WorldWideScience

Sample records for predator populations effects

  1. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    Science.gov (United States)

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  2. Predicting population level risk effects of predation from the responses of individuals

    OpenAIRE

    Macleod, Colin D.; Macleod, Ross; Learmonth, Jennifer A.; Cresswell, Will; Pierce, G.J.

    2014-01-01

    Fear of predation produces large effects on prey population dynamics through indirect risk effects that can cause even greater impacts than direct predation mortality. As yet, there is no general theoretical framework for predicting when and how these population risk effects will arise in specific prey populations, meaning there is often little consideration given to the key role predator risk effects can play in understanding conservation and wildlife management challenges. Here, we propose ...

  3. Effects of predation and dispersal on Mastomys natalensis population dynamics in Tanzanian maize fields

    DEFF Research Database (Denmark)

    Vibe-Petersen, Solveig; Leirs, Herwig; de Bruyn, L

    2006-01-01

    ), excluding predators by nets and attracting avian predators by nest boxes and perch poles. Because dispersal of the rodents could mask the predation pressure treatment effects, control and predator exclusion treatments were repeated with enclosed rodent populations. 3.  Population growth during the annual...... risk. Reducing dispersal of rodents removed the effect of predation on population growth and peak size, suggesting that local predators may play a role in driving rodent dispersal, but have otherwise little direct effect on population dynamics....

  4. Predation and caribou populations

    Directory of Open Access Journals (Sweden)

    Dale R. Seip

    1991-10-01

    Full Text Available Predation, especially wolf (Canis lupus predation, limits many North American caribou (Rangifer tarandus populations below the density that food resources could sustain. The impact of predation depends on the parameters for the functional and numerical response of the wolves, relative to the potential annual increment of the caribou population. Differences in predator-avoidance strategies largely explain the major differences in caribou densities that occur naturally in North America. Caribou migrations that spatially separate caribou from wolves allow relatively high densities of caribou to survive. Non-migratory caribou that live in areas where wolf populations are sustained by alternate prey can be eliminated by wolf predation.

  5. It's a bear market: evolutionary and ecological effects of predation on two wild sockeye salmon populations.

    Science.gov (United States)

    Lin, J E; Hard, J J; Naish, K A; Peterson, D; Hilborn, R; Hauser, L

    2016-05-01

    Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations.

  6. Dynamics and Biocontrol: The Indirect Effects of a Predator Population on a Host-Vector Disease Model

    Directory of Open Access Journals (Sweden)

    Fengyan Zhou

    2014-01-01

    Full Text Available A model of the interactions among a host population, an insect-vector population, which transmits virus from hosts to hosts, and a vector predator population is proposed based on virus-host, host-vector, and prey (vector-enemy theories. The model is investigated to explore the indirect effect of natural enemies on host-virus dynamics by reducing the vector densities, which shows the basic reproduction numbers R01 (without predators and R02 (with predators that provide threshold conditions on determining the uniform persistence and extinction of the disease in a host population. When the model is absent from predator, the disease is persistent if R01>1; in such a case, by introducing predators of a vector, then the insect-transmitted disease will be controlled if R02<1. From the point of biological control, these results show that an additional predator population of the vector may suppress the spread of vector-borne diseases. In addition, there exist limit cycles with persistence of the disease or without disease in presence of predators. Finally, numerical simulations are conducted to support analytical results.

  7. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation...... on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  8. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  9. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  10. Effects of subsidized predators, resource variability, and human population density on desert tortoise populations in the Mojave Desert, USA

    Science.gov (United States)

    Esque, Todd C.; Nussear, Kenneth E.; Drake, K. Kristina; Walde, Andrew D.; Berry, Kristin H.; Averill-Murray, Roy C.; Woodman, A. Peter; Boarman, William I.; Medica, Phil A.; Mack, Jeremy S.; Heaton, Jill S.

    2010-01-01

    Understanding predator–prey relationships can be pivotal in the conservation of species. For 2 decades, desert tortoise Gopherus agassizii populations have declined, yet quantitative evidence regarding the causes of declines is scarce. In 2005, Ft. Irwin National Training Center, California, USA, implemented a translocation project including 2 yr of baseline monitoring of desert tortoises. Unusually high predation on tortoises was observed after translocation occurred. We conducted a retrospective analysis of predation and found that translocation did not affect the probability of predation: translocated, resident, and control tortoises all had similar levels of predation. However, predation rates were higher near human population concentrations, at lower elevation sites, and for smaller tortoises and females. Furthermore, high mortality rates were not limited to the National Training Center. In 2008, elevated mortality (as high as 43%) occurred throughout the listed range of the desert tortoise. Although no temporal prey base data are available for analysis from any of the study sites, we hypothesize that low population levels of typical coyote Canis latrans prey (i.e. jackrabbits Lepus californicus and other small animals) due to drought conditions influenced high predation rates in previous years. Predation may have been exacerbated in areas with high levels of subsidized predators. Many historical reports of increased predation, and our observation of a range-wide pattern, may indicate that high predation rates are more common than generally considered and may impact recovery of the desert tortoise throughout its range.

  11. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  12. On the stability analysis of a general discrete-time population model involving predation and Allee effects

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a general discrete-time population dynamics involving predation with and without Allee effects which occur at low population density. The mathematical analysis and numerical simulations show that the Allee effect has a stabilizing role on the local stability of the positive equilibrium points of this model.

  13. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    Directory of Open Access Journals (Sweden)

    Andrew Wilby

    Full Text Available The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by

  14. Stochastic population oscillations in spatial predator-prey models

    International Nuclear Information System (INIS)

    Taeuber, Uwe C

    2011-01-01

    It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.

  15. Population Variation in the Life History of a Land Fish, Alticus arnoldorum, and the Effects of Predation and Density.

    Directory of Open Access Journals (Sweden)

    Edward R M Platt

    Full Text Available Life history variation can often reflect differences in age-specific mortality within populations, with the general expectation that reproduction should be shifted away from ages experiencing increased mortality. Investigators of life history in vertebrates frequently focus on the impact of predation, but there is increasing evidence that predation may have unexpected impacts on population density that in turn prompt unexpected changes in life history. There are also other reasons why density might impact life history independently of predation or mortality more generally. We investigated the consequences of predation and density on life history variation among populations of the Pacific leaping blenny, Alticus arnoldorum. This fish from the island of Guam spends its adult life out of the water on rocks in the splash zone, where it is vulnerable to predation and can be expected to be sensitive to changes in population density that impact resource availability. We found populations invested more in reproduction as predation decreased, while growth rate varied primarily in response to population density. These differences in life history among populations are likely plastic given the extensive gene flow among populations revealed by a previous study. The influence of predation and density on life history was unlikely to have operated independently of each other, with predation rate tending to be associated with reduced population densities. Taken together, our results suggest predation and density can have complex influences on life history, and that plastic life history traits could allow populations to persist in new or rapidly changing environments.

  16. Short-term effects of avian predation variation on population size and local survival of the multimammate rat, Mastomys natalensis (Rodentia, Muridae)

    DEFF Research Database (Denmark)

    Gulck, T. van; Stocks, R.; Verhagen, Ron

    1998-01-01

    The influence of avian predation on population size and local survival of Mastomys natalensis rats in Tanzania was studied in a capture-recapture study over a six month period on experimental fields with decreased, controlled and increased predation pressure. Bird observations indicated that the ......The influence of avian predation on population size and local survival of Mastomys natalensis rats in Tanzania was studied in a capture-recapture study over a six month period on experimental fields with decreased, controlled and increased predation pressure. Bird observations indicated...... that the placement of perches increased local hunting activity of at least the Black Shouldered Kite but there were no obvious effects on rodent population size or survival. In a single field where avian predation was prevented by covering the field with a net, an increase in survival was observed. The opposite...

  17. Coexistence in a One-Predator, Two-Prey System with Indirect Effects

    Directory of Open Access Journals (Sweden)

    Renato Colucci

    2013-01-01

    Full Text Available We study the dynamics of a one-predator, two-prey system in which the predator has an indirect effect on the preys. We show that, in presence of the indirect effect term, the system admits coexistence of the three populations while, if we disregard it, at least one of the populations goes to extinction.

  18. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A. [Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative

  19. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  20. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population.

    Science.gov (United States)

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-07-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.

  1. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish

  2. Uncoupling the effects of seed predation and seed dispersal by granivorous ants on plant population dynamics.

    Directory of Open Access Journals (Sweden)

    Xavier Arnan

    Full Text Available Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation and benefits (seed dispersal, the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength.

  3. Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays.

    Science.gov (United States)

    Eide, Ragna M; Krause, Andrew L; Fadai, Nabil T; Van Gorder, Robert A

    2018-08-14

    We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Predator-induced morphological plasticity across local populations of a freshwater snail.

    Directory of Open Access Journals (Sweden)

    Christer Brönmark

    Full Text Available The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca, a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free, suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.

  5. Seasonal shift in the effects of predators on juvenile Atlantic salmon (Salmo salar) energetics

    Science.gov (United States)

    Darren M. Ward; Keith H. Nislow; Carol L. Folt; James Grant

    2011-01-01

    Predator effects on prey populations are determined by the number of prey consumed and effects on the traits of surviving prey. Yet the effects of predators on prey traits are rarely evaluated in field studies. We measured the effects of predators on energetic traits (consumption and growth rates) of juvenile Atlantic salmon (Salmo salar) in a...

  6. Quantifying the impact of woodpecker predation on population dynamics of the emerald ash borer (Agrilus planipennis.

    Directory of Open Access Journals (Sweden)

    David E Jennings

    Full Text Available The emerald ash borer (EAB, Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp. since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.

  7. Quantifying the impact of woodpecker predation on population dynamics of the emerald ash borer (Agrilus planipennis).

    Science.gov (United States)

    Jennings, David E; Gould, Juli R; Vandenberg, John D; Duan, Jian J; Shrewsbury, Paula M

    2013-01-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.

  8. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease.

    NARCIS (Netherlands)

    Kooi, B.W.; van Voorn, G.A.K.; Pada Das, K.

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator-prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  9. Personality differences in two minnow populations that differ in their parasitism and predation risk

    Directory of Open Access Journals (Sweden)

    Raine eKortet

    2015-02-01

    Full Text Available Animals are often individually consistent in their behavior, not only over time, but also across different functional contexts. Recent research has focused on phenotypic and evolutionary mechanisms explaining such personality differences through selection. Parasitism and predation induce important mortality and fitness costs, and are thus the main candidates to create and maintain personality differences in the wild. Here, we present data on the behavioral consistency of the Eurasian minnow (Phoxinus phoxinus from two populations that live in different tributaries of the same river, but whose ecological environment differs fundamentally with regard to predation and parasitism. We experimentally demonstrate that minnow in both study populations are consistent in their boldness and activity. However, the two study populations differ notably: in the high predation and parasitism risk population fish show higher mean boldness, but tend to be less active than fish in low predation and parasitism risk population. Parasite (Diplostomum phoxini load was negatively, but not statistically significantly, associated with fish activity level. Our study suggests that parasitism and predation are likely important agents in the ecology and evolution of animal personalities.

  10. Nonlinearities Lead to Qualitative Differences in Population Dynamics of Predator-Prey Systems

    Czech Academy of Sciences Publication Activity Database

    Ameixa, Olga; Messelink, G. J.; Kindlmann, Pavel

    2013-01-01

    Roč. 8, č. 4 (2013), e62530-e62530 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GEVOL/11/E036 Institutional support: RVO:67179843 Keywords : nonlinear system * population density * population dynamics * predator * predator prey interaction * qualitative analysis Subject RIV: EH - Ecology, Behaviour Impact factor: 3.534, year: 2013

  11. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  12. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    a predator-prey system with prey refuge and additional food for predator apart from the focal prey in the presence of diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the system dynamics and especially on the controllability of prey (pest). Different types......Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze...... of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution...

  13. Changes of population trends and mortality patterns in response to the reintroduction of large predators: The case study of African ungulates

    Science.gov (United States)

    Grange, Sophie; Owen-Smith, Norman; Gaillard, Jean-Michel; Druce, Dave J.; Moleón, Marcos; Mgobozi, Mandisa

    2012-07-01

    Large predators have been reintroduced to an increasing number of protected areas in South Africa. However, the conditions allowing both prey and predator populations to be sustained in enclosed areas are still unclear as there is a lack of understanding of the consequences of such reintroductions for ungulate population dynamics. Variation in lion numbers, two decades after their first release, offered a special opportunity to test the effects of predation pressure on the population dynamics of seven ungulate species in the 960 km2 Hluhluwe-iMfolozi Park (HiP), South Africa. We used two different approaches to examine predator-prey relationships: the population response of ungulates to predation pressure after accounting for possible confounding factors, and the pattern of ungulate adult mortality observed from carcass records. Rainfall patterns affected observed mortalities of several ungulate species in HiP. Although lion predation accounted for most ungulate mortality, it still had no detectable influence on ungulate population trends and mortality patterns, with one possible exception. This evidence suggests that the lion population had not yet attained the maximum abundance potentially supported by their ungulate prey; but following recent increases in lion numbers it will probably occur soon. It remains uncertain whether a quasi-stable balance will be reached between prey and predator populations, or whether favoured prey species will be depressed towards levels potentially generating oscillatory dynamics in this complex large mammal assemblage. We specifically recommend a continuous monitoring of predator and prey populations in HiP since lions are likely to show more impacts on their prey species in the next years.

  14. Dynamic complexity of a two-prey one-predator system with impulsive effect

    International Nuclear Information System (INIS)

    Zhang Yujuan; Xiu Zhilong; Chen Lansun

    2005-01-01

    In this paper, we investigate the dynamic complexity of a two-prey one-predator system with impulsive perturbation on predator at fixed moments. With the increase of the predation rate for the super competitor, the system displays complicated phenomena including a sequence of direct and inverse cascade of periodic-doubling, chaos, and symmetry breaking bifurcation. Moreover, we discuss the effect of the period of releasing predator on the dynamical behaviors of the unforced continuous system, and find that periodically releasing predator at fixed moments change the properties of the unforced continuous system. We suggest a highly effective method in pest control. The target pest population can be driven to extinction and the non-target pest (or harmless insect) can be permanent by choosing impulsive period, while classical method cannot emulate

  15. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  16. Safety in numbers: extinction arising from predator-driven Allee effects.

    Science.gov (United States)

    Gregory, Stephen D; Courchamp, Franck

    2010-05-01

    Experimental evidence of extinction via an Allee effect (AE) is a priority as more species become threatened by human activity. Kramer & Drake (2010) begin the International Year of Biodiversity with the important--but double-edged--demonstration that predators can induce an AE in their prey. The good news is that their experiments help bridge the knowledge gap between theoretical and empirical AEs. The bad news is that this predator-driven AE precipitates the prey extinction via a demographic AE. Although their findings will be sensitive to departures from their experimental protocol, this link between predation and population extinction could have important consequences for many prey species.

  17. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  18. Effect of intercropping of maize, bean, cabbage and toxicants on the population levels of some insect pests and associated predators in sugar beet plantations

    Directory of Open Access Journals (Sweden)

    S.K.M. El-Fakharany

    2012-01-01

    Full Text Available Experiments were carried out at El-Riad district, Kafr El-Sheikh Governorate in two successive growing seasons (2009/10 and 2010/11 to study the effect of intercropping of faba bean, maize and cabbage with sugar beet on the population density of Empoasca spp. (nymphs and adults, Aphis spp. (nymphs and adults, Bemisia tabaci (adults, Pegomyia mixta (eggs and larvae, Cassida vittata (larvae, pupae and adults and predators in sugar beet plantations compared with the non-intercropped plants and the resulting yield. The toxicity of certain compounds: fenitrothion, super misrona, sour orange oil, acidless orange oil, and Bermectine in reducing the population density of P. mixta and C. vittata larvae infesting sugar beet was evaluated. The rate of infestation was higher in the sole sugar beet plants than in those intercropped with faba bean, maize and cabbage plants which caused reduction of sucking pests and P. mixta eggs in the two seasons. The intercropping of faba bean plants led to higher infestation rate of P. mixta larvae in the two seasons and C. vittata (larvae, pupae and adults in the first season. The intercropping with maize led to a higher population density of Chrysoperla carnea, Paederus alfierii and Scymnus spp. in the two seasons. Low population density of true spiders was observed in sole sugar beet (control when compared with faba bean, maize and cabbage plants intercropped in the two seasons. Concerning the obtained root yield, the intercropping with maize and cabbage plants reduced the resultant yield of sugar beet roots in the two seasons. Bermectine and fenitrothion were the most effective toxicants followed by super misrona and then, sour orange that induced the lowest reduction in P. mixta larvae. Also, fenitrothion and Bermectine were the most potent compounds in reducing the population density of C. vittata larvae followed by super misrona and then, plant oil extracts. Concerning the side effects of these compounds on

  19. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease

    NARCIS (Netherlands)

    Kooi, B.W.; Voorn, van G.A.K.; Das, pada Krishna

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  20. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    Directory of Open Access Journals (Sweden)

    Gail S Robertson

    Full Text Available Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis. With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes

  1. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    Directory of Open Access Journals (Sweden)

    Barbara A Han

    2011-02-01

    Full Text Available The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  2. Noncorrelated effects of seed predation and pollination on the perennial herb Ruellia nudiflora remain spatially consistent

    OpenAIRE

    Abdala-Roberts, Luis; Parra-Tabla, Víctor; Salinas-Peba, Luis; Herrera, Carlos M.

    2009-01-01

    By simultaneously manipulating both seed predator and pollinator effects on the perennial herb Ruellia nudiflora at two sites in Yucatan (Mexico), the present study evaluated (1) whether a correlation (interaction) existed between seed predator and pollinator effects on R. nudiflora seed production and (2) whether such an interaction varied geographically. We used three populations per site, and a total of 20 plants per population (N = 120). Groups of five plants wer...

  3. Diversity and population dynamics of pests and predators in irrigated rice fields with treated and untreated pesticide.

    Science.gov (United States)

    Rattanapun, W

    2012-01-01

    The monitoring of rice pests and their predators in pesticide untreated and treated rice fields was conducted at the southern of Thailand. Twenty-two species in 15 families and 6 orders of rice pests were sampled from untreated rice field. For treated rice field, 22 species in 14 families and 5 orders of rice pest were collected. Regardless of treatment type, dominant species and individual number of rice pest varied to physiological stage of rice. Lepidopteran pests had highest infestation during the vegetative stage of rice growth, while hemipteran pests composed of hopper species (Hemipetra: Auchenorrhyncha) and heteropteran species (Hemiptera: Heteroptera) were dominant groups during the reproductive stage and grain formation and ripening stage of rice growth. In contrast, dominant species of predator did not change throughout rice growing season. There were 35 species in 25 families and seven orders and 40 species in 29 families and seven orders of predators collected from untreated and treated rice field, respectively. Major predators of both rice fields were Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae), Tetragnatha sp. (Araneae: Tetragnathidae) and Agriocnemis pygmaea Rambur (Odonata: Agrionidae). The population dynamic of predators were not related with rice pest population in both treatments. However, the fluctuation of population pattern of rice pests in the untreated treatment were more distinctly synchronized with their predators than that of the treated treatment. There were no significant differences in the total number of rice pest and predator between two treatments at vegetative and reproductive stages of rice growth. Untreated rice field had a higher population number of predator and a lower population number of rice pest than that of treated rice field during grain formation and ripening stages. These results indicated the ago-ecosystem balance in rice fields could be produced through minimal pesticide application, in order to allow

  4. Predator diversity effects in an exotic freshwater food web.

    Science.gov (United States)

    Naddafi, Rahmat; Rudstam, Lars G

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  5. Predator diversity effects in an exotic freshwater food web.

    Directory of Open Access Journals (Sweden)

    Rahmat Naddafi

    Full Text Available Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs. Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  6. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    Science.gov (United States)

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  7. Competition and Dispersal in Predator-Prey Waves

    NARCIS (Netherlands)

    Savill, N.J.; Hogeweg, P.

    1998-01-01

    Dispersing predators and prey can exhibit complex spatio-temporal wave-like patterns if the interactions between them cause oscillatory dynamics. We study the effect of these predator- prey density waves on the competition between prey populations and between predator popu- lations with different

  8. Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability.

    Science.gov (United States)

    Trathan, P N; Forcada, J; Murphy, E J

    2007-12-29

    The Southern Ocean is a major component within the global ocean and climate system and potentially the location where the most rapid climate change is most likely to happen, particularly in the high-latitude polar regions. In these regions, even small temperature changes can potentially lead to major environmental perturbations. Climate change is likely to be regional and may be expressed in various ways, including alterations to climate and weather patterns across a variety of time-scales that include changes to the long interdecadal background signals such as the development of the El Niño-Southern Oscillation (ENSO). Oscillating climate signals such as ENSO potentially provide a unique opportunity to explore how biological communities respond to change. This approach is based on the premise that biological responses to shorter-term sub-decadal climate variability signals are potentially the best predictor of biological responses over longer time-scales. Around the Southern Ocean, marine predator populations show periodicity in breeding performance and productivity, with relationships with the environment driven by physical forcing from the ENSO region in the Pacific. Wherever examined, these relationships are congruent with mid-trophic-level processes that are also correlated with environmental variability. The short-term changes to ecosystem structure and function observed during ENSO events herald potential long-term changes that may ensue following regional climate change. For example, in the South Atlantic, failure of Antarctic krill recruitment will inevitably foreshadow recruitment failures in a range of higher trophic-level marine predators. Where predator species are not able to accommodate by switching to other prey species, population-level changes will follow. The Southern Ocean, though oceanographically interconnected, is not a single ecosystem and different areas are dominated by different food webs. Where species occupy different positions in

  9. Effects of habitat features on size-biased predation on salmon by bears.

    Science.gov (United States)

    Andersson, Luke C; Reynolds, John D

    2017-05-01

    Predators can drive trait divergence among populations of prey by imposing differential selection on prey traits. Habitat characteristics can mediate predator selectivity by providing refuge for prey. We quantified the effects of stream characteristics on biases in the sizes of spawning salmon caught by bears (Ursus arctos and U. americanus) on the central coast of British Columbia, Canada by measuring size-biased predation on spawning chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in 12 streams with varying habitat characteristics. We tested the hypotheses that bears would catch larger than average salmon (size-biased predation) and that this bias toward larger fish would be higher in streams that provide less protection to spawning salmon from predation (e.g., less pools, wood, undercut banks). We then we tested for how such size biases in turn translate into differences among populations in the sizes of the fish. Bears caught larger-than-average salmon as the spawning season progressed and as predicted, this was most pronounced in streams with fewer refugia for the fish (i.e., wood and undercut banks). Salmon were marginally smaller in streams with more pronounced size-biased predation but this predictor was less reliable than physical characteristics of streams, with larger fish in wider, deeper streams. These results support the hypothesis that selective forces imposed by predators can be mediated by habitat characteristics, with potential consequences for physical traits of prey.

  10. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    Science.gov (United States)

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  11. Allee effect in a discrete-time predator-prey system

    International Nuclear Information System (INIS)

    Celik, Canan; Duman, Oktay

    2009-01-01

    In this paper, we study the stability of a discrete-time predator-prey system with and without Allee effect. By analyzing both systems, we first obtain local stability conditions of the equilibrium points without the Allee effect and then exhibit the impact of the Allee effect on stability when it is imposed on prey population. We also show the stabilizing effect of Allee effect by numerical simulations and verify that when the prey population is subject to an Allee effect, the trajectory of the solutions approximates to the corresponding equilibrium point much faster. Furthermore, for some fixed parameter values satisfying necessary conditions, we show that the corresponding equilibrium point moves from instability to stability under the Allee effect on prey population.

  12. Non-consumptive effects of predator presence on copepod reproduction: insights from a mesocosm experiment

    DEFF Research Database (Denmark)

    Heuschele, Jan; Ceballos, Sara; Borg, Marc Andersen

    2014-01-01

    Reproduction in planktonic animals depends on numerous biotic and abiotic factors. One of them is predation pressure, which can have both direct consumptive effects on population density and sex ratio, and non-consumptive effects, for example on mating and migration behaviour. In copepods, predator...... vulnerability depends on their sex, motility pattern and mating behaviour. Therefore, copepods can be affected at multiple stages during the mating process. We investigated the reproductive dynamics of the estuarine copepod Eurytemora affinis in the presence and absence of its predator the mysid Neomysis...... treatment, but increased towards the end of the experiment. The proportion of fertilized females was similar in both treatments, but constantly fell behind model predictions using a random mating model. Our results highlight the importance of non-consumptive effects of predators on copepod reproduction...

  13. Intraguild predation reduces redundancy of predator species in multiple predator assemblage.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-07-01

    1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.

  14. Predator avoidance in extremophile fish.

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-02-06

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis.

  15. Predator Avoidance in Extremophile Fish

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-01-01

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis. PMID:25371337

  16. Prey change behaviour with predation threat, but demographic effects vary with prey density: experiments with grasshoppers and birds.

    Science.gov (United States)

    Belovsky, Gary E; Laws, Angela Nardoni; Slade, Jennifer B

    2011-04-01

    Increasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction. Grasshopper behaviour changed with the threat of predation and these behavioural changes were invariant with grasshopper density. Behavioural changes with the threat of predation decreased per capita reproduction over all grasshopper densities; whereas the behavioural changes increased survival at low grasshopper densities and then decreased survival at high densities. At low grasshopper densities, the total reproductive output of the grasshopper population remained unchanged with predation threat, but declined at higher densities. The effects of behavioural changes with predation threat varied with grasshopper density because of a trade-off between survival and reproduction as intraspecific competition increased with density. Therefore, resource availability may need to be considered when assessing how prey behavioural changes with predation threat affect population and food web dynamics. © 2011 Blackwell Publishing Ltd/CNRS.

  17. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  18. Reinforcing effects of non-pathogenic bacteria and predation risk: from physiology to life history.

    Science.gov (United States)

    Janssens, Lizanne; Stoks, Robby

    2014-10-01

    The important ecological role of predation risk in shaping populations, communities and ecosystems is becoming increasingly clear. In this context, synergistic effects between predation risk and other natural stressors on prey organisms are gaining attention. Although non-pathogenic bacteria can be widespread in aquatic ecosystems, their role in mediating effects of predation risk has been ignored. We here address the hypothesis that non-pathogenic bacteria may reinforce the negative effects of predation risk in larvae of the damselfly Coenagrion puella. We found synergistic effects for all three life history variables studied: mortality increased, growth reductions were magnified and bacterial load was higher when both non-lethal stressors were combined. The combined exposure to the bacterium and predation risk considerably impaired the two key antipredator mechanisms of the damselfly larvae: they no longer reduced their food intake under predation risk and showed a synergistic reduction in escape swimming speed. The reinforcing negative effects on the fitness-related traits could be explained by the observed synergistic effects on food intake, swimming muscle mass, immune function and oxidative damage. These are likely widespread consequences of energetic constraints and increased metabolic rates associated with the fight-or-flight response. We therefore hypothesize that the here documented synergistic interactions with non-pathogenic bacteria may be widespread. Our results highlight the ignored ecological role of non-pathogenic bacteria in reinforcing the negative effects of predation risk on prey organisms.

  19. Behaviourally mediated indirect effects : interference competition increases predation mortality in foraging redshanks

    NARCIS (Netherlands)

    Minderman, J; Lind, J; Cresswell, W

    The effect of competition for a limiting resource on the population dynamics of competitors is usually assumed to operate directly through starvation, yet may also affect survival indirectly through behaviourally mediated effects that affect risk of predation. Thus, competition can affect more than

  20. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    Science.gov (United States)

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  1. Testing for non-target effects of spinosad on twospotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions.

    Science.gov (United States)

    Holt, Kiffnie M; Opit, George P; Nechols, James R; Margolies, David C

    2006-01-01

    The compatibility of the selective insecticide spinosad (Conserve SC), at rates recommended for thrips control in greenhouses, with release of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) to control spider mites, was investigated in a crop of ivy geranium Pelargonium peltatum, cultivar 'Amethyst 96.' Plants were inoculated with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), 2 weeks before treatments were applied. There were three treatment variables, each at two levels: predators (released or not), spray application (water or Conserve SC at 2 ml/3.79 l), and timing of spray (1 day before or after predators were released). Twospotted spider mite populations then were sampled twice each week over a three-week period. The application or timing of spinosad had no effect on the ability of the predator to reduce the population of spider mites. Spider mite populations in the no-predator treatment continued to expand over the course of the experiment, while those in the predator-release treatment declined. We conclude that P. persimilis can be used in conjunction with spinosad on ivy geraniums without causing obvious detrimental effects to this predator or leading to a reduction in biological control.

  2. Size-selective predation and predator-induced life-history shifts alter the outcome of competition between planktonic grazers

    NARCIS (Netherlands)

    Hülsmann, S.; Rinke, K.; Mooij, W.M.

    2011-01-01

    1.We studied the effect of size-selective predation on the outcome of competition between two differently sized prey species in a homogenous environment. 2. Using a physiologically structured population model, we calculated equilibrium food concentrations for a range of predation scenarios defined

  3. Understanding predation: implications toward forest management

    Science.gov (United States)

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  4. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  5. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  6. Influence of predator density on nonindependent effects of multiple predator species.

    Science.gov (United States)

    Griffen, Blaine D; Williamson, Tucker

    2008-02-01

    Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.

  7. A meta-analysis of predation risk effects on pollinator behaviour.

    Directory of Open Access Journals (Sweden)

    Gustavo Q Romero

    Full Text Available Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36% and time spent on flowers (by 51% by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters nor on pollinator lifestyle (social vs. solitary. However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres, suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  8. A meta-analysis of predation risk effects on pollinator behaviour.

    Science.gov (United States)

    Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia

    2011-01-01

    Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  9. Humans as predators: an overview of predation strategies of hunters with contrasting motivational drivers

    Directory of Open Access Journals (Sweden)

    Fredrik Dalerum

    2018-01-01

    Full Text Available Predator-prey theory suggests that generalist predators are linked to demographic stability of prey whereas specialists are destabilizing. We overview the demographic consequences of different predation strategies and hypothesize that subsistence hunting occurs opportunistically, persecution hunters behave like specialist predators, and recreational hunters behave like generalist predators. Under this hypothesis, persecution hunting would have destabilizing effects, whereas the effects of subsistence and recreational hunting would be neutral or stabilizing. We found poor empirical support for this hypothesis, but there was scarce empirical data. Recreational hunters mainly hunted opportunistically and hunting as managed persecution followed a type III functional response, i.e. with low hunting intensity at low game abundances and a switch to an increased intensity at some level of abundance. We suggest that recreational hunters have limited destabilizing effects on game populations and that hunting may be an ineffective way of complete the removal of invasive species. We urge for further studies quantifying the responses of hunters to game abundances, in particular studies evaluating the responses of subsistence hunters and illegal persecution.

  10. Competition and Facilitation between a Disease and a Predator in a Stunted Prey Population.

    Directory of Open Access Journals (Sweden)

    Maarten C Boerlijst

    Full Text Available The role of diseases and parasites has received relatively little attention in modelling ecological dynamics despite mounting evidence of their importance in structuring communities. In contrast to predators, parasites do not necessarily kill their host but instead they may change host life history. Here, we study the impact of a parasite that selectively infects juvenile prey individuals and prevents them from maturing into adults. The model is inspired by the Ligula intestinalis tape worm and its cyprinid fish host Rutilis rutilis. We demonstrate that the parasite can promote as well as demote the so-called stunting in its host population, that is, the accumulation of juvenile prey, which leads to strong exploitation competition and consequently to a bottleneck in maturation. If competition between infected and uninfected individuals is strong, stunting will be enhanced and bistability between a stunted and non-stunted prey population occurs. In this case, the disease competes with the predator of its host species, possibly leading to predator extinction. In contrast, if the competition between infected and uninfected individuals is weak, the stunting is relieved, and epi-zoonotic cycles will occur, with recurrent epidemic outbreaks. Here, the disease facilitates the predator, and predator density will be substantially increased. We discuss the implications of our results for the dynamics and structure of the natural Ligula-Roach system.

  11. Impact of jaguar Panthera onca(Carnívora: Felidae predation on marine turtle populations in Tortuguero, Caribbean coast of Costa Rica

    Directory of Open Access Journals (Sweden)

    Stephanny Arroyo-Arce

    2015-09-01

    Full Text Available Little is known about the effects of jaguars on the population of marine turtles nesting in Tortuguero National Park, Costa Rica. This study assessed jaguar predation impact on three species of marine turtles (Chelonia mydas, Dermochelys coriáceaand Eretmochelys imbricatathat nest in Tortuguero beach. Jaguar predation data was obtained by using two methodologies, literature review (historical records prior the year 2005 and weekly surveys along the 29 km stretch of beach during the period 2005-2013. Our results indicated that jaguar predation has increased from one marine turtle in 1981 to 198 in 2013. Jaguars consumed annually an average of 120 (SD= 45 and 2 (SD= 3 green turtles and leatherbacks in Tortuguero beach, respectively. Based on our results we concluded that jaguars do not represent a threat to the population of green turtles that nest in Tortuguero beach, and it is not the main cause for population decline for leatherbacks and hawksbills. Future research should focus on continuing to monitor this predator-prey relationship as well as the factors that influence it so the proper management decisions can be taken.

  12. Predator Politics

    Directory of Open Access Journals (Sweden)

    Mary Louisa Cappelli

    2017-01-01

    Full Text Available Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer urges readers to see coyotes as crucial members of the natural community whose predation is essential for the maintenance of biodiversity and ecological stability. Their cultural production provides a human story of ecocritical engagement for understanding the cascading effects of removing top predators from their ecosystems. By envisioning biocentric possibilities within place-based and scientific contexts, Edward Abbey and Barbara Kingsolver share a common theme of political ecology: political processes shape ecological conditions. A close reading of Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer provides a literary entryway to connect research, arguments, and discourse across disciplines tasking readers to engage in political discussions of environmental sustainability and to consider viable solutions to preserve the ecological diversity of our predator populations and ecosystems.

  13. Spatio-temporal trends in the predation of large gulls by peregrine falcons (Falco peregrinus in an insular breeding population

    Directory of Open Access Journals (Sweden)

    Sutton Luke J.

    2017-12-01

    Full Text Available Individual diet specialization occurs in many populations of generalist predators, with specific individuals developing specialist strategies in their feeding behaviour. Intraspecific resource partitioning is hypothesised to be common amongst species in higher trophic levels where competition for resources is intense, and a key driver in breeding success and community structure. Though well-studied in other predators, there is sparse data on ecological specialization in raptors, which are important drivers of community and trophic structure. In this study, the breeding season diet of an insular population of peregrine falcons (Falco peregrinus was determined from indirect analysis of prey remains collected over three years. An unexpected result was the high proportion of large gulls (Laridae, of the genus Larus, in the diet of two breeding pairs of peregrines. Large gulls made up 18.44% by frequency of total prey recorded and 30.81% by biomass. Herring gulls (Larus argentatus were the most common large gull prey, with immatures most frequent (67.95% compared to adults (19.23%. Overall, most gulls predated were immatures (80.77%. Frequency of predation varied between breeding pairs and months, but was consistent over the three years. Most gulls were taken in April (37.17%, followed by May (19.23%, with a smaller peak of immature herring gulls taken in August and September. The pattern of regular predation by peregrines on large gulls is a new observation with important implications for understanding individual diet specialization in raptors, and its effect on bird populations and community structure.

  14. Stress triangle: do introduced predators exert indirect costs on native predators and prey?

    Directory of Open Access Journals (Sweden)

    Jennifer R Anson

    Full Text Available Non-consumptive effects of predators on each other and on prey populations often exceed the effects of direct predation. These effects can arise from fear responses elevating glucocorticoid (GC hormone levels (predator stress hypothesis or from increased vigilance that reduces foraging efficiency and body condition (predator sensitive foraging hypothesis; both responses can lead to immunosuppression and increased parasite loads. Non-consumptive effects of invasive predators have been little studied, even though their direct impacts on local species are usually greater than those of their native counterparts. To address this issue, we explored the non-consumptive effects of the invasive red fox Vulpes vulpes on two native species in eastern Australia: a reptilian predator, the lace monitor Varanus varius and a marsupial, the ringtail possum Pseudocheirus peregrinus. In particular, we tested predictions derived from the above two hypotheses by comparing the basal glucocorticoid levels, foraging behaviour, body condition and haemoparasite loads of both native species in areas with and without fox suppression. Lace monitors showed no GC response or differences in haemoparasite loads but were more likely to trade safety for higher food rewards, and had higher body condition, in areas of fox suppression than in areas where foxes remained abundant. In contrast, ringtails showed no physiological or behavioural differences between fox-suppressed and control areas. Predator sensitive foraging is a non-consumptive cost for lace monitors in the presence of the fox and most likely represents a response to competition. The ringtail's lack of response to the fox potentially represents complete naiveté or strong and rapid selection to the invasive predator. We suggest evolutionary responses are often overlooked in interactions between native and introduced species, but must be incorporated if we are to understand the suite of forces that shape community

  15. The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    Science.gov (United States)

    Younger, Jane L; Emmerson, Louise M; Miller, Karen J

    2016-02-01

    The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice-free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species' responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds

  16. Genetic variation in flowering phenology and avoidance of seed predation in native populations of Ulex europaeus.

    Science.gov (United States)

    Atlan, A; Barat, M; Legionnet, A S; Parize, L; Tarayre, M

    2010-02-01

    The genetic variation in flowering phenology may be an important component of a species' capacity to colonize new environments. In native populations of the invasive species Ulex europaeus, flowering phenology has been shown to be bimodal and related to seed predation. The aim of the present study was to determine if this bimodality has a genetic basis, and to investigate whether the polymorphism in flowering phenology is genetically linked to seed predation, pod production and growth patterns. We set up an experiment raising maternal families in a common garden. Based on mixed analyses of variance and correlations among maternal family means, we found genetic differences between the two main flowering types and confirmed that they reduced seed predation in two different ways: escape in time or predator satiation. We suggest that this polymorphism in strategy may facilitate maintain high genetic diversity for flowering phenology and related life-history traits in native populations of this species, hence providing high evolutionary potential for these traits in invaded areas.

  17. Effects of predation by sea ducks on clam abundance in soft-bottom intertidal habitats

    Science.gov (United States)

    Lewis, Tyler; Esler, Daniel N.; Boyd, W. Sean

    2007-01-01

    Recent studies have documented strong, top-down predation effects of sea ducks on mussel populations in rocky intertidal communities. However, the impact of these gregarious predators in soft-bottom communities has been largely unexplored. We evaluated effects of predation by wintering surf scoters Melanitta perspicillata and white-winged scoters M. fusca on clam populations in soft-bottom intertidal habitats of the Strait of Georgia, British Columbia. Specifically, we documented spatial and temporal variation in clam density (clams m–2), scoter diet composition, and the consequences of scoter predation on clam abundance. Of the 3 most numerous clams, Manila clams Venerupis philippinarum and varnish clams Nuttallia obscurata were the primary prey items of both scoter species, while clams of the genus Macoma were rarely consumed by scoters. Between scoter arrival in the fall and departure in the spring, Manila clams decreased in density at most sample sites, while varnish clam densities did not change or declined slightly. Our estimates of numbers of clams consumed by scoters accounted for most of the observed declines in combined abundance of Manila and varnish clams, despite the presence of numerous other vertebrate and invertebrate species known to consume clams. For Macoma spp., we detected an over-winter increase in density, presumably due to growth of clams too small to be retained by our sieve (<5 mm) during fall sampling, in addition to the lack of predation pressure by scoters. These results illustrate the strong predation potential of scoters in soft-bottom intertidal habitats, as well as their potentially important role in shaping community structure.

  18. Populations of predators and parasitoids of Bemisia tabaci (Hemiptera: Aleyrodidae) after the application of eight biorational insecticides in vegetable crops.

    Science.gov (United States)

    Simmons, Alvin M; Shaaban, Abd-Rabou

    2011-08-01

    The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is an important pest of vegetables and many other crops worldwide. Eight biorational insecticides (based on oil, plant derivatives, insect growth regulator and fungus) were evaluated in the field for their influence on populations of six natural enemies of B. tabaci. Natural populations of two predators [Chrysoperla carnea Stephen (Neuroptera: Chrysopidae) and Orius spp. (Hemiptera: Anthocoridae)] and two genera of parasitoids [Encarsia spp. and Eretmocerus spp. (Hymenoptera: Aphelinidae)] were evaluated in eggplant (Solanum melongena L.). Also, augmented field populations of three predators [C. carnea, Coccinella undecimpunctata L. (Coleoptera: Coccinellidae) and Macrolophus caliginosus (Wagner) (Hemiptera: Miridae)] were evaluated in cabbage (Brassica oleracea var. capitata L.), cucumber (Cucumis sativus L.) and squash (Cucurbita pepo L.). Regardless of natural enemy or crop, jojoba oil, Biovar and Neemix had the least effect on abundance of the natural enemies in comparison with the other insecticides during a 14 day evaluation period. Conversely, Admiral, KZ oil, Mesrona oil, Mesrona oil + sulfur and natural oil had a high detrimental effect on abundance of the natural enemies. These results demonstrate the differential effects of biorational insecticides for whitefly control on predators and parasitoids in the field. This article is a US Government work and is in the public domain in the USA. Published 2011 by John Wiley & Sons, Ltd.

  19. Predation and physical environment structure the density and population size structure of zebra mussels

    OpenAIRE

    Naddafi, Rahmat; Pettersson, Kurt; Eklöv, Peter

    2010-01-01

    The zebra mussel (Dreissena polymorpha) provides one example of successful invaders in novel environments. However, little attention has been devoted to exploring the factors regulating zebra mussel density and population size structure at the local scale. We tested effects of physicochemical factors and fish predation on the density of zebra mussels at several sites and between years in a natural lake. Water depth and roach (Rutilus rutilus) density were the most important variables affectin...

  20. Variation in fruit size and susceptibility to seed predation among and within populations of the cocklebur, Xanthium strumarium L.

    Science.gov (United States)

    Hare, J Daniel

    1980-01-01

    Burr size is the major factor affecting variation in the intensity of predation by two species of insect on the seeds of the cocklebur, Xanthium strumarium. Mean burr size varied among 10 adjacent local populations studied over three years, as did intensity of seed predation. Seed predation was more intense in populations with low mean burr length and declined linearly with increasing burr length under field and experimental conditions. Seed predation thus is a selective factor influencing the evolution of both burr size and correlated protective characteristics such as burr spine length and wall thickness. As in some other plants, morphological rather than chemical features appear to pose the major barrier to attack by host-specific seed predators. The advantage of more highly developed tissues protecting seeds may occur at the expense of total seed production.

  1. Ontogenetic specialism in predators with multiple niche shifts prevents predator population recovery and establishment

    NARCIS (Netherlands)

    van Leeuwen, A.; Huss, M.; Gårdmark, A.; de Roos, A.M.

    2014-01-01

    The effects of ontogenetic niche shifts on community structure and dynamics are underexplored, despite the occurrence of such shifts in the majority of animal species. We studied the form of niche shifts in a predator that exhibits multiple ontogenetic niche shifts, and analyzed how this life

  2. Dynamics of a Diffusive Predator-Prey Model with Allee Effect on Predator

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wang

    2013-01-01

    Full Text Available The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary conditions, is discussed. Some properties of the solutions, such as dissipation and persistence, are obtained. Local and global stability of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns, including holes, stripes, and spots patterns, are obtained.

  3. Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae).

    Science.gov (United States)

    Herbert, John J; Horn, David J

    2008-10-01

    Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.

  4. Consequences of the size structure of fish populations for their effects on a generalist avian predator.

    Science.gov (United States)

    Kloskowski, Janusz

    2011-06-01

    Size-structured interspecific interactions can shift between predation and competition, depending on ontogenetic changes in size relationships. I examined the effects of common carp (Cyprinus carpio), an omnivorous fish, on the reproductive success of the red-necked grebe (Podiceps grisegena), an avian gape-limited predator, along a fish size gradient created by stocking distinct age-cohorts in seminatural ponds. Young-of-the-year (0+) carp were an essential food source for young grebes. Only adult birds were able to consume 1-year-old (1+) fish, while 2-year-old (2+) fish attained a size refuge from grebes. Amphibian larvae were the principal alternative prey to fish, followed by macroinvertebrates, but the abundance of both dramatically decreased along the carp size gradient. Fledging success was 2.8 times greater in ponds with 0+ versus 1+ carp; in ponds with 1+ carp, chicks received on average 2.6-3 times less prey biomass from their parents, and over 1/3 of broods suffered total failure. Breeding birds avoided settling on 2+ ponds. These results show that changes in prey fish size structure can account for shifts from positive trophic effects on the avian predator to a negative impact on the predator's alternative resources. However, competition did not fully explain the decrease in grebe food resources in the presence of large fish, as carp and grebes overlapped little in diet. In experimental cages, 1+ carp totally eliminated young larvae of amphibians palatable to fish. In field conditions, breeding adults of palatable taxa avoided ponds with 1+ and older carp. Non-trophic interactions such as habitat selection by amphibians or macroinvertebrates to avoid large fish may provide an indirect mechanism strengthening the adverse bottom-up effects of fish on birds.

  5. A test of the predator satiation hypothesis, acorn predator size, and acorn preference

    Science.gov (United States)

    C.H. Greenberg; S.J. Zarnoch

    2018-01-01

    Mast seeding is hypothesized to satiate seed predators with heavy production and reduce populations with crop failure, thereby increasing seed survival. Preference for red or white oak acorns could influence recruitment among oak species. We tested the predator satiation hypothesis, acorn preference, and predator size by concurrently...

  6. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the Intermountain Province of the Columbia Basin, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wielgus, Robert B.; Shipley, Lisa

    2002-07-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the subbasins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are not ranked as target species and are believed to be increasing throughout the basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated ''press'' experiment in at least 2 treatment and 2 control areas of the IM subbasins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend

  7. Effects of Cougar Predation and Nutrition on Mule Deer Population Declines in the IM Province of the Columbia Basin, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Wielgus, Robert; Shipley, Lisa; Myers, Woodrow

    2003-09-01

    Construction of the Grand Coulee and Chief Joseph dams has resulted in inundation and loss of 29,125 total habitat units for mule deer and irrigation agriculture in many parts the Intermountain Province (IM) of the Columbia Basin. Mule deer in the Shrub-Steppe are ranked high priority target species for mitigation and management and are declining in most portions of the sub basins of the IM. Reasons for the decline are unknown but believed to be related to habitat changes resulting from dams and irrigation agriculture. White-tailed deer are believed to be increasing throughout the basin because of habitat changes brought about by the dams and irrigation agriculture. Recent research (1997-2000) in the NE IM and adjacent Canadian portions of the Columbia Basin (conducted by this author and funded by the Columbia Basin Fish & Wildlife Compensation Program B.C.), suggest that the increasing white-tailed deer populations (because of dams and irrigation agriculture) are resulting in increased predation by cougars on mule deer (apparent competition or alternate prey hypothesis). The apparent competition hypothesis predicts that as alternate prey (white-tailed deer) densities increase, so do densities of predators, resulting in increased incidental predation on sympatric native prey (mule deer). Apparent competition can result in population declines and even extirpation of native prey in some cases. Such a phenomenon may account for declines of mule deer in the IM and throughout arid and semi-arid West where irrigation agriculture is practiced. We will test the apparent competition hypothesis by conducting a controlled, replicated 'press' experiment in at least 2 treatment and 2 control areas of the IM sub basins by reducing densities of white-tailed deer and observing any changes in cougar predation on mule deer. Deer densities will be monitored by WADFW personnel using annual aerial surveys and/or other trend indices. Predation rates and population growth rates

  8. Prey aggregation is an effective olfactory predator avoidance strategy

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2014-05-01

    Full Text Available Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a the inability of the predator to consume all prey in a group and (b detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation experiments using a fish predator and (dead chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues, aggregated (large groups and semi-dispersed prey survived for longer than dispersed prey—including long term survival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators.

  9. Context-dependent interactive effects of non-lethal predation on larvae impact adult longevity and body composition.

    Science.gov (United States)

    Chandrasegaran, Karthikeyan; Kandregula, Samyuktha Rao; Quader, Suhel; Juliano, Steven A

    2018-01-01

    Predation impacts development, behavior and morphology of prey species thereby shaping their abundances, distribution and community structure. Non-lethal threat of predation, specifically, can have a strong influence on prey lifehistory characteristics. While investigations often focus on the impact of predation threat on prey in isolation, tests of its interactive effects with food availability and resource competition on prey survival and fitness can improve understanding of costs, benefits and trade-offs of anti-predator strategies. This study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple and interactive effects of predation threat during the larval stage on survival, size at and time to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longevity. Our results show that development times of mosquito larvae were increased (by 14.84% in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspecific competition, but that predation had no detectable effect on these simple traits. Teneral reserves of glycogen, protein and lipid and adult longevity were positively correlated with adult body size. Non-lethal predation threat had significant interactive effects with nutrition and larval competition on teneral reserves in males and adult longevity in males and females. The sexes responded differently to conditions encountered as larvae, with the larval environment affecting development and adult characteristics more acutely for females than for males. The outcome of this study shows how threat of predation on juveniles can have long-lasting effects on adults that are likely to impact mosquito population dynamics and that may impact disease transmission.

  10. Predators

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.; Ambrose, Robert E.; Garner, Gerald W.; Weiler, Greg J.; Reynolds, Harry V.; Udevitz, Mark S.; Reed, Dan J.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Calving caribou (Rangifer tarandus) of the Central Arctic herd, Alaska, have avoided the infrastructure associated with the complex of petroleum development areas from Prudhoe Bay to Kuparuk (Cameron et al. 1992, Nellemann and Cameron 1998, and Section 4 of this document). Calving females of the Porcupine caribou herd may similarly avoid any oil field roads and pipelines developed in areas traditionally used during the calving and post-calving periods. This may displace the caribou females and calves to areas east and south of the 1002 Area of the Arctic National Wildlife Refuge.Increased calf mortality could occur if calving caribou are displaced into areas that have a higher density of predators, higher rates of predation, or where a higher proportion of the predators regularly use caribou as a food source (Whitten et al. 1992).Our study assessed predation risks to caribou calving in the 1002 Area versus calving in potential displacement areas. Due to funding constraints, our research focused on grizzly bears (Ursus arctos), with wolves (Camus lupus) and golden eagles (Aquila chrysaetos) receiving only cursory attention. Our research objectives were 1) to compare relative abundance of predators within the 1002 Area with that in adjacent peripheral areas, 2) to determine factors affecting predator abundance on the calving grounds, and 3) to quantify the use of caribou as a food source for predators and the importance of caribou to the productivity of predator populations using the coastal plain of the Arctic National Wildlife Refuge.

  11. Diet quality in a wild grazer declines under the threat of an ambush predator.

    Science.gov (United States)

    Barnier, Florian; Valeix, Marion; Duncan, Patrick; Chamaillé-Jammes, Simon; Barre, Philippe; Loveridge, Andrew J; Macdonald, David W; Fritz, Hervé

    2014-06-22

    Predators influence prey populations not only through predation itself, but also indirectly through prompting changes in prey behaviour. The behavioural adjustments of prey to predation risk may carry nutritional costs, but this has seldom been studied in the wild in large mammals. Here, we studied the effects of an ambush predator, the African lion (Panthera leo), on the diet quality of plains zebras (Equus quagga) in Hwange National Park, Zimbabwe. We combined information on movements of both prey and predators, using GPS data, and measurements of faecal crude protein, an index of diet quality in the prey. Zebras which had been in close proximity to lions had a lower quality diet, showing that adjustments in behaviour when lions are within short distance carry nutritional costs. The ultimate fitness cost will depend on the frequency of predator-prey encounters and on whether bottom-up or top-down forces are more important in the prey population. Our finding is the first attempt to our knowledge to assess nutritionally mediated risk effects in a large mammalian prey species under the threat of an ambush predator, and brings support to the hypothesis that the behavioural effects of predation induce important risk effects on prey populations.

  12. Seasonal and among-stream variation in predator encounter rates for fish prey

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto

    2013-01-01

    Recognition that predators have indirect effects on prey populations that may exceed their direct consumptive effects highlights the need for a better understanding of spatiotemporal variation in predator–prey interactions. We used photographic monitoring of tethered Rainbow Trout Oncorhynchus mykiss and Cutthroat Trout O. clarkii to quantify predator encounter rates...

  13. Selective Predation of a Stalking Predator on Ungulate Prey.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1 data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2 data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  14. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii)

    Science.gov (United States)

    Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B.

    2016-01-01

    Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278

  15. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.

    Science.gov (United States)

    Välimäki, Kaisa; Herczeg, Gábor

    2012-07-01

    1. Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2. Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3. We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4. The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  16. The Effect of Predators on Cholera Biofilms: If it Lyses, We Can Smash It

    Science.gov (United States)

    Kalziqi, Arben; Bernardy, Eryn; Thomas, Jacob; Ratcliff, Will; Hammer, Brian; Yunker, Peter

    Many microbes form biofilms--dense clumps of cells and proteins--on surfaces. Biofilms are complex communities that facilitate the study of biological competition (e.g., two types of microbes may compete to form a biofilm in the same location) and interesting physics (e.g., the source of a biofilm's rigidity). Vibrio cholerae can produce biofilms which have a network-like structure--however, cholera can be genetically engineered to kill other cholera with different genotypes, which leaves behind a structureless ``slime'' rather than such a biofilm. Through mechanical creep testing of both predator-prey and non-predator populations, we found that the predator-prey population responds viscously and decreases in height with repeated compression, whereas the non-predator population responds elastically and maintains its original height. The current work suggests that cell lysis after killing disrupts biofilm formation, preventing microbial colonies from forming rigid networks.

  17. Chaotic population dynamics and biology of the top-predator

    International Nuclear Information System (INIS)

    Rai, Vikas; Upadhyay, Ranjit Kumar

    2004-01-01

    We study how the dynamics of a food chain depends on the biology of the top-predator. We consider two model food chains with specialist and generalist top-predators. Both types of food chains display same type of chaotic behavior, short-term recurrent chaos; but the generating mechanisms are drastically different. Food chains with specialist top-predators are dictated by exogenous stochastic factors. On the contrary, the dynamics of those with the generalist top-predator is governed by deterministic changes in system parameters. The study also suggests that robust chaos would be a rarity

  18. Sport hunting, predator control and conservation of large carnivores.

    Directory of Open Access Journals (Sweden)

    Craig Packer

    Full Text Available Sport hunting has provided important economic incentives for conserving large predators since the early 1970's, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities.

  19. Species invasion shifts the importance of predator dependence.

    Science.gov (United States)

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  20. The effects of temperature on nest predation by mammals, birds, and snakes

    Science.gov (United States)

    W. Andrew Cox; F.R. Thompson III; J.L. Reidy

    2013-01-01

    Understanding how weather influences survival and reproduction is an important component of forecasting how climate change will influence wildlife population viability. Nest predation is the primary source of reproductive failure for passerine birds and can change in response to temperature. However, it is unclear which predator species are responsible for such...

  1. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Directory of Open Access Journals (Sweden)

    Maria L Pappas

    Full Text Available Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI, may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood. The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  2. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival.

    Directory of Open Access Journals (Sweden)

    Jared F Duquette

    Full Text Available Growth of ungulate populations is typically most sensitive to survival of neonates, which in turn is influenced by maternal nutritional condition and trade-offs in resource selection and avoidance of predators. We assessed whether resource use, multi-predator risk, maternal nutritional effects, hiding cover, or interactions among these variables best explained variation in daily survival of free-ranging neonatal white-tailed deer (Odocoileus virginianus during their post-partum period (14 May-31 Aug in Michigan, USA. We used Cox proportional hazards mixed-effects models to assess survival related to covariates of resource use, composite predation risk of 4 mammalian predators, fawn body mass at birth, winter weather, and vegetation growth phenology. Predation, particularly from coyotes (Canis latrans, was the leading cause of mortality; however, an additive model of non-ideal resource use and maternal nutritional effects explained 71% of the variation in survival. This relationship suggested that dams selected areas where fawns had poor resources, while greater predation in these areas led to additive mortalities beyond those related to resource use alone. Also, maternal nutritional effects suggested that severe winters resulted in dams producing smaller fawns, which decreased their likelihood of survival. Fawn resource use appeared to reflect dam avoidance of lowland forests with poor forage and greater use by wolves (C. lupus, their primary predator. While this strategy led to greater fawn mortality, particularly by coyotes, it likely promoted the life-long reproductive success of dams because many reached late-age (>10 years old and could have produced multiple generations of fawns. Studies often link resource selection and survival of ungulates, but our results suggested that multiple factors can mediate that relationship, including multi-predator risk. We emphasize the importance of identifying interactions among biological and

  3. Prey life-history and bioenergetic responses across a predation gradient.

    Science.gov (United States)

    Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E

    2010-10-01

    To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  4. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    Science.gov (United States)

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  5. Demographic consequences of predators on prey: trait and density mediated effects on mosquito larvae in containers.

    Directory of Open Access Journals (Sweden)

    Barry W Alto

    Full Text Available Predators may affect prey population growth and community diversity through density mediated lethal and trait mediated non-lethal effects that influence phenotypic traits of prey. We tested experimentally the roles of thinning the density of prey (lethality in the absence of predator cues and density and trait mediated effects (lethality + intimidation of predatory midge Corethrella appendiculata on competing native and invasive mosquito prey. Predator-mediated reductions in prey and density reductions in the absence of C. appendiculata resulted in lower percent survivorship to adulthood and estimates of the finite rate of increase (λ' for invasive mosquito Aedes albopictus relative to that of controls. In most instances, thinning the density of prey in the absence, but not in the presence, of C. appendiculata cues resulted in lower survivorship to adulthood and λ' for native mosquito Aedes triseriatus relative to that of controls. Together, these results suggested trait mediated effects of C. appendiculata specific to each species of mosquito prey. Release from intraspecific competition attributable to density reductions in the absence, but not in the presence, of C. appendiculata enhanced growth and lengthened adult lifespan relative to that of controls for A. albopictus but not A. triseriatus. These results show the importance of predator-mediated density and trait mediated effects on phenotypic traits and populations of invasive and native mosquitoes. Species-specific differences in the phenotypic responses of prey may be due, in part, to longer evolutionary history of C. appendiculata with A. triseriatus than A. albopictus.

  6. Effects of carbaryl-bran bait on trap catch and seed predation by ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Fielding, Dennis J; DeFoliart, Linda S; Hagerty, Aaron M

    2013-04-01

    Carbaryl-bran bait is effective against grasshoppers without many impacts on nontarget organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species and their consumption of weed seeds have not been previously studied in agricultural settings in Alaska. This study examined the effect of grasshopper bran bait on carabid activity-density, as measured by pitfall trap catches, and subsequent predation by invertebrates of seeds of three species of weed. Data were collected in fallow fields in agricultural landscape in the interior of Alaska, near Delta Junction, in 2008 and 2010. Bait applications reduced ground beetle activity-density by over half in each of 2 yr of bait applications. Seed predation was generally low overall (1-10%/wk) and not strongly affected by the bait application, but predation of lambsquarters (Chenopodium album L.) seed was lower on treated plots in 1 yr (340 seeds recovered versus 317 seeds, on treated versus untreated plots, respectively). Predation of dandelion (Taraxacum officinale G. H. Weber ex Wiggers) seeds was correlated with ground beetle activity-density in 1 yr, and predation of dragonhead mint (Dracocephalum parvifolium Nutt.) seed in the other year. We conclude that applications of carbaryl-bran bait for control of grasshoppers will have only a small, temporary effect on weed seed populations in high-latitude agricultural ecosystems.

  7. Long-term patterns in European brown hare population dynamics in Denmark: effects of agriculture, predation and climate

    Directory of Open Access Journals (Sweden)

    Asferg Tommy

    2004-10-01

    Full Text Available Abstract Background In Denmark and many other European countries, harvest records suggest a marked decline in European brown hare numbers, a decline often attributed to the agricultural practice. In the present study, we analyse the association between agricultural land-use, predator abundance and winter severity on the number of European brown hares harvested in Denmark in the years 1955 through 2000. Results Winter cereals had a significant negative association with European brown hare numbers. In contrast to this, root crop area was positively related to their numbers. Remaining crop categories were not significantly associated with the European brown hare numbers, though grass out of rotation tended to be positively related. The areas of root crop production and of grass out of rotation have been reduced by approximately 80% and 50%, respectively, while the area of winter cereals has increased markedly (>70%. However, European brown hare numbers were primarily negatively associated with the number of red fox. Finally, we also found a positive association between mild winters and European brown hare numbers. Conclusion The decline of Danish European brown hare populations can mainly be attributed to predation by red fox, but the development in agricultural land-use during the last 45 years have also affected the European brown hare numbers negatively. Additionally, though mild winters were beneficial to European brown hares, the increasing frequency of mild winters during the study period was insufficient to reverse the negative population trend.

  8. Experimental demonstration of an Allee effect in microbial populations.

    Science.gov (United States)

    Kaul, RajReni B; Kramer, Andrew M; Dobbs, Fred C; Drake, John M

    2016-04-01

    Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: 'Everything is everywhere, but the environment selects'. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml(-1)under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. © 2016 The Author(s).

  9. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Volume 2 -- Evaluation: 1993 Annual report

    International Nuclear Information System (INIS)

    Willis, C.F.; Ward, D.L.

    1995-06-01

    An attempt was made to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Modeling simulations based on work in the John Day Reservoir from 1982 through 1988 indicated that if northern squawfish larger than 250 mm fork length were exploited, at a rate of 10--20%, reductions in their numbers and restructuring of their populations could reduce their predation on juvenile salmonids by 50% or more. The authors evaluated the success of three test fisheries conducted in 1993--a sport-reward fishery, a dam-angling fishery, and a trap-net fishery, to achieve a 10--20% exploitation rate on northern squawfish. The authors also began evaluating the response of northern squawfish populations to sustained fisheries. In addition, the authors gathered information regarding the economic, social, and legal feasibility of sustaining each fishery, and report on the structure and function of the fish collection and distribution system

  10. Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal

    Directory of Open Access Journals (Sweden)

    Yantao Luo

    2017-01-01

    Full Text Available An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper, which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species can greatly impact the permanence, extinction, and coexistence of the population.

  11. Extinction and permanence in delayed stage-structure predator-prey system with impulsive effects

    International Nuclear Information System (INIS)

    Pang Guoping; Wang Fengyan; Chen Lansun

    2009-01-01

    Based on the classical stage-structured model and Lotka-Volterra predator-prey model, an impulsive delayed differential equation to model the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated. We show that the conditions for global attractivity of the 'pest-extinction' ('prey-eradication') periodic solution and permanence of the population of the model depend on time delay. We also show that constant maturation time delay and impulsive releasing for the predator can bring great effects on the dynamics of system by numerical analysis. As a result, the pest maturation time delay is considered to establish a procedure to maintain the pests at an acceptably low level in the long term. In this paper, the main feature is that we introduce time delay and pulse into the predator-prey (natural enemy-pest) model with age structure, exhibit a new modelling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.

  12. Predator-induced changes of female mating preferences: innate and experiential effects

    Directory of Open Access Journals (Sweden)

    Indy Jeane

    2011-07-01

    Full Text Available Abstract Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana. Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus. In contrast, predator experienced (wild-caught females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection, and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators.

  13. Interactions among predators and plant specificity protect herbivores from top predators.

    Science.gov (United States)

    Bosc, Christopher; Pauw, Anton; Roets, Francois; Hui, Cang

    2018-05-04

    The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on 1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on 2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree

  14. Putting prey and predator into the CO2 equation--qualitative and quantitative effects of ocean acidification on predator-prey interactions.

    Science.gov (United States)

    Ferrari, Maud C O; McCormick, Mark I; Munday, Philip L; Meekan, Mark G; Dixson, Danielle L; Lonnstedt, Öona; Chivers, Douglas P

    2011-11-01

    Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems. © 2011 Blackwell Publishing Ltd/CNRS.

  15. Effectiveness of two insect growth regulators against Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and their impact on population densities of arthropod predators in cotton in Pakistan.

    Science.gov (United States)

    Gogi, Muhammad D; Sarfraz, Rana M; Dosdall, Lloyd M; Arif, Muhammad J; Keddie, Andrew B; Ashfaq, Muhammad

    2006-10-01

    Field efficacies of two insect growth regulators (IGRs) at two recommended application rates, buprofezin at 370 and 555 g AI ha(-1) and lufenuron at 37 and 49 g AI ha(-1), were determined against the sweet potato whitefly, Bemisia tabaci (Gennadius), and the cotton bollworm, Helicoverpa armigera (Hübner), in experimental plots of cotton at the Directorate of Cotton Research, Faisalabad, Pakistan. Adverse effects of the IGRs on populations of associated arthropod predators, namely geocorids, chrysopids, coccinellids, formicids and arachnids, were also assessed. Both IGRs significantly reduced populations of B. tabaci at each application rate 24, 48 and 72 h after treatment, and higher doses were more effective than lower doses. Buprofezin was not effective against H. armigera at any tested dose for any time of treatment in any spray. Lufenuron applied at 37 and 49 g AI ha(-1) effectively suppressed H. armigera populations, resulting in significant reductions in crop damage. At lower doses, both IGRs appeared safe to predator populations, which did not differ significantly in IGR-treated versus untreated control plots. Population densities of formicids and coccinellids were significantly lower at high concentrations of both IGRs in treatment plots, possibly as a result of reduced prey availability. The potential role of buprofezin and lufenuron for control of B. tabaci and H. armigera in a spray programme and the likelihood of direct toxic effects of IGRs on predatory fauna of cotton are discussed.

  16. Using Pop-II models to predict effects of wolf predation and hunter harvests on elk, mule deer, and moose on the northern range

    Science.gov (United States)

    Mack, John A.; Singer, Francis J.

    1993-01-01

    The effects of establishing a gray wolf (Canis lupus) population in Yellowstone National Park were predicted for three ungulate species—elk (Cervus elaphus), mule deer (Odocoileus hemionus), and moose (Alces alces)—using previously developed POP-II population models. We developed models for 78 and 100 wolves. For each wolf population, we ran scenarios using wolf predation rates of 9, 12, and 15 ungulates/wolf/year. With 78 wolves and the antlerless elk harvest reduced 27%, our modeled elk population estimated were 5-18% smaller than the model estimate without wolves. With 100 wolves and the antlerless elk harvest reduced 27%, our elk population estimated were 11-30% smaller than the population estimates without wolves. Wolf predation effects were greater on the modeled mule deer population than on elk. With 78 wolves and no antlerless deer harvest, we predicted the mule deer population could be 13-44% larger than without wolves. With 100 wolves and no antlerless deer harvest, the mule deer population was 0-36% larger than without wolves. After wolf recovery, our POP-II models suggested moose harvests would have to be reduced at least 50% to maintain moose numbers at the levels predicted when wolves were not present. Mule deer and moose population data are limited, and these wolf predation effects may be overestimated if population sizes or male-female ratios were underestimated in our population models. We recommend additional mule deer and moose population data be obtained.

  17. Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger

    Science.gov (United States)

    Bridges, C.M.

    2002-01-01

    Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.

  18. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio

    Directory of Open Access Journals (Sweden)

    Julia Johnke

    2017-10-01

    Full Text Available Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists, predatory bacteria (semi-specialists, and phages (specialists—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.

  19. Bayesian inference reveals positive but subtle effects of experimental fishery closures on marine predator demographics

    Science.gov (United States)

    Barham, Barbara J.; Barham, Peter J.; Campbell, Kate J.; Crawford, Robert J. M.; Grigg, Jennifer; Horswill, Cat; Morris, Taryn L.; Pichegru, Lorien; Steinfurth, Antje; Weller, Florian; Winker, Henning

    2018-01-01

    Global forage-fish landings are increasing, with potentially grave consequences for marine ecosystems. Predators of forage fish may be influenced by this harvest, but the nature of these effects is contentious. Experimental fishery manipulations offer the best solution to quantify population-level impacts, but are rare. We used Bayesian inference to examine changes in chick survival, body condition and population growth rate of endangered African penguins Spheniscus demersus in response to 8 years of alternating time–area closures around two pairs of colonies. Our results demonstrate that fishing closures improved chick survival and condition, after controlling for changing prey availability. However, this effect was inconsistent across sites and years, highlighting the difficultly of assessing management interventions in marine ecosystems. Nevertheless, modelled increases in population growth rates exceeded 1% at one colony; i.e. the threshold considered biologically meaningful by fisheries management in South Africa. Fishing closures evidently can improve the population trend of a forage-fish-dependent predator—we therefore recommend they continue in South Africa and support their application elsewhere. However, detecting demographic gains for mobile marine predators from small no-take zones requires experimental time frames and scales that will often exceed those desired by decision makers. PMID:29343602

  20. Developing a predation index and evaluating ways to reduce salmonid losses to predation in the Columbia River basin

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1990-12-01

    We report our results of studies to develop a predation index and evaluate ways to reduce juvenile salmonid losses to predation in the Columbia River Basin. Study objectives of each were: develop an index to estimate predation losses of juvenile salmonids (Oncorhynchus spp) in reservoirs throughout the Columbia River Basin, describe the relationships among predator-caused mortality of juvenile salmonids and physical and biological variables, examine the feasibility of developing bounty, commercial or recreational fisheries on northern squawfish (Ptychocheilus oregonensis) and develop a plan to evaluate the efficacy of predator control fisheries; determine the economic feasibility of developing bounty and commercial fisheries for northern squawfish, assist ODFW with evaluating the economic feasibility of recreational fisheries for northern squawfish and assess the economic feasibility of utilizing northern squawfish, carp (Cyprinus carpio) and suckers (Castostomus spp) in multispecies fisheries; evaluate commercial technology of various fishing methods for harvesting northern squawfish in Columbia River reservoirs and field test the effectiveness of selected harvesting systems, holding facilities and transportation systems; and modify the existing Columbia River Ecosystem Model (CREM) to include processes necessary to evaluate effects of removing northern squawfish on their population size structure and abundance, document the ecological processes, mathematical equations and computer (FORTRAN) programming of the revised version of CREM and conduct systematic analyses of various predator removal scenarios, using revised CREM to generate the simulations. Individual reports are indexed separately

  1. Associations Between Egg Capsule Morphology and Predation Among Populations of the Marine Gastropod, Nucella emarginata.

    Science.gov (United States)

    Rawlings, T A

    1990-12-01

    Intraspecific variation in the morphology of egg capsules is ideal for assessing the costs and benefits of encapsulation, yet little is known about the extent of such variation among populations of a single species. In the present study, I compared capsule morphology among three populations of the intertidal gastropod, Nucella emarginata. Significant differences were found both in capsule wall thickness and capsule strength. Mean capsule wall thickness varied as much as 25% among populations, with the dry weight of capsular cases differing accordingly. Capsule strength, measured as resistance to puncturing and squeezing forces, also varied among populations, but did not directly reflect differences in capsule wall thickness. Despite extensive variation in capsule morphology within this species, the number and size of eggs contained within capsules of equal volume did not differ significantly among populations. I also compared the type of capsule-eating predators that were present at each site. Shore crabs, Hemigrapsus spp., were abundant at all three sites; however, the predatory isopods Idotea wosnesenskii were only present at sites containing relatively thick-walled capsules. Although Hemigrapsus and Idotea were able to chew through both thick- and thin-walled capsules, laboratory experiments revealed that Idotea preferentially opened thin-walled capsules. These results suggest that variation in capsule morphology among populations of N. emarginata may, at least in part, reflect selection for the protection of embryos against predation.

  2. Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation.

    Directory of Open Access Journals (Sweden)

    Ramón Perea

    Full Text Available Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal and in two contrasting microsites (open vs. sheltered to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis. In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P. Parthenocarpy (non-fertilized seeds was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed.

  3. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  4. Predation on rose galls: parasitoids and predators determine gall size through directional selection.

    Directory of Open Access Journals (Sweden)

    Zoltán László

    Full Text Available Both predators and parasitoids can have significant effects on species' life history traits, such as longevity or clutch size. In the case of gall inducers, sporadically there is evidence to suggest that both vertebrate predation and insect parasitoid attack may shape the optimal gall size. While the effects of parasitoids have been studied in detail, the influence of vertebrate predation is less well-investigated. To better understand this aspect of gall size evolution, we studied vertebrate predation on galls of Diplolepis rosae on rose (Rosa canina shrubs. We measured predation frequency, predation incidence, and predation rate in a large-scale observational field study, as well as an experimental field study. Our combined results suggest that, similarly to parasitoids, vertebrate predation makes a considerable contribution to mortality of gall inducer larvae. On the other hand, its influence on gall size is in direct contrast to the effect of parasitoids, as frequency of vertebrate predation increases with gall size. This suggests that the balance between predation and parasitoid attack shapes the optimal size of D. rosae galls.

  5. Population Ecology of Caribou Populations without Predators: Southampton and Coats Island Herds

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Quellet

    1996-01-01

    Full Text Available This paper is a review of the ecology of two caribou populations inhabiting predator-free northern islands, Coats and Southampton Island. Findings are analyzed in light of the hypothesis that in absence of prédation or high human harvest, food competition results in delayed puberty, reduced calf production, increased winter starvation of caribou and regulates populations at high densities (>2 km-2. Caribou were hunted to extinction on Southampton Island (Northwest Territories, Canada by mid-century. In 1967, 48 caribou were captured on neighbouring Coats Island and released on Southampton Island. Southampton Island is characterized by a high per capita winter food availability in summer and in winter. The population on Southampton Island has been increasing at a rapid rate of growth since re-introduction (Lamba=1.27. Fast population growth was possible because females invested early in reproduction and over winter survival rate was high. The population on Coats Island is also characterized by high per capita food availability in summer but low food availability in winter. The population size has undergone some marked fluctuations, abrupt declines followed by relatively rapid recovery and, contrary to predictions, densities were always less than 1 km-2. Low population densities on Coats Island result primarily from low food availability. This review suggests that in the absence of prédation or high human harvest competition for food regulates caribou population abundance. However, caribou numbers can fluctuate markedly among years because inter-annual variation of weather conditions affects forage accessibility in winter. This review also emphasizes the importance of distinguishing between factors that determine absolute population density and variation in density among years (in our case probably plant production and winter weather conditions which influence forage accessibility from the regulatory factors, processes that stop population

  6. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    Science.gov (United States)

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  7. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    Science.gov (United States)

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  8. Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type

    International Nuclear Information System (INIS)

    Lopez-Ruiz, Ricardo; Fournier-Prunaret, Daniele

    2005-01-01

    A cubic discrete coupled logistic equation is proposed to model the predator-prey problem. The coupling depends on the population size of both species and on a positive constant λ, which could depend on the prey reproduction rate and on the predator hunting strategy. Different dynamical regimes are obtained when λ is modified. For small λ, the species become extinct. For a bigger λ, the preys survive but the predators extinguish. Only when the prey population reaches a critical value then predators can coexist with preys. For increasing λ, a bistable regime appears where the populations apart of being stabilized in fixed quantities can present periodic, quasiperiodic and chaotic oscillations. Finally, bistability is lost and the system settles down in a steady state, or, for the biggest permitted λ, in an invariant curve. We also present the basins for the different regimes. The use of the critical curves lets us determine the influence of the zones with different number of first rank preimages in the bifurcation mechanisms of those basins

  9. Predator persistence through variability of resource productivity in Tritrophic systems

    DEFF Research Database (Denmark)

    Soudijn, Floor Helena; de Roos, Andre M.

    2017-01-01

    The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two...... trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual......-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population...

  10. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    Science.gov (United States)

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  11. The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae).

    Science.gov (United States)

    Nachman, Gösta

    2006-01-01

    The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.

  12. Effect of downed woody debris on small mammal anti-predator behavior

    Science.gov (United States)

    Travis M. Hinkelman; John L. Orrock; Susan C Loeb

    2011-01-01

    Anti-Predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used giving-up densities to quantify...

  13. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, Karen; Ersin, Firdevs; Pijnakker, Juliette; Houten, van Yvonne; Hoogerbrugge, Hans; Leman, Ada; Pappas, Maria L.; Duarte, Marcus V.A.; Messelink, Gerben J.; Sabelis, Maurice W.; Janssen, Arne

    2017-01-01

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  14. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, K.; Ersin, F.; Pijnakker, J.; van Houten, Y.; Hoogerbrugge, H.; Leman, A.; Pappas, M.L.; Duarte, M.V.A.; Messelink, G.J.; Sabelis, M.W.; Janssen, A.

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  15. Invasive predator tips the balance of symmetrical competition between native coral-reef fishes.

    Science.gov (United States)

    Kindinger, Tye L

    2018-04-01

    The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in

  16. Vertebrate predator-prey interactions in a seasonal environment

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Berg, Thomas B; Forchhammer, Mads

    2008-01-01

    erminea predation and stabilising predation from the generalist predators, in Zackenbergdalen mainly the arctic fox Alopex lagopus. In Zackenbergdalen, however, the coupling between the specialist stoat and the lemming population is relatively weak. During summer, the predation pressure is high......The High Arctic, with its low number of species, is characterised by a relatively simple ecosystem, and the vertebrate predator-prey interactions in the valley Zackenbergdalen in Northeast Greenland are centred around the collared lemming Dicrostonyx groenlandicus and its multiple predators...

  17. Linking anti-predator behaviour to prey demography reveals limited risk effects of an actively hunting large carnivore.

    Science.gov (United States)

    Middleton, Arthur D; Kauffman, Matthew J; McWhirter, Douglas E; Jimenez, Michael D; Cook, Rachel C; Cook, John G; Albeke, Shannon E; Sawyer, Hall; White, P J

    2013-08-01

    Ecological theory predicts that the diffuse risk cues generated by wide-ranging, active predators should induce prey behavioural responses but not major, population- or community-level consequences. We evaluated the non-consumptive effects (NCEs) of an active predator, the grey wolf (Canis lupus), by simultaneously tracking wolves and the behaviour, body fat, and pregnancy of elk (Cervus elaphus), their primary prey in the Greater Yellowstone Ecosystem. When wolves approached within 1 km, elk increased their rates of movement, displacement and vigilance. Even in high-risk areas, however, these encounters occurred only once every 9 days. Ultimately, despite 20-fold variation in the frequency of encounters between wolves and individual elk, the risk of predation was not associated with elk body fat or pregnancy. Our findings suggest that the ecological consequences of actively hunting large carnivores, such as the wolf, are more likely transmitted by consumptive effects on prey survival than NCEs on prey behaviour. © 2013 John Wiley & Sons Ltd/CNRS.

  18. The Dynamical Analysis of a Prey-Predator Model with a Refuge-Stage Structure Prey Population

    Directory of Open Access Journals (Sweden)

    Raid Kamel Naji

    2016-01-01

    Full Text Available We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork near each of the equilibrium points is studied. Finally, numerical simulations are given to support the analytic results.

  19. Temporal variation in seed predation by insects in a population of Syagrus romanzoffiana (Arecaceae) in Santa Catarina Island, SC, Brazil.

    Science.gov (United States)

    da Silva, F R; Begnini, R M; Lopes, B C; Castellani, T T

    2012-02-01

    Insect seed predation may vary depending on seed production. The present study considers the hypothesis that the rates of seed predation tend to be smaller in years of higher fruit production. Thus, we monitored the production of fruits and predation of seeds of the palm Syagrus romanzoffiana over 2 years in the Atlantic Forest (Parque Municipal da Lagoa do Peri, Florianópolis, SC, Brazil), between July 2006 and June 2008. Plots of 0.25 m(2) were fitted under 20 mother plants and fruits were monthly collected for assessment of abundance and seed predation. There was variation in fruit production between the 2 years and among reproductive plants. Predation rates were high and occurred in the predispersal phase by the Curculionidae Revena rubiginosa Boheman, Anchylorhynchus aegrotus Fahraeus, and Anchylorhynchus variabilis Gyllenhal. Seed predation by these species of Anchylorhynchus is first registered in the present study. In average, about 60% of the seeds monthly produced in the population tend to escape insect predation in year of high or low production, becoming available for recruitment. The predation rate was not related to the amount of fruits produced per reproductive plant. Also, different than expected, there was a positive relation between the rates of seed predation and the total of fruits produced monthly on the plots. Thus, no evidence for the satiation of insect seed predators was found in this study with S. romanzoffiana.

  20. Stickleback Population

    Directory of Open Access Journals (Sweden)

    Ulrika Candolin

    2012-01-01

    Full Text Available Human-induced eutrophication has increased offspring production in a population of threespine stickleback Gasterosteus aculeatus in the Baltic Sea. Here, we experimentally investigated the effects of an increased density of juveniles on behaviours that influence survival and dispersal, and, hence, population growth—habitat choice, risk taking, and foraging rate. Juveniles were allowed to choose between two habitats that differed in structural complexity, in the absence and presence of predators and conspecific juveniles. In the absence of predators or conspecifics, juveniles preferred the more complex habitat. The preference was further enhanced in the presence of a natural predator, a perch Perca fluviatilis (behind a transparent Plexiglas wall. However, an increased density of conspecifics relaxed the predator-enhanced preference for the complex habitat and increased the use of the open, more predator-exposed habitat. Foraging rate was reduced under increased perceived predation risk. These results suggest that density-dependent behaviours can cause individuals to choose suboptimal habitats where predation risk is high and foraging rate low. This could contribute to the regulation of population growth in eutrophicated areas where offspring production is high.

  1. Inhibition between invasives: a newly introduced predator moderates the impacts of a previously established invasive predator.

    Science.gov (United States)

    Griffen, Blaine D; Guy, Travis; Buck, Julia C

    2008-01-01

    1. With continued globalization, species are being transported and introduced into novel habitats at an accelerating rate. Interactions between invasive species may provide important mechanisms that moderate their impacts on native species. 2. The European green crab Carcinus maenas is an aggressive predator that was introduced to the east coast of North America in the mid-1800 s and is capable of rapid consumption of bivalve prey. A newer invasive predator, the Asian shore crab Hemigrapsus sanguineus, was first discovered on the Atlantic coast in the 1980s, and now inhabits many of the same regions as C. maenas within the Gulf of Maine. Using a series of field and laboratory investigations, we examined the consequences of interactions between these predators. 3. Density patterns of these two species at different spatial scales are consistent with negative interactions. As a result of these interactions, C. maenas alters its diet to consume fewer mussels, its preferred prey, in the presence of H. sanguineus. Decreased mussel consumption in turn leads to lower growth rates for C. maenas, with potential detrimental effects on C. maenas populations. 4. Rather than an invasional meltdown, this study demonstrates that, within the Gulf of Maine, this new invasive predator can moderate the impacts of the older invasive predator.

  2. Gender inequality in predispersal seed predation contributes to female seed set advantage in a gynodioecious species.

    Science.gov (United States)

    Clarke, Gretel L; Brody, Alison K

    2015-05-01

    Most flowering plants are hermaphrodites. However, in gynodioecious species, some members of the population are male-sterile and reproduce only by setting seed, while others gain fitness through both male and female function. How females compensate for the loss of male function remains unresolved for most gynodioecious species. Here, as with many plants, fitness differences may be influenced by interactions with multiple species. However, whether multiple species interactions result in gender-specific fitness differences remains unknown. Using observational data from 2009-2010, we quantified seed set of the two sex morphs of Polemonium foliosissimu and asked how it is affected by pollination, and seed predation from a dipteran predispersal seed predator (Anthomyiidae: Hylemya sp.). We assessed seed production and losses to predation in 27 populations for one year and in six populations for a second year. Females set significantly more seed than did hermaphrodites in both years. Of the fitness components we assessed, including the number of flowers per plant, fruit set, seeds/fruit, and proportion of fruits destroyed by Hylemya, only fruit destruction differed significantly between the sexes. In one year, seeds/fruit and predation had a stronger effect on seed set for hermaphrodites than for females. Because predispersal seed predators do not pollinate flowers, their effects may depend on successful pollination of flowers on which they oviposit. To examine if genders differed in pollen limitation and seed predation and/or their interactive effects, in 2011 we hand-pollinated flowers and removed seed predator eggs in a fully factorial design. Both sexes were pollen limited, but their degree of pollen limitation did not differ. However, predation reduced.seed set more for hermaphrodites than for females. We found no significant interaction between hand pollen and seed predation, and no interaction between hand pollination and gender. Our results suggest that while

  3. Informed renesting decisions: the effect of nest predation risk.

    Science.gov (United States)

    Pakanen, Veli-Matti; Rönkä, Nelli; Thomson, Robert L; Koivula, Kari

    2014-04-01

    Animals should cue on information that predicts reproductive success. After failure of an initial reproductive attempt, decisions on whether or not to initiate a second reproductive attempt may be affected by individual experience and social information. If the prospects of breeding success are poor, long-lived animals in particular should not invest in current reproductive success (CRS) in case it generates costs to future reproductive success (FRS). In birds, predation risk experienced during breeding may provide a cue for renesting success. Species having a high FRS potential should be flexible and take predation risk into account in their renesting decisions. We tested this prediction using breeding data of a long-lived wader, the southern dunlin Calidris alpina schinzii. As predicted, dunlin cued on predation risk information acquired from direct experience of nest failure due to predation and ambient nest predation risk. While the overall renesting rate was low (34.5%), the early season renesting rate was high but declined with season, indicating probable temporal changes in the costs and benefits of renesting. We develop a conceptual cost-benefit model to describe the effects of the phase and the length of breeding season on predation risk responses in renesting. We suggest that species investing in FRS should not continue breeding in short breeding seasons in response to predation risk but without time constraints, their response should be similar to species investing in CRS, e.g. within-season dispersal and increased nest concealment.

  4. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  5. Dynamics of a Stochastic Intraguild Predation Model

    Directory of Open Access Journals (Sweden)

    Zejing Xing

    2016-04-01

    Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.

  6. Recovery of a top predator mediates negative eutrophic effects on seagrass

    Science.gov (United States)

    Hughes, Brent B.; Eby, Ron; Van Dyke, Eric; Tinker, M. Tim; Marks, Corina I.; Johnson, Kenneth S.; Wasson, Kerstin

    2013-01-01

    A fundamental goal of the study of ecology is to determine the drivers of habitat-forming vegetation, with much emphasis given to the relative importance to vegetation of “bottom-up” forces such as the role of nutrients and “top-down” forces such as the influence of herbivores and their predators. For coastal vegetation (e.g., kelp, seagrass, marsh, and mangroves) it has been well demonstrated that alterations to bottom-up forcing can cause major disturbances leading to loss of dominant vegetation. One such process is anthropogenic nutrient loading, which can lead to major changes in the abundance and species composition of primary producers, ultimately affecting important ecosystem services. In contrast, much less is known about the relative importance of apex predators on coastal vegetated ecosystems because most top predator populations have been depleted or lost completely. Here we provide evidence that an unusual four-level trophic cascade applies in one such system, whereby a top predator mitigates the bottom-up influences of nutrient loading. In a study of seagrass beds in an estuarine ecosystem exposed to extreme nutrient loading, we use a combination of a 50-y time series analysis, spatial comparisons, and mesocosm and field experiments to demonstrate that sea otters (Enhydra lutris) promote the growth and expansion of eelgrass (Zostera marina) through a trophic cascade, counteracting the negative effects of agriculturally induced nutrient loading. Our results add to a small but growing body of literature illustrating that significant interactions between bottom-up and top-down forces occur, in this case with consequences for the conservation of valued ecosystem services provided by seagrass.

  7. Response of deposit-feeders to exclusion of epibenthic predators in a Mediterranean intertidal flat

    NARCIS (Netherlands)

    Como, S.; Rossi, F.; Lardicci, C.

    2004-01-01

    Deposit-feeders are common components of macrofaunal assemblages in intertidal soft sediments. Predation has been considered to have a central role in affecting their distribution and population dynamics. This study investigates the effect of epibenthic predators on deposit-feeders, inhabiting the

  8. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites

    Science.gov (United States)

    Seiter, Michael; Schausberger, Peter

    2015-01-01

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments. PMID:26449645

  9. Effects of irrigation levels on interactions among Lygus hesperus (Hemiptera: Miridae), insecticides, and predators in cotton.

    Science.gov (United States)

    Asiimwe, Peter; Naranjo, Steven E; Ellsworth, Peter C

    2014-04-01

    Variation in plant quality and natural enemy abundance plays an important role in insect population dynamics. In manipulative field studies, we evaluated the impact of varying irrigation levels and insecticide type on densities of Lygus hesperus Knight and the arthropod predator community in cotton. Three watering levels were established via irrigations timed according to three levels of percent soil water depletion (SWD): 20, 40, or 60, where 40% SWD is considered standard grower practice, 60% represents a deficit condition likely to impose plant productivity losses, and 20% represents surplus conditions with likely consequences on excessive vegetative plant production. The two key L. hesperus insecticides used were the broad-spectrum insecticide acephate and the selective insecticide flonicamid, along with an untreated check. We hypothesized that densities of L. hesperus and its associated predators would be elevated at higher irrigation levels and that insecticides would differentially impact L. hesperus and predator dynamics depending on their selectivity. L. hesperus were more abundant at the higher irrigation level (20% SWD) but the predator densities were unaffected by irrigation levels. Both L. hesperus and its predators were affected by the selectivity of the insecticide with highest L. hesperus densities and lowest predator abundance where the broad spectrum insecticide (acephate) was used. There were no direct interactions between irrigation level and insecticides, indicating that insecticide effects on L. hesperus and its predators were not influenced by the irrigation levels used here. The implications of these findings on the overall ecology of insect-plant dynamics and yield in cotton are discussed.

  10. Effect of doses and of refuge on the insecticide selectivity to predators and parasitoids of soybean insect pests

    International Nuclear Information System (INIS)

    Corso, Ivan Carlos; Gazzoni, Decio Luiz; Nery, Manoel Eugenio

    1999-01-01

    A field experiment was conducted to evaluate seasonal effect of insecticides on predators and parasitoids of soybean insect pests. A randomized block design was used, with three replications, and the experiment was set up in the experimental station of the EMBRAPA-Centro Nacional de Pesquisa de Soja, located at Londrina, PR, Brazil. Treatments consisted of insecticide application to control the velvet bean caterpillar (1/21/1993) or the stink bug complex (3/4/1993). Insect population was sampled through the shock technique, consisting of an application of a broad spectrum insecticide over the plants to be sampled, being the insects collected on cloths placed on the ground, and transferred to the laboratory to be identified and counted. Statistical analysis revealed no differences on the populations of species of predators, diptera or himenoptera as a group. No effects of pest resurgence or secondary pest outbreaks were also observed. (author)

  11. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Science.gov (United States)

    W. Andrew Cox; Frank R. III Thompson; John. Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  12. Seasonal Effects of Habitat on Sources and Rates of Snowshoe Hare Predation in Alaskan Boreal Forests.

    Directory of Open Access Journals (Sweden)

    Dashiell Feierabend

    Full Text Available Survival and predation of snowshoe hares (Lepus americanus has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike's information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis than other predators in early successional forest (30%, and more often by lynx (Lynx canadensis than other predators in black spruce forest (31%. Great horned owls (Bubo virginianus and coyotes (Canis latrans represented smaller proportions of hare predation, and non-predatory causes were a minor source (3% of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a

  13. Selective predation and prey class behaviour as possible ...

    African Journals Online (AJOL)

    To test these mechanisms, a study was conducted on Samara Private Game Reserve to investigate the potential impact cheetah (Acinonyx jubatus) predation has had on the kudu (Tragelaphus strepciseros) population. Kudu age and sex data were collected across both predator-present and predator-absent sections using ...

  14. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems.

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-02-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.

  15. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change. PMID:23467451

  16. Relative effects of exophytic predation, endophytic predation, and intraspecific competition on a subcortical herbivore: consequences to the reproduction of Ips pini and Thanasimus dubius.

    Science.gov (United States)

    Aukema, Brian H; Raffa, Kenneth F

    2002-12-01

    We used a laboratory assay to partition the effects of predation and intraspecific competition on the establishment, mating success, and brood development of an endophytic herbivore. We selected a system in which the same predator feeds both exophytically and endophytically on the same prey, to evaluate the role of herbivore feeding guild on predator numerical and functional responses. The bark beetle, Ips pini (Coleoptera: Scolytidae) reproduces within the stems of conifers. Males establish mating chambers under the bark, produce aggregation pheromones, and are subsequently joined by females that construct ovipositional galleries. Thanasimus dubius (Coleoptera: Cleridae) adults prey on adults alighting on the bark surface. T. dubius females then oviposit at the bark beetles' entrance sites, and their larvae prey on developing bark beetle larvae within the tree. We imposed a controlled 3×3 factorial design of prey and predator adult densities on red pine logs. Both predation and competition decreased I. pini reproduction. However, the per capita effect of predation was greater than competition, with one adult T. dubius reducing herbivore reproduction by an equivalent amount as four to five competing males and their harems. Increased densities of adult T. dubius on the plant surface reduced the number of prey captured per predator. Total predation on adults and larvae was similar. However, adult T. dubius on the plant surface ate approximately 18-35 times more I. pini per day than did their endophytic larvae. Within the plant, cannibalism among T. dubius, low herbivore densities, limited feeding times, and presumably the complex gallery architecture of I. pini reduced the number of predator progeny. The progeny of I. pini showed even sex ratios in the absence of predators, but were female biased when predators were present. We quantified a relatively narrow set of predator and prey densities that can generate replacement rates greater than one for this predator

  17. Turbidity interferes with foraging success of visual but not chemosensory predators.

    Science.gov (United States)

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  18. Predation rates, timing, and predator composition for Scoters (Melanitta spp.) in marine habitats

    Science.gov (United States)

    Anderson, Eric J.; Esler, Daniel N.; Sean, Boyd W.; Evenson, Joseph; Nysewander, David R.; Ward, David H.; Dickson, Rian D.; Uher-Koch, Brian D.; Vanstratt, C.S.; Hupp, Jerry

    2012-01-01

    Studies of declining populations of sea ducks have focused mainly on bottom-up processes with little emphasis on the role of predation. We identified 11 potential predators of White-winged Scoters (Melanitta fusca (L., 1758)) and Surf Scoters (Melanitta perspicillata (L., 1758)) in North American marine habitats. However, of 596 Scoters marked with VHF transmitters along the Pacific coast, mortalities were recovered in association with just two identifiable categories of predators: in southeast Alaska recoveries occurred mainly near mustelid feeding areas, while those in southern British Columbia and Washington occurred mainly near feeding areas of Bald Eagles (Haliaeetus leucocephalus (L., 1766)). Determining whether marked Scoters had been depredated versus scavenged was often not possible, but mortalities occurred more frequently during winter than during wing molt (13.1% versus 0.7% of both species combined, excluding Scoters that died within a postrelease adjustment period). In two sites heavily used by Scoters, diurnal observations revealed no predation attempts and low rates of predator disturbances that altered Scoter behavior (≤ 0.22/h). These and other results suggest that predation by Bald Eagles occurs mainly at sites and times where densities of Scoters are low, while most predation by mustelids probably occurs when Scoters are energetically compromised.

  19. The relationship between food intake and predation risk in migratory caribou and implications to caribou and wolf population dynamics

    Directory of Open Access Journals (Sweden)

    Douglas C. Heard

    1996-01-01

    Full Text Available We examined the hypothesis that spring migration in barren-ground caribou (Rangifer tarandus enhances access to high quality food, reduces predation risks or both. We related our findings to the hypothesis that one of the consequences of migration is that prey populations cannot be regulated by predation because predators are unable to respond numerically to changes in abundance of migratory prey. In the Northwest Territories, migration to calving grounds by pregnant cows reduced the risk of predation on neonates. Wolf (Canis lupus densities on calving grounds averaged only 22% of winter range densities because most wolves denned near tree line. The quality and quantity of food that was available to cows that migrated to calving grounds was lower than for bulls and other caribou that lagged far behind the pregnant cows during spring migration. Fecal nitrogen levels were higher in bulls than in cows in late May and early June but there were no differences in mid or late June. Areas occupied by bulls in late May had a greater biomass of live sedges than on the calving ground in early June. It appears that although food in July is abundant and nutritious, insect harassment prevents efficient feeding. Body fat reserves in both sexes declined to almost zero by mid-July, the lowest level of the year. Insect numbers declined in August and body fat levels increased to the highest level of the year by early September. Because the timing of caribou's return to the hunting ranges of tree line denning wolves was related to caribou density, our data were inconsistent with the suggested consequence of migration. Tree line denning by wolves and density-dependent changes in caribou migration suggests a mechanism for population regulation in caribou and wolves. We suggest that the process is as follows; when caribou numbers increase, some density-dependent factor causes range expansion in August (e.g., competition for food causing caribou to return earlier to

  20. Pasta Predation.

    Science.gov (United States)

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  1. Interactions of bullfrog tadpole predators and an insecticide: Predation release and facilitation

    Science.gov (United States)

    Boone, M.D.; Semlitsch, R.D.

    2003-01-01

    The effect of a contaminant on a community may not be easily predicted, given that complex changes in food resources and predator-prey dynamics may result. The objectives of our study were to determine the interactive effects of the insecticide carbaryl and predators on body size, development, survival, and activity of tadpoles of the bullfrog (Rana catesbeiana). We conducted the study in cattle tank mesocosm ponds exposed to 0, 3.5, or 7.0 mg/l carbaryl, and no predators or two red-spotted newts (Notophthalmus viridescens), bluegill sunfish (Lepomis macrochirus), or crayfish (Orconectes sp.). Carbaryl negatively affected predator survival by eliminating crayfish from all ponds, and by eliminating bluegill sunfish from ponds exposed to the highest concentration of carbaryl; carbaryl exposure did not effect survival of red-spotted newts. Because crayfish were eliminated by carbaryl, bullfrogs were released from predation and survival was near that of predator controls at low concentrations of carbaryl exposure. High concentrations of carbaryl reduced tadpole survival regardless of whether predators survived carbaryl exposure or not. Presence of crayfish and newts reduced tadpole survival, while bluegill sunfish appeared to facilitate bullfrog tadpole survival. Presence of carbaryl stimulated bullfrog tadpole mass and development. Our study demonstrates that the presence of a contaminant stress can alter community regulation by releasing prey from predators that are vulnerable to contaminants in some exposure scenarios.

  2. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    G. Penido

    Full Text Available This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM. The complete model (with effects from edge distance and site and its interaction was significative (F3=4.43; p=0.005. Seeds had a larger predation rates in fragment’s interior in both areas, but in the controlled area (no disturbance this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001. We did not verify predator’s species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  3. Human-caused Disturbance Stimuli as a Form of Predation Risk

    Directory of Open Access Journals (Sweden)

    Alejandro Frid

    2002-06-01

    Full Text Available A growing number of studies quantify the impact of nonlethal human disturbance on the behavior and reproductive success of animals. Athough many are well designed and analytically sophisticated, most lack a theoretical framework for making predictions and for understanding why particular responses occur. Behavioral ecologists have recently begun to fill this theoretical vacuum by applying economic models of antipredator behavior to disturbance studies. In this emerging paradigm, predation and nonlethal disturbance stimuli create similar trade-offs between avoiding perceived risk and other fitness-enhancing activities, such as feeding, parental care, or mating. A vast literature supports the hypothesis that antipredator behavior has a cost to other activities, and that this trade-off is optimized when investment in antipredator behavior tracks short-term changes in predation risk. Prey have evolved antipredator responses to generalized threatening stimuli, such as loud noises and rapidly approaching objects. Thus, when encountering disturbance stimuli ranging from the dramatic, low-flying helicopter to the quiet wildlife photographer, animal responses are likely to follow the same economic principles used by prey encountering predators. Some authors have argued that, similar to predation risk, disturbance stimuli can indirectly affect fitness and population dynamics via the energetic and lost opportunity costs of risk avoidance. We elaborate on this argument by discussing why, from an evolutionary perspective, disturbance stimuli should be analogous to predation risk. We then consider disturbance effects on the behavior of individuals - vigilance, fleeing, habitat selection, mating displays, and parental investment - as well as indirect effects on populations and communities. A wider application of predation risk theory to disturbance studies should increase the generality of predictions and make mitigation more effective without over

  4. PANTAI PASIR PADI (PADDY SAND BEACH OF BANGKA ISLAND; CRABS (Scopimera sp POPULATION, FEEDING BEHAVIOUR AND THEIR BIRD PREDATOR

    Directory of Open Access Journals (Sweden)

    Hanifa Marisa

    2016-11-01

    Full Text Available An observation about beach crab (Scopimera sp population, their feeding behaviour and predator bird had been done at October 9 th, 2014 in Pantai Pasir Padi, Eastern Bangka Island beach, near Pangkal Pinang town. Ten 1 meter square plots were put at sandy beach and number of Scopimera sp be counted by the number of their hole nest home. Their feeding behaviour observed directly by eye-watching and video making. The threatening of bird predator was noted too.  The investigation find out that the mean of crabs population is 17 individu/m2 .  They come out from home hole for feeding around by sieving wet sand that be taken by front legs, obsorb organic nutrious material by mouth and kick residual sand to behind legs, move it as a small sand ball to right of left back side.  Production of small ball sand were about 15 - 30 balls /per minute. For making the nest hole, bigger sand ball were produced about 7 – 9 ball/minute; ball colour is same with under layer beach sand; quite grey. The crabs run instinctivey fast, when the threat come from their natural enemy, predator bird, Actitis hypoleucos.  Bird searching behaviour look adapted to the fast run of crab. Keywords: Scopimera sp, Actitis hypoleucos, small sand ball, predator, behaviour

  5. Population variance in prey, diets and their macronutrient composition in an endangered marine predator, the Franciscana dolphin

    Science.gov (United States)

    Denuncio, Pablo; Paso Viola, Maria N.; Machovsky-Capuska, Gabriel E.; Raubenheimer, David; Blasina, Gabriela; Machado, Rodrigo; Polizzi, Paula; Gerpe, Marcela; Cappozzo, Humberto L.; Rodriguez, Diego H.

    2017-11-01

    Disentangling the intricacies governing dietary breadth in wild predators is important for understanding their role in structuring ecological communities and provides critical information for the management and conservation of ecologically threatened species. Here we combined dietary analysis, nutritional composition analysis of prey, literature data and nutritional geometry (right-angled mixture triangle models -RMT-) to examine the diet of the most threatened small cetacean in the western South Atlantic Ocean, the Franciscana dolphin (Pontoporia blainvillei). We applied a recently developed extension of niche theory based on the RMT to help understand the dietary strategies of this species. Our results showed that across their range the Franciscanas consumed prey with variable protein-to-lipid energy ratios (LMM, p < 0.001). In an intensive study of one area, FMA IV, we found that dolphins sub-populations, which recent genetic evidence suggest should be differentiated into three management units, have diets with different protein energy and water mass compositions, but similar protein-to-lipid energy ratios. Furthermore, dolphins from the three areas mixed different combinations of prey in their diets to achieve the observed macronutrient ratios. These results suggest that the different habitats that each sub-population occupies (estuarine, north marine area and south marine) might be associated with different prey composition niches, but similar realized nutritional niches. Future priorities are to better comprehend possible geographical and long-term seasonal effects on prey consumption and dietary breadth of the different Franciscana populations to identify potential impacts (environmental and human-related), enhance the current management strategies to protect this endangered marine predator.

  6. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Science.gov (United States)

    Dreher, Corinna E; Cummings, Molly E; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological

  7. Use of artificial nests to investigate predation on freshwater turtle nests

    Science.gov (United States)

    Michael N. Marchand; John A. Litvaitis; Thomas J. Maier; Richard M. DeGraaf

    2002-01-01

    Habitat fragmentation has raised concerns that populations of generalist predators have increased and are affecting a diverse group of prey. Previous research has included the use of artificial nests to investigate the role of predation on birds that nest on or near the ground. Because predation also is a major factor limiting populations of freshwater turtles, we...

  8. Modelling the dynamics of traits involved in fighting-predators-prey system.

    Science.gov (United States)

    Kooi, B W

    2015-12-01

    We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

  9. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    Science.gov (United States)

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  10. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Directory of Open Access Journals (Sweden)

    Corinna E Dreher

    Full Text Available Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and

  11. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    Science.gov (United States)

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  12. Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs.

    Science.gov (United States)

    Rizzari, Justin R; Bergseth, Brock J; Frisch, Ashley J

    2015-04-01

    Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top-down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large-bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no-take, and no-entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no-entry zones than in fished and no-take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no-entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top-down forces may not play a strong role in regulating large-bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. © 2014 Society for Conservation Biology.

  13. Predation by coyotes on white-tailed deer neonates in South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Kilgo, John C.; Ray, H. Scott; Vukovich, Mark; Goode, Matthew J.; Ruth, Charles

    2012-05-07

    Abstract: Coyotes (Canis latrans) are novel predators throughout the southeastern United States and their depredation of white-tailed deer (Odocoileus virginianus) neonates may explain observed declines in some deer populations in the region, but direct evidence for such a relationship is lacking. Our objective was to quantify neonate survival rates and causes of mortality at the United States Department of Energy's Savannah River Site (SRS), South Carolina to directly evaluate degree of predation in this deer population. From 2006 to 2009, we radio-monitored 91 neonates captured with the aid of vaginal implant transmitters in pregnant adult females and opportunistic searches. Overall Kaplan Meier survival rate to 16 weeks of age was 0.230 (95% CI = 0.155-0.328), and it varied little among years. Our best-fitting model estimated survival at 0.220 (95% CI = 0.144-0.320). This model included a quadratic time trend variable (lowest survival rate during the first week of life and increasing to near 1.000 around week 10), and Julian date of birth (survival probability declining as date of birth increased). Predation by coyotes was the most frequent cause of death among the 70 monitored neonates that died, definitively accounting for 37% of all mortalities and potentially accounting for as much as 80% when also including probable coyote predation. Predation by bobcats (Felis rufus) accounted for 7% (definitive) to 9% (including probable bobcat predation) of mortalities. The level of coyote-induced mortality we observed is consistent with the low recruitment rates exhibited in the SRS deer population since establishment of coyotes at the site. If representative of recruitment rates across South Carolina, current harvest levels appear unsustainable. This understanding is consistent with the recent declining trend in the statewide deer population. The effects of coyote predation on recruitment should be considered when setting harvest goals, regardless of whether local

  14. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    OpenAIRE

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor...

  15. Differential effects of plant species on a mite pest (Tetranychus utricae) and its predator (Phytoseiulus persimilis): implications for biological control.

    Science.gov (United States)

    Skirvin, D J; de Courcy Williams, M

    1999-06-01

    The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.

  16. Predation as a landscape effect: the trading off by prey species between predation risks and protection benefits.

    Science.gov (United States)

    Mönkkönen, M; Husby, M; Tornberg, R; Helle, P; Thomson, R L

    2007-05-01

    1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure

  17. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  18. Escape Behavior and Predation Risk of Mainland and Island Spiny-tailed Iguanas (Ctenosaura hemilopha)

    OpenAIRE

    Blázquez, M.C.; Rodríguez-Estrella, Ricardo; Delibes, M.

    1997-01-01

    We investigated the relationships between predator avoidance behavior and predation risk by comparing the wariness of iguanas (Ctenosaura hemilopha) belonging to an island population with few predators with that of iguanas belonging to a mainland population under high predation pressure. We predicted that island iguanas would be less wary than mainland ones. Island iguanas allowed the closer approach of potential predators before their first reaction and fleeing. The responses of both sexes d...

  19. Predators and the public trust.

    Science.gov (United States)

    Treves, Adrian; Chapron, Guillaume; López-Bao, Jose V; Shoemaker, Chase; Goeckner, Apollonia R; Bruskotter, Jeremy T

    2017-02-01

    Many democratic governments recognize a duty to conserve environmental resources, including wild animals, as a public trust for current and future citizens. These public trust principles have informed two centuries of U.S.A. Supreme Court decisions and environmental laws worldwide. Nevertheless numerous populations of large-bodied, mammalian carnivores (predators) were eradicated in the 20th century. Environmental movements and strict legal protections have fostered predator recoveries across the U.S.A. and Europe since the 1970s. Now subnational jurisdictions are regaining management authority from central governments for their predator subpopulations. Will the history of local eradication repeat or will these jurisdictions adopt public trust thinking and their obligation to broad public interests over narrower ones? We review the role of public trust principles in the restoration and preservation of controversial species. In so doing we argue for the essential roles of scientists from many disciplines concerned with biological diversity and its conservation. We look beyond species endangerment to future generations' interests in sustainability, particularly non-consumptive uses. Although our conclusions apply to all wild organisms, we focus on predators because of the particular challenges they pose for government trustees, trust managers, and society. Gray wolves Canis lupus L. deserve particular attention, because detailed information and abundant policy debates across regions have exposed four important challenges for preserving predators in the face of interest group hostility. One challenge is uncertainty and varied interpretations about public trustees' responsibilities for wildlife, which have created a mosaic of policies across jurisdictions. We explore how such mosaics have merits and drawbacks for biodiversity. The other three challenges to conserving wildlife as public trust assets are illuminated by the biology of predators and the interacting

  20. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    Science.gov (United States)

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey

    Directory of Open Access Journals (Sweden)

    Malay Banerjee

    2018-03-01

    Full Text Available Spatiotemporal pattern formation in integro-differential equation models of interacting populations is an active area of research, which has emerged through the introduction of nonlocal intra- and inter-specific interactions. Stationary patterns are reported for nonlocal interactions in prey and predator populations for models with prey-dependent functional response, specialist predator and linear intrinsic death rate for predator species. The primary goal of our present work is to consider nonlocal consumption of resources in a spatiotemporal prey-predator model with bistable reaction kinetics for prey growth in the absence of predators. We derive the conditions of the Turing and of the spatial Hopf bifurcation around the coexisting homogeneous steady-state and verify the analytical results through extensive numerical simulations. Bifurcations of spatial patterns are also explored numerically.

  2. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    Science.gov (United States)

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  3. Edge, height and visibility effects on nest predation by birds and mammals in the Brazilian cerrado

    Science.gov (United States)

    Dodonov, Pavel; Paneczko, Ingrid Toledo; Telles, Marina

    2017-08-01

    Edge influence is one of the main impacts in fragmented landscapes; yet, most of studies on edge influence have focused on high-contrast edges, and the impacts of low-contrast edges and narrow linear openings are less understood. Edge influence often affects bird nest predation, but these effects are not ubiquitous and may depend on characteristics such as nest height and visibility. We performed an experiment on nest predation in a migratory passerine, Elaenia chiriquensis (Lesser Elaenia; Passeriformes: Tyrannidae), in a savanna vegetation of the Brazilian Cerrado biome in South-Eastern Brazil. We used 89 real E. chiriquensis nests, collected during previous reproductive seasons, with two plasticine eggs in each, and randomly distributed them at two locations (edge - up to 20 m from a firebreak edge and interior - approx. 150-350 m from the edge) and two heights (low - 60-175 cm and high - 190-315 cm above ground). We also measured leaf and branch density around each nest. We performed this study on two 15-days campaigns, checking the nests every 2-3 days and removing those with predation marks. We sorted the predation marks into those made by birds, mammals, or unidentified predators, and used generalized linear models to assess the effects of location, height and leaf density on survival time and predator type. Only four nests had not been predated during the experiment; 55 nests were predated by birds, 7 by mammals, and 23 by unidentified predators. Low nests in the interior tended to have larger survival times whereas high nests at the edge tended to be more predated by birds and less predated by mammals. Thus, even a low-contrast (firebreak) edge may significantly increase nest predation, which is also affected by the nest's height, mainly due to predation by birds. These effects may be due to predator movement along the edge as well as to edge-related changes in vegetation structure. We suggest that higher-contrast edges which may also be used as movement

  4. New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey

    Science.gov (United States)

    Chailleux, Anaïs; Wajnberg, Eric; Zhou, Yuxiang; Amiens-Desneux, Edwige; Desneux, Nicolas

    2014-12-01

    Optimal habitat selection is essential for species survival in ecosystems, and interspecific competition is a key ecological mechanism for many observed species association patterns. Specialized animal species are commonly affected by resource and interference competition with generalist and/or omnivorous competitors, so avoidance behavior could be expected. We hypothesize that specialist species may exploit broad range cues from such potential resource competitors (i.e., cues possibly common to various generalist and/or omnivorous predators) to avoid costly competition regarding food or reproduction, even in new species associations. We tested this hypothesis by studying short-term interactions between a native larval parasitoid and a native generalist omnivorous predator recently sharing the same invasive host/prey, the leaf miner Tuta absoluta. We observed a strong negative effect of kleptoparasitism (food resource stealing) instead of classical intraguild predation on immature parasitoids. There was no evidence that parasitoid females avoided the omnivorous predator when searching for oviposition sites, although we studied both long- and short-range known detection mechanisms. Therefore, we conclude that broad range cue avoidance may not exist in our biological system, probably because it would lead to too much oviposition site avoidance which would not be an efficient and, thus, beneficial strategy. If confirmed in other parasitoids or specialist predators, our findings may have implications for population dynamics, especially in the current context of increasing invasive species and the resulting creation of many new species associations.

  5. Predation risk determines breeding territory choice in a Mediterranean cavity-nesting bird community.

    Science.gov (United States)

    Parejo, Deseada; Avilés, Jesús M

    2011-01-01

    Non-direct effects of predation can be an important component of the total effect of predation, modulating animal population and community dynamics. The isolated effects of predation risk on the spatial organisation of the breeding bird community, however, remains poorly studied. We investigated whether an experimentally increased predation risk prior to reproduction affected breeding territory selection and subsequent reproductive strategies in three Mediterranean cavity-nesting birds, i.e., the little owl Athene noctua, European roller Coracias garrulus and scops owl Otus scops. We found that territories used the previous year were more likely to be re-occupied when they belonged to the safe treatment rather than to the risky treatment. The first choice of breeders of all three species was for safe territories over risky ones. When all breeding attempts in the season (i.e., final occupation) were considered, breeders also preferred safe to risky sites. In addition, little owls laid larger eggs in risky territories than in safe territories. Our study provides experimental evidence of a rapid preventive response of the three most abundant species in a cavity-nesting bird community to a short-term manipulation of predation risk. This response highlights the key role of the non-direct effects of predation in modulating avian community organisation.

  6. The Effects of Resource Limitation on a Predator-Prey Model with Control Measures as Nonlinear Pulses

    Directory of Open Access Journals (Sweden)

    Wenjie Qin

    2014-01-01

    Full Text Available The dynamical behavior of a Holling II predator-prey model with control measures as nonlinear pulses is proposed and analyzed theoretically and numerically to understand how resource limitation affects pest population outbreaks. The threshold conditions for the stability of the pest-free periodic solution are given. Latin hypercube sampling/partial rank correlation coefficients are used to perform sensitivity analysis for the threshold concerning pest extinction to determine the significance of each parameter. Comparing this threshold value with that without resource limitation, our results indicate that it is essential to increase the pesticide’s efficacy against the pest and reduce its effectiveness against the natural enemy, while enhancing the efficiency of the natural enemies. Once the threshold value exceeds a critical level, both pest and its natural enemies populations can oscillate periodically. Further-more, when the pulse period and constant stocking number as a bifurcation parameter, the predator-prey model reveals complex dynamics. In addition, numerical results are presented to illustrate the feasibility of our main results.

  7. Effects of dams on downstream molluscan predator-prey interactions in the Colorado River estuary.

    Science.gov (United States)

    Smith, Jansen A; Handley, John C; Dietl, Gregory P

    2018-05-30

    River systems worldwide have been modified for human use and the downstream ecological consequences are often poorly understood. In the Colorado River estuary, where upstream water diversions have limited freshwater input during the last century, mollusc remains from the last several hundred years suggest widespread ecological change. The once abundant clam Mulinia modesta has undergone population declines of approximately 94% and populations of predators relying on this species as a food source have probably declined, switched to alternative prey species or both. We distinguish between the first two hypotheses using a null model of predation preference to test whether M. modesta was preyed upon selectively by the naticid snail, Neverita reclusiana , along the estuary's past salinity gradient. To evaluate the third hypothesis, we estimate available prey biomass today and in the past, assuming prey were a limiting resource. Data on the frequency of drill holes-identifiable traces of naticid predation on prey shells-showed several species, including M. modesta , were preferred prey. Neverita reclusiana was probably able to switch prey. Available prey biomass also declined, suggesting the N. reclusiana population probably also declined. These results indicate a substantial change to the structure of the benthic food web. Given the global scale of water management, such changes have probably also occurred in many of the world's estuaries. © 2018 The Author(s).

  8. Indirect effects of non-lethal predation on bivalve activity and sediment reworking

    NARCIS (Netherlands)

    Maire, O.; Merchant, J.N.; Bulling, M.; Teal, L.R.; Gremare, A.; Duchene, J.C.; Solan, M.

    2010-01-01

    Deposit-feeders are the dominant bioturbators of aquatic sediments, where they profoundly impact biogeochemical processes, but they are also vulnerable to both lethal and non-lethal predation by a large variety of predators. In this study, we performed a series of experiments to test the effects of

  9. Carryover effects of predation risk on postembryonic life-history stages in a freshwater shrimp.

    Science.gov (United States)

    Ituarte, Romina Belén; Vázquez, María Guadalupe; González-Sagrario, María de los Ángeles; Spivak, Eduardo Daniel

    2014-04-01

    For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Different effects of variation in Xanthium strumarium L. (Compositae) on two insect seed predators.

    Science.gov (United States)

    Hare, J Daniel; Futuyma, Douglas J

    1978-01-01

    To determine the relative importance of variation in several plant characters on susceptibility to herbivores, we examined patterns of seed predation by two monophagous insect species and patterns of variation in ten populations of the cocklebur, Xanthium strumarium. Multiple regression analysis disclosed that one seed predator was most influenced by plant chemical variation, the other was significantly influenced by both chemical and morphological variation, but variation in yet another character, general burr size, was most important in conferring resistance to both insects simultaneously. The plant populations differed most in this character. Although many of the plant characters were correlated with each other, those important in determining susceptibility to each insect species were uncorrelated and independent of those conferring resistance to both insects simultaneously.These results imply that ecological similar herbivores may be influenced by different aspects of plant variation, and that predictions of evolutionary responses of local plant populations to herbivory may require knowledge of the structure of local herbivore communities and the dynamics of their establishment.

  11. Stochastic analysis of a pulse-type prey-predator model

    Science.gov (United States)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  12. Compensatory Feeding Following a Predator Removal Program : Detection and Mechanisms, 1982-1996 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, James H.

    2002-02-28

    Predator removal is one of the oldest management tools in existence, with evidence that ancient Greeks used a bounty reward for wolves over 3,000 years ago (Anonymous 1964). Efforts to control predators on fish have been documented in scientific journals for at least 60 years (Eschmeyer 1937; Lagler 1939; Foerster and Ricker 1941; Smith and Swingle 1941; Jeppson and Platts 1959), and has likely been attempted for much longer. Complete eradication of a target species from a body of water has rarely been the objective of predator removal programs, which instead have attempted to eliminate predators from specific areas, to reduce the density or standing stock of predators, or to kill the largest individuals in the population (Meronek et al. 1996). In evaluating management programs that remove only part of a predator population, the compensatory response(s) of the remaining predators must be considered. Some potential compensatory responses by remaining individuals include increased reproductive output, increased growth rate, or increased consumption of certain prey species (Jude et al. 1987). If compensation by predators that remain in the system following a removal effort occurs, it may reduce the effectiveness of the predator control program. Northern pike-minnow Ptychocheilus oregonensis (formerly called northern squawfish) consume juvenile salmon in rivers, lakes, and reservoirs in British Columbia, Washington, Idaho, Oregon, and California. Northern pikeminnow have been estimated to consume about 11% of all juvenile salmon that migrate through John Day Reservoir on the Columbia River (Rieman et al. 1991). Modeling studies suggested that removal of 20% of the northern pikeminnow population in John Day Reservoir would result in a 50% decrease in predation-related mortality of juvenile salmon migrating through this reach (Beamesderfer et al. 1991). Since the early 1940's, other programs have been implemented to remove northern pikeminnow, with hopes of

  13. Response of brown anoles Anolis sagrei to multimodal signals from a native and novel predator

    Directory of Open Access Journals (Sweden)

    Omar L. ELMASRI, Marcus S. MORENO, Courtney A. NEUMANN, Daniel T. BLUMSTEIN

    2012-06-01

    Full Text Available Multiple studies have focused on the importance of single modalities (visual, auditory, olfactory in eliciting anti-predator behavior, however multiple channels are often engaged simultaneously. While examining responses to multiple cues can potentially reveal more complex behavioral responses, little is known about how multimodal processing evolves. By contrasting response to familiar and novel predators, insights can be gained into the evolution of multimodal responses. We studied brown anoles’ (Anolis sagrei response to acoustic and visual predatory cues of a common potential predator, the great-tailed grackle Quiscalus mexicanus and to the American kestrel Falco sparverius, a species found in other populations but not present in our study population. We observed anole behavior before and after a stimulus and quantified rates of looking, display, and locomotion. Anoles increased their rate of locomotion in response to grackle models, an effect modulated by grackle vocalizations. No such response or modulation was seen when anoles were presented with kestrel stimuli. This suggests that the degree of sophistication of anole response to predators is experience dependent and that relaxed selection can result in reduced anti-predator response following loss of predators [Current Zoology 58 (6: 791–796, 2012].

  14. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  15. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  16. Effect of woodland patch size on rodent seed predation in a fragmented landscape

    Directory of Open Access Journals (Sweden)

    J. Loman

    2007-05-01

    Full Text Available Predation on large woody plant seeds; chestnuts, acorns and sloe kernels, was studied in deciduous forests of two size classes: small woodlots (<1 ha and large woods (at least 25 ha in southern Sweden. Seeds used for the study were artificially distributed on the forest ground and seed predation measured as seed removal. Predation rate was similar in both types of woods. However, rodent density was higher in small woodlots and a correction for differences in rodent density showed that predation rate per individual rodent was higher in the large woods. This suggests that the small woodlots (including the border zone and their adjacent fields have more rodent food per area unit. A small woodlot cannot be considered a representative sample of a large continuous forest, even if the habitats appear similar. There was a strong effect of rodent density on seed predation rate. This suggests that rodents are major seed predators in this habitat.

  17. Does colour polymorphism enhance survival of prey populations?

    Science.gov (United States)

    Wennersten, Lena; Forsman, Anders

    2009-01-01

    That colour polymorphism may protect prey populations from predation is an old but rarely tested hypothesis. We examine whether colour polymorphic populations of prey exposed to avian predators in an ecologically valid visual context were exposed to increased extinction risk compared with monomorphic populations. We made 2976 artificial pastry prey, resembling Lepidoptera larvae, in four different colours and presented them in 124 monomorphic and 124 tetramorphic populations on tree trunks and branches such that they would be exposed to predation by free-living birds, and monitored their ‘survival’. Among monomorphic populations, there was a significant effect of prey coloration on survival, confirming that coloration influenced susceptibility to visually oriented predators. Survival of polymorphic populations was inferior to that of monomorphic green populations, but did not differ significantly from monomorphic brown, yellow or red populations. Differences in survival within polymorphic populations paralleled those seen among monomorphic populations; the red morph most frequently went extinct first and the green morph most frequently survived the longest. Our findings do not support the traditional protective polymorphism hypothesis and are in conflict with those of earlier studies. As a possible explanation to our findings, we offer a competing ‘giveaway cue’ hypothesis: that polymorphic populations may include one morph that attracts the attention of predators and that polymorphic populations therefore may suffer increased predation compared with some monomorphic populations. PMID:19324729

  18. Ocean acidification alters predator behaviour and reduces predation rate.

    Science.gov (United States)

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  19. Effect of downed woody debris on small mammal anti-predator behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.

  20. Are lemmings prey or predators?

    Science.gov (United States)

    Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.

    2000-06-01

    Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.

  1. Predators with multiple ontogenetic niche shifts have limited potential for population growth and top-down control of their prey

    NARCIS (Netherlands)

    van Leeuwen, A.; Huss, M.; Gårdmark, A.; Casini, M.; Vitale, F.; Hjelm, J.; Persson, L.; de Roos, A.M.

    2013-01-01

    Catastrophic collapses of top predators have revealed trophic cascades and community structuring by top-down control. When populations fail to recover after a collapse, this may indicate alternative stable states in the system. Overfishing has caused several of the most compelling cases of these

  2. Effects of feral cats on the evolution of anti-predator behaviours in island reptiles: insights from an ancient introduction.

    Science.gov (United States)

    Li, Binbin; Belasen, Anat; Pafilis, Panayiotis; Bednekoff, Peter; Foufopoulos, Johannes

    2014-08-07

    Exotic predators have driven the extinction of many island species. We examined impacts of feral cats on the abundance and anti-predator behaviours of Aegean wall lizards in the Cyclades (Greece), where cats were introduced thousands of years ago. We compared populations with high and low cat density on Naxos Island and populations on surrounding islets with no cats. Cats reduced wall lizard populations by half. Lizards facing greater risk from cats stayed closer to refuges, were more likely to shed their tails in a standardized assay, and fled at greater distances when approached by either a person in the field or a mounted cat decoy in the laboratory. All populations showed phenotypic plasticity in flight initiation distance, suggesting that this feature is ancient and could have helped wall lizards survive the initial introduction of cats to the region. Lizards from islets sought shelter less frequently and often initially approached the cat decoy. These differences reflect changes since islet isolation and could render islet lizards strongly susceptible to cat predation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Maternal body condition influences magnitude of anti-predator response in offspring.

    Science.gov (United States)

    Bennett, Amanda M; Murray, Dennis L

    2014-11-07

    Organisms exhibit plasticity in response to their environment, but there is large variation even within populations in the expression and magnitude of response. Maternal influence alters offspring survival through size advantages in growth and development. However, the relationship between maternal influence and variation in plasticity in response to predation risk is unknown. We hypothesized that variation in the magnitude of plastic responses between families is at least partly due to maternal provisioning and examined the relationship between maternal condition, egg provisioning and magnitude of plastic response to perceived predation risk (by dragonfly larvae: Aeshna spp.) in northern leopard frogs (Lithobates pipiens). Females in better body condition tended to lay more (clutch size) larger (egg diameter) eggs. Tadpoles responded to predation risk by increasing relative tail depth (morphology) and decreasing activity (behaviour). We found a positive relationship between morphological effect size and maternal condition, but no relationship between behavioural effect size and maternal condition. These novel findings suggest that limitations imposed by maternal condition can constrain phenotypic variation, ultimately influencing the capacity of populations to respond to environmental change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    Science.gov (United States)

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Predator-induced demographic shifts in coral reef fish assemblages

    Science.gov (United States)

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  6. Predator-induced demographic shifts in coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Benjamin I Ruttenberg

    Full Text Available In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.

  7. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails

    Science.gov (United States)

    Lorda, J.; Hechinger, R.F.; Cooper, S. D.; Kuris, A. M.; Lafferty, Kevin D.

    2016-01-01

    The California horn snail, Cerithideopsis californica, and the shore crabs, Pachygrapsus crassipesand Hemigrapsus oregonensis, compete for epibenthic microalgae, but the crabs also eat snails. Such intraguild predation is common in nature, despite models predicting instability. Using a series of manipulations and field surveys, we examined intraguild predation from several angles, including the effects of stage-dependent predation along with direct consumptive and nonconsumptive predator effects on intraguild prey. In the laboratory, we found that crabs fed on macroalgae, snail eggs, and snails, and the size of consumed snails increased with predator crab size. In field experiments, snails grew less in the presence of crabs partially because snails behaved differently and were buried in the sediment (nonconsumptive effects). Consistent with these results, crab and snail abundances were negatively correlated in three field surveys conducted at three different spatial scales in estuaries of California, Baja California, and Baja California Sur: (1) among 61 sites spanning multiple habitat types in three estuaries, (2) among the habitats of 13 estuaries, and (3) among 34 tidal creek sites in one estuary. These results indicate that shore crabs are intraguild predators on California horn snails that affect snail populations via predation and by influencing snail behavior and performance.

  8. Nest predation research: Recent findings and future perspectives

    Science.gov (United States)

    Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.

    2016-01-01

    Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.

  9. The effects of recruitment to direct predator cues on predator responses in meerkats

    OpenAIRE

    Zottl, M.; Lienert, R.; Clutton-Brock, T.; Millesi, E.; Manser, M B.

    2017-01-01

    Behavioral responses of animals to direct predator cues (DPCs; e.g., urine) are common and may improve their survival. We investigated wild meerkat (Suricata suricatta) responses to DPCs by taking an experimental approach. When meerkats encounter a DPC they often recruit group members by emitting a call type, which causes the group members to interrupt foraging and approach the caller. The aim of this study was to identify the qualities of olfactory predator cues, which affect the strength of...

  10. Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus.

    Science.gov (United States)

    Martinou, A F; Seraphides, N; Stavrinides, M C

    2014-02-01

    Macrolophus pygmaeus (Hemiptera: Miridae) is a common generalist predator in Mediterranean agro-ecosystems. We evaluated the lethal effects of six insecticides and a fungicide on M. pygmaeus nymphs exposed to the pesticides through three routes of exposure: direct, residual and oral. Chlorantraniliprole and emamectin-benzoate caused less than 25% mortality to M. pygmaeus and were classified as harmless according to the International Organization for Biological Control rating scheme. In contrast, thiacloprid and metaflumizone caused 100% and 80% mortality, respectively, and were classified as harmful. Indoxacarb and spinosad resulted in close to 30% mortality to the predator, and were classified as slightly harmful, while the fungicide copper hydroxide caused 58% mortality and was rated as moderately harmful. Chlorantraniliprole and thiacloprid were selected for further sublethal testing by exposing M. pygmaeus to two routes of pesticide intake: pesticide residues and feeding on sprayed food. Thiacloprid led to an increase in resting and preening time of the predator, and a decrease in plant feeding. Chlorantraniliprole resulted in a decrease in plant feeding, but no other behaviors were affected. In addition, thiacloprid significantly reduced the predation rate of M. pygmaeus, whereas chlorantraniliprole had no significant effect on predation rate. The results of the study suggest that thiacloprid is not compatible with M. pygmaeus, while further research needs to be carried out for metaflumizone and copper hydroxide. All other products seem to be relatively compatible with M. pygmaeus, though studies on their sublethal effects will shed more light into their safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis).

    Science.gov (United States)

    Egea-Serrano, Andrés; Hangartner, Sandra; Laurila, Anssi; Räsänen, Katja

    2014-04-07

    Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes.

  12. Multifarious selection through environmental change: acidity and predator-mediated adaptive divergence in the moor frog (Rana arvalis)

    Science.gov (United States)

    Egea-Serrano, Andrés; Hangartner, Sandra; Laurila, Anssi; Räsänen, Katja

    2014-01-01

    Environmental change can simultaneously cause abiotic stress and alter biological communities, yet adaptation of natural populations to co-changing environmental factors is poorly understood. We studied adaptation to acid and predator stress in six moor frog (Rana arvalis) populations along an acidification gradient, where abundance of invertebrate predators increases with increasing acidity of R. arvalis breeding ponds. First, we quantified divergence among the populations in anti-predator traits (behaviour and morphology) at different rearing conditions in the laboratory (factorial combinations of acid or neutral pH and the presence or the absence of a caged predator). Second, we evaluated relative fitness (survival) of the populations by exposing tadpoles from the different rearing conditions to predation by free-ranging dragonfly larvae. We found that morphological defences (relative tail depth) as well as survival of tadpoles under predation increased with increasing pond acidity (under most experimental conditions). Tail depth and larval size mediated survival differences among populations, but the contribution of trait divergence to survival was strongly dependent on prior rearing conditions. Our results indicate that R. arvalis populations are adapted to the elevated predator pressure in acidified ponds and emphasize the importance of multifarious selection via both direct (here: pH) and indirect (here: predators) environmental changes. PMID:24552840

  13. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  14. Laying the foundations for a human-predator conflict solution: assessing the impact of Bonelli's eagle on rabbits and partridges.

    Science.gov (United States)

    Moleón, Marcos; Sánchez-Zapata, José A; Gil-Sánchez, José M; Barea-Azcón, José M; Ballesteros-Duperón, Elena; Virgós, Emilio

    2011-01-01

    Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable--in conservation terms--Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. We estimated the predation impact ('kill rate' and 'predation rate', i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3-2.5%) for both prey and seasons. The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the 'partridge-eating eagle' in Spanish) have a null theoretical basis in most of this area.

  15. Enhanced susceptibility to predation in corals of compromised condition.

    Science.gov (United States)

    Bright, Allan J; Cameron, Caitlin M; Miller, Margaret W

    2015-01-01

    The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  16. Local density regulates migratory songbird reproductive success through effects on double-brooding and nest predation.

    Science.gov (United States)

    Woodworth, Bradley K; Wheelwright, Nathaniel T; Newman, Amy E M; Norris, D Ryan

    2017-08-01

    Knowledge of the density-dependent processes that regulate animal populations is key to understanding, predicting, and conserving populations. In migratory birds, density-dependence is most often studied during the breeding season, yet we still lack a robust understanding of the reproductive traits through which density influences individual reproductive success. We used 27-yr of detailed, individual-level productivity data from an island-breeding population of Savannah sparrows Passerculus sandwichensis to evaluate effects of local and total annual population density on female reproductive success. Local density (number of neighbors within 50 m of a female's nest) had stronger effects on the number of young fledged than did total annual population density. Females nesting in areas of high local density were more likely to suffer nest predation and less likely to initiate and fledge a second clutch, which led to fewer young fledged in a season. Fledging fewer young subsequently decreased the likelihood of a female recruiting offspring into the breeding population in a subsequent year. Collectively, these results provide insight into the scale and reproductive mechanisms mediating density-dependent reproductive success and fitness in songbirds. © 2017 by the Ecological Society of America.

  17. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    Directory of Open Access Journals (Sweden)

    Benoit de Thoisy

    Full Text Available Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity.

  18. Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow.

    Science.gov (United States)

    Wu, Xinwei; Griffin, John N; Sun, Shucun

    2014-05-01

    Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these

  19. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea

    Science.gov (United States)

    Hill, Simeon L.; Hinke, Jefferson T.; Phillips, Tony; Watters, George M.

    2018-01-01

    Climate change is a threat to marine ecosystems and the services they provide, and reducing fishing pressure is one option for mitigating the overall consequences for marine biota. We used a minimally realistic ecosystem model to examine how projected effects of ocean warming on the growth of Antarctic krill, Euphausia superba, might affect populations of krill and dependent predators (whales, penguins, seals, and fish) in the Scotia Sea. We also investigated the potential to mitigate depletion risk for predators by curtailing krill fishing at different points in the 21st century. The projected effects of ocean warming on krill biomass were strongest in the northern Scotia Sea, with a ≥40% decline in the mass of individual krill. Projections also suggest a 25% chance that krill biomass will fall below an established depletion threshold (75% of its unimpacted level), with consequent risks for some predator populations, especially penguins. Average penguin abundance declined by up to 30% of its unimpacted level, with up to a 50% chance of falling below the depletion threshold. Simulated krill fishing at currently permitted harvest rates further increased risks for depletion, and stopping fishing offset the increased risks associated with ocean warming in our model to some extent. These results varied by location and species group. Risk reductions at smaller spatial scales also differed from those at the regional level, which suggests that some predator populations may be more vulnerable than others to future changes in krill biomass. However, impacts on predators did not always map directly to those for krill. Our findings indicate the importance of identifying vulnerable marine populations and targeting protection measures at appropriate spatial scales, and the potential for spatially-structured management to avoid aggravating risks associated with rising ocean temperatures. This may help balance tradeoffs among marine ecosystem services in an uncertain future

  20. Predators induce interspecific herbivore competition for food in refuge space

    OpenAIRE

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among herbivores is reduced by predators. Here we show the reverse: predators induce interspecific resource competi-tion among herbivores. We found that thrips larvae (Frankliniella occidentalis) use the ...

  1. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    Science.gov (United States)

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of

  2. On the Gause predator-prey model with a refuge: a fresh look at the history.

    Science.gov (United States)

    Křivan, Vlastimil

    2011-04-07

    This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effects of intraguild predators on nest-site selection by prey.

    Science.gov (United States)

    Huang, Wen-San; Pike, David A

    2012-01-01

    Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.

  4. Predation rate by wolves on the Porcupine caribou herd

    OpenAIRE

    Hayes, Robert D.; Russell, Donald E.

    2000-01-01

    Large migratory catibou {Rangifer tarandus) herds in the Arctic tend to be cyclic, and population trends are mainly driven by changes in forage or weather events, not by predation. We estimated daily kill rate by wolves on adult caribou in winter, then constructed a time and space dependent model to estimate annual wolf (Canis lupus) predation rate (P annual) on adult Porcupine caribou. Our model adjusts predation seasonally depending on caribou distribution: Pannual = SIGMAdaily* W *Ap(2)*Dp...

  5. Fish corallivory on a pocilloporid reef and experimental coral responses to predation

    Science.gov (United States)

    Palacios, M. M.; Muñoz, C. G.; Zapata, F. A.

    2014-09-01

    This study examined the effects of the Guineafowl pufferfish ( Arothron meleagris), a major corallivore in the Eastern Pacific, on pocilloporid corals on a reef at Gorgona Island, Colombia. Pufferfish occurred at a density of 171.2 individuals ha-1 and fed at a rate of 1.8 bites min-1, which produced a standing bite density of 366.2 bites m-2. We estimate that approximately 15.6 % of the annual pocilloporid carbonate production is removed by the pufferfish population. Examination of the predation effect on individual pocilloporid colonies revealed that although nubbins exposed to corallivory had lower linear growth, they gained similar weight and became thicker than those protected from it. Additionally, colonies with simulated predation injuries (on up to 75 % of branch tips) healed successfully and maintained growth rates similar to those of uninjured colonies. Despite the high corallivore pressure exerted by pufferfish on this reef, we conclude that they have a low destructive impact on Pocillopora colonies as corals can maintain their carbonate production rate while effectively recovering from partial predation. Due to its influence on colony morphology, pufferfish predation may increase environmentally induced morphological variability in Pocillopora.

  6. Species Diversity Enhances Predator Growth Rates

    International Nuclear Information System (INIS)

    Olson, M.H.; Jacobs, R.P.; O'Donnell, E.B.

    2007-01-01

    Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index) and growth rates of largemouth bass (Micropterus salmoides). This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  7. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    Science.gov (United States)

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial

  8. Effect of sublethal levels of ionizing radiation on a predator-prey interaction

    International Nuclear Information System (INIS)

    Chee, P.C.

    1976-01-01

    The predator-prey interaction studied was that between the largemouth bass (Micropterus salmoides) and the fathead minnow (Pimephales promelas) in an artificial test environment. Experiments were first conducted to determine the 50% lethal dose at 30 days of the minnow. Three different dose rates were used to test the effect of dose rate on the 50% lethal dose value. After the 50% lethal dose was determined the predator-prey interaction experiment was conducted using 30% of the 50% lethal dose as the highest radiation dose, this dose being considered the upper limit to sublethal radiation levels. A 4 x 4 Latin square design was chosen for the experiment, with four treatment levels (control plus three radiation levels) and four replicates. In each test 10 prey minnow were offered to one predator bass and the number of prey left after 14 days was the parameter of interest. A predator-prey interaction experiment using a single high level of radiation and two types of controls as conducted to ascertain the ability of the test environment to detect changes in the predator-prey interaction. The two types of controls were irradiated prey not exposed to predation and non-irradiated prey exposed to predation. An experiment was also conducted to test the correlation between the physical activity patterns of minnow and different doses of radiation. At a dose rate of 37.8 rad/min the 50% lethal dose at 30 days for minnow was found to be 2650 rad. It was found that dose rate had a strong influence on the 50% lethal dose. In the predator-prey interaction test it was found that the 14-day survival rate of prey was unaffected by sublethal levels of ionizing radiation. No significant correlation was detected between the physical activity patterns of minnow and radiation dose

  9. ``Sleeping with the enemy''—predator-induced diapause in a mite

    Science.gov (United States)

    Kroon, Annemarie; Veenendaal, René L.; Bruin, Jan; Egas, Martijn; Sabelis, Maurice W.

    2008-12-01

    Diapause in arthropods is a physiological state of dormancy that is generally thought to promote survival during harsh seasons and dispersal, but it may also serve to avoid predation in space and time. Here, we show that predation-related odours induce diapause in female adult spider mites. We argue that this response allows them to move into an area where they are free of enemies, yet forced to survive without food. Spider mites are specialised leaf feeders, but—in late summer—they experience severe predation on leaves. Hence, they face a dilemma: to stay on the leaf and risk being eaten or to move away from the leaf and risk death from starvation and thirst. Female two-spotted spider mites solve this dilemma by dramatically changing their physiology when exposed to predation-associated cues. This allows them to disperse away from leaves and to survive in winter refuges in the bark of trees or in the soil. We conclude that the mere presence of predation-associated cues causes some herbivorous mites to seek refuge, thereby retarding the growth rate of the population as a whole: a trait-mediated indirect effect that may have consequences for the stability of predator prey systems and for ecosystem structure.

  10. Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus)

    NARCIS (Netherlands)

    Frommen, Joachim G.; Herder, Fabian; Engqvist, Leif; Mehlis, Marion; Bakker, Theo C. M.; Schwarzer, Julia; Thuenken, Timo

    Predation risk is one of the major forces affecting phenotypic variation among and within animal populations. While fixed anti-predator morphologies are favoured when predation level is consistently high, plastic morphological responses are advantageous when predation risk is changing temporarily,

  11. Laying the foundations for a human-predator conflict solution: assessing the impact of Bonelli's eagle on rabbits and partridges.

    Directory of Open Access Journals (Sweden)

    Marcos Moleón

    Full Text Available BACKGROUND: Predation may potentially lead to negative effects on both prey (directly via predators and predators (indirectly via human persecution. Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable--in conservation terms--Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered predator-two prey (small game system. METHODOLOGY/PRINCIPAL FINDINGS: We estimated the predation impact ('kill rate' and 'predation rate', i.e., number of prey and proportion of the prey population eaten, respectively of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3-2.5% for both prey and seasons. CONCLUSIONS/SIGNIFICANCE: The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the 'partridge-eating eagle' in Spanish have a null theoretical basis in most of this area.

  12. Laying the Foundations for a Human-Predator Conflict Solution: Assessing the Impact of Bonelli's Eagle on Rabbits and Partridges

    Science.gov (United States)

    Moleón, Marcos; Sánchez-Zapata, José A.; Gil-Sánchez, José M.; Barea-Azcón, José M.; Ballesteros-Duperón, Elena; Virgós, Emilio

    2011-01-01

    Background Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable –in conservation terms– Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. Methodology/Principal Findings We estimated the predation impact (‘kill rate’ and ‘predation rate’, i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3–2.5%) for both prey and seasons. Conclusions/Significance The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the ‘partridge-eating eagle’ in Spanish) have a null theoretical basis in most of this area. PMID:21818399

  13. Can cat predation help competitors coexist in seabird communities?

    Science.gov (United States)

    Pontier, Dominique; Fouchet, David; Bried, Joël

    2010-01-07

    On oceanic islands, nest site availability can be an important factor regulating seabird population dynamics. The potential for birds to secure a nest to reproduce can be an important component of their life histories. The dates at which different seabird species arrive at colonies to breed will have important consequences for their relative chances of success. Early arrival on the island allows birds to obtain nests more easily and have higher reproductive success. However, the presence of an introduced predator may reverse this situation. For instance, in the sub-Antarctic Kerguelen archipelago, early arriving birds suffer heavy predation from introduced cats. Cats progressively switch from seabirds to rabbits, since the local rabbit population starts to peak after early arriving seabird species have already returned to the colony. When late-arriving birds arrive, cat predation pressure on seabirds is thus weaker. In this paper, we investigate the assumption that the advantage of early nest mnopolization conferred to early arriving birds may be counterbalanced by the cost resulting from predation. We develop a mathematical model representing a simplified situation in which two insular seabird species differ only in their arrival date at the colony site and compete for nesting sites. We conclude that predation may ensure the coexistence of the two bird species or favor the late-arriving species, but only when seasonal variations in predation pressure are large. Interestingly, we conclude that arriving early is only favorable until a given level where high reproductive success no longer compensates for the long exposure to strong predation pressure. Our work suggests that predation can help to maintain the balance between species of different phenologies.

  14. A functional response model of a predator population foraging in a patchy habitat

    DEFF Research Database (Denmark)

    Nachman, Gösta

    2006-01-01

    persimis and Tetranychus urticae inhabiting greenhouse cucumbers. 6. The model fits empirical data quite well and much better than if prey and predators were assumed to be evenly distributed among patches, or if the predators were distributed independently of the prey. 7. The analyses show...

  15. Informing recovery in a human-transformed landscape: Drought-mediated coexistence alters population trends of an imperiled salamander and invasive predators

    Science.gov (United States)

    Hossack, Blake R.; Honeycutt, Richard; Sigafus, Brent H.; Muths, Erin L.; Crawford, Catherine L.; Jones, Thomas R.; Sorensen, Jeff A.; Rorabaugh, James C.; Chambert, Thierry

    2017-01-01

    Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their

  16. Linking snake behavior to nest predation in a Midwestern bird community.

    Science.gov (United States)

    Weatherhead, Patrick J; Carfagno, Gerardo L F; Sperry, Jinelle H; Brawn, Jeffrey D; Robinson, Scott K

    2010-01-01

    Nest predators can adversely affect the viability of songbird populations, and their impact is exacerbated in fragmented habitats. Despite substantial research on this predator-prey interaction, however, almost all of the focus has been on the birds rather than their nest predators, thereby limiting our understanding of the factors that bring predators and nests into contact. We used radiotelemetry to document the activity of two snake species (rat snakes, Elaphe obsoleta; racers, Coluber constrictor) known to prey on nests in Midwestern bird communities and simultaneously monitored 300 songbird nests and tested the hypothesis that predation risk should increase for nests when snakes were more active and in edge habitat preferred by both snake species. Predation risk increased when rat snakes were more active, for all nests combined and for two of the six bird species for which we had sufficient nests to allow separate analyses. This result is consistent with rat snakes being more important nest predators than racers. We found no evidence, however, that nests closer to forest edges were at greater risk. These results are generally consistent with the one previous study that investigated rat snakes and nest predation simultaneously. The seemingly paradoxical failure to find higher predation risk in the snakes' preferred habitat (i.e., edge) might be explained by the snakes using edges at least in part for non-foraging activities. We propose that higher nest predation in fragmented habitats (at least that attributable to snakes) results indirectly from edges promoting larger snake populations, rather than from edges directly increasing the risk of nest predation by snakes. If so, the notion of edges per se functioning as ecological "traps" merits further study.

  17. Enhanced susceptibility to predation in corals of compromised condition

    Directory of Open Access Journals (Sweden)

    Allan J. Bright

    2015-09-01

    Full Text Available The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  18. Cormorant predation on PIT-tagged lake fish

    DEFF Research Database (Denmark)

    Skov, Christian; Jepsen, Niels; Baktoft, Henrik

    2014-01-01

    The present study use data from recovered PIT (Passive Integrated Transponder) tags to explore species-and size-specific annual predation rates by cormorants on three common lacustrine fishes (size range 120-367 mm) in a European lake; roach (Rutilus rutilus), common bream (Abramis brama) and perch...... (Perca fluviatilis). In addition, we quantify the level of age/size truncation that cormorant predation could introduce in a population of perch, an important fish for recreational angling as well as for trophic interactions and ecosystem function in European lakes. Based on three years of PIT tagging...... of fish in Lake Viborg and subsequent recoveries of PIT tags from nearby cormorant roosting and breeding sites, we show that cormorants are major predators of roach, bream and perch within the size groups we investigated and for all species larger individuals had higher predation rates. Perch appear...

  19. Effects of seed predators of different body size on seed mortality in Bornean logged forest.

    Science.gov (United States)

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy

    2010-07-19

    The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.

  20. Effects of predation and food on the population dynamics of the raptorial cladoceran Leptodora kindtii

    NARCIS (Netherlands)

    Vijverberg, J.; Koelewijn, H.P.; Densen, van W.L.T.

    2005-01-01

    We assessed the trophic status of Leptodora kindtii in the food web of a shallow, eutrophic lake in which 0+ age group fish were the main predators. The mean biomass of 0+ fish during three successive years varied from 0.39 g dry wt m(-2) in the first year to 0.05 g dry wt m(-2)in the second year to

  1. Effects of predation and food on the population dynamics of the raptorial cladoceran Leptodora kindtii

    NARCIS (Netherlands)

    Vijverberg, J.; Koelewijn, H.P.; Van Densen, W.L.T.

    2005-01-01

    We assessed the trophic status of Leptodora kindtii in the food web of a shallow, eutrophic lake in which 0+ age group fish were the main predators. The mean biomass of 0+ fish during three successive years varied from 0.39 g dry wt m-2 in the first year to 0.05 g dry wt m-22 in the second year to

  2. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe.

    Directory of Open Access Journals (Sweden)

    Mario Díaz

    Full Text Available All animals flee from potential predators, and the distance at which this happens is optimized so the benefits from staying are balanced against the costs of flight. Because predator diversity and abundance decreases with increasing latitude, and differs between rural and urban areas, we should expect escape distance when a predator approached the individual to decrease with latitude and depend on urbanization. We measured the distance at which individual birds fled (flight initiation distance, FID, which represents a reliable and previously validated surrogate measure of response to predation risk following a standardized protocol in nine pairs of rural and urban sites along a ca. 3000 km gradient from Southern Spain to Northern Finland during the breeding seasons 2009-2010. Raptor abundance was estimated by means of standard point counts at the same sites where FID information was recorded. Data on body mass and phylogenetic relationships among bird species sampled were extracted from the literature. An analysis of 12,495 flight distances of 714 populations of 159 species showed that mean FID decreased with increasing latitude after accounting for body size and phylogenetic effects. This decrease was paralleled by a similar cline in an index of the abundance of raptors. Urban populations had consistently shorter FIDs, supporting previous findings. The difference between rural and urban habitats decreased with increasing latitude, also paralleling raptor abundance trends. Overall, the latitudinal gradient in bird fear was explained by raptor abundance gradients, with additional small effects of latitude and intermediate effects of habitat. This study provides the first empirical documentation of a latitudinal trend in anti-predator behavior, which correlated positively with a similar trend in the abundance of predators.

  3. Development of a systemwide predator control program: Stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River basin (Northern Squawfish Management Program). Section 1: Implementation; Annual report 1995

    International Nuclear Information System (INIS)

    Young, F.R.

    1997-04-01

    The authors report their results from the fifth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that if predator-sized northern squawfish were exploited at a 10--20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%

  4. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size

    Science.gov (United States)

    Guo, Jing; Martín, Pablo R.; Zhang, Chunxia

    2017-01-01

    The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans). P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk), although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey. PMID:29136660

  5. Predation risk affects growth and reproduction of an invasive snail and its lethal effect depends on prey size.

    Directory of Open Access Journals (Sweden)

    Jing Guo

    Full Text Available The behavior of invasive species under predation risk has been studied extensively, but their growth and reproductive responses have rarely been investigated. We conducted experiments with juveniles and adults of the invasive freshwater snail Pomacea canaliculata, and we observed changes in growth and reproduction in response to predation risk from a caged predator (Trachemys scripta elegans. P. canaliculata produced eggs earlier in the presence of predators and injured conspecifics compared with the control group (no risk, although the total number of egg masses laid by per female was exceeded by that of the controls after 15 days. Egg hatching success noticeably decreased under predation risk, and the incubation period was significantly prolonged; however, the oviposition height of the snails was not affected. A lethal effect of predation risk was detected in juvenile snails but not in adults. The growth of juvenile P. canaliculata was inhibited under predation risk, probably due to a reduction in food intake. Adult females exhibited a greater reduction in growth under predation risk than males, which likely resulted in part from the high reproductive investment of females in egg laying. These results indicate that P. canaliculata snails under predation risk face a trade-off between predator avoidance and growth and reproduction, where the lethal effect of predation risk is linked to the size of the prey.

  6. Saving the Predators: Teaching About the Role of Predatory Animals.

    Science.gov (United States)

    Soltow, Willow

    1985-01-01

    Discusses the role of predators in regulating prey populations, noting that this is an excellent example of the "interconnectedness" of life. Suggestions for films, books, articles, and student questions are given, and a special section dealing with human attitudes about predators is provided. (DH)

  7. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  8. Sea urchins, their predators and prey in SW Portugal

    Directory of Open Access Journals (Sweden)

    Nuno Mamede

    2014-06-01

    Full Text Available Sea urchins play a key role structuring benthic communities of rocky shores through an intense herbivory. The most abundant sea urchin species on shallow rocky subtidal habitats of the SW coast of Portugal is Paracentrotus lividus (Echinodermata: Echinoidea. It is considered a key species in various locations throughout its geographical distribution by affecting the structure of macroalgae communities and may cause the abrupt transformation of habitats dominated by foliose algae to habitats dominated by encrusting algae - the urchin barrens. The removal of P. lividus predators by recreational and commercial fishing is considered a major cause of this phenomenon by affecting the trophic relationships between predators, sea urchins and algae communities. Marine protected areas (MPAs usually lead to the recovery of important predator species that control sea urchin populations and restore habitats dominated by foliose macroalgae. Therefore, MPAs provide a good opportunity to test cascading effects and indirect impacts of fishing at the ecosystem level. The ecological role of P. lividus was studied on rocky subtidal habitats of the SW coast of Portugal (Alentejo considering three trophic levels: population of P. lividus, their predators (fish and shellfish and their prey (macroalgae communities. Several studies were conducted: (1 a non-destructive observational study on the abundance and distribution patterns of P. lividus, their predators and preys, comparing areas with different protection; (2 a manipulative in situ study with cages to assess the role of P. lividus as an herbivore and the influence of predation; (3 a descriptive study of P. lividus predators based on underwater filming; (4 and a study of human perception on these trophic relationships and other issues on sea urchin ecology and fishery, based on surveys made to fishermen and divers. Subtidal studies were performed with SCUBA diving at 3-12 m deep. Results indicate that in the

  9. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    Science.gov (United States)

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  10. Ecological opportunity and predator-prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations.

    Science.gov (United States)

    Pontarp, Mikael; Petchey, Owen L

    2018-03-14

    Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. © 2018 The Authors.

  11. Predator confusion is sufficient to evolve swarming behaviour.

    Science.gov (United States)

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  12. Nowhere to hide: Effects of linear features on predator-prey dynamics in a large mammal system.

    Science.gov (United States)

    DeMars, Craig A; Boutin, Stan

    2018-01-01

    Rapid landscape alteration associated with human activity is currently challenging the evolved dynamical stability of many predator-prey systems by forcing species to behaviourally respond to novel environmental stimuli. In many forested systems, linear features (LFs) such as roads, pipelines and resource exploration lines (i.e. seismic lines) are a ubiquitous form of landscape alteration that have been implicated in altering predator-prey dynamics. One hypothesized effect is that LFs facilitate predator movement into and within prey refugia, thereby increasing predator-prey spatial overlap. We evaluated this hypothesis in a large mammal system, focusing on the interactions between boreal woodland caribou (Rangifer tarandus caribou) and their two main predators, wolves (Canis lupus) and black bears (Ursus americanus), during the calving season of caribou. In this system, LFs extend into and occur within peatlands (i.e. bogs and nutrient-poor fens), a habitat type highly used by caribou due to its refugia effects. Using resource selection analyses, we found that LFs increased predator selection of peatlands. Female caribou appeared to respond by avoiding LFs and areas with high LF density. However, in our study area, most caribou cannot completely avoid exposure to LFs and variation in female response had demographic effects. In particular, increasing proportional use of LFs by females negatively impacted survival of their neonate calves. Collectively, these results demonstrate how LFs can reduce the efficacy of prey refugia. Mitigating such effects will require limiting or restoring LFs within prey refugia, although the effectiveness of mitigation efforts will depend upon spatial scale, which in turn will be influenced by the life-history traits of predator and prey. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  13. Negative effect of gardening damselfish Stegastes planifrons on coral health depend on predator abundance

    NARCIS (Netherlands)

    Vermeij, M.J.A.; Debey, H.; Grimsditch, G.; Brown, J.; Obura, D.; DeLeon, R.; Sandin, S.A.

    2015-01-01

    On Bonaire, we studied the effects of predator abundance and habitat availability on the abundance of the threespot damselfish Stegastes planifrons, a species that creates algal gardens at the expense of live coral cover. Across 21 sites, predator biomass ranged from 12 to 193 g m-2 (mean = 55.1; SD

  14. Impact of marine reserve on maximum sustainable yield in a traditional prey-predator system

    Science.gov (United States)

    Paul, Prosenjit; Kar, T. K.; Ghorai, Abhijit

    2018-01-01

    Multispecies fisheries management requires managers to consider the impact of fishing activities on several species as fishing impacts both targeted and non-targeted species directly or indirectly in several ways. The intended goal of traditional fisheries management is to achieve maximum sustainable yield (MSY) from the targeted species, which on many occasions affect the targeted species as well as the entire ecosystem. Marine reserves are often acclaimed as the marine ecosystem management tool. Few attempts have been made to generalize the ecological effects of marine reserve on MSY policy. We examine here how MSY and population level in a prey-predator system are affected by the low, medium and high reserve size under different possible scenarios. Our simulation works shows that low reserve area, the value of MSY for prey exploitation is maximum when both prey and predator species have fast movement rate. For medium reserve size, our analysis revealed that the maximum value of MSY for prey exploitation is obtained when prey population has fast movement rate and predator population has slow movement rate. For high reserve area, the maximum value of MSY for prey's exploitation is very low compared to the maximum value of MSY for prey's exploitation in case of low and medium reserve. On the other hand, for low and medium reserve area, MSY for predator exploitation is maximum when both the species have fast movement rate.

  15. Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Directory of Open Access Journals (Sweden)

    Irene K Voellmy

    Full Text Available Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour, compared with control conditions (playback of recordings from the same harbours without ship noise, affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus and the European minnow (Phoxinus phoxinus, which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.

  16. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    Science.gov (United States)

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  17. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea leaves.

    Directory of Open Access Journals (Sweden)

    Taylor K Paisie

    Full Text Available The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  18. The functional response of a generalist predator.

    Directory of Open Access Journals (Sweden)

    Sophie Smout

    Full Text Available BACKGROUND: Predators can have profound impacts on the dynamics of their prey that depend on how predator consumption is affected by prey density (the predator's functional response. Consumption by a generalist predator is expected to depend on the densities of all its major prey species (its multispecies functional response, or MSFR, but most studies of generalists have focussed on their functional response to only one prey species. METHODOLOGY AND PRINCIPAL FINDINGS: Using Bayesian methods, we fit an MSFR to field data from an avian predator (the hen harrier Circus cyaneus feeding on three different prey species. We use a simple graphical approach to show that ignoring the effects of alternative prey can give a misleading impression of the predator's effect on the prey of interest. For example, in our system, a "predator pit" for one prey species only occurs when the availability of other prey species is low. CONCLUSIONS AND SIGNIFICANCE: The Bayesian approach is effective in fitting the MSFR model to field data. It allows flexibility in modelling over-dispersion, incorporates additional biological information into the parameter priors, and generates estimates of uncertainty in the model's predictions. These features of robustness and data efficiency make our approach ideal for the study of long-lived predators, for which data may be sparse and management/conservation priorities pressing.

  19. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Science.gov (United States)

    Latif, Quresh S; Heath, Sacha K; Rotenberry, John T

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of

  20. Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model

    Science.gov (United States)

    Toaha, S.; Azis, M. I.

    2018-03-01

    This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.

  1. Dynamics of a intraguild predation model with generalist or specialist predator.

    Science.gov (United States)

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  2. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.M.H.; Van Donk, E.; Huisman, Jef

    2014-01-01

    Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte

  3. Plastic responses of a sessile prey to multiple predators: a field and experimental study.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs.We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish and a gape-size-limited (roach predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density.Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild.

  4. Predation rate by wolves on the Porcupine caribou herd

    Directory of Open Access Journals (Sweden)

    Robert D. Hayes

    2000-04-01

    Full Text Available Large migratory catibou {Rangifer tarandus herds in the Arctic tend to be cyclic, and population trends are mainly driven by changes in forage or weather events, not by predation. We estimated daily kill rate by wolves on adult caribou in winter, then constructed a time and space dependent model to estimate annual wolf (Canis lupus predation rate (P annual on adult Porcupine caribou. Our model adjusts predation seasonally depending on caribou distribution: Pannual = SIGMAdaily* W *Ap(2*Dp. In our model we assumed that wolves killed adult caribou at a constant rate (Kdaily, 0.08 caribou wolf1 day1 based on our studies and elsewhere; that wolf density (W doubled to 6 wolves 1000 km2-1 on all seasonal ranges; and that the average area occupied by the Porcupine caribou herd (PCH in eight seasonal life cycle periods (Dp was two times gteater than the area described by the outer boundaries of telemetry data (Ap /1000 km2. Results from our model projected that wolves kill about 7600 adult caribou each year, regardless of herd size. The model estimated that wolves removed 5.8 to 7.4% of adult caribou as the herd declined in the 1990s. Our predation rate model supports the hypothesis of Bergerud that spacing away by caribou is an effective anti-predatory strategy that greatly reduces wolf predation on adult caribou in the spring and summer.

  5. Birds as predators in tropical agroforestry systems.

    Science.gov (United States)

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  6. Neuroendocrine changes upon exposure to predator odors.

    Science.gov (United States)

    Hegab, Ibrahim M; Wei, Wanhong

    2014-05-28

    Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic-pituitary-adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of anti-predator responses in prey species. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Separate and combined effects of habitat-specific fish predation on the survival of invasive and native gammarids

    Science.gov (United States)

    Kotta, Jonne; Orav-Kotta, Helen; Herkül, Kristjan

    2010-10-01

    The North-American amphipod Gammarus tigrinus was observed for the first time in the northern Baltic Sea in 2003. The invasive amphipod has been particularly successful in some habitats (e.g. on pebbles) where it has become one of the most abundant gammarid species. We studied experimentally if the dominant fish Gasterosteus aculeatus preyed differentially on the exotic G. tigrinus and the native Gammarus salinus, if predation differed among habitats, and if one gammarid species facilitated predation on the other. The experiment demonstrated that (1) fish preyed more on the exotic G. tigrinus than the native G. salinus. (2) Predation did not differ among habitats. (3) Gammarus tigrinus facilitated the predation on G. salinus and this facilitation varied among habitats with significant effects on pebbles. Thus, the combined effect of habitat-specific fish predation and competition between gammarid amphipods is a possible explanation of the current range of G. tigrinus in the northern Baltic Sea. G. tigrinus seems to establish in habitats where it can significantly increase fish predation on the native gammarids.

  8. Novel mobbing strategies of a fish population against a sessile annelid predator.

    Science.gov (United States)

    Lachat, Jose; Haag-Wackernagel, Daniel

    2016-09-12

    When searching for food, foraging fishes expose themselves to hidden predators. The strategies that maximize the survival of foraging fishes are not well understood. Here, we describe a novel type of mobbing behaviour displayed by foraging Scolopsis affinis. The fish direct sharp water jets towards the hidden sessile annelid predator Eunice aphroditois (Bobbit worm). We recognized two different behavioural roles for mobbers (i.e., initiator and subsequent participants). The first individual to exhibit behaviour indicating the discovery of the Bobbit directed, absolutely and per time unit, more water jets than the subsequent individuals that joined the mobbing. We found evidence that the mobbing impacted the behaviour of the Bobbit, e.g., by inducing retraction. S. affinis individuals either mob alone or form mobbing groups. We speculate that this behaviour may provide social benefits for its conspecifics by securing foraging territories for S. affinis. Our results reveal a sophisticated and complex behavioural strategy to protect against a hidden predator.

  9. Top predators induce the evolutionary diversification of intermediate predator species.

    Science.gov (United States)

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Effects of Sublethal Concentrations of Insecticides on the Functional Response of Two Mirid Generalist Predators.

    Directory of Open Access Journals (Sweden)

    Angeliki F Martinou

    Full Text Available The use of agrochemicals particularly pesticides, can hamper the effectiveness of natural enemies, causing disruption in the ecosystem service of biological control. In the current study, the effects of the insecticides thiacloprid and chlorantraniliprole on the functional response curves were assessed for two mirid predator nymphs, Macrolophus pygmaeus Rambur and Nesidiocoris tenuis Reuter. In the absence of insecticides, both predators exhibited a type II functional response when feeding on eggs of the moth Ephestia kuehniella. N. tenuis seems to be a more efficient predator than M. pygmaeus, as model estimated handling time was significantly lower for the former than for the latter. Residual exposure of M. pygmaeus to sublethal concentrations of either insecticide was associated with a change in the asymptote but not the type of the functional response curve. Thiacloprid seems to be the least compatible with M. pygmaeus, as it led to both a significant reduction of the attack rate and an increase in handling time. In contrast, chlorantraniliprole exposure significantly increased the handling time, but not the attack rate of the predator. Residual exposure of N. tenuis to sublethal concentrations of either insecticide did not have a significant effect on the type nor the parameters of the functional response model. The results show that pesticide residues that do not have lethal effects on beneficial arthropods can reduce prey consumption depending on predator species and on likely risks associated with toxicity.

  11. Effects of Sublethal Concentrations of Insecticides on the Functional Response of Two Mirid Generalist Predators.

    Science.gov (United States)

    Martinou, Angeliki F; Stavrinides, Menelaos C

    2015-01-01

    The use of agrochemicals particularly pesticides, can hamper the effectiveness of natural enemies, causing disruption in the ecosystem service of biological control. In the current study, the effects of the insecticides thiacloprid and chlorantraniliprole on the functional response curves were assessed for two mirid predator nymphs, Macrolophus pygmaeus Rambur and Nesidiocoris tenuis Reuter. In the absence of insecticides, both predators exhibited a type II functional response when feeding on eggs of the moth Ephestia kuehniella. N. tenuis seems to be a more efficient predator than M. pygmaeus, as model estimated handling time was significantly lower for the former than for the latter. Residual exposure of M. pygmaeus to sublethal concentrations of either insecticide was associated with a change in the asymptote but not the type of the functional response curve. Thiacloprid seems to be the least compatible with M. pygmaeus, as it led to both a significant reduction of the attack rate and an increase in handling time. In contrast, chlorantraniliprole exposure significantly increased the handling time, but not the attack rate of the predator. Residual exposure of N. tenuis to sublethal concentrations of either insecticide did not have a significant effect on the type nor the parameters of the functional response model. The results show that pesticide residues that do not have lethal effects on beneficial arthropods can reduce prey consumption depending on predator species and on likely risks associated with toxicity.

  12. Cellular automaton for migration in ecosystem: Application of traffic model to a predator-prey system

    Science.gov (United States)

    Nagatani, Takashi; Tainaka, Kei-ichi

    2018-01-01

    In most cases, physicists have studied the migration of biospecies by the use of random walk. In the present article, we apply cellular automaton of traffic model. For simplicity, we deal with an ecosystem contains a prey and predator, and use one-dimensional lattice with two layers. Preys stay on the first layer, but predators uni-directionally move on the second layer. The spatial and temporal evolution is numerically explored. It is shown that the migration has the important effect on populations of both prey and predator. Without migration, the phase transition between a prey-phase and coexisting-phase occurs. In contrast, the phase transition disappears by migration. This is because predator can survive due to migration. We find another phase transition for spatial distribution: in one phase, prey and predator form a stripe pattern of condensation and rarefaction, while in the other phase, they uniformly distribute. The self-organized stripe may be similar to the migration patterns in real ecosystems.

  13. Reduced flocking by birds on islands with relaxed predation.

    Science.gov (United States)

    Beauchamp, Guy

    2004-05-22

    Adaptive hypotheses for the evolution of flocking in birds have usually focused on predation avoidance or foraging enhancement. It still remains unclear to what extent each factor has contributed to the evolution of flocking. If predation avoidance were the sole factor involved, flocking should not be prevalent when predation is relaxed. I examined flocking tendencies along with mean and maximum flock size in species living on islands where predation risk is either absent or negligible and then compared these results with matched counterparts on the mainland. The dataset consisted of 46 pairs of species from 22 different islands across the world. The tendency to flock was retained on islands in most species, but in pairs with dissimilar flocking tendencies, island species were less likely to flock. Mean and maximum flock size were smaller on islands than on the mainland. Potential confounding factors such as population density, nest predation, habitat type, food type and body mass failed to account for the results. The results suggest that predation is a significant factor in the evolution of flocking in birds. Nevertheless, predation and other factors, such as foraging enhancement, probably act together to maintain the trait in most species.

  14. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  15. Weed seed predation in organic and conventional fields

    DEFF Research Database (Denmark)

    Navntoft, Søren; Wratten, S.D.; Kristensen, Kristian

    2009-01-01

    Enhanced biological control of weed seeds may improve sustainability of agricultural production. Biological control due to seed predation may be higher in organic fields because organic production generally supports more seed predators. To investigate such a difference, weed seed predation...... University and in two of the fields used for estimating seed predation. Recording of predators had therefore limited overlap with seed predation assays but was expected to give important information on key seed predators in the region. The mean seed removal rate was 17% in organic fields compared with 10...... edges. Overall, there was no consistent effect of distance from the field edge. Vegetation had a significant influence on the predation rates, with maximum rates at a medium-dense plant cover. Based on the video images, birds were the most important seed predators. The higher weed seed predation rate...

  16. Behavioral responses associated with a human-mediated predator shelter.

    Directory of Open Access Journals (Sweden)

    Graeme Shannon

    Full Text Available Human activities in protected areas can affect wildlife populations in a similar manner to predation risk, causing increases in movement and vigilance, shifts in habitat use and changes in group size. Nevertheless, recent evidence indicates that in certain situations ungulate species may actually utilize areas associated with higher levels of human presence as a potential refuge from disturbance-sensitive predators. We now use four-years of behavioral activity budget data collected from pronghorn (Antilocapra americana and elk (Cervus elephus in Grand Teton National Park, USA to test whether predictable patterns of human presence can provide a shelter from predatory risk. Daily behavioral scans were conducted along two parallel sections of road that differed in traffic volume--with the main Teton Park Road experiencing vehicle use that was approximately thirty-fold greater than the River Road. At the busier Teton Park Road, both species of ungulate engaged in higher levels of feeding (27% increase in the proportion of pronghorn feeding and 21% increase for elk, lower levels of alert behavior (18% decrease for pronghorn and 9% decrease for elk and formed smaller groups. These responses are commonly associated with reduced predatory threat. Pronghorn also exhibited a 30% increase in the proportion of individuals moving at the River Road as would be expected under greater exposure to predation risk. Our findings concur with the 'predator shelter hypothesis', suggesting that ungulates in GTNP use human presence as a potential refuge from predation risk, adjusting their behavior accordingly. Human activity has the potential to alter predator-prey interactions and drive trophic-mediated effects that could ultimately impact ecosystem function and biodiversity.

  17. The smell of success: the amount of prey consumed by predators determines the strength and range of cascading non-consumptive effects

    Directory of Open Access Journals (Sweden)

    Marc Weissburg

    2015-11-01

    Full Text Available We examined whether chemically mediated risk perception by prey and the effects of changes in prey behavior on basal resources vary as a function of the amount of prey biomass consumed by the predator. We studied these issues using a tritrophic system composed of blue crabs, Callinectes sapidus (top predator, mud crabs Panopeus herbstii (intermediate prey, and oysters Crassostrea virginica (basal resource. Working in a well characterized field environment where experiments preserve natural patterns of water flow, we found that biomass consumed by a predator determines the range, intensity and nature of prey aversive responses. Predators that consume large amounts of prey flesh more strongly diminish consumption of basal resources by prey and exert effects over a larger range (in space and time compared to predators that have eaten less. Less well-fed predators produce weaker effects, with the consequence that behaviorally mediated cascades preferentially occur in refuge habitats. Well-fed predators affected prey behavior and increased basal resources up to distances of 1–1.5 m, whereas predators fed restricted diet evoked changes in prey only when they were extremely close, typically 50 cm or less. Thus, consumptive and non-consumptive effects may be coupled; predators that have a greater degree of predatory success will affect prey traits more strongly and non-consumptive and consumptive effects may fluctuate in tandem, with some lag. Moreover, differences among predators in their degree of prey capture will create spatial and temporal variance in risk cue availability in the absence of underlying environmental effects.

  18. Oviposition site selection in Aedes albopictus (Diptera: Culicidae): are the effects of predation risk and food level independent?

    Science.gov (United States)

    Wasserberg, Gideon; White, L; Bullard, A; King, J; Maxwell, R

    2013-09-01

    For organisms lacking parental care and where larval dispersal is limited, oviposition site selection decisions are critical fitness-enhancing choices. However, studies usually do not consider the interdependence of the two. In this study, we evaluated the effect of food level on the oviposition behavior of Aedes albopictus (Skuse) in the presence or the absence of a nonlethal predator (caged dragonfly nymph). We also attempted to quantify the perceived cost of predation to ovipositioning mosquitoes. Mosquitoes were presented with oviposition cups containing four levels of larval food (fermented leaf infusion) with or without a caged libellulid nymph. By titrating larval food, we estimated the amount of food needed to attract the female mosquito to oviposit in the riskier habitat. As expected, oviposition rate increased with food level and decreased in the presence of a predator. However, the effect of food level did not differ between predator treatments. By calculating the difference in the amount of food for points of equal oviposition rate in the predator-present and predator-absent regression lines, we estimated the cost of predation risk to be 1950 colony-forming-units per milliliter. Our study demonstrated the importance of considering the possible interdependence of predation risk and food abundance for oviposition-site-seeking insects. This study also quantified the perceived cost of predation and found it to be relatively low, a fact with positive implications for biological control.

  19. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-01-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants. PMID:24665344

  20. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  1. Revisiting the role of individual variability in population persistence and stability.

    Directory of Open Access Journals (Sweden)

    Andrew Morozov

    Full Text Available Populations often exhibit a pronounced degree of individual variability and this can be important when constructing ecological models. In this paper, we revisit the role of inter-individual variability in population persistence and stability under predation pressure. As a case study, we consider interactions between a structured population of zooplankton grazers and their predators. Unlike previous structured population models, which only consider variability of individuals according to the age or body size, we focus on physiological and behavioural structuring. We first experimentally demonstrate a high degree of variation of individual consumption rates in three dominant species of herbivorous copepods (Calanus finmarchicus, Calanus glacialis, Calanus euxinus and show that this disparity implies a pronounced variation in the consumption capacities of individuals. Then we construct a parsimonious predator-prey model which takes into account the intra-population variability of prey individuals according to behavioural traits: effectively, each organism has a 'personality' of its own. Our modelling results show that structuring of prey according to their growth rate and vulnerability to predation can dampen predator-prey cycles and enhance persistence of a species, even if the resource stock for prey is unlimited. The main mechanism of efficient top-down regulation is shown to work by letting the prey population become dominated by less vulnerable individuals when predator densities are high, while the trait distribution recovers when the predator densities are low.

  2. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  3. Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides?

    International Nuclear Information System (INIS)

    Tosh, D.G.; McDonald, R.A.; Bearhop, S.; Lllewellyn, N.R.; Fee, S.; Sharp, E.A.; Barnett, E.A.; Shore, R.F.

    2011-01-01

    Ireland has a restricted small mammal prey guild but still includes species most likely to consume anticoagulant rodenticide (AR) baits. This may enhance secondary exposure of predators to ARs. We compared liver AR residues in foxes (Vulpes vulpes) in Northern Ireland (NI) with those in foxes from Great Britain which has a more diverse prey guild but similar agricultural use of ARs. Liver ARs were detected in 84% of NI foxes, more than in a comparable sample of foxes from Scotland and similar to that of suspected AR poisoned animals from England and Wales. High exposure in NI foxes is probably due to greater predation of commensal rodents and non-target species most likely to take AR baits, and may also partly reflect greater exposure to highly persistent brodifacoum and flocoumafen. High exposure is likely to enhance risk and Ireland may be a sentinel for potential effects on predator populations. - Highlights: → Exposure of a predator to anticoagulant rodenticides was compared in Britain and Ireland. → Exposure was higher in Ireland. → Differences driven by small mammal prey guilds. → Ireland a potential sentinel for predator exposure to anticoagulants. - Restriction of the small mammal prey guild is associated with enhanced exposure of predators to anticoagulant rodenticides.

  4. Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem

    Science.gov (United States)

    John L. Maron; Dean E. Pearson

    2011-01-01

    The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how strongly a three-species assemblage of rodent...

  5. Alcohol impairs predation risk response and communication in zebrafish.

    Directory of Open Access Journals (Sweden)

    Thiago Acosta Oliveira

    Full Text Available The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.

  6. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Science.gov (United States)

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  7. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  8. Fear of predation drives stable and differentiated social relationships in guppies.

    Science.gov (United States)

    Heathcote, Robert J P; Darden, Safi K; Franks, Daniel W; Ramnarine, Indar W; Croft, Darren P

    2017-02-02

    Social relationships can have important consequences for fitness in animals. Whilst numerous studies have shown that individuals often join larger groups in response to perceived predation risk (i.e. fear of predation), the importance of predation risk in driving the formation and stability of social relationships within groups has been relatively ignored. We experimentally tested how predation threat influenced fine-scale social network structure using Trinidadian guppies (Poecilia reticulata). When perceived predation risk was high, individuals developed stable and more differentiated social ties compared to when perceived risk was low. Intriguingly, social differentiation coincided with shoals being somewhat smaller under high-perceived risk, suggesting a possible conflict between forming stable social relationships and larger social groups. Individuals most at risk of predation (large and bold individuals) showed the most exaggerated responses in several social measures. Taken together, we provide the first experimental evidence that proximate risk of predation can increase the intensity of social relationships and fine-scale social structure in animal populations.

  9. Predators on private land: broad-scale socioeconomic interactions influence large predator management

    Directory of Open Access Journals (Sweden)

    Hayley S. Clements

    2016-06-01

    Full Text Available The proliferation of private land conservation areas (PLCAs is placing increasing pressure on conservation authorities to effectively regulate their ecological management. Many PLCAs depend on tourism for income, and charismatic large mammal species are considered important for attracting international visitors. Broad-scale socioeconomic factors therefore have the potential to drive fine-scale ecological management, creating a systemic scale mismatch that can reduce long-term sustainability in cases where economic and conservation objectives are not perfectly aligned. We assessed the socioeconomic drivers and outcomes of large predator management on 71 PLCAs in South Africa. Owners of PLCAs that are stocking free-roaming large predators identified revenue generation as influencing most or all of their management decisions, and rated profit generation as a more important objective than did the owners of PLCAs that did not stock large predators. Ecotourism revenue increased with increasing lion (Panthera leo density, which created a potential economic incentive for stocking lion at high densities. Despite this potential mismatch between economic and ecological objectives, lion densities were sustainable relative to available prey. Regional-scale policy guidelines for free-roaming lion management were ecologically sound. By contrast, policy guidelines underestimated the area required to sustain cheetah (Acinonyx jubatus, which occurred at unsustainable densities relative to available prey. Evidence of predator overstocking included predator diet supplementation and frequent reintroduction of game. We conclude that effective facilitation of conservation on private land requires consideration of the strong and not necessarily beneficial multiscale socioeconomic factors that influence private land management.

  10. Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas)

    Science.gov (United States)

    Webber, H.M.; Haines, T.A.

    2003-01-01

    Mercury contamination of fish is widespread in North America and has resulted in the establishment of fish consumption advisories to protect human health, However, the effects of mercury exposure to fish have seldom been investigated. We examined the effects of dietary mercury exposure at environmental levels in a common forage species, golden shiner (Notemigonus crysoleucas). Fish were fed either an unaltered diet (12 ng/g wet wt methylmercury [MeHg] as Hg), a low-Hg diet (455 ng/g Hg), or a high-Hg diet (959 ng/g Hg). After 90 d mean fish whole-body total Hg concentrations were 41, 230, and 518 ng/g wet wt, respectively, which were within the range of concentrations found in this species in northern U.S. lakes. There were no mortalities or differences in growth rate among groups. Groups of fish from each treatment were exposed to a model avian predator and their behavioral response videotaped for analysis. Brain acetylcholinesterase (AChE) activity was determined in fish after behavioral testing. Fish fed the high-Hg diet had significantly greater shoal vertical dispersal following predator exposure, took longer to return to pre-exposure activity level, and had greater shoal area after return to pre-exposure activity than did the other treatments, all of which would increase vulnerability of the fish to predation. There were no differences in brain AChE among treatments. We conclude that mercury exposure at levels currently occurring in northern United States lakes alters fish predator-avoidance behavior in a manner that may increase vulnerability to predation. This finding has significant implications for food chain transfer of Hg and Hg exposure of fish predators.

  11. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress.

    Science.gov (United States)

    Adamec, R; Muir, C; Grimes, M; Pearcey, K

    2007-05-16

    The roles of beta-NER (beta-noradrenergic receptor), GR (glucocorticoid) and mineral corticoid receptors (MR) in the consolidation of anxiogenic effects of predator stress were studied. One minute after predator stress, different groups of rats were injected (ip) with vehicle, propranolol (beta-NER blocker, 5 and 10 mg/kg), mifepristone (RU486, GR blocker, 20 mg/kg), spironolactone (MR blocker, 50 mg/kg), propranolol (5 mg/kg) plus RU486 (20 mg/kg) or the anxiolytic, chloradiazepoxide (CPZ, 10 mg/kg). One week later, rodent anxiety was assessed in elevated plus maze, hole board, light/dark box, social interaction and acoustic startle. Considering all tests except startle, propranolol dose dependently blocked consolidation of lasting anxiogenic effects of predator stress in all tests. GR receptor block alone was ineffective. However, GR block in combination with an ineffective dose of propranolol did blocked consolidation of predator stress effects in all tests, suggesting a synergism between beta-NER and GR. Surprisingly, MR block prevented consolidation of anxiogenic effects in all tests except the light/dark box. CPZ post stress was ineffective against the anxiogenic impact of predator stress. Study of startle was complicated by the fact that anxiogenic effects of stress on startle amplitude manifested as both an increase and a decrease in startle amplitude. Suppression of startle occurred in stressed plus vehicle injected groups handled three times prior to predator stress. In contrast, stressed plus vehicle rats handled five times prior to predator stress showed increases in startle, as did all predator stressed only groups. Mechanisms of consolidation of the different startle responses appear to differ. CPZ post stress blocked startle suppression but not enhancement of startle. Propranolol post stress had no effect on either suppression or enhancement of startle. GR block alone post stress prevented suppression of startle, but not enhancement. In contrast

  12. Population-level effects of abamectin, azadirachtin and fenpyroximate on the predatory mite Neoseiulus baraki.

    Science.gov (United States)

    Lima, Debora B; Melo, José W S; Gondim, Manoel G C; Guedes, Raul N C; Oliveira, José E M

    2016-10-01

    The coconut production system, in which the coconut mite Aceria guerreronis is considered a key pest, provides an interesting model for integration of biological and chemical control. In Brazil, the most promising biological control agent for the coconut mite is the phytoseiid predator Neoseiulus baraki. However, acaricides are widely used to control the coconut mite, although they frequently produce unsatisfactory results. In this study, we evaluated the simultaneous direct effect of dry residue contact and contaminated prey ingestion of the main acaricides used on coconut palms (i.e., abamectin, azadirachtin and fenpyroximate) on life-history traits of N. baraki and their offspring. These acaricides are registered, recommended and widely used against A. guerreronis in Brazil, and they were tested at their label rates. The offspring of the exposed predators was also evaluated by estimating the instantaneous rate of population increase (r i ). Abamectin compromised female performance, whereas fenpyroximate did not affect the exposed females (F0). Nonetheless, fenpyroximate strongly compromised the offspring (F1) net reproductive rate (R0), intrinsic rate of population growth (r i ), and doubling time (DT). In contrast, fenpyroximate did not have such effects on the 2nd generation (F2) of predators with acaricide-exposed grandparents. Azadirachtin did not affect the predators, suggesting that this acaricide can be used in association with biological control by this predatory species. In contrast, the use of abamectin and fenpyroximate is likely to lead to adverse consequences in the biological control of A. guerreronis using N. baraki.

  13. Toxicity tests based on predator-prey and competitive interactions between freshwater macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, E.J.; Blockwell, S.J.; Pascoe, D. [Univ. of Wales Coll. of Cardiff (United Kingdom)

    1994-12-31

    Simple multi-species toxicity tests based on the predation of Daphnia magna Straus by Hydra oligactis (Pallas) and competition between Gammarus pulex (L.) and Asellus aquaticus (L.) were used to determine the effects of three reference chemicals. Criteria examined included functional responses; time to first captures; handling times (predator/prey systems) and co-existence and growth. The tests which proved most practicable and sensitive (lowest observed effects 0.1, 21, and 80 {micro}g/l for lindane, copper and 3,4 dichloroaniline, respectively) were: (1) predator-prey tests: determining changes in the size-structure of predated D. magna populations and (2) competition tests: measuring the feeding rate of G. pulex competing with A. aquaticus, using a bioassay based on the time-response analysis of the consumption of Artemia salina eggs. The concentration of a chemical which affected particular response criteria was fond to depend on the test system employed. Results of the tests indicated that effects were often not dose-related and that a given criterion could be variously affected by different test concentrations. The complex pattern of responses may be explained in terms of the differential sensitivity of the interacting species and perhaps subtle alteration in strategies. The sensitivity of the bioassay endpoints is compared to those of a range of single species tests, and their value for predicting the impact pollutants may have upon natural freshwater ecosystems is discussed.

  14. Community regulation: the relative importance of recruitment and predation intensity of an intertidal community dominant in a seascape context.

    Directory of Open Access Journals (Sweden)

    Gil Rilov

    Full Text Available Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat. Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure.

  15. Community regulation: the relative importance of recruitment and predation intensity of an intertidal community dominant in a seascape context.

    Science.gov (United States)

    Rilov, Gil; Schiel, David R

    2011-01-01

    Predicting the strength and context-dependency of species interactions across multiple scales is a core area in ecology. This is especially challenging in the marine environment, where populations of most predators and prey are generally open, because of their pelagic larval phase, and recruitment of both is highly variable. In this study we use a comparative-experimental approach on small and large spatial scales to test the relationship between predation intensity and prey recruitment and their relative importance in shaping populations of a dominant rocky intertidal space occupier, mussels, in the context of seascape (availability of nearby subtidal reef habitat). Predation intensity on transplanted mussels was tested inside and outside cages and recruitment was measured with standard larval settlement collectors. We found that on intertidal rocky benches with contiguous subtidal reefs in New Zealand, mussel larval recruitment is usually low but predation on recruits by subtidal consumers (fish, crabs) is intense during high tide. On nearby intertidal rocky benches with adjacent sandy subtidal habitats, larval recruitment is usually greater but subtidal predators are typically rare and predation is weaker. Multiple regression analysis showed that predation intensity accounts for most of the variability in the abundance of adult mussels compared to recruitment. This seascape-dependent, predation-recruitment relationship could scale up to explain regional community variability. We argue that community ecology models should include seascape context-dependency and its effects on recruitment and species interactions for better predictions of coastal community dynamics and structure.

  16. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Directory of Open Access Journals (Sweden)

    Franck A Hollander

    Full Text Available In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  17. Growth, life history, and species interactions of bluegill sunfish (Lepomis macrochirus) under heavy predation

    Energy Technology Data Exchange (ETDEWEB)

    Belk, Mark Carl [Univ. of Georgia, Athens, GA (United States)

    1992-01-01

    The purpose of this study was, first, to compare growth and life history characteristics of an unfished population of bluegill sunfish (Lepomis macrochirus) in the presence of an abundant predator population to characteristic exhibited by bluegills in typical southeastern US reservoirs where the abundance of predators is reduced, but fishing is increased. The second objective was to determine if differences observed between populations were determined genetically or environmentally.

  18. Local and landscape drivers of predation services in urban gardens.

    Science.gov (United States)

    Philpott, Stacy M; Bichier, Peter

    2017-04-01

    In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.

  19. The role of calcium and predation on plate morph evolution in the three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Smith, Carl; Spence, Rowena; Barber, Iain; Przybylski, Mirosław; Wootton, Robert J

    2014-09-01

    While the genetic basis to plate morph evolution of the three-spined stickleback (Gasterosteus aculeatus) is well described, the environmental variables that select for different plate and spine morphs are incompletely understood. Using replicate populations of three-spined sticklebacks on North Uist, Scotland, we previously investigated the role of predation pressure and calcium limitation on the adaptive evolution of stickleback morphology and behavior. While dissolved calcium proved a significant predictor of plate and spine morph, predator abundance did not. Ecol. Evol., xxx, 2014 and xxx performed a comparable analysis to our own to address the same question. They failed to detect a significant effect of dissolved calcium on morphological evolution, but did establish a significant effect of predation; albeit in the opposite direction to their prediction.

  20. Winter predation by insectivorous birds and consequences for arthropods and plants in summer.

    Science.gov (United States)

    Barber, Nicholas A; Wouk, Jennifer

    2012-12-01

    Top-down effects of predators can have important consequences for ecosystems. Insectivorous birds frequently have strong predation effects on herbivores and other arthropods, as well as indirect effects on herbivores' host plants. Diet studies have shown that birds in temperate ecosystems consume arthropods in winter as well as in summer, but experimental studies of bird predation effects have not attempted to quantitatively separate winter predation impacts from those in summer. To understand if winter foraging by insectivorous birds has consequences for arthropods or plants, we performed a meta-analysis of published bird exclusion studies in temperate forest and shrubland habitats. We categorized 85 studies from 41 publications by whether birds were excluded year-round or only in summer, and analyzed arthropod and plant response variables. We also performed a manipulative field experiment in which we used a factorial design to exclude birds from Quercus velutina Lam. saplings in winter and summer, and censused arthropods and herbivore damage in the following growing season. In the meta-analysis, birds had stronger negative effects on herbivores in studies that included winter exclusion, and this effect was not due to study duration. However, this greater predation effect did not translate to a greater impact on plant damage or growth. In the field experiment, winter exclusion did not influence herbivore abundance or their impacts on plants. We have shown that winter feeding by temperate insectivorous birds can have important consequences for insect herbivore populations, but the strength of these effects may vary considerably among ecosystems. A full understanding of the ecological roles of insectivorous birds will require explicit consideration of their foraging in the non-growing season, and we make recommendations for how future studies can address this.

  1. White-tailed deer age ratios as herd management and predator impact measures in Pennsylvania

    Science.gov (United States)

    Rosenberry, Christopher S.; Norton, Andrew S.; Diefenbach, Duane R.; Fleegle, Jeannine T.; Wallingford, Bret D.

    2011-01-01

    A review of the Pennsylvania Game Commission's (PGC) deer management program and public concern about predator impacts on deer (Odocoileus virginianus) populations compelled the PGC to investigate the role of age ratios in developing management recommendations. Age ratios, such as proportion of juveniles in the antlerless harvest, may provide an index to population productivity and predator impacts. We estimated proportion of juveniles in the antlerless harvest from hunter-killed deer, population trends using the Pennsylvania (USA) sex–age–kill model, and reproduction from road-killed females. Using these estimates and a simulation model, we concluded that no single age-ratio value would serve as a reliable measure of population status. Wildlife Management Unit-specific trends in proportion of juveniles in the antlerless harvest and population trends provided the most relevant management information. We also provide an example decision chart to guide management actions in response to declining age ratios in the harvest. Although predator management activities and juvenile survival studies are often desired by the public, our decision-chart example indicated a number of deer management options exist before investing resources in predator management activities and juvenile survival studies.

  2. An analytical approach to top predator interference on the dynamics of a food chain model

    Science.gov (United States)

    Senthamarai, R.; Vijayalakshmi, T.

    2018-04-01

    In this paper, a nonlinear mathematical model is proposed and analyzed to study of top predator interference on the dynamics of a food chain model. The mathematical model is formulated using the system of non-linear ordinary differential equations. In this model, there are three state dimensionless variables, viz, size of prey population x, size of intermediate predator y and size of top predator population z. The analytical results are compared with the numerical simulation using MATLAB software and satisfactory results are noticed.

  3. Optimal control of native predators

    Science.gov (United States)

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  4. Known Predators of Crown-of-Thorns Starfish (Acanthaster spp. and Their Role in Mitigating, If Not Preventing, Population Outbreaks

    Directory of Open Access Journals (Sweden)

    Zara-Louise Cowan

    2017-01-01

    Full Text Available Predatory release has long been considered a potential contributor to population outbreaks of crown-of-thorns starfish (CoTS; Acanthaster spp.. This has initiated extensive searches for potentially important predators that can consume large numbers of CoTS at high rates, which are also vulnerable to over-fishing or reef degradation. Herein, we review reported predators of CoTS and assess the potential for these organisms to exert significant mortality, and thereby prevent and/or moderate CoTS outbreaks. In all, 80 species of coral reef organisms (including fishes, and motile and sessile invertebrates are reported to predate on CoTS gametes (three species, larvae (17 species, juveniles (15 species, adults (18 species and/or opportunistically feed on injured (10 species or moribund (42 species individuals within reef habitats. It is clear however, that predation on early life-history stages has been understudied, and there are likely to be many more species of reef fishes and/or sessile invertebrates that readily consume CoTS gametes and/or larvae. Given the number and diversity of coral reef species that consume Acanthaster spp., most of which (e.g., Arothron pufferfishes are not explicitly targeted by reef-based fisheries, links between overfishing and CoTS outbreaks remain equivocal. There is also no single species that appears to have a disproportionate role in regulating CoTS populations. Rather, the collective consumption of CoTS by multiple different species and at different life-history stages is likely to suppress the local abundance of CoTS, and thereby mediate the severity of outbreaks. It is possible therefore, that general degradation of reef ecosystems and corresponding declines in biodiversity and productivity, may contribute to increasing incidence or severity of outbreaks of Acanthaster spp. However, it seems unlikely that predatory release in and of itself could account for initial onset of CoTS outbreaks. In conclusion, reducing

  5. Factors affecting individual foraging specialization and temporal diet stability across the range of a large "generalist" apex predator.

    Science.gov (United States)

    Rosenblatt, Adam E; Nifong, James C; Heithaus, Michael R; Mazzotti, Frank J; Cherkiss, Michael S; Jeffery, Brian M; Elsey, Ruth M; Decker, Rachel A; Silliman, Brian R; Guillette, Louis J; Lowers, Russell H; Larson, Justin C

    2015-05-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  6. The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates.

    Science.gov (United States)

    Kittle, Andrew M; Fryxell, John M; Desy, Glenn E; Hamr, Joe

    2008-08-01

    Resource selection is a fundamental ecological process impacting population dynamics and ecosystem structure. Understanding which factors drive selection is vital for effective species- and landscape-level management. We used resource selection probability functions (RSPFs) to study the influence of two forms of wolf (Canis lupus) predation risk, snow conditions and habitat variables on white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus) and moose (Alces alces) resource selection in central Ontario's mixed forest French River-Burwash ecosystem. Direct predation risk was defined as the frequency of a predator's occurrence across the landscape and indirect predation risk as landscape features associated with a higher risk of predation. Models were developed for two winters, each at two spatial scales, using a combination of GIS-derived and ground-measured data. Ungulate presence was determined from snow track transects in 64 16- and 128 1-km(2) resource units, and direct predation risk from GPS radio collar locations of four adjacent wolf packs. Ungulates did not select resources based on the avoidance of areas of direct predation risk at any scale, and instead exhibited selection patterns that tradeoff predation risk minimization with forage and/or mobility requirements. Elk did not avoid indirect predation risk, while both deer and moose exhibited inconsistent responses to this risk. Direct predation risk was more important to models than indirect predation risk but overall, abiotic topographical factors were most influential. These results indicate that wolf predation risk does not limit ungulate habitat use at the scales investigated and that responses to spatial sources of predation risk are complex, incorporating a variety of anti-predator behaviours. Moose resource selection was influenced less by snow conditions than cover type, particularly selection for dense forest, whereas deer showed the opposite pattern. Temporal and spatial scale

  7. Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts.

    Science.gov (United States)

    Hunsicker, Mary E; Ciannelli, Lorenzo; Bailey, Kevin M; Buckel, Jeffrey A; Wilson White, J; Link, Jason S; Essington, Timothy E; Gaichas, Sarah; Anderson, Todd W; Brodeur, Richard D; Chan, Kung-Sik; Chen, Kun; Englund, Göran; Frank, Kenneth T; Freitas, Vânia; Hixon, Mark A; Hurst, Thomas; Johnson, Darren W; Kitchell, James F; Reese, Doug; Rose, George A; Sjodin, Henrik; Sydeman, William J; van der Veer, Henk W; Vollset, Knut; Zador, Stephani

    2011-12-01

    Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management. 2011 Blackwell Publishing Ltd/CNRS.

  8. Indirect effects of predators control herbivore richness and abundance in a benthic eelgrass (Zostera marina) mesograzer community.

    Science.gov (United States)

    Amundrud, Sarah L; Srivastava, Diane S; O'Connor, Mary I

    2015-07-01

    Herbivore communities can be sensitive to changes in predator pressure (top-down effects) and resource availability (bottom-up effects) in a wide range of systems. However, it remains unclear whether such top-down and bottom-up effects reflect direct impacts of predators and/or resources on herbivores, or are indirect, reflecting altered interactions among herbivore species. We quantified direct and indirect effects of bottom-up and top-down processes on an eelgrass (Zostera marina) herbivore assemblage. In a field experiment, we factorially manipulated water column nutrients (with Osmocote(™) slow-release fertilizer) and predation pressure (with predator exclusion cages) and measured the effects on herbivore abundance, richness and beta diversity. We examined likely mechanisms of community responses by statistically exploring the response of individual herbivore species to trophic manipulations. Predators increased herbivore richness and total abundance, in both cases through indirect shifts in community composition. Increases in richness occurred through predator suppression of common gammarid amphipod species (Monocorophium acherusicum and Photis brevipes), permitting the inclusion of rarer gammarid species (Aoroides columbiae and Pontogeneia rostrata). Increased total herbivore abundance reflected increased abundance of a caprellid amphipod species (Caprella sp.), concurrent with declines in the abundance of other common species. Furthermore, predators decreased beta diversity by decreasing variability in Caprella sp. abundance among habitat patches. Osmocote(™) fertilization increased nutrient concentrations locally, but nutrients dissipated to background levels within 3 m of the fertilizer. Nutrient addition weakly affected the herbivore assemblage, not affecting richness and increasing total abundance by increasing one herbivore species (Caprella sp.). Nutrient addition did not affect beta diversity. We demonstrated that assemblage-level effects of

  9. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  10. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Directory of Open Access Journals (Sweden)

    Lu-jing Chen

    2014-01-01

    Full Text Available Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood.

  11. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Science.gov (United States)

    Chen, Lu-jing; Shen, Bing-qing; Liu, Dan-dan; Li, Sheng-tian

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood. PMID:24839560

  12. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.

    Science.gov (United States)

    Wetzel, William C; Thaler, Jennifer S

    2016-04-01

    Variability in plant chemistry has long been believed to suppress populations of insect herbivores by constraining herbivore resource selection behavior in ways that make herbivores more vulnerable to predation. The focus on behavior, however, overlooks the pervasive physiological effects of plant variability on herbivores. Here we propose the plant variability-gut acclimation hypothesis, which posits that plant chemical variability constrains herbivore anti-predator defenses by frequently requiring herbivores to acclimate their guts to changing plant defenses and nutrients. Gut acclimation, including changes to morphology and detoxification enzymes, requires time and nutrients, and we argue these costs will constrain how and when herbivores can mount anti-predator defenses. A consequence of this hypothesis is stronger top-down control of herbivores in heterogeneous plant populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of founder population size on the performance of Orius laevigatus (Hemiptera: Anthocoridae) colonies

    NARCIS (Netherlands)

    Castañe, C.; Bueno, V.H.P.; Carvalho, L.M.; Lenteren, van J.C.

    2014-01-01

    Orius laevigatus (Hemiptera: Anthocoridae) is a key predator of thrips and is mass reared in large numbers for use in biological control. The aim of this study was to evaluate the effect of founder population size on the biological and behavioral performance of O. laevigatus over time. Laboratory

  14. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators.

    Science.gov (United States)

    Kojima, Wataru; Sugiura, Shinji; Makihara, Hiroshi; Ishikawa, Yukio; Takanashi, Takuma

    2014-03-01

    Male sexually-selected traits often impose an increased risk of predation on their bearers, causing male-biased predation. We investigated whether males of the sap-feeding Japanese rhinoceros beetle Trypoxylus dichotomus were more susceptible to predation than females by comparing the morphology of beetles caught in bait traps with the remains of beetles found on the ground. The males of this species are larger than the females and have a horn on the head. We found that predation pressure was greater for males than for females, and that larger individuals of both sexes were more vulnerable to predation. We identified two predators, the raccoon dog Nyctereutes procyonoides and jungle crow Corvus macrorhynchos, by monitoring sap-site trees with infrared video cameras. Raccoon dogs visited sap-site trees at night, while crows came after daybreak. The highest frequency of visits by both predators was observed in the first half of August, which matches the peak season of T. dichotomus. Raccoon dogs often left bite marks on the remains of prey, whereas crows did not. Bite marks were found on most of the remains collected at two distant localities, which suggested that predation by raccoon dogs is common. Size- and sex-dependent differences in the conspicuousness and active period of T. dichotomus probably explain these biased predation patterns. Our results suggest that having a large horn/body is costly in terms of the increased risk of predation. Predation cost may act as a stabilizing selection pressure against the further exaggeration of male sexual traits.

  15. Evaluation of Mesocyclops aspericornis (Cyclopoida:Cyclopidae) and Toxorhynchites speciosus as integrated predators of mosquitoes in tire habitats in Queensland.

    Science.gov (United States)

    Brown, M D; Hendrikz, J K; Greenwood, J G; Kay, B H

    1996-09-01

    This study addressed biological control of peridomestic Aedes notoscriptus, known to be a highly effective colonizer of tire habitats and a possible vector of Ross River virus. A laboratory trial of the compatibility of the predators Mesocyclops aspericornis and Toxorhynchites speciosus in small container habitats showed that 4th-instar Tx. speciosus did not significantly affect M. aspericornis mortality. Introduced M. aspericornis and naturally occurring Tx. speciosus were found to form a compatible predator pair for reduction of larval Ae. notoscriptus and Culex quinquefasciatus populations in tire habitats. Over 22 months of field survey, 97% of tires without predators contained mosquito larvae, at a median density of 43 larvae/liter. By comparison, 51% of tires containing both predator species held mosquito larvae at a median density of 4 larvae/liter. Predation by Tx. speciosus persisted for the duration of the study. The inability of the Lake Kurwongbah strain of M. aspericornis to tolerate temperatures of winter, resulted in a failure to deliver persistent reduction of mosquitoes in tires. The temperature-dependent population characteristics of M. aspericornis emphasize the long-recognized importance of matching a biological control candidate's physiological requirements to the environment in which control is sought.

  16. Effects of seed and seedling predation by small mammals on ...

    African Journals Online (AJOL)

    Seed predation reduced seedling recruitment from seeds planted in March 1986 in mature fynbos, but ... Seed predation did not significantly reduce seedling recruitment from seed planted in July, August and ... AJOL African Journals Online.

  17. Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators

    Science.gov (United States)

    Stevens, Martin

    2014-01-01

    Visual signals are often under conflicting selection to be hidden from predators while being conspicuous to mates and rivals. Here, we investigated whether 3 different island populations of Aegean wall lizards (Podarcis erhardii) with variable coloration among diverse island habitats exhibit simultaneous camouflage and sexual signals. We examined whether signals appear better tuned to conspecific vision as opposed to that of avian predators, and whether background-matching camouflage and sexual signals are partitioned to specific body regions. This could facilitate both covert sexual signaling and camouflage according to the viewing perspectives of predators and conspecifics. We found that lizards typically appeared twice as conspicuous to conspecifics than to avian predators against the same visual background, largely due to lizards’ enhanced sensitivity to ultraviolet, suggesting that P. erhardii signals are tuned to conspecific vision to reduce detection by predators. Males were more conspicuous than females to both predators and conspecifics. In 2 populations, male backs were relatively more camouflaged to predators compared to signaling flanks, whereas in females, exposed and concealed surfaces were camouflaged to predators and generally did not differ in background matching. These findings indicate that lizard coloration evolves under the competing demands of natural and sexual selection to promote signals that are visible to conspecifics while being less perceptible to avian predators. They also elucidate how interactions between natural and sexual selection influence signal detectability and partitioning to different body regions, highlighting the importance of considering receiver vision, viewing perspectives, and signaling environments in studies of signal evolution. PMID:25419083

  18. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.

  19. Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape.

    Directory of Open Access Journals (Sweden)

    Regino Zamora

    Full Text Available In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal and antagonistic (seed predation, herbivory animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees.

  20. The effect of cat Felis catus predation on three breeding ...

    African Journals Online (AJOL)

    Breeding success of Pterodroma macroptera, Procellaria aequinoctialis and Pachyptila vittata salvini in three cat-free and three control areas were used to evaluate the effects of cat Felis catus predation on the avifauna of Marion Island. Breeding success of all three species was significantly higher in the combined cat-free ...

  1. Effect of Egg Size on Predation by White-Footed Mice

    Science.gov (United States)

    R. M. DeGraaf; T. J. Maier

    1996-01-01

    We compared predation by wild-trapped, caged white-footed mice (Peromyscus leucopus) on eggs of Japanese Quail (Coturnix coturnix) and Zebra Finches (Poephila guttata) to test the effect of egg size. Nine male and nine female mice were weighed, acclimated to cages for 24 h, and presented with two wicker nests,...

  2. Spider (Araneae) predations on white-backed planthopper Sogatella furcifera in subtropical rice ecosystems, China.

    Science.gov (United States)

    Wang, Xue-Qin; Wang, Guang-Hua; Zhu, Zeng-Rong; Tang, Qi-Yi; Hu, Yang; Qiao, Fei; Heong, Kong Luen; Cheng, Jia-An

    2017-06-01

    Spiders are effective biological control agents in rice ecosystems, but the comparative study of predations among main spider species under field conditions has not been fully explored owing to a lack of practical methodology. In this study, more than 6000 spiders of dominant species were collected from subtropical rice ecosystems to compare their predations on Sogatella furcifera (Horváth) (white-backed planthopper, WBPH) using DNA-based gut content analysis. The positive rates for all spider taxa were closely related to prey densities, as well as their behaviors and niches. The relationships of positive rates to prey planthopper densities for Pardosa pseudoannulata (Böes. et Str.), Coleosoma octomaculata (Böes. et Str.), Tetragnatha maxillosa Thorell and Ummeliata insecticeps (Böes. et Str.) under field conditions could be described using saturated response curves. Quantitative comparisons of predations among the four spider species confirmed that P. pseudoannulata and C. octomaculata were more rapacious than U. insecticeps and T. maxillosa under field conditions. A comparison of ratio of spiders to WBPH and positive rates between fields revealed that biological control by spiders could be effectively integrated with variety resistance. Generalist spiders could follow up WBPH population timely, and assemblages of spiders coupled with variety resistance could effectively suppress WBPH population. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Immune-related effects from predation risk in Neotropical blue-black grassquits (Volatinia jacarina).

    Science.gov (United States)

    Caetano, João V O; Maia, Maya R; Manica, Lilian T; Macedo, Regina H

    2014-11-01

    Predation is a major force shaping natural history traits of birds because of their vulnerability during nesting and higher visibility during diurnal activities. For most birds in the Neotropics, predation is the major cause of nest failure due to the region's high diversity and abundance of predators. The blue-black grassquit (Volatinia jacarina), similarly to other small passerines in the savanna region of central Brazil, suffers extremely high rates of nest predation. Additionally, males may be particularly vulnerable to predators since they are very conspicuous when executing courtship displays. We assessed some of the non-lethal costs of predation risk on this species by comparing physiological and morphological parameters of birds exposed to predator vocalizations with that of control subjects exposed to non-predator vocalizations. Birds exposed to the predator vocalizations exhibited an immune-related reaction (changes in their H/L ratio), but no changes were observed in other biological parameters measured. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Conservation implications when the nest predators are known

    Science.gov (United States)

    Ribic, Christine; Thompson, Frank

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using video surveillance to identify nest predators allow researchers to start evaluating what methods could be used to mitigate nest predation to help passerines of conservation concern. From recent studies, we identified latitudinal and habitat-related patterns in the importance of predator groups that depredate passerine nests. We then reviewed how knowledge of specific nest predators can benefit conservation of bird species of concern. Mammals were the dominant predator group in northern grasslands. Snakes were the dominant predator group in southern habitats. Fire ants were only a nest predator in southern latitudes. Differences in the importance of predator species or groups were likely the result of both their geographic patterns of distribution and habitat preferences. Some direct and indirect predator control measures developed for waterfowl management potentially could be used to benefit passerine productivity. We reviewed three examples-cowbirds, snakes in shrublands, and ground squirrels in grasslands-to illustrate how different predator control strategies may be needed in different situations. Mitigation of passerine nest predation will need to be based on knowledge of predator communities to be effective. This requires large samples of predation events with identified predators; video technology is essential for this task.

  5. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    Science.gov (United States)

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P.J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  6. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone.

    Science.gov (United States)

    Middleton, Arthur D; Morrison, Thomas A; Fortin, Jennifer K; Robbins, Charles T; Proffitt, Kelly M; White, P J; McWhirter, Douglas E; Koel, Todd M; Brimeyer, Douglas G; Fairbanks, W Sue; Kauffman, Matthew J

    2013-07-07

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores--particularly wolves--our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  7. Modelling predation by transient leopard seals for an ecosystem-based management of Southern Ocean fisheries

    Science.gov (United States)

    Forcada, J.; Royle, J. Andrew; Staniland, I.J.

    2009-01-01

    Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90?125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12?16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the ?escapement? due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species

  8. Predators and resources influence phosphorus transfer along an invertebrate food web through changes in prey behaviour.

    Directory of Open Access Journals (Sweden)

    Edoardo Calizza

    Full Text Available Predators play a fundamental role in prey trophic behaviour, with indirect consequences for species coexistence and ecosystem functioning. Resource quality and availability also influence prey trophic behaviour, with potential effects on predator-prey dynamics. Although many studies have addressed these topics, little attention has been paid to the combined effects of predators and resources on prey species coexistence and nutrient transfer along food chains, especially in detritus-based systems. To determine the influence of predators and resource quality on the movement and P uptake of detritivores, we carried out a field experiment on the River Kelvin (Scotland using (32P to test the hypothesis of reduced prey vagility among resource patches as a strategy to avoid predation. Thirty leaf sacks containing alder leaves and two detritivore prey populations (Asellus aquaticus and Lymnaea peregra were placed in cages, half of them with two predator species (Dendrocoelum lacteum and Erpobdella octoculata and the other half without predators. Five alder leaf bags, each individually inoculated with a different fungus strain to simulate a patchy habitat, were placed inside each leaf sack. One bag in each sack was labelled with (32P, in order to assess the proportion of detritivores using it as food and thus their movement among the five resource patches. Three replicates for each labelled fungus and each predation treatment (i.e. with and without predators were left on the riverbed for 7 days. The presence of predators had negligible effects on the number of detritivores in the leaf bags, but it did reduce the proportion of (32P-labelled detritivores and their P uptake. The most strongly affected species was A. aquaticus, whose vagility, trophic overlap with L. peregra and P uptake were all reduced. The results confirm the importance of bottom-up and top-down forces acting simultaneously to regulate nutrient transfer along food chains in patchy

  9. Habitat connectivity and resident shared predators determine the impact of invasive bullfrogs on native frogs in farm ponds.

    Science.gov (United States)

    Atobe, Takashi; Osada, Yutaka; Takeda, Hayato; Kuroe, Misako; Miyashita, Tadashi

    2014-07-07

    Habitat connectivity is considered to have an important role on the persistence of populations in the face of habitat fragmentation, in particular, for species with conservation concern. However, it can also impose indirect negative effects on native species through the spread of invasive species. Here, we investigated direct and indirect effects of habitat connectivity on populations of invasive bullfrogs and native wrinkled frogs and how these effects are modified by the presence of common carp, a resident shared predator, in a farm pond system in Japan. The distribution pattern analysis using a hierarchical Bayesian modelling indicated that bullfrogs had negative effects on wrinkled frogs, and that these negative effects were enhanced with increasing habitat connectivity owing to the metapopulation structure of bullfrogs. The analysis also suggested that common carp mitigated these impacts, presumably owing to a top-down trophic cascade through preferential predation on bullfrog tadpoles. These presumed interspecific interactions were supported by evidence from laboratory experiments, i.e. predation by carp was more intense on bullfrog tadpoles than on wrinkled frog tadpoles owing to the difference in refuge use. Our results indicate that metacommunity perspectives could provide useful insights for establishing effective management strategies of invasive species living in patchy habitats. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    Science.gov (United States)

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  11. Impact of insect growth regulators on the predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae).

    Science.gov (United States)

    Rugno, Gabriel Rodrigo; Zanardi, Odimar Zanuzo; Bajonero Cuervo, Johanna; de Morais, Matheus Rovere; Yamamoto, Pedro Takao

    2016-07-01

    The generalist predator Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae) is an important biological control agent of several arthropod pests in different agroecosystems. This study assessed the lethal and sublethal effects of six insect growth regulators sprayed on first-instar larvae of C. cincta. Lufenuron and diflubenzuron were highly harmful to first-instar larvae of C. cincta, causing 100 % of mortality before they reached the second instar. Buprofezin caused ~25 % mortality of the larvae and considerably reduced the fecundity and longevity of the insects, but substantially increased the proportion of females in the surviving population of C. cincta. Methoxyfenozide and tebufenozide did not affect the duration and survival of the immature stages, but methoxyfenozide significantly reduced the fecundity and longevity of the insects. Pyriproxyfen reduced the survival of the larval stage by 19.5 %, but did not affect the development, survival and reproduction of the surviving individuals. Based on reduction coefficient, the insecticides diflubenzuron and lufenuron were considered harmful to C. cincta, whereas buprofezin and methoxyfenozide were slightly harmful and tebufenozide and pyriproxyfen were harmless. The estimation of life-table parameters indicated that buprofezin and methoxyfenozide significantly reduced the R o , r and λ of C. cincta, whereas pyriproxyfen and tebufenozide caused no adverse effect on population parameters, indicating that these insecticides could be suitable for use in pest management programs towards the conservation and population increase of the predator in agroecosystems. However, more studies should be conducted to evaluate the compatibility of these insecticides with the predator C. cincta under semi-field and field conditions.

  12. Predation risk of artificial ground nests in managed floodplain meadows

    Science.gov (United States)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  13. Influence of human development and predators on nest survival of tundra birds, Arctic Coastal Plain, Alaska.

    Science.gov (United States)

    Liebezeit, J R; Kendall, S J; Brown, S; Johnson, C B; Martin, P; McDonald, T L; Payer, D C; Rea, C L; Streever, B; Wildman, A M; Zack, S

    2009-09-01

    Nest predation may influence population dynamics of birds on the Arctic Coastal Plain (ACP) of Alaska, USA. Anthropogenic development on the ACP is increasing, which may attract nest predators by providing artificial sources of food, perches, den sites, and nest sites. Enhanced populations or concentrations of human-subsidized predators may reduce nest survival for tundra-nesting birds. In this study, we tested the hypothesis that nest survival decreases in proximity to human infrastructure. We monitored 1257 nests of 13 shorebird species and 619 nests of four passerine species at seven sites on the ACP from 2002 to 2005. Study sites were chosen to represent a range of distances to infrastructure from 100 m to 80 km. We used Cox proportional hazards regression models to evaluate the effects of background (i.e., natural) factors and infrastructure on nest survival. We documented high spatial and temporal variability in nest survival, and site and year were both included in the best background model. We did not detect an effect of human infrastructure on nest survival for shorebirds as a group. In contrast, we found evidence that risk of predation for passerine nests increased within 5 km of infrastructure. This finding provides quantitative evidence of a relationship between infrastructure and nest survival for breeding passerines on the ACP. A posteriori finer-scale analyses (within oil field sites and individual species) suggested that Red and Red-necked Phalaropes combined (Phalaropus fulicarius, P. lobatus) had lower productivity closer to infrastructure and in areas with higher abundance of subsidized predators. However, we did not detect such a relationship between infrastructure and nest survival for Semipalmated and Pectoral Sandpipers (Calidris pusilla, C. melanotos), the two most abundant shorebirds. High variability in environmental conditions, nest survival, and predator numbers between sites and years may have contributed to these inconsistent results

  14. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    Science.gov (United States)

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  15. Microhabitat choice in island lizards enhances camouflage against avian predators.

    Science.gov (United States)

    Marshall, Kate L A; Philpot, Kate E; Stevens, Martin

    2016-01-25

    Camouflage can often be enhanced by genetic adaptation to different local environments. However, it is less clear how individual behaviour improves camouflage effectiveness. We investigated whether individual Aegean wall lizards (Podarcis erhardii) inhabiting different islands rest on backgrounds that improve camouflage against avian predators. In free-ranging lizards, we found that dorsal regions were better matched against chosen backgrounds than against other backgrounds on the same island. This suggests that P. erhardii make background choices that heighten individual-specific concealment. In achromatic camouflage, this effect was more evident in females and was less distinct in an island population with lower predation risk. This suggests that behavioural enhancement of camouflage may be more important in females than in sexually competing males and related to predation risk. However, in an arena experiment, lizards did not choose the background that improved camouflage, most likely due to the artificial conditions. Overall, our results provide evidence that behavioural preferences for substrates can enhance individual camouflage of lizards in natural microhabitats, and that such adaptations may be sexually dimorphic and dependent on local environments. This research emphasizes the importance of considering links between ecology, behaviour, and appearance in studies of intraspecific colour variation and local adaptation.

  16. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Directory of Open Access Journals (Sweden)

    Debora B Lima

    Full Text Available Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae. The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot (Acari: Phytoseiidae. Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  17. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Science.gov (United States)

    Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C

    2015-01-01

    Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  18. Landscape And Edge Effects On The Distribution Of Mammalian Predators In Missouri

    Science.gov (United States)

    William D. Dijak; Frank R. Thompson III

    2000-01-01

    Raccoons (Procyon lotor), opossums (Didelphis virginiana), and striped skunks (Mephitis mephitis) are predators of forest songbird eggs and nestlings. We examined the relative abundance of these predators at landscape and local scales to better understand predation risks. At the landscape scale, we examined the...

  19. Intraguild predation between small pelagic fish in the Bay of Biscay: impact on anchovy (Engraulis encrasicolus L.) egg mortality

    KAUST Repository

    Bachiller, Eneko

    2015-05-12

    Small pelagic fish can play an important role in various ecosystems linking lower and upper trophic levels. Among the factor behind the observed inter-annual variations in small pelagic fish abundance, intra- and inter-specific trophic interactions could have a strong impact on the recruitment variability (e.g. anchovy). Egg cannibalism observed in anchovies has been postulated to be a mechanism that determines the upper limit of the population density and self-regulates the population abundance of the species. On the other hand, predation by other guild species is commonly considered as a regulation mechanism between competing species. This study provides empirical evidence of anchovy cannibalism and predation of the main small pelagic fish species on anchovy eggs and estimates the effect of intraguild predation on the anchovy egg mortality rate. Results show that, depending on the year (2008–2009), up to 33 % of the total anchovy egg mortality was the result of sardine predation and up to 4 % was the result of egg cannibalism together with predation by Atlantic and Atlantic Chub mackerel and sprat. Results also indicate that in the Bay of Biscay, fluctuations in the survival index of the early life stages of anchovy are likely to be attributable at least in part to egg cannibalism and especially to a high sardine predation on anchovy eggs. © 2015 Springer-Verlag Berlin Heidelberg

  20. Evaluating the negative effect of benthic egg predators on bloater recruitment in northern Lake Michigan

    Science.gov (United States)

    Bunnell, David B.; Mychek-Londer, Justin G.; Diana, James S.; Stott, Wendylee; Madenjian, Charles P.

    2012-01-01

    As the only extant deepwater cisco in Lake Michigan, bloater is currently at record low levels of abundance.  Several mechanisms to regulate their recruitment have been proposed, including skewed sex ratios, predation on their larvae by adult alewife, and climatic factors during early life history stages, but none has unequivocal support.  In this research, we evaluated an alternative mechanism of egg predation that was supported by an inverse relationship between bloater recruitment and biomass of slimy sculpin, which are known to be effective egg predators.  To that end, we used a combination of field sampling, laboratory experiments, and modeling to estimate the proportion of bloater eggs consumed by sculpins each year between 1973 and 2008.  Monthly field sampling between January through May 2009-2010 (when bloater eggs were incubating) offshore of Frankfort (Michigan), Sturgeon Bay (Wisconsin), Two Rivers (Wisconsin), and Muskegon (Michigan) provided benthivore diets for subsequent laboratory processing.  Identification and enumeration of stomach contents and subsequent genetic analyses of eggs revealed that the mean proportion of bloater eggs in slimy sculpin diets (N = 1016) equaled 0.04.  Bloater eggs also were consumed by deepwater sculpins (N = 699) at a slightly lower mean proportion (0.02), and only one round goby diet among 552 enumerated revealed a bloater egg.  Based on the diet results, we developed daily ration models to estimate consumption for both deepwater and slimy sculpins.  We conducted feeding experiments to estimate gastric evacuation (GEVAC) for water temperatures ranging 2-5 °C, similar to those observed during egg incubation.  GEVAC rates equaled 0.0115/ h for slimy sculpin and 0.0147/h for deepwater sculpin, and did not vary between 2.7 and 5.1 °C for either species or between prey types (Mysis relicta and fish eggs) for slimy sculpin.  Index of fullness [(g prey/g fish weight)100%] was estimated from sculpins sampled in

  1. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    Science.gov (United States)

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Predicting synergistic effects of resources and predators on foraging decisions by juvenile Steller sea lions.

    Science.gov (United States)

    Frid, Alejandro; Burns, Jennifer; Baker, Gregory G; Thorne, Richard E

    2009-01-01

    Many theoretical and experimental studies suggest that synergistic interactions between resources and predators influence foraging decisions and their fitness consequences. This framework, however, has been ignored almost completely by hypotheses on causes of the population decline of Steller sea lions (SSLs) (Eumetopias jubatus) in western Alaska. By comparing predictions from a dynamic state variable model to empirical data on the behaviour of individuals instrumented with satellite-linked time-at-depth recorders, we develop and find preliminary support for the hypothesis that, during winter in Prince William Sound, juvenile SSLs (a) underutilise walleye pollock, a predictable resource in deep strata, due to predation risk from Pacific sleeper sharks, and (b) underutilise the potential energy bonanza of inshore aggregations of Pacific herring due to risk from either killer whales, larger conspecifics, or both. Further, under conditions of resource scarcity-induced by overfishing, long-term oceanographic cycles, or their combination-trade-offs between mortality risk and energy gain may influence demographic parameters. Accordingly, computer simulations illustrated the theoretical plausibility that a decline of Pacific herring in shallow strata would greatly increase the number of deep foraging dives, thereby increasing exposure to sleeper sharks and mortality rates. These results suggest that hypotheses on the decline of SSLs should consider synergistic effects of predators and resources on behaviour and mortality rates. Empirical support for our model, however, is limited and we outline tasks for empirical research that emerge from these limitations. More generally, in the context of today's conservation crises, our work illustrates that the greater the dearth of system-specific data, the greater the need to apply principles of behavioural ecology toward the understanding and management of large-scale marine systems.

  3. Predators of the destructive sea urchin Strongylocentrotus droebachiensis on the Norwegian coast

    DEFF Research Database (Denmark)

    Pedersen, Morten Foldager; Fagerli, Camilla With; Norderhaug, Kjell Magnus

    2014-01-01

    on recently settled S. droebachiensis in Laboratory experiments. Tethering experiments in kelp forest and on barren ground study sites in the area where sea urchin populations are collapsing confirmed predation by some of the predators tested in laboratory experiments. The edible crab Cancer pagurus...... was the most efficient sea urchin predator, and it was more abundant at kelp forest sites than on barren grounds. Stocks of C. pagurus have increased dramatically in central Norway since the 1990s, and predation by C. pagurus may contribute to the decline in sea urchin densities, allowing kelp recovery...... and conferring resilience of the new kelp forest state....

  4. Predators are attracted to the olfactory signals of prey.

    Directory of Open Access Journals (Sweden)

    Nelika K Hughes

    2010-09-01

    Full Text Available Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals.This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.

  5. Disease and predation: sorting out causes of a bighorn sheep (Ovis canadensis decline.

    Directory of Open Access Journals (Sweden)

    Joshua B Smith

    Full Text Available Estimating survival and documenting causes and timing of mortality events in neonate bighorn sheep (Ovis canadensis improves understanding of population ecology and factors influencing recruitment. During 2010-2012, we captured and radiocollared 74 neonates in the Black Hills, South Dakota, of which 95% (70 died before 52 weeks of age. Pneumonia (36% was the leading cause of mortality followed by predation (30%. We used known fate analysis in Program MARK to estimate weekly survival rates and investigate the influence of intrinsic variables on 52-week survival. Model {S1 wk, 2-8 wks, >8 wks} had the lowest AIC c (Akaike's Information Criterion corrected for small sample size value, indicating that age (3-stage age-interval: 1 week, 2-8 weeks, and >8 weeks best explained survival. Weekly survival estimates for 1 week, 2-8 weeks, and >8 weeks were 0.81 (95% CI = 0.70-0.88, 0.86 (95% CI = 0.81-0.90, and 0.94 (95% CI = 0.91-0.96, respectively. Overall probability of surviving 52 weeks was 0.02 (95% CI = 0.01-0.07. Of 70 documented mortalities, 21% occurred during the first week, 55% during weeks 2-8, and 23% occurred >8 weeks of age. We found pneumonia and predation were temporally heterogeneous with lambs most susceptible to predation during the first 2-3 weeks of life, while the greatest risk from pneumonia occurred from weeks 4-8. Our results indicated pneumonia was the major factor limiting recruitment followed by predation. Mortality from predation may have been partly compensatory to pneumonia and its effects were less pronounced as alternative prey became available. Given the high rates of pneumonia-caused mortality we observed, and the apparent lack of pneumonia-causing pathogens in bighorn populations in the western Black Hills, management activities should be geared towards eliminating contact between diseased and healthy populations.

  6. Disease and predation: Sorting out causes of a bighorn sheep (Ovis canadensis) decline

    Science.gov (United States)

    Smith, Joshua B.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2014-01-01

    Estimating survival and documenting causes and timing of mortality events in neonate bighorn sheep (Ovis canadensis) improves understanding of population ecology and factors influencing recruitment. During 2010–2012, we captured and radiocollared 74 neonates in the Black Hills, South Dakota, of which 95% (70) died before 52 weeks of age. Pneumonia (36%) was the leading cause of mortality followed by predation (30%). We used known fate analysis in Program MARK to estimate weekly survival rates and investigate the influence of intrinsic variables on 52-week survival. Model {S1 wk, 2–8 wks, >8 wks} had the lowest AICc (Akaike’s Information Criterion corrected for small sample size) value, indicating that age (3-stage age-interval: 1 week, 2–8 weeks, and >8 weeks) best explained survival. Weekly survival estimates for 1 week, 2–8 weeks, and >8 weeks were 0.81 (95% CI = 0.70–0.88), 0.86 (95% CI = 0.81–0.90), and 0.94 (95% CI = 0.91–0.96), respectively. Overall probability of surviving 52 weeks was 0.02 (95% CI = 0.01–0.07). Of 70 documented mortalities, 21% occurred during the first week, 55% during weeks 2–8, and 23% occurred >8 weeks of age. We found pneumonia and predation were temporally heterogeneous with lambs most susceptible to predation during the first 2–3 weeks of life, while the greatest risk from pneumonia occurred from weeks 4–8. Our results indicated pneumonia was the major factor limiting recruitment followed by predation. Mortality from predation may have been partly compensatory to pneumonia and its effects were less pronounced as alternative prey became available. Given the high rates of pneumonia-caused mortality we observed, and the apparent lack of pneumonia-causing pathogens in bighorn populations in the western Black Hills, management activities should be geared towards eliminating contact between diseased and healthy populations.

  7. Experimental and observational evidence reveals that predators in natural environments do not regulate their prey: They are passengers, not drivers

    Science.gov (United States)

    White, T. C. R.

    2013-11-01

    Among both ecologists and the wider community there is a tacit assumption that predators regulate populations of their prey. But there is evidence from a wide taxonomic and geographic range of studies that predators that are adapted to co-evolved prey generally do not regulate their prey. This is because predators either cannot reproduce as fast as their prey and/or are inefficient hunters unable to catch enough prey to sustain maximum reproduction. The greater capacity of herbivores to breed successfully is, however, normally restricted by a lack of enough food of sufficient quality to support reproduction. But whenever this shortage is alleviated by a large pulse of food, herbivores increase their numbers to outbreak levels. Their predators are unable to contain this increase, but their numbers, too, surge in response to this increase in food. Eventually both their populations will crash once the food supply runs out, first for the herbivores and then for the predators. Then an “over-run” of predators will further depress the already declining prey population, appearing to be controlling its abundance. This latter phenomenon has led many ecologists to conclude that predators are regulating the numbers of their prey. However, it is the same process that is revealed during outbreaks that limits populations of both predator and prey in “normal” times, although this is usually not readily apparent. Nevertheless, as all the diverse cases discussed here attest, the abundance of predators and their co-evolved prey are both limited by their food: the predators are passengers, not drivers.

  8. Nest predation risk explains variation in avian clutch size

    Science.gov (United States)

    Dillon, Kristen G.; Conway, Courtney J.

    2018-01-01

    Questions about the ecological drivers of, and mechanistic constraints on, productivity have driven research on life-history evolution for decades. Resource availability and offspring mortality are considered among the 2 most important influences on the number of offspring per reproductive attempt. We used a factorial experimental design to manipulate food abundance and perceived offspring predation risk in a wild avian population (red-faced warblers; Cardellina rubrifrons) to identify the mechanistic cause of variation in avian clutch size. Additionally, we tested whether female quality helped explain the extant variation in clutch size. We found no support for the Food Limitation or Female Quality Hypotheses, but we did find support for both predictions of the Nest Predation Risk Hypothesis. Females that experienced an experimentally heightened perception of offspring predation risk responded by laying a smaller clutch than females in the control group. Additionally, predation rates at artificial nests were highest where red-faced warbler clutch size was smallest (at high elevations). Life-history theory predicts that an individual should invest less in reproduction when high nest predation risk reduces the likely benefit from that nesting attempt and, indeed, we found that birds exhibit phenotypic plasticity in clutch size by laying fewer eggs in response to increasing nest predation risk.

  9. What regulates crab predation on mangrove propagules?

    Science.gov (United States)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid

    2015-02-01

    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  10. Multi-scale effects of nestling diet on breeding performance in a terrestrial top predator inferred from stable isotope analysis.

    Directory of Open Access Journals (Sweden)

    Jaime Resano-Mayor

    Full Text Available Inter-individual diet variation within populations is likely to have important ecological and evolutionary implications. The diet-fitness relationships at the individual level and the emerging population processes are, however, poorly understood for most avian predators inhabiting complex terrestrial ecosystems. In this study, we use an isotopic approach to assess the trophic ecology of nestlings in a long-lived raptor, the Bonelli's eagle Aquila fasciata, and investigate whether nestling dietary breath and main prey consumption can affect the species' reproductive performance at two spatial scales: territories within populations and populations over a large geographic area. At the territory level, those breeding pairs whose nestlings consumed similar diets to the overall population (i.e. moderate consumption of preferred prey, but complemented by alternative prey categories or those disproportionally consuming preferred prey were more likely to fledge two chicks. An increase in the diet diversity, however, related negatively with productivity. The age and replacements of breeding pair members had also an influence on productivity, with more fledglings associated to adult pairs with few replacements, as expected in long-lived species. At the population level, mean productivity was higher in those population-years with lower dietary breadth and higher diet similarity among territories, which was related to an overall higher consumption of preferred prey. Thus, we revealed a correspondence in diet-fitness relationships at two spatial scales: territories and populations. We suggest that stable isotope analyses may be a powerful tool to monitor the diet of terrestrial avian predators on large spatio-temporal scales, which could serve to detect potential changes in the availability of those prey on which predators depend for breeding. We encourage ecologists and evolutionary and conservation biologists concerned with the multi-scale fitness

  11. Low levels of copper reduce the reproductive success of a mobile invertebrate predator.

    Science.gov (United States)

    Lee, Ka-Man; Johnston, Emma L

    2007-09-01

    Marine organisms that occur in urbanised bays can be exposed to low-level chronic pollution that results in sublethal changes to behavior or reproduction. The effects of low levels of copper on the reproductive success of a mobile invertebrate were assessed. Free living flatworms are common predators of bivalves and barnacles. Flatworms (Stylochus pygmaeus) were exposed to low levels of copper ranging from 0 to 25 microg L(-1) in the presence and absence of their barnacle prey (Balanus variegatus). Flatworms laid fewer egg batches when exposed to copper and the hatching success of the eggs was also reduced. Exposure to 25 microg L(-1) copper for 10 d reduced the reproductive success of flatworms by up to 80%. Results were consistent regardless of the presence or absence of prey (barnacles). Barnacles were only moderately affected by copper but exhibited major avoidance behavior (feeding inhibition) in the presence of flatworm predators. This is the first ecotoxicological study on marine flatworms. Experiments are required to quantify the effects of flatworm predator populations on sessile invertebrate community structure in the field.

  12. The effects of simulated acid rain on growth and susceptibility to predation of Phratora polaris (Col., Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Palokangas, P.; Neuvonen, S.; Haapala, S. [University of Turku, Ivalo (Finland). Kevo Subarctic Research Inst.

    1995-12-31

    The effects of long-term simulated acid rain on tritrophic interactions between mountain birch, a leaf beetle (Phratora polaris) and its predators were studied. Leaf beetle larvae were fed on foliage treated during 6-7 years with simulated acid rain of pH 3 (both H{sub 2}SO{sub 4} and HNO{sub 3}) or with spring water of pH 6 (irrigated controls). There were significant differences between treatments in the susceptibility of P. polaris to predators. Generally, beetles reared on acid treated birches were more susceptible to predators than those reared on irrigated control trees. This effect was present over several stages in the life cycle of the beetle and for several types of predators: ants preying on larvae, carabids attacking pupae and birds feeding on adult beetles. However, host plant treatment did not have consistent effects on the growth of larvae. This suggests that the defensive ability of leaf beetles is more sensitive to pollution induced variation in host foliage than larval growth. 32 refs., 1 fig., 4 tabs.

  13. Influences of past climatic changes on historical population structure and demography of a cosmopolitan marine predator, the common dolphin (genus Delphinus).

    Science.gov (United States)

    Amaral, Ana R; Beheregaray, Luciano B; Bilgmann, Kerstin; Freitas, Luís; Robertson, Kelly M; Sequeira, Marina; Stockin, Karen A; Coelho, M M; Möller, Luciana M

    2012-10-01

    Climatic oscillations during the Pleistocene have greatly influenced the distribution and connectivity of many organisms, leading to extinctions but also generating biodiversity. While the effects of such changes have been extensively studied in the terrestrial environment, studies focusing on the marine realm are still scarce. Here we used sequence data from one mitochondrial and five nuclear loci to assess the potential influence of Pleistocene climatic changes on the phylogeography and demographic history of a cosmopolitan marine predator, the common dolphin (genus Delphinus). Population samples representing the three major morphotypes of Delphinus were obtained from 10 oceanic regions. Our results suggest that short-beaked common dolphins are likely to have originated in the eastern Indo-Pacific Ocean during the Pleistocene and expanded into the Atlantic Ocean through the Indian Ocean. On the other hand, long-beaked common dolphins appear to have evolved more recently and independently in several oceans. Our results also suggest that short-beaked common dolphins had recurrent demographic expansions concomitant with changes in sea surface temperature during the Pleistocene and its associated increases in resource availability, which differed between the North Atlantic and Pacific Ocean basins. By proposing how past environmental changes had an effect on the demography and speciation of a widely distributed marine mammal, we highlight the impacts that climate change may have on the distribution and abundance of marine predators and its ecological consequences for marine ecosystems. © 2012 Blackwell Publishing Ltd.

  14. Behavioural and physiological responses of limpet prey to a seastar predator and their transmission to basal trophic levels.

    Science.gov (United States)

    Manzur, Tatiana; Vidal, Francisco; Pantoja, José F; Fernández, Miriam; Navarrete, Sergio A

    2014-07-01

    Besides the well-documented behavioural changes induced by predators on prey, predator-induced stress can also include a suite of biochemical, neurological and metabolic changes that may represent important energetic costs and have long-lasting effects on individuals and on the demography of prey populations. The rapid transmission of prey behavioural changes to lower trophic levels, usually associated with alteration of feeding rates, can substantially change and even reverse direction over the long term as prey cope with the energetic costs associated with predation-induced stress. It is therefore critical to evaluate different aspects and assess the costs of non-consumptive predator effects on prey. We investigated the behavioural and physiological responses of an herbivorous limpet, Fissurella limbata, to the presence of chemical cues and direct non-lethal contact by the common seastar predator, Heliaster helianthus. We also evaluated whether the limpets feeding behaviour was modified by the predator and whether this translated into positive or negative effects on biomass of the green alga, Ulva sp. Our experimental results show the presence of Heliaster led to increased movement activity, increased distances travelled, changes in time budget over different environmental conditions and increased feeding rate in the keyhole limpets. Moreover, additional experiments showed that, beyond the increased metabolic rate associated with limpet increased activity, predator chemical cues heighten metabolic rate as part of the induced stress response. Changes in individual movement and displacement distances observed through the 9-day experiment can be interpreted as part of the escape response exhibited by limpets to reduce the risk of being captured by the predator. Increased limpet feeding rate on algae can be visualized as a way individuals compensate for the elevated energetic costs of movement and heightened metabolic rates produced by the predator-induced stress

  15. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff.

    Directory of Open Access Journals (Sweden)

    Ulrich K Steiner

    2009-07-01

    Full Text Available Defence against predators is usually accompanied by declining rates of growth or development. The classical growth/predation risk tradeoff assumes reduced activity as the cause of these declines. However, in many cases these costs cannot be explained by reduced foraging effort or enhanced allocation to defensive structures under predation risk. Here, we tested for a physiological origin of defence costs by measuring oxygen consumption in tadpoles (Rana temporaria exposed to predation risk over short and long periods of time. The short term reaction was an increase in oxygen consumption, consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes.

  16. A potential predator-prey interaction of an American badger and an Agassiz's desert tortoise with a review of badger predation on turtles

    Science.gov (United States)

    Smith, Amanda L.; Puffer, Shellie R.; Lovich, Jeffrey E.; Tennant, Laura A.; Arundel, Terry; Vamstad, Michael S.; Brundige, Kathleen D.

    2016-01-01

    The federally threatened Agassiz’s desert tortoise (Gopherus agassizii) was listed under the U.S. Endangered Species Act in 1990, but thus far, recovery efforts have been unsuccessful (U.S. Fish and Wildlife Service [USFWS] 2015). Predation has been identified as a contributing factor to declining G. agassizii populations range-wide (e.g., Esque et al. 2010, Lovich et al. 2014). Understanding and managing for predator-prey dynamics is thus an important part of the recovery and conservation of this threatened species (USFWS 2011). Desert tortoises have a host of predators at all stages of their life cycle. Over 20 species of birds, mammals, and reptiles have been recorded as known or suspected predators (Woodbury and Hardy 1948, Luckenbach 1982, Ernst and Lovich 2009). American badgers (Taxidea taxus, family: Mustelidae) are confirmed excavators of desert tortoise nests (Turner and Berry 1984). They are also suspected predators of adult desert tortoises, a possibility which has been presented in some studies but without empirical verification (Luckenbach 1982, Turner and Berry 1984). Active mostly at night, badgers are solitary, secretive predators (Lindzey 1978, 1982; Armitage 2004) that are extremely difficult to observe in predatory encounters. Recently, strong circumstantial evidence presented by Emblidge et al. (2015) suggests that badgers do prey on adult Agassiz’s desert tortoises based on observations of more than two dozen dead tortoises in the Western Mojave Desert of California. In this note, we present another case of potential badger predation on a large adult desert tortoise in the Sonoran Desert of California. Collectively, these recent two cases potentially indicate that badger predation may be more common and widespread than previously thought. In addition, we review the worldwide literature of badger predation on turtles in general and summarize reported badger observations in Joshua Tree National Park, where our observation occurred, over a

  17. Greater sage-grouse nest predators in the Virginia Mountains of northwestern Nevada

    Science.gov (United States)

    Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.

    2013-01-01

    Greater sage-grouse Centrocercus urophasianus, hereafter sage-grouse, populations have declined across their range due to the loss, degradation, and fragmentation of habitat. Habitat alterations can lead not only to vegetative changes but also to shifts in animal behavior and predator composition that may influence population vital rates, such as nest success. For example, common ravens Corvus corax are sage-grouse nest predators, and common raven abundance is positively associated with human-caused habitat alterations. Because nest success is a central component to sage-grouse population persistence, research that identifies factors influencing nest success will better inform conservation efforts. We used videography to unequivocally identify sage-grouse nest predators within the Virginia Mountains of northwestern Nevada, USA, from 2009 to 2011 and used maximum likelihood to calculate daily probability of nest survival. In the Virginia Mountains, fires, energy exploration, and other anthropogenic activities have altered historic sage-grouse habitat. We monitored 71 sage-grouse nests during the study, placing video cameras at 39 nests. Cumulative nest survival for all nests was 22.4% (95% CI, 13.0–33.4%), a survival rate that was significantly lower than other published results for sage-grouse in the Great Basin. Depredation was the primary cause for nest failure in our study (82.5%), and common ravens were the most frequent sage-grouse nest predator, accounting for 46.7% of nest depredations. We also successfully documented a suite of mammalian and reptilian species depredating sage-grouse nests, including some predators never previously confirmed in the literature to be sage-grouse nest predators (i.e., bobcats Lynx rufus and long-tailed weasels Mephitis frenata). Within the high elevation, disturbed habitat of the Virginia Mountains, low sage-grouse nest success may be limiting sage-grouse population growth. These results suggest that management actions that

  18. Maternally derived chemical defences are an effective deterrent against some predators of poison frog tadpoles (Oophaga pumilio).

    Science.gov (United States)

    Stynoski, Jennifer L; Shelton, Georgia; Stynoski, Peter

    2014-05-01

    Parents defend their young in many ways, including provisioning chemical defences. Recent work in a poison frog system offers the first example of an animal that provisions its young with alkaloids after hatching or birth rather than before. But it is not yet known whether maternally derived alkaloids are an effective defence against offspring predators. We identified the predators of Oophaga pumilio tadpoles and conducted laboratory and field choice tests to determine whether predators are deterred by alkaloids in tadpoles. We found that snakes, spiders and beetle larvae are common predators of O. pumilio tadpoles. Snakes were not deterred by alkaloids in tadpoles. However, spiders were less likely to consume mother-fed O. pumilio tadpoles than either alkaloid-free tadpoles of the red-eyed treefrog, Agalychnis callidryas, or alkaloid-free O. pumilio tadpoles that had been hand-fed with A. callidryas eggs. Thus, maternally derived alkaloids reduce the risk of predation for tadpoles, but only against some predators. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Population dynamics of interacting predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, held on detached bean leaves.

    Science.gov (United States)

    Walzer, A; Blümel, S; Schausberger, P

    2001-01-01

    The success of combined release of the predatory mites Phytoseiulus persimilis and Neoseiulus californicus in suppression of spider mites may be related to the effects of the interactions between the two predators on their population dynamics. We studied population growth and persistence of the specialist P persimilis and the generalist N. californicus reared singly versus reared in combination after simultaneous and successive predator introductions on detached bean leaf arenas with abundant prey, Tetranychus urticae. and with diminishing prey. When reared singly with abundant prey, either predator population persisted at high densities to the end of the experiment. In every predator combination system with abundant prey and various initial predator:predator ratios N. californicus displaced P persimilis. When held singly with diminishing prey, the population of P. persimilis grew initially faster than the population of N. californicus but both species reached similar population peaks. Irrespective whether reared singly or in combination. N. californicus persisted three to five times longer after prey depletion than did P. persimilis. Regarding the crucial interactions in the predator combination systems, we conclude that intraguild predation was a stronger force than food competition and finally resulted in the displacement of P. persimilis. Previous studies showed that intraguild predation between the specialist P. persimilis and the generalist N. californicus is strongly asymmetric favoring the generalist. We discuss the implications of potential interactions between P. persimilis and N. californicus to biological control of spider mites.

  20. Preference alters consumptive effects of predators: top-down effects of a native crab on a system of native and introduced prey.

    Directory of Open Access Journals (Sweden)

    Emily W Grason

    Full Text Available Top-down effects of predators in systems depend on the rate at which predators consume prey, and on predator preferences among available prey. In invaded communities, these parameters might be difficult to predict because ecological relationships are typically evolutionarily novel. We examined feeding rates and preferences of a crab native to the Pacific Northwest, Cancer productus, among four prey items: two invasive species of oyster drill (the marine whelks Urosalpinx cinerea and Ocenebra inornata and two species of oyster (Crassostrea gigas and Ostrea lurida that are also consumed by U. cinerea and O. inornata. This system is also characterized by intraguild predation because crabs are predators of drills and compete with them for prey (oysters. When only the oysters were offered, crabs did not express a preference and consumed approximately 9 juvenile oysters crab(-1 day(-1. We then tested whether crabs preferred adult drills of either U. cinerea or O. inornata, or juvenile oysters (C. gigas. While crabs consumed drills and oysters at approximately the same rate when only one type of prey was offered, they expressed a strong preference for juvenile oysters over drills when they were allowed to choose among the three prey items. This preference for oysters might negate the positive indirect effects that crabs have on oysters by crabs consuming drills (trophic cascade because crabs have a large negative direct effect on oysters when crabs, oysters, and drills co-occur.

  1. Effects of viruses and predators on prokaryotic community composition.

    Science.gov (United States)

    Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier

    2005-11-01

    Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (protists, which also affected PCC, whereas viruses seemed to be essentially responsible for profound changes in PCC via direct and indirect actions.

  2. Does predation by grey seals (Halichoerus grypus) affect Bothnian Sea herring stock estimates?

    DEFF Research Database (Denmark)

    Gårdmark, Anna; Östman, Örjan; Nielsen, Anders

    2012-01-01

    when accounting for seal predation, this did not change the conclusions about drivers of herring dynamics. Accounting for grey seal predation is important for abundance estimates of old herring, but currently not for SSB estimates, given the great uncertainties in the standard assessment. The grey seal...... fivefold since 1985. Its main prey, herring (Clupea harrengus), is a key species for fisheries in the region. Yet, current stock assessments assume constant natural mortality, leading to a risk of biased stock estimates with increasing predation and misleading analyses of herring population dynamics. We...... estimated grey seal predation from diet data and reanalysed herring spawning stock biomass (SSB) during 1973–2009. Accounting for predation increased the herring SSB 16% (maximum 19%), but this was within the confidence intervals when ignoring predation. Although mortality in older individuals was inflated...

  3. Diversity of protists and bacteria determines predation performance and stability.

    Science.gov (United States)

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  4. Landscape heterogeneity drives intra-population niche variation and reproduction in an arctic top predator.

    Science.gov (United States)

    L'hérault, Vincent; Franke, Alastair; Lecomte, Nicolas; Alogut, Adam; Bêty, Joël

    2013-09-01

    predator. We also show that within-individual and among-individual variation are not mutually exclusive, but can simultaneously arise and structure intra-population niche variation.

  5. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  6. Advanced autumn migration of sparrowhawk has increased the predation risk of long-distance migrants in Finland.

    Directory of Open Access Journals (Sweden)

    Aleksi Lehikoinen

    Full Text Available Predation affects life history traits of nearly all organisms and the population consequences of predator avoidance are often larger than predation itself. Climate change has been shown to cause phenological changes. These changes are not necessarily similar between species and may cause mismatches between prey and predator. Eurasian sparrowhawk Accipiter nisus, the main predator of passerines, has advanced its autumn phenology by about ten days in 30 years due to climate change. However, we do not know if sparrowhawk migrate earlier in response to earlier migration by its prey or if earlier sparrowhawk migration results in changes to predation risk on its prey. By using the median departure date of 41 passerine species I was able to show that early migrating passerines tend to advance, and late migrating species delay their departure, but none of the species have advanced their departure times as much as the sparrowhawk. This has lead to a situation of increased predation risk on early migrating long-distance migrants (LDM and decreased the overlap of migration season with later departing short-distance migrants (SDM. Findings highlight the growing list of problems of declining LDM populations caused by climate change. On the other hand it seems that the autumn migration may become safer for SDM whose populations are growing. Results demonstrate that passerines show very conservative response in autumn phenology to climate change, and thus phenological mismatches caused by global warming are not necessarily increasing towards the higher trophic levels.

  7. Spatio-Temporal Variation in Predation by Urban Domestic Cats (Felis catus) and the Acceptability of Possible Management Actions in the UK

    Science.gov (United States)

    Thomas, Rebecca L.; Fellowes, Mark D. E.; Baker, Philip J.

    2012-01-01

    Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners. PMID:23173057

  8. Spatio-temporal variation in predation by urban domestic cats (Felis catus and the acceptability of possible management actions in the UK.

    Directory of Open Access Journals (Sweden)

    Rebecca L Thomas

    Full Text Available Urban domestic cat (Felis catus populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat⁻¹ year⁻¹ but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%, but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners.

  9. KELIMPAHAN POPULASI, PREFERENSI DAN KARAKTER KEBUGARAN MENOCHILUS SEXMACULATUS (COLEOPTERA: COCCINELLIDAE PREDATOR KUTUDAUN PADA PERTANAMAN CABAI

    Directory of Open Access Journals (Sweden)

    Novri Nelly

    2013-09-01

    Full Text Available This predator is efective to control population of aphids, so the aim of research was to study the field population abundance, predator preference to this prey, and fitness character of M. sexmaculatus as predator. The population fluctuation was observed at conventional and organic farming. The preference test was conducted by choice and no choice test for some types of prey. Fitness test was performed by studying its prey, the number of eggs produced and number of eggs hatched. The results showed that M. sexmaculatus population abundance was fluctuated, the abundance higher in chili cultivated conventionaly than cultivated in organic farming.  But in conventional farming  decreased with increasing age of chili. Preference test showed that almost all species of  aphids preferred by M. sexmaculatus.  Some prey species  found were  aphids, thrips and Neotoxoptera. Predator  fitness levels showed by the longevity of females ranged  9-10 days. Oviposition period  was on average five days, while the post-oviposition was two days. The number of eggs produced ranged  100-200 eggs with an average of 135.3 eggs.

  10. Effects of rodent species, seed species, and predator cues on seed fate

    Science.gov (United States)

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-07-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat ( Dipodomys ordii) and the Great Basin pocket mouse ( Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote ( Canis latrans) vocalization, (3) coyote scent, (4) red fox ( Vulpes vulpes) scent, or (5) short-eared owl ( Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass ( Achnatherum hymenoides) and bluebunch wheatgrass ( Pseudoroegneria spicata), and the non-native cereal rye ( Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  11. Let's go beyond taxonomy in diet description: testing a trait-based approach to prey-predator relationships.

    Science.gov (United States)

    Spitz, Jérôme; Ridoux, Vincent; Brind'Amour, Anik

    2014-09-01

    Understanding 'Why a prey is a prey for a given predator?' can be facilitated through trait-based approaches that identify linkages between prey and predator morphological and ecological characteristics and highlight key functions involved in prey selection. Enhanced understanding of the functional relationships between predators and their prey is now essential to go beyond the traditional taxonomic framework of dietary studies and to improve our knowledge of ecosystem functioning for wildlife conservation and management. We test the relevance of a three-matrix approach in foraging ecology among a marine mammal community in the northeast Atlantic to identify the key functional traits shaping prey selection processes regardless of the taxonomy of both the predators and prey. Our study reveals that prey found in the diet of marine mammals possess functional traits which are directly and significantly linked to predator characteristics, allowing the establishment of a functional typology of marine mammal-prey relationships. We found prey selection of marine mammals was primarily shaped by physiological and morphological traits of both predators and prey, confirming that energetic costs of foraging strategies and muscular performance are major drivers of prey selection in marine mammals. We demonstrate that trait-based approaches can provide a new definition of the resource needs of predators. This framework can be used to anticipate bottom-up effects on marine predator population dynamics and to identify predators which are sensitive to the loss of key prey functional traits when prey availability is reduced. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  12. Interaction between two predator mites of Tetranychus urticae koch (Acariformes: Tetranychidae) in laboratory

    International Nuclear Information System (INIS)

    Arguelles R, Angelica; Plazas, Natali; Bustos R, Alexander; Cantor R, Fernando; Rodriguez, Daniel; Hilarion, Alejandra

    2013-01-01

    Tetranychus urticae (Acari: Tetranychidae) is an important pest of ornamental crops. A species of predatory mite used for its control is Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). This research proposes the use of joint releases of the two cited predators for the control of the pest. Several situations leading to interaction were evaluated: high density of one predator and low density of the other one, being the prey present or absent. The scenario with predators in equal densities and in presence of the prey was also evaluated. When a predator is in higher density and the prey present, the predator with the lower density increases the interference with the consumption of preys by the predator with higher density. On the other hand, when the consumption of T. urticae reduces, intraguild predation increases. P. persimilis shows intraguild predation behavior when t. urticae is absent and N. californicus is present, consuming all developmental stages of its conspecific. Instead, N. californicus only feed on conspecific larvae, when the fitofagous was absent and P. persimilis was present. When the two predators were present in the same assemblage and with the same population density, the quantity of T. urticae consumed by both of them was not higher than the consumed one when each predator was present in separate way.

  13. Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey

    Science.gov (United States)

    Mandal, Partha Sarathi

    2018-04-01

    In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.

  14. Differential predation by age and sex classes in blue wildebeest in Serengeti: study of a modern carnivore den in Olduvai Gorge (Tanzania.

    Directory of Open Access Journals (Sweden)

    Mari Carmen Arriaza

    Full Text Available Age and sex selection of prey is an aspect of predator ecology which has been extensively studied in both temperate and African ecosystems. This dimension, along with fecundity, survival rates of prey and mortality factors other than predation are important in laying down the population dynamics of prey and have important implications in the management of species. A carnivore den located in the short-grassland ecological unit of the Serengeti was studied. Sex- and age- class (using five age categories of the wildebeest remains recovered were analyzed through horn morphology, biometrics of the bones and tooth wear patterns. We compared our results with previous studies from lion and hyaena kills through multivariate analyses. Seasonality of the accumulation was analyzed through tooth histology. PCA and CVA results show that age class selection by predators depends on season, habitat-type, and growth rate of the wildebeest population. Female-biased predation was found to contradict classical hypotheses based on territorial male behaviour. The lion and spotted hyaena showed strong selection on age classes, contrary to previous studies. Migratory wildebeest sex ratio is regulated through differential predation by seasons and female deaths in the wet season are a trade-off for population stability. These data are crucial for an effective management of the species and the new method created may be useful for different carnivore species and their prey.

  15. Differential Predation by Age and Sex Classes in Blue Wildebeest in Serengeti: Study of a Modern Carnivore Den in Olduvai Gorge (Tanzania)

    Science.gov (United States)

    Arriaza, Mari Carmen; Domínguez-Rodrigo, Manuel; Martínez-Maza, Cayetana; Mabulla, Audax; Baquedano, Enrique

    2015-01-01

    Age and sex selection of prey is an aspect of predator ecology which has been extensively studied in both temperate and African ecosystems. This dimension, along with fecundity, survival rates of prey and mortality factors other than predation are important in laying down the population dynamics of prey and have important implications in the management of species. A carnivore den located in the short-grassland ecological unit of the Serengeti was studied. Sex- and age- class (using five age categories) of the wildebeest remains recovered were analyzed through horn morphology, biometrics of the bones and tooth wear patterns. We compared our results with previous studies from lion and hyaena kills through multivariate analyses. Seasonality of the accumulation was analyzed through tooth histology. PCA and CVA results show that age class selection by predators depends on season, habitat-type, and growth rate of the wildebeest population. Female-biased predation was found to contradict classical hypotheses based on territorial male behaviour. The lion and spotted hyaena showed strong selection on age classes, contrary to previous studies. Migratory wildebeest sex ratio is regulated through differential predation by seasons and female deaths in the wet season are a trade-off for population stability. These data are crucial for an effective management of the species and the new method created may be useful for different carnivore species and their prey. PMID:26017363

  16. From complex spatial dynamics to simple Markov chain models: do predators and prey leave footprints?

    DEFF Research Database (Denmark)

    Nachman, Gøsta Støger; Borregaard, Michael Krabbe

    2010-01-01

    to another, are then depicted in a state transition diagram, constituting the "footprints" of the underlying population dynamics. We investigate to what extent changes in the population processes modeled in the complex simulation (i.e. the predator's functional response and the dispersal rates of both......In this paper we present a concept for using presence-absence data to recover information on the population dynamics of predator-prey systems. We use a highly complex and spatially explicit simulation model of a predator-prey mite system to generate simple presence-absence data: the number...... of transition probabilities on state variables, and combine this information in a Markov chain transition matrix model. Finally, we use this extended model to predict the long-term dynamics of the system and to reveal its asymptotic steady state properties....

  17. Effects of predation stress and food ration on perch gut microbiota.

    Science.gov (United States)

    Zha, Yinghua; Eiler, Alexander; Johansson, Frank; Svanbäck, Richard

    2018-02-06

    Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context.

  18. Effects of Microphallus turgidus (Trematoda: Microphallidae) on the predation, behavior, and swimming stamina of the grass shrimp Palaemonetes pugio.

    Science.gov (United States)

    Kunz, Alyssa K; Pung, Oscar J

    2004-06-01

    The effect of the trematode Microphallus turgidus on its second intermediate host, the grass shrimp, Palaemonetes pugio, was tested. To do so, we measured the susceptibility of infected and uninfected shrimp to predation by the mummichog, Fundulus heteroclitus. Shrimp behavior was compared in the presence and absence of a fish predator, and the swimming stamina and backthrust escape responses of infected and uninfected shrimp were measured. Infected shrimp were more likely to be eaten by a predator than uninfected shrimp, had lower swimming stamina, and spent more time swimming and less time motionless in the presence of a predator. There was no difference between backthrust distances traveled in response to a stimulus by either infected or uninfected shrimp. Thus, M. turgidus may increase the predation of P. pugio in the wild, possibly by affecting the swimming stamina and predator avoidance responses of the shrimp.

  19. Predation by Northern Pikeminnow and tiger muskellunge on juvenile salmonids in a high–head reservoir: Implications for anadromous fish reintroductions

    Science.gov (United States)

    Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Wilson, Andrew C.; Lowery, Erin D.; Beauchamp, David A.

    2016-01-01

    The feasibility of reintroducing anadromous salmonids into reservoirs above high-head dams is affected by the suitability of the reservoir habitat for rearing and the interactions of the resident fish with introduced fish. We evaluated the predation risk to anadromous salmonids considered for reintroduction in Merwin Reservoir on the North Fork Lewis River in Washington State for two reservoir use-scenarios: year-round rearing and smolt migration. We characterized the role of the primary predators, Northern Pikeminnow Ptychocheilus oregonensis and tiger muskellunge (Northern Pike Esox lucius × Muskellunge E. masquinongy), by using stable isotopes and stomach content analysis, quantified seasonal, per capita predation using bioenergetics modeling, and evaluated the size and age structures of the populations. We then combined these inputs to estimate predation rates of size-structured population units. Northern Pikeminnow of FL ≥ 300 mm were highly cannibalistic and exhibited modest, seasonal, per capita predation on salmonids, but they were disproportionately much less abundant than smaller, less piscivorous, conspecifics. The annual predation on kokanee Oncorhynchus nerka (in biomass) by a size-structured unit of 1,000 Northern Pikeminnow having a FL ≥ 300 mm was analogous to 16,000–40,000 age-0 spring Chinook Salmon O. tshawytscha rearing year-round, or 400–1,000 age-1 smolts migrating April–June. The per capita consumption of salmonids by Northern Pikeminnow having a FL ≥ 200 mm was relatively low, due in large part to spatial segregation during the summer and the skewed size distribution of the predator population. Tiger muskellunge fed heavily on Northern Pikeminnow, other nonsalmonids, and minimally on salmonids. In addition to cannibalism within the Northern Pikeminnow population, predation by tiger muskellunge likely contributed to the low recruitment of larger (more piscivorous) Northern Pikeminnow, thereby decreasing the risk of predation to

  20. Effects of degeneracy and response function in a diffusion predator-prey model

    Science.gov (United States)

    Li, Shanbing; Wu, Jianhua; Dong, Yaying

    2018-04-01

    In this paper, we consider positive solutions of a diffusion predator-prey model with a degeneracy under the Dirichlet boundary conditions. We first obtain sufficient conditions of the existence of positive solutions by the Leray-Schauder degree theory, and then analyze the limiting behavior of positive solutions as the growth rate of the predator goes to infinity and the conversion rates of the predator goes to zero, respectively. It is shown that these results for Holling II response function (i.e. m  >  0) reveal interesting contrast with that for the classical Lotka-Volterra predator-prey model (i.e. m  =  0).

  1. Bird's nesting success and eggs predation within Arusa National ...

    African Journals Online (AJOL)

    Identification of predators was obtained indirectly through punched signs left by predators on artificial and true eggs. Observation was done daily and data were analyzed both qualitatively and quantitatively. The study showed no significant difference in predation effect on eggs in glade versus glade edge X2 = 3.08, Df = 1, ...

  2. Are all prey created equal? A review and synthesis of differential predation on prey in substandard condition

    Science.gov (United States)

    Mesa, Matthew G.; Poe, Thomas P.; Gadomski, Dena M.; Petersen, James H.

    1994-01-01

    Our understanding of predator-prey interactions in fishes has been influenced largely by research assuming that the condition of the participants is normal. However, fish populations today often reside in anthropogenically altered environments and are subjected to many kinds of stressors, which may reduce their ecological performance by adversely affecting their morphology, physiology, or behaviour. One consequence is that either the predator or prey, or both, may be in a substandard condition at the time of an interaction. We reviewed the literature on predator-prey interactions in fishes where substandard prey were used as experimental groups. Although most of this research indicates that such prey are significantly more vulnerable to predation, prey condition has rarely been considered in ecological theory regarding predator-prey interactions. The causal mechanisms for increased vulnerability of substandard prey to predation include a failure to detect predators, lapses in decision-making, poor fast-start performance, inability to shoal effectively, and increased prey conspicuousness. Despite some problems associated with empirical predator-prey studies using substandard prey, their results can have theoretical and applied uses, such as in ecological modelling or justification of corrective measures to be implemented in the wild. There is a need for more corroborative field experimentation, a better understanding of the causal mechanisms behind differential predation, and increased incorporation of prey condition into the research of predator-prey modellers and theoreticians. If the concept of prey condition is considered in predator-prey interactions, our understanding of how such interactions influence the structure and dynamics of fish communities is likely to change, which should prove beneficial to aquatic ecosystems.

  3. Is it safe to nest near conspicuous neighbours? Spatial patterns in predation risk associated with the density of American Golden-Plover nests.

    Science.gov (United States)

    Giroux, Marie-Andrée; Trottier-Paquet, Myriam; Bêty, Joël; Lamarre, Vincent; Lecomte, Nicolas

    2016-01-01

    Predation is one of the main factors explaining nesting mortality in most bird species. Birds can avoid nest predation or reduce predation pressure by breeding at higher latitude, showing anti-predator behaviour, selecting nest sites protected from predators, and nesting in association with protective species. American Golden-Plovers (Pluvialis dominica) defend their territory by using various warning and distraction behaviours displayed at varying levels of intensity (hereafter "conspicuous behaviour"), as well as more aggressive behaviours such as aerial attacks, but only in some populations. Such antipredator behaviour has the potential to repel predators and thus benefit the neighbouring nests by decreasing their predation risk. Yet, conspicuous behaviour could also attract predators by signalling the presence of a nest. To test for the existence of a protective effect associated with the conspicuous antipredator behaviour of American Golden-Plovers, we studied the influence of proximity to plover nests on predation risk of artificial nests on Igloolik Island (Nunavut, Canada) in July 2014. We predicted that the predation risk of artificial nests would decrease with proximity to and density of plover nests. We monitored 18 plover nests and set 35 artificial nests at 30, 50, 100, 200, and 500 m from seven of those plover nests. We found that the predation risk of artificial nests increases with the density of active plover nests. We also found a significant negative effect of the distance to the nearest active protector nest on predation risk of artificial nests. Understanding how the composition and structure of shorebird communities generate spatial patterns in predation risks represents a key step to better understand the importance of these species of conservation concern in tundra food webs.

  4. Effects of predation on diel activity and habitat use of the coral-reef shrimp Cinetorhynchus hendersoni (Rhynchocinetidae)

    Science.gov (United States)

    Ory, Nicolas C.; Dudgeon, David; Duprey, Nicolas; Thiel, Martin

    2014-09-01

    Nonlethal effects of predators on prey behaviour are still poorly understood, although they may have cascading effects through food webs. Underwater observations and experiments were conducted on a shallow fringing coral reef in Malaysia to examine whether predation risks affect diel activity, habitat use, and survival of the rhynchocinetid shrimp Cinetorhynchus hendersoni. The study site was within a protected area where predatory fish were abundant. Visual surveys and tethering experiments were conducted in April-May 2010 to compare the abundance of shrimps and predatory fishes and the relative predation intensity on shrimps during day and night. Shrimps were not seen during the day but came out of refuges at night, when the risk of being eaten was reduced. Shrimp preferences for substrata of different complexities and types were examined at night when they could be seen on the reef; complex substrata were preferred, while simple substrata were avoided. Shrimps were abundant on high-complexity columnar-foliate Porites rus, but tended to make little use of branching Acropora spp. Subsequent tethering experiments, conducted during daytime in June 2013, compared the relative mortality of shrimps on simple (sand-rubble, massive Porites spp.) and complex ( P. rus, branching Acropora spp.) substrata under different predation risk scenarios (i.e., different tether lengths and exposure durations). The mortality of shrimps with short tethers (high risk) was high on all substrata while, under low and intermediate predation risks (long tethers), shrimp mortality was reduced on complex corals relative to that on sand-rubble or massive Porites spp. Overall, mortality was lowest on P. rus. Our study indicates that predation risks constrain shrimp activity and habitat choice, forcing them to hide deep inside complex substrata during the day. Such behavioural responses to predation risks and their consequences for the trophic role of invertebrate mesoconsumers warrant further

  5. Making inference from wildlife collision data: inferring predator absence from prey strikes

    Directory of Open Access Journals (Sweden)

    Peter Caley

    2017-02-01

    Full Text Available Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  6. Making inference from wildlife collision data: inferring predator absence from prey strikes.

    Science.gov (United States)

    Caley, Peter; Hosack, Geoffrey R; Barry, Simon C

    2017-01-01

    Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  7. The Effects of Dispersal and Predator Density on Prey Survival in an Insect-Red Clover Metacommunity.

    Science.gov (United States)

    Stasek, David J; Radl, James N; Crist, Thomas O

    2018-01-01

    Trophic interactions are often studied within habitat patches, but among-patch dispersal of individuals may influence local patch dynamics. Metacommunity concepts incorporate the effects of dispersal on local and community dynamics. There are few experimental tests of metacommunity theory using insects compared to those conducted in microbial microcosms. Using connected experimental mesocosms, we varied the density of the leafhopper Agallia constricta Van Duzee (Homoptera: Cicadellidae) and a generalist insect predator, the damsel bug (Nabis spp., Heteroptera: Nabidae), to determine the effects of conspecific and predator density and varying the time available to dispersal among mesocosms on predation rates, dispersal rates, and leafhopper survival. Conspecific and damsel bug density did not affect dispersal rates in leafhoppers, but this may be due to leafhoppers' aversion to leaving the host plants or the connecting tubes between mesocosms hindering leafhopper movement. Leafhopper dispersal was higher in high-dispersal treatments. Survival rates of A. constricta were also lowest in treatments where dispersal was not limited. This is one of the first experimental studies to vary predator density and the time available to dispersal. Our results indicate that dispersal is the key to understanding short-term processes such as prey survival in predator-prey metacommunities. Further work is needed to determine how dispersal rates influence persistence of communities in multigenerational studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator.

    Science.gov (United States)

    Barrios-O'Neill, Daniel; Dick, Jaimie T A; Emmerson, Mark C; Ricciardi, Anthony; MacIsaac, Hugh J; Alexander, Mhairi E; Bovy, Helene C

    2014-05-01

    Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  9. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    Science.gov (United States)

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  10. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting.

    Science.gov (United States)

    Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro

    2013-12-22

    Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.

  11. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    NARCIS (Netherlands)

    Aguera Garcia, Antonio; Schellekens, Tim; Jansen, J.M.; Smaal, A.C.

    2015-01-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may

  12. The use of coded wire tags to estimate cormorant predation on fish stocks in an estuary

    DEFF Research Database (Denmark)

    Jepsen, Niels; Klenke, Reinhard; Sonnesen, Per Michael

    2010-01-01

    One of the main obstacles to resolving the conflict between an increasing population of cormorants, Phalacrocorax carbo sinensis, and the fishing industry is the lack of documentation of the effect of the birds’ predation on fish stocks. Tagging and releasing fish with coded wire tags followed...

  13. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff

    DEFF Research Database (Denmark)

    Steiner, Uli; Van Buskirk, Josh

    2009-01-01

    , consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous...... and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes....

  14. Breeding in a den of thieves: pros and cons of nesting close to egg predators

    NARCIS (Netherlands)

    de Fouw, J; Bom, R.A.; Klaassen, R.H.G.; Müskens, G.J. D. M.; de Vries, P.P.; Popov, I.Y.; Kokorev, Y.I.; Ebbinge, B.S.; Nolet, B.A.

    2016-01-01

    Breeding success of many Arctic-breedingbird populations varies with lemming cycles dueto prey switching behavior of generalist predators. Several bird species breed on islands to escape fromgeneralist predators like Arctic fox Vulpes lagopus, but little is known about how these species interact.We

  15. The chaos and control of a food chain model supplying additional food to top-predator

    International Nuclear Information System (INIS)

    Sahoo, Banshidhar; Poria, Swarup

    2014-01-01

    Highlights: • We propose a chaotic food chain model supplying additional food to top-predator. • Local and global stability conditions are derived in presence of additional food. • Chaos is controlled only by increasing quantity of additional food. • System enters into periodic region and depicts Hopf bifurcations supplying additional food. • This an application of non-chemical methods for controlling chaos. -- Abstract: The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the

  16. Direct and Indirect Effects of Climate Change on Amphibian Populations

    Directory of Open Access Journals (Sweden)

    Stephanie S. Gervasi

    2010-02-01

    Full Text Available As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  17. Phage or foe: an insight into the impact of viral predation on microbial communities.

    Science.gov (United States)

    Fernández, Lucía; Rodríguez, Ana; García, Pilar

    2018-05-01

    Since their discovery, bacteriophages have been traditionally regarded as the natural enemies of bacteria. However, recent advances in molecular biology techniques, especially data from "omics" analyses, have revealed that the interplay between bacterial viruses and their hosts is far more intricate than initially thought. On the one hand, we have become more aware of the impact of viral predation on the composition and genetic makeup of microbial communities thanks to genomic and metagenomic approaches. Moreover, data obtained from transcriptomic, proteomic, and metabolomic studies have shown that responses to phage predation are complex and diverse, varying greatly depending on the bacterial host, phage, and multiplicity of infection. Interestingly, phage exposure may alter different phenotypes, including virulence and biofilm formation. The complexity of the interactions between microbes and their viral predators is also evidenced by the link between quorum-sensing signaling pathways and bacteriophage resistance. Overall, new data increasingly suggests that both temperate and virulent phages have a positive effect on the evolution and adaptation of microbial populations. From this perspective, further research is still necessary to fully understand the interactions between phage and host under conditions that allow co-existence of both populations, reflecting more accurately the dynamics in natural microbial communities.

  18. Invasive rats strengthen predation pressure on bird eggs in a South Pacific island rainforest.

    Science.gov (United States)

    Duron, Quiterie; Bourguet, Edouard; De Meringo, Hélène; Millon, Alexandre; Vidal, Eric

    2017-12-01

    Invasive rats ( Rattus spp.) are known to have pervasive impacts on island birds, particularly on their nesting success. To conserve or restore bird populations, numerous invasive rat control or eradication projects are undertaken on islands worldwide. However, such projects represent a huge investment and the decision-making process requires proper assessment of rat impacts. Here, we assessed the influence of two sympatric invasive rats ( Rattus rattus and R. exulans ) on native bird eggs in a New Caledonian rainforest, using artificial bird-nest monitoring. A total of 178 artificial nests containing two eggs of three different sizes were placed either on the ground or 1.5 m high and monitored at the start of the birds' breeding season. Overall, 12.4% of the nests were depredated during the first 7 days. At site 1, where nests were monitored during 16 days, 41.8% of the nests were depredated. The main predator was the native crow Corvus moneduloides , responsible for 62.9% of the overall predation events. Rats were responsible for only 22.9% of the events, and ate only small and medium eggs at both heights. Our experiment suggests that in New Caledonia, predation pressure by rats strengthens overall bird-nest predation, adding to that by native predators. Experimental rat control operations may allow reduced predation pressure on nests as well as the recording of biodiversity responses after rat population reduction.

  19. Collective strategies and cyclic dominance in asymmetric predator-prey spatial games.

    Science.gov (United States)

    Cazaubiel, Annette; Lütz, Alessandra F; Arenzon, Jeferson J

    2017-10-07

    Predators may attack isolated or grouped prey in a cooperative, collective way. Whether a gregarious behavior is advantageous to each species depends on several conditions and game theory is a useful tool to deal with such a problem. We here extend the Lett et al. (2004) to spatially distributed populations and compare the resulting behavior with their mean-field predictions for the coevolving densities of predator and prey strategies. Besides its richer behavior in the presence of spatial organization, we also show that the coexistence phase in which collective and individual strategies for each group are present is stable because of an effective, cyclic dominance mechanism similar to a well-studied generalization of the Rock-Paper-Scissors game with four species, a further example of how ubiquitous this coexistence mechanism is. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The many faces of fear: a synthesis of the methodological variation in characterizing predation risk.

    Science.gov (United States)

    Moll, Remington J; Redilla, Kyle M; Mudumba, Tutilo; Muneza, Arthur B; Gray, Steven M; Abade, Leandro; Hayward, Matt W; Millspaugh, Joshua J; Montgomery, Robert A

    2017-07-01

    Predators affect prey by killing them directly (lethal effects) and by inducing costly antipredator behaviours in living prey (risk effects). Risk effects can strongly influence prey populations and cascade through trophic systems. A prerequisite for assessing risk effects is characterizing the spatiotemporal variation in predation risk. Risk effects research has experienced rapid growth in the last several decades. However, preliminary assessments of the resultant literature suggest that researchers characterize predation risk using a variety of techniques. The implications of this methodological variation for inference and comparability among studies have not been well recognized or formally synthesized. We couple a literature survey with a hierarchical framework, developed from established theory, to quantify the methodological variation in characterizing risk using carnivore-ungulate systems as a case study. Via this process, we documented 244 metrics of risk from 141 studies falling into at least 13 distinct subcategories within three broader categories. Both empirical and theoretical work suggest risk and its effects on prey constitute a complex, multi-dimensional process with expressions varying by spatiotemporal scale. Our survey suggests this multi-scale complexity is reflected in the literature as a whole but often underappreciated in any given study, which complicates comparability among studies and leads to an overemphasis on documenting the presence of risk effects rather than their mechanisms or scale of influence. We suggest risk metrics be placed in a more concrete conceptual framework to clarify inference surrounding risk effects and their cascading effects throughout ecosystems. We recommend studies (i) take a multi-scale approach to characterizing risk; (ii) explicitly consider 'true' predation risk (probability of predation per unit time); and (iii) use risk metrics that facilitate comparison among studies and the evaluation of multiple

  1. Study on screening of anti-predator rhizosphere bacterium against Caenorhabditis elegans and its anti predation mechanism

    Directory of Open Access Journals (Sweden)

    HE Qingling

    2016-08-01

    Full Text Available Althoughmicrobial fertilizer is multi-effect,environmental friendly and long-term efficient,its practical application effect is but decreased for being prey by the other creators living in soil frequently.Many bacterium have developed their mechanisms that expel or kill worms to defend themselves from predators.Screening of anti-predator rhizosphere bacterium helps us to find out competitive plant growth promoting rhizobacteria(PGPR.Using Caenorhabditis elegans as sample,this study roughly observed two strains of biocontrol:Pseudomonas aurantiaca JD37 and Pseudomonas fluorescens P13.Using Escherichia coli OP50 as control group,we find the preference order of worms,from highest to lowest,is P13,OP50 and JD37.In slow killing assay,the death rate of worms for JD37 and P13 are 26.12% and 18.66% respectively.The activity and reproduction rate of C.elegans decrease when it is fed on JD37.The results of chemical and micro-biological study show that JD37 cannot produce any currently studied second metabolites which kill worms,while P13 can produce Hydrogen cyanide (HCN.All these results show that JD37 has the ability of anti-predator,and is more competitive under predation pressure,which suggests its broad application prospect as microbial fertilizer.

  2. Effects of seed density and proximity to refuge habitat on seed predation rates for a rare and a common Lupinus species.

    Science.gov (United States)

    Pardini, Eleanor A; Patten, Melissa V; Knight, Tiffany M

    2017-03-01

    Biotic interactions such as seed predation can play a role in explaining patterns of abundance among plant species. The effect of seed predation will depend on how the strength of predation differs across species and environments, and on the degree to which seed loss at one life-cycle phase increases fitness at another phase. Few studies have simultaneously quantified predispersal and postdispersal predation in co-occurring rare and common congeners, despite the value of estimating both for understanding causes of rarity. We quantified predispersal seed predation on the rare, herbaceous species Lupinus tidestromii (Fabaceae) and its common, shrubby congener L. chamissonis across multiple years in the same community. We experimentally measured postdispersal seed predation at two seed densities and locations near or far from an exotic grass housing high densities of deer mice ( Peromyscus maniculatus ), their primary, native seed predator. The common L. chamissonis had the lowest predispersal seed predation of the two lupine species, potentially because of its height: its high racemes received less predation than those low to the ground. By contrast, the same species experienced higher postdispersal seed predation, and at predators traveled long distances away from refuge habitat to consume their seeds. Across both plant species, mice preferentially predated high-density seed sources. Our results show differences in the magnitude and direction of seed predation between the species across different life-cycle phases. We demonstrated possible roles of proximity to refuge habitat, seed density, and seed size in these patterns. Congeneric comparisons would benefit from a comprehensive framework that considers seed predation across different life-cycle phases and the environmental context of predation. © 2017 Botanical Society of America.

  3. Changes in Alaskan soft-bottom prey communities along a gradient in sea otter predation

    Science.gov (United States)

    Kvitek, R.G.; Oliver, J.S.; DeGange, A.R.; Anderson, B.S.

    1992-01-01

    Sea Otter (Enhydra lutris), well documented as "keystone" predators in rocky marine communities, were found to exert a strong influence on infaunal prey communities in soft-sediment habitats. Direct and indirect effects of sea otter predation on subtidal soft-bottom prey communities were evaluated along a temporal gradient of sea otter occupancy around the Kodiak Archipelago. The results indicate that Kodiak otters forage primarily on bivalve prey and dramatically reduce infaunal bivalve and green sea urchin (Strongylocentrotus droebachiensis) prey populations. Bivalve prey abundance, biomass, and size were inversely related to duration of sea otter occupancy. The relative conditions of shells discarded by otters in shallow ( 20 m) water at the same sites indicate that otters first exploited Saxidomus in shallow-water feeding areas, and later switched to Macoma spp. in deeper water. Otter-cracked shells of the deep-burrowing clam Tresus capax were rarely found, even at otter foraging sites where the clam accounted for the majority of available prey biomass, suggesting that it has a partial depth refuge from otter predation. The indirect effects of otter predation included substratum disturbance and the facilitation of sea star predation on infaunal prey. Sea stars, Pycnopodia helianthoides, were attracted to experimentally dug excavations as well as natural sea otter foraging pits, where the sea stars foraged on smaller size classes of infaunal bivalves than those eaten by otters. Otters also discard clam shells on the sediment surface and expose old, buried shells during excavation. Surface shells were found to provide attachment sites for large anemones and kelp. Our study shows that sea otters can affect soft-sediment communities, not only through predation, as in rocky habitats, but also through disturbance, and thus retain a high degree of influence in two very different habitat types.

  4. Breeding in a den of thieves : Pros and cons of nesting close to egg predators

    NARCIS (Netherlands)

    de Fouw, Jimmy; Bom, Roeland A.; Klaassen, Raymond H. G.; Muskens, Gerard J. D. M.; de Vries, Peter P.; Popov, Igor Yu.; Kokorev, Yakov I.; Ebbinge, Barwolt S.; Nolet, Bart A.

    Breeding success of many Arctic-breeding bird populations varies with lemming cycles due to prey switching behavior of generalist predators. Several bird species breed on islands to escape from generalist predators like Arctic fox Vulpes lagopus, but little is known about how these species interact.

  5. Breeding in a den of thieves: pros and cons of nesting close to egg predators

    NARCIS (Netherlands)

    de Fouw, J.; Bom, R.A.; Klaassen, R.H.G.; Müskens, G.J.D.M.; de Vries, P.P.; Popov, I.Yu.; Kokorev, Y.I.; Ebbinge, B.S.; Nolet, B.A.

    Breeding success of many Arctic-breeding bird populations varies with lemming cycles due to prey switching behavior of generalist predators. Several bird species breed on islands to escape from generalist predators like Arctic fox Vulpes lagopus, but little is known about how these species interact.

  6. Breeding in a den of thieves: pros and cons of nesting close to egg predators.

    NARCIS (Netherlands)

    De Fouw, J.; Bom, R. A.; Klaassen, R.; Müskens, G.J.D.M.; De Vries, P.P.; Popov, I.Y.; Kokorev, Y.I.; Ebbinge, B.S.; Nolet, B.A.

    2016-01-01

    Breeding success of many Arctic-breeding bird populations varies with lemming cycles due to prey switching behavior of generalist predators. Several bird species breed on islands to escape from generalist predators like Arctic fox Vulpes lagopus, but little is known about how these species interact.

  7. Foraging trade-offs along a predator-permanence gradient in subalpine wetlands

    Science.gov (United States)

    Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.

    1999-01-01

    We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders

  8. Is it safe to nest near conspicuous neighbours? Spatial patterns in predation risk associated with the density of American Golden-Plover nests

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    2016-08-01

    Full Text Available Predation is one of the main factors explaining nesting mortality in most bird species. Birds can avoid nest predation or reduce predation pressure by breeding at higher latitude, showing anti-predator behaviour, selecting nest sites protected from predators, and nesting in association with protective species. American Golden-Plovers (Pluvialis dominica defend their territory by using various warning and distraction behaviours displayed at varying levels of intensity (hereafter “conspicuous behaviour”, as well as more aggressive behaviours such as aerial attacks, but only in some populations. Such antipredator behaviour has the potential to repel predators and thus benefit the neighbouring nests by decreasing their predation risk. Yet, conspicuous behaviour could also attract predators by signalling the presence of a nest. To test for the existence of a protective effect associated with the conspicuous antipredator behaviour of American Golden-Plovers, we studied the influence of proximity to plover nests on predation risk of artificial nests on Igloolik Island (Nunavut, Canada in July 2014. We predicted that the predation risk of artificial nests would decrease with proximity to and density of plover nests. We monitored 18 plover nests and set 35 artificial nests at 30, 50, 100, 200, and 500 m from seven of those plover nests. We found that the predation risk of artificial nests increases with the density of active plover nests. We also found a significant negative effect of the distance to the nearest active protector nest on predation risk of artificial nests. Understanding how the composition and structure of shorebird communities generate spatial patterns in predation risks represents a key step to better understand the importance of these species of conservation concern in tundra food webs.

  9. Ecotoxicological effects of buprofezin on fecundity, growth, development, and predation of the wolf spider Pirata piratoides (Schenkel).

    Science.gov (United States)

    Deng, Lingling; Xu, Muqi; Cao, Hong; Dai, Jiayin

    2008-11-01

    The toxicological effects of buprofezin, an insect growth regulator, on the fecundity, development, and pest control potential of the wolf spider Pirata piratoides (Schenkel) (Araneae: Lycosidae) were investigated in the laboratory. It was shown that buprofezin had low toxicity to P. piratoides and that the median lethal dosage (LD(50)) 48 h and 10% lethal dosage (LD(10)) after topical application for female spiders were 653 and 316 mg buprofezin/mg fresh weight of spider, respectively. Buprofezin significantly reduced the percent hatching of spiders' eggs but had only a slight effect on egg production. No negative effects on the development and growth were observed. However, spider predation rates were strongly affected: Insecticide-treated females predated on fewer prey than the controls, and their predation rate did not recover even 5 days after insecticide application. This indicated that their pest control potential might be influenced by buprofezin, and the use of buprofezin in biological control of insects is discussed.

  10. Predation Risk versus Pesticide Exposure: Consequences of Fear and Loathing in the Life of Stream Shredders

    Science.gov (United States)

    Pestana, J. T.; Baird, D. J.; Soares, A. M.

    2005-05-01

    Stream invertebrates are exposed to complex stressor regimes including both biotic and abiotic factors. Species living in streams in agricultural landscapes are often subjected to episodic or continuous exposures to low levels of agrochemicals, which may approach or exceed specific substance guidelines. Sublethal effects of pesticides may result in direct effects on organisms (e.g. reduced physiological performance), which may in turn contribute to indirect effects relating to survival (e.g. increased predation risk). Here, we investigate the possibility that predator-release kairomones can act additively with low-level pesticide exposure to reduce physiological performance and survival of stream invertebrates in previously unforeseen ways. Feeding, metabolic and behavioural responses of two shredder insects, the North American stonefly Pteronarcys comstockii and the European caddisfly Sericostoma vittatum were measured under exposure to the insecticide imidacloprid at different levels of indirect predation stress using predator-release kairomones from Brown Trout (Salmo trutta). Pteronarcys feeding was measured in terms of mass of naturally conditioned alder leaf discs consumed over a 6-day and 10 -day period in animals held in cages in stream mesocosms. Pteronarcys feeding was impaired at 1 ppb in the 6-day trial and at 0,5 ppb in the 10-day trial relatively to unexposed controls. Metabolic rate was measured in the lab in terms of oxygen consumption of Pteronarcys. Animals exposed to 0.5 and 1 ppb imidacloprid showed elevated respiratory rates compared to controls. Laboratory experiments with Sericostoma, currently in progress, are examining the separate and combined effects of imidacloprid and predator kairomone on similar endpoints. These preliminary results are discussed in relation to the development of the Mechanistic Unifying Stressor Effects (MUSE) model which can be used to predict combined ecological effects of multiple stressors at the population level.

  11. Differential impacts of six insecticides on a mealybug and its coccinellid predator.

    Science.gov (United States)

    Barbosa, Paulo R R; Oliveira, Martin D; Barros, Eduardo M; Michaud, J P; Torres, Jorge B

    2018-01-01

    Broad-spectrum insecticides may disrupt biological control and cause pest resurgence due to their negative impacts on natural enemies. The preservation of sustainable pest control in agroecosystems requires parallel assessments of insecticide toxicity to target pests and their key natural enemies. In the present study, the leaf dipping method was used to evaluate the relative toxicity of six insecticides to the striped mealybug, Ferrisia dasylirii (Cockerell) (Hemiptera: Pseudococcidae) and its predator, Tenuisvalvae notata (Mulsant) (Coleoptera: Coccinellidae). Three neurotoxic insecticides, lambda-cyhalothrin, methidathion and thiamethoxam, caused complete mortality of both pest and predator when applied at their highest field rates. In contrast, lufenuron, pymetrozine and pyriproxyfen caused moderate mortality of third-instar mealybug nymphs, and exhibited low or no toxicity to either larvae or adults of the lady beetle. At field rates, lufenuron and pymetrozine had negligible effects on prey consumption, development or reproduction of T. notata, but adults failed to emerge from pupae when fourth instar larvae were exposed to pyriproxyfen. In addition, pyriproxyfen caused temporary sterility; T. notata females laid non-viable eggs for three days after exposure, but recovered egg fertility thereafter. Our results indicate that the three neurotoxic insecticides can potentially control F. dasylirii, but are hazardous to its natural predator. In contrast, lufenuron and pymetrozine appear compatible with T. notata, although they appear less effective against the mealybug. Although the acute toxicity of pyriproxyfen to T. notata was low, some pupal mortality and reduced egg fertility suggest that this material could impede the predator's numerical response to mealybug populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous...

  13. Optimal foraging and predator-prey dynamics III

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Eisner, Jan

    2003-01-01

    Roč. 63, - (2003), s. 269-279 ISSN 0040-5809 R&D Projects: GA ČR GA201/03/0091; GA MŠk LA 101 Institutional research plan: CEZ:AV0Z5007907 Keywords : Optimal foraging theory * adaptive behavior * predator-prec population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 2.261, year: 2003

  14. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator.

    Science.gov (United States)

    Hammill, Edd; Johnson, Ellery; Atwood, Trisha B; Harianto, Januar; Hinchliffe, Charles; Calosi, Piero; Byrne, Maria

    2018-01-01

    The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO 2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO 2 370 μatm) or end-of-the-century OA (pCO 2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective. © 2017 John Wiley & Sons

  15. Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds.

    Science.gov (United States)

    Webb, Sara L; Willson, Mary F

    1985-08-01

    We investigated effects of seed density, distance from parent, and habitat (woods, open field) on post-dispersal predation risk (chiefly by rodents) for seeds of Prunus virginiana (Rosaceae). Additional study of the habitat effect (woods, open field, treefall gap) was made with seeds of Prunus avium (Rosaceae) and Uvularia grandiflora (Liliaceae). Density of Prunus seeds (range 2-40 seeds/group) did not affect predation risk for individual seeds. Distance from parent plants did influence predation risk, which was greatest directly beneath parents. This distance effect primarily comprised a sharp drop in risk within 2 m of parents, a distance too small to generate a "spacing rule" for conspecifics.We found that habitat strongly influenced predation intensity. Rates of removal of Prunus seeds were higher in woods than in open fields, except when overall predation intensity was very low and no pattern could be discerned. Prunus seed removal rates were higher in closed woods than in treefall gaps. Consequently, a Prunus seed will more likely escape predation if dispersed to an open site. In contrast, Uvularia seed removal rates were higher in open fields than in woods but did not differ between closed woods and tree-fall gaps.Predation intensity was spatially patchy between and within experimental arrays, but was consistent over time at some specific points in space, possibly reflecting home ranges of seed predators.

  16. Adaptive Advantage of Myrmecochory in the Ant-Dispersed Herb Lamium amplexicaule (Lamiaceae: Predation Avoidance through the Deterrence of Post-Dispersal Seed Predators.

    Directory of Open Access Journals (Sweden)

    Koki Tanaka

    Full Text Available Seed dispersal by ants (myrmecochory is found worldwide, but the benefits that plants obtain from this mutualism remain uncertain. In the present study, we conducted laboratory experiments to demonstrate seed predator avoidance as a benefit of myrmecochory using the annual ant-dispersed herb Lamium amplexicaule, the disperser ant Tetramorium tsushimae, and the seed predatory burrower bug Adomerus rotundus. We compared the predation intensity of Lamium amplexicaule seeds by Adomerus rotundus under the presence or absence of Tetramorium tsushimae. Both the number of seeds sucked by Adomerus rotundus adults and the feeding duration of sucked seeds by nymphs were significantly reduced in the presence of ants. This effect was most likely due to the behavioral alteration of Adomerus rotundus in response to the ant presence, because ants seldom predated Adomerus rotundus during the experiment. Our results demonstrated that the presence of ants decreases post-dispersal seed predation, even when the ants do not bury the seeds. The present study thus suggests that the non-consumptive effects of ants on seed predators benefit myrmecochorous plants.

  17. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    Science.gov (United States)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  18. School is out on noisy reefs: the effect of boat noise on predator learning and survival of juvenile coral reef fishes.

    Science.gov (United States)

    Ferrari, Maud C O; McCormick, Mark I; Meekan, Mark G; Simpson, Stephen D; Nedelec, Sophie L; Chivers, Douglas P

    2018-01-31

    Noise produced by anthropogenic activities is increasing in many marine ecosystems. We investigated the effect of playback of boat noise on fish cognition. We focused on noise from small motorboats, since its occurrence can dominate soundscapes in coastal communities, the number of noise-producing vessels is increasing rapidly and their proximity to marine life has the potential to cause deleterious effects. Cognition-or the ability of individuals to learn and remember information-is crucial, given that most species rely on learning to achieve fitness-promoting tasks, such as finding food, choosing mates and recognizing predators. The caveat with cognition is its latent effect: the individual that fails to learn an important piece of information will live normally until the moment where it needs the information to make a fitness-related decision. Such latent effects can easily be overlooked by traditional risk assessment methods. Here, we conducted three experiments to assess the effect of boat noise playbacks on the ability of fish to learn to recognize predation threats, using a common, conserved learning paradigm. We found that fish that were trained to recognize a novel predator while being exposed to 'reef + boat noise' playbacks failed to subsequently respond to the predator, while their 'reef noise' counterparts responded appropriately. We repeated the training, giving the fish three opportunities to learn three common reef predators, and released the fish in the wild. Those trained in the presence of 'reef + boat noise' playbacks survived 40% less than the 'reef noise' controls over our 72 h monitoring period, a performance equal to that of predator-naive fish. Our last experiment indicated that these results were likely due to failed learning, as opposed to stress effects from the sound exposure. Neither playbacks nor real boat noise affected survival in the absence of predator training. Our results indicate that boat noise has the potential to cause

  19. A non-native prey mediates the effects of a shared predator on an ecosystem service.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria. The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.

  20. 'Different strokes for different folks': geographically isolated strains of Lymnaea stagnalis only respond to sympatric predators and have different memory forming capabilities.

    Science.gov (United States)

    Orr, Michael V; Hittel, Karla; Lukowiak, Ken

    2009-07-01

    Gaining insight into how natural trait variation is manifest in populations shaped by differential environmental factors is crucial to understanding the evolution, ecology and sensory biology of natural populations. We have demonstrated that lab-reared Lymnaea detect and respond to the scent of a crayfish predator with specific, appropriate anti-predator behavioral responses, including enhanced long-term memory (LTM) formation, and that such predator detection significantly alters the electrophysiological activity of RPeD1, a neuron that is a necessary site for LTM formation. Here we ask: (1) do distinct populations of wild Lymnaea stagnalis respond only to sympatric predators and if so, can these traits be quantified at both the behavioral and neurophysiological levels, and (2) does the presence of a non-sympatric predator elicit anti-predator behaviors including augmentation of LTM? We tested three different populations of wild (i.e. not lab-reared) snails freshly collected from their natural habitat: (1) polders near Utrecht in The Netherlands, (2) six seasonally isolated ponds in the Belly River drainage in southern Alberta, Canada and (3) a 20-year-old human-made dugout pond in southern Alberta. We found strain-specific variations in the ability to form LTM and that only a sympatric predator evoked anti-predatory behaviors, including enhanced LTM formation and changes in RPeD1 activity.

  1. Sand lance: A review of biology and predator relations and annotated bibliography

    Science.gov (United States)

    Robards, Martin D.; Willson, Mary F.; Armstrong, Robert H.; Piatt, John F.

    1999-01-01

    Six species of sand lance (Ammodytes) in temperate and boreal regions are currently recognized. Sand lance can occupy a wide range of environmental conditions, but all appear to be dormant predominantly in winter, and one species is in summer also. They lack a swim bladder and spend much of their time buried in specific substrates. Copepods are the primary food. Spawning usually occurs in fall or winter (although some species also spawn in spring), eggs are demersal, and larvae may hatch at times of low food abundance. Sand lance usually occur in schools and are regarded as a relatively high-quality forage fish.Sand lance constitute a major prey for at least some populations of over 100 species of consumer, including 40 species of birds, 12 species of marine mammals, 45 species of fishes, and some invertebrates. Variation in the availability of sand lance (and other forage fishes) can have major effects on the breeding success and survival of their predators. Commercial fishing and other pressures on sand lance populations potentially have ramifying effects on many species of wildlife.The bibliography contains over 1,700 references on the family Ammodytidae, with an emphasis on the genus Ammodytes. Keywords are provided for each reference and have been further organized into taxonomic, geographic, subject, and predator indexes.

  2. Red fox predation on breeding ducks in midcontinent North America

    Science.gov (United States)

    Sargeant, Alan B.; Allen, Stephen H.; Eberhardt, Robert T.

    1984-01-01

    populations in that area. Of 5,402 individual food items found at dens in the intensive study area, 24% were adult ducks. Ducks made up an estimated maximum average of 16% of the prey biomass required by fox families during the denning season. The average annual take of adult ducks by foxes in the midcontinent area was estimated to be about 900,000. This estimate included both scavenged and fox-killed ducks, as well as ducks taken after the denning season. Fox impact on midcontinent ducks was greatest in eastern North Dakota where both fox and duck densities were relatively high. Predation in that area was likely increased by environmental factors, especially intensive agriculture that concentrated nesting and reduced prey abundance. Predation by red foxes and other predators severely reduces duck production in the midcontinent area. Effective management to increase waterfowl production will necessitate coping with or reducing high levels of predation.

  3. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2004-01-01

    This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  4. Effects of gull predation and weather on survival of emperor goose goslings

    Science.gov (United States)

    Schmutz, Joel A.; Manly, Bryan F.J.; Dau, Christian P.

    2001-01-01

    Numbers of emperor geese (Chen canagica) have remained depressed since the mid-1980s. Despite increases in glaucous gulls (Larus hyperboreus), a primary predator of goslings, little information existed to assess whether recent patterns of gosling survival have been a major factor affecting population dynamics. We used observations of known families of emperor geese to estimate rates of gosling survival during 1993-96 on the Yukon-Kuskokwim Delta, Alaska. Survival of goslings to 30 days of age varied among years from 0.332 during 1994 to 0.708 during 1995. Survival was lowest during 1993-94, which corresponded with the years of highest frequency of disturbance of goose broods by glaucous gulls. Rainfall during early brood rearing was much higher in 1994 than other years, and this corresponded to low survival among goslings ≤5 days of age. Numbers of juveniles in families during fall staging were negatively related to rainfall during early brood rearing (n = 23 yr). Although there are no data to assess whether gosling survival in emperor geese has declined from some previous level, current survival rates of emperor goose goslings are as high as or higher than those observed in other goose species that are rapidly increasing. A proposed reduction of glaucous gull numbers by managers may not be the most effective means for increasing population growth in emperor geese.

  5. Predator efficiency reconsidered for a ladybird-aphid system

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 3, mar (2015), s. 27 ISSN 2296-701X R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : biological control * generation time ratio * population dynamics * predator-prey systems * ladybirds * aphids Subject RIV: EH - Ecology, Behaviour

  6. Population Fluctuations of Insect Predators Species Found on Almond and WildAlmond Tree Adjacent to Pistachio Orchard in Şanlıurfa

    OpenAIRE

    YANIK, Ertan

    2013-01-01

    Almond (Prunus amygdalus Batsch) and wild almond (Amygdalus orientalis) trees are the most abundant species adjacent to pistachio orchards of Sanliurfa province. This study focused on trees that located in the vicinity of the pistachio orchards, to determine whether these alternative habitats are a source of pistachio psilla’s (Agonoscena pistaciae Burck. and Laut.) insect predators species. For this purpose surveys were conducted to population fluctuations of insect predatory species of pist...

  7. Effects of experimental seaweed deposition on lizard and ant predation in an island food web.

    Science.gov (United States)

    Piovia-Scott, Jonah; Spiller, David A; Schoener, Thomas W

    2011-01-28

    The effect of environmental change on ecosystems is mediated by species interactions. Environmental change may remove or add species and shift life-history events, altering which species interact at a given time. However, environmental change may also reconfigure multispecies interactions when both species composition and phenology remain intact. In a Caribbean island system, a major manifestation of environmental change is seaweed deposition, which has been linked to eutrophication, overfishing, and hurricanes. Here, we show in a whole-island field experiment that without seaweed two predators--lizards and ants--had a substantially greater-than-additive effect on herbivory. When seaweed was added to mimic deposition by hurricanes, no interactive predator effect occurred. Thus environmental change can substantially restructure food-web interactions, complicating efforts to predict anthropogenic changes in ecosystem processes.

  8. The role of a dominant predator in shaping biodiversity over space and time in a marine ecosystem.

    Science.gov (United States)

    Ellingsen, Kari E; Anderson, Marti J; Shackell, Nancy L; Tveraa, Torkild; Yoccoz, Nigel G; Frank, Kenneth T

    2015-09-01

    1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  9. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities

    DEFF Research Database (Denmark)

    Viitasalo, M; Kiørboe, T; Flinkman, J.

    1998-01-01

    We investigated the vulnerability of 2 copepod species (Eurytemora affinis and Temora longicornis) to predation by predators with different foraging modes, three-spined stickleback Gasterosteus aculeatus juveniles and mysid shrimps Neomysis integer. Copepods were videofilmed escaping from predators...

  10. Prey-predator dynamics driven by the solar radiation - Part 1

    International Nuclear Information System (INIS)

    Sertorio, L.

    2000-01-01

    In this paper is studied a model ecosystem represented by two components: prey and predator. The predator feeds only on the prey, the prey, in turn, feeds on the solar radiation. In this scheme the two-species dynamics is no longer independent of the external physical conditions. Such independence was instead postulated in the Lotka-Volterra scheme. In this paper is considered the growth of the prey not unbounded (exponential), but logistic, where the saturation factor is governed by the available solar flux, more precisely by the percent of the solar flux that contains the photon frequencies which can drive the photosynthesis. In this way the solar flux represents the driving term of the dynamics, as it is expected in general for a realistic ecosystem. The system is asymptotically stable. The equilibrium values of the prey and predator numbers depend on several parameters. The system contains two nonlinear coupling terms and two coupling parameters. The dependence of the equilibrium point on the coupling parameters is studied in detail. According to this model, it can be defined a predator efficiency and a global solar efficiency. It is discussed the relationship between these two functions of the coupling parameters and the maximum value that the predator population can reach

  11. Development of a systemwide predator control program: Stepwise implementation of a predation index, predator control fisheries, and evaluation plan in the Columbia River Basin. Section 1: Implementation. Annual report 1994

    International Nuclear Information System (INIS)

    Willis, C.F.; Young, F.R.

    1995-09-01

    The authors report the results from the forth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated it is not necessary to eradicate northern squawfish to substantially reduce predation-caused mortality of juvenile salmonids. Instead, if northern squawfish were exploited at a 10--20% rate, reductions in numbers of larger, older fish resulting in restructuring of their population could reduce their predation on juvenile salmonids by 50% or more. Consequently, the authors designed and tested a sport-reward angling fishery and a commercial longline fishery in the John Day pool in 1990. They also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, they implemented three test fisheries on a multi-pool, or systemwide, scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery

  12. Escape by the Balearic Lizard (Podarcis lilfordi is affected by elevation of an approaching predator, but not by some other potential predation risk factors

    Directory of Open Access Journals (Sweden)

    William E. Cooper

    2011-12-01

    Full Text Available Many predation risk factors to affect escape behavior by lizards, but effects of some potential risk factors are unknown or are variable among species. We studied effects of several risk factors on escape responses by the Balearic lizard (Podarcis lilfordi, Lacertidae on escape responses. Escape was elicited by an approaching experimenter who recorded flight initiation distance (predator-prey distance when escape begins and distance fled. When an experimenter approached from above (upslope, flight initiation distance and distance fled were longer than when the experimenter approached from below. This novel effect suggests that lizards exposed to aerial predation might have been naturally selected to respond rapidly to predators approaching from above or that effects of path inclination of escape ability may differ between predators and prey in a manner requiring a larger margin of safety during approaches from above than below. Although sex differences in aspects of escape occur in some lizards, including lacertids, no sex difference was observed in P. lilfordi. Because vigilance and some other aspects of antipredatory behavior exhibit cortical lateralization, we tested effects of approach from the left and right sides of lizards. As predicted by optimal escape theory, side of approach did not affect flight initiation distance. Because many lizards have color vision and respond to pigmentation of conspecifics in social settings, researchers have often worn only drably colored clothing when simulating predators. This precaution may be unnecessary because flight initiation distance did not differ among investigator shirt colors (red, orange, olive.

  13. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  14. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

    2003-03-01

    This report presents results for year ten in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  15. A predator-prey system with stage-structure for predator and nonlocal delay

    DEFF Research Database (Denmark)

    Lin, Z.G.; Pedersen, Michael; Zhang, Lai

    2010-01-01

    This paper deals with the behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition, which describes a prey-predator model with nonlocal delay. Sufficient conditions for the global stability of each equilibrium are derived by the Lyapunov functional...... and the results show that the introduction of stage-structure into predator positively affects the coexistence of prey and predator. Numerical simulations are performed to illustrate the results....

  16. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests

    Directory of Open Access Journals (Sweden)

    Mauro Galetti

    2015-01-01

    Full Text Available Defaunation can trigger cascading events in natural communities and may have strong consequences for plant recruitment in tropical forests. Several species of large seed predators, such as deer and peccaries, are facing dramatic population collapse in tropical forests yet we do not have information about the consequences of these extinctions for seed predation. Using remote camera traps we tested if defaunated forests have a lower seed predation rate of a keystone palm (Euterpe edulis than pristine areas. Contrary to our expectation, we found that seed predation rates were 2.5 higher in defaunated forests and small rodents were responsible for most of the seeds eaten. Our results found that defaunation leads to changes in the seed predator communities with potential consequences for plant–animal interactions.

  17. Great cormorant (Phalacrocorax carbo predation on pikeperch (Sander lucioperca L. in shallow eutrophic lakes in Poland

    Directory of Open Access Journals (Sweden)

    Traczuk Piotr

    2017-06-01

    Full Text Available Increases in the population abundance of the piscivorous great cormorant (Phalacrocorax carbo has led to conflicts with fisheries. Cormorants are blamed for decreased fish catches in many lakes in Poland. The aim of this paper is to describe to role of pikeperch (Sander lucioperca in the diet of cormorants nesting in a colony on the island in Lake Warnołty. Since the breeding colony is located in the vicinity of Lake OEniardwy, the largest lake in Poland, the cormorants use the resources in this lake. In 2009-2016, 18,432 regurgitated fish were collected, of which 593 were pikeperch. The share of pikeperch among fish collected in 2009-2012 did not exceed 2%, but from 2013 this increased substantially to maximum of 38.2% in 2015. The smallest pikeperch had a standard length of 8.4 cm, and the largest 42.5 cm. Pikeperch mean length differed by year, and the length distribution was close to normal. The sizes of the regurgitated pikeperch indicate that cormorants prey almost exclusively on juvenile specimens. The results of the present study indicate that cormorant predation has a significant impact on pikeperch populations in lakes in the vicinity of the colony, and the great cormorants are possibly a significant factor in the effectiveness of pikeperch management. When planning for the management of fish populations in lakes subjected to cormorant predation pressure, it should be borne in mind that predation by this piscivorous bird species impacts the abundance and size-age structure of fish populations.

  18. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  19. Effect of Pollen Feed on Parasitization and Predatism of Cephalonomia stephanoderis onHypothenemus hampei

    Directory of Open Access Journals (Sweden)

    Dwi Suci Rahayu

    2014-05-01

    Full Text Available Biological control of the coffee berry borer (Hypothenemus hampeiusing parasitoid Cephalonomia stephanoderishas been developed through the improvement of the parasitoid role may using pollens as feed source. The objective of this study was to investigate the effect of cover crop and weed pollens on parasitization and predatism of C. stephanoderis.The applied treatments were pollens of Turnera ulmifolia, Arachis pintoi, Ageratum conyzoidesadded in glass tube that consist of 10 CBB pupaes and a mated female of C. stephanoderis. Number of pupae parasitized and pupae preyed were observed. The result showed that addition of A. Pintoi pollen increased the number of pupae parasitized at 135% whereas addition of T. ulmifolia and A. conyzoides pollens did not affect parasitization of C. Stephanoderis. The predatismof C. stephanoderiswas higher than parasitization to pupae of H. hampei which showed that the behavior of C. stephanoderiswas parasitization. Addition of T. ulmifolia, A. pintoi, and A. conyzoidespollens increased the number of pupae predatism at 132%, 102%, and 225%, respectively. Key words: Ageratum conyzoides, Arachis pintoi, Cephalonomia stephanoderis, Hypothenemus hampei,parasitization, predatism, pollens, Turnera ulmifolia

  20. Alien Mink Predation and Colonisation Processes of Rodent Prey on Small Islands of the Baltic Sea: Does Prey Naivete Matter?

    International Nuclear Information System (INIS)

    Fey, K.; Korpimaki, E.; Banks, P.B.

    2010-01-01

    Colonisation, an important part of meta-population dynamics of fragmented populations, depends on both the dispersal ability and the ability to establish in the new habitat. Predation can hinder successful establishment of prey, and where the predation pressure comes from an alien predator, the effects on colonisation might be devastating. We studied the establishment of field voles (Microtus agrestis) inhabiting small islands of the archipelago of the Baltic Sea, SW Finland, under presence and absence of the alien American mink (Mustela vison). We translocated experienced voles from islands with mink, and inexperienced voles from islands from which mink had been removed, to other islands where mink was present or absent. By radio-tracking we studied survival, space and micro habitat use of voles within four weeks after translocation. Survival of voles on mink islands was significantly lower than on mink-free islands, but experienced voles did not survive better than inexperienced voles. Experienced voles were more often located in juniper habitats than inexperienced voles, but they appeared not to gain any survival benefit from altered micro habitat use. This study provides novel evidence, that alien mink predation inhibits establishment of colonising field voles and may thus ultimately induce extinction of voles from the outer archipelago.

  1. Cumulative human impacts on marine predators.

    Science.gov (United States)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.

  2. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    Directory of Open Access Journals (Sweden)

    Tyler E Schartel

    Full Text Available Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable and maple seeds (Acer saccharum; less profitable. We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1 mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2 consumption of both incidental prey would be high near feeders providing less-preferred food and, 3 consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty feeder. Feeders with highly preferred food (sunflower seeds created localized refuges for incidental prey at intermediate distances (15 to 25m from the feeder. Feeders with less-preferred food (corn generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  3. Mechanisms regulating amphipod population density within macroalgal communities with low predator impact

    Directory of Open Access Journals (Sweden)

    Hartvig Christie

    2004-04-01

    Full Text Available In eight mesocosms (land based basins macroalgae communities with associated fauna were transplanted from the sea and established during two years. Then, different doses of nutrients (N and P were added to the basins throughout the following three years. During the period of nutrient addition, macroinvertebrate grazers showed seasonal fluctuations with densities usually between 500,000 and 1 million individuals per mesocosm during summer and to a level of about 100,000 during winter. The macroinvertebrate grazers mainly consisted of about 10 species of amphipods and isopods, among which the amphipod Gammarus locusta dominated strongly by biomass. Although the number of predators was very low, the grazer populations never reached a density where considerable grazing impact could be found on the macroalgae. No increase in grazer density was found in the basins with improved nutrient conditions. Thus food quality may be insufficient for further population growth, or density dependant regulation mechanisms may have prevented the grazers from flourishing and overgrazing the system. In aquarium experiments we showed that G. locusta could grow and reproduce on Fucus serratus, Ulva lactuca, periphyton and detritus, and that cannibalism by adult G. locusta on juveniles may have great impact on the population growth. The basins were run with a water flow through system. Nets were placed in front of the inflow and outflow tubes to measure immigration and emigration. Only few individuals (and no Gammarus sp. were recorded in the inflowing water, while high numbers of both amphipods and isopods were found in the outflowing water. Emigration reached peak values during night-time, and it was then two to three times as high as during day-time. Emigration of mobile grazers from the basins amounted to 1-2% of the standing stock daily. These mechanisms that regulate grazers do contribute to maintenance of the seaweed dominance and thus the stability of the seaweed

  4. Predation on artificial nests by marmosets of the genus Callithrix (Primates, Platyrrhini in a Cerrado fragment in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Marcos Vinícius de Almeida

    2013-03-01

    Full Text Available Although the causes of decline in bird populations in forest fragments are not well known, nest predation seems to play a major role in these events. A way to estimate the relative importance of predation for the reproduction of native birds is the use of artificial nests. Here, there is a report on the high rates of predation on artificial nests by two marmoset species from the genus Callithrix, C. pennicillata and C. jacchus, as well as their hybrid derivatives, in a Cerrado fragment in the state of Sao Paulo, Brazil. By means of artificial nests and quail eggs filled with paraffin, it was possible to identify the marmosets as predators through the bite pattern left on the paraffin. The results suggest a possible occurrence of predation on natural nests. Further studies involving the monitoring of natural nests will be able to confirm the role of marmosets in the decline of bird populations in the study area.

  5. Can coyotes affect deer populations in Southeastern North America?

    Energy Technology Data Exchange (ETDEWEB)

    Kilgo, J., C.; Ray, H., Scott; Ruth, Charles; Miller, Karl, V.

    2010-07-01

    ABSTRACT The coyote (Canis latrans) is a recent addition to the fauna of eastern North America, and in many areas coyote populations have been established for only a decade or two. Although coyotes are known predators of white-tailed deer (Odocoileus virginianus) in their historic range, effects this new predator may have on eastern deer populations have received little attention. We speculated that in the southeastern United States, coyotes may be affecting deer recruitment, and we present 5 lines of evidence that suggest this possibility. First, the statewide deer population in South Carolina has declined coincident with the establishment and increase in the coyote population. Second, data sets from the Savannah River Site (SRS) in South Carolina indicate a new mortality source affecting the deer population concurrent with the increase in coyotes. Third, an index of deer recruitment at SRS declined during the period of increase in coyotes. Fourth, food habits data from SRS indicate that fawns are an important food item for coyotes during summer. Finally, recent research from Alabama documented significant coyote predation on fawns there. Although this evidence does not establish cause and effect between coyotes and observed declines in deer recruitment, we argue that additional research should proactively address this topic in the region. We identified several important questions on the nature of the deer–coyote relationship in the East.

  6. Landscape-moderated bird nest predation in hedges and forest edges

    Science.gov (United States)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  7. Disease, predation and demography: Assessing the impacts of bovine tuberculosis on African buffalo by monitoring at individual and population levels

    Science.gov (United States)

    Cross, P.C.; Heisey, D.M.; Bowers, J.A.; Hay, C.T.; Wolhuter, J.; Buss, P.; Hofmeyr, M.; Michel, A.L.; Bengis, Roy G.; Bird, T.L.F.; du Toit, Johan T.; Getz, W.M.

    2009-01-01

    1. Understanding the effects of disease is critical to determining appropriate management responses, but estimating those effects in wildlife species is challenging. We used bovine tuberculosis (BTB) in the African buffalo Syncerus caffer population of Kruger National Park, South Africa, as a case study to highlight the issues associated with estimating chronic disease effects in a long-lived host. 2. We used known and radiocollared buffalo, aerial census data, and a natural gradient in pathogen prevalence to investigate if: (i) at the individual level, BTB infection reduces reproduction; (ii) BTB infection increases vulnerability to predation; and (iii) at the population level, increased BTB prevalence causes reduced population growth. 3. There was only a marginal reduction in calving success associated with BTB infection, as indexed by the probability of sighting a known adult female with or without a calf (P = 0??065). 4. Since 1991, BTB prevalence increased from 27 to 45% in the southern region and from 4 to 28% in the central region of Kruger National Park. The prevalence in the northern regions was only 1??5% in 1998. Buffalo population growth rates, however, were neither statistically different among regions nor declining over time. 5. Lions Panthera leo did not appear to preferentially kill test-positive buffalo. The best (Akaike's Information Criterion corrected for small sample size) AICc model with BTB as a covariate [exp(??) = 0??49; 95% CI = (0??24-1??02)] suggested that the mortality hazard for positive individuals was no greater than for test-negative individuals. 6. Synthesis and applications. Test accuracy, time-varying disease status, and movement among populations are some of the issues that make the detection of chronic disease impacts challenging. For these reasons, the demographic impacts of bovine tuberculosis in the Kruger National Park remain undetectable despite 6 years of study on known individuals and 40 years of population counts

  8. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    OpenAIRE

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius ...

  9. Predators induce interspecific herbivore competition for food in refuge space

    NARCIS (Netherlands)

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among

  10. Predation of Five Generalist Predators on Brown Planthopper (Nilaparvata lugens Stål

    Directory of Open Access Journals (Sweden)

    Sri Karindah

    2015-09-01

    Full Text Available Two generalist predators of brown planthopper,Metioche vittaticollis and Anaxipha longipennis (Gryllidae have not been much studied in Indonesia. This research was conducted to study and compare the predatory ability of M. vittaticollis, A. longipennis (Gryllidae and three coleopterans, Paederus fuscipes (Staphylinidae, Ophionea sp. (Carabidae,and Micraspis sp. (Coccinellidae against brown planthopper (fourth and fifth instars under laboratory condition. In total, 20 nymphs of N. lugens were exposed for 2 hour to each predator for 5 consecutive days. Prey consumptions by the predatory crickets, M. vittaticollis and A. longipennis were greater than the other predators and followed by A. longipennis, Micraspis sp., P. fuscipes, and Ophionea sp. respectively. Consumption rates of M. vittaticolis and A. longipenis were also higher than other predators. Micraspis sp was more active on predation in the morning,while M. vittaticollis, A. longipennis, P. fuscipes, and Ophionea sp. were more active both in the morning and the night but not in the afternoon. However, all five species of predators were not so active in preying during the afternoon. In conclusion, a major effort should be extended to conserve these predatory crickets especially M. vittaticollis and A. longipennis.

  11. Evolution of Swarming Behavior Is Shaped by How Predators Attack.

    Science.gov (United States)

    Olson, Randal S; Knoester, David B; Adami, Christoph

    2016-01-01

    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.

  12. Neurological effects on startle response and escape from predation by medaka exposed to organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.; Drummond, R.; Hammermeister, D.; Bradbury, S. [Environmental Protection Agency, Duluth, MN (United States). Environmental Research Lab.

    1995-12-31

    Simultaneous electrophysiological and behavioral studies were performed on juvenile Japanese medaka (Oryzias latipes) exposed to representative neurotoxic organic chemicals at sublethal concentrations. Non-invasive recordings were made of the electrical impulses generated within giant neuronal Mauthner cells, associated interneurons or motoneurons, and musculature, all of which initiate the startle or escape response in fish. Timing in milliseconds between these electrical sequelae was measured for each fish before and at 24 and 48 hours exposure to a chemical. Also noted was the number of startle responses to number of stimuli ratio (R/S). Other groups of medaka were fed to bluegills and consumption times recorded to assess their ability to escape predation. These results were compared to neurophysiological effect levels. Phenol, 2,4-dinitrophenol, chlorpyrifos, fenvalerate, and 1-octanol impaired the ability of medaka to escape predation at all concentrations. Medaka were more susceptible to predation in high concentrations of carbaryl and strychnine, but less susceptible at low concentrations, whereas the reverse was true for endosulfan. The variety of neurological effects detected at these concentrations suggest that different mechanisms may be responsible. Phenol and strychnine affected Mauthner cell to motoneuron transmission, chlorpyrifos and carbaryl showed neuromuscular effects, and R/S was affected by most chemicals. Although a variety of neurotoxic mechanisms were examined, the exposure threshold for significant effects for each specific compound was found to be consistent for both the neurophysiological and behavioral endpoints.

  13. Disentangling mite predator-prey relationships by multiplex PCR.

    Science.gov (United States)

    Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A

    2015-11-01

    Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators. © 2015 John Wiley & Sons Ltd.

  14. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks.

    Science.gov (United States)

    Mommer, Brett C; Bell, Alison M

    2013-10-02

    Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  16. The (noneffects of lethal population control on the diet of Australian dingoes.

    Directory of Open Access Journals (Sweden)

    Benjamin L Allen

    Full Text Available Top-predators contribute to ecosystem resilience, yet individuals or populations are often subject to lethal control to protect livestock, managed game or humans from predation. Such management actions sometimes attract concern that lethal control might affect top-predator function in ways ultimately detrimental to biodiversity conservation. The primary function of a predator is predation, which is often investigated by assessing their diet. We therefore use data on prey remains found in 4,298 Australian dingo scats systematically collected from three arid sites over a four year period to experimentally assess the effects of repeated broad-scale poison-baiting programs on dingo diet. Indices of dingo dietary diversity and similarity were either identical or near-identical in baited and adjacent unbaited treatment areas in each case, demonstrating no control-induced change to dingo diets. Associated studies on dingoes' movement behaviour and interactions with sympatric mesopredators were similarly unaffected by poison-baiting. These results indicate that mid-sized top-predators with flexible and generalist diets (such as dingoes may be resilient to ongoing and moderate levels of population control without substantial alteration of their diets and other related aspects of their ecological function.

  17. Parental investment decisions in response to ambient nest-predation risk versus actual predation on the prior nest

    Science.gov (United States)

    Chalfoun, A.D.; Martin, T.E.

    2010-01-01

    Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.

  18. Effects of water temperature and fish size on predation vulnerability of juvenile humpback chub to rainbow trout and brown trout

    Science.gov (United States)

    Ward, David L.; Morton-Starner, Rylan

    2015-01-01

    Predation on juvenile native fish by introduced Rainbow Trout and Brown Trout is considered a significant threat to the persistence of endangered Humpback Chub Gila cypha in the Colorado River in the Grand Canyon. Diet studies of Rainbow Trout and Brown Trout in Glen and Grand canyons indicate that these species do eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable, depending on prey size, predator size, and the water temperatures under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile native fish changes in response to fish size and water temperature using captivity-reared Humpback Chub, Bonytail, and Roundtail Chub. Juvenile chub 45–90 mm total length (TL) were exposed to adult Rainbow and Brown trouts at 10, 15, and 20°C to measure predation vulnerability as a function of water temperature and fish size. A 1°C increase in water temperature decreased short-term predation vulnerability of Humpback Chub to Rainbow Trout by about 5%, although the relationship is not linear. Brown Trout were highly piscivorous in the laboratory at any size > 220 mm TL and at all water temperatures we tested. Understanding the effects of predation by trout on endangered Humpback Chub is critical in evaluating management options aimed at preserving native fishes in Grand Canyon National Park.

  19. Grey gurnard ( Eutrigla gurnadus ) in the North Sea: an emerging key predator?

    DEFF Research Database (Denmark)

    Floeter, J.; Kempf, A.; Vinther, Morten

    2005-01-01

    Grey gurnard (Eutrigla gurnadus) is a widely distributed demersal species in the North Sea that has been ranked frequently among the 10 dominant species. Since the late 1980s, grey gurnard catch rates in the international bottom trawl surveys showed a pronounced increase and it was included...... as an "other predator" in the North Sea multispecies virtual population analysis (MSVPA) in 1997. The MSVPA results estimated grey gurnard to be responsible for approximately 60% of the total predation mortality on age-0 Atlantic cod (Gadus morhua). Long-term MSVPA predictions led to the extinction of North...... Sea cod. As a possible technical reason, the Holling type II functional response implemented in the model was discussed. In the current analysis, it was demonstrated that the Holling type II functional response was not responsible for the extinction of cod in the model, which was rather a true effect...

  20. Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea) and their predator (Acipenser transmontanus)

    Science.gov (United States)

    Parnis, J. Mark; Browne, Mark A.; Serrato, Sebastian; Reiner, Eric J.; Robson, Matthew; Young, Thomas; Diamond, Miriam L.; Teh, Swee J.

    2017-01-01

    We examined whether environmentally relevant concentrations of different types of microplastics, with or without PCBs, directly affect freshwater prey and indirectly affect their predators. Asian clams (Corbicula fluminea) were exposed to environmentally relevant concentrations of polyethylene terephthalate (PET), polyethylene, polyvinylchloride (PVC) or polystyrene with and without polychlorinated biphenyls (PCBs) for 28 days. Their predators, white sturgeon (Acipenser transmontanus), were exposed to clams from each treatment for 28 days. In both species, we examined bioaccumulation of PCBs and effects (i.e., immunohistochemistry, histology, behavior, condition, mortality) across several levels of biological organization. PCBs were not detected in prey or predator, and thus differences in bioaccumulation of PCBs among polymers and biomagnification in predators could not be measured. One of the main objectives of this study was to test the hypothesis that bioaccumulation of PCBs would differ among polymer types. Because we could not answer this question experimentally, a bioaccumulation model was run and predicted that concentrations of PCBs in clams exposed to polyethylene and polystyrene would be greater than PET and PVC. Observed effects, although subtle, seemed to be due to microplastics rather than PCBs alone. For example, histopathology showed tubular dilation in clams exposed to microplastics with PCBs, with only mild effects in clams exposed to PCBs alone. PMID:29108004

  1. Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea and their predator (Acipenser transmontanus.

    Directory of Open Access Journals (Sweden)

    Chelsea M Rochman

    Full Text Available We examined whether environmentally relevant concentrations of different types of microplastics, with or without PCBs, directly affect freshwater prey and indirectly affect their predators. Asian clams (Corbicula fluminea were exposed to environmentally relevant concentrations of polyethylene terephthalate (PET, polyethylene, polyvinylchloride (PVC or polystyrene with and without polychlorinated biphenyls (PCBs for 28 days. Their predators, white sturgeon (Acipenser transmontanus, were exposed to clams from each treatment for 28 days. In both species, we examined bioaccumulation of PCBs and effects (i.e., immunohistochemistry, histology, behavior, condition, mortality across several levels of biological organization. PCBs were not detected in prey or predator, and thus differences in bioaccumulation of PCBs among polymers and biomagnification in predators could not be measured. One of the main objectives of this study was to test the hypothesis that bioaccumulation of PCBs would differ among polymer types. Because we could not answer this question experimentally, a bioaccumulation model was run and predicted that concentrations of PCBs in clams exposed to polyethylene and polystyrene would be greater than PET and PVC. Observed effects, although subtle, seemed to be due to microplastics rather than PCBs alone. For example, histopathology showed tubular dilation in clams exposed to microplastics with PCBs, with only mild effects in clams exposed to PCBs alone.

  2. Effects of carbaryl-bran bait on trap-catch and seed predation by ground beetles

    Science.gov (United States)

    Carbaryl-bran bait is effective against grasshoppers without many impacts on non-target organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species composition a...

  3. Ecosystem scale declines in elk recruitment and population growth with wolf colonization: a before-after-control-impact approach.

    Science.gov (United States)

    Christianson, David; Creel, Scott

    2014-01-01

    The reintroduction of wolves (Canis lupus) to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk--Cervus elaphus) in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves.

  4. Ecosystem scale declines in elk recruitment and population growth with wolf colonization: a before-after-control-impact approach.

    Directory of Open Access Journals (Sweden)

    David Christianson

    Full Text Available The reintroduction of wolves (Canis lupus to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk--Cervus elaphus in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves.

  5. Native predators do not influence invasion success of pacific lionfish on Caribbean reefs.

    Science.gov (United States)

    Hackerott, Serena; Valdivia, Abel; Green, Stephanie J; Côté, Isabelle M; Cox, Courtney E; Akins, Lad; Layman, Craig A; Precht, William F; Bruno, John F

    2013-01-01

    Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.

  6. Oral ingestion of transgenic RIDL Ae. aegypti larvae has no negative effect on two predator Toxorhynchites species.

    Directory of Open Access Journals (Sweden)

    Oreenaiza Nordin

    Full Text Available Dengue is the most important mosquito-borne viral disease. No specific treatment or vaccine is currently available; traditional vector control methods can rarely achieve adequate control. Recently, the RIDL (Release of Insect carrying Dominant Lethality approach has been developed, based on the sterile insect technique, in which genetically engineered 'sterile' homozygous RIDL male insects are released to mate wild females; the offspring inherit a copy of the RIDL construct and die. A RIDL strain of the dengue mosquito, Aedes aegypti, OX513A, expresses a fluorescent marker gene for identification (DsRed2 and a protein (tTAV that causes the offspring to die. We examined whether these proteins could adversely affect predators that may feed on the insect. Aedes aegypti is a peri-domestic mosquito that typically breeds in small, rain-water-filled containers and has no specific predators. Toxorhynchites larvae feed on small aquatic organisms and are easily reared in the laboratory where they can be fed exclusively on mosquito larvae. To evaluate the effect of a predator feeding on a diet of RIDL insects, OX513A Ae. aegypti larvae were fed to two different species of Toxorhynchites (Tx. splendens and Tx. amboinensis and effects on life table parameters of all life stages were compared to being fed on wild type larvae. No significant negative effect was observed on any life table parameter studied; this outcome and the benign nature of the expressed proteins (tTAV and DsRed2 indicate that Ae. aegypti OX513A RIDL strain is unlikely to have any adverse effects on predators in the environment.

  7. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.

  8. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species. PMID:23527027

  9. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Directory of Open Access Journals (Sweden)

    Achmad Ariefiandy

    Full Text Available Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis, an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψand varied detection probabilities (p according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site, p (site survey; ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  10. Landscape features influence postrelease predation on endangered black-footed ferrets

    Science.gov (United States)

    Poessel, S.A.; Breck, S.W.; Biggins, D.E.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Predation can be a critical factor influencing recovery of endangered species. In most recovery efforts lethal and nonlethal influences of predators are not sufficiently understood to allow prediction of predation risk, despite its importance. We investigated whether landscape features could be used to model predation risk from coyotes (Canis latrans) and great horned owls (Bubo virginianus) on the endangered black-footed ferret (Mustela nigripes). We used location data of reintroduced ferrets from 3 sites in South Dakota to determine whether exposure to landscape features typically associated with predators affected survival of ferrets, and whether ferrets considered predation risk when choosing habitat near perches potentially used by owls or near linear features predicted to be used by coyotes. Exposure to areas near likely owl perches reduced ferret survival, but landscape features potentially associated with coyote movements had no appreciable effect on survival. Ferrets were located within 90 m of perches more than expected in 2 study sites that also had higher ferret mortality due to owl predation. Densities of potential coyote travel routes near ferret locations were no different than expected in all 3 sites. Repatriated ferrets might have selected resources based on factors other than predator avoidance. Considering an easily quantified landscape feature (i.e., owl perches) can enhance success of reintroduction efforts for ferrets. Nonetheless, development of predictive models of predation risk and management strategies to mitigate that risk is not necessarily straightforward for more generalist predators such as coyotes. ?? 2011 American Society of Mammalogists.

  11. Selective attention in peacocks during predator detection.

    Science.gov (United States)

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  12. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  13. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  14. Predator-dependent functional response in wolves: from food limitation to surplus killing.

    Science.gov (United States)

    Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter

    2015-01-01

    The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  15. Evolution of nesting height in an endangered Hawaiian forest bird in response to a non-native predator.

    Science.gov (United States)

    Vanderwerf, Eric A

    2012-10-01

    The majority of bird extinctions since 1800 have occurred on islands, and non-native predators have been the greatest threat to the persistence of island birds. Island endemic species often lack life-history traits and behaviors that reduce the probability of predation and they can become evolutionarily trapped if they are unable to adapt, but few studies have examined the ability of island species to respond to novel predators. The greatest threat to the persistence of the Oahu Elepaio (Chasiempis ibidis), an endangered Hawaiian forest bird, is nest predation by non-native black rats (Rattus rattus). I examined whether Oahu Elepaio nest placement has changed at the individual and population levels in response to rat predation by measuring nest height and determining whether each nest produced offspring from 1996 to 2011. Average height of Oahu Elepaio nests increased 50% over this 16-year period, from 7.9 m (SE 1.7) to 12.0 m (SE 1.1). There was no net change in height of sequential nests made by individual birds, which means individual elepaios have not learned to place nests higher. Nests ≤3 m off the ground produced offspring less often, and the proportion of such nests declined over time, which suggests that nest-building behavior has evolved through natural selection by predation. Nest success increased over time, which may increase the probability of long-term persistence of the species. Rat control may facilitate the evolution of nesting height by slowing the rate of population decline and providing time for this adaptive response to spread through the population. ©2012 Society for Conservation Biology.

  16. Colonial waterbird predation on Lost River and Shortnose suckers in the Upper Klamath Basin

    Science.gov (United States)

    Evans, Allen F.; Hewitt, David A.; Payton, Quinn; Cramer, Bradley M.; Collis, Ken; Roby, Daniel D.

    2016-01-01

    We evaluated predation on Lost River Suckers Deltistes luxatus and Shortnose Suckers Chasmistes brevirostris by American white pelicans Pelecanus erythrorhynchos and double-crested cormorants Phalacrocorax auritus nesting at mixed-species colonies in the Upper Klamath Basin of Oregon and California during 2009–2014. Predation was evaluated by recovering (detecting) PIT tags from tagged fish on bird colonies and calculating minimum predation rates, as the percentage of available suckers consumed, adjusted for PIT tag detection probabilities but not deposition probabilities (i.e., probability an egested tag was deposited on- or off-colony). Results indicate that impacts of avian predation varied by sucker species, age-class (adult, juvenile), bird colony location, and year, demonstrating dynamic predator–prey interactions. Tagged suckers ranging in size from 72 to 730 mm were susceptible to cormorant or pelican predation; all but the largest Lost River Suckers were susceptible to bird predation. Minimum predation rate estimates ranged annually from <0.1% to 4.6% of the available PIT-tagged Lost River Suckers and from <0.1% to 4.2% of the available Shortnose Suckers, and predation rates were consistently higher on suckers in Clear Lake Reservoir, California, than on suckers in Upper Klamath Lake, Oregon. There was evidence that bird predation on juvenile suckers (species unknown) in Upper Klamath Lake was higher than on adult suckers in Upper Klamath Lake, where minimum predation rates ranged annually from 5.7% to 8.4% of available juveniles. Results suggest that avian predation is a factor limiting the recovery of populations of Lost River and Shortnose suckers, particularly juvenile suckers in Upper Klamath Lake and adult suckers in Clear Lake Reservoir. Additional research is needed to measure predator-specific PIT tag deposition probabilities (which, based on other published studies, could increase predation rates presented herein by a factor of roughly 2

  17. Prey responses to predator chemical cues: disentangling the importance of the number and biomass of prey consumed.

    Directory of Open Access Journals (Sweden)

    Michael W McCoy

    Full Text Available To effectively balance investment in predator defenses versus other traits, organisms must accurately assess predation risk. Chemical cues caused by predation events are indicators of risk for prey in a wide variety of systems, but the relationship between how prey perceive risk in relation to the amount of prey consumed by predators is poorly understood. While per capita predation rate is often used as the metric of relative risk, studies aimed at quantifying predator-induced defenses commonly control biomass of prey consumed as the metric of risk. However, biomass consumed can change by altering either the number or size of prey consumed. In this study we determine whether phenotypic plasticity to predator chemical cues depends upon prey biomass consumed, prey number consumed, or both. We examine the growth response of red-eyed treefrog tadpoles (Agalychnis callidryas to cues from a larval dragonfly (Anax amazili. Biomass consumed was manipulated by either increasing the number of prey while holding individual prey size constant, or by holding the number of prey constant and varying individual prey size. We address two questions. (i Do prey reduce growth rate in response to chemical cues in a dose dependent manner? (ii Does the magnitude of the response depend on whether prey consumption increases via number or size of prey? We find that the phenotypic response of prey is an asymptotic function of prey biomass consumed. However, the asymptotic response is higher when more prey are consumed. Our findings have important implications for evaluating past studies and how future experiments should be designed. A stronger response to predation cues generated by more individual prey deaths is consistent with models that predict prey sensitivity to per capita risk, providing a more direct link between empirical and theoretical studies which are often focused on changes in population sizes not individual biomass.

  18. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  19. Effects of Beauveria bassiana on predation and behavior of the predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    Wu, Shengyong; Xing, Zhenlong; Sun, Weinan; Xu, Xuenong; Meng, Ruixia; Lei, Zhongren

    2018-03-01

    Determination of intraguild interactions between entomopathogens and predators is important when attempting to use a combination of these two natural enemy groups for biological control of their shared arthropod pest species. This study assessed the effects of Beauveria bassiana on the predation and associated behavior of the predatory mite, Phytoseiulus persimilis, against Tetranychus urticae. The functional response tests showed that P. persimilis exhibited a Holling type II response on the spider mite, Tetranychus urticae, when treated with either a B. bassiana or Tween-80 suspension. There were no significant differences between the treatments in the number of T. urticae consumed. The laboratory choice test indicated that P. persimilis displayed a significant avoidance response to B. bassiana on bean leaves immediately following spray application. They also spent significantly longer time in self-grooming behavior on leaf disks sprayed with fungal conidia than on discs treated with Tween-80. There were no significant differences in the predation rates on T. urticae eggs between the different treatments. The potted plant investigations indicated that P. persimilis showed significant aversion behavior to the initial fungal spray, but gradually dispersed over the entire bean plants. Observations using scanning electron microscopy revealed that fungal conidia were attached to the body of P. persimilis after mounting the leaf disk treated with B. bassiana, which would account for its varied behavioral responses. Our study suggests that fungal spray did not affect the predation capability of P. persimilis and poses a negligible risk to their behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Pemangsaan Propagul Mangrove Rhizophora sp. Sebagai Bukti Teori Dominance-Predation (Predation of Mangrove Propagule, Rhizophora sp. as Evidence of Dominance-Predation Theory

    Directory of Open Access Journals (Sweden)

    Rudhi Pribadi

    2014-06-01

    Propagule predation on mangrove in some extent reduced its viability to grow into seedling. The predation could happened before (pre-dispersal or after (post-dispersal the propagule drop from the tree.The reasearch was conducted in Pasar Banggi, Rembang District, Central Java. The aim was to investigate the predation rate of Rhizophora mucronata Lamk., R. stylosa Griff. and R. apiculata Blume propagules pre-dispersal and post-dispersal. Firstly, preface experiment for find domination spesies in the location, Second, with applied descriptive-based survey sampling and field experiment methods. Than all propagules of five replication trees were harvested and checked for its condition on pre-dispersal step. The third, with post-dispersal study there were twenty propagules from each spesies and tied them with used nylon string and placed on the forest floor for 2 until 18 days and checked its condition every 2 days after placement. This study is also set for tested the Smith’s theory on propagule predation related to tree domination. Rhizophora stylosa propagule was  most predated before they fall (mean 61,06%, range 45,40-76,05%, followed by R. apiculata (mean 58,18%, range 47,41-68% and the lowest isR. mucronata with mean 11,88% (range 7,06-15,71%. After 18 days of experiment in the field R. stylosa propagule in R. stylosa–dominated area was the lowest predated (mean 46,67% compared to propagule in the area dominated by R. apiculata (63,33% and also in R. mucronata area (83,33 Predated R. mucronata propagule is the highest in the R. mucronata dominated area (mean 95% compared with R. apiculata dominated area (mean 55% and also in R. stylosa dominated area (45%. Pradated of R. apiculata propagule is the lowest in the domination area of R. apiculata (50% compared with R. stylosa area domination with (mean 70% also R. mucronata (73,33%. The result showed that the theory of dominance-predation can be proved only for R. stylosa and R. apiculata spesies, but not for R

  1. Density of the tegu lizard (Tupinambis merianae) and its role as nest predator at Anchieta Island, Brazil

    OpenAIRE

    Bovendorp, Ricardo S.; Alvarez, Ariane D.; Gialetti, Mauro

    2008-01-01

    Mammals has been pointed out to be the main nest predators in islands, but recent studies has shown that tree snakes are also important nest predator in tropical forests. Here we present information on the density tegu lizards Tupinambis merianae and its role as nest predator at Anchieta Island, Ubatuba, in southeastern Brazil. The mean density of tegu lizards wets estimated to be 83 individuals/km2, which is 1.83 times lower than other well-known population (Fernando de Noronha Archipelago)....

  2. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  3. Effects of Paternal Predation Risk and Rearing Environment on Maternal Investment and Development of Defensive Responses in the Offspring

    Science.gov (United States)

    Bauer, Jessica

    2016-01-01

    Abstract Detecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother–infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor. Mothers that reared young in larger, seminaturalistic housing provided more licking and grooming and active arched back-nursing behavior toward their offspring compared with dams housed in standard housing, although some effects interacted with paternal experience. Paternal predation risk and maternal rearing environment revealed sex-dependent differences in offspring wean weight, juvenile social interactions, and anxiety-like behavior in adolescence. Additionally, paternal predator experience and maternal housing independently affected variations in crf gene promoter acetylation and crf gene expression in response to an acute stressor in offspring. Our results show for the first time in mammals that variation among males in their predator encounters may contribute to stable behavioral variation among females in preference for mates and maternal care, even when the females are not directly exposed to predator threat. Furthermore, when offspring were exposed to the same threat experienced by the father, hypothalamic crf gene regulation was influenced by paternal olfactory experience and early housing. These results, together with our previous findings, suggest that paternal stress exposure and maternal rearing conditions can influence maternal behavior and the development of defensive responses in offspring. PMID:27896313

  4. The effect of structural complexity, prey density, and "predator-free space" on prey survivorship at created oyster reef mesocosms

    Science.gov (United States)

    Humphries, Austin T.; La Peyre, Megan K.; Decossas, Gary A.

    2011-01-01

    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.

  5. Weak average persistence and extinction of a predator-prey system in a polluted environment with impulsive toxicant input

    International Nuclear Information System (INIS)

    Yang Xiaofeng; Jin Zhen; Xue Yakui

    2007-01-01

    In this paper, we have investigated a predator-prey system in a polluted environment with impulsive toxicant input at fixed moments. We have obtained two thresholds on the impulsive period by assuming the toxicant amount input is fixed to the environment at each pulse moment. If the impulsive period is greater than the big threshold, then both populations are weak average persistent. If the period lies between of the two thresholds, then the prey population will be weak average persistent while the predator population extinct. If the period is less than the small threshold, both populations tend to extinction. Finally, our theoretical results are confirmed by own numerical simulations

  6. Stable oscillations of a predator-prey probabilistic cellular automaton: a mean-field approach

    International Nuclear Information System (INIS)

    Tome, Tania; Carvalho, Kelly C de

    2007-01-01

    We analyze a probabilistic cellular automaton describing the dynamics of coexistence of a predator-prey system. The individuals of each species are localized over the sites of a lattice and the local stochastic updating rules are inspired by the processes of the Lotka-Volterra model. Two levels of mean-field approximations are set up. The simple approximation is equivalent to an extended patch model, a simple metapopulation model with patches colonized by prey, patches colonized by predators and empty patches. This approximation is capable of describing the limited available space for species occupancy. The pair approximation is moreover able to describe two types of coexistence of prey and predators: one where population densities are constant in time and another displaying self-sustained time oscillations of the population densities. The oscillations are associated with limit cycles and arise through a Hopf bifurcation. They are stable against changes in the initial conditions and, in this sense, they differ from the Lotka-Volterra cycles which depend on initial conditions. In this respect, the present model is biologically more realistic than the Lotka-Volterra model

  7. Balancing food and predator pressure induces chronic stress in songbirds.

    OpenAIRE

    Clinchy, Michael; Zanette, Liana; Boonstra, Rudy; Wingfield, John C.; Smith, James N. M.

    2004-01-01

    The never-ending tension between finding food and avoiding predators may be the most universal natural stressor wild animals experience. The 'chronic stress' hypothesis predicts: (i) an animal's stress profile will be a simultaneous function of food and predator pressures given the aforesaid tension; and (ii) these inseparable effects on physiology will produce inseparable effects on demography because of the resulting adverse health effects. This hypothesis was originally proposed to explain...

  8. COMPANION ANIMALS SYMPOSIUM: Sustainable Ecosystems: Domestic cats and their effect on wildlife populations.

    Science.gov (United States)

    Kitts-Morgan, S E

    2015-03-01

    Domestic cats are estimated to kill billions of small mammals and birds each year. In certain areas of the world, it is not uncommon for either feral or free-ranging cats to have high population densities, creating concern regarding their level of hunting. Many cats are considered to be subsidized predators, as they receive care and food from humans. Arguments abound regarding the presence of cats in the habitats of native small mammals and birds and whether or not local ecosystems can sustain this predator-prey relationship. The effects of cats on native wildlife can depend on several factors, including cat classification (feral vs. free ranging vs. indoor-outdoor), geographical location (islands vs. mainland), and type of habitat (rural vs. suburban vs. urban). Feral and free-ranging cats may have a greater impact on native species on islands because habitat is severely limited. Continued urbanization and development of rural areas also creates fragmented habitats, and native species may struggle to survive with the added pressure of hunting by domestic cats. Additionally, cats in rural areas are frequently fed by humans, which can support high population densities and intensify pressure on native species. Species targeted by cats may also vary based on prey availability in different areas, but small mammals are generally preferred over birds, reptiles, or invertebrates. Domestic cats certainly have the potential to roam and hunt in very large areas inhabited by native species and loss of biodiversity is a major concern. Therefore, it is possible that ecosystems may not be able to sustain hunting by domestic cats. Because this predator-prey relationship is probably not sustainable, it is necessary to responsibly manage outdoor domestic cats.

  9. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  10. Population Dynamics of Macrosiphum rosae (L. on Different Cultivars of Rose (Rosahybrida, Rosaceae and Biodiversity of its Predators in Mashhad

    Directory of Open Access Journals (Sweden)

    M. Keykhosravi

    2016-06-01

    in landscapes of Mashhad and also to determine the diversity and abundance of the rose aphid predators throughout the seasonal growth in the study area. Material and Methods: Research to investigate the resistance of different rose cultivars against rose aphid and the biodiversity of its predators was conducted at the campus of Ferdowsi University of Mashhad from Mid-March of 2013 to late march 2014. Six rose cultivars including Ice berg, Miniature, Josephine bruce, Piccadilly, Fairy & Blessing were sampled weekly in three sampling sites. For sampling, four cut sections (5 centimeters of terminal part of randomly selected shoot of each cultivar in each site were cut and put in a plastic bag and brought to the laboratory for counting the number of different stages of rose aphid as well as the associated predators. For purpose of identification of immature stages of the aphid predators, immature stage was kept until they reach to adult stage in the laboratory. Results and Discussion: A seasonal fluctuation of rose aphid was recorded throughout the season on six rose cultivars (Table 1. Overall, this aphid was more numerous in spring and early fall on all studied cultivars (Figure 1. By approaching the summer, the population of rose aphid on all rose cultivars, except the Fairy and Miniature varieties declined to zero. Analysis of variance showed that differences in mean population of rose aphid among studied cultivars was significant (P

  11. Energetic conditions promoting top-down control of prey by predators.

    Directory of Open Access Journals (Sweden)

    Kristin N Marshall

    Full Text Available Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to predict because of limited information on species interaction strengths. Here we used a three species predator-prey model to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is moderately high.

  12. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators

    Directory of Open Access Journals (Sweden)

    Rory M. Welsh

    2017-05-01

    Full Text Available Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species, and reduced stability (increased beta-diversity. Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM to a maximum mean relative abundance of 48.75% (±0.14 SEM in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by

  13. Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator

    International Nuclear Information System (INIS)

    Saifuddin, Md.; Biswas, Santanu; Samanta, Sudip; Sarkar, Susmita; Chattopadhyay, Joydev

    2016-01-01

    The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.

  14. Environmental Variation and Cohort Effects in an Antarctic Predator

    Science.gov (United States)

    Garrott, Robert A.; Rotella, Jay J.; Siniff, Donald B.; Parkinson, Claire L.; Stauffer, Glenn E.

    2011-01-01

    Understanding the potential influence of environmental variation experienced by animals during early stages of development on their subsequent demographic performance can contribute to our understanding of population processes and aid in predicting impacts of global climate change on ecosystem functioning. Using data from 4,178 tagged female Weddell seal pups born into 20 different cohorts, and 30 years of observations of the tagged seals, we evaluated the hypothesis that environmental conditions experienced by young seals, either indirectly through maternal effects and/or directly during the initial period of juvenile nutritional independence, have long-term effects on individual demographic performance. We documented an approximately 3-fold difference in the proportion of each cohort that returned to the pupping colonies and produced a pup within the first 10 years after birth. We found only weak evidence for a correlation between annual environmental conditions during the juvenile-independence period and cohort recruitment probability. Instead, the data strongly supported an association between cohort recruitment probability and the regional extent of sea ice experienced by the mother during the winter the pup was in utero. We suggest that inter-annual variation in winter sea-ice extent influences the foraging success of pregnant seals by moderating the regional abundance of competing predators that cannot occupy areas of consolidated sea ice, and by directly influencing the abundance of mid-trophic prey species that are sea-ice obligates. We hypothesize that this environmentally-induced variation in maternal nutrition dictates the extent of maternal energetic investment in offspring, resulting in cohort variation in mean size of pups at weaning which, in turn, contributes to an individual?s phenotype and its ultimate fitness. These linkages between sea ice and trophic dynamics, combined with demonstrated and predicted changes in the duration and extent of sea

  15. Predation on larval Atlantic herring (Clupea harengus) in inshore waters of the Baltic Sea

    Science.gov (United States)

    Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena; Peck, Myron A.; Oesterwind, Daniel; Polte, Patrick

    2017-11-01

    In fishery science, early life-stage survival and development are regarded as major factors driving the population dynamics of marine fishes. During the last century, the main research focus has been on the spatio-temporal match of larval fish and appropriate food (bottom-up processes). However, these field studies are often criticised for their limited capability to disentangle their results from mortality caused by predation since these top-down mechanisms are rarely studied. We examined the predation on herring (Clupea harengus) larvae in a Baltic inshore lagoon by investigating the spatio-temporal overlap of larval herring and their potential predators such as the dominant threespine stickleback (Gasterosteus aculeatus) in distinct habitats (sublittoral and littoral areas) using a set of different gears and sampling techniques. Despite significant spatial and temporal predator-prey overlap, stomach analyses suggested that very few larvae were consumed by sticklebacks, even if projected to the entire study area and season. Other well-known predators of clupeid larvae such as gelatinous plankton occur later in the year after young herring have migrated out of the system. The observed predation on herring larvae was much less than expected and appears being a minor factor in determining herring reproduction success in our study area, particularly if compared to other causes of mortality such as egg predation. Providing a relatively good shelter from predation might be a key element making transitional waters valuable nursery grounds for the offspring of migrating marine fish species.

  16. Intra-population variation in activity ranges, diel patterns, movement rates, and habitat use of American alligators in a subtropical estuary

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael; Jeffery, Brian M.

    2013-12-01

    Movement and habitat use patterns are fundamental components of the behaviors of mobile animals and help determine the scale and types of interactions they have with their environments. These behaviors are especially important to quantify for top predators because they can have strong effects on lower trophic levels as well as the wider ecosystem. Many studies of top predator movement and habitat use focus on general population level trends, which may overlook important intra-population variation in behaviors that now appear to be common. In an effort to better understand the prevalence of intra-population variation in top predator movement behaviors and the potential effects of such variation on ecosystem dynamics, we examined the movement and habitat use patterns of a population of adult American alligators (Alligator mississippiensis) in a subtropical estuary for nearly four years. We found that alligators exhibited divergent behaviors with respect to activity ranges, movement rates, and habitat use, and that individualized behaviors were stable over multiple years. We also found that the variations across the three behavioral metrics were correlated such that consistent behavioral types emerged, specifically more exploratory individuals and more sedentary individuals. Our study demonstrates that top predator populations can be characterized by high degrees of intra-population variation in terms of movement and habitat use behaviors that could lead to individuals filling different ecological roles in the same ecosystem. By extension, one-size-fits-all ecosystem and species-specific conservation and management strategies that do not account for potential intra-population variation in top predator behaviors may not produce the desired outcomes in all cases.

  17. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    Science.gov (United States)

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  18. The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Skirvin, D J; Stavrinides, M C; Skirvin, D J

    2003-08-01

    The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.

  19. Learned predation risk management by spider mites

    Directory of Open Access Journals (Sweden)

    Thomas eHackl

    2014-09-01

    Full Text Available Predation is a prime selective force shaping prey behavior. Investment in anti-predator behavior is traded-off against time and energy for other fitness-enhancing activities such as foraging or reproduction. To optimize this benefit/cost trade-off, prey should be able to innately and/or by experience modulate their behavior to the level of predation risk. Here, we assessed learned predation risk management in the herbivorous two-spotted spider mite Tetranychus urticae. We exposed spider mites coming from benign (naïve or high immediate predation risk (experienced environments to latent and/or no risk and assessed their site choice, activity and oviposition. Benign environments were characterized by the absence of any predator cues, high immediate risk environments by killed spider mites, physical presence of the predatory mite Phytoseiulus persimilis and associated chemosensory traces left on the surface, and latent risk environments by only predator traces. In the no-choice experiment both naïve and experienced spider mites laid their first egg later on leaves with than without predator traces. Irrespective of predator traces presence/absence, experienced mites laid their first egg earlier than naïve ones did. Naïve spider mites were more active, indicating higher restlessness, and laid fewer eggs on leaves with predator traces, whereas experienced mites were less active and laid similar numbers of eggs on leaves with and without predator traces. In the choice experiment both naïve and experienced spider mites preferentially resided and oviposited on leaves without predator traces but experienced mites were less active than naïve ones. Overall, our study suggests that spider mites experienced with high predation risk behave bolder under latent risk than naïve spider mites. Since predator traces alone do not indicate immediate risk, we argue that the attenuated anti-predator response of experienced spider mites represents adaptive learned

  20. The combined effect of bottom-up and top-down factors on life history and reproduction of Daphnia in the field: is a strategic dilemma underlying population declines?

    Directory of Open Access Journals (Sweden)

    Stephan HÜLSMANN

    2011-08-01

    Full Text Available In a detailed field study covering three years, population dynamics, life history shifts and reproductive patterns of a population of Daphnia galeata were investigated in relation to food availability and dynamics of young of the year fish, the main vertebrate predators. In all years an increase of Daphnia abundance in spring was associated with declining food conditions (clear water stage. The size at maturity (SAM during this period was high and even increased, brood size declined, while egg volume increased. These patterns may be explained as response to food limitation. A decline of Daphnia abundance in every year was associated with increasing food conditions and the end of the clear water stage. Egg volumes as well as the size of egg-carrying daphnids also decreased, while brood size remained at low values. In two years in which these changes were particularly pronounced, the available fish data suggest that both the biomass (determining predation pressure, as well as the size of the fish (determining size selection are important for the observed dynamics. No decrease of SAM occurred as long as fish were smaller than 25 mm TL, when they are still gape-limited and not able to feed on the largest size-classes of Daphnia. Although fish biomass, which should correspond to kairomone level, would have suggested a reduction of SAM as induced defence, probably the selection of small (egg-carrying daphnids by small fish, besides severe food limitation, prevented this response to become effective. The sudden decline of SAM at the end of the clear water stage may not be explained by gradual phenotypic responses or indirect demographic effects, but must be due to an alternation of generations. SAM may be further reduced by direct and indirect effects of predation, interacting with increasing food levels. The Daphnia population is most vulnerable to predation at the time when the new generation takes over. Consequently, predation impact depends on