedure relies on the autocorrelation function and takes into account prior measurements only; i.e. knowledge about wave...

  7. Drug response prediction in high-risk multiple myeloma

    DEFF Research Database (Denmark)

    Vangsted, A J; Helm-Petersen, S; Cowland, J B

    2018-01-01

    from high-risk patients by GEP70 at diagnosis from Total Therapy 2 and 3A to predict the response by the DRP score of drugs used in the treatment of myeloma patients. The DRP score stratified patients further. High-risk myeloma with a predicted sensitivity to melphalan by the DRP score had a prolonged...

  8. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    Science.gov (United States)

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Predicting primate responses to "Stochastic" demographic events.

    Science.gov (United States)

    Strier, K B

    1999-01-01

    Comparative approaches in contemporary primate behavioral ecology have tended to emphasize the deterministic properties of stochastic ecological variables. Yet, primate responses to ecological fluctuations may be mediated by the interactions among demographic processes at the levels of individuals, groups, and populations. In this paper I examine long-term data collected from June 1982-July 1998 on one expanding group of muriquis (Brachyteles arachnoides) at the Estação Biologica de Caratinga, Minas Gerais, Brazil to explore the demographic and life history correlates of reproductive seasonality and skewed infant sex ratios. Variation in the size of annual birth cohorts (≥2 infants) was positively related to variation in the annual distribution of births (r (s)=0.96,n=10,p<0.01), indicating the importance of considering the effects that the number of reproductive females may have on interpretations of reproductive seasonality. The female-biased infants sex ratio documented from 59 births was attributed exclusively to multiparous mothers. Primiparous mothers produced comparable numbers of sons (n=6) and daughters (n=7), and were increasingly likely to produce daughters with each subsequent reproductive event. Seven of the 11 females that have produced≥3 infants to date exhibited biases in favor of daughters whereas only 1 was biased in favor of sons. Variation in female sensitivity to local resource competition at different stages of their life histories may account for the female-biased infant sex ration in this population.

  10. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    Science.gov (United States)

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  11. Species’ traits help predict small mammal responses to habitat homogenization by an invasive grass

    Science.gov (United States)

    Ceradini, Joseph P.; Chalfoun, Anna D.

    2017-01-01

    Invasive plants can negatively affect native species, however, the strength, direction, and shape of responses may vary depending on the type of habitat alteration and the natural history of native species. To prioritize conservation of vulnerable species, it is therefore critical to effectively predict species’ responses to invasive plants, which may be facilitated by a framework based on species’ traits. We studied the population and community responses of small mammals and changes in habitat heterogeneity across a gradient of cheatgrass (Bromus tectorum) cover, a widespread invasive plant in North America. We live-trapped small mammals over two summers and assessed the effect of cheatgrass on native small mammal abundance, richness, and species-specific and trait-based occupancy, while accounting for detection probability and other key habitat elements. Abundance was only estimated for the most common species, deer mice (Peromyscus maniculatus). All species were pooled for the trait-based occupancy analysis to quantify the ability of small mammal traits (habitat association, mode of locomotion, and diet) to predict responses to cheatgrass invasion. Habitat heterogeneity decreased with cheatgrass cover. Deer mouse abundance increased marginally with cheatgrass. Species richness did not vary with cheatgrass, however, pocket mouse (Perognathus spp.) and harvest mouse (Reithrodontomys spp.) occupancy tended to decrease and increase, respectively, with cheatgrass cover, suggesting a shift in community composition. Cheatgrass had little effect on occupancy for deer mice, 13-lined ground squirrels (Spermophilus tridecemlineatus), and Ord's kangaroo rat (Dipodomys ordii). Species’ responses to cheatgrass primarily corresponded with our a priori predictions based on species’ traits. The probability of occupancy varied significantly with a species’ habitat association but not with diet or mode of locomotion. When considered within the context of a rapid

  12. Mechanistic Modeling Framework for Predicting Extreme Battery Response

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Geller, Anthony S.; R. Kee (CSM); S. Allu (ORNL)

    2017-03-01

    The objective of this project was to Address root cause and implications of thermal runaway of Li-ion batteries by delivering a software architecture solution that can lead to the development of predictive mechanisms that are based on identification of species.

  13. Mechanistic Modeling Framework for Predicting Extreme Battery Response

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Anthony S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    The objectives of this project are to address the root cause implications of thermal runaway of Li-ion batteries by delivering a software architecture solution that can lead to the development of predictive mechanisms that are based on identification of species.

  14. Models of alien species richness show moderate predictive accuracy and poor transferability

    Directory of Open Access Journals (Sweden)

    César Capinha

    2018-06-01

    Full Text Available Robust predictions of alien species richness are useful to assess global biodiversity change. Nevertheless, the capacity to predict spatial patterns of alien species richness remains largely unassessed. Using 22 data sets of alien species richness from diverse taxonomic groups and covering various parts of the world, we evaluated whether different statistical models were able to provide useful predictions of absolute and relative alien species richness, as a function of explanatory variables representing geographical, environmental and socio-economic factors. Five state-of-the-art count data modelling techniques were used and compared: Poisson and negative binomial generalised linear models (GLMs, multivariate adaptive regression splines (MARS, random forests (RF and boosted regression trees (BRT. We found that predictions of absolute alien species richness had a low to moderate accuracy in the region where the models were developed and a consistently poor accuracy in new regions. Predictions of relative richness performed in a superior manner in both geographical settings, but still were not good. Flexible tree ensembles-type techniques (RF and BRT were shown to be significantly better in modelling alien species richness than parametric linear models (such as GLM, despite the latter being more commonly applied for this purpose. Importantly, the poor spatial transferability of models also warrants caution in assuming the generality of the relationships they identify, e.g. by applying projections under future scenario conditions. Ultimately, our results strongly suggest that predictability of spatial variation in richness of alien species richness is limited. The somewhat more robust ability to rank regions according to the number of aliens they have (i.e. relative richness, suggests that models of aliens species richness may be useful for prioritising and comparing regions, but not for predicting exact species numbers.

  15. PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems

    Directory of Open Access Journals (Sweden)

    Georgina Mace

    2012-12-01

    Full Text Available The PREDICTS project (www.predicts.org.uk is a three-year NERC-funded project to model and predict at a global scale how local terrestrial diversity responds to human pressures such as land use, land cover, pollution, invasive species and infrastructure. PREDICTS is a collaboration between Imperial College London, the UNEP World Conservation Monitoring Centre, Microsoft Research Cambridge, UCL and the University of Sussex. In order to meet its aims, the project relies on extensive data describing the diversity and composition of biological communities at a local scale. Such data are collected on a vast scale through the committed efforts of field ecologists. If you have appropriate data that you would be willing to share with us, please get in touch (enquiries@predicts.org.uk. All contributions will be acknowledged appropriately and all data contributors will be included as co-authors on an open-access paper describing the database.

  16. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Barnes, P.W.; Flint, S.D.; Caldwell, M.M.

    1990-01-01

    The influence of ultraviolet-B (UV-B) radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots

  17. The predictive skill of species distribution models for plankton in a changing climate

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Kiørboe, Thomas; Licandro, Priscilla

    2016-01-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one...... null models, is essential to assess the robustness of projections of marine planktonic species under climate change...

  18. Can nutrient status of four woody plant species be predicted using field spectrometry?

    NARCIS (Netherlands)

    Ferwerda, J.G.; Skidmore, A.K.

    2007-01-01

    This paper demonstrates the potential of hyperspectral remote sensing to predict the chemical composition (i.e., nitrogen, phosphorous, calcium, potassium, sodium, and magnesium) of three tree species (i.e., willow, mopane and olive) and one shrub species (i.e., heather). Reflectance spectra,

  19. Novel view on predicting acute toxicity: Decomposing toxicity data in species vulnerability and chemical potency.

    NARCIS (Netherlands)

    Jager, D.T.; Posthuma, L.; Zwart, D.D.; van de Meent, D.

    2007-01-01

    Chemical risk assessment usually applies empirical methods to predict toxicant effects on different species. We propose a more mechanism-oriented approach, and introduce a method to decompose toxicity data in a contribution from the chemical (potency) and from the exposed species (vulnerability). We

  20. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    Science.gov (United States)

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  1. Changes in mangrove species assemblages and future prediction of the Bangladesh Sundarbans using Markov chain model and cellular automata.

    Science.gov (United States)

    Mukhopadhyay, Anirban; Mondal, Parimal; Barik, Jyotiskona; Chowdhury, S M; Ghosh, Tuhin; Hazra, Sugata

    2015-06-01

    The composition and assemblage of mangroves in the Bangladesh Sundarbans are changing systematically in response to several environmental factors. In order to understand the impact of the changing environmental conditions on the mangrove forest, species composition maps for the years 1985, 1995 and 2005 were studied. In the present study, 1985 and 1995 species zonation maps were considered as base data and the cellular automata-Markov chain model was run to predict the species zonation for the year 2005. The model output was validated against the actual dataset for 2005 and calibrated. Finally, using the model, mangrove species zonation maps for the years 2025, 2055 and 2105 have been prepared. The model was run with the assumption that the continuation of the current tempo and mode of drivers of environmental factors (temperature, rainfall, salinity change) of the last two decades will remain the same in the next few decades. Present findings show that the area distribution of the following species assemblages like Goran (Ceriops), Sundari (Heritiera), Passur (Xylocarpus), and Baen (Avicennia) would decrease in the descending order, whereas the area distribution of Gewa (Excoecaria), Keora (Sonneratia) and Kankra (Bruguiera) dominated assemblages would increase. The spatial distribution of projected mangrove species assemblages shows that more salt tolerant species will dominate in the future; which may be used as a proxy to predict the increase of salinity and its spatial variation in Sundarbans. Considering the present rate of loss of forest land, 17% of the total mangrove cover is predicted to be lost by the year 2105 with a significant loss of fresh water loving mangroves and related ecosystem services. This paper describes a unique approach to assess future changes in species composition and future forest zonation in mangroves under the 'business as usual' scenario of climate change.

  2. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.

    Directory of Open Access Journals (Sweden)

    Sarah J Thompson

    Full Text Available Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012-2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall, percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall, and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm. Our findings suggest that increases in shrub cover and density will negatively

  3. Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species

    Directory of Open Access Journals (Sweden)

    Matthew M Ramsey

    2016-08-01

    Full Text Available Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence towards a commensal state when exposed to commensal Corynebacterium species.

  4. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    Science.gov (United States)

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  5. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  6. The auditory brainstem response in two lizard species.

    Science.gov (United States)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine; Dooling, Robert J

    2010-08-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6-2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20-50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species.

  7. Seabird species vary in behavioural response to drone census.

    Science.gov (United States)

    Brisson-Curadeau, Émile; Bird, David; Burke, Chantelle; Fifield, David A; Pace, Paul; Sherley, Richard B; Elliott, Kyle H

    2017-12-20

    Unmanned aerial vehicles (UAVs) provide an opportunity to rapidly census wildlife in remote areas while removing some of the hazards. However, wildlife may respond negatively to the UAVs, thereby skewing counts. We surveyed four species of Arctic cliff-nesting seabirds (glaucous gull Larus hyperboreus, Iceland gull Larus glaucoides, common murre Uria aalge and thick-billed murre Uria lomvia) using a UAV and compared censusing techniques to ground photography. An average of 8.5% of murres flew off in response to the UAV, but >99% of those birds were non-breeders. We were unable to detect any impact of the UAV on breeding success of murres, except at a site where aerial predators were abundant and several birds lost their eggs to predators following UAV flights. Furthermore, we found little evidence for habituation by murres to the UAV. Most gulls flew off in response to the UAV, but returned to the nest within five minutes. Counts of gull nests and adults were similar between UAV and ground photography, however the UAV detected up to 52.4% more chicks because chicks were camouflaged and invisible to ground observers. UAVs provide a less hazardous and potentially more accurate method for surveying wildlife. We provide some simple recommendations for their use.

  8. Comparison of Ablation Predictions for Carbonaceous Materials Using CEA and JANAF-Based Species Thermodynamics

    Science.gov (United States)

    Milos, Frank S.

    2011-01-01

    In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.

  9. Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?

    Science.gov (United States)

    Wiegand, Thorsten; Lehmann, Sebastian; Huth, Andreas; Fortin, Marie‐Josée

    2016-01-01

    Abstract Aim It has been recently suggested that different ‘unified theories of biodiversity and biogeography’ can be characterized by three common ‘minimal sufficient rules’: (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. Location Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. Methods We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. Results Species‐specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species‐specific dispersal correctly predicted the species–area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co‐occurrence index of all abundant species pairs. These results were consistent over the two forest plots. Main conclusions The three ‘minimal sufficient’ rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most

  10. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    Science.gov (United States)

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  11. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    Science.gov (United States)

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  12. Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to extreme temperature events.

    Science.gov (United States)

    van Dooremalen, Coby; Berg, Matty P; Ellers, Jacintha

    2013-03-01

    The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent exposure to extreme temperatures for surface-dwelling species than for soil-dwelling species. Therefore soil-dwelling species are expected to have poor acclimation responses to cope with temperature changes. We used five species of surface-dwelling and four species of soil-dwelling Collembola that habituate different depths in the soil. We tested for differences in tolerance to extreme temperatures after acclimation to warm and cold conditions. We also tested for differences in acclimation of the underlying physiology by looking at changes in membrane lipid composition. Chill coma recovery time, heat knockdown time and fatty acid profiles were determined after 1 week of acclimation to either 5 or 20 °C. Our results showed that surface-dwelling Collembola better maintained increased heat tolerance across acclimation temperatures, but no such response was found for cold tolerance. Concordantly, four of the five surface-dwelling Collembola showed up to fourfold changes in relative abundance of fatty acids after 1 week of acclimation, whereas none of the soil-dwelling species showed a significant adjustment in fatty acid composition. Strong physiological responses to temperature fluctuations may have become redundant in soil-dwelling species due to the relative thermal stability of their subterranean habitat. Based on the results of the four species studied, we expect that unless soil-dwelling species can temporarily retreat to avoid extreme temperatures, the predicted increase in heat waves under climatic change renders these soil-dwelling species more vulnerable to extinction than species with better physiological capabilities. Being able to act under a larger thermal

  13. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  14. Model Predictive Control based on Finite Impulse Response Models

    DEFF Research Database (Denmark)

    Prasath, Guru; Jørgensen, John Bagterp

    2008-01-01

    We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....

  15. Striatal Activation Predicts Differential Therapeutic Responses to Methylphenidate and Atomoxetine.

    Science.gov (United States)

    Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Hildebrandt, Thomas B; Stein, Mark A; Ivanov, Iliyan; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2017-07-01

    Methylphenidate has prominent effects in the dopamine-rich striatum that are absent for the selective norepinephrine transporter inhibitor atomoxetine. This study tested whether baseline striatal activation would predict differential response to the two medications in youth with attention-deficit/hyperactivity disorder (ADHD). A total of 36 youth with ADHD performed a Go/No-Go test during functional magnetic resonance imaging at baseline and were treated with methylphenidate and atomoxetine using a randomized cross-over design. Whole-brain task-related activation was regressed on clinical response. Task-related activation in right caudate nucleus was predicted by an interaction of clinical responses to methylphenidate and atomoxetine (F 1,30  = 17.00; p atomoxetine. The rate of robust response was higher for methylphenidate than for atomoxetine in youth with high (94.4% vs. 38.8%; p = .003; number needed to treat = 2, 95% CI = 1.31-3.73) but not low (33.3% vs. 50.0%; p = .375) caudate activation. Furthermore, response to atomoxetine predicted motor cortex activation (F 1,30  = 14.99; p atomoxetine in youth with ADHD, purportedly reflecting the dopaminergic effects of methylphenidate but not atomoxetine in the striatum, whereas motor cortex activation may predict response to atomoxetine. These data do not yet translate directly to the clinical setting, but the approach is potentially important for informing future research and illustrates that it may be possible to predict differential treatment response using a biomarker-driven approach. Stimulant Versus Nonstimulant Medication for Attention Deficit Hyperactivity Disorder in Children; https://clinicaltrials.gov/; NCT00183391. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    Directory of Open Access Journals (Sweden)

    Simon J Pittman

    Full Text Available Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT and Maximum Entropy Species Distribution Modelling (MaxEnt. The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9 for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9. In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy than BRT (68% map accuracy. We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support

  17. Terrestrial Ecosystem Responses to Species Gains and Losses

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Callaway, R.; Putten, van der W.H.

    2011-01-01

    Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual

  18. Terrestrial ecosystem responses to species gains and losses

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Callaway, R.M.; Van der Putten, W.H.

    2011-01-01

    Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual

  19. Cross-species mapping of bidirectional promoters enables prediction of unannotated 5' UTRs and identification of species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2009-04-01

    Full Text Available Abstract Background Bidirectional promoters are shared regulatory regions that influence the expression of two oppositely oriented genes. This type of regulatory architecture is found more frequently than expected by chance in the human genome, yet many specifics underlying the regulatory design are unknown. Given that the function of most orthologous genes is similar across species, we hypothesized that the architecture and regulation of bidirectional promoters might also be similar across species, representing a core regulatory structure and enabling annotation of these regions in additional mammalian genomes. Results By mapping the intergenic distances of genes in human, chimpanzee, bovine, murine, and rat, we show an enrichment for pairs of genes equal to or less than 1,000 bp between their adjacent 5' ends ("head-to-head" compared to pairs of genes that fall in the same orientation ("head-to-tail" or whose 3' ends are side-by-side ("tail-to-tail". A representative set of 1,369 human bidirectional promoters was mapped to orthologous sequences in other mammals. We confirmed predictions for 5' UTRs in nine of ten manual picks in bovine based on comparison to the orthologous human promoter set and in six of seven predictions in human based on comparison to the bovine dataset. The two predictions that did not have orthology as bidirectional promoters in the other species resulted from unique events that initiated transcription in the opposite direction in only those species. We found evidence supporting the independent emergence of bidirectional promoters from the family of five RecQ helicase genes, which gained their bidirectional promoters and partner genes independently rather than through a duplication process. Furthermore, by expanding our comparisons from pairwise to multispecies analyses we developed a map representing a core set of bidirectional promoters in mammals. Conclusion We show that the orthologous positions of bidirectional

  20. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    Science.gov (United States)

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  1. Moving Towards Dynamic Ocean Management: How Well Do Modeled Ocean Products Predict Species Distributions?

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Becker

    2016-02-01

    Full Text Available Species distribution models are now widely used in conservation and management to predict suitable habitat for protected marine species. The primary sources of dynamic habitat data have been in situ and remotely sensed oceanic variables (both are considered “measured data”, but now ocean models can provide historical estimates and forecast predictions of relevant habitat variables such as temperature, salinity, and mixed layer depth. To assess the performance of modeled ocean data in species distribution models, we present a case study for cetaceans that compares models based on output from a data assimilative implementation of the Regional Ocean Modeling System (ROMS to those based on measured data. Specifically, we used seven years of cetacean line-transect survey data collected between 1991 and 2009 to develop predictive habitat-based models of cetacean density for 11 species in the California Current Ecosystem. Two different generalized additive models were compared: one built with a full suite of ROMS output and another built with a full suite of measured data. Model performance was assessed using the percentage of explained deviance, root mean squared error (RMSE, observed to predicted density ratios, and visual inspection of predicted and observed distributions. Predicted distribution patterns were similar for models using ROMS output and measured data, and showed good concordance between observed sightings and model predictions. Quantitative measures of predictive ability were also similar between model types, and RMSE values were almost identical. The overall demonstrated success of the ROMS-based models opens new opportunities for dynamic species management and biodiversity monitoring because ROMS output is available in near real time and can be forecast.

  2. Outcome Prediction in Mathematical Models of Immune Response to Infection.

    Directory of Open Access Journals (Sweden)

    Manuel Mai

    Full Text Available Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.

  3. Performance of immunological response in predicting virological failure.

    Science.gov (United States)

    Ingole, Nayana; Mehta, Preeti; Pazare, Amar; Paranjpe, Supriya; Sarkate, Purva

    2013-03-01

    In HIV-infected individuals on antiretroviral therapy (ART), the decision on when to switch from first-line to second-line therapy is dictated by treatment failure, and this can be measured in three ways: clinically, immunologically, and virologically. While viral load (VL) decreases and CD4 cell increases typically occur together after starting ART, discordant responses may be seen. Hence the current study was designed to determine the immunological and virological response to ART and to evaluate the utility of immunological response to predict virological failure. All treatment-naive HIV-positive individuals aged >18 years who were eligible for ART were enrolled and assessed at baseline, 6 months, and 12 months clinically and by CD4 cell count and viral load estimations. The patients were categorized as showing concordant favorable (CF), immunological only (IO), virological only (VO), and concordant unfavorable responses (CU). The efficiency of immunological failure to predict virological failure was analyzed across various levels of virological failure (VL>50, >500, and >5,000 copies/ml). At 6 months, 87(79.81%), 7(5.5%), 13 (11.92%), and 2 (1.83%) patients and at 12 months 61(69.3%), 9(10.2%), 16 (18.2%), and 2 (2.3%) patients had CF, IO, VO, and CU responses, respectively. Immunological failure criteria had a very low sensitivity (11.1-40%) and positive predictive value (8.3-25%) to predict virological failure. Immunological criteria do not accurately predict virological failure resulting in significant misclassification of therapeutic responses. There is an urgent need for inclusion of viral load testing in the initiation and monitoring of ART.

  4. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    Science.gov (United States)

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  5. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals.

    Science.gov (United States)

    Vipulanandan, G; Herrera, M; Wiederhold, N P; Li, X; Mintz, J; Wickes, B L; Kadosh, D

    2018-01-01

    Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.

  6. Predicting the impact of climate change on threatened species in UK waters.

    Directory of Open Access Journals (Sweden)

    Miranda C Jones

    Full Text Available Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis and angelshark (Squatina squatina.

  7. Predicting responsiveness to intervention in dyslexia using dynamic assessment

    NARCIS (Netherlands)

    Aravena, S.; Tijms, J.; Snellings, P.; van der Molen, M.W.

    In the current study we examined the value of a dynamic test for predicting responsiveness to reading intervention for children diagnosedwith dyslexia. The test consisted of a 20-minute training aimed at learning eight basic letter–speech sound correspondences within an artificial orthography,

  8. Implicit Learning Abilities Predict Treatment Response in Autism Spectrum Disorders

    Science.gov (United States)

    2015-09-01

    early behavioral interventions are the most effective treatment for Autism Spectrum Disorder (ASD), but almost half of the children do not make...behavioral intervention . 2. KEYWORDS Autism Spectrum Disorder , implicit learning, associative learning, individual differences, functional Magnetic...2 AWARD NUMBER: W81XWH-14-1-0261 TITLE: Implicit Learning Abilities Predict Treatment Response in Autism Spectrum Disorders PRINCIPAL

  9. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  10. Advanced Computational Modeling Approaches for Shock Response Prediction

    Science.gov (United States)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  11. Analytical predictions of SGEMP response and comparisons with computer calculations

    International Nuclear Information System (INIS)

    de Plomb, E.P.

    1976-01-01

    An analytical formulation for the prediction of SGEMP surface current response is presented. Only two independent dimensionless parameters are required to predict the peak magnitude and rise time of SGEMP induced surface currents. The analysis applies to limited (high fluence) emission as well as unlimited (low fluence) emission. Cause-effect relationships for SGEMP response are treated quantitatively, and yield simple power law dependencies between several physical variables. Analytical predictions for a large matrix of SGEMP cases are compared with an array of about thirty-five computer solutions of similar SGEMP problems, which were collected from three independent research groups. The theoretical solutions generally agree with the computer solutions as well as the computer solutions agree with one another. Such comparisons typically show variations less than a ''factor of two.''

  12. New flux based dose-response relationships for ozone for European forest tree species.

    Science.gov (United States)

    Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D

    2015-11-01

    To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Species- and community-level responses combine to drive phenology of lake phytoplankton

    Science.gov (United States)

    Walters, Annika; Sagrario, María de los Ángeles González; Schindler, Daniel E.

    2013-01-01

    Global change is leading to shifts in the seasonal timing of growth and maturation for primary producers. Remote sensing is increasingly used to measure the timing of primary production in both aquatic and terrestrial ecosystems, but there is often a poor correlation between these results and direct observations of life-history responses of individual species. One explanation may be that in addition to phenological shifts, global change is also causing shifts in community composition among species with different seasonal timing of growth and maturation. We quantified how shifts in species phenology and in community composition translated into phenological change in a diverse phytoplankton community from 1962-2000. During this time the aggregate community spring-summer phytoplankton peak has shifted 63 days earlier. The mean taxon shift was only 3 days earlier and shifts in taxa phenology explained only 40% of the observed community phenological shift. The remaining community shift was attributed to dominant early season taxa increasing in abundance while a dominant late season taxon decreased in abundance. In diverse producer communities experiencing multiple stressors, changes in species composition must be considered to fully understand and predict shifts in the seasonal timing of primary production.

  14. The effects of model and data complexity on predictions from species distributions models

    DEFF Research Database (Denmark)

    García-Callejas, David; Bastos, Miguel

    2016-01-01

    How complex does a model need to be to provide useful predictions is a matter of continuous debate across environmental sciences. In the species distributions modelling literature, studies have demonstrated that more complex models tend to provide better fits. However, studies have also shown...... that predictive performance does not always increase with complexity. Testing of species distributions models is challenging because independent data for testing are often lacking, but a more general problem is that model complexity has never been formally described in such studies. Here, we systematically...

  15. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.

    Directory of Open Access Journals (Sweden)

    Peter R Murphy

    Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.

  16. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    OpenAIRE

    Marasco, Addolorata; De Paris, Alessandro; Migliore, Michele

    2016-01-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific o...

  17. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    Science.gov (United States)

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of

  18. Integrating environmental and genetic effects to predict responses of tree populations to climate.

    Science.gov (United States)

    Wang, Tongli; O'Neill, Gregory A; Aitken, Sally N

    2010-01-01

    Climate is a major environmental factor affecting the phenotype of trees and is also a critical agent of natural selection that has molded among-population genetic variation. Population response functions describe the environmental effect of planting site climates on the performance of a single population, whereas transfer functions describe among-population genetic variation molded by natural selection for climate. Although these approaches are widely used to predict the responses of trees to climate change, both have limitations. We present a novel approach that integrates both genetic and environmental effects into a single "universal response function" (URF) to better predict the influence of climate on phenotypes. Using a large lodgepole pine (Pinus contorta Dougl. ex Loud.) field transplant experiment composed of 140 populations planted on 62 sites to demonstrate the methodology, we show that the URF makes full use of data from provenance trials to: (1) improve predictions of climate change impacts on phenotypes; (2) reduce the size and cost of future provenance trials without compromising predictive power; (3) more fully exploit existing, less comprehensive provenance tests; (4) quantify and compare environmental and genetic effects of climate on population performance; and (5) predict the performance of any population growing in any climate. Finally, we discuss how the last attribute allows the URF to be used as a mechanistic model to predict population and species ranges for the future and to guide assisted migration of seed for reforestation, restoration, or afforestation and genetic conservation in a changing climate.

  19. Prediction of permeability changes in an excavation response zone

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Ishii, Takashi; Kuroda, Hidetaka; Tada, Hiroyuki

    1992-01-01

    In geologic disposal of radioactive wastes, stress changes due to cavern excavation may expand the existing fractures and create possible bypasses for groundwater. This paper proposes a simple method for predicting permeability changes in the excavation response zones. Numerical analyses using this method predict that the response zones created by cavern excavation would differ greatly in thickness and permeability depending on the depth of the cavern site and the initial in-situ stress, that when the cavern site is deeper, response zones would expand more and permeability would increases more, and that if the ratio of horizontal to vertical in-situ stress is small, extensive permeable zones at the crown and the bottom would occur, whereas if the ratio is large, extensive permeable zones would occur in the side walls. (orig.)

  20. Attachment predicts cortisol response and closeness in dyadic social interaction.

    Science.gov (United States)

    Ketay, Sarah; Beck, Lindsey A

    2017-06-01

    The present study examined how the interplay of partners' attachment styles influences cortisol response, actual closeness, and desired closeness during friendship initiation. Participants provided salivary cortisol samples at four timepoints throughout either a high or low closeness task that facilitated high or low levels of self-disclosure with a potential friend (i.e., another same-sex participant). Levels of actual closeness and desired closeness following the task were measured via inclusion of other in the self. Results from multi-level modeling indicated that the interaction of both participants' attachment avoidance predicted cortisol response patterns, with participants showing the highest cortisol response when there was a mismatch between their own and their partners' attachment avoidance. Further, the interaction between both participants' attachment anxiety predicted actual closeness and desired closeness, with participants both feeling and wanting the most closeness with partners when both they and their partners were low in attachment anxiety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Physilogical and Biochemical Responses of Avena species to ...

    African Journals Online (AJOL)

    mk

    2013-10-23

    Oct 23, 2013 ... Seven species of oat (Avena) were evaluated for their relative drought tolerance under soil moisture stress. The plant height, leaf area production and biomass yield reduced under soil moisture stress. Among the species tested, minimum reduction in height was recorded in Avena vaviloviana, Avena.

  2. Growth and Physiological Responses of Phaseolus Species to Salinity Stress

    Directory of Open Access Journals (Sweden)

    J. S. Bayuelo-Jiménez

    2012-01-01

    Full Text Available This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitive Phaseolus species grown under increasing salinity (0, 60 and 90 mM NaCl. After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%, with the effect of salinity on relative growth rate (RGR confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl− accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in Phaseolus species.

  3. Using phylogenetic and ionomic relationships to predict the uptake of radionuclides by any plant species

    Energy Technology Data Exchange (ETDEWEB)

    Willey, Neil J.; Siasou, Eleni [Centre for Research In Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)

    2014-07-01

    It is not practical to empirically derive soil-to-plant TFs for all soil-plant combinations that are important in radiological assessments, so predictions for a range of species on different soils types are frequently impossible because TFs are unknown. This severely hampers predictions of both doses to biota and of the contamination of a variety of food chains with radioisotopes. Compilations of TFs in themselves provide no fundamental understanding of the plant factors that control the soil-to-plant transfer of radionuclides and thus no method of prediction. We have developed methods for the meta-analyses of radionuclide transfer data that can be used to make predictions of the transfer of radionuclides into any plants species for which TFs do not exist based on an understand of the plant factors that control radionuclide uptake. There is no reason a priori to think that variation in TF should be constrained by species. The species is, essentially, a reproductive unit and variation in many plant traits, some of which might control radionuclide uptake, occurs at taxonomic levels above the species. In the last 15 years genomic information has transformed the understanding of the evolutionary relationships of the living world so that new 'trees of life' (phylogenies) are now available. Using a Residual Maximum Likelihood modeling procedure to compile a significant proportion of all existing TF data onto a single scale, we here present a synthesis of the influence of phylogeny on variation in soil-to-plant TFs for radioisotopes of Cs, Sr, Co, I, Tc, and S. We show that a significant proportion of variation in TF is associated with major branches of the phylogeny of angiosperms (flowering plants) so that knowledge of a species' position on the phylogeny can be used to make predictions of transfer relative to other species. These phylogenetically-based predictions of relative transfer to any species can be used to make absolute predictions to any species

  4. Physiological responses to food deprivation in the house sparrow, a species not adapted to prolonged fasting.

    Science.gov (United States)

    Khalilieh, Anton; McCue, Marshall D; Pinshow, Berry

    2012-09-01

    Many wild birds fast during reproduction, molting, migration, or because of limited food availability. Species that are adapted to fasting sequentially oxidize endogenous fuels in three discrete phases. We hypothesized that species not adapted to long fasts have truncated, but otherwise similar, phases of fasting, sequential changes in fuel oxidization, and similar changes in blood metabolites to fasting-adapted species. We tested salient predictions in house sparrows (Passer domesticus biblicus), a subspecies that is unable to tolerate more than ~32 h of fasting. Our main hypothesis was that fasting sparrows sequentially oxidize substrates in the order carbohydrates, lipids, and protein. We dosed 24 house sparrows with [(13)C]glucose, palmitic acid, or glycine and measured (13)CO(2) in their breath while they fasted for 24 h. To ascertain whether blood metabolite levels reflect fasting-induced changes in metabolic fuels, we also measured glucose, triacylglycerides, and β-hydroxybutyrate in the birds' blood. The results of both breath (13)CO(2) and plasma metabolite analyses did not support our hypothesis; i.e., that sparrows have the same metabolic responses characteristic of fasting-adapted species, but on a shorter time scale. Contrary to our main prediction, we found that recently assimilated (13)C-tracers were oxidized continuously in different patterns with no definite peaks corresponding to the three phases of fasting and also that changes in plasma metabolite levels accurately tracked the changes found by breath analysis. Notably, the rate of recently assimilated [(13)C]glycine oxidization was significantly higher (P fast for longer than 32 h is likely related to their inability to accrue large lipid stores, separately oxidize different fuels, and/or spare protein during fasting.

  5. Dopamine reward prediction error responses reflect marginal utility.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Schultz, Wolfram

    2014-11-03

    Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis

    Directory of Open Access Journals (Sweden)

    Franziska Eller

    2017-11-01

    Full Text Available Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1 P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO2; (2 each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3 the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4 genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5 responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses

  7. Predictive models of threatened plant species distribution in the Iberian arid south-east

    OpenAIRE

    Benito, Blas M.

    2013-01-01

    Poster on the distribution of three rare, endemic and endangered annual plants of arid zones in the south-eastern Iberian peninsula. Presented in the workshop "Predictive Modelling of Species Distribution: New Tools for the XXI Century (Baeza, Spain, november 2005).

  8. Equations for predicting biomass of six introduced tree species, island of Hawaii

    Science.gov (United States)

    Thomas H. Schukrt; Robert F. Strand; Thomas G. Cole; Katharine E. McDuffie

    1988-01-01

    Regression equations to predict total and stem-only above-ground dry biomass for six species (Acacia melanoxylon, Albizio falcataria, Eucalyptus globulus, E. grandis, E. robusta, and E. urophylla) were developed by felling and measuring 2- to 6-year-old...

  9. Can temporal and spatial NDVI predict regional bird-species richness?

    Directory of Open Access Journals (Sweden)

    Sebastián Nieto

    2015-01-01

    Full Text Available Understanding the distribution of the species and its controls over biogeographic scales is still a major challenge in ecology. National Park Networks provide an opportunity to assess the relationship between ecosystem functioning and biodiversity in areas with low human impacts. We tested the productivity–biodiversity hypothesis which states that the number of species increases with the available energy, and the ​variability–biodiversity hypothesis which states that the number of species increases with the diversity of habitats. The available energy and habitat heterogeneity estimated by the normalized difference vegetation index (NDVI was shown as a good predictor of bird-species richness for a diverse set of biomes in previously published studies. However, there is not a universal relationship between NDVI and bird-species richness. Here we tested if the NDVI can predict bird species richness in areas with low human impact in Argentina. Using a dataset from the National Park Network of Argentina we found that the best predictor of bird species richness was the minimum value of NDVI per year which explained 75% of total variability. The inclusion of the spatial heterogeneity of NDVI improved the explanation power to 80%. Minimum NDVI was highly correlated with precipitation and winter temperature. Our analysis provides a tool for assessing bird-species richness at scales on which land-use planning practitioners make their decisions for Southern South America.

  10. Uncertainties in predicting species distributions under climate change: a case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest.

    Science.gov (United States)

    Meynard, Christine N; Migeon, Alain; Navajas, Maria

    2013-01-01

    Many species are shifting their distributions due to climate change and to increasing international trade that allows dispersal of individuals across the globe. In the case of agricultural pests, such range shifts may heavily impact agriculture. Species distribution modelling may help to predict potential changes in pest distributions. However, these modelling strategies are subject to large uncertainties coming from different sources. Here we used the case of the tomato red spider mite (Tetranychus evansi), an invasive pest that affects some of the most important agricultural crops worldwide, to show how uncertainty may affect forecasts of the potential range of the species. We explored three aspects of uncertainty: (1) species prevalence; (2) modelling method; and (3) variability in environmental responses between mites belonging to two invasive clades of T. evansi. Consensus techniques were used to forecast the potential range of the species under current and two different climate change scenarios for 2080, and variance between model projections were mapped to identify regions of high uncertainty. We revealed large predictive variations linked to all factors, although prevalence had a greater influence than the statistical model once the best modelling strategies were selected. The major areas threatened under current conditions include tropical countries in South America and Africa, and temperate regions in North America, the Mediterranean basin and Australia. Under future scenarios, the threat shifts towards northern Europe and some other temperate regions in the Americas, whereas tropical regions in Africa present a reduced risk. Analysis of niche overlap suggests that the current differential distribution of mites of the two clades of T. evansi can be partially attributed to environmental niche differentiation. Overall this study shows how consensus strategies and analysis of niche overlap can be used jointly to draw conclusions on invasive threat

  11. Uncertainties in predicting species distributions under climate change: a case study using Tetranychus evansi (Acari: Tetranychidae, a widespread agricultural pest.

    Directory of Open Access Journals (Sweden)

    Christine N Meynard

    Full Text Available Many species are shifting their distributions due to climate change and to increasing international trade that allows dispersal of individuals across the globe. In the case of agricultural pests, such range shifts may heavily impact agriculture. Species distribution modelling may help to predict potential changes in pest distributions. However, these modelling strategies are subject to large uncertainties coming from different sources. Here we used the case of the tomato red spider mite (Tetranychus evansi, an invasive pest that affects some of the most important agricultural crops worldwide, to show how uncertainty may affect forecasts of the potential range of the species. We explored three aspects of uncertainty: (1 species prevalence; (2 modelling method; and (3 variability in environmental responses between mites belonging to two invasive clades of T. evansi. Consensus techniques were used to forecast the potential range of the species under current and two different climate change scenarios for 2080, and variance between model projections were mapped to identify regions of high uncertainty. We revealed large predictive variations linked to all factors, although prevalence had a greater influence than the statistical model once the best modelling strategies were selected. The major areas threatened under current conditions include tropical countries in South America and Africa, and temperate regions in North America, the Mediterranean basin and Australia. Under future scenarios, the threat shifts towards northern Europe and some other temperate regions in the Americas, whereas tropical regions in Africa present a reduced risk. Analysis of niche overlap suggests that the current differential distribution of mites of the two clades of T. evansi can be partially attributed to environmental niche differentiation. Overall this study shows how consensus strategies and analysis of niche overlap can be used jointly to draw conclusions on invasive

  12. Temperature response surfaces for mortality risk of tree species with future drought

    Science.gov (United States)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for

  13. Mothers' labeling responses to infants' gestures predict vocabulary outcomes.

    Science.gov (United States)

    Olson, Janet; Masur, Elise Frank

    2015-11-01

    Twenty-nine infants aged 1;1 and their mothers were videotaped while interacting with toys for 18 minutes. Six experimental stimuli were presented to elicit infant communicative bids in two communicative intent contexts - proto-declarative and proto-imperative. Mothers' verbal responses to infants' gestural and non-gestural communicative bids were coded for object and action labels. Relations between maternal labeling responses and infants' vocabularies at 1;1 and 1;5 were examined. Mothers' labeling responses to infants' gestural communicative bids were concurrently and predictively related to infants' vocabularies, whereas responses to non-gestural communicative bids were not. Mothers' object labeling following gestures in the proto-declarative context mediated the association from infants' gesturing in the proto-declarative context to concurrent noun lexicons and was the strongest predictor of subsequent noun lexicons. Mothers' action labeling after infants' gestural bids in the proto-imperative context predicted infants' acquisition of action words at 1;5. Findings show that mothers' responsive labeling explain specific relations between infants' gestures and their vocabulary development.

  14. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    Science.gov (United States)

    Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele

    2016-04-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.

  15. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    Science.gov (United States)

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  16. Predictive coding of music--brain responses to rhythmic incongruity.

    Science.gov (United States)

    Vuust, Peter; Ostergaard, Leif; Pallesen, Karen Johanne; Bailey, Christopher; Roepstorff, Andreas

    2009-01-01

    During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.

  17. Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data

    Directory of Open Access Journals (Sweden)

    Sarah J. Graves

    2016-02-01

    Full Text Available Mapping species through classification of imaging spectroscopy data is facilitating research to understand tree species distributions at increasingly greater spatial scales. Classification requires a dataset of field observations matched to the image, which will often reflect natural species distributions, resulting in an imbalanced dataset with many samples for common species and few samples for less common species. Despite the high prevalence of imbalanced datasets in multiclass species predictions, the effect on species prediction accuracy and landscape species abundance has not yet been quantified. First, we trained and assessed the accuracy of a support vector machine (SVM model with a highly imbalanced dataset of 20 tropical species and one mixed-species class of 24 species identified in a hyperspectral image mosaic (350–2500 nm of Panamanian farmland and secondary forest fragments. The model, with an overall accuracy of 62% ± 2.3% and F-score of 59% ± 2.7%, was applied to the full image mosaic (23,000 ha at a 2-m resolution to produce a species prediction map, which suggested that this tropical agricultural landscape is more diverse than what has been presented in field-based studies. Second, we quantified the effect of class imbalance on model accuracy. Model assessment showed a trend where species with more samples were consistently over predicted while species with fewer samples were under predicted. Standardizing sample size reduced model accuracy, but also reduced the level of species over- and under-prediction. This study advances operational species mapping of diverse tropical landscapes by detailing the effect of imbalanced data on classification accuracy and providing estimates of tree species abundance in an agricultural landscape. Species maps using data and methods presented here can be used in landscape analyses of species distributions to understand human or environmental effects, in addition to focusing conservation

  18. Light intensity modulates the response of two Antarctic diatom species to ocean acidification

    Directory of Open Access Journals (Sweden)

    Jasmin Pascale Heiden

    2016-12-01

    Full Text Available It is largely unknown how rising atmospheric CO2 concentrations and changes in the upper mixed layer depth, with its subsequent effects on light availability will affect phytoplankton physiology in the Southern Ocean. Linking seasonal variations in the availability of CO2 and light to abundances and physiological traits of key phytoplankton species could aid to understand their abilities to acclimate to predicted future climatic conditions. To investigate the combined effects of CO2 and light on two ecologically relevant Antarctic diatoms (Fragilariopsis curta and Odontella weisflogii a matrix of three light intensities (LL=20, ML=200, HL=500 µmol photons m-2 s-1 and three pCO2 levels (low=180, ambient=380, high=1000 µatm was applied assessing their effects on growth, particulate organic carbon (POC fixation and photophysiology. Under ambient pCO2, POC production rates were highest already at low light in Fragilariopsis, indicating saturation of photosynthesis, while in Odontella highest rates were only reached at medium irradiances. In both species ocean acidification did not stimulate, but rather inhibited, growth and POC production under low and medium light. This effect was, however, amended under high growth irradiances. Low pCO2 levels inhibited growth and POC production in both species at low and medium light, and further decreased absETRs under high light. Our results suggest that Southern Ocean diatoms were sensitive to changes in pCO2, showing species-specific responses, which were further modulated by light intensity. The two diatom species represent distinct ecotypes and revealed discrete physiological traits that matched their seasonal occurrence with the related physical conditions in Antarctic coastal waters.

  19. Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Ulsh, B.A.; Miller, S.M.; Mallory, F.F.; Mitchel, R.E.J.; Morrison, D.P.; Boreham, D.R.

    2004-01-01

    In the studies reported here, the micronucleus assay, a common cytogenetic technique, was used to examine the dose-responses in fibroblasts from three ungulate species (white-tailed deer, woodland caribou, and Indian muntjac) exposed to high doses of ionizing radiation (1-4 Gy of 60 Co gamma radiation). This assay was also used to examine the effects of exposure to low doses (1-100 mGy) typical of what these species experience in a year from natural and anthropogenic environmental sources. An adaptive response, defined as the induction of resistance to a stressor by a prior exposure to a small 'adapting' stress, was observed after exposure to low doses. This work indicates that very small doses are protective for the endpoint examined. The same level of protection was seen at all adapting doses, including 1 radiation track per cell, the lowest possible cellular dose. These results are consistent with other studies in a wide variety of organisms that demonstrate a protective effect of low doses at both cellular and whole-organism levels. This implies that environmental regulations predicated on the idea that even the smallest dose of radiation carries a quantifiable risk of direct adverse consequences to the exposed organism require further examination. Cytogenetic assays provide affordable and feasible biological effects-based alternatives that are more biologically relevant than traditional contaminant concentration-based radioecological risk assessment

  20. Can quantitative sensory testing predict responses to analgesic treatment?

    Science.gov (United States)

    Grosen, K; Fischer, I W D; Olesen, A E; Drewes, A M

    2013-10-01

    The role of quantitative sensory testing (QST) in prediction of analgesic effect in humans is scarcely investigated. This updated review assesses the effectiveness in predicting analgesic effects in healthy volunteers, surgical patients and patients with chronic pain. A systematic review of English written, peer-reviewed articles was conducted using PubMed and Embase (1980-2013). Additional studies were identified by chain searching. Search terms included 'quantitative sensory testing', 'sensory testing' and 'analgesics'. Studies on the relationship between QST and response to analgesic treatment in human adults were included. Appraisal of the methodological quality of the included studies was based on evaluative criteria for prognostic studies. Fourteen studies (including 720 individuals) met the inclusion criteria. Significant correlations were observed between responses to analgesics and several QST parameters including (1) heat pain threshold in experimental human pain, (2) electrical and heat pain thresholds, pressure pain tolerance and suprathreshold heat pain in surgical patients, and (3) electrical and heat pain threshold and conditioned pain modulation in patients with chronic pain. Heterogeneity among studies was observed especially with regard to application of QST and type and use of analgesics. Although promising, the current evidence is not sufficiently robust to recommend the use of any specific QST parameter in predicting analgesic response. Future studies should focus on a range of different experimental pain modalities rather than a single static pain stimulation paradigm. © 2013 European Federation of International Association for the Study of Pain Chapters.

  1. Female social response to male sexual harassment in poeciliid fish: a comparison of six species

    Science.gov (United States)

    Dadda, Marco

    2015-01-01

    Sexual harassment is common among poeciliid fish. In some fishes, males show a high frequency of sneak copulation; such sexual activity is costly to the females in terms of foraging efficiency. In mosquitofish (Gambusia holbrooki), when males are present, the distance between females tends to decrease, and this behavior has been interpreted as an adaptive strategy to dilute the costs of male sexual activity. In this study, the tendency to reduce distance in the presence of a male has been investigated in females of six poeciliid species (Girardinus metallicus, Girardinus falcatus, G. holbrooki, Poecilia reticulata, Xiphophorus hellerii, and Xiphophorus mayae) that exhibit different male mating strategies and different levels of sexual activity. Results revealed large interspecific differences in the pattern of female aggregation. Females of species with a high frequency of sneak copulations tended to reduce their social distance in the presence of a male. By contrast, species that rely mainly on courtship showed little or no variation in social distance. The proportion of sneak copulations predicts the degree of variation in female social response, but the amount of total sexual activity does not, suggesting that the change in females' social distance when a male is present may indeed serve to reduce the costs of male sexual harassment. PMID:26483719

  2. Female social response to male sexual harassment in poeciliid fish: A comparison of six species

    Directory of Open Access Journals (Sweden)

    Marco eDadda

    2015-09-01

    Full Text Available Sexual harassment is common among poeciliid fish. In some fishes, males show a high frequency of sneak copulation; such sexual activity is costly to the females in terms of foraging efficiency. In mosquitofish (Gambusia holbrooki, when males are present, the distance between females tends to decrease, and this behavior has been interpreted as an adaptive strategy to dilute the costs of male sexual activity. In this study, the tendency to reduce distance in the presence of a male has been investigated in females of 6 poeciliid species (Girardinus metallicus, Girardinus falcatus, Gambusia holbrooki, Poecilia reticulata, Xiphophorus hellerii and Xiphophorus mayae that exhibit different male mating strategies and different levels of sexual activity. Results revealed large interspecific differences in the pattern of female aggregation. Females of species with a high frequency of sneak copulations tended to reduce their social distance in the presence of a male. By contrast, species that rely mainly on courtship showed little or no variation in social distance. The proportion of sneak copulations predicts the degree of variation in female social response, but the amount of total sexual activity does not, suggesting that the change in females’ social distance when a male is present may indeed serve to reduce the costs of male sexual harassment.

  3. Female social response to male sexual harassment in poeciliid fish: a comparison of six species.

    Science.gov (United States)

    Dadda, Marco

    2015-01-01

    Sexual harassment is common among poeciliid fish. In some fishes, males show a high frequency of sneak copulation; such sexual activity is costly to the females in terms of foraging efficiency. In mosquitofish (Gambusia holbrooki), when males are present, the distance between females tends to decrease, and this behavior has been interpreted as an adaptive strategy to dilute the costs of male sexual activity. In this study, the tendency to reduce distance in the presence of a male has been investigated in females of six poeciliid species (Girardinus metallicus, Girardinus falcatus, G. holbrooki, Poecilia reticulata, Xiphophorus hellerii, and Xiphophorus mayae) that exhibit different male mating strategies and different levels of sexual activity. Results revealed large interspecific differences in the pattern of female aggregation. Females of species with a high frequency of sneak copulations tended to reduce their social distance in the presence of a male. By contrast, species that rely mainly on courtship showed little or no variation in social distance. The proportion of sneak copulations predicts the degree of variation in female social response, but the amount of total sexual activity does not, suggesting that the change in females' social distance when a male is present may indeed serve to reduce the costs of male sexual harassment.

  4. Predicting diet and consumption rate differences between and within species using gut ecomorphology.

    Science.gov (United States)

    Griffen, Blaine D; Mosblack, Hallie

    2011-07-01

    1. Rapid environmental changes and pressing human needs to forecast the consequences of environmental change are increasingly driving ecology to become a predictive science. The need for effective prediction requires both the development of new tools and the refocusing of existing tools that may have previously been used primarily for purposes other than prediction. One such tool that historically has been more descriptive in nature is ecomorphology (the study of relationships between ecological roles and morphological adaptations of species and individuals). 2. Here, we examine relationships between diet and gut morphology for 15 species of brachyuran crabs, a group of pervasive and highly successful consumers for which trophic predictions would be highly valuable. 3. We show that patterns in crab stomach volume closely match some predictions of metabolic theory and demonstrate that individual diet differences and associated morphological variation reflect, at least in some instances, individual choice or diet specialization. 4. We then present examples of how stomach volume can be used to predict both the per cent herbivory of brachyuran crabs and the relative consumption rates of individual crabs. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  5. Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms.

    Directory of Open Access Journals (Sweden)

    Elvira Mächler

    Full Text Available Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species' identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary.

  6. Variation in plastic responses of a globally distributed picoplankton species to ocean acidification

    Science.gov (United States)

    Schaum, Elisa; Rost, Björn; Millar, Andrew J.; Collins, Sinéad

    2013-03-01

    Phytoplankton are the basis of marine food webs, and affect biogeochemical cycles. As CO2 levels increase, shifts in the frequencies and physiology of ecotypes within phytoplankton groups will affect their nutritional value and biogeochemical function. However, studies so far are based on a few representative genotypes from key species. Here, we measure changes in cellular function and growth rate at atmospheric CO2 concentrations predicted for the year 2100 in 16 ecotypes of the marine picoplankton Ostreococcus. We find that variation in plastic responses among ecotypes is on par with published between-genera variation, so the responses of one or a few ecotypes cannot estimate changes to the physiology or composition of a species under CO2 enrichment. We show that ecotypes best at taking advantage of CO2 enrichment by changing their photosynthesis rates most should increase in relative fitness, and so in frequency in a high-CO2 environment. Finally, information on sampling location, and not phylogenetic relatedness, is a good predictor of ecotypes likely to increase in frequency in this system.

  7. Using Google Earth Surface Metrics to Predict Plant Species Richness in a Complex Landscape

    Directory of Open Access Journals (Sweden)

    Sebastián Block

    2016-10-01

    Full Text Available Google Earth provides a freely available, global mosaic of high-resolution imagery from different sensors that has become popular in environmental and ecological studies. However, such imagery lacks the near-infrared band often used in studying vegetation, thus its potential for estimating vegetation properties remains unclear. In this study, we assess the potential of Google Earth imagery to describe and predict vegetation attributes. Further, we compare it to the potential of SPOT imagery, which has additional spectral information. We measured basal area, vegetation height, crown cover, density of individuals, and species richness in 60 plots in the oak forests of a complex volcanic landscape in central Mexico. We modelled each vegetation attribute as a function of surface metrics derived from Google Earth and SPOT images, and selected the best-supported linear models from each source. Total species richness was the best-described and predicted variable: the best Google Earth-based model explained nearly as much variation in species richness as its SPOT counterpart (R2 = 0.44 and 0.51, respectively. However, Google Earth metrics emerged as poor predictors of all remaining vegetation attributes, whilst SPOT metrics showed potential for predicting vegetation height. We conclude that Google Earth imagery can be used to estimate species richness in complex landscapes. As it is freely available, Google Earth can broaden the use of remote sensing by researchers and managers in low-income tropical countries where most biodiversity hotspots are found.

  8. Contrasts in short- and long-term responses of Mediterranean reptile species to fire and habitat structure.

    Science.gov (United States)

    Santos, Xavier; Badiane, Arnaud; Matos, Cátia

    2016-01-01

    Changes in habitat structure constitute a major factor explaining responses of reptiles to fire. However, few studies have examined habitat factors that covary with fire-history variables to explain reptile responses. We hypothesise that more complex habitats should support richer reptile communities, and that species-specific relative abundance should be related to particular habitat features. From spring 2012-2014, twenty-five transects were surveyed in the Albera Region (north-east Iberia). The vegetation structure was measured and the extent of habitat types in a 1000-m buffer around each transect calculated. Reptile-community metrics (species richness and reptile abundance) were related to fire history, vegetation structure, and habitat types, using generalized additive models. These metrics correlated with habitat-structure variables but not with fire history. The number of species increased with more complex habitats but decreased with pine-plantation abundance in the 1000-m buffer. We found contrasting responses among reptiles in terms of time since fire and those responses differed according to vegetation variables and habitat types. An unplanned fire in August 2012 provided the opportunity to compare reptile abundance values between pre-fire and the short term (1-2 years) after the fire. Most species exhibited a negative short-term response to the 2012 fire except Tarentola mauritanica, a gecko that inhabits large rocks, as opposed to other ground-dwelling species. In the reptiles studied, contrasting responses to time since fire are consistent with the habitat-accommodation model of succession. These differences are linked to specific microhabitat preferences and suggest that functional traits can be used to predict species-specific responses to fire.

  9. Climate modelling, uncertainty and responses to predictions of change

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    1996-01-01

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can't yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes

  10. The multidimensional behavioural hypervolumes of two interacting species predict their space use and survival.

    Science.gov (United States)

    Lichtenstein, James L L; Wright, Colin M; McEwen, Brendan; Pinter-Wollman, Noa; Pruitt, Jonathan N

    2017-10-01

    Individual animals differ consistently in their behaviour, thus impacting a wide variety of ecological outcomes. Recent advances in animal personality research have established the ecological importance of the multidimensional behavioural volume occupied by individuals and by multispecies communities. Here, we examine the degree to which the multidimensional behavioural volume of a group predicts the outcome of both intra- and interspecific interactions. In particular, we test the hypothesis that a population of conspecifics will experience low intraspecific competition when the population occupies a large volume in behavioural space. We further hypothesize that populations of interacting species will exhibit greater interspecific competition when one or both species occupy large volumes in behavioural space. We evaluate these hypotheses by studying groups of katydids ( Scudderia nymphs) and froghoppers ( Philaenus spumarius ), which compete for food and space on their shared host plant, Solidago canadensis . We found that individuals in single-species groups of katydids positioned themselves closer to one another, suggesting reduced competition, when groups occupied a large behavioural volume. When both species were placed together, we found that the survival of froghoppers was greatest when both froghoppers and katydids occupied a small volume in behavioural space, particularly at high froghopper densities. These results suggest that groups that occupy large behavioural volumes can have low intraspecific competition but high interspecific competition. Thus, behavioural hypervolumes appear to have ecological consequences at both the level of the population and the community and may help to predict the intensity of competition both within and across species.

  11. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    Science.gov (United States)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light

  12. Footbridge Response Predictions and Their Sensitivity to Stochastic Load Assumptions

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2011-01-01

    Knowledge about footbridges response to actions of walking is important in assessments of vibration serviceability. In a number of design codes for footbridges, the vibration serviceability limit state is assessed using a walking load model in which the walking parameters (step frequency, pedestr......Knowledge about footbridges response to actions of walking is important in assessments of vibration serviceability. In a number of design codes for footbridges, the vibration serviceability limit state is assessed using a walking load model in which the walking parameters (step frequency...... of pedestrians for predicting footbridge response, which is meaningful, and a step forward. Modelling walking parameters stochastically, however, requires decisions to be made in terms of their statistical distribution and the parameters describing the statistical distribution. The paper investigates...... the sensitivity of results of computations of bridge response to some of the decisions to be made in this respect. This is a useful approach placing focus on which decisions (and which information) are important for sound estimation of bridge response. The studies involve estimating footbridge responses using...

  13. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Science.gov (United States)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  14. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species

    DEFF Research Database (Denmark)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz

    2016-01-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential...... responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 -. Net photosynthesis of all species except Zostera polychlamys were limited...... at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 - users through acidification of diffusive boundary layers, production of extracellular carbonic...

  15. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Vegetated plots were established by planting different plant species – legumes and vegetable (Abelmoschus, esculentus, Telfaria occidentalis and Vigna unguiculata) and applied with sawdust and chromolaena leaves at different intensities of oil pollution. Toxicity of the soil was evaluated using germination percentage, ...

  16. Factors affecting people's response to invasive species management

    Science.gov (United States)

    Paul H. Gobster

    2011-01-01

    Natural areas managers contend with an increasingly diverse array of invasive species in their mission to conserve the health and integrity of ecosystems under their charge. As users, nearby neighbours and de facto 'owners' of the lands where many significant natural areas reside, the public is often highly supportive of broad programme goals for management...

  17. Metabolic responses of Eucalyptus species to different temperature regimes

    NARCIS (Netherlands)

    Mokochinski, Joao Benhur; Mazzafera, Paulo; Sawaya, Alexandra Christine Helena Frankland; Mumm, Roland; Vos, de Ric Cornelis Hendricus; Hall, Robert David

    2018-01-01

    Species and hybrids of Eucalyptus are the world's most widely planted hardwood trees. They are cultivated across a wide range of latitudes and therefore environmental conditions. In this context, comprehensive metabolomics approaches have been used to assess how different temperature regimes may

  18. Growth Responses of Two Cultivated Okra Species (Abelmoschus ...

    African Journals Online (AJOL)

    Abelmoschus esculentus was investigated using six accessions; three for each species in crude oil contaminated soil. The seeds ..... industrial waste. Environmental and Experimental. Botany, 52.79-88. Siemonsma, J. S and Hamon, S. (2002). Abelmoschus caillei (A. chev) Stevels. In: Oyen, L.P.A. and. Lemmens R.H.M. ...

  19. Growth responses to ozone in plant species from wetlands

    NARCIS (Netherlands)

    Franzaring, J.H.; Tonneijck, A.E.G.; Kooijman, A.W.N.; Dueck, Th.A.

    2000-01-01

    Ten wet grassland species were fumigated with four concentrations of ozone (charcoal-filtered air, non-filtered air and non-filtered air plus 25 or 50 nl 1-1 ozone) in open-top chambers during one growing season to investigate the long-term effect of this air pollutant on various growth variables.

  20. Growth Response of Selected Mangrove Species to Domestic ...

    African Journals Online (AJOL)

    The sewage system of Dar es Salaam City, Tanzania, serves only 15% of the population, making sewage one of the leading sources of marine pollution. This study was initiated to assess the potential of peri-urban mangrove forests as filters and phyto-remediators of sewage and the growth of two mangrove species under ...

  1. Growth response of eight tropical turfgrass species to salinity

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... MATERIALS AND METHODS. The experiment was conducted in the glasshouse of Faculty of. Agriculture at Universiti Putra Malaysia under sand culture system. Eight turfgrass (Table 1) species were planted in plastic pot filled with a mix of 9 washed river sand: 1 peat moss (v/v). The soil was sandy with pH ...

  2. Responses of Calathea species in different growing media ...

    African Journals Online (AJOL)

    ... substrate of top soil and poultry manure mixtures. Although C.nigerica produced higher number of leaves and taller plants than C. zebrina, the latter may be preferred because of its more attractive leaves and its many plantlets that quickly fill the growing container. Key words: growth , container, media, Calathea Species.

  3. Population-specific responses to an invasive species

    Czech Academy of Sciences Publication Activity Database

    Reichard, Martin; Douda, K.; Przybylski, M.; Popa, O. P.; Karbanová, E.; Matasová, K.; Rylková, K.; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-01-01

    Roč. 282, č. 1812 (2015), s. 167-174, č. článku 20151063. ISSN 0962-8452 R&D Projects: GA ČR GA13-05872S Institutional support: RVO:68081766 Keywords : alien species * Anodonta woodiana * intraspecific variation * glochidia * host–parasite dynamics * symbiosis Subject RIV: EG - Zoology Impact factor: 4.823, year: 2015

  4. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  5. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model.

    Science.gov (United States)

    Gogol-Prokurat, Melanie

    2011-01-01

    If species distribution models (SDMs) can rank habitat suitability at a local scale, they may be a valuable conservation planning tool for rare, patchily distributed species. This study assessed the ability of Maxent, an SDM reported to be appropriate for modeling rare species, to rank habitat suitability at a local scale for four edaphic endemic rare plants of gabbroic soils in El Dorado County, California, and examined the effects of grain size, spatial extent, and fine-grain environmental predictors on local-scale model accuracy. Models were developed using species occurrence data mapped on public lands and were evaluated using an independent data set of presence and absence locations on surrounding lands, mimicking a typical conservation-planning scenario that prioritizes potential habitat on unsurveyed lands surrounding known occurrences. Maxent produced models that were successful at discriminating between suitable and unsuitable habitat at the local scale for all four species, and predicted habitat suitability values were proportional to likelihood of occurrence or population abundance for three of four species. Unfortunately, models with the best discrimination (i.e., AUC) were not always the most useful for ranking habitat suitability. The use of independent test data showed metrics that were valuable for evaluating which variables and model choices (e.g., grain, extent) to use in guiding habitat prioritization for conservation of these species. A goodness-of-fit test was used to determine whether habitat suitability values ranked habitat suitability on a continuous scale. If they did not, a minimum acceptable error predicted area criterion was used to determine the threshold for classifying habitat as suitable or unsuitable. I found a trade-off between model extent and the use of fine-grain environmental variables: goodness of fit was improved at larger extents, and fine-grain environmental variables improved local-scale accuracy, but fine-grain variables

  6. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions.

    Directory of Open Access Journals (Sweden)

    Lixin Chen

    Full Text Available The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations.We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP. The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1 the influence of tree species and size on transpiration, and 2 the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH and tree canopy transpiration amount (E(c was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between G(c at VPD = 1 kPa (G(cref and the G(c sensitivity to VPD (-dG(c/dlnVPD across studied species as well as under contrasting soil water and R(s conditions in the urban area.We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of G(cref.

  7. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions.

    Science.gov (United States)

    Chen, Lixin; Zhang, Zhiqiang; Ewers, Brent E

    2012-01-01

    The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations. We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP). The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1) the influence of tree species and size on transpiration, and 2) the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH) and tree canopy transpiration amount (E(c)) was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between G(c) at VPD = 1 kPa (G(cref)) and the G(c) sensitivity to VPD (-dG(c)/dlnVPD) across studied species as well as under contrasting soil water and R(s) conditions in the urban area. We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of G(cref).

  8. Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain.

    Directory of Open Access Journals (Sweden)

    Ke Liu

    Full Text Available The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22 were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils.

  9. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate

    OpenAIRE

    M?nzbergov?, Zuzana; Hadincov?, V?roslava

    2017-01-01

    Abstract In spite of the increasing number of studies on the importance of transgenerational plasticity for species response to novel environments, its effects on species ability to respond to climate change are still largely unexplored. We study the importance of transgenerational plasticity for response of a clonal species Festuca rubra. Individuals from four natural populations representing two levels of temperature and two levels of precipitation were cultivated in four growth chambers th...

  10. Predicting behavioural responses to novel organisms: state-dependent detection theory.

    Science.gov (United States)

    Trimmer, Pete C; Ehlman, Sean M; Sih, Andrew

    2017-01-25

    Human activity alters natural habitats for many species. Understanding variation in animals' behavioural responses to these changing environments is critical. We show how signal detection theory can be used within a wider framework of state-dependent modelling to predict behavioural responses to a major environmental change: novel, exotic species. We allow thresholds for action to be a function of reserves, and demonstrate how optimal thresholds can be calculated. We term this framework 'state-dependent detection theory' (SDDT). We focus on behavioural and fitness outcomes when animals continue to use formerly adaptive thresholds following environmental change. In a simple example, we show that exposure to novel animals which appear dangerous-but are actually safe-(e.g. ecotourists) can have catastrophic consequences for 'prey' (organisms that respond as if the new organisms are predators), significantly increasing mortality even when the novel species is not predatory. SDDT also reveals that the effect on reproduction can be greater than the effect on lifespan. We investigate factors that influence the effect of novel organisms, and address the potential for behavioural adjustments (via evolution or learning) to recover otherwise reduced fitness. Although effects of environmental change are often difficult to predict, we suggest that SDDT provides a useful route ahead. © 2017 The Author(s).

  11. Predicting behavioural responses to novel organisms: state-dependent detection theory

    Science.gov (United States)

    Sih, Andrew

    2017-01-01

    Human activity alters natural habitats for many species. Understanding variation in animals' behavioural responses to these changing environments is critical. We show how signal detection theory can be used within a wider framework of state-dependent modelling to predict behavioural responses to a major environmental change: novel, exotic species. We allow thresholds for action to be a function of reserves, and demonstrate how optimal thresholds can be calculated. We term this framework ‘state-dependent detection theory’ (SDDT). We focus on behavioural and fitness outcomes when animals continue to use formerly adaptive thresholds following environmental change. In a simple example, we show that exposure to novel animals which appear dangerous—but are actually safe—(e.g. ecotourists) can have catastrophic consequences for ‘prey’ (organisms that respond as if the new organisms are predators), significantly increasing mortality even when the novel species is not predatory. SDDT also reveals that the effect on reproduction can be greater than the effect on lifespan. We investigate factors that influence the effect of novel organisms, and address the potential for behavioural adjustments (via evolution or learning) to recover otherwise reduced fitness. Although effects of environmental change are often difficult to predict, we suggest that SDDT provides a useful route ahead. PMID:28100814

  12. PDEAR model prediction of Protea species in years 2070-2100

    Science.gov (United States)

    Guo, Danni; Guo, Renkuan; Midgley, Guy F.; Rebelo, A. G.

    2009-10-01

    Global warming and climate changes are changing the environment and therefore changing the distribution and behaviour of the plant species. Plant species often move and change their distributions as they find their original habitats are no longer suitable to their needs. It is therefore important to establish a statistical model to catch up the movement and patterns of the endangered species in order to effectively manage environmental protection under the inevitable biodiversity changes that are taking place. In this paper, we are focusing on the population category of rare Proteas that has an estimated population size from 1 to 10 per sample site, which is very small. We used the partial differential equation associated regression (PDEAR) model, which merges the partial differential equation theory, (statistical) linear model theory and random fuzzy variable theory together into a efficient small-sample oriented model, for the spatial pattern changing analysis. The regression component in a PDEAR model is in nature a special random fuzzy multivariate regression model. We developed a bivariate model for investigating the impacts from rainfall and temperature on the Protea species in average sense in the population size of 1 to 10, in the Cape Floristic Region, from 1992 to 2002, South Africa. Under same the average biodiversity structure assumptions, we explore the future spatial change patterns of Protea species in the population size of 1 to 10 with future (average) predicted rainfall and temperature. The spatial distribution and patterns are clearly will help us to explore global climate changing impacts on endangered species.

  13. Children's biological responsivity to acute stress predicts concurrent cognitive performance.

    Science.gov (United States)

    Roos, Leslie E; Beauchamp, Kathryn G; Giuliano, Ryan; Zalewski, Maureen; Kim, Hyoun K; Fisher, Philip A

    2018-04-10

    Although prior research has characterized stress system reactivity (i.e. hypothalamic-pituitary-adrenal axis, HPAA; autonomic nervous system, ANS) in children, it has yet to examine the extent to which biological reactivity predicts concurrent goal-directed behavior. Here, we employed a stressor paradigm that allowed concurrent assessment of both stress system reactivity and performance on a speeded-response task to investigate the links between biological reactivity and cognitive function under stress. We further investigated gender as a moderator given previous research suggesting that the ANS may be particularly predictive of behavior in males due to gender differences in socialization. In a sociodemographically diverse sample of young children (N = 58, M age = 5.38 yrs; 44% male), individual differences in sociodemographic covariates (age, household income), HPAA (i.e. cortisol), and ANS (i.e. respiratory sinus arrhythmia, RSA, indexing the parasympathetic branch; pre-ejection period, PEP, indexing the sympathetic branch) function were assessed as predictors of cognitive performance under stress. We hypothesized that higher income, older age, and greater cortisol reactivity would be associated with better performance overall, and flexible ANS responsivity (i.e. RSA withdrawal, PEP shortening) would be predictive of performance for males. Overall, females performed better than males. Two-group SEM analyses suggest that, for males, greater RSA withdrawal to the stressor was associated with better performance, while for females, older age, higher income, and greater cortisol reactivity were associated with better performance. Results highlight the relevance of stress system reactivity to cognitive performance under stress. Future research is needed to further elucidate for whom and in what situations biological reactivity predicts goal-directed behavior.

  14. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    Science.gov (United States)

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  15. Affective responses in tamarins elicited by species-specific music

    OpenAIRE

    Snowdon, Charles T.; Teie, David

    2009-01-01

    Theories of music evolution agree that human music has an affective influence on listeners. Tests of non-humans provided little evidence of preferences for human music. However, prosodic features of speech (‘motherese’) influence affective behaviour of non-verbal infants as well as domestic animals, suggesting that features of music can influence the behaviour of non-human species. We incorporated acoustical characteristics of tamarin affiliation vocalizations and tamarin threat vocalizations...

  16. Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Lenka; Pyšek, Petr; Jarošík, Vojtěch; Pergl, Jan

    2015-01-01

    Roč. 10, č. 4 (2015), s. 1-16,no.e0123634 E-ISSN 1932-6203 R&D Projects: GA ČR GB14-36079G; GA ČR GA206/05/0323 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : species traits * prediction * invasiveness Subject RIV: EF - Botanics Impact factor: 3.057, year: 2015

  17. An equation for the prediction of human skin permeability of neutral molecules, ions and ionic species.

    Science.gov (United States)

    Zhang, Keda; Abraham, Michael H; Liu, Xiangli

    2017-04-15

    Experimental values of permeability coefficients, as log K p , of chemical compounds across human skin were collected by carefully screening the literature, and adjusted to 37°C for the effect of temperature. The values of log K p for partially ionized acids and bases were separated into those for their neutral and ionic species, forming a total data set of 247 compounds and species (including 35 ionic species). The obtained log K p values have been regressed against Abraham solute descriptors to yield a correlation equation with R 2 =0.866 and SD=0.432 log units. The equation can provide valid predictions for log K p of neutral molecules, ions and ionic species, with predictive R 2 =0.858 and predictive SD=0.445 log units calculated by the leave-one-out statistics. The predicted log K p values for Na + and Et 4 N + are in good agreement with the observed values. We calculated the values of log K p of ketoprofen as a function of the pH of the donor solution, and found that log K p markedly varies only when ketoprofen is largely ionized. This explains why models that neglect ionization of permeants still yield reasonable statistical results. The effect of skin thickness on log K p was investigated by inclusion of two indicator variables, one for intermediate thickness skin and one for full thickness skin, into the above equation. The newly obtained equations were found to be statistically very close to the above equation. Therefore, the thickness of human skin used makes little difference to the experimental values of log K p . Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Leaf Area Prediction Using Three Alternative Sampling Methods for Seven Sierra Nevada Conifer Species

    Directory of Open Access Journals (Sweden)

    Dryw A. Jones

    2015-07-01

    Full Text Available Prediction of projected tree leaf area using allometric relationships with sapwood cross-sectional area is common in tree- and stand-level production studies. Measuring sapwood is difficult and often requires destructive sampling. This study tested multiple leaf area prediction models across seven diverse conifer species in the Sierra Nevada of California. The best-fit whole tree leaf area prediction model for overall simplicity, accuracy, and utility for all seven species was a nonlinear model with basal area as the primary covariate. A new non-destructive procedure was introduced to extend the branch summation approach to leaf area data collection on trees that cannot be destructively sampled. There were no significant differences between fixed effects assigned to sampling procedures, indicating that data from the tested sampling procedures can be combined for whole tree leaf area modeling purposes. These results indicate that, for the species sampled, accurate leaf area estimates can be obtained through partially-destructive sampling and using common forest inventory data.

  19. Prediction of Dominant Forest Tree Species Using QuickBird and Environmental Data

    Directory of Open Access Journals (Sweden)

    Azadeh Abdollahnejad

    2017-02-01

    Full Text Available Modelling the spatial distribution of plants is one of the indirect methods for predicting the properties of plants and can be defined based on the relationship between the spatial distribution of vegetation and environmental variables. In this article, we introduce a new method for the spatial prediction of the dominant trees and species, through a combination of environmental and satellite data. Based on the basal area factor (BAF frequency for each tree species in a total of 518 sample plots, the dominant tree species were determined for each plot. Also, topographical maps of primary and secondary properties were prepared using the digital elevation model (DEM. Categories of soil and the climate maps database of the Doctor Bahramnia Forestry Plan were extracted as well. After pre-processing and processing of spectral data, the pixel values at the sample locations in all the independent factors such as spectral and non-spectral data, were extracted. The modelling rates of tree and shrub species diversity using data mining algorithms of 80% of the sampling plots were taken. Assessment of model accuracy was conducted using 20% of samples and evaluation criteria. Random forest (RF, support vector machine (SVM and k-nearest neighbor (k-NN algorithms were used for spatial distribution modelling of dominant species groups using environmental and spectral variables from 80% of the sample plots. Results showed physiographic factors, especially altitude in combination with soil and climate factors as the most important variables in the distribution of species, while the best model was created by the integration of physiographic factors (in combination with soil and climate with an overall accuracy of 63.85%. In addition, the results of the comparison between the algorithms, showed that the RF algorithm was the most accurate in modelling the diversity.

  20. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound

    Science.gov (United States)

    Jorgenson, Zachary G.; Buhl, Kevin J.; Bartell, Stephen E.; Schoenfuss, Heiko L.

    2015-01-01

    Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption—as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration—than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered

  1. Do laboratory species protect endangered species? Interspecies variation in responses to 17β-estradiol, a model endocrine active compound.

    Science.gov (United States)

    Jorgenson, Z G; Buhl, K; Bartell, S E; Schoenfuss, H L

    2015-01-01

    Although the effects of estrogens on model laboratory species are well documented, their utility as surrogates for other species, including those listed as endangered, are less clear. Traditionally, conservation policies are evaluated based on model organism responses but are intended to protect all species in an environment. We tested the hypothesis that the endangered Rio Grande silvery minnow (Hybognathus amarus) is more vulnerable to endocrine disruption-as assessed through its larval predator-escape performance, survival, juvenile sex ratios, and whole-body vitellogenin concentration-than the commonly used toxicological model species fathead minnow (Pimephales promelas) and the bluegill sunfish (Lepomis macrochirus). Fish were exposed concurrently for 21 days to the model endocrine active compound (EAC) 17ß-estradiol (E2) at 10 ng E2/L and 30 ng E2/L in a flow-through system using reconstituted water that simulated the physicochemical conditions of the Middle Rio Grande in New Mexico, USA. No significant differences were observed between the fathead and silvery minnow in larval predator-escape response or juvenile sex ratio. Rio Grande silvery minnow survival decreased significantly at day 14 compared with the other two species; by day 21, both cyprinid species (silvery minnow and fathead minnow) exhibited a significant decrease in survival compared with bluegill sunfish, a member of the family Centrarchidae. Male Rio Grande silvery minnow showed a significant increase in whole-body vitellogenin concentration in the 10 ng/L treatment, whereas fathead minnow and bluegill sunfish showed no significant increases in vitellogenin concentrations across treatments. Our study showed response differences to estrogen exposures between the two cyprinid species and further divergence in responses between the families Cyprinidae and Centrarchidae. These results suggest that commonly used laboratory model organisms may be less sensitive to EACs than the endangered Rio

  2. Response to intravenous fentanyl infusion predicts subsequent response to transdermal fentanyl.

    Science.gov (United States)

    Hayashi, Norihito; Kanai, Akifumi; Suzuki, Asaha; Nagahara, Yuki; Okamoto, Hirotsugu

    2016-04-01

    Prediction of the response to transdermal fentanyl (FENtd) before its use for chronic pain is desirable. We tested the hypothesis that the response to intravenous fentanyl infusion (FENiv) can predict the response to FENtd, including the analgesic and adverse effects. The study subjects were 70 consecutive patients with chronic pain. The response to fentanyl at 0.1 mg diluted in 50 ml of physiological saline and infused over 30 min was tested. This was followed by treatment with FENtd (Durotep MT patch 2.1 mg) at a dose of 12.5 µg/h for 2 weeks. Pain intensity before and after FENiv and 2 weeks after FENtd, and the response to treatment, were assessed by the numerical rating scale (NRS), clinical global impression-improvement scale (CGI-I), satisfaction scale (SS), and adverse effects. The NRS score decreased significantly from 7 (4-9) [median (range)] at baseline to 3 (0-8) after FENiv (p 0.04, each). The analgesic and side effects after intravenous fentanyl infusion can be used to predict the response to short-term transdermal treatment with fentanyl.

  3. Challenges and progress in predicting biological responses to incorporated radioactivity

    International Nuclear Information System (INIS)

    Howell, R. W.; Neti, P. V. S. V.; Pinto, M.; Gerashchenko, B. I.; Narra, V. R.; Azzam, E. I.

    2006-01-01

    Prediction of risks and therapeutic outcome in nuclear medicine largely rely on calculation of the absorbed dose. Absorbed dose specification is complex due to the wide variety of radiations emitted, non-uniform activity distribution, biokinetics, etc. Conventional organ absorbed dose estimates assumed that radioactivity is distributed uniformly throughout the organ. However, there have been dramatic improvements in dosimetry models that reflect the substructure of organs as well as tissue elements within them. These models rely on improved nuclear medicine imaging capabilities that facilitate determination of activity within voxels that represent tissue elements of ∼0.2-1 cm 3 . However, even these improved approaches assume that all cells within the tissue element receive the same dose. The tissue element may be comprised of a variety of cells having different radiosensitivities and different incorporated radioactivity. Furthermore, the extent to which non-uniform distributions of radioactivity within a small tissue element impact the absorbed dose distribution is strongly dependent on the number, type, and energy of the radiations emitted by the radionuclide. It is also necessary to know whether the dose to a given cell arises from radioactive decays within itself (self-dose) or decays in surrounding cells (cross-dose). Cellular response to self-dose can be considerably different than its response to cross-dose from the same radiopharmaceutical. Bystander effects can also play a role in the response. Evidence shows that even under conditions of 'uniform' distribution of radioactivity, a combination of organ dosimetry, voxel dosimetry and dosimetry at the cellular and multicellular levels can be required to predict response. (authors)

  4. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  5. Assays for predicting and monitoring responses to lung cancer immunotherapy

    International Nuclear Information System (INIS)

    Teixidó, Cristina; Karachaliou, Niki; González-Cao, Maria; Morales-Espinosa, Daniela; Rosell, Rafael

    2015-01-01

    Immunotherapy has become a key strategy for cancer treatment, and two immune checkpoints, namely, programmed cell death 1 (PD-1) and its ligand (PD-L1), have recently emerged as important targets. The interaction blockade of PD-1 and PD-L1 demonstrated promising activity and antitumor efficacy in early phase clinical trials for advanced solid tumors such as non-small cell lung cancer (NSCLC). Many cell types in multiple tissues express PD-L1 as well as several tumor types, thereby suggesting that the ligand may play important roles in inhibiting immune responses throughout the body. Therefore, PD-L1 is a critical immunomodulating component within the lung microenvironment, but the correlation between PD-L1 expression and prognosis is controversial. More evidence is required to support the use of PD-L1 as a potential predictive biomarker. Clinical trials have measured PD-L1 in tumor tissues by immunohistochemistry (IHC) with different antibodies, but the assessment of PD-L1 is not yet standardized. Some commercial antibodies lack specificity and their reproducibility has not been fully evaluated. Further studies are required to clarify the optimal IHC assay as well as to predict and monitor the immune responses of the PD-1/PD-L1 pathway

  6. Responses of three grass species to creosote during phytoremediation

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    Phytoremediation of creosote-contaminated soil was monitored in the presence of Tall fescue, Kentucky blue grass, or Wild rye. For all three grass species, plant growth promoting rhizobacteria (PGPR) were evaluated for plant growth promotion and protection of plants from contaminant toxicity. A number of parameters were monitored including plant tissue water content, root growth, plant chlorophyll content and the chlorophyll a/b ratio. The observed physiological data indicate that some plants mitigated the toxic effects of contaminants. In addition, in agreement with our previous experiments reported in the accompanying paper (Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soil. Environ. Poll. doi: 10.1016/j.envpol.2003.09.031), PGPR were able to greatly enhance phytoremediation. PGPR accelerated plant growth, especially roots, in heavily contaminated soils, diminishing the toxic effects of contaminants to plants. Thus, the increased root biomass in PGPR-treated plants led to more effective remediation. - Plant growth promoting rhizobacteria enhanced growth and remediation of three grass species

  7. Induced responses to herbivory and jasmonate in three milkweed species.

    Science.gov (United States)

    Rasmann, Sergio; Johnson, M Daisy; Agrawal, Anurag A

    2009-11-01

    We studied constitutive and induced defensive traits (latex exudation, cardenolides, proteases, and C/N ratio) and resistance to monarch caterpillars (Danaus plexippus) in three closely related milkweed species (Asclepias angustifolia, A. barjoniifolia and A. fascicularis). All traits showed significant induction in at least one of the species. Jasmonate application only partially mimicked the effect of monarch feeding. We found some correspondence between latex and cardenolide content and reduced larval growth. Larvae fed cut leaves of A. angustifolia grew better than larvae fed intact plants. Addition of the cardenolide digitoxin to cut leaves reduced larval growth but ouabain (at the same concentration) had no effect. We, thus, confirm that latex and cardenolides are major defenses in milkweeds, effective against a specialist herbivore. Other traits such as proteases and C/N ratio additionally may be integrated in the defense scheme of those plants. Induction seems to play an important role in plants that have an intermediate level of defense, and we advocate incorporating induction as an additional axis of the plant defense syndrome hypothesis.

  8. Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools.

    Science.gov (United States)

    Brockerhoff, Eckehard G; Kimberley, Mark; Liebhold, Andrew M; Haack, Robert A; Cavey, Joseph F

    2014-03-01

    Biological invasions resulting from international trade can cause major environmental and economic impacts. Propagule pressure is perhaps the most important factor influencing establishment, although actual arrival rates of species are rarely recorded. Furthermore, the pool of potential invaders includes many species that vary in their arrival rate and establishment potential. Therefore, we stress that it is essential to consider the size and composition of species pools arriving from source regions when estimating probabilities of establishment and effects of pathway infestation rates. To address this, we developed a novel framework and modeling approach to enable prediction of future establishments in relation to changes in arrival rate across entire species pools. We utilized 13 828 border interception records from the United States and New Zealand for 444 true bark beetle (Scolytinae) and longhorned beetle (Cerambycidae) species detected between 1949 and 2008 as proxies for arrival rates to model the relationship between arrival and establishment rates. Nonlinearity in this relationship implies that measures intended to reduce the unintended transport of potential invaders (such as phytosanitary treatments) must be highly effective in order to substantially reduce the rate of future invasions, particularly if trade volumes continue to increase.

  9. Response surface methodology to simplify calculation of wood energy potency from tropical short rotation coppice species

    Science.gov (United States)

    Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.

    2018-04-01

    Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.

  10. Predicting macrofaunal species distribution in estuarine gradients using logistic regression and classification systems

    NARCIS (Netherlands)

    Ellis, J.; Ysebaert, T.; Hume, T.; Norkko, A.; Bult, T.; Herman, P.M.J.; Thrush, S.; Oldman, J.

    2006-01-01

    There is a growing need to predict ecological responses to long-term habitat change. However, statistical models for marine soft-substratum ecosystems are limited, and consequently there is a need for the development of such models. In order to assess the utility of statistical modelling approaches

  11. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    Science.gov (United States)

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  12. Chasing a changing climate: Reproductive and dispersal traits predict how sessile species respond to global warming

    Science.gov (United States)

    Archambault, Jennifer M.; Cope, W. Gregory; Kwak, Thomas J.

    2018-01-01

    AimStudies of species' range shifts have become increasingly relevant for understanding ecology and biogeography in the face of accelerated global change. The combination of limited mobility and imperilled status places some species at a potentially greater risk of range loss, extirpation or extinction due to climate change. To assess the ability of organisms with limited movement and dispersal capabilities to track shifts associated with climate change, we evaluated reproductive and dispersal traits of freshwater mussels (Unionida), sessile invertebrates that require species‐specific fish for larval dispersal.LocationNorth American Atlantic Slope rivers.MethodsTo understand how unionid mussels may cope with and adapt to current and future warming trends, we identified mechanisms that facilitated their colonization of the northern Atlantic Slope river basins in North America after the Last Glacial Maximum. We compiled species occurrence and life history trait information for each of 55 species, and then selected life history traits for which ample data were available (larval brooding duration, host fish specificity, host infection strategy, and body size) and analysed whether the trait state for each was related to mussel distribution in Atlantic Slope rivers.ResultsBrooding duration (p  .10).Main conclusionsOur results are potentially applicable to many species for which life history traits have not been well‐documented, because reproductive and dispersal traits in unionid mussels typically follow phylogenetic relationships. These findings may help resource managers prioritize species according to climate change vulnerability and predict which species might become further imperilled with climate warming. Finally, we suggest that similar trait‐based decision support frameworks may be applicable for other movement limited taxa.

  13. Prediction of placebo responses: A systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Bjoern eHoring

    2014-10-01

    Full Text Available Objective: Predicting who responds to placebo treatment – and under which circumstances – has been a question of interest and investigation for generations. However, the literature is disparate and inconclusive. This review aims to identify publications that provide high quality data on the topic of placebo response (PR prediction. Methods: To identify studies concerned with PR prediction, independent searches were performed in an expert database (for all symptom modalities and in PubMed (for pain only. Articles were selected when a they assessed putative predictors prior to placebo treatment and b an adequate control group was included when the association of predictors and PRs were analyzed. Results: Twenty-one studies were identified, most with pain as dependent variable. Most predictors of PRs were psychological constructs related to actions, expected outcomes and the emotional valence attached to these events (goal-seeking, self-efficacy/-esteem, locus of control, optimism. Other predictors involved behavioural control (desire for control, eating restraint, personality variables (fun seeking, sensation seeking, neuroticism, biological markers (sex, a single nucleotide polymorphism related to dopamine metabolism. Finally, suggestibility and beliefs in expectation biases, body consciousness and baseline symptom severity were found to be predictive. Conclusions: While results are heterogeneous, some congruence of predictors can be identified. PRs mainly appear to be moderated by expectations of how the symptom might change after treatment, or the expectation of how symptom repetition can be coped with. It is suggested to include the listed constructs in future research. Furthermore, a closer look at variables moderating symptom change in control groups seems warranted.

  14. Local predation pressure predicts the strength of mobbing responses in tropical birds

    Directory of Open Access Journals (Sweden)

    Luis SANDOVAL, David R. WILSON

    2012-10-01

    Full Text Available Many birds join cooperative mobbing aggregations and collectively harass predators. Individuals participating in these ephemeral associations benefit by deterring the predator, but also incur energetic costs and increased risk of predation. Explaining the evolution of mobbing is challenging because individuals could prevail by selfishly seeking safety while allowing others to mob. An important step in understanding the evolution of mobbing is to identify factors affecting its expression. The ecological constraints model suggests that animals are more likely to cooperate under adverse environmental conditions, such as when local predation pressure is high. We tested this prediction by comparing the mobbing responses of several species of birds to the local abundance of their primary predator, the ferruginous pygmy-owl Glaucidium brasilianum. We used acoustic playback to elicit mobbing responses in environments where owls were common, uncommon, or rare. Stimuli were either the song of a ferruginous pygmy-owl or the mobbing calls of three of the owl’s common prey species. During each playback, we characterized mobbing responses by noting the number of species and individuals that approached the loudspeaker, as well as the closest approach by any bird. Mobbing responses to both stimuli were strong in locations where Ferruginous Pygmy-owls were common, intermediate where owls were uncommon, and weak where they were rare. This pattern persisted even after controlling for differences in species richness and composition among the three environments. Results support the ecological constraints model and provide strong evidence that intense predation pressure increases the expression of cooperative mobbing in tropical birds [Current Zoology 58 (5: 781-790, 2012].

  15. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    Science.gov (United States)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  16. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN

    2008-10-01

    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  17. Nuclear medicine imaging to predict response to radiotherapy: a review

    International Nuclear Information System (INIS)

    Wiele, Christophe van de; Lahorte, Christophe; Oyen, Wim; Boerman, Otto; Goethals, Ingeborg; Slegers, Guido; Dierckx, Rudi Andre

    2003-01-01

    Purpose: To review available literature on positron emission tomography (PET) and single photon emission computerized tomography (SPECT) for the measurement of tumor metabolism, hypoxia, growth factor receptor expression, and apoptosis as predictors of response to radiotherapy. Methods and Materials: Medical literature databases (Pubmed, Medline) were screened for available literature and critically analyzed as to their scientific relevance. Results: Studies on 18 F-fluorodeoxyglucose PET as a predictor of response to radiotherapy in head-and-neck carcinoma are promising but need confirmation in larger series. 18 F-fluorothymine is stable in human plasma, and preliminary clinical data obtained with this marker of tumor cell proliferation are promising. For imaging tumor hypoxia, novel, more widely available radiopharmaceuticals with faster pharmacokinetics are mandatory. Imaging of ongoing apoptosis and growth factor expression is at a very early stage, but results obtained in other domains with radiolabeled peptides appear promising. Finally, for most of the tracers discussed, validation against a gold standard is needed. Conclusion: Optimization of the pharmacokinetics of relevant radiopharmaceuticals as well as validation against gold-standard tests in large patient series are mandatory if PET and SPECT are to be implemented in routine clinical practice for the purpose of predicting response to radiotherapy

  18. Music-related reward responses predict episodic memory performance.

    Science.gov (United States)

    Ferreri, Laura; Rodriguez-Fornells, Antoni

    2017-12-01

    Music represents a special type of reward involving the recruitment of the mesolimbic dopaminergic system. According to recent theories on episodic memory formation, as dopamine strengthens the synaptic potentiation produced by learning, stimuli triggering dopamine release could result in long-term memory improvements. Here, we behaviourally test whether music-related reward responses could modulate episodic memory performance. Thirty participants rated (in terms of arousal, familiarity, emotional valence, and reward) and encoded unfamiliar classical music excerpts. Twenty-four hours later, their episodic memory was tested (old/new recognition and remember/know paradigm). Results revealed an influence of music-related reward responses on memory: excerpts rated as more rewarding were significantly better recognized and remembered. Furthermore, inter-individual differences in the ability to experience musical reward, measured through the Barcelona Music Reward Questionnaire, positively predicted memory performance. Taken together, these findings shed new light on the relationship between music, reward and memory, showing for the first time that music-driven reward responses are directly implicated in higher cognitive functions and can account for individual differences in memory performance.

  19. Temperature response surfaces for mortality risk of tree species with future drought

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These

  20. Mechanisms Controlling Species Responses to Climate Change: Thermal Tolerances and Shifting Range Limits. (Invited)

    Science.gov (United States)

    Sage, R. F.; Bykova, O.; Coiner, H.

    2010-12-01

    One of the main effects of anthropogenic climate change will be widespread shifts in species distribution, with the common assumption that they will migrate to higher elevation and latitude. While this assumption is supported by migration patterns following climate warming in the past 20,000 years, it has not been rigorously evaluated in terms of physiological mechanism, despite the implication that migration in response to climate warming is controlled by some form of thermal adaptation. We have been evaluating the degree to which species range limits are controlled by physiological patterns of thermal tolerance in bioinvaders of North America. Bioinvaders presumably have few biotic controls over their distribution and thus are more likely to fully exploit their thermal niche. In cheatgrass (Bromus tectorum), the minimum lethal temperature in winter is -32C, which corresponds to the mean winter minimum temperature at its northern range limit. In red brome (Bromus rubens), the minimum lethal temperature is also near -32C, which is well below the minimum winter temperature near -20C that corresponds to its northern distribution limit. In kudzu (Pueraria lobata), the minimum lethal temperature is near -20C, which corresponds to the midwinter minimum at its northern distribution limit; however, overwintering kudzu tissues are insulated by soil and snow cover, and thus do not experience lethal temperatures at kudzu's northern range limit. These results demonstrate that some invasive species can exploit the potential range defined by their low temperature tolerance and thus can be predicted by mechanistic models to migrate to higher latitudes with moderation of winter cold. The distribution of other invaders such as kudzu and red brome are not controlled by tolerance of midwinter cold. Developing mechanistic models of their distributions, and how these might change with climate warming, will require extensive physiological study.

  1. Bioindicator responses and performance of plant species along a vehicular pollution gradient in western Himalaya.

    Science.gov (United States)

    Kashyap, Rachit; Sharma, Rohit; Uniyal, Sanjay Kr

    2018-04-21

    Loss of green cover, and increasing pollution is a prime global concern. The problem calls for screening of pollution-tolerant tree species that can be integrated into plantation drives. Recognizing this, the study analyzed bio-indicator responses and performance of commonly occurring plant species along a pollution gradient in western Himalaya. Based on distance from the road, three sites viz., highly polluted (HP), moderately polluted (MP), and least polluted (LP), were identified. From these sites, leaves of commonly occurring 26 tree species were collected and analyzed for dust accumulation, total chlorophyll, relative water content (RWC), ascorbic acid, and pH using standard protocols. Later, assessment of Air Pollution Tolerance Index (APTI) and Anticipated Performance Indices (API) was carried out. The results revealed variations in biochemical characteristics. The pH, RWC, and total chlorophyll increased with decreasing pollution while ascorbic acid increased with increasing pollution. Dust capturing potential of Ficus carica (1.191 mg/m 2 ) and Toona ciliata (0.820 mg/m 2 ) was relatively higher. Based on the results of APTI, Grevillea robusta was classified as tolerant. It scored significantly higher values (21.06, 21.19, and 19.61 in LP, MP, and HP sites, respectively). Quercus floribunda, G. robusta (68.75% each), Juglans regia (68.7%), and T. ciliata (62.50%) were good performers in HP sites. Acer caesium, Betula utilis, and Morus alba that had low API scores (43.75%) were predicted as poor performers. Thus, G. robusta, Q. floribunda, J. regia, T. ciliata, and F. carica were evaluated as best performers. They could be integrated into plantations drives for environmental management.

  2. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species

    DEFF Research Database (Denmark)

    Horne, C.R.; Hirst, Andrew G.; Atkinson, D.

    2015-01-01

    of these gradients to date, and find that their direction and magnitude co-vary among 12 arthropod orders (r2 = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support...... the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T-S and L-S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial......Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) responses and latitude-size (L-S) clines. Yet, the degree to which these co-vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison...

  3. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach

    DEFF Research Database (Denmark)

    Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey

    2016-01-01

    Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil...... functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global...

  4. Response of tropical peat swamp forest tree species seedlings to macro nutrients

    Directory of Open Access Journals (Sweden)

    Tri Wira Yuwati

    2015-10-01

    Full Text Available Abstract Efforts of restoration of degraded tropical peat swamp forest were facing constraints due to the low available nutrient level of peat. The transplanted peat swamp forest species seedlings experienced low survival rate and poor growth performance. This study aimed to demonstrate the response of ten tropical peat swamp forest species seedlings whether climax and pioneer species to macro-nutrients addition in the nursery. The growth performance of climax and pioneer tropical peat swamp species seedlings was recorded following addition of macro nutrients of Nitrogen (N, Phosphorus(P, Potassium(K and Dolomitic limestone (CaMg. The result showed that Alstonia spatulata and Parartocarpus venenosus showed positive growth response following macro nutrients addition. This study concluded that tropical peat swamp pioneer species has lower necessity for macro-nutrients addition than tropical peat swamp climax species.

  5. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    Science.gov (United States)

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  6. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    Science.gov (United States)

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  7. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

    Science.gov (United States)

    Kannenberg, Steven A; Phillips, Richard P

    2017-03-01

    Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

  8. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    Science.gov (United States)

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  9. Neural responses to exclusion predict susceptibility to social influence.

    Science.gov (United States)

    Falk, Emily B; Cascio, Christopher N; O'Donnell, Matthew Brook; Carp, Joshua; Tinney, Francis J; Bingham, C Raymond; Shope, Jean T; Ouimet, Marie Claude; Pradhan, Anuj K; Simons-Morton, Bruce G

    2014-05-01

    Social influence is prominent across the lifespan, but sensitivity to influence is especially high during adolescence and is often associated with increased risk taking. Such risk taking can have dire consequences. For example, in American adolescents, traffic-related crashes are leading causes of nonfatal injury and death. Neural measures may be especially useful in understanding the basic mechanisms of adolescents' vulnerability to peer influence. We examined neural responses to social exclusion as potential predictors of risk taking in the presence of peers in recently licensed adolescent drivers. Risk taking was assessed in a driving simulator session occurring approximately 1 week after the neuroimaging session. Increased activity in neural systems associated with the distress of social exclusion and mentalizing during an exclusion episode predicted increased risk taking in the presence of a peer (controlling for solo risk behavior) during a driving simulator session outside the neuroimaging laboratory 1 week later. These neural measures predicted risky driving behavior above and beyond self-reports of susceptibility to peer pressure and distress during exclusion. These results address the neural bases of social influence and risk taking; contribute to our understanding of social and emotional function in the adolescent brain; and link neural activity in specific, hypothesized, regions to risk-relevant outcomes beyond the neuroimaging laboratory. Results of this investigation are discussed in terms of the mechanisms underlying risk taking in adolescents and the public health implications for adolescent driving. Copyright © 2014 Society for Adolescent Health and Medicine. All rights reserved.

  10. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  11. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform......). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than...

  12. Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne

    2008-01-01

    Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. - The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field

  13. Structural prediction and analysis of VIH-related peptides from selected crustacean species.

    Science.gov (United States)

    Nagaraju, Ganji Purna Chandra; Kumari, Nunna Siva; Prasad, Ganji Lakshmi Vara; Rajitha, Balney; Meenu, Madan; Rao, Manam Sreenivasa; Naik, Bannoth Reddya

    2009-08-17

    The tentative elucidation of the 3D-structure of vitellogenesis inhibiting hormone (VIH) peptides is conversely underprivileged by difficulties in gaining enough peptide or protein, diffracting crystals, and numerous extra technical aspects. As a result, no structural information is available for VIH peptide sequences registered in the Genbank. In this situation, it is not surprising that predictive methods have achieved great interest. Here, in this study the molt-inhibiting hormone (MIH) of the kuruma prawn (Marsupenaeus japonicus) is used, to predict the structure of four VIHrelated peptides in the crustacean species. The high similarity of the 3D-structures and the calculated physiochemical characteristics of these peptides suggest a common fold for the entire family.

  14. Estimating confidence intervals in predicted responses for oscillatory biological models.

    Science.gov (United States)

    St John, Peter C; Doyle, Francis J

    2013-07-29

    The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network's structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model's parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. Our method permits modellers of oscillatory systems to confidently

  15. Thermotolerance and responses to short duration heat stress in tropical and temperate species

    Science.gov (United States)

    Marias, D.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be

  16. Development of migration prediction system (MIGSTEM) for cationic species of radionuclides through soil layers

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Takebe, Shinichi; Yamamoto, Tadatoshi

    1989-01-01

    The migration prediction system (MIGSTEM) has been developed for estimating the migration of cationic species of radionuclides through soil layers systematically. The MIGSTEM consists of the migration experiments, the one-dimensional fitting code (inverse analysis code) for determining retardation factor and dispersivity (migration factors) and the three-dimensional differential code (prediction code) for estimating the migration of the radionuclides. The migration experiments are carried out for obtaining the concentration profiles of the radionuclides in unsaturated and saturated soil layers. Using the inverse analysis code, the migration factors are obtained at one time by fitting the concentration profiles calculated to those observed. The prediction code can give the contours of concentration and the one-dimensional concentration profiles at selected time, as well as the changing in the concentration at a selected position with time. The validity of the MIGSTEM was obtained by the benchmark test on the prediction and inverse analysis codes. The MIGSTEM was applied to estimate the migration of Sr 2+ through the sandy soil. (author)

  17. Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation.

    Science.gov (United States)

    Angelieri, Cintia Camila Silva; Adams-Hosking, Christine; Ferraz, Katia Maria Paschoaletto Micchi de Barros; de Souza, Marcelo Pereira; McAlpine, Clive Alexander

    2016-01-01

    A mosaic of intact native and human-modified vegetation use can provide important habitat for top predators such as the puma (Puma concolor), avoiding negative effects on other species and ecological processes due to cascade trophic interactions. This study investigates the effects of restoration scenarios on the puma's habitat suitability in the most developed Brazilian region (São Paulo State). Species Distribution Models incorporating restoration scenarios were developed using the species' occurrence information to (1) map habitat suitability of pumas in São Paulo State, Southeast, Brazil; (2) test the relative contribution of environmental variables ecologically relevant to the species habitat suitability and (3) project the predicted habitat suitability to future native vegetation restoration scenarios. The Maximum Entropy algorithm was used (Test AUC of 0.84 ± 0.0228) based on seven environmental non-correlated variables and non-autocorrelated presence-only records (n = 342). The percentage of native vegetation (positive influence), elevation (positive influence) and density of roads (negative influence) were considered the most important environmental variables to the model. Model projections to restoration scenarios reflected the high positive relationship between pumas and native vegetation. These projections identified new high suitability areas for pumas (probability of presence >0.5) in highly deforested regions. High suitability areas were increased from 5.3% to 8.5% of the total State extension when the landscapes were restored for ≥ the minimum native vegetation cover rule (20%) established by the Brazilian Forest Code in private lands. This study highlights the importance of a landscape planning approach to improve the conservation outlook for pumas and other species, including not only the establishment and management of protected areas, but also the habitat restoration on private lands. Importantly, the results may inform environmental

  18. Predicting the establishment success of introduced target species in grassland restoration by functional traits.

    Science.gov (United States)

    Engst, Karina; Baasch, Annett; Bruelheide, Helge

    2017-09-01

    Species-rich semi-natural grasslands are highly endangered habitats in Central Europe and numerous restoration efforts have been made to compensate for the losses in the last decades. However, some plant species could become more easily established than others. The establishment success of 37 species was analyzed over 6 years at two study sites of a restoration project in Germany where hay transfer and sowing of threshing material in combination with additional sowing were applied. The effects of the restoration method applied, time since the restoration took place, traits related to germination, dispersal, and reproduction, and combinations of these traits on the establishment were analyzed. While the specific restoration method of how seeds were transferred played a subordinate role, the establishment success depended in particular on traits such as flower season or the lifeform. Species flowering in autumn, such as Pastinaca sativa and Serratula tinctoria , became established better than species flowering in other seasons, probably because they could complete their life cycle, resulting in increasingly stronger seed pressure with time. Geophytes, like Allium angulosum and Galium boreale , became established very poorly, but showed an increase with study duration. For various traits, we found significant trait by method and trait by year interactions, indicating that different traits promoted establishment under different conditions. Using a multi-model approach, we tested whether traits acted in combination. For the first years and the last year, we found that models with three traits explained establishment success better than models with a single trait or two traits. While traits had only an additive effect on the establishment success in the first years, trait interactions became important thereafter. The most important trait was the season of flowering, which occurred in all best models from the third year onwards. Overall, our approach revealed the

  19. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate.

    Science.gov (United States)

    Münzbergová, Zuzana; Hadincová, Věroslava

    2017-07-01

    In spite of the increasing number of studies on the importance of transgenerational plasticity for species response to novel environments, its effects on species ability to respond to climate change are still largely unexplored. We study the importance of transgenerational plasticity for response of a clonal species Festuca rubra . Individuals from four natural populations representing two levels of temperature and two levels of precipitation were cultivated in four growth chambers that simulate the temperature and precipitation of origin of the populations (maternal phase). Each population was represented in each growth chamber. After 6 months, single young ramets of these plants were reshuffled among the growth chambers and let to grow for additional 2 months (offspring phase). The results show that transgenerational effects (i.e., maternal phase conditions) significantly modify species response to novel climates, and the direction and intensity of the response depend on the climate of origin of the plants. For traits related to recourse acquisition, the conditions of maternal phase, either alone or in interaction mainly with climate of origin, had stronger effect than the conditions of cultivation. Overall, the maternal climate interacted more intensively with the climate of origin than with the offspring climate. The direction of the effect of the maternal climate was of different directions and intensities depending on plant origin and trait studied. The data demonstrated strong significant effects of conditions during maternal phase on species response to novel climates. These transgenerational affects were, however, not adaptive. Still, transgenerational plasticity may be an important driver of species response to novel conditions across clonal generations. These effects thus need to be carefully considered in future studies exploring species response to novel climates. This will also have strong effects on species performance under increasingly variable

  20. Species loss, delayed numerical responses, and functional compensation in an antbird guild.

    Science.gov (United States)

    Touchton, Janeene M; Smith, James N M

    2011-05-01

    When a community loses species through fragmentation, its total food consumption may drop. Compensatory responses of remaining species, whereby survivors assume roles of extinct competitors, may reduce the impact of species loss through numerical or functional responses. We measured compensatory responses in two remaining antbird species on Barro Colorado Island, Panama, four decades after the loss of their dominant competitor, the Ocellated Antbird, Phaenostictus mcleannani. We compared current abundances and behavior of these two species on Barro Colorado to those reported before the island lost Ocellated Antbirds, and to those in a nearby mainland population where all three species still exist as a space-for-time substitution. The smaller, more subordinate Spotted Antbird, Hylophylax naevioides, responded far more strongly than the larger Bicolored Antbird, Gymnopithys leucaspis, which is functionally more like the Ocellated Antbird. Islandwide density of Spotted Antbirds has more than doubled since the loss of Ocellated Antbirds. Moreover, Spotted Antbirds now spend so much more of their time following ant swarms that their metabolic biomass at these swarms has more than tripled since Ocellated Antbirds disappeared. These responses in Spotted Antbirds were apparently delayed by >20 years. Bicolored Antbirds have not increased substantially in islandwide density or metabolic biomass at ant swarms. We hypothesize that behavioral flexibility, as shown by Spotted Antbirds on Barro Colorado Island, is a major factor governing the extent to which fragmented ecosystems can buffer the impacts of species loss.

  1. Prediction efficiency of the hydrographical parameters as related to distribution patterns of the Pleuromamma species in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmy, K.V.; Saraswathy, M.

    . Multiple regression model of P. indica abundance on the parameters: temperature, salinity, dissolved oxygen and phosphate-phosphorus could explain more than 85% of the variation in the predicted abundance, while those of 8 species obtained from...

  2. Closely related freshwater macrophyte species, Ceratophyllum demersum and C. submersum, differ in temperature response

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Brix, Hans

    2014-01-01

    1. The importance of temperature responses of photosynthesis and respiration in determining species distributions was compared in two closely related freshwater macrophytes, Ceratophyllum demersum and C. submersum. The two species differed significantly in response to temperature in the short...... and distributional patterns corresponded well with the long-term (weeks) results obtained, but with some important deviations. The long-term responses of the two species to low temperature (12 °C) were more similar than expected. In contrast, high temperature (35 °C), which stimulated photosynthesis in C. submersum...... in the short term, inhibited photosynthesis in the long term and resulted in lower growth rates of C. submersum, both compared to C. demersum and to growth rates at intermediate temperatures (18 and 25 °C). 3. The long-term acclimation strategy differed between the two species. Ceratophyllum demersum achieved...

  3. Behavioral responses of three lemur species to different food enrichment devices.

    Science.gov (United States)

    Shapiro, Morgan E; Shapiro, Hannah G; Ehmke, Erin E

    2018-05-01

    Environmental enrichment is a tool used to promote the welfare and well-being of captive animals by encouraging the display of species-specific behaviors and reducing the stress or boredom induced by captive environments. Lemurs are highly endangered, yet few studies have analyzed the behavioral impacts of enrichment on captive populations. We studied the impacts of two novel enrichment devices on three lemur species (ring-tailed lemurs [Lemur catta], red-ruffed lemurs [Varecia rubra], and Coquerel's sifaka [Propithecus coquereli]) to determine both the overall and species-specific impacts of enrichment on lemur behavior. We recorded lemur behavior using the continuous sampling method to obtain behavior duration and analyzed our results using ANOVA Repeated Measures. Results showed enrichment effectiveness differed for each species and that different enrichment devices had varying impacts on lemur behavior across all species. We attributed the differences in species-specific responses to the unique locomotor patterns and methods of diet acquisition of each species, and the variances in behavioral responses across all species to the characteristics of each device. Our study highlights the importance of species-specific enrichment and encourages further research in this field in order to maximize the positive effects of enrichment, which in turn has the potential to affect the overall well-being of captive populations. © 2018 Wiley Periodicals, Inc.

  4. Corruption, development and governance indicators predict invasive species risk from trade.

    Science.gov (United States)

    Brenton-Rule, Evan C; Barbieri, Rafael F; Lester, Philip J

    2016-06-15

    Invasive species have an enormous global impact, with international trade being the leading pathway for their introduction. Current multinational trade deals under negotiation will dramatically change trading partnerships and pathways. These changes have considerable potential to influence biological invasions and global biodiversity. Using a database of 47 328 interceptions spanning 10 years, we demonstrate how development and governance socio-economic indicators of trading partners can predict exotic species interceptions. For import pathways associated with vegetable material, a significantly higher risk of exotic species interceptions was associated with countries that are poorly regulated, have more forest cover and have surprisingly low corruption. Corruption and indicators such as political stability or adherence to rule of law were important in vehicle or timber import pathways. These results will be of considerable value to policy makers, primarily by shifting quarantine procedures to focus on countries of high risk based on their socio-economic status. Further, using New Zealand as an example, we demonstrate how a ninefold reduction in incursions could be achieved if socio-economic indicators were used to select trade partners. International trade deals that ignore governance and development indicators may facilitate introductions and biodiversity loss. Development and governance within countries clearly have biodiversity implications beyond borders. © 2016 The Author(s).

  5. Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods.

    Science.gov (United States)

    Youngsteadt, Elsa; Henderson, Ryanna C; Savage, Amy M; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2015-03-01

    Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape. © 2014 John Wiley & Sons Ltd.

  6. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered ( P citric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  7. Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica.

    Science.gov (United States)

    Hiraoka, Yukihiro; Ueda, Hiroaki; Sugimoto, Yukihiro

    2009-01-01

    Lotus japonicus genes responsive to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica were isolated by using the suppression subtractive hybridization (SSH) strategy. O. aegyptiaca and S. hermonthica parasitism specifically induced the expression of genes involved in jasmonic acid (JA) biosynthesis and phytoalexin biosynthesis, respectively. Nodulation-related genes were almost exclusively found among the Orobanche-induced genes. Temporal gene expression analyses revealed that 19 out of the 48 Orobanche-induced genes and 5 out of the 48 Striga-induced genes were up-regulated at 1 dai. Four genes, including putative trypsin protease inhibitor genes, exhibited systemic up-regulation in the host plant parasitized by O. aegyptiaca. On the other hand, S. hermonthica attachment did not induce systemic gene expression.

  8. Redwoods—responsibilities for a long-lived species/resource

    Science.gov (United States)

    Robert Ewing

    2017-01-01

    What responsibilities do humans have to ensure that redwoods survive? And what values and strategies are required to accomplish such a purpose? A basic assumption is that the saving of a species, or more broadly of an ecosystem, is ultimately about human survival and that there is a responsibility to use all tools available to this end. To date, our actions to sustain...

  9. Climate Responses in Growth and Wood Anatomy of Imoprtant Forest Tree Species in Denmark

    DEFF Research Database (Denmark)

    Huang, Weiwei

    and high temperatures on the development of Danish tree species are scarcely investigated. Through a dendroecological approach this dissertation assessed the growth responses related to increment, xylem anatomy and wood property of eight different important tree species, namely Picea abies (L.) Karst......., Picea sitchensis (Bong.) Carr., Abies alba Mill., Abies grandis (Dougl.) Lindl., Pseudotsuga mensiesii (Mirb.) Franco, Larix kaempferi (Lamb.) Carr., Quercus robur L. and Fagus sylvatica L., to long-term drought and high temperatures, aiming at identifying a species portfolio matching future climate...... intolerant species, mainly due to their low drought tolerance (both species) and susceptibility to high autumn temperature (only P. abies). Overall, this dissertation improves the understanding of how drought and high temperatures have impacted and will influence the growth of tree species in Danish forest...

  10. Rapid response of a marine mammal species to holocene climate and habitat change.

    Directory of Open Access Journals (Sweden)

    Mark de Bruyn

    2009-07-01

    Full Text Available Environmental change drives demographic and evolutionary processes that determine diversity within and among species. Tracking these processes during periods of change reveals mechanisms for the establishment of populations and provides predictive data on response to potential future impacts, including those caused by anthropogenic climate change. Here we show how a highly mobile marine species responded to the gain and loss of new breeding habitat. Southern elephant seal, Mirounga leonina, remains were found along the Victoria Land Coast (VLC in the Ross Sea, Antarctica, 2,500 km from the nearest extant breeding site on Macquarie Island (MQ. This habitat was released after retreat of the grounded ice sheet in the Ross Sea Embayment 7,500-8,000 cal YBP, and is within the range of modern foraging excursions from the MQ colony. Using ancient mtDNA and coalescent models, we tracked the population dynamics of the now extinct VLC colony and the connectivity between this and extant breeding sites. We found a clear expansion signal in the VLC population approximately 8,000 YBP, followed by directional migration away from VLC and the loss of diversity at approximately 1,000 YBP, when sea ice is thought to have expanded. Our data suggest that VLC seals came initially from MQ and that some returned there once the VLC habitat was lost, approximately 7,000 years later. We track the founder-extinction dynamics of a population from inception to extinction in the context of Holocene climate change and present evidence that an unexpectedly diverse, differentiated breeding population was founded from a distant source population soon after habitat became available.

  11. Rapid response of a marine mammal species to holocene climate and habitat change.

    Science.gov (United States)

    de Bruyn, Mark; Hall, Brenda L; Chauke, Lucas F; Baroni, Carlo; Koch, Paul L; Hoelzel, A Rus

    2009-07-01

    Environmental change drives demographic and evolutionary processes that determine diversity within and among species. Tracking these processes during periods of change reveals mechanisms for the establishment of populations and provides predictive data on response to potential future impacts, including those caused by anthropogenic climate change. Here we show how a highly mobile marine species responded to the gain and loss of new breeding habitat. Southern elephant seal, Mirounga leonina, remains were found along the Victoria Land Coast (VLC) in the Ross Sea, Antarctica, 2,500 km from the nearest extant breeding site on Macquarie Island (MQ). This habitat was released after retreat of the grounded ice sheet in the Ross Sea Embayment 7,500-8,000 cal YBP, and is within the range of modern foraging excursions from the MQ colony. Using ancient mtDNA and coalescent models, we tracked the population dynamics of the now extinct VLC colony and the connectivity between this and extant breeding sites. We found a clear expansion signal in the VLC population approximately 8,000 YBP, followed by directional migration away from VLC and the loss of diversity at approximately 1,000 YBP, when sea ice is thought to have expanded. Our data suggest that VLC seals came initially from MQ and that some returned there once the VLC habitat was lost, approximately 7,000 years later. We track the founder-extinction dynamics of a population from inception to extinction in the context of Holocene climate change and present evidence that an unexpectedly diverse, differentiated breeding population was founded from a distant source population soon after habitat became available.

  12. Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States

    Science.gov (United States)

    Louis R Iverson; Anantha M. Prasad; Mark W. Schwartz; Mark W. Schwartz

    2005-01-01

    We predict current distribution and abundance for tree species present in eastern North America, and subsequently estimate potential suitable habitat for those species under a changed climate with 2 x CO2. We used a series of statistical models (i.e., Regression Tree Analysis (RTA), Multivariate Adaptive Regression Splines (MARS), Bagging Trees (...

  13. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes.

    Science.gov (United States)

    Li, M-H; Cherubini, P; Dobbertin, M; Arend, M; Xiao, W-F; Rigling, A

    2013-01-01

    Global warming and shortage of water have been evidenced in the recent past and are predicted for the future. Climate change will inevitably have considerable impact on plant physiology, growth, productivity and forest ecosystem functions. The present study determined the effects of simulated daytime air warming (+1 to 1.5 °C during the growing season), drought (-40% and -57% of mean precipitation of 728 mm during the 2007 and 2008 growing season, respectively) and their combination, on leaf nitrogen (N) and non-structural carbohydrates (NSC) of two Quercus species (Q. robur and Q. petraea) and provenances (two provenances for each species) grown in two soil types in Switzerland across two treatment years, to test the hypothesis that leaf N and NSC in the more water-sensitive species (Q. robur) and provenances (originating from water-rich locations) will more strongly respond to global warming and water deficit, compared to those in the more drought-tolerant species (Q. petraea) or provenances. No species- and provenance-specific responses in leaf N and NSC to the climate treatment were found, indicating that the results failed to support our hypothesis. The between-species variation of leaf N and NSC concentrations mainly reflected differences in biology of the two species, and the between-provenance variation of N and NSC concentrations apparently mirrored the climate of their origins. Hence, we conclude that (i) the two Quercus species studied are somewhat insensitive, due to their distribution covering a wide geographical and climate range, to moderate climate change within Switzerland, and (ii) a moderate global warming of B1 scenario (IPCC 2007) will not, or at least less, negatively affect the N and carbon physiology in Q. robur and Q. petraea. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Predicting occupancy for pygmy rabbits in Wyoming: an independent evaluation of two species distribution models

    Science.gov (United States)

    Germaine, Stephen S.; Ignizio, Drew; Keinath, Doug; Copeland, Holly

    2014-01-01

    Species distribution models are an important component of natural-resource conservation planning efforts. Independent, external evaluation of their accuracy is important before they are used in management contexts. We evaluated the classification accuracy of two species distribution models designed to predict the distribution of pygmy rabbit Brachylagus idahoensis habitat in southwestern Wyoming, USA. The Nature Conservancy model was deductive and based on published information and expert opinion, whereas the Wyoming Natural Diversity Database model was statistically derived using historical observation data. We randomly selected 187 evaluation survey points throughout southwestern Wyoming in areas predicted to be habitat and areas predicted to be nonhabitat for each model. The Nature Conservancy model correctly classified 39 of 77 (50.6%) unoccupied evaluation plots and 65 of 88 (73.9%) occupied plots for an overall classification success of 63.3%. The Wyoming Natural Diversity Database model correctly classified 53 of 95 (55.8%) unoccupied plots and 59 of 88 (67.0%) occupied plots for an overall classification success of 61.2%. Based on 95% asymptotic confidence intervals, classification success of the two models did not differ. The models jointly classified 10.8% of the area as habitat and 47.4% of the area as nonhabitat, but were discordant in classifying the remaining 41.9% of the area. To evaluate how anthropogenic development affected model predictive success, we surveyed 120 additional plots among three density levels of gas-field road networks. Classification success declined sharply for both models as road-density level increased beyond 5 km of roads per km-squared area. Both models were more effective at predicting habitat than nonhabitat in relatively undeveloped areas, and neither was effective at accounting for the effects of gas-energy-development road networks. Resource managers who wish to know the amount of pygmy rabbit habitat present in an

  15. A new species of Desmopachria Babington (Coleoptera: Dytiscidae) from Cuba with a prediction of its geographic distribution and notes on other Cuban species of the genus.

    Science.gov (United States)

    Megna, Yoandri S; Sánchez-Fernández, David

    2014-01-10

    A new species, Desmopachria andreae sp. n. is described from Cuba. Diagnostic characters including illustrations of male genitalia are provided and illustrated for the five species of the genus occurring on the island. For these five species both a simple key to adults and maps of their known distribution in Cuba are also provided. Using a Maximun Entropy method (MaxEnt), a distribution model was developed for D. andreae sp.n. Based on the model's predictions, this species has a higher probability of occurring in high altitude forests (above 1000 m a.s.l.), characterised by relatively low temperatures especially during the hottest and wettest seasons, specifically, the mountainous areas of the Macizo de Guamuhaya (Central Cuba), Sierra Maestra (S Cuba) and Nipe-Sagua-Baracoa (NE Cuba). In some of these areas the species has not yet been recorded, and should be searched for in future field surveys.

  16. Species distribution modeling for the invasive raccoon dog (Nyctereutes procyonoides) in Austria and first range predictions for alpine environments

    OpenAIRE

    Duscher Tanja; Nopp-Mayr Ursula

    2017-01-01

    Species distribution models are important tools for wildlife management planning, particularly in the case of invasive species. We employed a recent framework for niche-based invasive species distribution modeling to predict the probability of presence for the invasive raccoon dog (Nyctereutes procyonoides) in Austria. The raccoon dog is an adaptive, mobile and highly reproductive Asiatic canid that has successfully invaded many parts of Europe. It is known...

  17. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos.

    Science.gov (United States)

    Wang, Fan; Zhao, Hongwei; Xiang, Haiying; Wu, Lijun; Men, Xiao; Qi, Chang; Chen, Guoqiang; Zhang, Haibo; Wang, Yi; Xian, Mo

    2018-06-05

    Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.

  18. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models.

    Science.gov (United States)

    Syfert, Mindy M; Smith, Matthew J; Coomes, David A

    2013-01-01

    Species distribution models (SDMs) trained on presence-only data are frequently used in ecological research and conservation planning. However, users of SDM software are faced with a variety of options, and it is not always obvious how selecting one option over another will affect model performance. Working with MaxEnt software and with tree fern presence data from New Zealand, we assessed whether (a) choosing to correct for geographical sampling bias and (b) using complex environmental response curves have strong effects on goodness of fit. SDMs were trained on tree fern data, obtained from an online biodiversity data portal, with two sources that differed in size and geographical sampling bias: a small, widely-distributed set of herbarium specimens and a large, spatially clustered set of ecological survey records. We attempted to correct for geographical sampling bias by incorporating sampling bias grids in the SDMs, created from all georeferenced vascular plants in the datasets, and explored model complexity issues by fitting a wide variety of environmental response curves (known as "feature types" in MaxEnt). In each case, goodness of fit was assessed by comparing predicted range maps with tree fern presences and absences using an independent national dataset to validate the SDMs. We found that correcting for geographical sampling bias led to major improvements in goodness of fit, but did not entirely resolve the problem: predictions made with clustered ecological data were inferior to those made with the herbarium dataset, even after sampling bias correction. We also found that the choice of feature type had negligible effects on predictive performance, indicating that simple feature types may be sufficient once sampling bias is accounted for. Our study emphasizes the importance of reducing geographical sampling bias, where possible, in datasets used to train SDMs, and the effectiveness and essentialness of sampling bias correction within MaxEnt.

  19. A REVIEW OF SINGLE SPECIES TOXICITY TESTS: ARE THE TESTS RELIABLE PREDICTORS OF AQUATIC ECOSYSTEM COMMUNITY RESPONSES?

    Science.gov (United States)

    This document provides a comprehensive review to evaluate the reliability of indicator species toxicity test results in predicting aquatic ecosystem impacts, also called the ecological relevance of laboratory single species toxicity tests.

  20. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    Science.gov (United States)

    Iler, Amy M.; Høye, Toke T.; Inouye, David W.; Schmidt, Niels M.

    2013-01-01

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions. PMID:23836793

  1. Plastic responses to elevated temperature in low and high elevation populations of three grassland species.

    Science.gov (United States)

    Frei, Esther R; Ghazoul, Jaboury; Pluess, Andrea R

    2014-01-01

    Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.

  2. Choice of baseline climate data impacts projected species' responses to climate change.

    Science.gov (United States)

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  3. Diverse responses of species to landscape fragmentation in a simple food chain.

    Science.gov (United States)

    Liao, Jinbao; Bearup, Daniel; Blasius, Bernd

    2017-09-01

    Habitat destruction, characterized by habitat loss and fragmentation, is a key driver of species extinction in spatial extended communities. Recently, there has been some progress in the theory of spatial food webs, however to date practically little is known about how habitat configurational fragmentation influences multi-trophic food web dynamics. To explore how habitat fragmentation affects species persistence in food webs, we introduce a modelling framework that describes the site occupancy of species in a tri-trophic system. We assume that species dispersal range increases with trophic level, exploiting pair-approximation techniques to describe the effect of habitat clustering. In accordance with the trophic rank hypothesis, both habitat loss and fragmentation generally cause species extinction, with stronger effects occurring at higher trophic levels. However, species display diverse responses (negative, neutral or positive) to habitat loss and fragmentation separately, depending on their dispersal range and trophic position. Counter-intuitively, prey species may benefit from habitat loss due to a release in top-down control. Similarly, habitat fragmentation has almost no influence on the site occupancy of the intermediate consumer in the tri-trophic system, though it decreases those of both basal species and top predator. Consequently, species' responses to habitat destruction vary as other species become extinct. Our results reiterate the importance of the interplay between bottom-up and top-down control in trophically linked communities, and highlight the complex responses occurring in even a simple food chain. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  4. Sexual conflict predicts morphology and behavior in two species of penduline tits

    Directory of Open Access Journals (Sweden)

    Komdeur Jan

    2010-04-01

    Full Text Available Abstract Background The evolutionary interests of males and females rarely coincide (sexual conflict, and these conflicting interests influence morphology, behavior and speciation in various organisms. We examined consequences of variation in sexual conflict in two closely-related passerine birds with contrasting breeding systems: the Eurasian penduline tit Remiz pendulinus (EPT exhibiting a highly polygamous breeding system with sexually antagonistic interests over parental care, and the socially monogamous Cape penduline tit Anthoscopus minutus (CPT. We derived four a priori predictions from sexual conflict theory and tested these using data collected in Central Europe (EPT and South Africa (CPT. Firstly, we predicted that EPTs exhibit more sexually dimorphic plumage than CPTs due to more intense sexual selection. Secondly, we expected brighter EPT males to provide less care than duller males. Thirdly, since song is a sexually selected trait in many birds, male EPTs were expected to exhibit more complex songs than CPT males. Finally, intense sexual conflict in EPT was expected to lead to low nest attendance as an indication of sexually antagonistic interests, whereas we expected more cooperation between parents in CPT consistent with their socially monogamous breeding system. Results Consistent with our predictions EPTs exhibited greater sexual dimorphism in plumage and more complex song than CPTs, and brighter EPT males provided less care than duller ones. EPT parents attended the nest less frequently and less simultaneously than CPT parents. Conclusions These results are consistent with sexual conflict theory: species in which sexual conflict is more manifested (EPT exhibited a stronger sexual dimorphism and more elaborated sexually selected traits than species with less intense sexual conflict (CPT. Our results are also consistent with the notion that EPTs attempt to force their partner to work harder as expected under sexual conflict: each

  5. Sexual conflict predicts morphology and behavior in two species of penduline tits.

    Science.gov (United States)

    van Dijk, René E; Pogány, Akos; Komdeur, Jan; Lloyd, Penn; Székely, Tamás

    2010-04-23

    The evolutionary interests of males and females rarely coincide (sexual conflict), and these conflicting interests influence morphology, behavior and speciation in various organisms. We examined consequences of variation in sexual conflict in two closely-related passerine birds with contrasting breeding systems: the Eurasian penduline tit Remiz pendulinus (EPT) exhibiting a highly polygamous breeding system with sexually antagonistic interests over parental care, and the socially monogamous Cape penduline tit Anthoscopus minutus (CPT). We derived four a priori predictions from sexual conflict theory and tested these using data collected in Central Europe (EPT) and South Africa (CPT). Firstly, we predicted that EPTs exhibit more sexually dimorphic plumage than CPTs due to more intense sexual selection. Secondly, we expected brighter EPT males to provide less care than duller males. Thirdly, since song is a sexually selected trait in many birds, male EPTs were expected to exhibit more complex songs than CPT males. Finally, intense sexual conflict in EPT was expected to lead to low nest attendance as an indication of sexually antagonistic interests, whereas we expected more cooperation between parents in CPT consistent with their socially monogamous breeding system. Consistent with our predictions EPTs exhibited greater sexual dimorphism in plumage and more complex song than CPTs, and brighter EPT males provided less care than duller ones. EPT parents attended the nest less frequently and less simultaneously than CPT parents. These results are consistent with sexual conflict theory: species in which sexual conflict is more manifested (EPT) exhibited a stronger sexual dimorphism and more elaborated sexually selected traits than species with less intense sexual conflict (CPT). Our results are also consistent with the notion that EPTs attempt to force their partner to work harder as expected under sexual conflict: each member of the breeding pair attempts to shift the

  6. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  7. Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios

    NARCIS (Netherlands)

    González-Muñoz, N.; Linares, J.C.; Castro-Díez, P.; Sass-Klaassen, U.G.W.

    2014-01-01

    The climatic conditions predicted for the twenty-first century may aggravate the extent and impacts of plant invasions, by favouring those invaders more adapted to altered conditions or by hampering the native flora. We aim to predict the fate of native and invasive tree species in the oak forests

  8. Provenance-specific growth responses to drought and air warming in three European oak species

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Matthias; Kuster, Thomas; Gunthardt-Goerg, Madeleine S.; Dobbertin, Matthias

    2011-03-15

    This study evaluated oak growth responses to air warming through research conducted with species coming from climatically different sites submitted to differing climates including periodic drought and air warming. Results showed different responses to drought and air warming as an adaptation to the conditions, and differences in growth response from one provenance to another were found but local climate factors were not responsible. This study highlighted that provenance was important to growth responses and it will have to be taken into account for regeneration of oaks in a changed climate if these results are confirmed.

  9. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated ‘Omics Approach

    Directory of Open Access Journals (Sweden)

    Stephen R. Lindemann

    2017-06-01

    Full Text Available The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.

  10. Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness.

    Science.gov (United States)

    Bauer, Jonathan T; Koziol, Liz; Bever, James D

    2018-02-01

    Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species' sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species' reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root:shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history.

  11. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  12. Impacts of pesticide mixtures in European rivers as predicted by the Species Sensitivity Distribution (SSD) models and SPEAR bioindication

    Science.gov (United States)

    Jesenska, Sona; Liess, Mathias; Schäfer, Ralf; Beketov, Mikhail; Blaha, Ludek

    2013-04-01

    Species sensitivity distribution (SSD) is statistical method broadly used in the ecotoxicological risk assessment of chemicals. Originally it has been used for prospective risk assessment of single substances but nowadays it is becoming more important also in the retrospective risk assessment of mixtures, including the catchment scale. In the present work, SSD predictions (impacts of mixtures consisting of 25 pesticides; data from several catchments in Germany, France and Finland) were compared with SPEAR-pesticides, which a bioindicator index based on biological traits responsive to the effects of pesticides and post-contamination recovery. The results showed statistically significant correlations (Pearson's R, ppesticides (based on field biomonitoring observations). Comparisons of the thresholds established for the SSD and SPEAR approaches (SPEAR-pesticides=45%, i.e. LOEC level, and msPAF = 0.05 for SSD, i.e. HC5) showed that use of chronic toxicity data significantly improved the agreement between the two methods but the SPEAR-pesticides index was still more sensitive. Taken together, the validation study shows good potential of SSD models in predicting the real impacts of micropollutant mixtures on natural communities of aquatic biota.

  13. Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle.

    Science.gov (United States)

    Etxebeste, Iñaki; Lencina, José L; Pajares, Juan

    2013-10-01

    Some bark beetle species (Coleoptera: Scolytinae) produce aggregation pheromones that allow coordinated attack on their conifer hosts. As a new saproxylic habitat is founded, an assemblage of associated beetles kairomonally respond to bark beetle infochemicals. Ips sexdentatus is one of the major damaging insects of Pinus spp. in Southern Europe. Its response to varying ipsenol (Ie) percentages in relation to ipsdienol (Id) was studied in northwestern Spain, along with the entire saproxylic beetle assemblage captured at multiple-funnel traps. Response profile modeling was undertaken for I. sexdentatus sexes and sex-ratios, associated species and for selected trophic groups using a reference Gaussian model. In addition, the effects on the saproxylic assemblages were analyzed. I. sexdentatus response curve peaked at 22.7% Ie content, while remaining taxa that could be modeled, peaked above ca. 40% Ie. Predator guilds showed a linear relationship with Ie proportion, while competitors showed a delayed response peak. Consequently, species assemblages differed markedly between varying pheromone component mixtures. Given that the evaluated pheromonal proportions mimicked that of logs being colonized by I. sexdentatus, results suggested that the registered differential responses at different levels might provide I. sexdentatus with a temporal window that maximizes conspecific attraction while reducing interference with competitor and predatory guilds. Described responses might help improve the monitoring of the population status of target bark beetles and their associates, but also point toward the by-catch of many natural enemies, as well as rare saproxylic beetle species, interfering with the aims of sustainable forest management.

  14. Prediction of First-Order Vessel Responses with Applications to Decision Support Systems

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Iseki, Toshio

    2015-01-01

    The paper presents a practical and simple approach for making vessel response predictions. Features of the procedure include a) predictions which are scaled so to better agree with corresponding true, future values to be measured at the time the predictions apply at; and b) predictions that are a...

  15. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change.

    Science.gov (United States)

    Zhang, Keliang; Yao, Linjun; Meng, Jiasong; Tao, Jun

    2018-09-01

    Paeonia (Paeoniaceae), an economically important plant genus, includes many popular ornamentals and medicinal plant species used in traditional Chinese medicine. Little is known about the properties of the habitat distribution and the important eco-environmental factors shaping the suitability. Based on high-resolution environmental data for current and future climate scenarios, we modeled the present and future suitable habitat for P. delavayi and P. rockii by Maxent, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. The results showed that the moderate and high suitable areas for P. delavayi and P. rockii encompassed ca. 4.46×10 5 km 2 and 1.89×10 5 km 2 , respectively. Temperature seasonality and isothermality were identified as the most critical factors shaping P. delavayi distribution, and UVB-4 and annual precipitation were identified as the most critical for shaping P. rockii distribution. Under the scenario with a low concentration of greenhouse gas emissions (RCP2.6), the range of both species increased as global warming intensified; however, under the scenario with higher concentrations of emissions (RCP8.5), the suitable habitat range of P. delavayi decreased while P. rockii increased. Overall, our prediction showed that a shift in distribution of suitable habitat to higher elevations would gradually become more significant. The information gained from this study should provide a useful reference for implementing long-term conservation and management strategies for these species. Copyright © 2018. Published by Elsevier B.V.

  16. Dynamical behavior of a three species food chain model with Beddington-DeAngelis functional response

    International Nuclear Information System (INIS)

    Naji, Raid Kamel; Balasim, Alla Tariq

    2007-01-01

    A three species food chain model with Beddington-DeAngelis functional response is investigated. The local stability analysis is carried out and global behavior is simulated numerically for a biologically feasible choice of parameters. The persistence conditions of a food chain model are established. The bifurcation diagrams are obtained for different parameters of the model after intensive numerical simulations. The results of simulations show that the model could exhibit chaotic dynamics for realistic and biologically feasible parametric values. Finally, the effect of immigration within prey species is investigated. It is observed that adding small amount of constant immigration to prey species stabilize the system

  17. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    International Nuclear Information System (INIS)

    Tulard, A.

    2004-06-01

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  18. Assessing landscape constraints on species abundance: Does the neighborhood limit species response to local habitat conservation programs?

    Science.gov (United States)

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffrey J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants.

  19. Interplay between subsurface structural heterogeneity and multi-species reactive transport in human health risk predictions

    Science.gov (United States)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2013-12-01

    The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and to the need to develop and employ models that can predict the impact of groundwater contamination in human health under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases and represents an attractive decontamination method. However, natural attenuation can lead to the production of subspecies of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health and ecosystems greatly depends on the interplay between the complexity of the geological system and the toxicity of the pollutants and their byproducts. In this work, we examine the interplay between multispecies reactive transport and the heterogeneous structure of the contaminated aquifer on human health risk predictions. The structure and organization of hydraulic properties of the aquifer can lead to preferential flow channels and fast contamination pathways. Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in the case of multi-species systems, early travel times may also lead a limited production of daughter species that may contain higher toxicity as in the case of chlorinated compounds. In this work, we model a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport for two distinct three-dimensional aquifer structures. First, a multi-Gaussian hydraulic conductivity field and secondly, a geostatistically equivalent connected field. These two heterogeneity structures will provide two distinct ranges of mean travel

  20. Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2016-08-01

    The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures. The goal of the study reported here was to build a more comprehensive understanding of the effects of mean temperature, low-temperature extremes, shading, and their interactions on seedling survival at tropical treelines. We conducted a seedling transplant study using three dominant canopy-forming treeline species in the southern tropical Andes. We found species-specific differences and contrasting responses in seedling survival to changes in mean temperature. The most abundant naturally occurring species at the seedling stage outside the treeline, Weinmannia fagaroides, showed a negative relationship between the survival of transplanted seedlings and mean temperature, the opposite of a priori expectations. Conversely, Clethra cuneata showed increased survival at higher mean temperatures, but survival also increased with higher absolute low temperatures and the presence of shade. Finally, the survival of Gynoxys nitida seedlings was insensitive to temperature but increased under shade. These findings show that multiple factors can determine the upper distributional limit of species forming the current tropical treeline. As such, predictions of future local and regional tropical treeline shifts may need to consider several factors beyond changes in mean temperature. If the treeline remains stationary and cloud forests are unable to expand into higher elevations, there may be severe species loss in this biodiversity hotspot.

  1. Predictions for an invaded world: A strategy to predict the distribution of native and non-indigenous species at multiple scales

    Science.gov (United States)

    Reusser, D.A.; Lee, H.

    2008-01-01

    Habitat models can be used to predict the distributions of marine and estuarine non-indigenous species (NIS) over several spatial scales. At an estuary scale, our goal is to predict the estuaries most likely to be invaded, but at a habitat scale, the goal is to predict the specific locations within an estuary that are most vulnerable to invasion. As an initial step in evaluating several habitat models, model performance for a suite of benthic species with reasonably well-known distributions on the Pacific coast of the US needs to be compared. We discuss the utility of non-parametric multiplicative regression (NPMR) for predicting habitat- and estuary-scale distributions of native and NIS. NPMR incorporates interactions among variables, allows qualitative and categorical variables, and utilizes data on absence as well as presence. Preliminary results indicate that NPMR generally performs well at both spatial scales and that distributions of NIS are predicted as well as those of native species. For most species, latitude was the single best predictor, although similar model performance could be obtained at both spatial scales with combinations of other habitat variables. Errors of commission were more frequent at a habitat scale, with omission and commission errors approximately equal at an estuary scale. ?? 2008 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.

  2. Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species

    DEFF Research Database (Denmark)

    Stanton-Geddes, John; Nguyen, Andrew; Chick, Lacy

    2016-01-01

    across an experimental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal breadth.......The distributions of species and their responses to climate change are in part determined by their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary extension of thermal limits is accomplished through enhanced cellular stress response...

  3. Response of Microtermes mycophagus (Isoptera: Termitidae to twenty one wood species

    Directory of Open Access Journals (Sweden)

    Naeem Iqbal

    2015-08-01

    Full Text Available The responses of termite species to bait depend upon the quality of the food used in the stations. Woods are the most common food sources for termites but different termite species behave differently to different wood species and types. The knowledge of the preference status of different wood species to a termite species helps in effective monitoring and baiting program. The current study was carried out to evaluate the preference of 21 wood species to the termite, Microtermes mycophagus in the field by no-choice and choice feeding tests. The results indicated silk cotton tree and sacred fig woods as the most preferred wood species with mean mass losses of 71.21 ± 5.09% and 68.38 ± 7.27% in no-choice test and 95.02 ± 1.65% and 91.69 ± 2.07% in choice tests, respectively. White cedar was the least preferred wood species with mean mass losses of 7.49 ± 1.64% and 13.92 ± 1.89% in no choice and choice feeding tests, respectively. Based on present studies, sapwood of silk cotton tree and sacred fig may be used in effective monitoring and baiting program against M. mycophagus.

  4. The initial phase of a Longleaf Pine-Wiregrass Savanna restoration: species establishment and community responses.

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.

    2010-09-01

    AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non-matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in June 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 ×3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.

  5. The PGI enzyme system and fitness response to temperature as a measure of environmental tolerance in an invasive species

    Directory of Open Access Journals (Sweden)

    Marie-Caroline Lefort

    2014-11-01

    Full Text Available In the field of invasion ecology, the determination of a species’ environmental tolerance, is a key parameter in the prediction of its potential distribution, particularly in the context of global warming. In poikilothermic species such as insects, temperature is often considered the most important abiotic factor that affects numerous life-history and fitness traits through its effect on metabolic rate. Therefore the response of an insect to challenging temperatures may provide key information as to its climatic and therefore spatial distribution. Variation in the phosphoglucose-6-isomerase (PGI metabolic enzyme-system has been proposed in some insects to underlie their relative fitness, and is recognised as a key enzyme in their thermal adaptation. However, in this context it has not been considered as a potential mechanism contributing to a species invasive cability. The present study aimed to compare the thermal tolerance of an invasive scarabaeid beetle, Costelytra zealandica (White with that of the closely related, and in part sympatrically occurring, congeneric non-invasive species C. brunneum (Broun, and to consider whether any correlation with particular PGI genotypes was apparent. Third instar larvae of each species were exposed to one of three different temperatures (10, 15 and 20 °C over six weeks and their fitness (survival and growth rate measured and PGI phenotyping performed via cellulose acetate electrophoresis. No consistent relationship between PGI genotypes and fitness was detected, suggesting that PGI may not be contributing to the invasion success and pest status of C. zealandica.

  6. Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?

    KAUST Repository

    Marques, Ana; Piló , David; Araú jo, Olinda; Pereira, Fá bio; Guilherme, Sofia; Carvalho, Susana; Santos, Maria Ana; Pacheco, Má rio; Pereira, Patrí cia

    2016-01-01

    and antioxidant system responses of two benthic organisms (Cerastoderma edule, Bivalvia; Nephtys hombergii, Polychaeta). This approach will provide clarifications about the ability of each species to signalise metal contamination. Organisms of both species were

  7. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species

    Science.gov (United States)

    Vaz Patto, Maria Carlota; Rubiales, Diego

    2014-01-01

    Little is known about the nature of effective defense mechanisms in legumes to pathogens of remotely related plant species. Some rust species are among pathogens with broad host range causing dramatic losses in various crop plants. To understand and compare the different host and nonhost resistance (NHR) responses of legume species against rusts, we characterized the reaction of the model legume Medicago truncatula to one appropriate (Uromyces striatus) and two inappropriate (U. viciae-fabae and U. lupinicolus) rusts. We found that similar pre and post-haustorial mechanisms of resistance appear to be operative in M. truncatula against appropriate and inappropriate rust fungus. The appropriate U. striatus germinated better on M. truncatula accessions then the inappropriate U. viciae-fabae and U. lupinicolus, but once germinated, germ tubes of the three rusts had a similar level of success in finding stomata and forming an appressoria over a stoma. However, responses to different inappropriate rust species also showed some specificity, suggesting a combination of non-specific and specific responses underlying this legume NHR to rust fungi. Further genetic and expression analysis studies will contribute to the development of the necessary molecular tools to use the present information on host and NHR mechanisms to breed for broad-spectrum resistance to rust in legume species. PMID:25426128

  8. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species

    Directory of Open Access Journals (Sweden)

    Maria Carlota eVaz Patto

    2014-11-01

    Full Text Available Little is known about the nature of effective defense mechanisms in legumes to pathogens of remotely related plant species. Some rust species are among pathogens with broad host range causing dramatic losses in various crop plants. To understand and compare the different host and nonhost resistance responses of legume species against rusts, we characterized the reaction of the model legume Medicago truncatula to one appropriate (Uromyces striatus and two inappropriate (U. viciae-fabae and U. lupinicolus rusts. We found that similar pre and post-haustorial mechanisms of resistance appear to be operative in M. truncatula against appropriate and inappropriate rust fungus. The appropriate U. striatus germinated better on M. truncatula accessions then the inappropriate U. viciae-fabae and U. lupinicolus, but once germinated, germ tubes of the three rusts had a similar level of success in finding stomata and forming an appressoria over a stoma. However responses to different inappropriate rust species also showed some specificity, suggesting a combination of non specific and specific responses underlying this legume nonhost resistance to rust fungi. Further genetic and expression analysis studies will contribute to the development of the necessary molecular tools to use the present information on host and nonhost resistance mechanisms to breed for broad-spectrum resistance to rust in legume species.

  9. Determining light stress responses for a tropical multi-species seagrass assemblage.

    Science.gov (United States)

    Statton, John; McMahon, Kathryn; Lavery, Paul; Kendrick, Gary A

    2018-03-01

    Existing mitigations to address deterioration in water clarity associated with human activities are based on responses from single seagrass species but may not be appropriate for diverse seagrass assemblages common to tropical waters. We present findings from a light experiment designed to determine the effects of magnitude and duration of low light on a mixed tropical seagrass assemblage. Mixed assemblages of three commonly co-occurring Indo-West Pacific seagrasses, Cymodocea serrulata, Halodule uninervis and Halophila ovalis were grown in climate-controlled tanks, where replicate pots were subjected to a gradient in light availability (0.9-21.6 mols PAR m -2 day -1 ) for 12 weeks. Increased shading resulted in declines in growth and changes in cellular and photosynthesis responses for all species, although time-scale and magnitude of response were species-specific. Applying management criteria (e.g. thresholds) relevant to one species may under- or over-estimate potential for impact on other species and the meadow as a whole. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Responsiveness of performance and morphological traits to experimental submergence predicts field distribution pattern of wetland plants

    NARCIS (Netherlands)

    Luo, Fang-Li; Huang, Lin; Lei, Ting; Xue, Wei; Li, Hong-Li; Yu, Fei-Hai; Cornelissen, J.H.C.

    2016-01-01

    Question: Plant trait mean values and trait responsiveness to different environmental regimes are both important determinants of plant field distribution, but the degree to which plant trait means vs trait responsiveness predict plant distribution has rarely been compared quantitatively. Because

  11. Prepotent response inhibition predicts treatment outcome in attention deficit/hyperactivity disorder

    NARCIS (Netherlands)

    van der Oord, S.; Geurts, H.M.; Prins, P.J.M.; Emmelkamp, P.M.G.; Oosterlaan, J.

    2012-01-01

    Objective: Inhibition deficits, including deficits in prepotent response inhibition and interference control, are core deficits in ADHD. The predictive value of prepotent response inhibition and interference control was assessed for outcome in a 10-week treatment trial with methylphenidate. Methods:

  12. Population differentiation in tree-ring growth response of white fir (Abies concolor) to climate: Implications for predicting forest responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Deborah Bowne [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    Forest succession models and correlative models have predicted 200--650 kilometer shifts in the geographic range of temperate forests and forest species as one response to global climate change. Few studies have investigated whether population differences may effect the response of forest species to climate change. This study examines differences in tree-ring growth, and in the phenotypic plasticity of tree-ring growth in 16-year old white fir, Abies concolor, from ten populations grown in four common gardens in the Sierra Nevada of California. For each population, tree-ring growth was modelled as a function of precipitation and degree-day sums. Tree-ring growth under three scenarios of doubled CO2 climates was estimated.

  13. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    Directory of Open Access Journals (Sweden)

    A Michelle Lawing

    Full Text Available Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models, phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species, and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr than it has been on average for the past 320 ky (2.3 m/yr.

  14. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    International Nuclear Information System (INIS)

    Calatayud, Vicent; Cervero, Julia; Calvo, Esperanza; Garcia-Breijo, Francisco-Jose; Reig-Arminana, Jose; Sanz, Maria Jose

    2011-01-01

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD 1.6 ) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  15. Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: calatayud_viclor@gva.e [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Cervero, Julia; Calvo, Esperanza [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Garcia-Breijo, Francisco-Jose [Laboratorio de Anatomia e Histologia Vegetal ' Julio Iranzo' , Jardin Botanico, Universitat de Valencia, c/Quart 80, 46008 Valencia (Spain); Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Reig-Arminana, Jose [Departamento de Ecosistemas Agroforestales, Escuela Tecnica Superior del Medio Rural y Enologia, Universidad Politecnica de Valencia, Avda. Blasco Ibanez 21, 46010 Valencia (Spain); Sanz, Maria Jose [Instituto Universitario CEAM-UMH, Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain)

    2011-01-15

    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD{sub 1.6}) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. - Ozone tolerance overlapped with leaf traits in four Quercus species.

  16. Divergent hormonal responses to social competition in closely related species of haplochromine cichlid fish

    NARCIS (Netherlands)

    Dijkstra, Peter D.; Verzijden, Machteld N.; Groothuis, Ton G. G.; Hofmann, Hans A.

    The diverse cichlid species flocks of the East African lakes provide a classical example of adaptive radiation. Territorial aggression is thought to influence the evolution of phenotypic diversity in this system. Most vertebrates mount hormonal (androgen, glucocorticoid) responses to a territorial

  17. Parallel responses of species and genetic diversities of Indonesian butterflies to disturbance in tropical rainforests

    NARCIS (Netherlands)

    Fauvelot, C.Y.; Cleary, D.F.R.; Menken, S.B.J.

    2007-01-01

    Cécile Fauvelot1,2, Daniel F.R Cleary2,3, and Steph B.J Menken2. Parallel responses of species and genetic diversities of Indonesian butterflies to disturbance in tropical rainforests. 1Environmental Science, University of Bologna at Ravenna, Via S. Alberto 163, I-48100 Ravenna, Italia; 2Institute

  18. Conservation of the response regulator gene gacA in Pseudomonas species

    NARCIS (Netherlands)

    Souza, J.T.; Mazzola, M.; Raaijmakers, J.M.

    2003-01-01

    The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains

  19. Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Hansen, P.J.; Larsen, J.

    2000-01-01

    The effect of irradiance on growth and grazing responses of 2 phagotrophic dinoflagellates, Gymnodinium gracilentum Campbell 1973 and Amphidinium poecilochroum Larsen 1985, was studied. While G. gracilentum belongs to the plankton, A. poecilochroum is a benthic species that primarily feeds on prey...

  20. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    Science.gov (United States)

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  1. XenDB: Full length cDNA prediction and cross species mapping in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Giegerich Robert

    2005-09-01

    Full Text Available Abstract Background Research using the model system Xenopus laevis has provided critical insights into the mechanisms of early vertebrate development and cell biology. Large scale sequencing efforts have provided an increasingly important resource for researchers. To provide full advantage of the available sequence, we have analyzed 350,468 Xenopus laevis Expressed Sequence Tags (ESTs both to identify full length protein encoding sequences and to develop a unique database system to support comparative approaches between X. laevis and other model systems. Description Using a suffix array based clustering approach, we have identified 25,971 clusters and 40,877 singleton sequences. Generation of a consensus sequence for each cluster resulted in 31,353 tentative contig and 4,801 singleton sequences. Using both BLASTX and FASTY comparison to five model organisms and the NR protein database, more than 15,000 sequences are predicted to encode full length proteins and these have been matched to publicly available IMAGE clones when available. Each sequence has been compared to the KOG database and ~67% of the sequences have been assigned a putative functional category. Based on sequence homology to mouse and human, putative GO annotations have been determined. Conclusion The results of the analysis have been stored in a publicly available database XenDB http://bibiserv.techfak.uni-bielefeld.de/xendb/. A unique capability of the database is the ability to batch upload cross species queries to identify potential Xenopus homologues and their associated full length clones. Examples are provided including mapping of microarray results and application of 'in silico' analysis. The ability to quickly translate the results of various species into 'Xenopus-centric' information should greatly enhance comparative embryological approaches. Supplementary material can be found at http://bibiserv.techfak.uni-bielefeld.de/xendb/.

  2. Can brain responses to movie trailers predict success?

    OpenAIRE

    Boksem, Maarten

    2015-01-01

    textabstractDecades of research have shown that much of our mental processing occurs at the subconscious level, including the decisions we make as consumers. These subconscious processes explain why we so often fail to accurately predict our own future choices. Often what we think we want has little or no bearing on the choices we actually make. Now a new study provides the first evidence that brain measures can provide significant added value to models for predicting consumer choice.

  3. Life history theory predicts fish assemblage response to hydrologic regimes.

    Science.gov (United States)

    Mims, Meryl C; Olden, Julian D

    2012-01-01

    The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.

  4. Space Use Variation in Co-Occurring Sister Species: Response to Environmental Variation or Competition?

    Science.gov (United States)

    Dufour, Claire M. S.; Meynard, Christine; Watson, Johan; Rioux, Camille; Benhamou, Simon; Perez, Julie; du Plessis, Jurie J.; Avenant, Nico; Pillay, Neville; Ganem, Guila

    2015-01-01

    Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence. PMID:25693176

  5. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude.

    Science.gov (United States)

    Hoiland, Ryan L; Foster, Glen E; Donnelly, Joseph; Stembridge, Mike; Willie, Chris K; Smith, Kurt J; Lewis, Nia C; Lucas, Samuel J E; Cotter, Jim D; Yeoman, David J; Thomas, Kate N; Day, Trevor A; Tymko, Mike M; Burgess, Keith R; Ainslie, Philip N

    2015-07-01

    The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA), HVR at SL may not predict PASP at HA. We hypothesized that resting oxygen saturation as measured by pulse oximetry (Spo₂) at HA would correlate better than HVR at SL with PASP at HA. In 20 participants at SL, we measured normobaric, isocapnic HVR (L/min · -%Spo₂⁻¹) and resting PASP using echocardiography. Both resting Spo₂ and PASP measures were repeated on day 2 (n = 10), days 4 to 8 (n = 12), and 2 to 3 weeks (n = 8) after arrival at 5,050 m. These data were also collected at 5,050 m in life-long HA residents (ie, Sherpa [n = 21]). Compared with SL, Spo₂ decreased from 98.6% to 80.5% (P HVR at SL was not related to Spo₂ or PASP at any time point at 5,050 m (all P > .05). Sherpa had lower PASP (P .50), there was a weak relationship in the Sherpa (R² = 0.16, P = .07). We conclude that neither HVR at SL nor resting Spo₂ at HA correlates with elevations in PASP at HA.

  6. Predicting Douglas-fir's response to a warming climate

    Science.gov (United States)

    Andrea Watts; Sheel Bansal; Connie Harrington; Brad. St. Clair

    2015-01-01

    Douglas-fir is an iconic tree in the Pacific Northwest. Although individual trees may appear to be identical, genetic differences within each tree have resulted from adaptation to the local environment. These genetic differences over time have resulted in differences among populations that are important to the species' survival and growth in changing climates....

  7. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence

    Directory of Open Access Journals (Sweden)

    Chunrong Mi

    2017-01-01

    Full Text Available Species distribution models (SDMs have become an essential tool in ecology, biogeography, evolution and, more recently, in conservation biology. How to generalize species distributions in large undersampled areas, especially with few samples, is a fundamental issue of SDMs. In order to explore this issue, we used the best available presence records for the Hooded Crane (Grus monacha, n = 33, White-naped Crane (Grus vipio, n = 40, and Black-necked Crane (Grus nigricollis, n = 75 in China as three case studies, employing four powerful and commonly used machine learning algorithms to map the breeding distributions of the three species: TreeNet (Stochastic Gradient Boosting, Boosted Regression Tree Model, Random Forest, CART (Classification and Regression Tree and Maxent (Maximum Entropy Models. In addition, we developed an ensemble forecast by averaging predicted probability of the above four models results. Commonly used model performance metrics (Area under ROC (AUC and true skill statistic (TSS were employed to evaluate model accuracy. The latest satellite tracking data and compiled literature data were used as two independent testing datasets to confront model predictions. We found Random Forest demonstrated the best performance for the most assessment method, provided a better model fit to the testing data, and achieved better species range maps for each crane species in undersampled areas. Random Forest has been generally available for more than 20 years and has been known to perform extremely well in ecological predictions. However, while increasingly on the rise, its potential is still widely underused in conservation, (spatial ecological applications and for inference. Our results show that it informs ecological and biogeographical theories as well as being suitable for conservation applications, specifically when the study area is undersampled. This method helps to save model-selection time and effort, and allows robust and rapid

  8. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence.

    Science.gov (United States)

    Mi, Chunrong; Huettmann, Falk; Guo, Yumin; Han, Xuesong; Wen, Lijia

    2017-01-01

    Species distribution models (SDMs) have become an essential tool in ecology, biogeography, evolution and, more recently, in conservation biology. How to generalize species distributions in large undersampled areas, especially with few samples, is a fundamental issue of SDMs. In order to explore this issue, we used the best available presence records for the Hooded Crane ( Grus monacha , n  = 33), White-naped Crane ( Grus vipio , n  = 40), and Black-necked Crane ( Grus nigricollis , n  = 75) in China as three case studies, employing four powerful and commonly used machine learning algorithms to map the breeding distributions of the three species: TreeNet (Stochastic Gradient Boosting, Boosted Regression Tree Model), Random Forest, CART (Classification and Regression Tree) and Maxent (Maximum Entropy Models). In addition, we developed an ensemble forecast by averaging predicted probability of the above four models results. Commonly used model performance metrics (Area under ROC (AUC) and true skill statistic (TSS)) were employed to evaluate model accuracy. The latest satellite tracking data and compiled literature data were used as two independent testing datasets to confront model predictions. We found Random Forest demonstrated the best performance for the most assessment method, provided a better model fit to the testing data, and achieved better species range maps for each crane species in undersampled areas. Random Forest has been generally available for more than 20 years and has been known to perform extremely well in ecological predictions. However, while increasingly on the rise, its potential is still widely underused in conservation, (spatial) ecological applications and for inference. Our results show that it informs ecological and biogeographical theories as well as being suitable for conservation applications, specifically when the study area is undersampled. This method helps to save model-selection time and effort, and allows robust and rapid

  9. A predictive control scheme for automated demand response mechanisms

    NARCIS (Netherlands)

    Lampropoulos, I.; Bosch, van den P.P.J.; Kling, W.L.

    2012-01-01

    The development of demand response mechanisms can provide a considerable option for the integration of renewable energy sources and the establishment of efficient generation and delivery of electrical power. The full potential of demand response can be significant, but its exploration still remains

  10. Seedling emergence response of rare arable plants to soil tillage varies by species.

    Science.gov (United States)

    Torra, Joel; Recasens, Jordi; Royo-Esnal, Aritz

    2018-01-01

    Very little information is available on emergence of rare arable plants (RAP) in relation to soil disturbance and seed burial conditions in Europe. This information is essential to design conservation and soil management strategies to prevent the decline of these species in agroecosystems. The objective of this research was to investigate the effect of soil cultivation with burial time on the emergence and seed persistence of RAP. Seeds of 30 RAP species were collected from Spanish arable fields and subjected to two tillage treatments: (a) no soil disturbance, and (b) autumnal soil disturbance down to 10 cm depth every year. The treatments simulated no-till and tilled (disking), respectively. In plots under no-till, RAP seeds were sown at 1-cm depth. In the tilled plots, seeds were sown homogeneously mixed in the top 1-10 cm of soil. The trial was established every two consecutive seasons, and each trial was maintained for two years. Annual cumulative plant emergence was calculated each year; whereas the first trial was monitored for a third year to estimate seed longevity using a persistence index. The response in emergence of the 30 RAP to annual tillage varied among species. With burial time (number of years), higher emergence was observed for seeds sown in tilled soil. This was true across all species, and with strong season effects. The persistence index was correlated with seed weight, species with bigger seeds had low persistence indices while no pattern was observed for small seeded species. Most RAP species, particularly those with high persistence, showed induction of secondary dormancy processes, highlighting the importance of tillage to promote RAP emergence, and hence, seed bank replenishment. Therefore, as time passes the absence of soil tillage may represent a driver of RAP seed bank decline for those species with secondary dormancy processes. In conclusion, it is important to design soil management strategies, such as regular tillage to promote

  11. 5-HTTLPR differentially predicts brain network responses to emotional faces

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Grady, Cheryl L; Madsen, Martin K

    2015-01-01

    The effects of the 5-HTTLPR polymorphism on neural responses to emotionally salient faces have been studied extensively, focusing on amygdala reactivity and amygdala-prefrontal interactions. Despite compelling evidence that emotional face paradigms engage a distributed network of brain regions...... to fearful faces was significantly greater in S' carriers compared to LA LA individuals. These findings provide novel evidence for emotion-specific 5-HTTLPR effects on the response of a distributed set of brain regions including areas responsive to emotionally salient stimuli and critical components...... involved in emotion, cognitive and visual processing, less is known about 5-HTTLPR effects on broader network responses. To address this, we evaluated 5-HTTLPR differences in the whole-brain response to an emotional faces paradigm including neutral, angry and fearful faces using functional magnetic...

  12. Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors

    Science.gov (United States)

    Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean

    2016-01-01

    A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?

  13. Improved Transient Response Estimations in Predicting 40 Hz Auditory Steady-State Response Using Deconvolution Methods

    Directory of Open Access Journals (Sweden)

    Xiaodan Tan

    2017-12-01

    Full Text Available The auditory steady-state response (ASSR is one of the main approaches in clinic for health screening and frequency-specific hearing assessment. However, its generation mechanism is still of much controversy. In the present study, the linear superposition hypothesis for the generation of ASSRs was investigated by comparing the relationships between the classical 40 Hz ASSR and three synthetic ASSRs obtained from three different templates for transient auditory evoked potential (AEP. These three AEPs are the traditional AEP at 5 Hz and two 40 Hz AEPs derived from two deconvolution algorithms using stimulus sequences, i.e., continuous loop averaging deconvolution (CLAD and multi-rate steady-state average deconvolution (MSAD. CLAD requires irregular inter-stimulus intervals (ISIs in the sequence while MSAD uses the same ISIs but evenly-spaced stimulus sequences which mimics the classical 40 Hz ASSR. It has been reported that these reconstructed templates show similar patterns but significant difference in morphology and distinct frequency characteristics in synthetic ASSRs. The prediction accuracies of ASSR using these templates show significant differences (p < 0.05 in 45.95, 36.28, and 10.84% of total time points within four cycles of ASSR for the traditional, CLAD, and MSAD templates, respectively, as compared with the classical 40 Hz ASSR, and the ASSR synthesized from the MSAD transient AEP suggests the best similarity. And such a similarity is also demonstrated at individuals only in MSAD showing no statistically significant difference (Hotelling's T2 test, T2 = 6.96, F = 0.80, p = 0.592 as compared with the classical 40 Hz ASSR. The present results indicate that both stimulation rate and sequencing factor (ISI variation affect transient AEP reconstructions from steady-state stimulation protocols. Furthermore, both auditory brainstem response (ABR and middle latency response (MLR are observed in contributing to the composition of ASSR but

  14. Taking a comparative approach: analysing personality as a multivariate behavioural response across species.

    Directory of Open Access Journals (Sweden)

    Alecia J Carter

    Full Text Available Animal personality, repeatable behaviour through time and across contexts, is ecologically and evolutionarily important as it can account for the exhibition of sub-optimal behaviours. Interspecific comparisons have been suggested as important for understanding the evolution of animal personality; however, these are seldom accomplished due, in part, to the lack of statistical tools for quantifying differences and similarities in behaviour between groups of individuals. We used nine species of closely-related coral reef fishes to investigate the usefulness of ecological community analyses for the analysis of between-species behavioural differences and behavioural heterogeneity. We first documented behavioural carryover across species by observing the fishes' behaviour and measuring their response to a threatening stimulus to quantify boldness. Bold fish spent more time away from the reef and fed more than shy fish. We then used ecological community analysis tools (canonical variate analysis, multi-response permutation procedure, and permutational analysis of multivariate dispersion and identified four 'clusters' of behaviourally similar fishes, and found that the species differ in the behavioural variation expressed; some species are more behaviourally heterogeneous than others. We found that ecological community analysis tools are easily and fruitfully applied to comparative studies of personality and encourage their use by future studies.

  15. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project.

    Science.gov (United States)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I; Bedford, Felicity E; Bennett, Dominic J; Booth, Hollie; Burton, Victoria J; Chng, Charlotte W T; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Emerson, Susan R; Gao, Di; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; Pask-Hale, Gwilym D; Pynegar, Edwin L; Robinson, Alexandra N; Sanchez-Ortiz, Katia; Senior, Rebecca A; Simmons, Benno I; White, Hannah J; Zhang, Hanbin; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Albertos, Belén; Alcala, E L; Del Mar Alguacil, Maria; Alignier, Audrey; Ancrenaz, Marc; Andersen, Alan N; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Arroyo-Rodríguez, Víctor; Aumann, Tom; Axmacher, Jan C; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Bakayoko, Adama; Báldi, András; Banks, John E; Baral, Sharad K; Barlow, Jos; Barratt, Barbara I P; Barrico, Lurdes; Bartolommei, Paola; Barton, Diane M; Basset, Yves; Batáry, Péter; Bates, Adam J; Baur, Bruno; Bayne, Erin M; Beja, Pedro; Benedick, Suzan; Berg, Åke; Bernard, Henry; Berry, Nicholas J; Bhatt, Dinesh; Bicknell, Jake E; Bihn, Jochen H; Blake, Robin J; Bobo, Kadiri S; Bóçon, Roberto; Boekhout, Teun; Böhning-Gaese, Katrin; Bonham, Kevin J; Borges, Paulo A V; Borges, Sérgio H; Boutin, Céline; Bouyer, Jérémy; Bragagnolo, Cibele; Brandt, Jodi S; Brearley, Francis Q; Brito, Isabel; Bros, Vicenç; Brunet, Jörg; Buczkowski, Grzegorz; Buddle, Christopher M; Bugter, Rob; Buscardo, Erika; Buse, Jörn; Cabra-García, Jimmy; Cáceres, Nilton C; Cagle, Nicolette L; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Caparrós, Rut; Cardoso, Pedro; Carpenter, Dan; Carrijo, Tiago F; Carvalho, Anelena L; Cassano, Camila R; Castro, Helena; Castro-Luna, Alejandro A; Rolando, Cerda B; Cerezo, Alexis; Chapman, Kim Alan; Chauvat, Matthieu; Christensen, Morten; Clarke, Francis M; Cleary, Daniel F R; Colombo, Giorgio; Connop, Stuart P; Craig, Michael D; Cruz-López, Leopoldo; Cunningham, Saul A; D'Aniello, Biagio; D'Cruze, Neil; da Silva, Pedro Giovâni; Dallimer, Martin; Danquah, Emmanuel; Darvill, Ben; Dauber, Jens; Davis, Adrian L V; Dawson, Jeff; de Sassi, Claudio; de Thoisy, Benoit; Deheuvels, Olivier; Dejean, Alain; Devineau, Jean-Louis; Diekötter, Tim; Dolia, Jignasu V; Domínguez, Erwin; Dominguez-Haydar, Yamileth; Dorn, Silvia; Draper, Isabel; Dreber, Niels; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Eggleton, Paul; Eigenbrod, Felix; Elek, Zoltán; Entling, Martin H; Esler, Karen J; de Lima, Ricardo F; Faruk, Aisyah; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Fensham, Roderick J; Fernandez, Ignacio C; Ferreira, Catarina C; Ficetola, Gentile F; Fiera, Cristina; Filgueiras, Bruno K C; Fırıncıoğlu, Hüseyin K; Flaspohler, David; Floren, Andreas; Fonte, Steven J; Fournier, Anne; Fowler, Robert E; Franzén, Markus; Fraser, Lauchlan H; Fredriksson, Gabriella M; Freire, Geraldo B; Frizzo, Tiago L M; Fukuda, Daisuke; Furlani, Dario; Gaigher, René; Ganzhorn, Jörg U; García, Karla P; Garcia-R, Juan C; Garden, Jenni G; Garilleti, Ricardo; Ge, Bao-Ming; Gendreau-Berthiaume, Benoit; Gerard, Philippa J; Gheler-Costa, Carla; Gilbert, Benjamin; Giordani, Paolo; Giordano, Simonetta; Golodets, Carly; Gomes, Laurens G L; Gould, Rachelle K; Goulson, Dave; Gove, Aaron D; Granjon, Laurent; Grass, Ingo; Gray, Claudia L; Grogan, James; Gu, Weibin; Guardiola, Moisès; Gunawardene, Nihara R; Gutierrez, Alvaro G; Gutiérrez-Lamus, Doris L; Haarmeyer, Daniela H; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hassan, Shombe N; Hatfield, Richard G; Hawes, Joseph E; Hayward, Matt W; Hébert, Christian; Helden, Alvin J; Henden, John-André; Henschel, Philipp; Hernández, Lionel; Herrera, James P; Herrmann, Farina; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Höfer, Hubert; Hoffmann, Anke; Horgan, Finbarr G; Hornung, Elisabeth; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishida, Hiroaki; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Hernández, F Jiménez; Johnson, McKenzie F; Jolli, Virat; Jonsell, Mats; Juliani, S Nur; Jung, Thomas S; Kapoor, Vena; Kappes, Heike; Kati, Vassiliki; Katovai, Eric; Kellner, Klaus; Kessler, Michael; Kirby, Kathryn R; Kittle, Andrew M; Knight, Mairi E; Knop, Eva; Kohler, Florian; Koivula, Matti; Kolb, Annette; Kone, Mouhamadou; Kőrösi, Ádám; Krauss, Jochen; Kumar, Ajith; Kumar, Raman; Kurz, David J; Kutt, Alex S; Lachat, Thibault; Lantschner, Victoria; Lara, Francisco; Lasky, Jesse R; Latta, Steven C; Laurance, William F; Lavelle, Patrick; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Lehouck, Valérie; Lencinas, María V; Lentini, Pia E; Letcher, Susan G; Li, Qi; Litchwark, Simon A; Littlewood, Nick A; Liu, Yunhui; Lo-Man-Hung, Nancy; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Luskin, Matthew S; MacSwiney G, M Cristina; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Malone, Louise A; Malonza, Patrick K; Malumbres-Olarte, Jagoba; Mandujano, Salvador; Måren, Inger E; Marin-Spiotta, Erika; Marsh, Charles J; Marshall, E J P; Martínez, Eliana; Martínez Pastur, Guillermo; Moreno Mateos, David; Mayfield, Margaret M; Mazimpaka, Vicente; McCarthy, Jennifer L; McCarthy, Kyle P; McFrederick, Quinn S; McNamara, Sean; Medina, Nagore G; Medina, Rafael; Mena, Jose L; Mico, Estefania; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Miranda-Esquivel, Daniel R; Moir, Melinda L; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Mudri-Stojnic, Sonja; Munira, A Nur; Muoñz-Alonso, Antonio; Munyekenye, B F; Naidoo, Robin; Naithani, A; Nakagawa, Michiko; Nakamura, Akihiro; Nakashima, Yoshihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Navarro-Iriarte, Luis; Ndang'ang'a, Paul K; Neuschulz, Eike L; Ngai, Jacqueline T; Nicolas, Violaine; Nilsson, Sven G; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Norton, David A; Nöske, Nicole M; Nowakowski, A Justin; Numa, Catherine; O'Dea, Niall; O'Farrell, Patrick J; Oduro, William; Oertli, Sabine; Ofori-Boateng, Caleb; Oke, Christopher Omamoke; Oostra, Vicencio; Osgathorpe, Lynne M; Otavo, Samuel Eduardo; Page, Navendu V; Paritsis, Juan; Parra-H, Alejandro; Parry, Luke; Pe'er, Guy; Pearman, Peter B; Pelegrin, Nicolás; Pélissier, Raphaël; Peres, Carlos A; Peri, Pablo L; Persson, Anna S; Petanidou, Theodora; Peters, Marcell K; Pethiyagoda, Rohan S; Phalan, Ben; Philips, T Keith; Pillsbury, Finn C; Pincheira-Ulbrich, Jimmy; Pineda, Eduardo; Pino, Joan; Pizarro-Araya, Jaime; Plumptre, A J; Poggio, Santiago L; Politi, Natalia; Pons, Pere; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Ramesh, B R; Ramirez-Pinilla, Martha P; Ranganathan, Jai; Rasmussen, Claus; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Rey Benayas, José M; Rey-Velasco, Juan Carlos; Reynolds, Chevonne; Ribeiro, Danilo Bandini; Richards, Miriam H; Richardson, Barbara A; Richardson, Michael J; Ríos, Rodrigo Macip; Robinson, Richard; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rös, Matthias; Rosselli, Loreta; Rossiter, Stephen J; Roth, Dana S; Roulston, T'ai H; Rousseau, Laurent; Rubio, André V; Ruel, Jean-Claude; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Sam, Katerina; Samnegård, Ulrika; Santana, Joana; Santos, Xavier; Savage, Jade; Schellhorn, Nancy A; Schilthuizen, Menno; Schmiedel, Ute; Schmitt, Christine B; Schon, Nicole L; Schüepp, Christof; Schumann, Katharina; Schweiger, Oliver; Scott, Dawn M; Scott, Kenneth A; Sedlock, Jodi L; Seefeldt, Steven S; Shahabuddin, Ghazala; Shannon, Graeme; Sheil, Douglas; Sheldon, Frederick H; Shochat, Eyal; Siebert, Stefan J; Silva, Fernando A B; Simonetti, Javier A; Slade, Eleanor M; Smith, Jo; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Soto Quiroga, Grimaldo; St-Laurent, Martin-Hugues; Starzomski, Brian M; Stefanescu, Constanti; Steffan-Dewenter, Ingolf; Stouffer, Philip C; Stout, Jane C; Strauch, Ayron M; Struebig, Matthew J; Su, Zhimin; Suarez-Rubio, Marcela; Sugiura, Shinji; Summerville, Keith S; Sung, Yik-Hei; Sutrisno, Hari; Svenning, Jens-Christian; Teder, Tiit; Threlfall, Caragh G; Tiitsaar, Anu; Todd, Jacqui H; Tonietto, Rebecca K; Torre, Ignasi; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Uehara-Prado, Marcio; Urbina-Cardona, Nicolas; Vallan, Denis; Vanbergen, Adam J; Vasconcelos, Heraldo L; Vassilev, Kiril; Verboven, Hans A F; Verdasca, Maria João; Verdú, José R; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Virgilio, Massimiliano; Vu, Lien Van; Waite, Edward M; Walker, Tony R; Wang, Hua-Feng; Wang, Yanping; Watling, James I; Weller, Britta; Wells, Konstans; Westphal, Catrin; Wiafe, Edward D; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Wolters, Volkmar; Woodcock, Ben A; Wu, Jihua; Wunderle, Joseph M; Yamaura, Yuichi; Yoshikura, Satoko; Yu, Douglas W; Zaitsev, Andrey S; Zeidler, Juliane; Zou, Fasheng; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

  16. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species

    International Nuclear Information System (INIS)

    Manning, Gillian E.; Farmahin, Reza; Crump, Doug; Jones, Stephanie P.; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2012-01-01

    Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R 2 ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect their relative

  17. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD{sub 50} of polychlorinated biphenyls in avian species

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Gillian E., E-mail: gmann017@uottawa.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Farmahin, Reza, E-mail: mfarm070@uottawa.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Jones, Stephanie P., E-mail: stephanie.jones@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Klein, Jeff, E-mail: jeffery@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Konstantinov, Alex, E-mail: alex@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Potter, Dave, E-mail: dpotter@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Kennedy, Sean W., E-mail: sean.kennedy@ec.gc.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada)

    2012-09-15

    Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R{sup 2} ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect

  18. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    Science.gov (United States)

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  19. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  20. Response of transpiration to rain pulses for two tree species in a semiarid plantation

    Science.gov (United States)

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration ( E c) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall E c development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance ( G c) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-d G c/dlnVPD to G cref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low E c. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand E c. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the E c recovery. Further, the stand E c was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. E c enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall E c recovery. E c recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall E c increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of E c in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  1. Can brain responses to movie trailers predict success?

    NARCIS (Netherlands)

    M.A.S. Boksem (Maarten)

    2015-01-01

    textabstractDecades of research have shown that much of our mental processing occurs at the subconscious level, including the decisions we make as consumers. These subconscious processes explain why we so often fail to accurately predict our own future choices. Often what we think we want has

  2. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    Science.gov (United States)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

    Science.gov (United States)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)

  4. Multiple phenological responses to climate change among 42 plant species in Xi'an, China.

    Science.gov (United States)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2013-09-01

    Phenological data of 42 woody plants in a temperate deciduous forest from the Chinese Phenological Observation Network (CPON) and the corresponding meteorological data from 1963 to 2011 in Xi'an, Shaanxi Province, China were collected and analyzed. The first leaf date (FLD), leaf coloring date (LCD) and first flower date (FFD) are revealed as strong biological signals of climatic change. The FLD, LCD and FFD of most species are sensitive to average temperature during a certain period before phenophase onset. Regional precipitation also has a significant impact on phenophases of about half of the species investigated. Affected by climate change, the FLD and FFD of these species have advanced by 5.54 days and 10.20 days on average during 2003-2011 compared with the period 1963-1996, respectively. Meanwhile, the LCD has delayed by 10.59 days, and growing season length has extended 16.13 days. Diverse responses of phenology commonly exist among different species and functional groups during the study period. Especially for FFD, the deviations between the above two periods ranged from -20.68 to -2.79 days; biotic pollination species showed a significantly greater advance than abiotic pollination species. These results were conducive to the understanding of possible changes in both the structure of plant communities and interspecific relationships in the context of climate change.

  5. Response Analysis of eight native species of high Andean forest with two methods of propagation

    International Nuclear Information System (INIS)

    Castaneda Sandra Liliana; Garzon Alvaro Ernesto; Cantillo Miguel Angel; Torres Monica Patricia; Silva Luis Jairo

    2007-01-01

    The objective of this research was to generate information on the native tree species represent an alternative in the ecological restoration of the Colombian high Andean forests, according to its dynamo-genetic characteristics. We have chosen and spread the species: Baccharis latifolia (R and P), Bocconia frutescens L., Cordia cylindrostachya (R and P), Diplostephium rosmarinifolium (Benth), Drymis granadensis L f., Eupatorium angustifolium (Kunth), Palicourea vaginata Benth, and Palicourea linearifolia Wernham. The species include a morphological description of flowers, fruits and seeds, and ISTA tests. The spread experiments were made in the nurseries of the Universidad Distrital and La Florida park. For the sexual spread, we have used as treatments four gibberellins concentrations and three shadow conditions, while the vegetative spread consisted of two diameters and ive indol butiric acid (IBA) concentrations. Results have shown that pre-germination treatments are needed for Bocconia frutescens y Palicourea vaginata, in order to increase the probability and germination rate. On the other hand, shadow conditions are needed for Baccharis latifolia, Diplostephium rosmarinifolium, Drymis granadensis, Eupatorium angustifolium and Palicourea vaginata, as their seeds exhibit photoblastic characteristics. Due to the Cordia cylindrostachya and Palicourea linearifolia seed attack by insects (Lepidoptera and Hymenoptera) their sexual spread is highly limited. Finally, regarding the species response to the IBA and diameter combinations, each species responded in a different manner. Additionally, regarding the vegetative spread, the species Bocconia frutescens, Cordia cylindrostachya, Palicourea vaginata, Diplostephium rosmarinifolium and Drymis granadensis were very difficult to spread

  6. Effects of local adaptation and interspecific competition on species' responses to climate change.

    Science.gov (United States)

    Bocedi, Greta; Atkins, Katherine E; Liao, Jishan; Henry, Roslyn C; Travis, Justin M J; Hellmann, Jessica J

    2013-09-01

    Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research. © 2013 New York Academy of Sciences.

  7. Novel transformation-based response prediction of shear building ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences ... structural response of multi-storey shear buildings subject to earthquake motion. The INN is first ... China has been presented by Xie et al. (2011). ... research works have been done using INN in other fields.

  8. Species abundance distributions : moving beyond single prediction theories to integration within an ecological framework

    NARCIS (Netherlands)

    McGill, Brian J.; Etienne, Rampal S.; Gray, John S.; Alonso, David; Anderson, Marti J.; Benecha, Habtamu Kassa; Dornelas, Maria; Enquist, Brian J.; Green, Jessica L.; He, Fangliang; Hurlbert, Allen H.; Magurran, Anne E.; Marquet, Pablo A.; Maurer, Brian A.; Ostling, Annette; Soykan, Candan U.; Ugland, Karl I.; White, Ethan P.

    2007-01-01

    Species abundance distributions (SADs) follow one of ecology's oldest and most universal laws - every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the

  9. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework

    NARCIS (Netherlands)

    McGill, B.J.; Etienne, R.S.; Gray, J.S.; Alonso, D.; Anderson, M.J.; Benecha, H.K.

    2007-01-01

    Species abundance distributions (SADs) follow one of ecology's oldest and most universal laws ¿ every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the

  10. Predicting abundance of 80 tree species following climate change in the Eastern United States

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    1998-01-01

    Projected climate warming will potentially have profound effects on the earth?s biota, including a large redistribution of tree species. We developed models to evaluate potential shifts for 80 individual tree species in the eastern United States. First, environmental factors associated with current ranges of tree species were assessed using geographic information...

  11. Predicting fluid responsiveness with transthoracic echocardiography is not yet evidence based

    DEFF Research Database (Denmark)

    Wetterslev, M; Haase, N; Johansen, R R

    2013-01-01

    an integrated tool in the intensive care unit, this systematic review examined studies evaluating the predictive value of TTE for fluid responsiveness. In October 2012, we searched Pubmed, EMBASE and Web of Science for studies evaluating the predictive value of TTE-derived variables for fluid responsiveness...... responsiveness. Of the 4294 evaluated citations, only one study fully met our inclusion criteria. In this study, the predictive value of variations in inferior vena cava diameter (> 16%) for fluid responsiveness was moderate with sensitivity of 71% [95% confidence interval (CI) 44-90], specificity of 100% (95......% CI 73-100) and an area under the receiver operating curve of 0.90 (95% CI 0.73-0.98). Only one study of TTE-based methods fulfilled the criteria for valid assessment of fluid responsiveness. Before recommending the use of TTE in predicting fluid responsiveness, proper evaluation including...

  12. Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps

    OpenAIRE

    Bustamante, Javier; Seoane, Javier

    2004-01-01

    Aim To test the effectiveness of statistical models based on explanatory environmental variables vs. existing distribution information (maps and breeding atlas), for predicting the distribution of four species of raptors (family Accipitridae): common buzzard Buteo buteo (Linnaeus, 1758), short-toed eagle Circaetus gallicus (Gmelin, 1788), booted eagle Hieraaetus pennatus (Gmelin, 1788) and black kite Milvus migrans (Boddaert, 1783). Location Andalusia, southe...

  13. The ecological niche and reciprocal prediction of the disjunct distribution of an invasive species: the example of Ailanthus altissima

    Science.gov (United States)

    Thomas P. Albright; Hao Chen; Lijun Chen; Qinfeng Guo

    2010-01-01

    Knowledge of the ecological niches of invasive species in native and introduced ranges can inform management as well as ecological and evolutionary theory. Here, we identified and compared factors associated with the distribution of an invasive tree, Ailanthus altissima, in both its native Chinese and introduced US ranges and predicted potential US...

  14. Response prediction of long flexible risers subject to forced harmonic vibration

    OpenAIRE

    Riveros, Carlos Alberto; Utsunomiya, Tomoaki; Maeda, Katsuya; Itoh, Kazuaki

    2010-01-01

    Several research efforts have been directed toward the development of models for response prediction of flexible risers. The main difficulties arise from the fact that the dynamic response of flexible risers involves highly nonlinear behavior and a self-regulated process. This article presents a quasi-steady approach for response prediction of oscillating flexible risers. Amplitude-dependent lift coefficients are considered, as is an increased mean drag coefficient model during synchronizatio...

  15. Predicting the aquatic risk of realistic pesticide mixtures to species assemblages in Portuguese river basins.

    Science.gov (United States)

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-05-01

    Although pesticide regulatory tools are mainly based on individual substances, aquatic ecosystems are usually exposed to multiple pesticides from their use on the variety of crops within the catchment of a river. This study estimated the impact of measured pesticide mixtures in surface waters from 2002 and 2008 within three important Portuguese river basins ('Mondego', 'Sado' and 'Tejo') on primary producers, arthropods and fish by toxic pressure calculation. Species sensitivity distributions (SSDs), in combination with mixture toxicity models, were applied. Considering the differences in the responses of the taxonomic groups as well as in the pesticide exposures that these organisms experience, variable acute multi-substance potentially affected fractions (msPAFs) were obtained. The median msPAF for primary producers and arthropods in surface waters of all river basins exceeded 5%, the cut-off value used in the prospective SSD approach for deriving individual environmental quality standards. A ranking procedure identified various photosystem II inhibiting herbicides, with oxadiazon having the relatively largest toxic effects on primary producers, while the organophosphorus insecticides, chlorfenvinphos and chlorpyrifos, and the organochloride endosulfan had the largest effects on arthropods and fish, respectively. These results ensure compliance with European legislation with regard to ecological risk assessment and management of pesticides in surface waters. Copyright © 2015. Published by Elsevier B.V.

  16. Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment.

    NARCIS (Netherlands)

    Zorn, M.I.; van Gestel, C.A.M.; Morrien, E.; Wagenaar, M.; Eijsackers, H.J.P.

    2008-01-01

    To get a better understanding of earthworm' responses towards flooding, three laboratory experiments were performed with the species Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus. Flooding response was determined in a pot experiment, in which the earthworms were incubated

  17. Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment

    NARCIS (Netherlands)

    Zorn, M.I.; Gestel, van C.A.M.; Morriën, W.E.; Wagenaar, M.; Eijsackers, H.J.P.

    2008-01-01

    To get a better understanding of earthworm' responses towards flooding, three laboratory experiments were performed with the species Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus. Flooding response was determined in a pot experiment, in which the earthworms were incubated

  18. Climate‐induced response of commercially important flatfish species during the 20th century

    DEFF Research Database (Denmark)

    Sparrevohn, Claus Reedtz; Lindegren, Martin; Mackenzie, Brian R.

    2013-01-01

    plaice (Pleuronectes platessa) and (ii) whether two related warm‐water species (turbot, Psetta maxima and brill, Scophthalmus rhombus) show similar responses to increasing temperature or, alternatively, whether turbot (which has a broader juvenile diet) has been favored. Since the early 1980s, both sole...... was closely related and explained 43% of the observed variation in sole survey catches relative to the plaice catches and almost 38% of the observed variation in the sole landings relative to the plaice landings. For the less common species, turbot and brill, none of the global change indicators explained...... and turbot have constituted an increasing part of the commercial landings and survey catches, as compared with plaice and brill, respectively. These changes in species composition were linked to sea surface temperatures, Northern Hemisphere temperature anomalies (NHA) and the North Atlantic Oscillation. NHA...

  19. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Science.gov (United States)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep

  20. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Directory of Open Access Journals (Sweden)

    C. Máguas

    2011-12-01

    Full Text Available In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy. Species comparison revealed that variability in pre-dawn water potential (Ψpre and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya and phreatophyte (Salix repens species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic

  1. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered.

    Science.gov (United States)

    Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer

    2018-05-01

    The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.

  2. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    Science.gov (United States)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  3. Characterizing fish responses to a river restoration over 21 years based on species' traits.

    Science.gov (United States)

    Höckendorff, Stefanie; Tonkin, Jonathan D; Haase, Peter; Bunzel-Drüke, Margret; Zimball, Olaf; Scharf, Matthias; Stoll, Stefan

    2017-10-01

    Understanding restoration effectiveness is often impaired by a lack of high-quality, long-term monitoring data and, to date, few researchers have used species' trait information to gain insight into the processes that drive the reaction of fish communities to restoration. We examined fish-community responses with a highly resolved data set from 21 consecutive years of electrofishing (4 years prerestoration and 17 years postrestoration) at multiple restored and unrestored reaches from a river restoration project on the Lippe River, Germany. Fish abundance peaked in the third year after the restoration; abundance was 6 times higher than before the restoration. After 5-7 years, species richness and abundance stabilized at 2 and 3.5 times higher levels relative to the prerestoration level, respectively. However, interannual variability of species richness and abundance remained considerable, illustrating the challenge of reliably assessing restoration outcomes based on data from individual samplings, especially in the first years following restoration. Life-history and reproduction-related traits best explained differences in species' responses to restoration. Opportunistic short-lived species with early female maturity and multiple spawning runs per year exhibited the strongest increase in abundance, which reflected their ability to rapidly colonize new habitats. These often small-bodied and fusiform fishes typically live in dynamic and ephemeral instream and floodplain areas that river-habitat restorations often aim to create, and in this case their increases in abundance indicated successful restoration. Our results suggest that a greater consideration of species' traits may enhance the causal understanding of community processes and the coupling of restoration to functional ecology. Trait-based assessments of restoration outcomes would furthermore allow for easier transfer of knowledge across biogeographic borders than studies based on taxonomy. © 2017 Society for

  4. NOAA ESRI Grid - predictions of seabird species richness in the New York offshore planning area made by the NOAA Biogeography Branch

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset represents seabird species richness, or number of species, predictions from spatial models developed for the New York offshore spatial planning area....

  5. Fern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.

    Science.gov (United States)

    Hõrak, Hanna; Kollist, Hannes; Merilo, Ebe

    2017-06-01

    Changing atmospheric CO 2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO 2 concentration, and reduced air humidity. Whether the active regulatory mechanisms that control stomatal closure in response to these stimuli are present already in mosses, the oldest plant group with stomata, or were acquired more recently in angiosperms remains controversial. It has been suggested that the stomata of the basal vascular plants, such as ferns and lycophytes, close solely hydropassively. On the other hand, active stomatal closure in response to ABA and CO 2 was found in several moss, lycophyte, and fern species. Here, we show that the stomata of two temperate fern species respond to ABA and CO 2 and that an active mechanism of stomatal regulation in response to reduced air humidity is present in some ferns. Importantly, fern stomatal responses depend on growth conditions. The data indicate that the stomatal behavior of ferns is more complex than anticipated before, and active stomatal regulation is present in some ferns and has possibly been lost in others. Further analysis that takes into account fern species, life history, evolutionary age, and growth conditions is required to gain insight into the evolution of land plant stomatal responses. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Response of seedlings of different tree species to elevated C02 in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    DAILi-min; JILan-zhu; WANGMiao; LIQiu-rong

    2003-01-01

    Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Lanx olgensis,Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 pmol· mol-1) and ambient CO2 (400μmol· mol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species.The broad-leaf tree species were more sensitive to the elevated CO2than conifer tree species. All seedlings showed a photo-synthetic acclimation to Iong-term elevated CO2.

  7. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  8. Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition.

    Science.gov (United States)

    Wiedermann, Magdalena M; Gunnarsson, Urban; Ericson, Lars; Nordin, Annika

    2009-01-01

    Here, it was investigated whether Sphagnum species have adjusted their nitrogen (N) uptake in response to the anthropogenic N deposition that has drastically altered N-limited ecosystems, including peatlands, worldwide. A lawn species, Sphagnum balticum, and a hummock species, Sphagnum fuscum, were collected from three peatlands along a gradient of N deposition (2, 8 and 12 kg N ha(-1) yr(-1)). The mosses were subjected to solutions containing a mixture of four N forms. In each solution one of these N forms was labeled with (15)N (namely (15)NH(+)(4), (15)NO(-)(3) and the amino acids [(15)N]alanine (Ala) and [(15)N]glutamic acid (Glu)). It was found that for both species most of the N taken up was from , followed by Ala, Glu, and very small amounts from NO(-)(3). At the highest N deposition site N uptake was reduced, but this did not prevent N accumulation as free amino acids in the Sphagnum tissues. The reduced N uptake may have been genetically selected for under the relatively short period with elevated N exposure from anthropogenic sources, or may have been the result of plasticity in the Sphagnum physiological response. The negligible Sphagnum NO(-)(3) uptake may make any NO(-)(3) deposited readily available to co-occurring vascular plants.

  9. Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

    Science.gov (United States)

    Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří

    2018-05-01

    The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

  10. Influential Factors for Accurate Load Prediction in a Demand Response Context

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Kjærgaard, Mikkel Baun; Jørgensen, Bo Nørregaard

    2016-01-01

    Accurate prediction of a buildings electricity load is crucial to respond to Demand Response events with an assessable load change. However, previous work on load prediction lacks to consider a wider set of possible data sources. In this paper we study different data scenarios to map the influence....... Next, the time of day that is being predicted greatly influence the prediction which is related to the weather pattern. By presenting these results we hope to improve the modeling of building loads and algorithms for Demand Response planning.......Accurate prediction of a buildings electricity load is crucial to respond to Demand Response events with an assessable load change. However, previous work on load prediction lacks to consider a wider set of possible data sources. In this paper we study different data scenarios to map the influence...

  11. Individual differences in regulatory focus predict neural response to reward.

    Science.gov (United States)

    Scult, Matthew A; Knodt, Annchen R; Hanson, Jamie L; Ryoo, Minyoung; Adcock, R Alison; Hariri, Ahmad R; Strauman, Timothy J

    2017-08-01

    Although goal pursuit is related to both functioning of the brain's reward circuits and psychological factors, the literatures surrounding these concepts have often been separate. Here, we use the psychological construct of regulatory focus to investigate individual differences in neural response to reward. Regulatory focus theory proposes two motivational orientations for personal goal pursuit: (1) promotion, associated with sensitivity to potential gain, and (2) prevention, associated with sensitivity to potential loss. The monetary incentive delay task was used to manipulate reward circuit function, along with instructional framing corresponding to promotion and prevention in a within-subject design. We observed that the more promotion oriented an individual was, the lower their ventral striatum response to gain cues. Follow-up analyses revealed that greater promotion orientation was associated with decreased ventral striatum response even to no-value cues, suggesting that promotion orientation may be associated with relatively hypoactive reward system function. The findings are also likely to represent an interaction between the cognitive and motivational characteristics of the promotion system with the task demands. Prevention orientation did not correlate with ventral striatum response to gain cues, supporting the discriminant validity of regulatory focus theory. The results highlight a dynamic association between individual differences in self-regulation and reward system function.

  12. Relationship-Based Infant Care: Responsive, on Demand, and Predictable

    Science.gov (United States)

    Petersen, Sandra; Wittmer, Donna

    2008-01-01

    Young babies are easily overwhelmed by the pain of hunger or gas. However, when an infant's day is filled with caregiving experiences characterized by quick responses to his cries and accurate interpretations of the meaning of his communication, the baby learns that he can count on being fed and comforted. He begins to develop trust in his teacher…

  13. Dynamics of a three species food chain model with Crowley-Martin type functional response

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar; Naji, Raid Kamel

    2009-01-01

    In this paper, a three species food chain model, consisting of a hybrid type of prey-dependent and predator-dependent functional responses, is investigated analytically as well as numerically. The local and global stability analysis is carried out. The persistence conditions are established. Bifurcation diagrams are obtained for biologically feasible parameters. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics.

  14. Thermal Responses of Growth and Toxin Production in Four Prorocentrum Species from the Central Red Sea

    KAUST Repository

    Aynousah, Arwa

    2017-06-01

    Harmful algae studies, in particular toxic dinoflagellates, and their response to global warming in the Red Sea are still limited. This study was aimed to be the first to characterize the identity, thermal responses and toxin production of four Prorocentrum strains isolated from the Central Red Sea, Saudi Arabia. Morphological and molecular phylogenetic analysis identified the strains as P. elegans, P. rhathymum and P. emarginatum. However, the identity of strain P. sp.6 is currently unresolved, albeit sharing close affinity with P. leve. Growth experiments showed that all species could grow at 24-32°C, but only P. sp.6 survived the 34°C treatment. The optimum temperatures (Topt) estimated from the Gaussian model corresponded to 27.17, 29.33, 26.87, and 27.64°C for P. sp.6, P. elegans, P. rhathymum and P. emarginatum, respectively. However, some discrepancy with the Topt derived from the growth performance were observed for P. elegans and P. emarginatum, as thermal responses differed from the typical Gaussian fit. The Prorocentrum species examined showed a sharp decrease after the optimum temperature resulting in very high activation energies for the fall slope, especially for P. elegans and P. emarginatum. The minimum critical temperature limit for growth was not detected within the range of temperatures examined. Subsequently, high performance liquid chromatography coupled with mass spectrometry (HPLC-MS) analysis revealed all species as non okadaic acid (OA, common toxin of the Prorocentrum genus) producers at any temperature treatment. However, other forms of toxin (i.e. fast acting toxins) not examined here could be produced. Therefore, further investigations are required. The results of this study provided significant contribution to our knowledge regarding the presence, thermal response and toxin production of four Prorocentrum species from the Central Red Sea, Saudi Arabia.

  15. Emotional Responses to Suicidal Patients: Factor Structure, Construct, and Predictive Validity of the Therapist Response Questionnaire-Suicide Form

    OpenAIRE

    Shira Barzilay; Zimri S. Yaseen; Zimri S. Yaseen; Mariah Hawes; Bernard Gorman; Rachel Altman; Adriana Foster; Alan Apter; Paul Rosenfield; Igor Galynker; Igor Galynker

    2018-01-01

    BackgroundMental health professionals have a pivotal role in suicide prevention. However, they also often have intense emotional responses, or countertransference, during encounters with suicidal patients. Previous studies of the Therapist Response Questionnaire-Suicide Form (TRQ-SF), a brief novel measure aimed at probing a distinct set of suicide-related emotional responses to patients found it to be predictive of near-term suicidal behavior among high suicide-risk inpatients. The purpose o...

  16. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels?

    International Nuclear Information System (INIS)

    Sulmon, Cécile; Baaren, Joan van; Cabello-Hurtado, Francisco; Gouesbet, Gwenola; Hennion, Françoise; Mony, Cendrine; Renault, David; Bormans, Myriam; El Amrani, Abdelhak; Wiegand, Claudia; Gérard, Claudia

    2015-01-01

    Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning. - Highlights: • Responses to chemical and thermal stressors are reviewed across organization levels. • Common responses between taxa are evident at the molecular and cellular scales. • At individual level, energy allocation connects species-specific stress responses. • Commonality decreases at higher levels due to increasing environmental complexity. - The commonality of stress responses to chemical and thermal stressors among taxa is evident at the molecular and cellular scales but remains unclear at higher levels of organization

  17. Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study.

    Directory of Open Access Journals (Sweden)

    Emeline Deleury

    Full Text Available Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5'-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5'-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance

  18. Conceptualizing, Understanding, and Predicting Responsible Decisions and Quality Input

    Science.gov (United States)

    Wall, N.; PytlikZillig, L. M.

    2012-12-01

    In areas such as climate change, where uncertainty is high, it is arguably less difficult to tell when efforts have resulted in changes in knowledge, than when those efforts have resulted in responsible decisions. What is a responsible decision? More broadly, when it comes to citizen input, what is "high quality" input? And most importantly, how are responsible decisions and quality input enhanced? The aim of this paper is to contribute to the understanding of the different dimensions of "responsible" or "quality" public input and citizen decisions by comparing and contrasting the different predictors of those different dimensions. We first present different possibilities for defining, operationalizing and assessing responsible or high quality decisions. For example, responsible decisions or quality input might be defined as using specific content (e.g., using climate change information in decisions appropriately), as using specific processes (e.g., investing time and effort in learning about and discussing the issues prior to making decisions), or on the basis of some judgment of the decision or input itself (e.g., judgments of the rationale provided for the decisions, or number of issues considered when giving input). Second, we present results from our work engaging people with science policy topics, and the different ways that we have tried to define these two constructs. In the area of climate change specifically, we describe the development of a short survey that assesses exposure to climate information, knowledge of and attitudes toward climate change, and use of climate information in one's decisions. Specifically, the short survey was developed based on a review of common surveys of climate change related knowledge, attitudes, and behaviors, and extensive piloting and cognitive interviews. Next, we analyze more than 200 responses to that survey (data collection is currently ongoing and will be complete after the AGU deadline), and report the predictors of

  19. Predicting geographic distributions of Phacellodomus species (Aves: Furnariidae in South America based on ecological niche modeling

    Directory of Open Access Journals (Sweden)

    Maria da Salete Gurgel Costa

    2014-08-01

    Full Text Available Phacellodomus Reichenbach, 1853, comprises nine species of Furnariids that occur in South America in open and generally dry areas. This study estimated the geographic distributions of Phacellodomus species in South America by ecological niche modeling. Applying maximum entropy method, models were produced for eight species based on six climatic variables and 949 occurrence records. Since highest climatic suitability for Phacellodomus species has been estimated in open and dry areas, the Amazon rainforest areas are not very suitable for these species. Annual precipitation and minimum temperature of the coldest month are the variables that most influence the models. Phacellodomus species occurred in 35 ecoregions of South America. Chaco and Uruguayan savannas were the ecoregions with the highest number of species. Despite the overall connection of Phacellodomus species with dry areas, species such as P. ruber, P. rufifrons, P. ferrugineigula and P. erythrophthalmus occurred in wet forests and wetland ecoregions.

  20. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  1. The thermal niche of Neotropical nectar-feeding bats: Its evolution and application to predict responses to global warming.

    Science.gov (United States)

    Ortega-García, Stephanie; Guevara, Lázaro; Arroyo-Cabrales, Joaquín; Lindig-Cisneros, Roberto; Martínez-Meyer, Enrique; Vega, Ernesto; Schondube, Jorge E

    2017-09-01

    The thermal niche of a species is one of the main determinants of its ecology and biogeography. In this study, we determined the thermal niche of 23 species of Neotropical nectar-feeding bats of the subfamily Glossophaginae (Chiroptera, Phyllostomidae). We calculated their thermal niches using temperature data obtained from collection records, by generating a distribution curve of the maximum and minimum temperatures per locality, and using the inflection points of the temperature distributions to estimate the species optimal (STZ) and suboptimal (SRZ) zones of the thermal niche. Additionally, by mapping the values of the STZ and SRZ on a phylogeny of the group, we generated a hypothesis of the evolution of the thermal niches of this clade of nectar-feeding bats. Finally, we used the characteristics of their thermal niches to predict the responses of these organisms to climate change. We found a large variation in the width and limits of the thermal niches of nectar-feeding bats. Additionally, while the upper limits of the thermal niches varied little among species, their lower limits differ wildly. The ancestral reconstruction of the thermal niche indicated that this group of Neotropical bats evolved under cooler temperatures. The two clades inside the Glossophaginae differ in the evolution of their thermal niches, with most members of the clade Choeronycterines evolving "colder" thermal niches, while the majority of the species in the clade Glossophagines evolving "warmer" thermal niches. By comparing thermal niches with climate change models, we found that all species could be affected by an increase of 1°C in temperature at the end of this century. This suggests that even nocturnal species could suffer important physiological costs from global warming. Our study highlights the value of scientific collections to obtain ecologically significant physiological data for a large number of species.

  2. Photosynthetic response of two seaweed species along an urban pollution gradient: evidence of selection of pollution-tolerant species.

    Science.gov (United States)

    Scherner, F; Bonomi Barufi, J; Horta, P A

    2012-11-01

    Urbanization leads to the expansion of ephemeral seaweed species and the decline of important perennial, canopy-forming seaweed species. Understanding the mechanisms that lead to these changes is a current challenge. In the present study, laboratory assays and field transplantations were performed with two seaweed species: the perennial, canopy-forming seaweed Sargassum stenophyllum and the ephemeral seaweed Ulva lactuca. Photosynthetic efficiency was assessed using modulated chlorophyll fluorometry. Brief exposure to urban waters does not appear to be a major stressor to the photosynthetic efficiency of either species. However, after 26 days of transplantation in urban waters, S. stenophyllum declined, whereas U. lactuca had enhanced photosynthetic efficiency. This difference reflects their divergent abilities to regulate the energy distribution at the PSII and shows that urban stressors alter these mechanisms. Our results provide evidence of the physiological causes for the decline of Sargassum species and the expansion of Ulva species in impacted urban areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Fuzzy predictive filtering in nonlinear economic model predictive control for demand response

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...

  4. A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model

    Science.gov (United States)

    Gloudemans, Thijs; Van Lochem, Sander; Ras, Eelco; Malissa, Joel; Ahmad, Nashat N.; Lewis, Timothy A.

    2016-01-01

    Wake vortex spacing standards along with weather and runway occupancy time, restrict terminal area throughput and impose major constraints on the overall capacity and efficiency of the National Airspace System (NAS). For more than two decades, the National Aeronautics and Space Administration (NASA) has been conducting research on characterizing wake vortex behavior in order to develop fast-time wake transport and decay prediction models. It is expected that the models can be used in the systems level design of advanced air traffic management (ATM) concepts that safely increase the capacity of the NAS. It is also envisioned that at a later stage of maturity, these models could potentially be used operationally, in groundbased spacing and scheduling systems as well as on the flight deck.

  5. Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef?

    Science.gov (United States)

    Muir, Paul R; Marshall, Paul A; Abdulla, Ameer; Aguirre, J David

    2017-10-11

    Mass bleaching associated with unusually high sea temperatures represents one of the greatest threats to corals and coral reef ecosystems. Deeper reef areas are hypothesized as potential refugia, but the susceptibility of Scleractinian species over depth has not been quantified. During the most severe bleaching event on record, we found up to 83% of coral cover severely affected on Maldivian reefs at a depth of 3-5 m, but significantly reduced effects at 24-30 m. Analysis of 153 species' responses showed depth, shading and species identity had strong, significant effects on susceptibility. Overall, 73.3% of the shallow-reef assemblage had individuals at a depth of 24-30 m with reduced effects, potentially mitigating local extinction and providing a source of recruits for population recovery. Although susceptibility was phylogenetically constrained, species-level effects caused most lineages to contain some partially resistant species. Many genera showed wide variation between species, including Acropora, previously considered highly susceptible. Extinction risk estimates showed species and lineages of concern and those likely to dominate following repeated events. Our results show that deeper reef areas provide refuge for a large proportion of Scleractinian species during severe bleaching events and that the deepest occurring individuals of each population have the greatest potential to survive and drive reef recovery. © 2017 The Author(s).

  6. Comparative responses of two species of marine phytoplankton to metolachlor exposure

    International Nuclear Information System (INIS)

    Thakkar, Megha; Randhawa, Varunpreet; Wei Liping

    2013-01-01

    Metolachlor, a chloroacetanilide herbicide, has been frequently detected in coastal waters. This study examined the growth, photosynthesis, and detoxification responses of chlorophyte Dunaliella tertiolecta (DT) and brown tide alga Aureococcus anophagefferens (AA) upon 5-day exposure to 0.5–5 mg L −1 metolachlor. Growth was assessed with exponential growth rate, and 5th day in vivo chlorophyll fluorescence, chlorophyll a, b or c, cell density and cell size. The photosynthesis function was assessed with photochemical parameters of photosystem II (PSII) during the mid-exponential growth phase (i.e. 2–4 day metolachlor exposure). The biochemical detoxification was analyzed with glutathione production and metolachlor degradation. Results show that metolachlor caused up to ∼9% inhibition in growth rate in both species and an expected ∼35% and 25% inhibition in chlorophyll based endpoints in DT and AA respectively. DT had an up to 70% inhibition in cell density, but AA a 35% hormesis at 1 mg L −1 metolachlor and no significant inhibition, as compared to the controls. Both DT and AA's cell sizes were enlarged by metolachlor exposure, but greater in DT (1.2% per mg L −1 ) than in AA (0.68% per mg L −1 ). On PSII photochemistry, maximum quantum yield was not affected in both species; PSII optical cross section and connectivity factor increased in DT but decreased in AA, suggesting species specific impact on PSII function. On detoxification responses, glutathione production, when normalized to total chlorophyll a, was not affected by metolachlor in both species; further, despite of heterotrophic capacity of A. anophagefferens metolachlor was not significantly degraded by this alga during the 5-day incubation. The species specific effects on algal growth have ecological implications of potential selective inhibition of chlorophytes by metolachlor herbicide.

  7. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  8. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America.

    Science.gov (United States)

    McIntyre, Shannon; Rangel, Elizabeth F; Ready, Paul D; Carvalho, Bruno M

    2017-03-24

    Before 1996 the phlebotomine sand fly Lutzomyia neivai was usually treated as a synonym of the morphologically similar Lutzomyia intermedia, which has long been considered a vector of Leishmania braziliensis, the causative agent of much cutaneous leishmaniasis in South America. This report investigates the likely range changes of both sand fly species in response to a stabilisation climate change scenario (RCP4.5) and a high greenhouse gas emissions one (RCP8.5). Ecological niche modelling was used to identify areas of South America with climates currently suitable for each species, and then the future distributions of these climates were predicted based on climate change scenarios. Compared with the previous ecological niche model of L. intermedia (sensu lato) produced using the GARP algorithm in 2003, the current investigation modelled the two species separately, making use of verified presence records and additional records after 2001. Also, the new ensemble approach employed ecological niche modelling algorithms (including Maximum Entropy, Random Forests and Support Vector Machines) that have been widely adopted since 2003 and perform better than GARP, as well as using a more recent climate change model (HadGEM2) considered to have better performance at higher resolution than the earlier one (HadCM2). Lutzomyia intermedia was shown to be the more tropical of the two species, with its climatic niche defined by higher annual mean temperatures and lower temperature seasonality, in contrast to the more subtropical L. neivai. These different latitudinal ranges explain the two species' predicted responses to climate change by 2050, with L. intermedia mostly contracting its range (except perhaps in northeast Brazil) and L. neivai mostly shifting its range southwards in Brazil and Argentina. This contradicts the findings of the 2003 report, which predicted more range expansion. The different findings can be explained by the improved data sets and modelling methods. Our

  9. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles.

    Science.gov (United States)

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-09-01

    Stomata control the cycling of water and carbon between plants and the atmosphere; however, no consistent conclusions have been drawn regarding the response of stomatal frequency to climate change. Here, we conducted a meta-analysis of 1854 globally obtained data series to determine the response of stomatal frequency to climate change, which including four plant life forms (over 900 species), at altitudes ranging from 0 to 4500 m and over a time span of more than one hundred thousand years. Stomatal frequency decreased with increasing CO 2 concentration and increased with elevated temperature and drought stress; it was also dependent on the species and experimental conditions. The response of stomatal frequency to climate change showed a trade-off between stomatal control strategies and environmental factors, such as the CO 2 concentration, temperature, and soil water availability. Moreover, threshold effects of elevated CO 2 and temperature on stomatal frequency were detected, indicating that the response of stomatal density to increasing CO 2 concentration will decrease over the next few years. The results also suggested that the stomatal index may be more reliable than stomatal density for determination of the historic CO 2 concentration. Our findings indicate that the contrasting responses of stomata to climate change bring a considerable challenge in predicting future water and carbon cycles. © 2017 John Wiley & Sons Ltd.

  10. Prediction of Early Response to Chemotherapy in Lung Cancer by Using Diffusion-Weighted MR Imaging

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Purpose. To determine whether change of apparent diffusion coefficient (ADC value could predict early response to chemotherapy in lung cancer. Materials and Methods. Twenty-five patients with advanced non-small cell lung cancer underwent chest MR imaging including DWI before and at the end of the first cycle of chemotherapy. The tumor’s mean ADC value and diameters on MR images were calculated and compared. The grouping reference was based on serial CT scans according to Response Evaluation Criteria in Solid Tumors. Logistic regression was applied to assess treatment response prediction ability of ADC value and diameters. Results. The change of ADC value in partial response group was higher than that in stable disease group (P=0.004. ROC curve showed that ADC value could predict treatment response with 100% sensitivity, 64.71% specificity, 57.14% positive predictive value, 100% negative predictive value, and 82.7% accuracy. The area under the curve for combination of ADC value and longest diameter change was higher than any parameter alone (P≤0.01. Conclusions. The change of ADC value may be a sensitive indicator to predict early response to chemotherapy in lung cancer. Prediction ability could be improved by combining the change of ADC value and longest diameter.

  11. Implicit motives predict affective responses to emotional expressions

    Directory of Open Access Journals (Sweden)

    Andreas G. Rösch

    2013-12-01

    Full Text Available We explored the influence of implicit motives and activity inhibition on subjectively experienced affect in response to the presentation of six different facial expressions of emotion (FEEs; anger, disgust, fear, happiness, sadness, and surprise and neutral faces from the NimStim set of facial expressions (Tottenham et al., 2009. Implicit motives and activity inhibition were assessed using a Picture Story Exercise (Schultheiss et al., 2009b. Ratings of subjectively experienced affect (arousal and valence were assessed using Self-Assessment Manikins (Bradley and Lang, 1994 in a sample of 84 participants. We found that people with either a strong implicit power or achievement motive experienced stronger arousal, while people with a strong affiliation motive experienced less aroused and felt more unpleasant across emotions. Additionally, we obtained significant power motive × activity inhibition interactions for arousal ratings in response to FEEs and neutral faces. Participants with a strong power motive and weak activity inhibition experienced stronger arousal after the presentation of neutral faces but no additional increase in arousal after the presentation of FEEs. Participants with a strong power motive and strong activity inhibition (inhibited power motive did not feel aroused by neutral faces. However, their arousal increased in response to all FEEs with the exception of happy faces, for which their subjective arousal decreased. These more differentiated reaction pattern of individuals with an inhibited power motive suggest that they engage in a more socially adaptive manner of responding to different FEEs. Our findings extend established links between implicit motives and affective processes found at the procedural level to declarative reactions to FEEs. Implications are discussed with respect to dual-process models of motivation and research in motive congruence.

  12. Species-specific response-topography of chickens' and pigeons' water-induced autoshaped responding.

    Science.gov (United States)

    Ploog, Bertram O

    2014-07-01

    Four pigeons and eight chickens received autoshaping training where a keylight (conditioned stimulus) signaled response-independent deliveries of water (unconditioned stimulus). Pigeons drink while keeping their beaks submerged in water and moving their beaks to create suction ("mumbling"), whereas chickens drink by trapping a small amount of water in their mouths and then lifting their heads so the water trickles down. This experiment tested whether these and other species-specific differences in drinking and related behaviors of pigeons and chickens would be reflected in the form of conditioned (autoshaped) responding. Touchscreens and videotapes were used for data recording. Results showed that chickens moved their heads more than pigeons when drinking (unconditioned response). The birds also differed in conditioned responding in the presence of the keylight: Pigeons produced more keyswitch closures and mumbled at the keylight more than chickens whereas chickens scratched more than pigeons. In conclusion, with this unique comparative method that employed identical contingencies and comparable deprivation levels, species-specific differences in unconditioned responses and, more importantly, differences in their corresponding conditioned responses were observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Response of an endangered tree species from Caatinga to mycorrhization and phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    João Ricardo Gonçalves de Oliveira

    2015-03-01

    Full Text Available Schinopsis brasiliensis is an endangered tree species found in the Caatinga biome. It presents a characteristic slow development and difficult propagation, although it has been traditionally exploited in the region. Application of arbuscular mycorrhizal fungi (AMF and phosphorus (P fertilization may be beneficial to S. brasiliensis development at the seedling stage, which at the same time may help species conservation and the recovery of degraded areas in the Caatinga biome. We assessed the response of S. brasiliensis to AMF inoculation (Claroideoglomus etunicatum and Acaulospora longula and P fertilization (0, 12, 24, and 48 mg dm−3 addition of P2O5. S. brasiliensis responded positively to both AMF inoculation and P fertilization. At low P concentrations, the inoculated plants showed higher leaf area and enhanced vegetative development, nutrient content and biomass production compared with non-inoculated plants. Conversely, increasing levels of P fertilization decreased the level of mycorrhizal colonization, plant responsiveness to inoculation, and spore production in C. etunicatum. Thus, P concentrations were able to influence the response of S. brasiliensis to mycorrhization and responsiveness to increased mycorrhization with the decrease in P availability. These results showed that mycorrhizal symbiosis plays an essential role in the development of S. brasiliensis.

  14. Proteomic analysis of the major birch allergen Bet v 1 predicts allergenicity for 15 birch species

    NARCIS (Netherlands)

    Schenk, M.F.; Cordewener, J.H.G.; America, A.H.P.; Peters, J.; Smulders, M.J.M.; Gilissen, L.J.W.J.

    2011-01-01

    Pollen of the European and Asian white birch (Betula pendula and B. platyphylla) causes hay fever in humans. The allergenic potency of other birch species is largely unknown. To identify birch trees with a reduced allergenicity, we assessed the immunochemical characteristics of 15 species and two

  15. Acute toxicity prediction to threatened and endangered species using Interspecies Correlation Estimation (ICE) models

    Science.gov (United States)

    Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA’s Internet application Web-ICE is a suite of Interspecies Correlati...

  16. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    J. Firn; J.L. Moore; A.S. MacDougall; E.T. Borer; E.W. Seabloom; J. HilleRisLambers; S. Harpole; E.E. Cleland; C.S. Brown; J.M.H. Knops; S.M. Prober; D.A. Pyke; K.A. Farrell; J.D. Bakker; L.R. O’Halloran; P.B. Adler; S.L. Collins; C.M. D’Antonio; M.J. Crawley; E.M. Wolkovich; K.J. La Pierre; B.A. Melbourne; Y. Hautier; J.W. Morgan; A.D.B. Leakey; A.D. Kay; R.L. McCulley; K.F. Davies; C.J. Stevens; C.J. Chu

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at...

  17. Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems

    NARCIS (Netherlands)

    Brink, van den P.J.; Blake, N.; Brock, T.C.M.; Maltby, L.

    2006-01-01

    In this article we present a review of the laboratory and field toxicity of herbicides to aquatic ecosystems. Single-species acute toxicity data and ( micro) mesocosm data were collated for nine herbicides. These data were used to investigate the importance of test species selection in constructing

  18. Predicting the consequences of species loss using size-structured biodiversity approaches

    DEFF Research Database (Denmark)

    Brose, Ulrich; Blanchard, Julia L.; Eklöf, Anna

    2017-01-01

    Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic...... stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments...... trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss....

  19. Individual Differences in Gelotophobia Predict Responses to Joy and Contempt

    Directory of Open Access Journals (Sweden)

    Jennifer Hofmann

    2015-04-01

    Full Text Available In a paradigm facilitating smile misattribution, facial responses and ratings to contempt and joy were investigated in individuals with or without gelotophobia (fear of being laughed at. Participants from two independent samples (N1 = 83, N2 = 50 rated the intensity of eight emotions in 16 photos depicting joy, contempt, and different smiles. Facial responses were coded by the Facial Action Coding System in the second study. Compared with non-fearful individuals, gelotophobes rated joy smiles as less joyful and more contemptuous. Moreover, gelotophobes showed less facial joy and more contempt markers. The contempt ratings were comparable between the two groups. Looking at the photos of smiles lifted the positive mood of non-gelotophobes, whereas gelotophobes did not experience an increase. We hypothesize that the interpretation bias of “joyful faces hiding evil minds” (i.e., being also contemptuous and exhibiting less joy facially may complicate social interactions for gelotophobes and serve as a maintaining factor of gelotophobia.

  20. Improving models to predict phenological responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Andrew D. [Harvard College, Cambridge, MA (United States)

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  1. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  2. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound.

    Science.gov (United States)

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J

    2017-04-12

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival.

  3. Do host species evolve a specific response to slave-making ants?

    Directory of Open Access Journals (Sweden)

    Delattre Olivier

    2012-12-01

    Full Text Available Abstract Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections towards parasite

  4. Retreating or standing: Responses of forest species and steppe species to climate change in arid eastern central Asia

    Science.gov (United States)

    Hong-Xiang Zhang; Ming-Li Zhang; Stewart C. Sanderson

    2013-01-01

    The temperature in arid Eastern Central Asia is projected to increase in the future, accompanied by increased variability of precipitation. To investigate the impacts of climate change on plant species in this area, we selected two widespread species as candidates, Clematis sibirica and C. songorica, from montane coniferous forest and arid steppe habitats respectively...

  5. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    Science.gov (United States)

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology.

  6. Studies on the effects on growth and antioxidant responses of two marine microalgal species to uniconazole

    Science.gov (United States)

    Mei, Xueqiao; Zheng, Kang; Wang, Lingdong; Li, Yantuan

    2014-10-01

    Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations (0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica ( P enzymes, superoxide dismutase (SOD) and catalase (CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.

  7. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.

    Science.gov (United States)

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P

    2018-06-01

    Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.

  8. Pre-damage biomass allocation and not invasiveness predicts tolerance to damage in seedlings of woody species in Hawaii.

    Science.gov (United States)

    Lurie, Matthew H; Barton, Kasey E; Daehler, Curtis C

    2017-12-01

    Plant-herbivore interactions have been predicted to play a fundamental role in plant invasions, although support for this assertion from previous research is mixed. While plants may escape from specialist herbivores in their introduced ranges, herbivory from generalists is common. Tolerance traits may allow non-native plants to mitigate the negative consequences of generalist herbivory that they cannot avoid in their introduced range. Here we address whether tolerance to herbivory, quantified as survival and compensatory growth, is associated with plant invasion success in Hawaii and investigate traits that may enhance tolerance in seedlings, the life stage most susceptible to herbivory. In a greenhouse experiment, we measured seedling tolerance to simulated herbivory through mechanical damage (50% leaf removal) of 16 non-native woody plant species differing in invasion status (invasive vs. non-invasive). Seedlings were grown for 2 weeks following damage and analyzed for biomass to determine whether damaged plants could fully compensate for the lost leaf tissue. Over 99% of all seedlings survived defoliation. Although species varied significantly in their levels of compensation, there was no consistent difference between invasive and non-invasive species. Seedlings of 11 species undercompensated and remained substantially smaller than control seedlings 2 weeks after damage; four species were close to compensating, while one species overcompensated. Across species, compensation was positively associated with an increased investment in potential storage reserves, specifically cotyledons and roots, suggesting that these organs provide resources that help seedlings re-grow following damage. Our results add to a growing consensus that pre-damage growth patterns determine tolerance to damage, even in young seedlings which have relatively low biomass. The lack of higher tolerance in highly invasive species may suggest that invaders overcome herbivory barriers to invasion

  9. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae).

    Science.gov (United States)

    Zhou, Jincheng; Meng, Ling; Li, Baoping

    2017-01-01

    This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae) larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis . Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis . Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis . Handling time decreased with host size for M. pulchricornis but not for M. mediator . The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis , while this was true only for large hosts for M. mediator . Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors.

  10. Defensive behaviors of the Oriental armyworm Mythimna separata in response to different parasitoid species (Hymenoptera: Braconidae

    Directory of Open Access Journals (Sweden)

    Jincheng Zhou

    2017-08-01

    Full Text Available This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctuidae larvae varying in body size in response to two parasitoids varying in oviposition behavior; Microplitis mediator females sting the host with the ovipositor after climbing onto it while Meteorus pulchricornis females make the sting by standing at a close distance from the host. Mythimna separata larvae exhibited evasive (escaping and dropping and aggressive (thrashing behaviors to defend themselves against parasitoids M. mediator and M. pulchricornis. Escaping and dropping did not change in probability with host body size or parasitoid species. Thrashing did not vary in frequency with host body size, yet performed more frequently in response to M. mediator than to M. pulchricornis. Parasitoid handling time and stinging likelihood varied depending not only on host body size but also on parasitoid species. Parasitoid handling time increased with host thrashing frequency, similar in slope for both parasitoids yet on a higher intercept for M. mediator than for M. pulchricornis. Handling time decreased with host size for M. pulchricornis but not for M. mediator. The likelihood of realizing an ovipositor sting decreased with thrashing frequency of both small and large hosts for M. pulchricornis, while this was true only for large hosts for M. mediator. Our results suggest that the thrashing behavior of M. separata larvae has a defensive effect on parasitism, depending on host body size and parasitoid species with different oviposition behaviors.

  11. Contact parameter identification for vibrational response variability prediction

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Brunskog, Jonas; Jensen, Jakob Søndergaard

    2018-01-01

    industry, where the vibrational behavior of the structures within the hearing frequency range is critical for the performance of the devices. A procedure to localize the most probable contact areas and determine the most sensitive contact points with respect to variations in the modes of vibration......Variability in the dynamic response of assembled structures can arise due to variations in the contact conditions between the parts that conform them. Contact conditions are difficult to model accurately due to randomness in physical properties such as contact surface, load distribution...... or geometric details. Those properties can vary for a given structure due to the assembly and disassembly process, and also across nominally equal items that are produced in series. This work focuses on modeling the contact between small light-weight plastic pieces such as those used in the hearing aid...

  12. Prediction of response to interferon therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Søndergaard, Helle Bach; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: Single nucleotide polymorphisms (SNPs) in the genes encoding interferon response factor (IRF)-5, IRF-8 and glypican-5 (GPC5) have been associated with disease activity in multiple sclerosis (MS) patients treated with interferon (IFN)-β. We analysed whether SNPs in the IRF5, IRF8 and GPC5...... genes are associated with clinical disease activity in MS patients beginning de novo treatment with IFN-β. METHODS: The SNPs rs2004640, rs3807306 and rs4728142 in IRF5, rs13333054 and rs17445836 in IRF8 and rs10492503 in GPC5 were genotyped in 575 patients with relapsing-remitting MS followed...... prospectively after the initiation of their first treatment with IFN-β. RESULTS: 62% of patients experienced relapses during the first 2 years of treatment, and 32% had disability progression during the first 5 years of treatment. Patients with a pretreatment annualized relapse rate >1 had an increased risk...

  13. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  14. Dexamethasone-suppressed cortisol awakening response predicts treatment outcome in posttraumatic stress disorder

    NARCIS (Netherlands)

    Nijdam, M. J.; van Amsterdam, J. G. C.; Gersons, B. P. R.; Olff, M.

    2015-01-01

    Posttraumatic stress disorder (PTSD) has been associated with several alterations in the neuroendocrine system, including enhanced cortisol suppression in response to the dexamethasone suppression test. The aim of this study was to examine whether specific biomarkers of PTSD predict treatment

  15. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  16. Predicting Emotional Responses to Horror Films from Cue-Specific Affect.

    Science.gov (United States)

    Neuendorf, Kimberly A.; Sparks, Glenn G.

    1988-01-01

    Assesses individuals' fear and enjoyment reactions to horror films, applying theories of cognition and affect that predict emotional responses to a stimulus on the basis of prior affect toward specific cues included in that stimulus. (MM)

  17. Poor Response to Periodontal Treatment May Predict Future Cardiovascular Disease.

    Science.gov (United States)

    Holmlund, A; Lampa, E; Lind, L

    2017-07-01

    Periodontal disease has been associated with cardiovascular disease (CVD), but whether the response to the treatment of periodontal disease affects this association has not been investigated in any large prospective study. Periodontal data obtained at baseline and 1 y after treatment were available in 5,297 individuals with remaining teeth who were treated at a specialized clinic for periodontal disease. Poor response to treatment was defined as having >10% sites with probing pocket depth >4 mm deep and bleeding on probing at ≥20% of the sites 1 y after active treatment. Fatal/nonfatal incidence rate of CVD (composite end point of myocardial infarction, stroke, and heart failure) was obtained from the Swedish cause-of-death and hospital discharge registers. Poisson regression analysis was performed to analyze future risk of CVD. During a median follow-up of 16.8 y (89,719 person-years at risk), those individuals who did not respond well to treatment (13.8% of the sample) had an increased incidence of CVD ( n = 870) when compared with responders (23.6 vs. 15.3%, P 4 mm, and number of teeth, the incidence rate ratio for CVD among poor responders was 1.28 (95% CI, 1.07 to 1.53; P = 0.007) as opposed to good responders. The incidence rate ratio among poor responders increased to 1.39 (95% CI, 1.13 to 1.73; P = 0.002) for those with the most remaining teeth. Individuals who did not respond well to periodontal treatment had an increased risk for future CVD, indicating that successful periodontal treatment might influence progression of subclinical CVD.

  18. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  19. Drought responses of three closely related Caragana species: implication for their vicarious distribution.

    Science.gov (United States)

    Ma, Fei; Na, Xiaofan; Xu, Tingting

    2016-05-01

    Drought is a major environmental constraint affecting growth and distribution of plants in the desert region of the Inner Mongolia plateau. Caragana microphylla, C. liouana, and C. korshinskii are phylogenetically close but distribute vicariously in Mongolia plateau. To gain a better understanding of the ecological differentiation between these three species, we examined the leaf gas exchange, growth, water use efficiency, biomass accumulation and allocation by subjecting their seedlings to low and high drought treatments in a glasshouse. Increasing drought stress had a significant effect on many aspects of seedling performance in all species, but the physiology and growth varied with species in response to drought. C. korshinskii exhibited lower sensitivity of photosynthetic rate and growth, lower specific leaf area, higher biomass allocation to roots, higher levels of water use efficiency to drought compared with the other two species. Only minor interspecific differences in growth performances were observed between C. liouana and C. microphylla. These results indicated that faster seedling growth rate and more efficient water use of C. korshinskii should confer increased drought tolerance and facilitate its establishment in more severe drought regions relative to C. liouana and C. microphylla.

  20. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits.

    Directory of Open Access Journals (Sweden)

    Günther Klonner

    Full Text Available The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value, habitat use (agricultural and ruderal habitats, occurrence under the montane belt, and propagule pressure (frequency were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties.

  1. Assessment of Predictive Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mallika Tewari

    2010-10-01

    Conclusion: Of all parameters examined, only the apoptosis-related genes (Bcl-2 and BAX seemed to exert some influence on the response to NACT, and neither by itself was sufficient to predict pCR; however, 50 patients is not sufficient to simultaneously analyse several predictive markers.

  2. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-01-01

    Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…

  3. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Science.gov (United States)

    Lawrence N. Hudson; Joseph Wunderle M.; And Others

    2016-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to...

  4. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    NARCIS (Netherlands)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I; Bedford, Felicity E; Bennett, Dominic J; Booth, Hollie; Burton, Victoria J; Chng, Charlotte W T; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Emerson, Susan R; Gao, Di; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; Pask-Hale, Gwilym D; Pynegar, Edwin L; Robinson, Alexandra N; Sanchez-Ortiz, Katia; Senior, Rebecca A; Simmons, Benno I; White, Hannah J; Zhang, Hanbin; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Albertos, Belén; Alcala, E L; Del Mar Alguacil, Maria; Alignier, Audrey; Ancrenaz, Marc; Andersen, Alan N; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Arroyo-Rodríguez, Víctor; Aumann, Tom; Axmacher, Jan C; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Bakayoko, Adama; Báldi, András; Banks, John E; Baral, Sharad K; Barlow, Jos; Barratt, Barbara I P; Barrico, Lurdes; Bartolommei, Paola; Barton, Diane M; Basset, Yves; Batáry, Péter; Bates, Adam J; Baur, Bruno; Bayne, Erin M; Beja, Pedro; Benedick, Suzan; Berg, Åke; Bernard, Henry; Berry, Nicholas J; Bhatt, Dinesh; Bicknell, Jake E; Bihn, Jochen H; Blake, Robin J; Bobo, Kadiri S; Bóçon, Roberto; Boekhout, Teun; Böhning-Gaese, Katrin; Bonham, Kevin J; Borges, Paulo A V; Borges, Sérgio H; Boutin, Céline; Bouyer, Jérémy; Bragagnolo, Cibele; Brandt, Jodi S; Brearley, Francis Q; Brito, Isabel; Bros, Vicenç; Brunet, Jörg; Buczkowski, Grzegorz; Buddle, Christopher M; Bugter, Rob; Buscardo, Erika; Buse, Jörn; Cabra-García, Jimmy; Cáceres, Nilton C; Cagle, Nicolette L; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Caparrós, Rut; Cardoso, Pedro; Carpenter, Dan; Carrijo, Tiago F; Carvalho, Anelena L; Cassano, Camila R; Castro, Helena; Castro-Luna, Alejandro A; Rolando, Cerda B; Cerezo, Alexis; Chapman, Kim Alan; Chauvat, Matthieu; Christensen, Morten; Clarke, Francis M; Cleary, Daniel F R; Colombo, Giorgio; Connop, Stuart P; Craig, Michael D; Cruz-López, Leopoldo; Cunningham, Saul A; D'Aniello, Biagio; D'Cruze, Neil; da Silva, Pedro Giovâni; Dallimer, Martin; Danquah, Emmanuel; Darvill, Ben; Dauber, Jens; Davis, Adrian L V; Dawson, Jeff; de Sassi, Claudio; de Thoisy, Benoit; Deheuvels, Olivier; Dejean, Alain; Devineau, Jean-Louis; Diekötter, Tim; Dolia, Jignasu V; Domínguez, Erwin; Dominguez-Haydar, Yamileth; Dorn, Silvia; Draper, Isabel; Dreber, Niels; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Eggleton, Paul; Eigenbrod, Felix; Elek, Zoltán; Entling, Martin H; Esler, Karen J; de Lima, Ricardo F; Faruk, Aisyah; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Fensham, Roderick J; Fernandez, Ignacio C; Ferreira, Catarina C; Ficetola, Gentile F; Fiera, Cristina; Filgueiras, Bruno K C; Fırıncıoğlu, Hüseyin K; Flaspohler, David; Floren, Andreas; Fonte, Steven J; Fournier, Anne; Fowler, Robert E; Franzén, Markus; Fraser, Lauchlan H; Fredriksson, Gabriella M; Freire, Geraldo B; Frizzo, Tiago L M; Fukuda, Daisuke; Furlani, Dario; Gaigher, René; Ganzhorn, Jörg U; García, Karla P; Garcia-R, Juan C; Garden, Jenni G; Garilleti, Ricardo; Ge, Bao-Ming; Gendreau-Berthiaume, Benoit; Gerard, Philippa J; Gheler-Costa, Carla; Gilbert, Benjamin; Giordani, Paolo; Giordano, Simonetta; Golodets, Carly; Gomes, Laurens G L; Gould, Rachelle K; Goulson, Dave; Gove, Aaron D; Granjon, Laurent; Grass, Ingo; Gray, Claudia L; Grogan, James; Gu, Weibin; Guardiola, Moisès; Gunawardene, Nihara R; Gutierrez, Alvaro G; Gutiérrez-Lamus, Doris L; Haarmeyer, Daniela H; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hassan, Shombe N; Hatfield, Richard G; Hawes, Joseph E; Hayward, Matt W; Hébert, Christian; Helden, Alvin J; Henden, John-André; Henschel, Philipp; Hernández, Lionel; Herrera, James P; Herrmann, Farina; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Höfer, Hubert; Hoffmann, Anke; Horgan, Finbarr G; Hornung, Elisabeth; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishida, Hiroaki; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Hernández, F Jiménez; Johnson, McKenzie F; Jolli, Virat; Jonsell, Mats; Juliani, S Nur; Jung, Thomas S; Kapoor, Vena; Kappes, Heike; Kati, Vassiliki; Katovai, Eric; Kellner, Klaus; Kessler, Michael; Kirby, Kathryn R; Kittle, Andrew M; Knight, Mairi E; Knop, Eva; Kohler, Florian; Koivula, Matti; Kolb, Annette; Kone, Mouhamadou; Kőrösi, Ádám; Krauss, Jochen; Kumar, Ajith; Kumar, Raman; Kurz, David J; Kutt, Alex S; Lachat, Thibault; Lantschner, Victoria; Lara, Francisco; Lasky, Jesse R; Latta, Steven C; Laurance, William F; Lavelle, Patrick; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Lehouck, Valérie; Lencinas, María V; Lentini, Pia E; Letcher, Susan G; Li, Qi; Litchwark, Simon A; Littlewood, Nick A; Liu, Yunhui; Lo-Man-Hung, Nancy; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Luskin, Matthew S; MacSwiney G, M Cristina; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Malone, Louise A; Malonza, Patrick K; Malumbres-Olarte, Jagoba; Mandujano, Salvador; Måren, Inger E; Marin-Spiotta, Erika; Marsh, Charles J; Marshall, E J P; Martínez, Eliana; Martínez Pastur, Guillermo; Moreno Mateos, David; Mayfield, Margaret M; Mazimpaka, Vicente; McCarthy, Jennifer L; McCarthy, Kyle P; McFrederick, Quinn S; McNamara, Sean; Medina, Nagore G; Medina, Rafael; Mena, Jose L; Mico, Estefania; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Miranda-Esquivel, Daniel R; Moir, Melinda L; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Mudri-Stojnic, Sonja; Munira, A Nur; Muoñz-Alonso, Antonio; Munyekenye, B F; Naidoo, Robin; Naithani, A; Nakagawa, Michiko; Nakamura, Akihiro; Nakashima, Yoshihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Navarro-Iriarte, Luis; Ndang'ang'a, Paul K; Neuschulz, Eike L; Ngai, Jacqueline T; Nicolas, Violaine; Nilsson, Sven G; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Norton, David A; Nöske, Nicole M; Nowakowski, A Justin; Numa, Catherine; O'Dea, Niall; O'Farrell, Patrick J; Oduro, William; Oertli, Sabine; Ofori-Boateng, Caleb; Oke, Christopher Omamoke; Oostra, Vicencio; Osgathorpe, Lynne M; Otavo, Samuel Eduardo; Page, Navendu V; Paritsis, Juan; Parra-H, Alejandro; Parry, Luke; Pe'er, Guy; Pearman, Peter B; Pelegrin, Nicolás; Pélissier, Raphaël; Peres, Carlos A; Peri, Pablo L; Persson, Anna S; Petanidou, Theodora; Peters, Marcell K; Pethiyagoda, Rohan S; Phalan, Ben; Philips, T Keith; Pillsbury, Finn C; Pincheira-Ulbrich, Jimmy; Pineda, Eduardo; Pino, Joan; Pizarro-Araya, Jaime; Plumptre, A J; Poggio, Santiago L; Politi, Natalia; Pons, Pere; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Ramesh, B R; Ramirez-Pinilla, Martha P; Ranganathan, Jai; Rasmussen, Claus; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Rey Benayas, José M; Rey-Velasco, Juan Carlos; Reynolds, Chevonne; Ribeiro, Danilo Bandini; Richards, Miriam H; Richardson, Barbara A; Richardson, Michael J; Ríos, Rodrigo Macip; Robinson, Richard; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rös, Matthias; Rosselli, Loreta; Rossiter, Stephen J; Roth, Dana S; Roulston, T'ai H; Rousseau, Laurent; Rubio, André V; Ruel, Jean-Claude; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Sam, Katerina; Samnegård, Ulrika; Santana, Joana; Santos, Xavier; Savage, Jade; Schellhorn, Nancy A; Schilthuizen, Menno; Schmiedel, Ute; Schmitt, Christine B; Schon, Nicole L; Schüepp, Christof; Schumann, Katharina; Schweiger, Oliver; Scott, Dawn M; Scott, Kenneth A; Sedlock, Jodi L; Seefeldt, Steven S; Shahabuddin, Ghazala; Shannon, Graeme; Sheil, Douglas; Sheldon, Frederick H; Shochat, Eyal; Siebert, Stefan J; Silva, Fernando A B; Simonetti, Javier A; Slade, Eleanor M; Smith, Jo; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Soto Quiroga, Grimaldo; St-Laurent, Martin-Hugues; Starzomski, Brian M; Stefanescu, Constanti; Steffan-Dewenter, Ingolf; Stouffer, Philip C; Stout, Jane C; Strauch, Ayron M; Struebig, Matthew J; Su, Zhimin; Suarez-Rubio, Marcela; Sugiura, Shinji; Summerville, Keith S; Sung, Yik-Hei; Sutrisno, Hari; Svenning, Jens-Christian; Teder, Tiit; Threlfall, Caragh G; Tiitsaar, Anu; Todd, Jacqui H; Tonietto, Rebecca K; Torre, Ignasi; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Uehara-Prado, Marcio; Urbina-Cardona, Nicolas; Vallan, Denis; Vanbergen, Adam J; Vasconcelos, Heraldo L; Vassilev, Kiril; Verboven, Hans A F; Verdasca, Maria João; Verdú, José R; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Virgilio, Massimiliano; Vu, Lien Van; Waite, Edward M; Walker, Tony R; Wang, Hua-Feng; Wang, Yanping; Watling, James I; Weller, Britta; Wells, Konstans; Westphal, Catrin; Wiafe, Edward D; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Wolters, Volkmar; Woodcock, Ben A; Wu, Jihua; Wunderle, Joseph M; Yamaura, Yuichi; Yoshikura, Satoko; Yu, Douglas W; Zaitsev, Andrey S; Zeidler, Juliane; Zou, Fasheng; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of

  5. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    DEFF Research Database (Denmark)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity ...

  6. Chemically emulsified crude oil as substrate for bacterial oxidation : differences in species response

    International Nuclear Information System (INIS)

    Bruheim, P.; Eimhjellen, K.

    1998-01-01

    The ability of bacterial species to oxidize alkanes in crude oil in water emulsions was studied. Alkanes in crude oil need specific physiological adaptations to the microorganisms. Synthesis of biosurfactants has been considered as a prerequisite for either specific adhesion mechanisms to large oil drops or emulsification of oil followed by uptake of submicron oil droplets. In this study four bacterial species were tested. Emulsions were prepared by nonionic sorbitan ester and polyoxyethylene ether surfactants. The oxidation rates were measured. Both positive and negative effects of surfactant amendments were observed. The same surfactant affected different bacteria in different ways. The response to the surfactant amendment depended on the physiological state of the bacteria. The results showed that surfactants resulted in decreased cell adhesion to the oil phase for all the bacteria. 19 refs., 3 tabs., 4 figs

  7. Pharmacogenetic approaches to the prediction of drug response

    International Nuclear Information System (INIS)

    Vesell, E.S.

    1986-01-01

    The following review of pharmacogenetic progress and methodology is offered to stimulate and suggest analogous studies on drugs of abuse. It is readily acknowledged that formidable methodological problems are posed by adapting to drugs of abuse these pharmacogenetic approaches based on the administration of single safe doses of various prescription drugs to normal subjects under carefully controlled environmental conditions. Results of similarly designed studies on drugs of abuse in addicts might be uninterpretable because of confounding by numerous environmental perturbations, including the smoking of cigarettes and/or marijuana, nutritional variations, and intake of other drugs such as ethanol. Ethical considerations render objectionable the administration to unaddicted subjects of drugs at dosage levels usually ingested by drug abusers. Other approaches would have to be taken in such normal subjects. Possibilities include administration of tracer doses of /sup 14/C- or /sup 13/C- labeled drugs or growth of normal cells in culture to investigate their pharmacokinetic and/or pharmacodynamic responses to various drugs of abuse

  8. Class and compassion: socioeconomic factors predict responses to suffering.

    Science.gov (United States)

    Stellar, Jennifer E; Manzo, Vida M; Kraus, Michael W; Keltner, Dacher

    2012-06-01

    Previous research indicates that lower-class individuals experience elevated negative emotions as compared with their upper-class counterparts. We examine how the environments of lower-class individuals can also promote greater compassionate responding-that is, concern for the suffering or well-being of others. In the present research, we investigate class-based differences in dispositional compassion and its activation in situations wherein others are suffering. Across studies, relative to their upper-class counterparts, lower-class individuals reported elevated dispositional compassion (Study 1), as well as greater self-reported compassion during a compassion-inducing video (Study 2) and for another person during a social interaction (Study 3). Lower-class individuals also exhibited heart rate deceleration-a physiological response associated with orienting to the social environment and engaging with others-during the compassion-inducing video (Study 2). We discuss a potential mechanism of class-based influences on compassion, whereby lower-class individuals' are more attuned to others' distress, relative to their upper-class counterparts.

  9. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    Science.gov (United States)

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  10. Comparative Proteomics Analyses of Pollination Response in Endangered Orchid Species Dendrobium Chrysanthum

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-11-01

    Full Text Available Pollination is a crucial stage in plant reproductive process. The self-compatibility (SC and self-incompatibility (SI mechanisms determined the plant genetic diversity and species survival. D. chrysanthum is a highly valued ornamental and traditional herbal orchid in Asia but has been declared endangered. The sexual reproduction in D. chrysanthum relies on the compatibility of pollination. To provide a better understanding of the mechanism of pollination, the differentially expressed proteins (DEP between the self-pollination (SP and cross-pollination (CP pistil of D. chrysanthum were investigated using proteomic approaches—two-dimensional electrophoresis (2-DE coupled with tandem mass spectrometry technique. A total of 54 DEP spots were identified in the two-dimensional electrophoresis (2-DE maps between the SP and CP. Gene ontology analysis revealed an array of proteins belonging to following different functional categories: metabolic process (8.94%, response to stimulus (5.69%, biosynthetic process (4.07%, protein folding (3.25% and transport (3.25%. Identification of these DEPs at the early response stage of pollination will hopefully provide new insights in the mechanism of pollination response and help for the conservation of the orchid species.

  11. Predicting climate change extirpation risk for central and southern Appalachian forest tree species

    Science.gov (United States)

    Kevin M. Potter; William W. Hargrove; Frank H. Koch

    2010-01-01

    Climate change will likely pose a severe threat to the viability of certain forest tree species, which will be forced either to adapt to new conditions or to shift to more favorable environments if they are to survive. Several forest tree species of the central and southern Appalachians may be at particular risk, since they occur in limited high-elevation ranges and/or...

  12. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    OpenAIRE

    Gong, W-C; Chen, G; Vereecken, Nicolas; Dunn, B L; Ma, Y-P; Sun, W-B

    2014-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species ex...

  13. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    Science.gov (United States)

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Phylogenetic prediction of Alternaria leaf blight resistance in wild and cultivated species of carrots (Daucus, Apiaceae)

    Science.gov (United States)

    Plant scientists make inferences and predictions from phylogenetic trees to solve scientific problems. Crop losses due to disease damage is an important problem that many plant breeders would like to solve, so the ability to predict traits like disease resistance from phylogenetic trees derived from...

  15. The responses to supplementary of UV radiation of some temperate meadow species

    International Nuclear Information System (INIS)

    Cooley, N.M.

    2002-01-01

    Full text: The growth and development of various meadow species was monitored while growing under enhanced UV-radiation in the natural light environment. Growth responses to supplementary ultraviolet-B (UV-B+A) and ultraviolet-A (UV-A) were compared to the ambient daylight treatment for Bellis perennis, Cardamine pratensis, Cynosurus critatus and Ranunculus ficaria. When the response of ultraviolet A (UV-A) treated plants were compared with those of the UV-B+A, differences were found which varied according to the species and parameter investigated. To further understand the growth responses of the UV-A treatment and their relationship to the UV-B responses polychromatic action spectra in the natural environment was employed B perennis had an action maximum in the UV B (280-315 nm) while C cristatus demonstrates no action in the UV-B but action in the UV-A region (315-400 nm.). To enable further explanation of the effects of elevated UV radiation on the meadow plants Arabidopsis thaliana ecotypes and mutants were investigated. A thaliana ecotypes dry weight accumulation was found to respond differently to the UV treatments. UV B+A treatment was found to inhibit dry weight accumulation in most ecotypes. When UV B+A induced inhibition was expressed in terms of ambient growth rate for each ecotype a linear relationship could be derived. The higher the growth rate the more susceptible the ecotype was to UV-B+A inhibition. The pertinence of the UV-A treatment and UV protocol is discussed. It is suggested that UV responses could alter the diversity of the meadow equilibrium

  16. A general framework for predicting delayed responses of ecological communities to habitat loss.

    Science.gov (United States)

    Chen, Youhua; Shen, Tsung-Jen

    2017-04-20

    Although biodiversity crisis at different spatial scales has been well recognised, the phenomena of extinction debt and immigration credit at a crossing-scale context are, at best, unclear. Based on two community patterns, regional species abundance distribution (SAD) and spatial abundance distribution (SAAD), Kitzes and Harte (2015) presented a macroecological framework for predicting post-disturbance delayed extinction patterns in the entire ecological community. In this study, we further expand this basic framework to predict diverse time-lagged effects of habitat destruction on local communities. Specifically, our generalisation of KH's model could address the questions that could not be answered previously: (1) How many species are subjected to delayed extinction in a local community when habitat is destructed in other areas? (2) How do rare or endemic species contribute to extinction debt or immigration credit of the local community? (3) How will species differ between two local areas? From the demonstrations using two SAD models (single-parameter lognormal and logseries), the predicted patterns of the debt, credit, and change in the fraction of unique species can vary, but with consistencies and depending on several factors. The general framework deepens the understanding of the theoretical effects of habitat loss on community dynamic patterns in local samples.

  17. Consideration on thermodynamic data for predicting solubility and chemical species of elements in groundwater. Part 2: Np, Pu

    International Nuclear Information System (INIS)

    Yamaguchi, Tetsuji

    2000-11-01

    The solubility determines the release of a radionuclide from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of the radionuclide by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. It is essential to estimate the solubility and to predict the chemical species for the radionuclide based on thermodynamic data. The thermodynamic data of aqueous species and compounds were reviewed and compiled for Np and Pu. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in groundwater. Thermodynamic data for other species were selected based on existing databases. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. (author)

  18. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change

    Science.gov (United States)

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh

    2017-01-01

    The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...

  19. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  20. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  1. Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree species in last remaining wilderness areas

    Science.gov (United States)

    Bettina Ohse; Falk Huettmann; Stefanie M. Ickert-Bond; Glenn P. Juday

    2009-01-01

    Most wilderness areas still lack accurate distribution information on tree species. We met this need with a predictive GIS modeling approach, using freely available digital data and computer programs to efficiently obtain high-quality species distribution maps. Here we present a digital map with the predicted distribution of white spruce (Picea glauca...

  2. Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data

    Directory of Open Access Journals (Sweden)

    Yamaguchi-Shinozaki Kazuko

    2011-02-01

    Full Text Available Abstract Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses.

  3. Temperature responses of some North Atlantic Cladophora species (Chlorophyceae) in relation to their geographic distribution

    Science.gov (United States)

    Cambridge, M.; Breeman, A. M.; van Oosterwijk, R.; van den Hoek, C.

    1984-09-01

    The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genus Cladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1) C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2) C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3) C. dalmatica, as for C. vagabunda. (4) C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data for C. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species, C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.

  4. Germination Response of Four Alien Congeneric Amaranthus Species to Environmental Factors.

    Science.gov (United States)

    Hao, Jian-Hua; Lv, Shuang-Shuang; Bhattacharya, Saurav; Fu, Jian-Guo

    2017-01-01

    Seed germination is the key step for successful establishment, growth and further expansion of population especially for alien plants with annual life cycle. Traits like better adaptability and germination response were thought to be associated with plant invasion. However, there are not enough empirical studies correlating adaptation to environmental factors with germination response of alien invasive plants. In this study, we conducted congeneric comparisons of germination response to different environmental factors such as light, pH, NaCl, osmotic and soil burials among four alien amaranths that differ in invasiveness and have sympatric distribution in Jiangsu Province, China. The data were used to create three-parameter sigmoid and exponential decay models, which were fitted to cumulative germination and emergence curves. The results showed higher maximum Germination (Gmax), shorter time for 50% germination (G50) and the rapid slope (Grate) for Amaranthus blitum (low-invasive) and A. retroflexus (high-invasive) compare to intermediately invasive A. spinosus and A. viridis in all experimental regimes. It indicated that germination potential does not necessarily constitute a trait that can efficiently distinguish highly invasive and low invasive congeners in four Amaranthus species. However, it was showed that the germination performances of four amaranth species were more or less correlated with their worldwide distribution area. Therefore, the germination performance can be used as a reference indicator, but not an absolute trait for invasiveness. Our results also confirmed that superior germination performance in wide environmental conditions supplementing high seed productivity in highly invasive A. retroflexus might be one of the reasons for its prolific growth and wide distribution. These findings lay the foundation to develop more efficient weed management practice like deep burial of seeds by turning over soil and use of tillage agriculture to control

  5. Prediction of heat-illness symptoms with the prediction of human vascular response in hot environment under resting condition.

    Science.gov (United States)

    Aggarwal, Yogender; Karan, Bhuwan Mohan; Das, Barsa Nand; Sinha, Rakesh Kumar

    2008-04-01

    The thermoregulatory control of human skin blood flow is vital to maintain the body heat storage during challenges of thermal homeostasis under heat stress. Whenever thermal homeostasis disturbed, the heat load exceeds heat dissipation capacity, which alters the cutaneous vascular responses along with other body physiological variables. Whole body skin blood flow has been calculated from the forearm blood flow. Present model has been designed using electronics circuit simulator (Multisim 8.0, National Instruments, USA), is to execute a series of predictive equations for early prediction of physiological parameters of young nude subjects during resting condition at various level of dry heat stress under almost still air to avoid causalities associated with hot environmental. The users can execute the model by changing the environmental temperature in degrees C and exposure time in minutes. The model would be able to predict and detect the changes in human vascular responses along with other physiological parameters and from this predicted values heat related-illness symptoms can be inferred.

  6. Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa.

    Science.gov (United States)

    DeGuzman, Marisa; Shott, Megan E; Yang, Tony T; Riederer, Justin; Frank, Guido K W

    2017-06-01

    Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.

  7. Amino acid sequences of predicted proteins and their annotation for 95 organism species. - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Gclust Server Amino acid sequences of predicted proteins and their annotation for 95 organis...m species. Data detail Data name Amino acid sequences of predicted proteins and their annotation for 95 orga...nism species. DOI 10.18908/lsdba.nbdc00464-001 Description of data contents Amino acid sequences of predicted proteins...Database Description Download License Update History of This Database Site Policy | Contact Us Amino acid sequences of predicted prot...eins and their annotation for 95 organism species. - Gclust Server | LSDB Archive ...

  8. Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects.

    Science.gov (United States)

    Hinton, David J; Vázquez, Marely Santiago; Geske, Jennifer R; Hitschfeld, Mario J; Ho, Ada M C; Karpyak, Victor M; Biernacka, Joanna M; Choi, Doo-Sup

    2017-05-31

    Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.

  9. Demographic and phenotypic responses of juvenile steelhead trout to spatial predictability of food resources

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We manipulated food inputs among patches within experimental streams to determine how variation in foraging behavior influenced demographic and phenotypic responses of juvenile steelhead trout (Oncorhynchus mykiss) to the spatial predictability of food resources. Demographic responses included compensatory adjustments in fish abundance, mean fish...

  10. A prospective study on personality and the cortisol awakening response to predict posttraumatic stress symptoms in response to military deployment

    NARCIS (Netherlands)

    van Zuiden, Mirjam; Kavelaars, Annemieke; Rademaker, Arthur R.; Vermetten, Eric; Heijnen, Cobi J.; Geuze, Elbert

    2011-01-01

    Few prospective studies on pre-trauma predictors for subsequent development of posttraumatic stress disorder (PTSD) have been conducted. In this study we prospectively investigated whether pre-deployment personality and the cortisol awakening response (CAR) predicted development of PTSD symptoms in

  11. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.

    Directory of Open Access Journals (Sweden)

    Katie Leach

    Full Text Available Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species. Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi. Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of

  12. Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics.

    Directory of Open Access Journals (Sweden)

    Scott L Hamilton

    Full Text Available In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification-which occurs when increased levels of atmospheric CO2 dissolve into the ocean-is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2 at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 μatm] on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes, integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus, in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50-100 years is likely dependent on species-specific physiological tolerances.

  13. A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors

    Science.gov (United States)

    2017-02-01

    affecting the function of Fanconi Anemia (FA) genes ( FANCA /B/C/D2/E/F/G/I/J/L/M, PALB2) or DNA damage response genes involved in HR 5 (ATM, ATR...Award Number: W81XWH-10-1-0585 TITLE: A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors...To) 15 July 2010 – 2 Nov.2016 4. TITLE AND SUBTITLE A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP

  14. Extracellular polymeric substances affect the responses of multi-species biofilms in the presence of sulfamethizole.

    Science.gov (United States)

    Wang, Longfei; Li, Yi; Wang, Li; Zhang, Huanjun; Zhu, Mengjie; Zhang, Peisheng; Zhu, Xiaoxiao

    2018-04-01

    The occurrence and transportation of antibiotics in biofilms from natural and engineered sources have attracted increasing interests. Nevertheless, the effects of extracellular polymeric substances (EPS) on the responses of biofilms to the exposure to antibiotics are not clear. In this study, the effects of EPS on the sorption and biological responses to one representative antibiotic, sulfamethizole (STZ), in model biofilms were investigated. Proteins dominated the interactions between the EPS and the STZ and the EPS from a moving bed biofilm reactor exhibited the strongest interaction with the STZ. The EPS served as important reservoirs for the STZ and the tested biofilms all showed reduced sorption capacities for the STZ after the EPS were extracted. The respiratory rates and typical enzymatic activities were reduced after the EPS were extracted. High-throughput 16S rRNA gene sequencing results confirmed that the bacterial community in the biofilm without the EPS was more vulnerable to antibiotic shock as indicated by the community diversity and richness indices. A greater increase in the abundance of susceptible species was observed in the natural biofilm. The results comprehensively suggested that the EPS played important role in biosorption of STZ and alleviated the direct damage of the antibiotic to the cells; in addition the extent of the bacterial community response was associated with the origins of the biofilms. Our study provided details on the responses of multi-species biofilms to the exposure to an antibiotic and highlighted the role of the EPS in interacting with the antibiotic, thereby providing a deeper understanding of the bioremediation of antibiotics in real-life natural and engineered biofilm systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms.

    Science.gov (United States)

    Sun, Luchao; Rai, Amit; Rai, Megha; Nakamura, Michimi; Kawano, Noriaki; Yoshimatsu, Kayo; Suzuki, Hideyuki; Kawahara, Nobuo; Saito, Kazuki; Yamazaki, Mami

    2018-05-07

    The three Forsythia species, F. suspensa, F. viridissima and F. koreana, have been used as herbal medicines in China, Japan and Korea for centuries and they are known to be rich sources of numerous pharmaceutical metabolites, forsythin, forsythoside A, arctigenin, rutin and other phenolic compounds. In this study, de novo transcriptome sequencing and assembly was performed on these species. Using leaf and flower tissues of F. suspensa, F. viridissima and F. koreana, 1.28-2.45-Gbp sequences of Illumina based pair-end reads were obtained and assembled into 81,913, 88,491 and 69,458 unigenes, respectively. Classification of the annotated unigenes in gene ontology terms and KEGG pathways was used to compare the transcriptome of three Forsythia species. The expression analysis of orthologous genes across all three species showed the expression in leaf tissues being highly correlated. The candidate genes presumably involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were screened as co-expressed genes. They express highly in the leaves of F. viridissima and F. koreana. Furthermore, the three unigenes annotated as acyltransferase were predicted to be associated with the biosynthesis of acteoside and forsythoside A from the expression pattern and phylogenetic analysis. This study is the first report on comparative transcriptome analyses of medicinally important Forsythia genus and will serve as an important resource to facilitate further studies on biosynthesis and regulation of therapeutic compounds in Forsythia species.

  16. Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins

    Directory of Open Access Journals (Sweden)

    Neto Armando

    2012-11-01

    Full Text Available Abstract Background Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. Methods Signal peptide (SignalP and orthology (OrthoMCL were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups. In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples or on experimental evidence already published (ApiLoc. Results The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. Conclusions The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug

  17. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  18. Modeling response of species to microcontaminants: comparative ecotoxicology by (sub)lethal body burdens as a function of species size and partition ratio of chemicals.

    Science.gov (United States)

    Hendriks, A J

    1995-11-01

    A model was designed and calibrated with accumulation data to calculate the internal concentrations of microcontaminants in organisms as a function of a few constants and variables. The main factors are the exposure time, the external exposure concentration, the partition ratio of the compound, and the size of the taxon concerned. The model was applied to calculate the lethal and sublethal body burdens of several priority compounds and some major taxa. Estimations were generally confirmed at the order of magnitude level by measured residues and applied doses if available. According to the estimations, most priority compounds chosen were critical for most taxa above internal concentrations of 0.1 mmol.kg-1 wet wt. Trichloromethane, 1,2,4-trichlorobenzene, and hexachlorobenzene were lethal above this level only, whereas other organic microcontaminants affected at least some taxa at lower body burdens. The log(Kow) of the organic compounds ranged from 2.0 to 7.0. Keeping in mind that bioconcentration and -magnification ratios for metals may be quite variable, the lowest critical residues estimated were just below the value of 0.1 mmol.kg-1 wet wt. Here, external concentrations encountered in natural habitats seem to be a promising tool for predictive comparative ecotoxicology. The critical body burdens for plants and invertebrates may have been overestimated due to uncertainty about the parameters. Among the different taxa, however, the fish families chosen (Salmonidae and Cyprinidae) seem to be most sensitive to most compounds. Internal response concentrations of the herbicide atrazine were the lowest in micro- and macrophytes, whereas parathion affected invertebrates at low levels. The database that provided the external response concentrations was also consulted to estimate so-called extrapolation or safety factors. On average, long-term no effect concentrations in water are estimated to be about 10-30 times below short-term median lethal levels. In general, short

  19. Physiological Responses to Prolonged Drought Differ Among Three Oak (Quercus) Species

    Science.gov (United States)

    Cooper, C. E.; Moore, G. W.; Vogel, J. G.; Muir, J. P.

    2015-12-01

    The physiological response of plants to water stress provides insights into which species may survive in exceptional drought conditions. This study conducted on a remnant post oak savanna site in College Station, Texas, examined how drought affected the physiology of three native oak species. In June 2014, after a period of equal watering, we subjected three year old Quercus shumardii (Shumard oak; SO), Q. virginiana (live oak; LO), and Q. macrocarpa (bur oak; BO) saplings to one of two watering treatments: 1) watered, receiving the equivalent of theaverage precipitation rate and 2) droughted, receiving a 100% reduction in precipitation. We measured predawn (ΨPD) and midday (ΨMD) leaf water potential; midday gas exchange (MGE) parameters including photosynthesis (Al), transpiration (T), stomatal conductance (gsw); and leaf soluble (SS) and non-soluble sugar (NSS) concentrations monthly between June and October 2014. Drought stress responses were evident after only one month of induced drought. Droughted saplings showed reduced ΨPD, ΨMD, and MGE (P ≤ 0.05) in comparison to watered saplings of the same species. LO saplings exhibited greater MGE (P ≤ 0.05) while maintaining similar LWP to their respective watered and droughted BO and SO counterparts. Droughted LO exhibited MGE rates similar to those of watered BO and SO (P ≤ 0.05), while watered LO adjusted its MGE rates to changes in water availability better than BO and LO during short-term drought. Compared to water saplings, droughted saplings had greater leaf SS (P = 0.08) and lower NSS concentrations (P = 0.10), possibly due to the conversion of NSS to SS and other simple compounds and reduced consumption of SS for growth by the droughted saplings. Although SO and BO exhibited similar photosynthesis rates, leaf total sugar (SS+NSS) concentration was greater in SO (P ≤ 0.05). By displaying the greatest average photosynthesis rate (P ≤ 0.05), LO should have accumulated the greatest amount of carbon

  20. MTR-18 Predictive Biomarkers Of Bevacizumab Response In Recurrent Glioblastoma Patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2015-01-01

    Bevacizumab (BEV) plus chemotherapy has shown activity in recurrent glioblastoma (GBM). However, the prognosis varies and only one third of patients have a durable clinical response to BEV combination therapy. Recent findings from a randomized phase-3 study (AVAglio) indicate that patients...... with the proneural GBM subtype have a survival benefit when treated with BEV in combination with standard treatment. However, no validated biomarkers able to predict BEV response have been identified and the biology reflecting a clinical BEV response is poorly understood. The primary objective of this study...... was to evaluate the predictive and prognostic value of GBM subtypes in recurrent GBM patients treated with BEV therapy. The secondary objective was to identify biomarkers able to predict response to BEV therapy in recurrent GBM patients. METHODS: A total of 90 recurrent GBM patients treated with BEV combination...

  1. Predictive Factors of Clinical Response of Infliximab Therapy in Active Nonradiographic Axial Spondyloarthritis Patients

    Directory of Open Access Journals (Sweden)

    Zhiming Lin

    2015-01-01

    Full Text Available Objectives. To evaluate the efficiency and the predictive factors of clinical response of infliximab in active nonradiographic axial spondyloarthritis patients. Methods. Active nonradiographic patients fulfilling ESSG criteria for SpA but not fulfilling modified New York criteria were included. All patients received infliximab treatment for 24 weeks. The primary endpoint was ASAS20 response at weeks 12 and 24. The abilities of baseline parameters and response at week 2 to predict ASAS20 response at weeks 12 and 24 were assessed using ROC curve and logistic regression analysis, respectively. Results. Of 70 axial SpA patients included, the proportions of patients achieving an ASAS20 response at weeks 2, 6, 12, and 24 were 85.7%, 88.6%, 87.1%, and 84.3%, respectively. Baseline MRI sacroiliitis score (AUC = 0.791; P=0.005, CRP (AUC = 0.75; P=0.017, and ASDAS (AUC = 0.778, P=0.007 significantly predicted ASAS20 response at week 12. However, only ASDAS (AUC = 0.696, P=0.040 significantly predicted ASAS20 response at week 24. Achievement of ASAS20 response after the first infliximab infusion was a significant predictor of subsequent ASAS20 response at weeks 12 and 24 (wald χ2=6.87, P=0.009, and wald χ2=5.171, P=0.023. Conclusions. Infliximab shows efficiency in active nonradiographic axial spondyloarthritis patients. ASDAS score and first-dose response could help predicting clinical efficacy of infliximab therapy in these patients.

  2. Prediction of electroconvulsive therapy response and remission in major depression : meta-analysis

    OpenAIRE

    Diermen, van, Linda; Ameele, van den, Seline; Kamperman, Astrid M.; Sabbe, Bernard G.C.; Vermeulen, Tom; Schrijvers, Didier; Birkenhager, Tom K.

    2018-01-01

    Abstract: Background Electroconvulsive therapy (ECT) is considered to be the most effective treatment in severe major depression. The identification of reliable predictors of ECT response could contribute to a more targeted patient selection and consequently increased ECT response rates. Aims To investigate the predictive value of age, depression severity, psychotic and melancholic features for ECT response and remission in major depression. Method A meta-analysis was conducted according to t...

  3. Multiple glacial refugia of the low-dispersal ground beetle Carabus irregularis: molecular data support predictions of species distribution models.

    Directory of Open Access Journals (Sweden)

    Katharina Homburg

    Full Text Available Classical glacial refugia such as the southern European peninsulas were important for species survival during glacial periods and acted as sources of post-glacial colonisation processes. Only recently, some studies have provided evidence for glacial refugia north of the southern European peninsulas. In the present study, we combined species distribution models (SDMs with phylogeographic analyses (using mitochondrial DNA = mtDNA to investigate if the cold-adapted, stenotopic and flightless ground beetle species, Carabus irregularis, survived the Last Glacial Maximum (LGM in classical and/or other refugia. SDMs (for both a western European and for a Carpathian