WorldWideScience

Sample records for pre-pilot manufacturing facility

  1. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  2. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  3. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  4. A modern depleted uranium manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

  5. Dispatching capacity in manufacturing facility offshoring

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    This paper investigates how a dispatching capacity of motivation, relational dynamics and structures seen from the sending context influence the entire knowledge transfer process in manufacturing facility offshoring. An inductive and qualitative approach is taken and five main themes are derived...

  6. DISPATCHING CAPACITY IN MANUFACTURING FACILITY OFFSHORING

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    transfer process, and which should accordingly be monitored and managed. This paper analyses the challenges in dispatching knowledge from a sending unit to a receiving unit in offshoring manufacturing facilities. The paper identifies motivation of the unit, relational dynamics and structures as important...... a manufacturing facility offshoring process. Using the cases, the paper uses an inductive approach to identify five main themes from the empirical cases. In the discussion, these themes are linked with the theoretical model leading to the identification of six testable propositions for future research...... requested but rarely implemented. The paper therefore concludes by stating that much can be achieved if managers are actively involved early on in the process by preparing teaching programs, carefully planning the process and by ensuring targeted communication about the manufacturing offshoring process...

  7. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  8. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.

    Science.gov (United States)

    Garcia, Fernando A; Vandiver, Michael W

    2017-01-01

    In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts.LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a

  9. Nonterrestrial utilization of materials: Automated space manufacturing facility

    Science.gov (United States)

    1982-01-01

    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility.

  10. DISPATCHING CAPACITY IN MANUFACTURING FACILITY OFFSHORING

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    factors that influence the entire knowledge transfer process, and which should accordingly be monitored and managed. Design/methodology/approach:The paper develops a theoretical model of knowledge transfer using existing literature. In a separate line of research, we study four cases each representing...... transfer process, and which should accordingly be monitored and managed. This paper analyses the challenges in dispatching knowledge from a sending unit to a receiving unit in offshoring manufacturing facilities. The paper identifies motivation of the unit, relational dynamics and structures as important...

  11. Dispatching capacity in manufacturing facility offshoring

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    This paper investigates how a dispatching capacity of motivation, relational dynamics and structures seen from the sending context influence the entire knowledge transfer process in manufacturing facility offshoring. An inductive and qualitative approach is taken and five main themes are derived...... from the four empirical cases. In the discussion, the five themes i.e. extra tasks, previous experiences, involvement of all groups of employees, teaching skills and organizational support in the dispatching context are linked with a theoretical model leading to the identification of seven testable...

  12. 14 CFR 21.43 - Location of manufacturing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of manufacturing facilities. 21.43... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.43 Location of manufacturing facilities. Except as provided in § 21.29, the Administrator does not issue a type certificate if the...

  13. 14 CFR 21.137 - Location of manufacturing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of manufacturing facilities. 21.137 Section 21.137 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... manufacturing facilities. The Administrator does not issue a production certificate if the...

  14. Manufacturing of the ESO adaptive optics facility

    Science.gov (United States)

    Arsenault, R.,; Madec, P.-Y.; Hubin, N.; Stroebele, S.; Paufique, J.; Vernet, E.; Hackenberg, W.; Pirard, J.-F.; Jochum, L.; Glindemann, A.; Jost, A.; Conzelmann, R.; Kiekebusch, M.; Tordo, S.; Lizon, J.-L.; Donaldson, R.; Fedrigo, E.; Soenke, C.; Duchateau, M.; Bruton, A.; Delabre, B.; Downing, M.; Reyes, J.; Kolb, J.; Bechet, C.; Lelouarn, M.; Bonaccini Calia, D.; Quattri, M.; Guidolin, I.; Buzzoni, B.; Dupuy, C.; Guzman, R.; Comin, M.; Silber, A.; Quentin, J.; La Penna, P.; Manescau, A.; Jolley, P.; Heinz, V.; Duhoux, P.; Argomedo, J.; Gallieni, D.; Lazzarini, P.; Biasi, R.; Andrighettoni, M.; Angerer, G.; Pescoller, D.; Stuik, R.,; Deep, A.

    2010-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train, in this case the secondary 1.1m mirror, and four Laser Guide Stars (LGSs). This evolution implements many challenging technologies like the Deformable Secondary Mirror (DSM) including a thin shell mirror (1.1 m diameter and 2mm thin), the high power Na lasers (20W), the low Read-Out Noise (RON) WaveFront Sensor (WFS) camera (< 1e-) and SPARTA the new generation of Real Time Computers (RTC) for adaptive control. It also faces many problematic similar to any Extremely Large Telescope (ELT) and as such, will validate many technologies and solutions needed for the European ELT (E-ELT) 42m telescope. The AOF will offer a very large (7 arcmin) Field Of View (FOV) GLAO correction in J, H and K bands (GRAAL+Hawk-I), a visible integral field spectrograph with a 1 arcmin GLAO corrected FOV (GALACSI-MUSE WFM) and finally a LTAO 7.5" FOV (GALACSI-MUSE NFM). Most systems of the AOF have completed final design and are in manufacturing phase. Specific activities are linked to the modification of the 8m telescope in order to accommodate the new DSM and the 4 LGS Units assembled on its Center-Piece. A one year test period in Europe is planned to test and validate all modes and their performance followed by a commissioning phase in Paranal scheduled for 2014.

  15. Using Genetic Algorithms on Manufacturing Facilities Layout Problems

    Institute of Scientific and Technical Information of China (English)

    王克胜; EspenGunnarsen; 袁庆丰

    2004-01-01

    Traditionally, the objective of a manufacturing facility layout problem is to minimize the material handling cost of the manufacturing systems. Because of the combination of the facility layout problems, the genetic algorithms (GA) technique is the most promising approach for solving practical layout problems. Much of the previous work has been done for identical problems, where all departments are equal in area. In this paper, non-identical problems are dealt with. A new coding approach - the Comer Attachmer Structure (CAS) is introduced.

  16. MAUDE (Manufacturer and User Facility Device Experience)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MAUDE data represents reports of adverse events involving medical devices. The data consists of all voluntary reports since June, 1993, user facility reports since...

  17. Systems analysis of a potential space manufacturing facility

    Science.gov (United States)

    Driggers, G. W.

    1977-01-01

    Results of a preliminary design study of the system elements comprising a manufacturing facility in earth orbit are presented. The elements discussed include cis-Lunar transportation, Lunar base, materials transport, factory, living facilities, construction support and energy supply. An evolutionary path of development, production and deployment is presented and step-wise interrelationships discussed.

  18. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  19. Chlorine dioxide remediation of a virus-contaminated manufacturing facility.

    Science.gov (United States)

    Lutgen, Mark

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Chlorine dioxide fumigation was successfully used to decontaminate a virally contaminated biotech manufacturing facility. Addressing safety, product quality, and corrosion risks were important factors in planning the building fumigation. Studies were performed to define the conditions in which minute mouse virus (MMV) is inactivated by chlorine dioxide and to understand equipment and facility risks. Written plans and procedures documented activities necessary to safely fumigate the building and requalify it to manufacture commercial product.

  20. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  1. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  2. Integration of criticality alarm system at a fuel manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Longinov, M.; Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)

    2005-07-01

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element CANFLEX bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. As the primary fuel supplier to the reactor site that has chosen to utilize this new fuel design, Zircatec has agreed to manufacture and supply this new fuel at their facility in Port Hope, Ontario. Under this agreement, Zircatec is challenged with converting a fuel manufacturing facility to include the processing of enriched uranium. The challenge is to introduce the new concept of criticality control to a facility that traditionally does not have to deal with such a concept. One of the elements of the implementation is the criticality detection and alarm system - CIDAS. Since a criticality could go undetected by human senses, one of the methods of ensuring safety from radiation exposure in the event of a criticality is the installation of a criticality incident detection and alarm system. This early warning device could be the difference between low dose exposure and lethal exposure. This paper describes the challenges that Zircatec has faced with the installation of a criticality incident detection and alarm system. These challenges include determining the needs and requirements, determining appropriate specifications, selecting the right equipment, installing the equipment and training personnel in the operation of the new equipment. (author)

  3. `Climate wise` program at the Cosmair, Inc. Clark Manufacturing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kraly, K.

    1997-12-31

    Viewgraphs from the conference presentation are reproduced in this paper, which outlines energy efficiency improvements and emissions reductions at a hair care products manufacturing facility. Program management focuses on employee involvement in internal audits, utility tracking, public relations, and preventative maintenance. Energy savings, cost savings, and emission reductions are presented for 1996 and projected to the year 2000. Other program aspects outlined include a summary of utility costs; solid waste; chilled water system modifications; lighting modifications; boiler upgrades; and heating, ventilating, and air conditioning improvements.

  4. POLLUTION PREVENTION AND THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    Science.gov (United States)

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  5. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    Science.gov (United States)

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  6. 14 CFR 21.309 - Location of or change to manufacturing facilities.

    Science.gov (United States)

    2010-01-01

    ..., and Appliances § 21.309 Location of or change to manufacturing facilities. (a) An applicant may obtain... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of or change to manufacturing facilities. 21.309 Section 21.309 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...

  7. 14 CFR 21.122 - Location of or change to manufacturing facilities.

    Science.gov (United States)

    2010-01-01

    ... § 21.122 Location of or change to manufacturing facilities. (a) An applicant may obtain a production... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of or change to manufacturing facilities. 21.122 Section 21.122 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...

  8. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  9. ISS Additive Manufacturing Facility for On-Demand Fabrication in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Made in Space has completed a preliminary design review of the Additive Manufacturing Facility. During the first half of Phase 1, the design went through conceptual...

  10. Electrophoretic separation of lunar soils in a space manufacturing facility

    Science.gov (United States)

    Dunning, J. D.; Snyder, R. S.

    1981-01-01

    The feasibility of electrophoretic separation of lunar soil into its mineral constituents is discussed in this paper. The process and its applicability to lunar soil separation are considered in light of the special requirements of a space manufacturing effort. Data generated in studies at NASA-Marshall Space Flight Center, which assess the efficiency of electrophoretic separation of lunar soil, are discussed and evaluated.

  11. Visit to China’s ARJ21 Aircraft Manufacturing Facility

    Science.gov (United States)

    2008-04-01

    dimensional Interactive Application ( CATIA ) system, and although the separate systems were not integrated, they were able to share design data. He...Design CAM Computer Aided Manufacturing CATIA Computer Aided Three-dimensional Interactive Application CMC Central Military Commission FAI First

  12. 40 CFR Table 1 to Subpart Vvvv of... - Compliance Dates for New and Existing Boat Manufacturing Facilities

    Science.gov (United States)

    2010-07-01

    ... Boat Manufacturing Facilities 1 Table 1 to Subpart VVVV of Part 63 Protection of Environment... Manufacturing Pt. 63, Subpt. VVVV, Table 1 Table 1 to Subpart VVVV of Part 63—Compliance Dates for New and Existing Boat Manufacturing Facilities As specified in § 63.5695, you must comply by the dates in...

  13. Cost modelling as decision support when locating manufacturing facilities

    Directory of Open Access Journals (Sweden)

    Christina Windmark

    2016-01-01

    Full Text Available This paper presents a methodology for cost estimation in developing decision supports for production location issues. The purpose is to provide a structured work procedure to be used by practitioners to derive the knowledge needed to make informed decisions on where to locate production. This paper present a special focus on how to integrate cost effects during the decision process. The work procedure and cost models were developed in close collaboration with a group of industrial partners. The result is a structure of cost estimation tools aligned to different steps in the work procedure. The cost models can facilitate both cost estimation for manufacturing a product under new preconditions, including support costs, and cost simulations to analyse the risks of wrong estimations and uncertainties in the input parameters. Future research aims to test the methodology in ongoing transfer projects to further understand difficulties in managing global production systems. In existing models and methods presented in the literature, cost is usually estimated on a too aggregated level to be suitable for decision support regarding production system design. The cost estimation methodology presented here provides new insights on cost driving factors related to the production system.

  14. Endotoxin exposure-response in a fiberglass manufacturing facility.

    Science.gov (United States)

    Milton, D K; Wypij, D; Kriebel, D; Walters, M D; Hammond, S K; Evans, J S

    1996-01-01

    Peak expiratory flow (PEF) and workplace exposure to endotoxin, phenolic resin, and formaldehyde were measured to investigate asthma symptoms and medication use among employees in a fiberglass wool manufacturing plant. Self-recorded PEF was obtained from 37 workers, for a total of 181 days off work and 187 days at work with concurrent personal exposure monitoring. Pre- and post-shift spirometry were obtained on at least 2 days. The 8 hr time-weighted average personal exposure ranges were endotoxin; 0.4-759 ng/m3; phenolic resin, 5.7-327 micrograms/m3; and formaldehyde, 1.2-265 micrograms/m3. Amplitude percent mean peak flow was associated with years since starting regular work in the highest endotoxin exposure area, although current assignment in that area was associated with reduced amplitude--evidence for a healthy worker effect. Exposure-response was analyzed by regression of lung function change on exposure using generalized estimating equations with robust variance estimates. Endotoxin exposure above 4 ng/m3 (8 hr time-weighted average) was associated with a decline in lung function across the work shift, and with drops in lung function 16-20 hr after exposure. Phenolic resin exposure was not consistently associated with decrements, and formaldehyde was not associated with decrements in lung function.

  15. Predictive validity of the strain index in manufacturing facilities.

    Science.gov (United States)

    Rucker, Nathan; Moore, J Steven

    2002-01-01

    The Strain Index is a job analysis method for determining if workers are exposed to increased risk of developing distal upper extremity disorders. Its predictive and external validity was initially demonstrated in a pork processing plant. The purpose of this study was to evaluate its predictive validity in two manufacturing plants. While blinded to health outcomes, investigators analyzed the right and left sides of 28 single-task jobs using the Strain Index and classified them as "hazardous" or "safe" based on the Strain Index score. Subsequently, OSHA 200 logs were used to ascertain the occurrence of distal upper extremity disorders retrospectively. If at least one such disorder occurred on the right or left side during the prior three years, that side was classified as "positive." If no such disorder was reported during the prior three years, that side was classified as "negative." When comparing sides, symmetry between morbidity and hazard classification was required. When comparing jobs, such symmetry was not required. Evidence of association between the hazard classifications and the morbidity classifications for the 56 sides and the 28 jobs was evaluated using 2 x 2 contingency tables. For the sides, the association between hazard classification and morbidity classification was statistically significant with an empirical odds ratio of 73.2. The sensitivity, specificity, positive predictive value, and negative predictive value were 1.00, 0.84, 0.47, and 1.00. Similar results were noted for the jobs--the empirical odds ratio was 106.6, and the sensitivity, specificity, positive predictive value, and negative predictive value were 1.00, 0.91, 0.75, and 1.00. While these results provide additional evidence of the Strain Index's external validity and predictive validity, it should be noted that these jobs involved the performance of single tasks.

  16. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    Science.gov (United States)

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  17. Elimination of Porcine Epidemic Diarrhea Virus in an Animal Feed Manufacturing Facility.

    Science.gov (United States)

    Huss, Anne R; Schumacher, Loni L; Cochrane, Roger A; Poulsen, Elizabeth; Bai, Jianfa; Woodworth, Jason C; Dritz, Steve S; Stark, Charles R; Jones, Cassandra K

    2017-01-01

    Porcine Epidemic Diarrhea Virus (PEDV) was the first virus of wide scale concern to be linked to possible transmission by livestock feed or ingredients. Measures to exclude pathogens, prevent cross-contamination, and actively reduce the pathogenic load of feed and ingredients are being developed. However, research thus far has focused on the role of chemicals or thermal treatment to reduce the RNA in the actual feedstuffs, and has not addressed potential residual contamination within the manufacturing facility that may lead to continuous contamination of finished feeds. The purpose of this experiment was to evaluate the use of a standardized protocol to sanitize an animal feed manufacturing facility contaminated with PEDV. Environmental swabs were collected throughout the facility during the manufacturing of a swine diet inoculated with PEDV. To monitor facility contamination of the virus, swabs were collected at: 1) baseline prior to inoculation, 2) after production of the inoculated feed, 3) after application of a quaternary ammonium-glutaraldehyde blend cleaner, 4) after application of a sodium hypochlorite sanitizing solution, and 5) after facility heat-up to 60°C for 48 hours. Decontamination step, surface, type, zone and their interactions were all found to impact the quantity of detectable PEDV RNA (P production of the contaminated feed. Additionally, the majority of samples collected from non-direct feed contact surfaces were also positive for PEDV RNA after the production of the contaminated feed, emphasizing the potential role dust plays in cross-contamination of pathogen throughout a manufacturing facility. Application of the cleaner, sanitizer, and heat were effective at reducing PEDV genomic material (P < 0.05), but did not completely eliminate it.

  18. 40 CFR 63.11601 - What are the standards for new and existing paints and allied products manufacturing facilities?

    Science.gov (United States)

    2010-07-01

    ... products manufacturing facilities? (a) For each new and existing affected source, you must comply with the... 40 Protection of Environment 14 2010-07-01 2010-07-01 false What are the standards for new and existing paints and allied products manufacturing facilities? 63.11601 Section 63.11601 Protection...

  19. Adverse events associated with ultrasonic scalers: A manufacturer and user facility device experience database analysis

    OpenAIRE

    Rajagopal Athmarao Thennukonda; Bhavani Rekha Natarajan

    2015-01-01

    Background: The present study was conducted to determine the frequency and type of adverse events (AEs) associated with ultrasonic scaler reported to the Food and Drug Administration manufacturer and user facility device experience (MAUDE) database. Materials and Methods: The authors reviewed the ultrasonic scaler units (USU) related AEs reported to MAUDE from October 1, 1995, to September 31, 2015. Analyses of details collected are presented. Results: MAUDE received a total of 667 un...

  20. Premier`s Task Force on NAFTA wind turbine manufacturing facility and windpower plants : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The proposal for a 700 MW wind farm and associated manufacturing facility at Pincher Creek, Alberta was discussed. York WindPower and ENERCON submitted the joint proposal in the spring of 1996 and requested a financial arrangement to guarantee a sale price of 5.4 cents per kWh (escalated) over 25 years. This was later revised in February, 1997 to 350 MW, 4.9 cents per kWh (escalated) over 15 years. A Task Force was established to assess this proposal and any other prospects for development of renewables in general. The two inseparable elements of the proposed project would be a manufacturing facility which would produce approximately 400 wind turbines a year, and a 700 MW wind farm, phased in over 10 years. The size of the wind farm would be based on a calculation of the minimal annual production required for the manufacturing facility to be viable. Pincher Creek residents are supportive of renewable energy and have been promoting wind energy long before the York/ENERCON proposal. They view this project as a support for regional economic development. The Task Force was pleased that York/ENERCON is pursuing the Alberta Advantage and is considering setting up a manufacturing facility. The Task Force did not seek to make a finding with respect to the business viability of the project, instead, the Task Force concluded that the commercial test for the project should be provided by competition in the marketplace. Nevertheless, the Task Force is supportive of the project, provided it proceeds on a voluntary, market-driven basis, and there are no conflicts with the existing government policy framework. 4 tabs., 2 appendices.

  1. Deconstructing energy use in microelectronics manufacturing: an experimental case study of a MEMS fabrication facility.

    Science.gov (United States)

    Branham, Matthew S; Gutowski, Timothy G

    2010-06-01

    Semiconductors are quite energy intensive to manufacture on the basis of energy required per mass of material processed. This analysis draws on original data from a case study of the Analog Devices Micromachined Products Division MEMS fabrication facility to examine the consequence of process rate on the energy intensity of semiconductor manufacturing. We trace the impact of process rate on energy intensity at different length scales, first presenting top-down data, then results of a bottom-up study, and concluding with individual process analyses. Interestingly, while production increased by almost a factor of 2 over the course of the study, energy demand remained virtually constant. At its most efficient, 270 kWh of electricity were required per six inch wafer in the manufacture of the MEMS devices produced at the fabrication facility. In part, the large amount of energy required per unit output is a function of the preponderance of energy used by support equipment; our data show that the facility support equipment is responsible for 58% of total energy requirements.

  2. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    Science.gov (United States)

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very

  3. Industrial Manufacturing Facilities, Published in 2008, 1:24000 (1in=2000ft) scale, Massachusetts Emergency Managment Agency.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Industrial Manufacturing Facilities dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2008. Data...

  4. EPA Announces 2015 ENERGY STAR Certified Manufacturing Plants, Allergan Pharmaceuticals facility in Waco, TX, among those recognized

    Science.gov (United States)

    DALLAS - (Feb. 24, 2016) The U.S. Environmental Protection Agency (EPA) announced today that the Allergan Pharmaceuticals facility in Waco, TX, is among the 70 manufacturing plants across the nation that achieved ENERGY STAR certification for their

  5. Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities.

    Science.gov (United States)

    Oh, Sewan; Kim, Boowook; Kim, Hyunwook

    2014-01-01

    Silica nanoparticles (SNPs) are widely used all around the world and it is necessary to evaluate appropriate risk management measures. An initial step in this process is to assess worker exposures in their current situation. The objective of this study was to compare concentrations and morphologic characteristics of fumed (FS) and sol-gel silica nanoparticles (SS) in two manufacturing facilities. The number concentration (NC) and particle size were measured by a real-time instrument. Airborne nanoparticles were subsequently analyzed using a TEM/EDS. SNPs were discharged into the air only during the packing process, which was the last manufacturing step in both the manufacturing facilities studied. In the FS packing process, the geometric mean (GM) NC in the personal samples was 57,000 particles/cm(3). The geometric mean diameter (GMD) measured by the SMPS was 64 nm. Due to the high-temperature formation process, the particles exhibited a sintering coagulation. In the SS packing process that includes a manual jet mill operation, the GM NC was calculated to be 72,000 particles/cm(3) with an assumption of 1,000,000 particles/cm(3) when the upper limit is exceeded (5% of total measure). The particles from SS process had a spherical-shaped morphology with GMD measured by SMPS of 94 nm.

  6. A novel microgrid demand-side management system for manufacturing facilities

    Science.gov (United States)

    Harper, Terance J.

    Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid

  7. DECOMMISSIONING OF THE 247-F FUEL MANUFACTURING FACILITY AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J; Stephen Chostner, S

    2007-05-22

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980s. The building layout is shown in Fig. 1. A photograph of the facility is shown in Fig. 2. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the cold war wound down, the need for naval fuel declined. Consequently, the facility was shut down and underwent initial deactivation. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping and equipment systems, a significant volume of liquid remained after initial deactivation was completed in 1990. At that time, a non-destructive assay of the process area identified approximately 17 (+/- 100%) kg of uranium held up in equipment and piping.

  8. Capacity optimization and scheduling of a multiproduct manufacturing facility for biotech products.

    Science.gov (United States)

    Shaik, Munawar A; Dhakre, Ankita; Rathore, Anurag S; Patil, Nitin

    2014-01-01

    A general mathematical framework has been proposed in this work for scheduling of a multiproduct and multipurpose facility involving manufacturing of biotech products. The specific problem involves several batch operations occurring in multiple units involving fixed processing time, unlimited storage policy, transition times, shared units, and deterministic and fixed data in the given time horizon. The different batch operations are modeled using state-task network representation. Two different mathematical formulations are proposed based on discrete- and continuous-time representations leading to a mixed-integer linear programming model which is solved using General Algebraic Modeling System software. A case study based on a real facility is presented to illustrate the potential and applicability of the proposed models. The continuous-time model required less number of events and has a smaller problem size compared to the discrete-time model.

  9. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  10. Use of fused deposit modeling for additive manufacturing in hospital facilities: European certification directives.

    Science.gov (United States)

    Otero, Joel J; Vijverman, An; Mommaerts, Maurice Y

    2017-09-01

    The goal of this study was to identify current European Union regulations governing hospital-based use of fused deposit modeling (FDM), as implemented via desktop three-dimensional (3D) printers. Literature and Internet sources were screened, searching for official documents, regulations/legislation, and views of specialized attorneys or consultants regarding European regulations for 3D printing or additive manufacturing (AM) in a healthcare facility. A detailed review of the latest amendment (2016) of the European Parliament and Council legislation for medical devices and its classification was performed, which has regularly updated published guidelines for medical devices, that are classified by type and duration of patient contact. As expected, regulations increase in accordance with the level (I-III) of classification. Custom-made medical devices are subject to different regulations than those controlling serially mass-produced items, as originally specified in 98/79/EC European Parliament and Council legislation (1993) and again recently amended (2016). Healthcare facilities undertaking in-house custom production are not obliged to fully follow the directives as stipulated, given an exception for this scenario (Article 4.4a, 98/79/EC). Patient treatment and diagnosis with the aid of customized 3D printing in a healthcare facility can be performed without fully meeting the European Parliament and Council legislation if the materials used are ISO 10993 certified and article 4.4a applies. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Waste minimization study for a printed circuit board manufacturing facility in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Shen-yann; Huang, Hann S.; Peters, R.W.; Tsai, S.Y. (Argonne National Lab., IL (USA)); Tsai, Wen-Tien; Shieh, Shih-Shien; Hsieh, Te-Yuan; Hwang, Li-Shyong (CTCI Corp., Taipei (Taiwan)); Liu, Solo; Peng, Chien-Tang (Printed Wire Corp., Ping Chen, Taoyuan (Taiwan)); Wu, Min H. (Waste Minimization Technology International, Inc., Pewaukee, WI (USA))

    1990-01-01

    This paper presents a demonstration of industrial waste minimization sponsored by the Environmental Protection Administration, Taiwan, Republic of China. Waste reduction opportunities are identified and evaluated for a printed circuit board manufacturing facility in Taiwan. Plant audits were conducted on various processes, such as deburring, alkaline etching, black oxidation, desmearing, electroless copper, and copper and tin/lead plating. Specific areas in which the wastes could be minimized, such as reducing the amount of dragout and rinse water requirements in the plating and etchant lines, and on-site treatment and reuse of spent bath solutions were identified, assessed, and implemented. Jar tests on the wastewater were performed, and the results were used to improve the efficiency of the wastewater treatment plant for removal of heavy metals and reduction of sludge generation. In addition, administrative controls of hazardous wastes designed to reduce associated health and environmental hazards were recommended. 4 figs., 9 tabs.

  12. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  13. Retrospective assessment of exposure to chemicals for a microelectronics and business machine manufacturing facility.

    Science.gov (United States)

    Fleming, Donald A; Woskie, Susan R; Jones, James H; Silver, Sharon R; Luo, Lian; Bertke, Stephen J

    2014-01-01

    A retrospective exposure assessment was performed for use in a health outcomes study of a facility manufacturing circuit boards, business machines, and other equipment during the years 1969-2002. A matrix was developed identifying chemical use by department-year based on company-provided information. Use of six chemical agents (fiberglass, lead, methylene chloride, methyl chloroform, perchloroethylene, and trichloroethylene) and six chemical classes (acid-base, aromatic hydrocarbons, chlorinated hydrocarbons, other hydrocarbons, chlorofluorocarbons, and metals), and general (including unspecified) chemicals was identified. The matrix also contained an assignment for each department-year categorizing the potential for use of chemicals as negligible, intermittent/incidental, or routine. These department-based exposure matrix data were combined with work history data to provide duration of potential chemical use for workers. Negligible, intermittent/incidental or routine extent-of-chemical-use categories comprised 42.6%, 39.4%, and 17.9%, respectively, of total person-years of employment. Cumulative exposure scores were also developed, representing a relative measure of the cumulative extent of potential exposure to the six chemical agents, six chemical classes, and general (including unspecified) chemicals. Additionally, the study period was divided into manufacturing eras showing trends in chemical use, and showing that process use of trichloroethylene and methylene chloride ended in the mid-1980s and the mid-1990s, respectively. This approach may be useful in other assessments addressing a variety of chemicals, and with data constraints common to retrospective chemical exposure studies.

  14. Acoustic Borehole Images for Fracture Extraction and Analysis in Second Pre-pilot Drillhole of CCSD

    Institute of Scientific and Technical Information of China (English)

    Zou Changchun; Shi Ge; Pan Lingzhi

    2004-01-01

    Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot drillhole which penetrates the metamorphic rocks. This paper focuses on fracture evaluation of the drillhole with these images. Both least square fit and a modified Hough transform are used for fracture extraction, and 269 fractures were mapped in the interval from 69.5 to 1 020 m. Most fractures dip steeply, with an average angle of 54°.Fracture dip directions are dominantly in the range of 220°-280° above the depth of 267 m, but 80°-120°in the lower zones. These observations may indicate the differences in structural movements or in-situ stress fields between the upper and lower zones in the drillhole.

  15. ISS Additive Manufacturing Facility for On-Demand Fabrication in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to manufacture on the International Space Station will enable on-demand repair and production capability, as well as essential research for manufacturing...

  16. Uncertainty and innovation: Understanding the role of cell-based manufacturing facilities in shaping regulatory and commercialization environments.

    Science.gov (United States)

    Isasi, Rosario; Rahimzadeh, Vasiliki; Charlebois, Kathleen

    2016-12-01

    The purpose of this qualitative study is to elucidate stakeholder perceptions of, and institutional practices related to cell-based therapies and products (CTP) regulation and commercialization in Canada. The development of reproducible, safe and effective CTPs is predicated on regulatory and commercialization environments that enable innovation. Manufacturing processes constitute a critical step for CTP development in this regard. The road from CTP manufacturing to translation in the clinic, however, has yet to be paved. This study aims to fill an empirical gap in the literature by exploring how CTP manufacturing facilities navigate Canadian regulatory and commercialization environments, which together drive the translation of novel CTPs from bench to bedside. Using the multi-level model of practice-driven institutional change proposed by Smets et al., we demonstrate how CTP manufacturing practices are governed by established standards, yet meaningfully shape higher-order regulatory and commercial norms in CTP research and development. We identify four key themes that undergird such processes of innovation: 1) managing regulatory uncertainty, which stems from an inability to classify CTPs within existing regulatory categories for approval and commercialization purposes; 2) building a 'business case' whereby a CTP's market potential is determined in large part by proving its safety and effectiveness; 3) standardizing manufacturing procedures that mobilize CTPs from a research and development phase to a commercialization one; and 4) networking between researchers and regulators to develop responsible commercialization processes that reflect the uniqueness of CTPs as distinct from other biologics and medical devices.

  17. The need for powder characterisation in the additive manufacturing industry and the establishment of a national facility

    Directory of Open Access Journals (Sweden)

    Benson, Jeffrey Malcolm

    2015-08-01

    Full Text Available The characteristics of powders used in additive manufacturing can have significant effects on process efficiencies and the quality of the final products. Powder sizes and morphologies need to be optimised for a particular process, and this requires the facilities to perform these measurements as well as provide a quality check on powder batches that are purchased. The establishment of a national powder characterisation facility has been identified by the Titanium Centre of Competence (a DST-funded initiative as a critical form of support for the development of a South African titanium metal industry. This paper discusses what effect the different powder characteristics can have on the selective laser sintering processes, as well as the state of development of this national facility.

  18. Industrial Manufacturing Facilities, Coweta County, Georgia WinPak Location Map, Published in 2004, 1:12000 (1in=1000ft) scale, Chattahoochee-Flint Regional Development.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Industrial Manufacturing Facilities dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from Hardcopy Maps information as of 2004. It...

  19. 基于遗传算法的制造设备布局问题的研究%Using Genetic Algorithms on Manufacturing Facilities Layout Problems

    Institute of Scientific and Technical Information of China (English)

    王克胜; Espen Gunnarsen; 袁庆丰

    2004-01-01

    Traditionally, the objective of a manufacturing facility layout problem is to minimize the material handling cost of the manufacturing systems. Because of the combination of the facility layout problems, the genetic algorithms (GA) technique is the most promising approach for solving practical layout problems. Much of the previous work has been done for identical problems, where all departments are equal in area. In this paper, non-identical problems are dealt with. A new coding approach - the Comer Attachment Structure (CAS) is introduced.

  20. Manufacture of Single 60Co Source Irradiation Facility and the Measurement of Reference Radiation Filed

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; WANG; Hong-yu; NI; Ning; ZHANG; Li; HOU; Jin-bing; SONG; Ming-zhe

    2012-01-01

    <正>Reference radiation filed produced by isotope source is necessary for calibration of radiation dose meter. 60Co single source radiation facility is an important method to produce reference radiation. Collimation design of the facility is good for characteristics of the field, but there are scattered photon influences however. Scattered radiation is mainly come from collimation, source shield, floor, walls and

  1. Jernberg Industries, Inc: Forging Facility Uses Plant-Wide Assessment to Aid Conversion to Lean Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-10-01

    Jernberg Industries conducted a plant-wide assessment while converting to lean manufacturing at a forging plant. Seven projects were identified that could yield annual savings of $791,000, 64,000 MMBtu in fuel and 6 million kWh.

  2. The Impact of Pollution Prevention on Toxic Environmental Releases from U.S. Manufacturing Facilities.

    Science.gov (United States)

    Ranson, Matthew; Cox, Brendan; Keenan, Cheryl; Teitelbaum, Daniel

    2015-11-03

    Between 1991 and 2012, the facilities that reported to the U.S. Environmental Protection Agency's Toxic Release Inventory (TRI) Program conducted 370,000 source reduction projects. We use this data set to conduct the first quasi-experimental retrospective evaluation of how implementing a source reduction (pollution prevention) project affects the quantity of toxic chemicals released to the environment by an average industrial facility. We use a differences-in-differences methodology, which measures how implementing a source reduction project affects a facility's releases of targeted chemicals, relative to releases of (a) other untargeted chemicals from the same facility, or (b) the same chemical from other facilities in the same industry. We find that the average source reduction project causes a 9-16% decrease in releases of targeted chemicals in the year of implementation. Source reduction techniques vary in effectiveness: for example, raw material modification causes a large decrease in releases, while inventory control has no detectable effect. Our analysis suggests that in aggregate, the source reduction projects carried out in the U.S. since 1991 have prevented between 5 and 14 billion pounds of toxic releases.

  3. Manufacturing progress of EDIPO. A Nb{sub 3}Sn-dipole for the ITER conductor test facility

    Energy Technology Data Exchange (ETDEWEB)

    Borlein, M.; Amend, J.; Theisen, W.; Walter, W. [Babcock Noell GmbH, Wuerzburg (Germany); Baker, W.; Fernandez-Cano, E.; Portone, A.; Salpietro, E. [Fusion For Energy F4E, Barcelona (Spain)

    2010-05-15

    ITER (International Thermonuclear Experimental Reactor) is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. For the construction of ITER and the manufacturing of its components, high quality standards must be met. Especially the coils of the magnet system - the heart of the ITER machine - are unique in size and complexity. Therefore the magnet coil manufacturing must be followed by a lot of quality measures. One of the necessary tests is the control of the conductor - to be sure that the conductor fulfils the technical performance needed for a proper magnet operation. As the conductor will experience a magnetic field of approx. 12-13 T during operation, it has to be tested within a magnetic background field. The European Dipole-magnet, called EDIPO, will be the heart of this conductor test facility which will be constructed at the CRPP Villigen (CH). Following the presentation, given in the Annual Meeting on Nuclear Technology in 2007, this paper shows the current status of the manufacturing of this complex Nb{sub 3}Sn-Magnet. At first, the design of the EDIPO shall be described. (orig.)

  4. Hybrid and Disposable Facilities for Manufacturing of Biopharmaceuticals: Pros and Cons

    Science.gov (United States)

    Ravisé, Aline; Cameau, Emmanuelle; de Abreu, Georges; Pralong, Alain

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.

  5. Control of ammonia and urea emissions from urea manufacturing facilities of Petrochemical Industries Company (PIC), Kuwait.

    Science.gov (United States)

    Khan, A R; Al-Awadi, L; Al-Rashidi, M S

    2016-06-01

    Petrochemical Industries Company (PIC) in Kuwait has mitigated the pollution problem of ammonia and urea dust by replacing the melting and prilling units of finished-product urea prills with an environmentally friendly granulation process. PIC has financed a research project conducted by the Coastal and Air Pollution Program's research staff at the Kuwait Institute for Scientific Research to assess the impact of pollution control strategies implemented to maintain a healthy productive environment in and around the manufacturing premises. The project was completed in three phases: the first phase included the pollution monitoring of the melting and prilling units in full operation, the second phase covered the complete shutdown period where production was halted completely and granulation units were installed, and the last phase encompassed the current modified status with granulation units in full operation. There was substantial decrease in ammonia emissions, about 72%, and a 52.7% decrease in urea emissions with the present upgrading of old melting and prilling units to a state-of-the-art technology "granulation process" for a final finished product. The other pollutants, sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs), have not shown any significant change, as the present modification has not affected the sources of these pollutants. Petrochemical Industries Company (PIC) in Kuwait has ammonia urea industries, and there were complaints about ammonia and urea dust pollution. PIC has resolved this problem by replacing "melting and prilling unit" of final product urea prills by more environmentally friendly "granulation unit." Environmental Pollution and Climate Program has been assigned the duty of assessing the outcome of this change and how that influenced ammonia and urea dust emissions from the urea manufacturing plant.

  6. Analysis and manufacturing of ShenGuangIII facility target chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingzhi; Chen, Xiaojuan [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Xu, Yuanli, E-mail: xuyl@caep.ac.cn [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Gao, Haiying; Que, Xinghua; Wu, Wenkai [Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Liu, Huilin [China Erzhong Group Co., Ltd., Deyang 618000, Sichuan (China); Xiang, Yong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China)

    2014-04-15

    This paper will present a summary of the ShenGuangIII facility target chamber. During the machining the sphericity tolerances were addressed in forming process and numerical control vertical lathe for the individual plates. Procedure was developed for weld groove and welding of individual plates. The two hemispheric shells of the target chamber were welded in China Erzhong Group Co., Ltd. and sent to a temporary enclosure near the target bay for welding together. A drilling machine that can be accurately positioned on the sphere shell was used to bore the holes for the ports. After construction, the target chamber was lifted and placed on the support pedestal. The adjustment system and the precision surveyors with laser trackers were used to accurately position the target chamber on the pedestal support. The helium spray probe was used for the leak testing of the vacuum target chamber. Leak testing and repair of discovered leaks were performed to insure the vacuum integrity of the target chamber. A complete survey of the port flanges and custom contour machining of spacer plates were completed to insure that the devices attached to these port flanges meet the alignment requirement. The target shooting experiment of the sixth bundles of ShenGuangIII facility has shown that the target chamber satisfied the stability and precision criteria.

  7. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    Science.gov (United States)

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  8. Frequency converter design and manufacturing considerations for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hibbard, R.L.; English, R.E., Jr.; De Yoreo, J.J.; Montesanti, R.C.

    1998-03-25

    The National Ignition Facility (NIF), being constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams, Figure 1. The lasing medium is neodymium in phosphate glass with a fundamental frequency (1{omega}) of 1.053 {micro}m. Sum frequency generation in a pair of conversion crystals (KDP/KD*P) produces 1.8 Mj of the third harmonic light (3{omega} or {lambda}=0.35). On NIF the frequency conversion crystals are part of the Final Optics Assembly (FOA), whose two principal functions are to convert the laser light to 3{omega} and focus it on target. In addition, the FOA provides a vacuum window to the target chamber, smoothes the on- target irradiance profile, moves the unconverted light away from the target, and provides signals for alignment and diagnostics. The FOA has four Integrated Optics Modules (IOM), Figure 4, each of which contains two 41 cm square crystals are mounted with the full edge support to micro radian angular and micron flatness tolerances. This paper is intended to be an overview of the important factors that affect frequency conversion on NIF. Chief among these are angular errors arising from crystal growth, finishing, and mounting. The general nature of these errors and how they affect frequency conversion, and finally the importance of a frequency conversion metrology tool in assessing converter performance before opto-mechanical assemblies are installed on NIF will be discussed.

  9. Lot-to-lot consistency of live attenuated SA 14-14-2 Japanese encephalitis vaccine manufactured in a good manufacturing practice facility and non-inferiority with respect to an earlier product.

    Science.gov (United States)

    Zaman, K; Naser, Abu Mohd; Power, Maureen; Yaich, Mansour; Zhang, Lei; Ginsburg, Amy Sarah; Luby, Stephen P; Rahman, Mahmudur; Hills, Susan; Bhardwaj, Mukesh; Flores, Jorge

    2014-10-21

    We conducted a four-arm, double-blind, randomized controlled trial among 818 Bangladeshi infants between 10 and 12 months of age to establish equivalence among three lots of live attenuated SA 14-14-2 JE vaccine manufactured by the China National Biotec Group's Chengdu Institute of Biological Products (CDIBP) in a new Good Manufacturing Practice (GMP) facility and to evaluate non-inferiority of the product with a lot of the same vaccine manufactured in CDIBP's original facility. The study took place in two sites in Bangladesh, rural Matlab and Mirpur in urban Dhaka. We collected pre-vaccination (Day 0) and post-vaccination Day 28 (-4 to +14 days) blood samples to assess neutralizing anti-JE virus antibody titers in serum by plaque reduction neutralization tests (PRNT). Seroprotection following vaccination was defined as a PRNT titer ≥1:10 at Day 28 in participants non-immune at baseline. Follow-up for reactogenicity and safety was conducted through home visits at Day 7 and monitoring for serious adverse events through Day 28. Seroprotection rates ranged from 80.2% to 86.3% for all four lots of vaccine. Equivalence of the seroprotection rates between pairs of vaccine lots produced in the new GMP facility was satisfied at the pre-specified 10% margin of the 95% confidence interval (CI) for two of the three pairwise comparisons, but not for the third (-4.3% observed difference with 95% CI of -11.9 to 3.3%). Nevertheless, the aggregate seroprotection rate for all three vaccine lots manufactured in the GMP facility was calculated and found to be within the non-inferiority margin (within 10%) to the vaccine lot produced in the original facility. All four lots of vaccine were safe and well tolerated. These study results should facilitate the use of SA 14-14-2 JE vaccine as a routine component of immunization programs in Asian countries.

  10. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  11. Proliferation Resistance and Safeguardability Assessment of a SFR Metal Fuel Manufacturing Facility (SFMF) using the INPRO Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. L.; Ko, W. I.; Park, S. H.; Kim, H. D.; Park, G. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To illustrate the proposed Prosta process, to demonstrate its usefulness, and to provide input to a revision of the INPRO manual in the area of proliferation resistance, a case study has been carried out with a conceptually designed sodium cooled fast reactor (SFR) metal fuel manufacturing facility (SFMF), representing novel technology still in the conceptual design phase. A coarse acquisition path analysis has been carried out of the SFMF to demonstrate the assessment process with identified different target materials. The case study demonstrates the usefulness of the proposed PROSA PR assessment process and the interrelationship of the PR assessment with the safeguards-by-design process, identifying potential R and D needs. The PROSA process has been applied to a conceptually designed SFMF, representing novel technology that is still in the conceptual design phase at KAERI. The case study demonstrated that the proposed PROSA process is simpler and easier to perform than the original INPRO methodology and can be applied from the early stage of design showing the relationship of PR assessment to the safeguard-by-design process. New evaluation questionnaire for UR1 is more logical and comprehensive, and provides the legal basis enabling the IAEA to achieve its safeguards objectives including the detection of undeclared nuclear materials and activities. NES information catalogue replacing UR2 was a useful modification and supports safeguardability assessment at the NES and facility level. The proposed PROSA process is also capable to identify strengths and weaknesses of a system in the area of proliferation resistance in a generally understandable form, including R and D gaps that need to be filled in order to meet the criteria for proliferation resistance of a nuclear energy system.

  12. Manufacturing Planning Guide

    Science.gov (United States)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  13. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography.

    Science.gov (United States)

    Wu, Wei; Hu, Jia; Wang, Jinqi; Chen, Xuerong; Yao, Na; Tao, Jing; Zhou, Yi-Kai

    2015-03-01

    Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n=6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n=142). Total PAEs varied from 2.21 to 157.62 mg kg(-1) in non-industrialized areas and from 8.63 to 171.64 mg kg(-1) in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P<0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r(2)=0.944, P<0.01) and the industrialized area (r(2)=0.860, P<0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization.

  14. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    Science.gov (United States)

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  15. Argonne's performance assessment of major facility systems to support semiconductor manufacturing by the National Security Agency/R Group, Ft. Meade, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Miller, G.M.

    1990-12-01

    The National Security Agency (NSA) was authorized in 1983 to construct a semiconductor and circuit-board manufacturing plant at its Ft. Meade, Maryland, facility. This facility was to become known as the Special Process Laboratories (SPL) building. Phase I construction was managed by the US Army Corps of Engineers, Baltimore District (USACE/BD) and commenced in January 1986. Phase I construction provided the basic building and support systems, such as the heating, ventilating, and air-conditioning system, the deionized-water and wastewater-treatment systems, and the high-purity-gas piping system. Phase II construction involved fitting the semiconductor manufacturing side of the building with manufacturing tools and enhancing various aspects of the Phase I construction. Phase II construction was managed by NSA and commenced in April 1989. Argonne National Laboratory (ANL) was contracted by USACE/BD midway through the Phase I construction period to provide quality-assured performance reviews of major facility systems in the SPL. Following completion of the Phase I construction, ANL continued its performance reviews under NSA sponsorship, focusing its attention on the enhancements to the various manufacturing support systems of interest. The purpose of this document is to provide a guide to the files that were generated by ANL during its term of technical assistance to USACE/BD and NSA and to explain the quality assurance program that was implemented when ANL conducted its performance reviews of the SPL building's systems. One set of the ANL project files is located at NSA, Ft. Meade, and two sets are at Argonne, Illinois. The ANL sets will be maintained until the year 2000, or for the 10-year estimated life of the project. 1 fig.

  16. Argonne's performance assessment of major facility systems to support semiconductor manufacturing by the National Security Agency/R Group, Ft. Meade, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Miller, G.M.

    1990-12-01

    The National Security Agency (NSA) was authorized in 1983 to construct a semiconductor and circuit-board manufacturing plant at its Ft. Meade, Maryland, facility. This facility was to become known as the Special Process Laboratories (SPL) building. Phase I construction was managed by the US Army Corps of Engineers, Baltimore District (USACE/BD) and commenced in January 1986. Phase I construction provided the basic building and support systems, such as the heating, ventilating, and air-conditioning system, the deionized-water and wastewater-treatment systems, and the high-purity-gas piping system. Phase II construction involved fitting the semiconductor manufacturing side of the building with manufacturing tools and enhancing various aspects of the Phase I construction. Phase II construction was managed by NSA and commenced in April 1989. Argonne National Laboratory (ANL) was contracted by USACE/BD midway through the Phase I construction period to provide quality-assured performance reviews of major facility systems in the SPL. Following completion of the Phase I construction, ANL continued its performance reviews under NSA sponsorship, focusing its attention on the enhancements to the various manufacturing support systems of interest. The purpose of this document is to provide a guide to the files that were generated by ANL during its term of technical assistance to USACE/BD and NSA and to explain the quality assurance program that was implemented when ANL conducted its performance reviews of the SPL building's systems. One set of the ANL project files is located at NSA, Ft. Meade, and two sets are at Argonne, Illinois. The ANL sets will be maintained until the year 2000, or for the 10-year estimated life of the project. 1 fig.

  17. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Hinck, Jo Ellen [U.S. Geological Survey (USGS), Columbia Environmental Research Center (CERC), 4200 New Haven Road, Columbia, MO 65201 (United States)], E-mail: jhinck@usgs.gov; Norstrom, Ross J. [RJN Environmental, 1481 Forest Valley Drive, Ottawa, ON K1C 5P5 (Canada); Orazio, Carl E.; Schmitt, Christopher J.; Tillitt, Donald E. [U.S. Geological Survey (USGS), Columbia Environmental Research Center (CERC), 4200 New Haven Road, Columbia, MO 65201 (United States)

    2009-02-15

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p'- and o,p'-DDT isomer concentrations and o,p'- versus p,p'-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p'-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife. - DDT persists in the environment near a former manufacturing facility that ceased production over 40 years ago, and concentrations represent a risk to fish and piscivorous birds in the area.

  18. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  19. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Hu, Jia [Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu (China); Wang, Jinqi; Chen, Xuerong; Yao, Na [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Tao, Jing, E-mail: jingtao1982@126.com [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhou, Yi-Kai, E-mail: zhouyk@mails.tjmu.edu.cn [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2015-03-01

    Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n = 6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n = 142). Total PAEs varied from 2.21 to 157.62 mg kg{sup −1} in non-industrialized areas and from 8.63 to 171.64 mg kg{sup −1} in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P < 0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r{sup 2} = 0.944, P < 0.01) and the industrialized area (r{sup 2} = 0.860, P < 0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization. - Highlights: • A new method for determining phthalate esters in soil samples was developed. • Investigate six phthalates near an industry and a

  20. GMP facilities for manufacturing of advanced therapy medicinal products for clinical trials: an overview for clinical researchers.

    Science.gov (United States)

    Alici, Evren; Blomberg, Pontus

    2010-12-01

    To be able to produce advanced therapy medicinal products, compliance with regulatory standards while maintaining flexibility is mandatory. For this purpose, careful planning is vital in the design or upgrade of a facility. Similarly, extensive foresight is elemental to anticipate upcoming needs and requirements. Failing this may lead to the facility's in-ability to meet the demands. In this chapter we aimed to outline the current issues with regards to the European Union Directives (EUD) and the proposal for Advanced Therapies, which are of importance to cellular and gene therapy facilities in Europe. This chapter is an attempt to elucidate what the minimum requirements for GMP facilities for cell and gene therapy products are and what is considered necessary to comply with the regulations in Europe.

  1. 40 CFR 63.11621 - What are the standards for new and existing prepared feeds manufacturing facilities?

    Science.gov (United States)

    2010-07-01

    ... prepared feed products containing chromium or manganese are loaded into trucks or railcars, you must use a... between the loading arm and the truck or railcar. (e) For the pelleting operations at prepared feeds... manufacturer's specifications are not available, you must develop and follow standard maintenance and...

  2. General Motors of Canada Ltd.'s action plan update for manufacturing and assembly facilities prepared for Canada's Climate Change Voluntary Challenge and Registry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-31

    General Motors of Canada Ltd. supports the objectives of Canada's Climate Change Voluntary Challenge and Registry (VCR), and has therefore submitted this report as an annual update of its energy performance and progress in the initiative. General Motors manufacturing facilities have reduced carbon dioxide emissions by 37 per cent from 1990 to 2001. Total energy consumption has also been reduced by 41 per cent for the same time period. These achievements have been due in part, to a wide range of energy conservation measures adopted by the company along with energy efficiency technologies. Energy efficiency measures have saved 534 million kWh and avoided 239 kilotonnes of carbon dioxide emissions. The company's current target for 2005 is to reduce energy consumption by a minimum of 25 per cent from the 1995 base year. Every effort will be made to undertake new production opportunities without increasing total carbon dioxide emissions. However, total energy consumption and greenhouse gas emissions may increase if there is a significant rise in production. This will depend on consumer demand for automobiles and competition between manufacturers. In 2001, General Motors received the VCR Leadership Award for the Automotive Manufacturing Sector and Gold Champion Level Reporter status. 9 tabs., 7 figs.

  3. A Decision Framework for Location Selection in Thailand: A Case Study in Hard Disk Drive Manufacturing Facility Location

    OpenAIRE

    Bhumipipatana, Kanitsaran

    2010-01-01

    ABSTRACT Making location selection for the operation of products is a complex decision-making process for manufacturing firms since the optimal location could enhance the firms’ competitive advantage and lead to a success in business. In this study, the critical factors affecting foreign firms’ international location decision are explored and aggregated into a comprehensive set of main factors and sub-factors. The results are examined by looking at the group sample of the Hard Disk Drive ...

  4. An Facile High-Density Polyethylene - Exfoliated Graphite - Aluminium Hydroxide Composite: Manufacture, Morphology, Structure, Antistatic and Fireproof Properties

    Directory of Open Access Journals (Sweden)

    Jihui LI

    2014-09-01

    Full Text Available Graphite intercalation compounds (GIC and exfoliated graphite (EG as raw materials were prepared with flake graphite, concentrated sulphuric acid (H2SO4, potassium bichromate (K2Cr2O7 and peracetic acid (CH3CO3H and characterized. Then, high-density polyethylene-exfoliated graphite (HDPE-EG composites were fabricated with HDPE and EG via in situ synthesis technique in the different mass ratio, and their resistivity values (ohms/sq were measured. Based on the resistivity values, it was discovered that HDPE-EG composite with the antistatic property could be fabricated while the mass ratio was 5.00 : 0.30. Last, HDPE-EG-aluminium hydroxide (HDPE-EG-Al(OH3 composites were manufactured with HDPE, GIC and Al(OH3 via the in situ synthesis-thermal expansion technique, and their resistivity values and limiting oxygen index (LOI values were measured. Based on the resistivity values and LOI values, it was discovered that HDPE-EG-Al(OH3 composite with the antistatic and fireproof property could be manufactured while HDPE, GICs and Al(OH3 of mass ratio was 5.00 : 0.30 : 1.00. Otherwise, the petal-like morphology and structure of HDPE-EG-Al(OH3 composite were characterized, which consisted of EG, HDPE and Al(OH3. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4275

  5. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    Science.gov (United States)

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Design and Manufacture of a Large-Bore 10 T Superconducting Dipole for the CERN Cable Test Facility

    CERN Document Server

    Leroy, D; Verweij, A P; Boschmann, H; Dubbeldam, R L; González-Pelayo, J

    2000-01-01

    A large-bore 10 T superconducting dipole magnet was designed and fabricated in close cooperation between CERN and HMA Power Systems. The dipole has a length of about 1.7 m and an aperture of 88 mm and is composed of two two-layer poles wound with NbTi cables cooled to 1.9 K to reach magnetic inductions close to 10 T. This dipole will be installed at the CERN cable test facility and used as a background field magnet to test LHC superconducting cables. In its large aperture up to four cable samples can be tested at the same time. The mechanical design of the magnet is such that coil prestress variations between warm and cold conditions are kept within 20 MPa. A short model was also built and cooled down in order to check and confirm with test results the mechanical behavior of the dipole. Magnetic measurements, at room temperature, were performed upon its arrival at CERN prior to installation in the test facility. The dipole was recently cooled down and tested. This paper will discuss the design, the main manu...

  7. Northwest Manufacturing Initiative

    Science.gov (United States)

    2014-07-31

    warehouse. If the batch of lenses is faulty, the manufacturer wants to know ASAP in order to send Visionary Lenses a new batch of lenses. The manufacturer ...increased. • A few years ago, Nike started using pre-consumer Nike Grind – (scrap material from their manufacturing facilities) – in new ...Northwest ( in particular with firms in the manufacturing eco-system of defense supply chains). Special emphasis was placed to increase the

  8. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility

    Science.gov (United States)

    Hinck, J.E.; Norstrom, R.J.; Orazio, C.E.; Schmitt, C.J.; Tillitt, D.E.

    2009-01-01

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p???- and o,p???-DDT isomer concentrations and o,p???- versus p,p???-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p???-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife.

  9. Sol-gel based TiO2 thin film deposition on frustules towards facile and scalable manufacturing

    Science.gov (United States)

    Li, A.; Wang, J.; Zhang, W.; McNaughton, R.; Anderson, S.; Zhang, X.

    2016-11-01

    Diatom frustules have drawn a lot of attention from engineering researchers in the past decades. As a type of biomaterial, diatom frustules have been applied in a variety of areas such as biosensors and solar cells due to their excellent material and optical properties. Titanium dioxide (TiO2), on the other hand, is also semiconductor material and photocatalyst, micro and nanoparticles of which can be found in applications such as dye sensitised solar cells (DSSC). It has been demonstrated that by using diatom frustule-TiO2 composite particles in DSSCs, the performance of the solar cells could be increased. In this paper, we introduce a sol- gel based method to deposit TiO2 layers on the surface of diatom frustules. TiO2 nanoparticles were deposited on the surface of the frustules. After a subsequent annealing process, TiO2 crystal grains were formed. The method in this paper has the potential for scalable manufacturing of frustule-TiO2 composite materials for future solar cell applications.

  10. Use of a whole blood competitive immunoassay for the assessment of worker exposures to propylene oxide at three manufacturing facilities.

    Science.gov (United States)

    Jones, Alan L; Van der Woord, Miriam; Bourrillon, François

    2005-04-01

    The level of N-(2-hydroxypropyl)valine adducts in haemoglobin has been shown to correlate well with workplace exposure to propylene oxide (PO). However, the analytical method, using the modified Edman degradation procedure, is prohibitively time-consuming and expensive for use as a routine workplace exposure measurement tool. As an alternative, AB Biomonitoring Ltd of Cardiff, Wales, developed a competitive immunoassay for the determination of N-(2-hydroxypropyl)valine adducts in human haemoglobin. Studies showed that whole blood samples analysed using an enzyme linked immunosorbent assay (ELISA) and the modified Edman degradation procedure over the concentration range 3.7-992 nmol N-(2-hydroxypropyl)valine g(-1) haemoglobin are in good agreement (correlation coefficient 0.998, n = 10). The intervariance and intravariance data indicate the repeatability of the ELISA method over the assay conditions employed and show that it is robust over its working range [2-200 pmol N-(2-hydroxypropyl)valine g(-1) haemoglobin]. The assay employs a whole blood matrix and has a working range of 2-6000 pmol g(-1) Hb (equivalent to up to 5 ppm PO exposure, 8 h per day, 5 days per week, over 4 months). The practicality of the assay was tested by assessing exposures to PO at three world-scale manufacturing sites in France and The Netherlands. Over 800 samples were taken over a 2 year period from operators, maintenance fitters and office staff. The data, typically immunoassay is a powerful tool for the exposure component of future epidemiology studies, as well as a definitive demonstration of the effectiveness of exposure controls.

  11. Particle size distributions of lead measured in battery manufacturing and secondary smelter facilities and implications in setting workplace lead exposure limits.

    Science.gov (United States)

    Petito Boyce, Catherine; Sax, Sonja N; Cohen, Joel M

    2017-08-01

    Inhalation plays an important role in exposures to lead in airborne particulate matter in occupational settings, and particle size determines where and how much of airborne lead is deposited in the respiratory tract and how much is subsequently absorbed into the body. Although some occupational airborne lead particle size data have been published, limited information is available reflecting current workplace conditions in the U.S. To address this data gap, the Battery Council International (BCI) conducted workplace monitoring studies at nine lead acid battery manufacturing facilities (BMFs) and five secondary smelter facilities (SSFs) across the U.S. This article presents the results of the BCI studies focusing on the particle size distributions calculated from Personal Marple Impactor sampling data and particle deposition estimates in each of the three major respiratory tract regions derived using the Multiple-Path Particle Dosimetry model. The BCI data showed the presence of predominantly larger-sized particles in the work environments evaluated, with average mass median aerodynamic diameters (MMADs) ranging from 21-32 µm for the three BMF job categories and from 15-25 µm for the five SSF job categories tested. The BCI data also indicated that the percentage of lead mass measured at the sampled facilities in the submicron range (i.e., size range associated with enhanced absorption of associated lead) was generally small. The estimated average percentages of lead mass in the submicron range for the tested job categories ranged from 0.8-3.3% at the BMFs and from 0.44-6.1% at the SSFs. Variability was observed in the particle size distributions across job categories and facilities, and sensitivity analyses were conducted to explore this variability. The BCI results were compared with results reported in the scientific literature. Screening-level analyses were also conducted to explore the overall degree of lead absorption potentially associated with the observed

  12. Collaborating With Parents of Children With Chronic Conditions and Professionals to Design, Develop and Pre-pilot PLAnT (the Parent Learning Needs and Preferences Assessment Tool).

    Science.gov (United States)

    Nightingale, Ruth; Wirz, Lucy; Cook, Wendy; Swallow, Veronica

    This study aimed to design, develop and pre-pilot an assessment tool (PLAnT) to identify parents' learning needs and preferences when carrying out home-based clinical care for their child with a chronic condition. A mixed methods, two-phased design was used. Phase 1: a total of 10 parents/carers and 13 professionals from six UK's children's kidney units participated in qualitative interviews. Interview data were used to develop the PLAnT. Eight of these participants subsequently took part in an online survey to refine the PLAnT. Phase 2: thirteen parents were paired with one of nine professionals to undertake a pre-pilot evaluation of PLAnT. Data were analyzed using the Framework approach. A key emergent theme identifying parents' learning needs and preferences was identified. The importance of professionals being aware of parents' learning needs and preferences was recognised. Participants discussed how parents' learning needs and preferences should be identified, including: the purpose for doing this, the process for doing this, and what would the outcome be of identifying parents' needs. The evidence suggests that asking parents directly about their learning needs and preferences may be the most reliable way for professionals to ascertain how to support individual parents' learning when sharing management of their child's chronic condition. With the increasing emphasis on parent-professional shared management of childhood chronic conditions, professionals can be guided by PLAnT in their assessment of parents' learning needs and preferences, based on identified barriers and facilitators to parental learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances.

    Science.gov (United States)

    Bach, Cristina; Dauchy, Xavier; Boiteux, Virginie; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François

    2017-02-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.

  14. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    Science.gov (United States)

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  15. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ... Electronics Manufacturing To Provide Flexibility AGENCY: Environmental Protection Agency (EPA). ACTION: Final... Electronics Manufacturing portion of the Greenhouse Gas Reporting Rule for the ``largest'' semiconductor... facilities Electronics Manufacturing 334111 Microcomputer manufacturing facilities. 334413...

  16. Manufacturing facilities of pharmaceutical products and measures for purification of its environment. Qualitative guarantee of productive enviroment in medicinal factory; Iyakuhin no seizo shisetsu to kankyo seijoka taisaku. Iyakuhin kojo ni okeru seizo kankyo no hinshitsu hosho

    Energy Technology Data Exchange (ETDEWEB)

    Fujinaga, H. [Kajima Construction Co. Ltd., Tokyo (Japan)

    1994-07-31

    Medicines have its peculiarity which is concerned in health and life of a human being, hence it is important to secure its validity, safety and high quality, and it is demanded to establish firmly the quality control system from research and development throughout production, logistics, up to usage. Accordingly, in order to export medicines overseas, it is required to validate that the medicines are manufactured in accordance with GMP (good manufacturing practice) of the country of destination. When Kajima Construction Co. designed and constructed a pharmaceutical plant to manufacture injections to be exported to the U.S.A., it planned and executed the validation technique from the viewpoint of quality assurance of the manufacturing environment as the GMP qualified plant, hence in this article, the outline of the above is reported. With regard to application of GMP, differences between Japan and the U.S.A. are pointed out. Also systematization of quality validation of the manufacturing environment is commented upon. Furthermore, examples are shown concerning execution of validation, and the monitor facility corresponding to daily validation is described. 4 refs., 2 figs., 9 tabs.

  17. Characterization of emissions of dioxins and furans from ethylene dichloride (EDC), vinyl chloride (VCM) and polyvinylchloride (PVC) manufacturing facilities in the United States. I. Resin, treated wastewater, and ethylene dichloride.

    Science.gov (United States)

    Carroll, W F; Berger, T C; Borrelli, F E; Garrity, P J; Jacobs, R A; Lewis, J W; McCreedy, R L; Tuhovak, D R; Weston, A F

    1998-01-01

    Under the auspices of its Dioxin Characterization Program, members of The Vinyl Institute (VI), have analyzed for potential polychlorinated dibenzodioxin/furan (PCDD/F) concentrations in polyvinylchloride (PVC) resins, treated wastewater effluent and ethylene dichloride (EDC) product at EDC, vinyl chloride monomer (VCM) and PVC manufacturing facilities in the U.S. and Canada. No 2,3,7,8-tetrachlorodibenzodioxin (TCDD) was detected in any sample analyzed under the program to date. Trace concentrations (low pg/g) of PCDD/F were detected in only a few samples of PVC resins and EDC product. Treated wastewater contained low ppq concentrations of PCDD/F. All concentrations are expressed as Toxic Equivalents (TEQ). Extrapolation of these data shows that the contribution of EDC/VCM/PVC manufacturing via these media constitutes substantially less than 1 percent of the estimated annual U.S. dioxin releases to the environment.

  18. Transfer of manufacturing units

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2008-01-01

    The ongoing and unfolding relocation of activities is one of the major trends, that calls for attention in the domain of operations management. In particular, prescriptive models outlining: stages of the process, where to locate, and how to establish the new facilities have been studied, while...... and dilemmas to be addressed when transferring manufacturing units....

  19. INVISTA Kicks off Expansion of Airbag Fiber Facility in Shanghai Global- fiber manufacturer grows to meet increasing demand in Asia automotive market

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On Sept 22, 2011, INVISTA, one of the world's largest integrated fibers and polymers businesses, kicked off the expansion of its airbag and industrial nylon manufacturing plant in the Qingpu district of Shanghai, China. The expansion is expected to approximately double the existing plant's capacity by 2013 when construction is complete, making it the largest plant of its kind in Asia.

  20. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  1. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  2. Computational manufacturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a general framework for computational manufacturing. The methodology of computational manufacturing aims at integrating computational geometry, machining principle, sensor information fusion, optimization, computational intelligence and virtual prototyping to solve problems of the modeling, reasoning, control, planning and scheduling of manufacturing processes and systems. There are three typical problems in computational manufacturing, i.e., scheduling (time-domain), geometric reasoning (space-domain) and decision- making (interaction between time-domain and space-domain). Some theoretical fundamentals of computational manufacturing are also discussed.

  3. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  4. Development of manufacturing capability for the fabrication of the Nb/sub 3/Sn superconductor for the High Field Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, C R

    1981-01-01

    Construction of High Field Test Facility (HFTF) at Lawrence Livermore Laboratory (LLNL) requires an extended surface Nb/sub 3/Sn superconductor cable of carrying currents in excess of 7500 amperes in a 12 Tesla magnetic field. This conductor consists of a 5.4 mm x 11.0 mm superconducting core onto whose broad surfaces are soldered embossed oxygen free copper strips. Two different core designs have been developed and the feasibility of each design evaluated. Equipment necessary to produce the conductor were developed and techniques of production were explored.

  5. INCREASING EFFICIENCY OF REPAIRING, MANUFACTURING AND OPERATION OF THE TPP FACILITIES BY TECHNOLOGY OF GAS-THERMAL COATING AND LASER SURFACE MELTING

    Directory of Open Access Journals (Sweden)

    O. E. Grachev

    2015-01-01

    Full Text Available The article considers effectiveness increase of the TPP heat-mechanical equipment repair, manufacturing and maintenance as exemplified by gas-thermal technique for hardening laststages rotor blades of the steam turbines. The rotor blades work under conditions of intense power loading, their airfoil being erosion-corrosion destructed by the action of the moist-steam flow. Repairing companies employ quite a number of technologies to restore some of erosion-worn rotor blades. Inter alia, argon-arc, plasma and gas-powder weld deposition of the original material with subsequent machining, stellite protection recovery, electrical spark alloying the entry edge mat surface, spraying ion-plasma coating on the blade airfoil surface. In domestic turbine building, rotor blades of the steam turbines last stages are manufactured of martensitic class stainless steel. The key condition for successful blade restoration is thermal effect minimizing on the base material for excluding the slag areas possible forming. The laser surface coating technology provides these conditions. They coat the surface of an item being processed by way of melting the base and the adding material. In as much the base melts smallest, the coating characteristics depend mainly on the properties of adding material. The procedure of laser coating passes through several stages including physical contact creation, chemical interaction (laser radiation absorption, volumetrical processes resulting in formation of stable bonds in volume of the materials that have reacted. For the low-pressure cylinder rotor blades supplementary protection against erosion destruction, LLC ‘Technological Systems of Protective Coating’ developed technology of the blade airfoil protective finish by method of high-speed gas-flame sputter. The company realized this technology in 2012 during K-200-12,8 turbine (of the Leningrad Metallurgical Works – LMZ repairing in Zainsk SDPP by JSC ‘Tatenergo’. The

  6. Manufacturing Interfaces

    NARCIS (Netherlands)

    Houten, van F.J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering. Desi

  7. 全氟化工厂土芯中全氟化合物的分布规律%Spatial and vertical distribution of perfluoroalkyl substances in soil cores around manufacturing facilities in China

    Institute of Scientific and Technical Information of China (English)

    高燕; 傅建捷; 王亚韡; 江桂斌

    2014-01-01

    本文对全氟化合物(PFASs)生产工厂厂内及周边土芯样品中的PFASs进行了研究.PFASs浓度范围为1.19-1495 ng·g-1 dw(干重),其中全氟辛基磺酸盐(PFOS)浓度在3个主要单体(全氟己基磺酸盐( PFHxS)、PFOS及全氟辛酸( PFOA))中处于最高水平.整体上,土芯中PFASs浓度由上到下呈下降趋势,其浓度与TOC呈正相关.在一个已经停产10年左右的生产企业周围土芯中仍然发现了较高浓度的PFASs,说明其在环境中存在着较强的持久性.%Perfluoroalkyl substances ( PFASs) have received much attention in recent years. In this study, perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid ( PFOA) were detected in soil cores around a PFASs manufacturing facility and an abandoned facility. PFASs concentrations were in the range of 1.19 to 1495 ng·g-1dw (dry weight). Thereinto, PFOS was the most abundant pollutant, followed by PFOA and PFHxS. PFASs concentrations showed decreasing trends from upper layers to the bottom of the soil core. The concentrations of PFASs were positively correlated with total organic carbons ( TOC) of the samples. Besides, high levels of PFASs concentrations in soil samples from the abandoned facility indicated the persistence of PFASs in the environment.

  8. Power electronic modules design and manufacture

    CERN Document Server

    Sheng, William W

    2004-01-01

    IntroductionSelection ProcedureMaterialsInsulating Substrate and MetallizationBase PlateBonding MaterialPower Interconnection and TerminalEncapsulantPlastic Case and Cover Manufacturing of Power IGBT ModulesManufacturing Process Process Control/Long-Term ReliabilityManufacturing FacilitiesManufacturing Flow Charts DesignThermal ManagementCircuit PartitioningDesign Guidelines and ConsiderationsThermal Results of Different Samples

  9. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    . If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  10. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  11. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  12. A facility location model for socio-environmentally responsible decision-making

    National Research Council Canada - National Science Library

    Ansbro, Dominic; Wang, Qing

    2013-01-01

    .... The model presented considers a network of suppliers, manufacturing facilities, customers, scrap recyclers, general recycling facilities and landfill sites and makes facility location and allocation...

  13. 40 CFR 60.560 - Applicability and designation of affected facilities.

    Science.gov (United States)

    2010-07-01

    ... (including expandable polystyrene) manufacturing processes, the affected facilities are each group of... apply to affected facilities involved in the manufacture of polypropylene, polyethylene, polystyrene, or... that are emitted intermittently. (2) For process emissions from polystyrene manufacturing...

  14. 10 CFR 611.206 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  15. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Science.gov (United States)

    2011-06-22

    ... Electronics Manufacturing (Subpart I) To Provide Flexibility AGENCY: Environmental Protection Agency (EPA... the Electronics Manufacturing portion (Subpart I) of the Mandatory Greenhouse Gas Reporting Rule for the ``largest'' semiconductor manufacturing facilities (i.e., those that fabricate devices on...

  16. 76 FR 72974 - Manufacturer of Controlled Substances Notice of Application

    Science.gov (United States)

    2011-11-28

    ..., Johnson Matthey Pharmaceutical Materials Inc., Pharmaceutical Service, 25 Patton Road, Devens... company's primary manufacturing facility in West Deptford, New Jersey. The controlled substances...

  17. Photovoltaic Manufacturing Technology Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Stern, M.J. (Utility Power Group, Chatsworth, CA (United States))

    1991-11-01

    This report documents Utility Power Group's (UPG) contract under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) project. Specifically, the report contains the results of a manufacturing technology cost analysis based on an existing PV module production facility. It also projects the cost analysis of a future production facility based on a larger module area, a larger production rate, and the elimination of several technical obstacles. With a coordinated 18-month engineering effort, the technical obstacles could be overcome. Therefore, if solutions to the financial obstacles concerning production expansion were found, UPG would be able to manufacture PV modules at a cost of under $1.25 per watt by 1994.

  18. Manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  19. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  20. The technology base for agile manufacturing

    Science.gov (United States)

    Brost, R. C.; Strip, D. R.; Eicker, P. J.

    1993-01-01

    The effective use of information is a critical problem faced by manufacturing organizations that must respond quickly to market changes. As product runs become shorter, rapid and efficient development of product manufacturing facilities becomes crucial to commercial success. Effective information utilization is a key element to successfully meeting these requirements. This paper reviews opportunities for developing technical solutions to information utilization problems within a manufacturing enterprise and outlines a research agenda for solving these problems.

  1. 21 CFR 606.40 - Facilities.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Facilities. 606.40 Section 606.40 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS CURRENT GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Plant and Facilities § 606.40 Facilities. Facilities shall be maintained in a clean...

  2. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  3. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

      As part of an employment as Technology Architect at the company Linak in combination with research at the University of Southern Denmark, this paper will present results from a strategy process where Lean has been pointed out as being a very strategic element in the Linak Production System....... The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical......, organizational and management improvements in the company to what is named the Linak Production System.  ...

  4. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

      As part of an employment as Technology Architect at the company Linak in combination with research at the University of Southern Denmark, this paper will present results from a strategy process where Lean has been pointed out as being a very strategic element in the Linak Production System....... The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  5. Photovoltaic manufacturing technology, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  6. 10 CFR 611.207 - Small automobile and component manufacturers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Small automobile and component manufacturers. 611.207... VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.207 Small automobile and component... individuals; and (2) Manufactures automobiles or components of automobiles. (b) Set Aside—Of the amount...

  7. 49 CFR 665.13 - Test report and manufacturer certification.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Test report and manufacturer certification. 665.13... manufacturer certification. (a) Upon completion of testing, the operator of the facility shall provide the resulting test report to the entity that submitted the bus for testing. (b)(1) A manufacturer or dealer of...

  8. A decision making framework for optimal implementation of equipment management in manufacturing execution system - case clinical manufacturing of parenterals

    OpenAIRE

    Sandstöm

    2015-01-01

    Manufacturing execution systems (MES) are computer systems which are used for controlling and automating manufacturing processes. They are increasingly adapted in pharmaceutical industry. Implementation solutions differ, however, and there is no single solution which would be the optimal one for all facilities. Each manufacturing facility has their unique properties and needs which have to be reflected in the implementation. A successful MES project will bring plenty of benefits such as more ...

  9. Additive manufacturing – a sustainable manufacturing route

    Directory of Open Access Journals (Sweden)

    Frăţilă Domniţa

    2017-01-01

    Full Text Available Additive Manufacturing (AM technologies allow developing and manufacturing very complex shaped parts and functional products with a high level of customization, being a great alternative to Traditional Manufacturing (TM methods like injection molding, die-casting or machining. Due to the importance of cleaner production in the field of manufacturing processes, sustainability of AM processes needs to be assessed in order to make easier its acceptance and implementation in the industry. Furthermore, the manufacturers can improve their competitiveness and profitability by considering the ecological aspects during the manufacturing step of a product. This paper gives a survey on sustainability issues related to AM.

  10. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J [ORNL

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  11. Additive manufacturing – a sustainable manufacturing route

    OpenAIRE

    Frăţilă Domniţa; Rotaru Horaţiu

    2017-01-01

    Additive Manufacturing (AM) technologies allow developing and manufacturing very complex shaped parts and functional products with a high level of customization, being a great alternative to Traditional Manufacturing (TM) methods like injection molding, die-casting or machining. Due to the importance of cleaner production in the field of manufacturing processes, sustainability of AM processes needs to be assessed in order to make easier its acceptance and implementation in the industry. Furth...

  12. Additive manufacturing – a sustainable manufacturing route

    OpenAIRE

    Frăţilă Domniţa; Rotaru Horaţiu

    2017-01-01

    Additive Manufacturing (AM) technologies allow developing and manufacturing very complex shaped parts and functional products with a high level of customization, being a great alternative to Traditional Manufacturing (TM) methods like injection molding, die-casting or machining. Due to the importance of cleaner production in the field of manufacturing processes, sustainability of AM processes needs to be assessed in order to make easier its acceptance and implementation in the industry. Furth...

  13. Desktop Manufacturing Technologies.

    Science.gov (United States)

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  14. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  15. 21 CFR 1271.190 - Facilities.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Facilities. 1271.190 Section 1271.190 Food and... CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.190 Facilities. (a) General. Any facility used in the manufacture of HCT/Ps must be of suitable size, construction, and location to prevent...

  16. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  17. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  18. 36 CFR 223.192 - Procedures for a non-manufacturer.

    Science.gov (United States)

    2010-07-01

    ...-manufacturer. 223.192 Section 223.192 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... Relief Act of 1990 Program § 223.192 Procedures for a non-manufacturer. (a) Persons who do not own or operate a manufacturing facility (non-manufacturer) are not eligible to apply for or be granted a...

  19. Neutron Characterization for Additive Manufacturing

    Science.gov (United States)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components.

  20. Flavoring exposure in food manufacturing.

    Science.gov (United States)

    Curwin, Brian D; Deddens, Jim A; McKernan, Lauralynn T

    2015-05-01

    Flavorings are substances that alter or enhance the taste of food. Workers in the food-manufacturing industry, where flavorings are added to many products, may be exposed to any number of flavoring compounds. Although thousands of flavoring substances are in use, little is known about most of these in terms of worker health effects, and few have occupational exposure guidelines. Exposure assessment surveys were conducted at nine food production facilities and one flavor manufacturer where a total of 105 area and 74 personal samples were collected for 13 flavoring compounds including five ketones, five aldehydes, and three acids. The majority of the samples were below the limit of detection (LOD) for most compounds. Diacetyl had eight area and four personal samples above the LOD, whereas 2,3-pentanedione had three area samples above the LOD. The detectable values ranged from 25-3124 ppb and 15-172 ppb for diacetyl and 2,3-pentanedione respectively. These values exceed the proposed National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for these compounds. The aldehydes had the most detectable samples, with each of them having >50% of the samples above the LOD. Acetaldehyde had all but two samples above the LOD, however, these samples were below the OSHA PEL. It appears that in the food-manufacturing facilities surveyed here, exposure to the ketones occurs infrequently, however levels above the proposed NIOSH REL were found. Conversely, aldehyde exposure appears to be ubiquitous.

  1. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed......, the complex phenomenon of a manufacturing network evolution is observed by combining the analysis of a manufacturing plant and network level. The historical trajectories of manufacturing networks that are presented in the case studies are examined in order to understand and determine the future shape...

  2. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...

  3. METC Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1993-11-01

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

  4. Hydrogen manufacturing using plasma reformers

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  5. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    Addressing three development trends of manufacturing, this thesis aims to explore: (1) facing challenges on manufacturing (globalisation, knowledge-based manufacturing and servitisation of manufacturing), what kinds of roles does manufacturing play within industrial companies; (2) along...... with the trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  6. Framework for Grid Manufacturing

    Institute of Scientific and Technical Information of China (English)

    陈笠; 邓宏; 邓倩妮; 吴振宇

    2004-01-01

    With the development of networked manufacturing, it is more and more imminent to solve problems caused by inherent limitations of network technology, such as heterogeneity, collaboration collision, and decentralized control.This paper presents a framework for grid manufacturing, which neatly combines grid technology with the infrastructure of advanced manufacturing technology.The paper studies grid-oriented knowledge description and acquisition, and constructs a distributed knowledge grid model.The paper also deals with the protocol of node description in collaborative design, and describes a distributed collaborative design model.The protocol and node technology leads to a collaborative production model for grid manufacturing.The framework for grid manufacturing offers an effective and feasible solution for the problems of networked manufacturing.The grid manufacturing will become an advanced distributed manufacturing model and promote the development of advanced manufacturing technologies.

  7. Manufacturing and Applying of Electronic Field Contouring Facility for Breast Cancer Patients%乳腺癌胸壁电子线体表野轮廓描绘架设计制作和应用

    Institute of Scientific and Technical Information of China (English)

    陈国付; 方临明; 王彬冰; 张飞燕; 王维青

    2011-01-01

    目的:乳腺癌术后胸壁常不平整,以往的铅挡方式无法满足临床要求,笔者仿造加速器限光筒的构造制作出描绘架,用于电子线野轮廓的勾画用于制作铅挡.方法:根据电子线限光筒的构造制作描绘架,在西门子常规模拟机下使用在各个机架角度验证描绘架的勾画的精度.分别使用传统方法和使用描绘架进行体表野轮廓的勾画制作出铅挡进行精度分析,并在实际300多例胸壁野铅挡的制作过程中使用描绘架勾画靶区.结果:使用描绘架勾画的靶区制作出的铅挡误差均小于2mm符合临床要求.结论:描绘架的使用给模室工作带来了方便,降低了摆位误差,提高放射治疗工作效率,值得推广.%Objective: The conventional block technique can not meet the clinical requirement for the ieeegular chest wall always becomes irregular because of surgery. This work introduced a contour facility by simulating the accelerator collimator for contouring electronic field shape. Methods: A contour facility was made by mimicking electronic collimator. Various gantry angles were used to test the precision of this contour facility in Siemens simulator. The precision of two blocks which were made by either conventional method or this contour facility were compared. This technique was applied in more than 300 chest wall cases with this contour facility. Results: The setup error was less than 2mm if this contour facility was used. Conclusions: This contour facility is a convenience tool which can reduce setup error and enhance efficiency in block mold making.

  8. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  9. Selection of Additive Manufacturing (AM) Equipment

    Science.gov (United States)

    2017-04-01

    Fabricated Using Direct Metal Laser Sintering Technology ............................... 2 3. DMG Mori Lasertec 4300 3D [2...Designed Using Topology Optimization and Fabricated Using Direct Metal Laser Sintering Technology II. BACKGROUND The S...Agreement DMLS Direct Metal Laser Sintering FDM Fused Deposition Modeling MDF Manufacturing Demonstration Facility MSFC Marshall Space Flight Center

  10. ESO adaptive optics facility

    Science.gov (United States)

    Arsenault, R.; Madec, P.-Y.; Hubin, N.; Paufique, J.; Stroebele, S.; Soenke, C.; Donaldson, R.; Fedrigo, E.; Oberti, S.; Tordo, S.; Downing, M.; Kiekebusch, M.; Conzelmann, R.; Duchateau, M.; Jost, A.; Hackenberg, W.; Bonaccini Calia, D.; Delabre, B.; Stuik, R.; Biasi, R.; Gallieni, D.; Lazzarini, P.; Lelouarn, M.; Glindeman, A.

    2008-07-01

    ESO has initiated in June 2004 a concept of Adaptive Optics Facility. One unit 8m telescope of the VLT is upgraded with a 1.1 m convex Deformable Secondary Mirror and an optimized instrument park. The AO modules GALACSI and GRAAL will provide GLAO and LTAO corrections forHawk-I and MUSE. A natural guide star mode is provided for commissioning and maintenance at the telescope. The facility is completed by a Laser Guide Star Facility launching 4 LGS from the telescope centerpiece used for the GLAO and LTAO wavefront sensing. A sophisticated test bench called ASSIST is being designed to allow an extensive testing and characterization phase of the DSM and its AO modules in Europe. Most sub-projects have entered the final design phase and the DSM has entered Manufacturing phase. First light is planned in the course of 2012 and the commissioning phases should be completed by 2013.

  11. OPERATOR BURDEN IN METAL ADDITIVE MANUFACTURING

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Amy M [ORNL; Love, Lonnie J [ORNL

    2016-01-01

    Additive manufacturing (AM) is an emerging manufacturing process that creates usable machine parts via layer-by-layer joining of a stock material. With this layer-wise approach, high-performance geometries can be created which are impossible with traditional manufacturing methods. Metal AM technology has the potential to significantly reduce the manufacturing burden of developing custom hardware; however, a major consideration in choosing a metal AM system is the required amount of operator involvement (i.e., operator burden) in the manufacturing process. The operator burden not only determines the amount of operator training and specialization required but also the usability of the system in a facility. As operators of several metal AM processes, the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Labs is uniquely poised to provide insight into requirements for operator involvement in each of the three major metal AM processes. The paper covers an overview of each of the three metal AM technologies, focusing on the burden on the operator to complete the build cycle, process the part for final use, and reset the AM equipment for future builds.

  12. 21 CFR 123.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 123.5 Section 123.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... manufacturing practice. (a) Part 110 of this chapter applies in determining whether the facilities,...

  13. A Cross-Disciplinary Partnership to Improve Manufacturing Education.

    Science.gov (United States)

    Stephens, Matthew P.; Kraebber, Henry W.

    1998-01-01

    An exemplary university/business partnership involved the development of a training program to enhance workplace productivity for a relatively small manufacturing facility. The objectives were to educate the work force in the principles of workplace organization and lean manufacturing practices. (Author/JOW)

  14. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  15. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern......: • Manufacturing strategies pursued and implemented between 2010 and 2012. • Performance improvements achieved during that period. • Actual manufacturing practices and performances as well as competitive priorities in 2012. • Manufacturing strategies pursued for the years 2010-2012....

  16. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  17. Facility Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  18. Designing using manufacturing features

    Science.gov (United States)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  19. Bio-Manufacturing to market pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Dressen, Tiffaney [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companies and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.

  20. A product-process approach for development of the manufacturing footprint

    DEFF Research Database (Denmark)

    Farooq, Sami; Yang, Cheng; Johansen, John

    2009-01-01

    This paper explores the concept of manufacturing footprint from a product-process approach. The paper starts with a brief introduction followed by a literature review aimed at classifying and clarifying the concept of manufacturing footprint from different perspectives. A comprehensive case study...... to ever changing global business environment there are certain other external factors that act as drivers for the manufacturing facility development process and therefore should be given considerable importance as they play a major role in defining the future footprint of a manufacturing organisation....... elaborating the development and establishment of various manufacturing facilities of a Danish pump manufacturer is then described. The discussion from the case leads to the conclusion that developing new manufacturing facilities can be explained using existing theories of manufacturing strategy. However due...

  1. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  2. 21 CFR 110.37 - Sanitary facilities and controls.

    Science.gov (United States)

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN FOOD Buildings and Facilities § 110.37 Sanitary facilities and controls. Each plant shall be... water to required locations throughout the plant. (2) Properly convey sewage and liquid disposable waste...

  3. Discussion on advanced manufacturing

    Institute of Scientific and Technical Information of China (English)

    WANG Xiankui

    2007-01-01

    Advanced manufacturing consists of continuity of manufacturing,its broad sense,and the core of the manufacturing process.The technology of continuous manufacturing is discussed according to both historical and modern perspectives.The relationship between human development and manufacturing technology is also discussed.Manufacturing is a continuously evolving topic.It is not only the foundation and means of imagination,conception,the science,and the technology of material change,but also the expression of national economy,national defense,and the support industries.The broad sense of manufacturing theory,which extends the concept of manufacturing,is an important development in the 20th century.The sense is analyzed in connection with design,material forming theory,synthesis of manufacturing technology,manufacturing modes,life cycle of product,hardware and sottware,and support environment,etc.At the same time,the core action and the development of the theory and technology of process is also discussed.At the end of this paper,the development directions of mechanical manufacturing science and technology are mentioned.

  4. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  5. The relationships between Lean manufacturing, management accounting and firm performance

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Nielsen, Henrik; Grasso, Lawrency

    2016-01-01

    , likewise, Lean manufacturing affects employee’s mindsets. The extent of which such a transformation can occur is constrained in time as it requires employees and management to unlearn old principles and practices before new ones can be fine-tuned and put fruitfully into use. This study investigates......Lean manufacturing has been adopted by numerous western companies as an answer to an increasing competitive environment. Lean manufacturing is seen as an enterprise-wide strategy encompassing a transformation of manufacturing practices, affecting companies’ management accounting practices and...... the relationship between Lean manufacturing, management accounting practices, Lean thinking and firm performance. Using survey data from 368 different manufacturing facilities, we construct a structural equation model and we develop hypotheses predicting relationships between Lean manufacturing, management...

  6. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  7. Mechanical Prototyping and Manufacturing Internship

    Science.gov (United States)

    Grenfell, Peter

    2016-01-01

    The internship was located at the Johnson Space Center (JSC) Innovation Design Center (IDC), which is a facility where the JSC workforce can meet and conduct hands-on innovative design, fabrication, evaluation, and testing of ideas and concepts relevant to NASA's mission. The tasks of the internship included mechanical prototyping design and manufacturing projects in service of research and development as well as assisting the users of the IDC in completing their manufacturing projects. The first project was to manufacture hatch mechanisms for a team in the Systems Engineering and Project Advancement Program (SETMAP) hexacopter competition. These mechanisms were intended to improve the performance of the servomotors and offer an access point that would also seal to prevent cross-contamination. I also assisted other teams as they were constructing and modifying their hexacopters. The success of this competition demonstrated a proof of concept for aerial reconnaissance and sample return to be potentially used in future NASA missions. I also worked with Dr. Kumar Krishen to prototype an improved thermos and a novel, portable solar array. Computer-aided design (CAD) software was used to model the parts for both of these projects. Then, 3D printing as well as conventional techniques were used to produce the parts. These prototypes were then subjected to trials to determine the success of the designs. The solar array is intended to work in a cluster that is easy to set up and take down and doesn't require powered servomechanisms. It could be used terrestrially in areas not serviced by power grids. Both projects improve planetary exploration capabilities to future astronauts. Other projects included manufacturing custom rail brackets for EG-2, assisting engineers working on underwater instrument and tool cases for the NEEMO project, and helping to create mock-up parts for Space Center Houston. The use of the IDC enabled efficient completion of these projects at

  8. Planning and scheduling for agile manufacturers: The Pantex Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldgaard, E.A. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.; Jones, D.A. [Parallax, Inc., Albuquerque, NM (United States); List, G.F. [Rensselaer Polytechnic Inst., Troy, NY (United States); Tumquist, M.A. [Cornell Univ., Ithaca, NY (United States)

    1998-02-01

    Effective use of resources that are shared among multiple products or processes is critical for agile manufacturing. This paper describes the development and implementation of a computerized model to support production planning in a complex manufacturing system at the Pantex Plant, a US Department of Energy facility. The model integrates two different production processes (nuclear weapon disposal and stockpile evaluation) that use common facilities and personnel at the plant. The two production processes are characteristic of flow-shop and job shop operations. The model reflects the interactions of scheduling constraints, material flow constraints, and the availability of required technicians and facilities. Operational results show significant productivity increases from use of the model.

  9. 75 FR 38986 - Grant of Authority for Subzone Status; Schwarz Pharma Manufacturing, Inc. (Pharmaceutical...

    Science.gov (United States)

    2010-07-07

    .... (Pharmaceutical Products); Seymour, IN Pursuant to its authority under the Foreign-Trade Zones Act of June 18... special- purpose subzone at the pharmaceutical manufacturing and distribution facility of Schwarz Pharma... and distribution of pharmaceutical products at the facility of Schwarz Pharma Manufacturing,...

  10. MEASURING MANUFACTURING INNOVATIVENESS

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  11. Benchmarks of Global Clean Energy Manufacturing: Summary of Findings

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  12. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  13. Technological Considerations and Constraints in the Manufacture of High Precision Ball and Roller Bearings

    Directory of Open Access Journals (Sweden)

    Prof.S.Rajendiran,

    2015-12-01

    Full Text Available Rolling element bearings for application in Aircraft systems are to be manufactured to higher accuracy levels. Various technology details like raw material, processing stages and facilities such as machining, heat treatment, grinding, super finishing, assembly and inspection are to be considered for manufacture. However the facilities available presently in India are inadequate to produce high precision bearings. This paper deals with the prototype manufacture of bearings for some typical applications.

  14. Additive Manufactured Product Integrity

    Science.gov (United States)

    Waller, Jess; Wells, Doug; James, Steve; Nichols, Charles

    2017-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  15. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  16. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    are accordingly elaborated to address the identified theoretical gaps: • Regarding manufacturing role, the first initial research question is still taken as the starting point, but specific attention is paid on: (1) exploring empirical evidence on the proactive role of manufacturing and investigate how...

  17. Improving Project Manufacturing Coordination

    Directory of Open Access Journals (Sweden)

    Korpivaara Ville

    2014-09-01

    Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.

  18. Appraising manufacturing location

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2002-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the iss

  19. Assessing manufacturing location

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2004-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy-makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the iss

  20. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  1. Evaluation of advanced polymers for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, Crystal [PPG Industries, Pittsburgh, PA (United States)

    2015-09-01

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and is inherently low-cost.

  2. PERANCANGAN ULANG TATA LETAK FASILITAS DENGAN PENDEKATAN LEAN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Alexander Prasetya

    2016-01-01

    Full Text Available One of the big investment in a business is facility design. It is a long-term investment due to great value. In its development, PT. Dwi Putra Sakti faced some problems related to facility layout. Problems that can be identified, such as work in process that has accumulated on the production floor, as well as the anorganizad facility layout. Therefore, it is necessary to redesign the layout for the production process more effective and efficient. This study uses a lean manufacturing approach to redesign facility layout. It used value stream mapping, seven waste, cellular manufacturing and 5S principle. Analysis of the implementation result is used to design the layout of the new facility. Level layout that will be examined are the macro-and micro-layout layout. Results of macro-layout design is decreasing production cycle time of trousers. While the micro-layout design is decreasing in material handling displacement.

  3. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  4. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME III: LABEL MANUFACTURING CASE STUDY: NASHUA CORPORATION

    Science.gov (United States)

    This volume discusses Nashua Corporation's Omaha facility, a label and label stock manufacturing facility that no longer uses solvent-based adhesives. Information obtained includes issues related to the technical, economic, and environmental barriers and opportunities associated ...

  5. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  6. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  7. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  8. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    The increasing complexity of business environments and the pressure for organizations on delivering new products faster while maintaining the superior quality of their products, has forced manufacturing organizations to rethink their operations. Managers responsible for manufacturing ramp-up need...... to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context...

  9. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    The increasing complexity of business environments and the pressure for organizations on delivering new products faster while maintaining the superior quality of their products, has forced manufacturing organizations to rethink their operations. Managers responsible for manufacturing ramp-up need...... to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context...... of lean improvements as well as organizational learning....

  10. A Knowledge-Based Manufacturing System Using OSAM

    Science.gov (United States)

    Desai, D. K.; Pal, S.; Navathe, S. B.; Doty, K. L.

    1989-02-01

    Manufacturing industries have greatly emphasized the need to "integrate" various manufacturing functions-Design, Planning, and Business Operations- into a unified and well coordinated system, so as to increase productivity. In order to achieve this goal, the various CAD/CAM systems must have a common engineering and manufacturing knowledge base. We propose a Knowledge Based Manufacturing System(KBMS) that will help the Manufacturing Engineer(ME) to directly model the workcell environment. The system consists of two main modules: the Workcell Modelling Facility and the Task Planner. The Workcell Modelling Facility helps the ME to create workcell models using the workcell components, product parts, and manufacturing operations contained in a pre-defined knowledge base. The system also allows the manufacturing engineer to add information to the existing knowledge bases schemas. The Task Planner accesses these knowledge bases to generate a network of proposed actions from a given production goal. Integration of the proposed KBMS with a Geometric Modelling System will provide the ME with a tool to perform off-line animation of the Manufacturing Process in a particular workcell model. A prototype KBMS is currently being implemented at the University of Florida using the Object-oriented Semantic Association Model(OSAM*) as the underlying data model for the Knowledge Bases. OSAM* provides the object-oriented features of inheritance and encapsulation of data, as well as the ability to represent complex relationships between object classes in semantic nets.

  11. Virtual Facility Layout Design Using Virtual Reality Techniques

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-hua; Zhong Yi-fang

    2003-01-01

    Manufacturing facility layout design has long been recognized as one of the most critical and difficult design tasks in manufacturing industries. Traditional layout methods can not fully solve this complex spatial layout problem. Virtual reality (VR) is a new form of human-computer interaction, which has the potential to support a range of engineering applications. This paper discusses the reasons why manufacturing facility layout design is considered to be an appropriate new area of VR utilization. A VR-based layout design framework is proposed. The virtual environment construction issues are discussed. An example of the immersive VR application of facility layout is examined.

  12. Virtual Facility Layout Design Using Virtual Reality Techniques

    Institute of Scientific and Technical Information of China (English)

    Li; Zhi-Hua; Zhong; Yi-fang

    2003-01-01

    Manufacturing facility layout design has long been recognized as one of the most critical and difficult design tasks in manufacturing industries. Traditional layout methods can not fully solve this complex spatial layout problem. Virtual reality (VR) is a new form of human-computer interaction,which has the potential to support a range of engineering applications. This paper discusses the reasons why manufacturing facility layout design is considered to be an appropriate new area of VR utilization. A VR-based layout design framework is proposed. Th virtual environment construction issues are discussed. An example of the immersive VR application of facility layout is examined.

  13. 75 FR 80040 - Manufacturing Council

    Science.gov (United States)

    2010-12-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On November 23, 2010, the Department of Commerce's International Trade... vacant position on the Manufacturing Council (Council). The November 23, 2010 notice provided that all...

  14. 75 FR 30781 - Manufacturing Council

    Science.gov (United States)

    2010-06-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On March 16, 2010, the Department of Commerce's International Trade... the Manufacturing Council (Council). The March 16, 2010 notice provided that all applications must be...

  15. Agile manufacturing concept

    Science.gov (United States)

    Goldman, Steven L.

    1994-03-01

    The initial conceptualization of agile manufacturing was the result of a 1991 study -- chaired by Lehigh Professor Roger N. Nagel and California-based entrepreneur Rick Dove, President of Paradigm Shifts, International -- of what it would take for U.S. industry to regain global manufacturing competitiveness by the early twenty-first century. This industry-led study, reviewed by senior management at over 100 companies before its release, concluded that incremental improvement of the current system of manufacturing would not be enough to be competitive in today's global marketplace. Computer-based information and production technologies that were becoming available to industry opened up the possibility of an altogether new system of manufacturing, one that would be characterized by a distinctive integration of people and technologies; of management and labor; of customers, producers, suppliers, and society.

  16. MEDICAL MANUFACTURING INNOVATIONS

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin

    2015-02-01

    Full Text Available The purpose of these studies was to improve the design and manufacturing process by selective laser melting, of new medical implants. After manufacturing process, the implants were measured, microscopically and mechanical analyzed. Implants manufactured by AM can be an attractive option for surface coatings to improve the osseointegration process. The main advantages of customized implants made by AM process are: the precise adaptation to the region of implantation, better cosmesis, reduced surgical times and better performance over their generic counterparts. These medical manufacturing changes the way that the surgeons are planning surgeries and engineers are designing custom implant. AM process has eliminated the constraints of shape, size, internal structure and mechanical properties making it possible for fabrication of implants that conform to the physical and mechanical requirements of implantation according to CT images. This article will review some custom implants fabricated in DME using biocompatible titanium.

  17. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  18. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show...

  19. Many Manufactured Nanosats Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To achieve the capability to affordably produce scores of nano-spacecraft for envisioned constellation missions, a new manufacturing process is needed to reduce the...

  20. Plasma-aided manufacturing

    Science.gov (United States)

    Shohet, J. L.

    1993-12-01

    Plasma-aided manufacturing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. Plasma-aided manufacturing has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both the high-technology and the more traditional industries in the United States.

  1. Additively Manufactured Propulsion System

    OpenAIRE

    Dushku, Matthew; Mueller, Paul

    2012-01-01

    New high-performance, carbon-fiber reinforced polymer material allows additive manufacturing to produce pressure vessels capable of high pressures (thousands of pounds per square inch). This advancement in turn allows integral hybrid propulsion which is revolutionary for both CubeSats and additively-manufactured spacecraft. Hybrid propulsion offers simplicity as compared to bipropellant liquid propulsion, significantly better safety compared to solid or monopropellant hydrazine propulsion, an...

  2. Connecting American Manufacturers (CAM)

    Science.gov (United States)

    2013-09-01

    assessments and analyses focused on identifying the sources and criticality of manufacturing variability on high pressure turbine blade performance...to evaluate manufacturing variability as it relates to overall engine performance, whereas General Electric Aviation focused on airflow efficiency...VizSpace’s web crawlers extract opportunities nightly from various Federal, OEM and public and private sites and match and deliver them to suppliers. As a

  3. New strategic roles of manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng; Johansen, John; Boer, Harry

    2008-01-01

    This paper aims to view manufacturing from a new angle, and tries to look beyond fit, focus and trade-offs, approaches which may no longer be sufficient for long-term competitive success. Four cases from different industries are described and used to illustrate and discuss the possibility...... of manufacturing playing new strategic roles. Backward, forward and lateral interactive support are suggested to explicate how manufacturing can realize its new strategic roles. Finally, four new strategic roles of manufacturing are suggested. They are: innovation manufacturing, ramp-up manufacturing, primary...... manufacturing, and service manufacturing....

  4. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  5. Total Quality Management in Space Shuttle Main Engine manufacturing

    Science.gov (United States)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  6. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  7. Total Quality Management in Space Shuttle Main Engine manufacturing

    Science.gov (United States)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  8. Preparation to manufacturing of ITER plasma facing components in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Mazul, I.V., E-mail: mazuliv@niiefa.spb.su [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Belyakov, V.A.; Giniatulin, R.N.; Gervash, A.A.; Kuznetsov, V.E.; Makhankov, A.N. [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Sizenev, V.S. [Corporation ' Kompozit' , Korolev, 141070 (Russian Federation)

    2011-10-15

    The preparation of the procurement activities for the ITER plasma-facing-components (PFC) is currently well underway. Three ITER procurement packages associated with PFCs are currently allocated to the Russian Federation (RF): delivery of the central assembly of the divertor (dome and reflector plates assemblies), delivery of 40% of the first-wall (FW) panels and high heat flux testing of divertor components during the qualification and subsequent manufacturing phases. The results of the qualification process for these tasks undertaken by RF industry are presented. Qualification mockups of the dome divertor structure were successfully manufactured in accordance with the ITER specifications and tested at heat fluxes exceeding operational ones. The maturity and reliability of the proposed design and manufacturing technologies, proposed by RF industry, was therefore demonstrated. To confirm the manufacturing readiness of technologies proposed for the fabrication of the ITER first wall, three qualification mockups were fabricated. Two were heat flux tested in two facilities abroad. In addition to launching the qualification process, the PFC team at Efremov Institute is preparing the industrial facilities for serial production of above mentioned components. A brief description of such facilities is presented in this paper, together with the manufacturing technologies to be used. Two electron beam facilities (Tsefey and IDTF) for various high heat flux testing of PFC components are also described.

  9. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  10. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible

  11. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible

  12. Manufacturing tolerant topology optimization

    Institute of Scientific and Technical Information of China (English)

    Ole Sigmund

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded)or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization.

  13. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  14. Asian Facilities

    Science.gov (United States)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  15. Advanced Manufacturing Technology: A Department of Energy technology transfer initiative

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.S. Jr.; Barkman, W.E.

    1990-02-01

    This paper describes a new initiative called the Advanced Manufacturing Technology (AMT) Program that is managed for the US Department of Energy (DOE) by Martin Marietta Energy Systems in Oak Ridge, Tennessee. The AMT Program seeks to assist the US manufacturing community regain some of the market share that it has lost to competiting companies in both Europe and the Far East. One key element to this program is the establishment of teaching and development facilities called manufacturing technology centers (MTCs) which will showcase unclassified DOE manufacturing technologies. This paper describes some of the precision flexible manufacturing system (PFMS) technology that is available through the Oak Ridge Y-12 Plant. This technology will be highlighted in the first of the MTCs that is being established. 4 figs.

  16. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council.... manufacturing industry to fill five vacant positions on the Manufacturing Council (Council). The purpose of the...

  17. 75 FR 58390 - Decision To Evaluate a Petition To Designate a Class of Employees From the Vitro Manufacturing...

    Science.gov (United States)

    2010-09-24

    ... HUMAN SERVICES Decision To Evaluate a Petition To Designate a Class of Employees From the Vitro... designate a class of employees from the Vitro Manufacturing facility in Canonsburg, Pennsylvania, to be... warranted by the evaluation, is as follows: ] Facility: Vitro Manufacturing. Location:...

  18. Robot skills for manufacturing

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    Due to a general shift in manufacturing paradigm from mass production towards mass customization, reconfigurable automation technologies, such as robots, are required. However, current industrial robot solutions are notoriously difficult to program, leading to high changeover times when new...... products are introduced by manufacturers. In order to compete on global markets, the factories of tomorrow need complete production lines, including automation technologies that can effortlessly be reconfigured or repurposed, when the need arises. In this paper we present the concept of general, self......-asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...

  19. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  20. Laser in manufacturing

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Generally a laser (light amplification by stimulated emission of radiation) is defined as "a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape". Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds an

  1. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  2. Knowledge Management for Manufacturing

    Institute of Scientific and Technical Information of China (English)

    OveRustungHjelmervik; 王克胜; 袁庆丰; 方明伦

    2004-01-01

    Technology development and implementation on the manufacturing arena has, throughout the years, frustrated employees over the requirement of constantly adjusting to new technologies. The employee's ability to learn is bounded, and thus limited. Looking at a modern production system, it is often a complicated array of technologies that have to be coordinated; or the technologies are coordinating themselves through artificial intelligence. This paper discusses the need for a holistic knowledge management approach to manufacturing,combining in-place technology with process management philosophy, in order for the firm's human resources to create, share, store and apply new knowledge.

  3. Space manufacturing in an automated crystal growth facility

    Science.gov (United States)

    Quinn, Alberta W.; Herrmann, Melody C.; Nelson, Pamela J.

    1989-01-01

    An account is given of a Space Station Freedom-based robotic laboratory system for crystal growth experiments; the robot must interface with both the experimental apparatus and such human input as may be required for control and display. The goal of the system is the simultaneous growth of several hundred protein crystals in microgravity. The robot possesses six degrees-of-freedom, allowing it to efficiently manipulate the cultured crystals as well as their respective growth cells; the crystals produced are expected to be of sufficiently high quality for complete structural determination on the basis of XRD.

  4. Manufacture of Single ~(60)Co Source Irradiation Facility

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Reference radiation filed produced by isotope source is necessary for calibration of radiation dose meter. According to the GB/T 12162.1-2002 "X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining

  5. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Science.gov (United States)

    2012-08-15

    ... and resources for the relevant fiscal year, as well as the following factors, as applicable: (1... agenda. Requests are to be identified with the docket number found in brackets in the heading of...

  6. NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.

  7. 76 FR 9743 - Foreign-Trade Zone Subzone 22- Chicago, IL, Temporary/Interim Manufacturing Authority, Baxter...

    Science.gov (United States)

    2011-02-22

    ... Authority, Baxter Healthcare Corporation (Pharmaceutical and Biological Product Manufacturing), Notice of.../ interim manufacturing (T/IM) authority, on behalf of Baxter Healthcare Corporation (Baxter) to manufacture... FTZ Board Orders 1347 (69 FR 52857, 8/30/04) and 1480 (71 FR 55422, 9/22/06). The Baxter facility and...

  8. 76 FR 51349 - Foreign-Trade Zone 72-Indianapolis, IN; Application for Manufacturing Authority, Brevini Wind USA...

    Science.gov (United States)

    2011-08-18

    ..., Brevini Wind USA, Inc., (Wind Turbine Gear Boxes), Yorktown, IN A request has been submitted to the... manufacturing authority on behalf of Brevini Wind USA, Inc. (Brevini), to manufacture wind turbine gear boxes... Yorktown, Indiana. The facility is used to manufacture and repair wind turbine gear boxes and...

  9. Biosimilarity Versus Manufacturing Change: Two Distinct Concepts.

    Science.gov (United States)

    Declerck, Paul; Farouk-Rezk, Mourad; Rudd, Pauline M

    2016-02-01

    As products of living cells, biologics are far more complicated than small molecular-weight drugs not only with respect to size and structural complexity but also their sensitivity to manufacturing processes and post-translational changes. Most of the information on the manufacturing process of biotherapeutics is proprietary and hence not fully accessible to the public. This information gap represents a key challenge for biosimilar developers and plays a key role in explaining the differences in regulatory pathways required to demonstrate biosimilarity versus those required to ensure that a change in manufacturing process did not have implications on safety and efficacy. Manufacturing process changes are frequently needed for a variety of reasons including response to regulatory requirements, up scaling production, change in facility, change in raw materials, improving control of quality (consistency) or optimising production efficiency. The scope of the change is usually a key indicator of the scale of analysis required to evaluate the quality. In most cases, where the scope of the process change is limited, only quality and analytical studies should be sufficient while comparative clinical studies can be required in case of major changes (e.g., cell line changes). Biosimilarity exercises have been addressed differently by regulators on the understanding that biosimilar developers start with fundamental differences being a new cell line and also a knowledge gap of the innovator's processes, including culture media, purification processes, and potentially different formulations, and are thus required to ensure that differences from innovators do not result in differences in efficacy and safety.

  10. Manufacturing halal in Malaysia

    DEFF Research Database (Denmark)

    Fischer, Johan

    2016-01-01

    production, trade and consumption. Based on fieldwork in Malaysia, this article explores how manufacturing companies understand and practise halal certification, standards and technoscience. I argue that while existing studies of halal overwhelmingly explore micro-social aspects such as the everyday...

  11. Virtual manufacturing in reality

    Science.gov (United States)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  12. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    2017-01-01

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  13. The Manufacturing Industry

    Science.gov (United States)

    2005-06-01

    the organization.”92 Dr. Eliyahu Goldratt designed the most popular system, based on his “Theory of Constraints.” He emphasized the importance of...Exploring Advanced Manufacturing Technologies. New York, NY, Industrial Press Inc. Goldratt , Eliyahu M. and Robert E. Fox. The Race. Croton-on-Hudson

  14. Manufacturer's Suggested Retail Prices

    NARCIS (Netherlands)

    Rosenkranz, S.

    2003-01-01

    Based on arguments of the `reference- dependent' theory of consumer choice we assume that a retailer's discount of a manufacturer's suggested retail price changes consumers' demand. We can show that the producer benefits from suggesting a retail price. If consumers are additionally sufficiently `los

  15. Drug development and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  16. Manufacturing and Merchandising Careers

    Science.gov (United States)

    Ryan, Peter J.; And Others

    1977-01-01

    Anyone with a flair for business, product development, or promotion might consider a manufacturing or merchandising occupation. The music industry offers many career opportunities for administrators, salespersons, marketing specialists--the record industry offers positions from promotion manager to rack jobber. Describes instrument company…

  17. Reusing Old Manufacturing Buildings

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  18. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  19. 7 CFR 1493.260 - Facility payment guarantee.

    Science.gov (United States)

    2010-01-01

    ... manufactured into U.S. goods included in the net contract value; (ii) The cost of services that are not U.S... manufacturing; (3) For purpose of this subsection, local services which involve costs for hotels, meals... its obligation under a facility payment guarantee by calculating a: (1) Net contract value equal to...

  20. James Webb Space Telescope Primary Mirror Manufacturing

    Science.gov (United States)

    Lightsey, Paul; Gallagher, B.; Chaney, D.; Brown, B.

    2009-01-01

    The James Webb Space Telescope has a segmented primary mirror consisting of 18 hexagonal beryllium primary mirror segment assemblies (PMSA) that have a total collecting area greater than 25 square meters. The PMSAs are designed to operate at cryogenic temperatures (39 K) and to be actively controlled to co-phase the segments. This paper discusses the processes and testing utilized in the manufacture of these mirrors including the critical cryogenic testing performed at the XRCF facility at the NASA Marshall Space Flight Center. The manufacturing team is headed by Ball Aerospace & Technologies Corp (BATC) with support from Brush Wellman for beryllium blank fabrication, Axsys Technologies for the precision machining, L3-Tinsley for the mirror polishing, and QCI for the reflective coating application.

  1. Fundamentals of Digital Manufacturing Science

    CERN Document Server

    Zhou, Zude; Chen, Dejun

    2012-01-01

    The manufacturing industry will reap significant benefits from encouraging the development of digital manufacturing science and technology. Digital Manufacturing Science uses theorems, illustrations and tables to introduce the definition, theory architecture, main content, and key technologies of digital manufacturing science. Readers will be able to develop an in-depth understanding of the emergence and the development, the theoretical background, and the techniques and methods of digital manufacturing science. Furthermore, they will also be able to use the basic theories and key technologies described in Digital Manufacturing Science to solve practical engineering problems in modern manufacturing processes. Digital Manufacturing Science is aimed at advanced undergraduate and postgraduate students, academic researchers and researchers in the manufacturing industry. It allows readers to integrate the theories and technologies described with their own research works, and to propose new ideas and new methods to...

  2. Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  3. Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  4. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  5. Managing Inventory At A Transitional Facility

    Science.gov (United States)

    Hutchins, Henry A.

    1993-01-01

    Kennedy Inventory Management System, KIMS, geared to needs of facility in transition from research and development to manufacturing. Operated jointly by several contractors at Kennedy Space Center, KIMS designed to reduce cost and increase efficiency of fabrication and maintenance of spaceflight hardware.

  6. Optimization of space manufacturing systems

    Science.gov (United States)

    Akin, D. L.

    1979-01-01

    Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.

  7. Manufacturing Process Simulation of Large-Scale Cryotanks

    Science.gov (United States)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  8. 75 FR 104 - Manufacturing & Services' Sustainable Manufacturing Initiative; Update

    Science.gov (United States)

    2010-01-04

    ... No: E9-31188] DEPARTMENT OF COMMERCE International Trade Administration Manufacturing & Services' Sustainable Manufacturing Initiative; Update ACTION: Notice and request for input on proposed new areas of work for the Sustainable Manufacturing Initiative which could include a series of events...

  9. Perspectives on Additive Manufacturing

    Science.gov (United States)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  10. Manufacturing of Lightweight Mirror

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fabrication of the lightweight mirror is one of the key techniques for many large optical systems. CAD,CAM and CNC technologies are adopted in designing and manufacturing such mirrors in CIOMP. Better working efficiency and higher lightweight grade have been achieved. The results show that mirrors up to 70% weight reduction and 0.02λ(rms.) surface accuracy or better can be obtained.

  11. Northwest Manufacturing Initiative

    Science.gov (United States)

    2012-03-27

    Training areas included Total Productive Maintenance, First Aide and Safety, Lean Training, Inventory Management, Purchasing Supply Chain, ISO 13485 ...improve their business through quality certifications and initiatives such as AS9100, ISO 9001-2000, and implementing Lean Manufacturing. All of these...not show up on a visible profile. 13 Certifications: Quality Certifications such as AS9100, ISO etc. a. List Certifying Agency and number

  12. Electrohydrodynamic Printing and Manufacturing

    Science.gov (United States)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  13. Develop and Manufacture an airlock sliding tray

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-26

    Objective: The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  14. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  15. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  16. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  17. Insect pest management decisions in food processing facilities

    Science.gov (United States)

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  18. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  19. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  20. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  1. Theme: Laboratory Facilities Improvement.

    Science.gov (United States)

    Miller, Glen M.; And Others

    1993-01-01

    Includes "Laboratory Facilities Improvement" (Miller); "Remodeling Laboratories for Agriscience Instruction" (Newman, Johnson); "Planning for Change" (Mulcahy); "Laboratory Facilities Improvement for Technology Transfer" (Harper); "Facilities for Agriscience Instruction" (Agnew et al.); "Laboratory Facility Improvement" (Boren, Dwyer); and…

  2. 2001 Industry Studies: Advanced Manufacturing

    Science.gov (United States)

    2007-11-02

    markets, production and innovation. After encountering growing international competition in the 1970’s and 1980’s, U.S. manufacturers sought new and better...competitive advantages and better performance in world markets. Importantly, advanced manufacturing involves the innovative integration of new technology...the traditional parameters of mass production, giving rise to a new era in manufacturing in which manufacturers are increasing the speed and

  3. Cyber Enabled Direct Digital Manufacturing

    Science.gov (United States)

    2015-05-15

    3 - A survey of sensing and control systems for machine and process monitoring of directed energy, metal-based additive manufacturing A3-1 Appendix...Street Journal, p. B2, 7 February 2013. [4] National Center for Defense Manufacturing and Machining , "National Additive Manufacturing Innovation...and control systems for machine and process monitoring of directed energy, metal-based additive manufacturing Reutzel, E.W., Nassar, A.R., 2015. A

  4. Manufacturing Innovation and Technological Superiority

    Science.gov (United States)

    2016-09-01

    Defense AT&L: September-October 2016 2 From the Under Secretary of Defense for Acquisit ion, Technology, and Logist ics Manufacturing Innovation ...English advantages in mechanized textile manufacturing in the early 1800s drove the performance of the British economy, just as Carnegie’s steel...program to establish Manufacturing Innovation Institutes (MIIs) that would create incubators for advanced manufacturing technology in key

  5. Safe food manufacturing.

    Science.gov (United States)

    Shapiro, A; Mercier, C

    1994-03-31

    Food safety is a growing preoccupation of the health authorities and the major food companies in any European country. All the aspects of food manufacturing, from the raw materials until the product is consumed have to insure they are innoxious to human health, eliminate any harmful effects related either to food handling or consumption in domestic or common eating places, as well as protect, as much as possible, our environment. Thus, the food manufacturer has to examine step-by-step the security of the agro-cultures, their composition, but also the possible residues of pollutants and contaminants, or chemicals used to protect them against various pests and determine the possible loss or retention of these substances during technological processes. Animal raw materials should not contain veterinary drug residues or an abnormal amount of some components that result from inadequate feeding. Care should be taken to ensure the security of foods manufactured by biotechnology processes. The organisms and the whole processes used in food biotechnologies should eliminate any impurities. Any minor food ingredients, such as food additives, are under a permanent revision from the point of view of their safety. The industry reacts immediately if any justification requires that a particular food additive should not be used. In other words all the raw materials must conform to their specifications. Technological processes must create a food with an adequate microbiological quality, e.g. free of pathogens and their toxic metabolites. Any danger of microbiological contamination or accidental pollution, such as mechanical particles, chemical substances, etc. should be eliminated. The particular role of food packaging is crucial, since this is a barrier to protect the food against further parasites or microbial contamination and preserve the food from alterations due to enzymatic reactions that require particular oxygen and water activity conditions. The packaging should also

  6. Decision Guidance for Sustainable Manufacturing

    Science.gov (United States)

    Shao, Guodong

    2013-01-01

    Sustainable manufacturing has significant impacts on a company's business performance and competitiveness in today's world. A growing number of manufacturing industries are initiating efforts to address sustainability issues; however, to achieve a higher level of sustainability, manufacturers need methodologies for formally describing, analyzing,…

  7. Decision Guidance for Sustainable Manufacturing

    Science.gov (United States)

    Shao, Guodong

    2013-01-01

    Sustainable manufacturing has significant impacts on a company's business performance and competitiveness in today's world. A growing number of manufacturing industries are initiating efforts to address sustainability issues; however, to achieve a higher level of sustainability, manufacturers need methodologies for formally describing, analyzing,…

  8. 77 FR 2275 - Manufacturing Council

    Science.gov (United States)

    2012-01-17

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an opportunity to apply for membership on the Manufacturing Council... Manufacturing Council (Council). The purpose of the Council is to advise the Secretary of Commerce on matters...

  9. 77 FR 69794 - Manufacturing Council

    Science.gov (United States)

    2012-11-21

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... Manufacturing Council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade... appointment of 25 members of the Manufacturing Council (Council) for a two-year term to begin in fall 2012...

  10. 75 FR 12507 - Manufacturing Council

    Science.gov (United States)

    2010-03-16

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an opportunity to apply for membership on the Manufacturing Council. SUMMARY: The Department of Commerce is currently seeking applications for membership on the Manufacturing...

  11. 77 FR 56811 - Manufacturing Council

    Science.gov (United States)

    2012-09-14

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity to Apply for Membership on the Manufacturing Council... ] Manufacturing Council (Council) for a two-year term to begin in fall 2012. The purpose of the Council is to...

  12. 76 FR 33244 - Manufacturing Council

    Science.gov (United States)

    2011-06-08

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S. Department of Commerce. ACTION: Notice of an Opportunity To Apply for Membership on the Manufacturing Council... Manufacturing Council (Council). The purpose of the Council is to advise the Secretary of Commerce on matters...

  13. 77 FR 66179 - Manufacturing Council

    Science.gov (United States)

    2012-11-02

    ... International Trade Administration Manufacturing Council AGENCY: International Trade Administration, U.S... manufacturing council. SUMMARY: On September 14, 2012, the Department of Commerce's International Trade... of 25 members of the Manufacturing Council (Council) for a two-year term to begin in fall 2012. The...

  14. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Natalia Lapteva

    2011-01-01

    Full Text Available Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex. This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP facilities for clinical cell production in our institution as well as many others in the US and worldwide.

  16. INVESTIGATION OF IN-AUTOCLAVE ADDITIVE MANUFACTURING COMPOSITE TOOLING

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [ORNL; Lindahl, John M [ORNL; Dinwiddie, Ralph Barton [ORNL; Post, Brian K [ORNL; Love, Lonnie J [ORNL; Duty, Chad [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Matlack, Mike [Boeing Co., St. Louis, MO; Fahey Jr., Richard [Boeing Co., St. Louis, MO; Hassen, Ahmed A [ORNL

    2016-01-01

    The autoclave is a crucial piece of equipment for fabricating Tier 1 polymer composite aerospace structural components with very low void content (i.e. < 5 %). The essential component in this composite manufacturing process is the rigid mold that defines the final shape of the fabricated composite component. The Big Area Additive Manufacturing (BAAM) system located at Oak Ridge National Laboratory s (ORNL) Manufacturing Demonstration Facility (MDF) has been used to manufacture a new generation of in-autoclave tools that can be used to fabricate various aerospace composite parts. Different tools made form Polyphenylene sulfide (PPS) with 50 % by weight carbon fiber and Polyphenylsulfone (PPSU) with 25 % carbon fiber are investigated in this study. The behavior of the printed tools under different temperature ramp rates for the autoclave cycles was observed and analyzed.

  17. Metal Additive Manufacturing: A Review

    Science.gov (United States)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  18. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs’ ...... of manufacturing solutions, which are required to increase their competitiveness and assure sustainable growth.......This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs...

  19. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  20. Connecting American Manufacturing (CAM)

    Science.gov (United States)

    2013-12-01

    government products. The result of this evolution is the available supplier pool to provide manufacturing services for the government will continue to...34𔃺::~eJ’l)) $:ar;: erp »n:.g L?N ~.e::-:;?S tor OJS.l:J?"-:.$ O,?P’:r:::U."’::O<S., t ’ O’J @]’t OO:.H~J p~-:;tg 90P~’! ’t.O:Fk agalLI axu ltFG.onl o

  1. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available . Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid... stream_source_info Land_2012.pdf.txt stream_content_type text/plain stream_size 2089 Content-Encoding ISO-8859-1 stream_name Land_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Rapid manufacturing...

  2. The confusion in complying with good manufacturing practice requirements in Malaysia

    Science.gov (United States)

    Jali, Mohd Bakri; Ghani, Maaruf Abdul; Nor, Norazmir Md

    2016-11-01

    Food manufacturing operations need to fulfil regulatory requirements related to hygiene and good manufacturing practices (GMP) to successfully market their products as safe and quality products. GMP based on its ten elements used as guidelines to ensure control over biological, chemical and physical hazards. This study aims to investigate the confusion for design and facilities elements among food industries. Both qualitative and quantitative techniques are used as systematic tools. Design and facilities elements lay a firm foundation for good manufacturing practice to ensure food hygiene and should be used in conjunction with each specific code of hygiene practice and guidelines.

  3. Glocalized Manufacturing – Local Supply Chains on a Global Scale and Changeable Technologies

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne

    is a changeable and reconfigurable production facility. This smaller but intelligent facility is able to completely supply a predefined market area. By doing so, manufacturers will be able to reduce lead time and forecasting periods, increase customization to particular markets, utilize local energy production...

  4. 77 FR 24988 - Manufacturer of Controlled Substances; Notice of Registration; Johnson Matthey Pharma Services

    Science.gov (United States)

    2012-04-26

    ..., verification of the company's compliance with state and local laws, and a review of the company's background... (1100) II Methylphenidate (1724) II Hydrocodone (9193) II The company plans to utilize this facility to... support of the company's primary manufacturing facility in West Deptford, New Jersey. The controlled...

  5. 40 CFR 53.51 - Demonstration of compliance with design specifications and manufacturing and test requirements.

    Science.gov (United States)

    2010-07-01

    ... in an ISO 9001-registered facility under a quality system that meets ISO-9001 requirements for... quality system. (3) For the purposes of this section, the definitions of ISO 9001-registered facility and... as part of a designated PM2.5 or PM10−2.5 FRM or FEM will be manufactured in an ISO...

  6. INTEGRATED AUTOMOTIVE MANUFACTURING SUPPLY

    Directory of Open Access Journals (Sweden)

    P.J.S. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Supply planning and traffic flow planning are major activities in the automotive manufacturing environment worldwide. Traditionally, the impact of supply planning strategies on plant traffic is rarely considered. This paper describes the development of a Decision Support System (DSS that will assist automotive manufacturers to analyse the effect of supply planning decisions on plant traffic during the supply planning phase of their logistics planning process. In essence, this DSS consists of a Supply Medium Decision Support Tool (SMDST (an interactive MS-Excel model with Visual Basic interfacing and a traffic flow simulation model tool (using eMPlant simulation software.

    AFRIKAANSE OPSOMMING: Verskaffingsbeplanning en verkeersvloeibeplanning is belangrike aktiwiteite in die motorvervaardigingsbedryf wêreldwyd. Tradisioneel word die uitwerking van verskaffings-beplanningsstrategië op aanlegverkeer selde in ag geneem. Hierdie artikel beskryf die ontwikkeling van ’n Besluitnemings Ondersteuningstelsel (DSS wat motorvervaardigers sal ondersteun in die analise van die effek van verskaffingsbeplanningbesluite op aanlegverkeer tydens die verskaffingsbeplanningsfase van hulle logistieke beplanningsproses. Hierdie DSS bestaan hoofsaaklik uit ’n Verskaffings-vervoermiddel Besluitnemingshulpmiddel (SMDST (’n interaktiewe MS-Excel model met “Visual Basic” koppelling asook ’n simulasiemodel van verkeersvloei (met eM-Plant simulasiesagteware.

  7. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  8. Integrating post-manufacturing issues into design and manufacturing decisions

    Science.gov (United States)

    Eubanks, Charles F.

    1996-01-01

    An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.

  9. 75 FR 38078 - Manufacturing and Services' Manufacture America Initiative and Events

    Science.gov (United States)

    2010-07-01

    ... International Trade Administration Manufacturing and Services' Manufacture America Initiative and Events ACTION... manufacturing. SUMMARY: The International Trade Administration's Manufacturing and Services Unit is launching a... government agencies as well as universities. To address these challenges, the Manufacturing and...

  10. A Single-use Strategy to Enable Manufacturing of Affordable Biologics.

    Science.gov (United States)

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.

  11. A Single-use Strategy to Enable Manufacturing of Affordable Biologics

    Directory of Open Access Journals (Sweden)

    Renaud Jacquemart

    2016-01-01

    Full Text Available The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.

  12. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2014-02-01

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  13. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  14. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  15. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  16. Integrated management of facility, process, and output: data model perspective

    Institute of Scientific and Technical Information of China (English)

    LEE Seunghoon; HAN Soonhung; MUN Duhwan

    2012-01-01

    As the manufacturing industry matures,vast amounts of data related to products are created by many kinds of engineering systems during the manufacturing phase.These include data for a variety of facilities,manufacturing processes,and the input and output of each process (input material,by-products,and intermediate and final products). Effective operation and maintenance of manufacturing facilities and eco-friendly products are gradually becoming important issues due to increased environmental regulations and changes in the enterprise business model.For this reason,increased efficiency in data management is necessary in the manufacturing industry. In this paper,existing data models for the integration of lifecycle data are analyzed according to their application domains.After the analysis,information requirements for the integrated management of facility,process,and output data are developed.According to these requirements,a data model appropriate for this integration is proposed.As an application case study,the use of the proposed data model for the effective operation and maintenance of manufacturing facilities is presented.Finally,benefit,limitation,and improvement of the proposed data model are discussed.

  17. Maintenance in sustainable manufacturing

    Directory of Open Access Journals (Sweden)

    Vladimir Stuchly

    2014-09-01

    Full Text Available Background: Sustainable development is about reaching a balance between economic, social, and environmental goals, as well as people's participation in the planning process in order to gain their input and support. For a company, sustainable development means adoption of such business strategy and actions that contribute to satisfying present needs of company and stakeholders, as well as simultaneous protection, maintenance and strengthening of human and environmental potential which will be needed in the future. This new approach forces manufacturing companies to change their previous management paradigms. New management paradigm should include new issues and develop innovative methods, practices and technologies striving for solving problem of shortages of resources, softening environment overload and enabling development of environment-friendly lifecycle of products. Hence, its realization requires updating existing production models as they are based on previously accepted paradigm of unlimited resources and unlimited regeneration capabilities. Maintenance plays a crucial role because of its impact on availability, reliability, quality and life cycle cost, thus it should be one of the main pillars of new business running model.  Material and methods: The following paper is a result of research on the literature and observation of practices undertaken by a company within maintenance area. Results and conclusions: The main message is that considering sustainable manufacturing requires considerable expanding range of analysis and focusing on supporting processes. Maintenance offers numerous opportunities of decreasing influence of business processes on natural environment and more efficient resources utilization. The goal of maintenance processes realizing sustainable development strategy is increased profitability of exploitation and optimization of total lifecycle cost without disturbing safety and environmental issues. 

  18. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  19. Prosthetics & Orthotics Manufacturing Initiative (POMI)

    Science.gov (United States)

    2012-12-21

    technologies pursued in Task 1: Reconfigurable Sockets was determined to have promise in allowing sockets to be adjusted after manufacture . The most likely...overheating in the socket, and this concept may be suitable for commercialization efforts in the future. Prosthetics & Orthotics Manufacturing ...and manufacturing of prosthetic systems to increase durability and comfort, and on giving medical personnel tools to aid in the care of our most

  20. Wide and High Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The goal of this project is to develop and demonstrate the enabling technologies for Wide and High Additive Manufacturing (WHAM). WHAM will open up new areas of U.S. manufacturing for very large tooling in support of the transportation and energy industries, significantly reducing cost and lead time. As with Big Area Additive Manufacturing (BAAM), the initial focus is on the deposition of composite materials.

  1. Energy Use in Nanoscale Manufacturing

    OpenAIRE

    Zhang, Teresa; Boyd, Sarah; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    This paper presents an overview of key nanoscale manufacturing technologies, and qualitatively examines their fundamental process requirements with respect to energy demand. The processes requirements are related to semiconductor manufacturing, where applicable, and gaps in our understanding of these processes on the production scale are identified as goals for the research community. Finally, the paper proposes a framework for the systematic analysis of energy use in nanoscale manufacturing ...

  2. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  3. Virtual CIM and Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Sev V.Nagalingam; Grier C.I.Lin

    2006-01-01

    Manufacturing enterprises play an important role in improving the economic environment of a country.Today, the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today's highly competitive global market. With the developments taking place in CIM and its related technologies, the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore, it analyses some new terms such as agile manufacturing, digital manufacturing, agent-based manufacturing and others, which have been emerging recently, and argues all these new technologies are the subsystems of CIM. In addition, this paper provides a new direction in CIM to fulfil the emerging challenges in today's global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.

  4. RANKING OF MANUFACTURING SYSTEM CRITERIA

    Directory of Open Access Journals (Sweden)

    SHARFUDDIN AHMED KHAN

    2012-06-01

    Full Text Available A high-quality manufacturing system should be capable to meet the company goals. Moreover, it is essential for any organization that its manufacturing system should be aligned with company’s strategy. There is always a potential for improvement in components of manufacturing systems but it is also essential to identify theparticular areas of the components that need improvement. In this paper, we have discussed the most appropriate criterion for good manufacturing systems with the help of a survey that indentified the importance of seven different criteria according to the experts experience and we ranked them accordingly.

  5. The Right Amount of Manufacturing

    OpenAIRE

    David R. Henderson

    2011-01-01

    Mark Perry, an economics professor at the University of Michigan, recently pointed out that in 2009 the U.S. economy had the world’s largest manufacturing sector. (The most recent data show that China’s sector edged out the United States because of our slow economic recovery.) Every year since 2004 U.S. manufacturing output, in constant 2005 dollars, has exceeded $2 trillion. Perry notes that this is double the U.S. manufacturing output of the early 1970s. If U.S. manufactur...

  6. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  7. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  8. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  9. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  10. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  11. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  12. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  13. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  14. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology research The Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  15. Licensed Healthcare Facilities

    Data.gov (United States)

    California Department of Resources — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  16. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Bong Shick; Kim, Y. S.; Lee, C. Y. and others

    1999-03-01

    The principal contents of this project are to design, fabricate and install the steady-state fuel test loop in HANARO for nuclear technology development. Procurement and fabrication of main equipment, licensing and technical review for fuel test loop have been performed during 2 years(1997, 1998) for this project. Following contents are described in the report. - Procurement and fabrication of the equipment, piping for OPS - IPS manufacture - License - Technical review and evaluation of the FTL facility. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and review ofHANARO interface have been performed respectively. (author)

  17. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    Ayer, J E; Clark, A T; Loysen, P; Ballinger, M Y; Mishima, J; Owczarski, P C; Gregory, W S; Nichols, B D

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH.

  18. Using Data Exclusivity Grants to Incentivize Cumulative Innovation of Biologics' Manufacturing Processes.

    Science.gov (United States)

    Levi, Eric Lawrence

    The pharmaceutical market is divided into two types of compounds: small-molecule chemical compounds and large-molecule biologics. Due to biologics’ molecular sizes and the current scientific state of biologics manufacturing, manufacturing facilities and processes require frequent reassessment to ensure production of safe, pure, and potent therapeutics. Manufacturers utilize patent and drug regulatory law to protect their investments and simultaneously signal where innovation and investment are lacking. The current four- and twelve-year regimented structures of the Biologics Price, Competition, and Innovation Act do not keep pace with scientific development; biologics manufacturing processes drift with time, and if a manufacturer can obtain a higher degree of process control, then it should not feel restricted to wait until their exclusivity period lapses. Currently, the FDA rarely grants market exclusivity privileges for manufacturing process improvements alone; hence, manufacturing processes--or at least large portions thereof--are typically withheld as trade secrets or strategically claimed within companion composition claims. As a result, significant opportunity exists in regulatory framework to incentivize the research and development of biologics manufacturing processes. By creating a one- to four-year data exclusivity extension opportunity, manufacturers will feel more comfortable reinvesting their returns on investment towards manufacturing efficiency, and manufacturers can capitalize on the complex-molecule nature of their biologic.

  19. Simulated annealing and joint manufacturing batch-sizing

    Directory of Open Access Journals (Sweden)

    Sarker Ruhul

    2003-01-01

    Full Text Available We address an important problem of a manufacturing system. The system procures raw materials from outside suppliers in a lot and processes them to produce finished goods. It proposes an ordering policy for raw materials to meet the requirements of a production facility. In return, this facility has to deliver finished products demanded by external buyers at fixed time intervals. First, a general cost model is developed considering both raw materials and finished products. Then this model is used to develop a simulated annealing approach to determining an optimal ordering policy for procurement of raw materials and also for the manufacturing batch size to minimize the total cost for meeting customer demands in time. The solutions obtained were compared with those of traditional approaches. Numerical examples are presented. .

  20. High power lasers in manufacturing

    OpenAIRE

    Chatwin, Chris R

    2017-01-01

    Lecture covers a brief history of lasers and the important beam parameters for manufacturing applications. It introduces the main laser types that are appropriate for manufacturing: carbon dioxide lasers, Nd YAG, Diode and fibre lasers, excimer lasers. It then looks at applications to different products and also micro-engineering

  1. Method of manufacturing powder particles

    NARCIS (Netherlands)

    Borra, J.P.D.

    2002-01-01

    The invention relates to a method of manufacturing a dry powder particle, preferably using electro-hydrodynamic spraying, wherein two oppositely charged aerosol streams are contacted. The invention allows for the manufacture of powders having various, controllable compositions and shapes. In

  2. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  3. Servitisation in Danish Manufacturing Firms

    DEFF Research Database (Denmark)

    2014-01-01

    ; Neely, 2008; Schmenner, 2009), and is perceived by many traditional manufacturers as a strategy for survival. Based on multiple cases of Danish companies, this paper discusses the main reasons and strategic implications of servitisation. Furthermore, it outlines the strategies for how traditional...... manufacturers can recoup the desired level of return from the developments associated with servitisation....

  4. Method of manufacturing powder particles

    NARCIS (Netherlands)

    Borra, J.P.D.

    2002-01-01

    The invention relates to a method of manufacturing a dry powder particle, preferably using electro-hydrodynamic spraying, wherein two oppositely charged aerosol streams are contacted. The invention allows for the manufacture of powders having various, controllable compositions and shapes. In particu

  5. Manufacturing best practices and performance

    DEFF Research Database (Denmark)

    Szász, Levente; Demeter, Krisztina; Boer, Harry

    2014-01-01

    There is an impressive body of literature about best manufacturing practices. The question is whether these practices are always best, in every situation. Aimed at investigating the effects of home and host country characteristics on the “goodness” of manufacturing practices, the paper tests whet...

  6. Manufacturing mobility in global operations

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2002-01-01

    The globalization trend inevitably affects the organization of manufacturing by enterprises. It offers opportunities to examine manufacturing from a global perspective and consequently to produce where it is most appropriate. However, globalization has also led to an increase in competitive pressure

  7. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  8. Accuracy of freeform manufacturing processes

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H.; Henselmans, R.

    2009-01-01

    The breakthrough of freeform optics is limited by manufacturing and metrology technology. However, today's manufacturing machines like polishing robots and diamond turning machines are accurate enough to produce good surface quality, so the question is how accurate can a freeform be produced. To inv

  9. APPROACHES FOR SUSTAINABLE MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    G(U)NTHER Seliger; SEBASTIAN Kernbaum; MARCO Zettl

    2007-01-01

    Sustainable development is a holistic approach harmonizing ecological, economical and socio-political needs with respect to the superior objective of enhancing human living standards. Thereby the availability of natural resources and the conservation of the ecosystems have to be considered that future generations have the possibility to meet their own needs. A long-term economical development demands the transition from a source-sink economy to a cycle economy as a result of limited resources, limited environmental capacities to absorb waste and emissions as well as increasing needs of a growing population. A reference model for sustainability in manufacturing is presented and used to illustrate sustainable approaches with respect to management, technology, process and product. Adaptation of products and components is a vital element for supporting efficient reuse of products and components. Consequently adaptation contributes to the ambitious goals of sustainability. Technological enablers for adaptation as modularity, information and communication technology are exemplarily introduced. Moreover, approaches for disseminating knowledge in sustainability are given.

  10. Generalized Reactive Manufacturing System

    Institute of Scientific and Technical Information of China (English)

    李蓓智

    2001-01-01

    Generalized reactive manufacturing system named GRMS is introduced. GRMS is a human-centered system based on Multi-agent. Its management and control organization is made up of three types of agents named device agent,task agent and shop-floor agent. GRMS adopts a top down and bottom- up competition and cooperation strategy based on the dynamic sifter and funnel To constrain the behavior of agents, a reward and penaity policy is introduced into the system and the closed-loop adjustment of GRMS is realized through such policy.Agents for the same task should be cooperated with each other and agents for different tasks should compete for survival in the dynamic changing environment. A distributed-hierarchical architecture with three levels of master-slave relationships among agents are proposed.Self-propelled process planning is also discussed. In order to evaluate GRMS, a time-driven simulation system-GRMOSS is developed to check the physical consistency of GRMS.

  11. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  12. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  13. Silicon photonics manufacturing.

    Science.gov (United States)

    Zortman, William A; Trotter, Douglas C; Watts, Michael R

    2010-11-08

    Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system's frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35 μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1 THz across a wafer and 105 GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231 μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

  14. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  15. Topology Optimization for Additive Manufacturing

    DEFF Research Database (Denmark)

    Clausen, Anders

    This PhD thesis deals with the combination of topology optimization and additive man-ufacturing (AM, also known as 3D-printing). In addition to my own works, the thesis contains a broader review and assessment of the literature within the field. The thesis first presents a classification...... of the various AM technologies, a review of relevant manufacturing materials, the properties of these materials in the additively manufactured part, as well as manufacturing constraints with a potential for design optimization. Subsequently, specific topology optimization formulations relevant for the most im......-portant AM-related manufacturing constraints are presented. These constraints are di-vided into directional and non-directional constraints. Non-directional constraints include minimum/uniform length scale and a cavity constraint. It is shown that modified filter boundary conditions are required in order...

  16. Business models for additive manufacturing

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic...... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...

  17. Mobile Open-Source Solar-Powered 3-D Printers for Distributed Manufacturing in Off-Grid Communities

    National Research Council Canada - National Science Library

    Debbie L. King; Adegboyega Babasola; Joseph Rozario; Joshua M. Pearce

    2014-01-01

    .... This study designs and demonstrates the technical viability of two open-source mobile digital manufacturing facilities powered with solar photovoltaics, and capable of printing customizable OSAT in any...

  18. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  19. DUPIC nuclear fuel manufacturing and process technology development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sung Paal; Lee, Jung Won; Kim, Jong Ho; Kim, Soo Sung; Kim, Woong Ki; Yang, Myung Seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-07-01

    DUPIC fuel cycle development project in KAERI of Korea was initiated in 1991 and has advanced in relevant technologies for last 10 years. The project includes five different topics such as nuclear fuel manufacturing, compatibility evaluation, performance evaluation, manufacturing facility management, and safeguards. The contents and results of DUPIC R and D up to now are as follow: - the basic foundation was established for the critically required pelletizing technology and powder treatment technology for DUPIC. - development of DUPIC process line and deployment of 20 each process equipment and examination instruments in DFDF. - powder and pellet characterization study was done at PIEF based on the simfuel study results, and 30 DUPIC pellets were successfully produced. - the manufactured pellets were used for sample fuel rods irradiated in July,2000 in HANARO research reactor in KAERI and has been under post irradiation examination. (Hong, J. S.)

  20. Feasibility and Scaling of Composite Based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Nuttall, David [ORNL; Chen, Xun [ORNL; Kunc, Vlastimil [ORNL; Love, Lonnie J [ORNL

    2016-04-27

    Engineers and Researchers at Oak Ridge National Lab s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Impossible Objects (IO) in the characterization of PEEK infused carbon fiber mat manufactured by means of CBAM composite-based additive manufacturing, a first generation assembly methodology developed by Robert Swartz, Chairman, Founder, and CTO of Impossible Objects.[1] The first phase of this project focused on demonstration of CBAM for composite tooling. The outlined steps focused on selecting an appropriate shape that fit the current machine s build envelope, characterized the resulting form, and presented next steps for transitioning to a Phase II CRADA agreement. Phase I of collaborative research and development agreement NFE-15-05698 was initiated in April of 2015 with an introduction to Impossible Objects, and concluded in March of 2016 with a visitation to Impossible Objects headquarters in Chicago, IL. Phase II as discussed herein is under consideration by Impossible Objects as of this writing.

  1. Manufacturing Cost Levelization Model – A User’s Guide

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah Josephine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks

  2. Ultra-lightweight mirror manufacturing and radiation response study

    Science.gov (United States)

    Fitzsimmons, T. C.; Crowe, D. A.

    1981-08-01

    The requirements for making ultra-lightweight mirrors of Ultra-Low Expansion (ULE) fused silica by frit bonding are investigated. A manufacturing assessment of the facilities needed to scale the mirror technology to 4 meters in diameter is included. A front surface flux loading thermal test of a.5M diameter frit bonded ULE mirror is also included. The test was supported by detailed modeling and analysis.

  3. Paradigm Shift Additive Manufacturing and the New Way of War

    Science.gov (United States)

    2016-12-01

    development. He joined the YSU faculty in 2013 and has a Ph.D. in Materials Science and Engineer- ing from the Massachusetts Institute of Technology. T he...experiences in utilizing conventional manufacturing processes from the Industrial Revolution. To understand why, we first need to examine what the...facility called the factory. The factory is located ideally where desired labor skill can be found at reasonable cost, where energy and material costs

  4. Design, manufacturing and testing of Controllable Rubber Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Løgstrup Andersen, Tom; Aagaard Madsen, Helge; Barlas, Thanasis K

    The overall goal for the INDUFLAP project was realization of a test facility for development and test of Controllable Rubber Trailing Edge Flaps (CRTEF) for wind turbines. This report covers experimental work at DTU Wind Energy including design, manufacture and test of different configurations...... of flaps with voids in chord- or spanwise direction. Development of rubber flaps has involved further design improvements. Non-metallic spring elements and solutions for sealing of continuous extruded rubber profiles have been investigated....

  5. Assessment technique for computer-aided manufactured sockets

    Directory of Open Access Journals (Sweden)

    Joan E. Sanders, PhD

    2011-08-01

    Full Text Available This article presents an assessment technique for testing the quality of prosthetic socket fabrication processes at computer-aided manufacturing facilities. The assessment technique is potentially useful to both facilities making sockets and companies marketing manufacturing equipment seeking to assess and improve product quality. To execute the assessment technique, an evaluator fabricates a collection of test models and sockets using the manufacturing suite under evaluation, then measures their shapes using scanning equipment. Overall socket quality is assessed by comparing socket shapes with electronic file (e-file shapes. To characterize carving performance, model shapes are compared with e-file shapes. To characterize forming performance, socket shapes are compared with model shapes. The mean radial error (MRE, which is the average difference in radii between the two compared shapes, provides insight into sizing quality. Interquartile range (IQR, the range of radial error for the best-matched half of the points on the compared socket surfaces, provides insight into regional shape quality. The source(s of socket shape error may be pinpointed by separately determining MRE and IQR for carving and forming. The developed assessment technique may provide a useful tool to the prosthetics community and industry to help identify problems and limitations in computer-aided manufacturing and give insight into appropriate modifications to overcome them.

  6. Beryllium Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  7. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [University of Arizona

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  8. Batch Delivery Scheduling with Multiple Decentralized Manufacturers

    Directory of Open Access Journals (Sweden)

    Shi Li

    2014-01-01

    Full Text Available This paper addresses an integrated decision on production scheduling and delivery operations, which is one of the most important issues in supply chain scheduling. We study a model in which a set of jobs ordered by only one customer and a set of decentralized manufacturers located at different locations are considered. Specifically, each job must be assigned to one of the decentralized manufacturers to process on its single machine facility. Then, the job is delivered to the customer directly in batch without intermediate inventory. The objective is to find a joint schedule of production and distribution to optimize the customer service level and delivery cost. In our work, we discuss this problem considering two different situations in terms of the customer service level. In the first one, the customer service is measured by the maximum arrival time, while the customer service is measured by the total arrival time in the second one. For each situation, we develop a dynamic programming algorithm to solve, respectively. Moreover, we identify a special case for the latter situation by introducing its corresponding solutions.

  9. Waste reduction at a propellant manufacturing site

    Energy Technology Data Exchange (ETDEWEB)

    Beer, L.A. [Science Applications International Corp., Hackensack, NJ (United States)

    1994-12-31

    It is the US Army policy to reduce the volume and toxicity of hazardous waste generated by its operations and activities. The Army established a goal to reduce 1985 waste generation levels by 50% by the year 1992, with additional reductions proposed through 1999 per Army guidance. To assist in accomplishing this goal, the Production Base Modernization Activity under a program sponsored by the US Army Materiel Command contracted Science Applications International Corporation to conduct a waste minimization audit at Radford Army Ammunition Plant. This study addressed hazardous wastes as well as non-hazardous oily wastes. The investigation was conducted in three phases to document how hazardous and oily wastes are produced and to recommend waste reduction alternatives. Radford Army Ammunition Plant (RAAP) produces in-process materials such as nitric and sulfuric acids, and propellant components including nitrocellulose and nitroglycerin. In addition, to propellants, the explosives trinitrotoluene and diethylene glycol dinitrate can be produced. The manufacture of military propellants generates the majority of waste at the facility. This paper will present the results of the RAAP Hazmin study, focusing on the major waste generating processes involved with propellant manufacture, Hazmin options suggested to minimize waste generation, and lessons learned.

  10. [INVITED] Lasers in additive manufacturing

    Science.gov (United States)

    Pinkerton, Andrew J.

    2016-04-01

    Additive manufacturing is a topic of considerable ongoing interest, with forecasts predicting it to have major impact on industry in the future. This paper focusses on the current status and potential future development of the technology, with particular reference to the role of lasers within it. It begins by making clear the types and roles of lasers in the different categories of additive manufacturing. This is followed by concise reviews of the economic benefits and disadvantages of the technology, current state of the market and use of additive manufacturing in different industries. Details of these fields are referenced rather than expanded in detail. The paper continues, focusing on current indicators to the future of additive manufacturing. Barriers to its development, trends and opportunities in major industrial sectors, and wider opportunities for its development are covered. Evidence indicates that additive manufacturing may not become the dominant manufacturing technology in all industries, but represents an excellent opportunity for lasers to increase their influence in manufacturing as a whole.

  11. Reliable Facility Location Problem with Facility Protection.

    Science.gov (United States)

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  12. Detecting Attacks in CyberManufacturing Systems: Additive Manufacturing Example

    Directory of Open Access Journals (Sweden)

    Wu Mingtao

    2017-01-01

    Full Text Available CyberManufacturing System is a vision for future manufacturing where physical components are fully integrated with computational processes in a connected environment. However, realizing the vision requires that its security be adequately ensured. This paper presents a vision-based system to detect intentional attacks on additive manufacturing processes, utilizing machine learning techniques. Particularly, additive manufacturing systems have unique vulnerabilities to malicious attacks, which can result in defective infills but without affecting the exterior. In order to detect such infill defects, the research uses simulated 3D printing process images as well as actual 3D printing process images to compare accuracies of machine learning algorithms in classifying, clustering and detecting anomalies on different types of infills. Three algorithms - (i random forest, (ii k nearest neighbor, and (iii anomaly detection - have been adopted in the research and shown to be effective in detecting such defects.

  13. PCS: a pallet costing system for wood pallet manufacturers (version 1.0 for Windows®)

    Science.gov (United States)

    A. Jefferson, Jr. Palmer; Cynthia D. West; Bruce G. Hansen; Marshall S. White; Hal L. Mitchell

    2002-01-01

    The Pallet Costing System (PCS) is a computer-based, Microsoft Windows® application that computes the total and per-unit cost of manufacturing an order of wood pallets. Information about the manufacturing facility, along with the pallet-order requirements provided by the customer, is used in determining production cost. The major cost factors addressed by PCS...

  14. 76 FR 70957 - Foreign-Trade Zone 277-Western Maricopa County, AZ; Application for Manufacturing Authority, Sub...

    Science.gov (United States)

    2011-11-16

    ... Manufacturing Authority, Sub-Zero, Inc. (Refrigerators and Freezers), Goodyear, AZ An application has been..., Inc., grantee of FTZ 277, requesting manufacturing authority on behalf of Sub-Zero, Inc. (Sub-Zero... was formally filed on November 10, 2011. The Sub-Zero facility (260 employees, 10 acres, 150,000...

  15. 77 FR 14000 - Foreign-Trade Zone 126-Reno, NV; Application for Temporary/Interim Manufacturing Authority...

    Science.gov (United States)

    2012-03-08

    ... Manufacturing Authority, Brightpoint North America L.P. (Cell Phone Kitting and Distribution), Reno, NV An... manufacturing (T/IM) authority within 126 at the Brightpoint North America L.P. (Brightpoint) facility, located....80), lithium batteries (8507.30), cellular phone sets (8517.11), video phones (8517.18),...

  16. Knowledge Transfer and Manufacturing Relocation in International Manufacturing Networks

    DEFF Research Database (Denmark)

    Madsen, Erik Skov

    2014-01-01

    This paper is built on six longitudinal case studies of knowledge transfer in manufacturing relocation. By focusing on tacit and explicit knowledge the paper introduces a model for identification of knowledge in relation to four task situations on the shop floor in a manufacturing environment...... after relocation. Finally the paper discusses how “dispatching capacity” and “absorptive capacity” can improve the process....

  17. Attracting young talents to manufacturing

    DEFF Research Database (Denmark)

    Perini, Stefano; Oliveira, Manuel; Costa, Joao

    2014-01-01

    a strong integrated strategy towards attracting young talent to manufacturing, by raising the aware-ness and providing the acquisition of new manufacturing skills. The key-concepts and the strategy to achieve learning objectives are presented. Finally, ManuSkills Five Pillars, i.e. Interaction...... have been made both in STEM and manufacturing education. However, there is still a lack of concrete strategies harmonizing together delivery mechanisms and pedagogical frameworks throughout the whole student lifecycle. In order to mitigate these urgent needs, ManuSkills innovative approach provides...

  18. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  19. Micro manufacturing techniques and applications

    CERN Document Server

    Du, Ruxu; Li, Zifu

    2013-01-01

    Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials

  20. Molded optics design and manufacture

    CERN Document Server

    Schaub, Michael

    2007-01-01

    While several available texts discuss molded plastic optics, none provide information on all classes of molded optics. Filling this gap, Molded Optics: Design and Manufacture presents detailed descriptions of molded plastic, glass, and infrared optics. Since an understanding of the manufacturing process is necessary to develop cost-effective, producible designs, the book extensively covers various manufacturing methods, design guidelines, trade-offs, best practices, and testing of critical parameters. It also discusses topics that often arise when designing systems with molded optics, such as

  1. Manufacturing process applications team (MATeam)

    Science.gov (United States)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  2. Integrated Flexible Manufacturing Program for manufacturing automation and rapid prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S.L.; Brown, C.W.; King, M.S.; Simmons, W.R.; Zimmerman, J.J.

    1992-12-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  3. An Assessment of Advanced Manufacturing Technologies Implementation in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin Shaikh

    2011-04-01

    Full Text Available The implementation of AMTs (Advanced Manufacturing Technologies has always been the high interest and core issue for the manufacturing enterprises to get rapid production for global market place. The developed countries have achieved its competitive advantage by implementing this unique model of technologies with full range of systems. In developing countries, the implementation of such technologies is not much common due to so many reasons, (political, social, economical and technical but entrepreneurs of growing economies are contemplating to reshape long term strategy to adopt Computer systems oriented technologies in their manufacturing companies to meet the growing needs of their indigenous market on one hand and to make a place in the international market on the other. Although, very few manufacturing organization do meet the global market requirements. But there is still lot of efforts to be taken for world class competition. An attempt has been made in this paper to develop a conceptual model taking in to account the three parameters such as, Direct, Indirect and Administrative AMTs. This research work further attempts to present an empirical data analysis conducted in the manufacturing enterprises in province of Sindh, Pakistan. The overall indigenous progress of manufacturing enterprises as according to the data collected from 60 companies reveals that the AMTs systems are partially understood and practiced that is also one of the cause towards slow progress of national exchequer.

  4. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  5. Simulating the Composite Propellant Manufacturing Process

    Science.gov (United States)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  6. Simulating the Composite Propellant Manufacturing Process

    Science.gov (United States)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  7. Good manufacturing practice: manufacturing of a nerve agent antidote nanoparticle suspension.

    Science.gov (United States)

    Clark, Andrew P-Z; Dixon, Hong; Cantu, Norma L; Cabell, Larry A; McDonough, Joe A

    2013-01-01

    We have established a current good manufacturing practice (GMP) manufacturing process to produce a nanoparticle suspension of 1,1'-methylenebis-4-[(hydroxyimino)methyl]pyridinium dimethanesulfonate (MMB4 DMS) in cottonseed oil (CSO) as a nerve agent antidote for a Phase 1 clinical trial. Bis-pyridinium oximes such as MMB4 were previously developed for emergency treatment of organophosphate nerve agent intoxication. Many of these compounds offer efficacy superior to monopyridinium oximes, but they have poor thermal stability due to hydrolytic cleavage in aqueous solution. We previously developed a nonaqueous nanoparticle suspension to improve the hydrothermal stability, termed Enhanced Formulation (EF). An example of this formulation technology is a suspension of MMB4 DMS nanoparticles in CSO. Due to the profound effect of particle size distribution on product quality and performance, particle size must be controlled during the manufacturing process. Therefore, a particle size analysis method for MMB4 DMS in CSO was developed and validated to use in support of good laboratory practice/GMP development and production activities. Manufacturing of EF was accomplished by milling MMB4 DMS with CSO and zirconia beads in an agitator bead mill. The resulting bulk material was filled into 5-mL glass vials at a sterile fill facility and terminally sterilized by gamma irradiation. The clinical lot was tested and released, a Certificate of Analysis was issued, and a 3-year International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) stability study started. The drug product was placed in storage for Phase 1 clinical trial distribution. A dose delivery uniformity study was undertaken to ensure that the correct doses were delivered to the patients in the clinic.

  8. Green manufacturing processes and systems

    CERN Document Server

    Davim J, Paulo

    2012-01-01

    This volume fulfills a pressing need in both academia and industry to follow the latest innovations in sustainable manufacturing. The contents cover a host of topics, from environmentally friendly machining techniques to developments in zero-waste production.

  9. E3 Sustainable Manufacturing Curriculum

    Science.gov (United States)

    A short E3 course containing three modules on Environmental Sustainability; Lean Manufacturing and Pollution Prevention; and Energy and Carbon. Each module includes slides, a facilitator's guide with handouts, activities, quizzes, and facilitator's notes.

  10. Textile Manufacturing Sector (NAICS 313)

    Science.gov (United States)

    Find environmental regulatory and compliance information for the textile and leather manufacturing sector, including NESHAPs for leather tanning and fabric printing, and small business guidance for RCRA hazardous waste requirements.

  11. Process for manufacturing slit collimators

    Science.gov (United States)

    Romanenko, V. P.; Yemelyanov, A. A.; Churbakov, K. I.

    1974-01-01

    Peculiarities are described of the manufacturing process and the control of elements of slit collimators, the structural design of the required equipment and the process or assembling the collimators.

  12. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product...... driven approach can be used in this process. A framework for the product driven approach in nano manufacturing is presented and discussed. The general discussion will be supported by case studies covering polymers and metals....

  13. TX-100 manufacturing final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

    2007-11-01

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three

  14. CT-assisted agile manufacturing

    Science.gov (United States)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  15. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  16. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  17. Remote Multimedia Monitoring System Based on Embedded Web Server for Networked Manufacturing

    Institute of Scientific and Technical Information of China (English)

    HEDeqiang; YANGYu; 等

    2002-01-01

    A new-style remote monitoring system is propsed.which is based on enterprises' embedded wed servers and can be widely used in enterprises' networked manufactureing systems.The principle and characteristics of remote monitoring system based on embedded web server are analyzed.Such a kind of system for networked manufacturing is designed ,and it proves efficient and feasible in promoting communication among enterprises,improving designing and scheduling,decreasing facility failure and reducing product cost.

  18. Surface phase defects induced downstream laser intensity modulation in high-power laser facility

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Wei Zhou; Wanjun Dai; Dongxia Hu; Xuewei Deng; Wanqing Huang; Lidan Zhou; Qiang Yuan; Xiaoxia Huang; De’en Wang; Ying Yang

    2016-01-01

    Optics surface phase defects induced intensity modulation in high-power laser facility for inertial confinement fusion research is studied. Calculations and experiments reveal an exact mapping of the modulation patterns and the optics damage spot distributions from the surface phase defects. Origins are discussed during the processes of optics manufacturing and diagnostics, revealing potential improvements for future optics manufacturing techniques and diagnostic index, which is meaningful for fusion level laser facility construction and its operation safety.

  19. 40 CFR 63.5689 - What parts of my facility are covered by this subpart?

    Science.gov (United States)

    2010-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing What the Subpart... of your boat manufacturing facility covered by this subpart) is the combination of all of the boat...) Aluminum hull and deck coating operations, including solvent wipedown operations and paint spray gun...

  20. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  1. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  2. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  3. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  4. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  5. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  6. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  7. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  8. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  9. Facility Response Plan (FRP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — A Facility Response Plan (FRP) demonstrates a facility's preparedness to respond to a worst case oil discharge. Under the Clean Water Act, as amended by the Oil...

  10. Financing Professional Sports Facilities

    OpenAIRE

    Baade, Robert A.; Victor A. Matheson

    2011-01-01

    This paper examines public financing of professional sports facilities with a focus on both early and recent developments in taxpayer subsidization of spectator sports. The paper explores both the magnitude and the sources of public funding for professional sports facilities.

  11. FDA Certified Mammography Facilities

    Science.gov (United States)

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  12. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  13. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  14. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  15. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to: Evaluate and characterize the effect of flame and thermal...

  16. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  17. Cloud-based multi-agent architecture for effective planning and scheduling of distributed manufacturing

    DEFF Research Database (Denmark)

    Mishra, Nishikant; Singh, Akshit; Kumari, Sushma

    2016-01-01

    In modern world, manufacturing processes have become very complex because of consistently fluctuating demand of customers. Numerous production facilities located at various geographical locations are being utilised to address the demands of their multiple clients. Often, the components manufactured...... at distinct locations are being assembled in a plant to develop the final product. In this complex scenario, manufacturing firms have to be responsive enough to cope with the fluctuating demand of customers. To accomplish it, there is a need to develop an integrated, dynamic and autonomous system...... described in this study demonstrates how the autonomous agents interact with each other to rectify the internal discrepancies in manufacturing system. It can also address the external interferences like variations in client’s orders to maximise the profit of manufacturing firm in both short and long term...

  18. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies.

  19. Manufacturing scheduling systems an integrated view on models, methods and tools

    CERN Document Server

    Framinan, Jose M; Ruiz García, Rubén

    2014-01-01

    The book is devoted to the problem of manufacturing scheduling, which is the efficient allocation of jobs (orders) over machines (resources) in a manufacturing facility. It offers a comprehensive and integrated perspective on the different aspects required to design and implement systems to efficiently and effectively support manufacturing scheduling decisions. Obtaining economic and reliable schedules constitutes the core of excellence in customer service and efficiency in manufacturing operations. Therefore, scheduling forms an area of vital importance for competition in manufacturing companies. However, only a fraction of scheduling research has been translated into practice, due to several reasons. First, the inherent complexity of scheduling has led to an excessively fragmented field in which different sub problems and issues are treated in an independent manner as goals themselves, therefore lacking a unifying view of the scheduling problem. Furthermore, mathematical brilliance and elegance has sometime...

  20. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  1. Study on the Manufacturability Evaluation Based on Double-layer Model of Manufacturing Resources

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Virtual organization is a new production patter and a principal part in advanced manufacturing systems such as agile manufacturing. Manufacturability evaluation is the necessary condition to form the virtual organization. A new manufacturability evaluation approach is described in this paper, which is carried out based on every process feature under the double-layer model of manufacturing resources proposed by authors. The manufacturing resources that build up the virtual organization are selected according to the results of manufacturability evaluation.

  2. 27 CFR 479.68 - Qualified manufacturer.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Qualified manufacturer... manufacturer. A manufacturer qualified under this part to engage in such business may make firearms without payment of the making tax. However, such manufacturer shall report and register each firearm made in...

  3. Towards Measuring Investment in Flexible Foundry Manufacturing

    Directory of Open Access Journals (Sweden)

    Rhythm Suren Wadhwa

    2012-07-01

    Full Text Available Manufacturing flexibility is an important instrument to ensure the success of manufacturing systems in the modern day competitive and uncertain environment. The major hindrance in integrating flexibility into decision making process is that it is difficult to measure and be compared to future indefinable manufacturing scenarios. This paper presents a methodical concept utilizing real options to evaluate flexible foundry manufacturing system.

  4. A feasibility study for a manufacturing technology deployment center

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  5. Energy Efficiency in Manufacturing Systems

    CERN Document Server

    Thiede, Sebastian

    2012-01-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require  balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  6. Energy efficiency in manufacturing systems

    Energy Technology Data Exchange (ETDEWEB)

    Thiede, Sebastian [Technische Univ. Braunschweig (Germany). Inst. fuer Werkzeugmaschinen und Fertigungstechnik

    2012-07-01

    Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology - with a generic energy flow-oriented manufacturing simulation environment as a core element - is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.

  7. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...... driven approach can be used in this process. A framework for the product driven approach in nano manufacturing is presented and discussed. The general discussion will be supported by case studies covering polymers and metals.......The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product...

  8. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  9. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  10. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  11. Pressurized burner test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Norton, T.S.; Hadley, M.A. [Morgantown Energy Technology Center, WV (United States)

    1993-06-01

    The Morgantown Energy Technology Center (METC) is currently fabricating a high-pressure burner test facility. The facility was designed to support the development of gas turbine combustion systems fired on natural gas and coal-derived gaseous fuels containing fuel-bound nitrogen. Upon completion of fabrication and shake-down testing in October 1993, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper describes the burner test facility and associated operating parameter ranges and informs interested parties of the availability of the facility.

  12. An integrated lean-methods approach to hospital facilities redesign.

    Science.gov (United States)

    Nicholas, John

    2012-01-01

    Lean production methods for eliminating waste and improving processes in manufacturing are now being applied in healthcare. As the author shows, the methods are appropriate for redesigning hospital facilities. When used in an integrated manner and employing teams of mostly clinicians, the methods produce facility designs that are custom-fit to patient needs and caregiver work processes, and reduce operational costs. The author reviews lean methods and an approach for integrating them in the redesign of hospital facilities. A case example of the redesign of an emergency department shows the feasibility and benefits of the approach.

  13. Institutional environmental impact statement, Michoud Assembly Facility, New Orleans, Louisiana

    Science.gov (United States)

    1978-01-01

    A description and analysis of Michoud Assembly Facility as an operational base for both NASA and NASA-related programs and various government tenant-agencies and their contractors is given. Tenant-agencies are governmental agencies or governmental agency contractors which are not involved in a NASA program, but utilize office or manufacturing space at the Michoud Assembly Facility. The statements represent the full description of the likely environmental effects of the facility and are used in the process of making program and project decisions.

  14. Medical device regulation for manufacturers.

    Science.gov (United States)

    McAllister, P; Jeswiet, J

    2003-01-01

    Manufacturers of medical devices are held to a higher standard than manufacturers of many other products due to the potential severity of the consequences of introducing inferior or unsafe products to the market-place. In Canada, the medical device industry is regulated by Health Canada under the Medical Device Regulations of the Food and Drug Act. The Medical Device Regulations define requirements of medical device design, development and manufacture to ensure that products reaching the public are safe and effective. Health Canada also requires that medical device manufacturers maintain distribution records to ensure that devices can be traced to the source and consumers can be contacted successfully in the event that a device is recalled. Medical devices exported from Canada must be compliant with the regulations of the country of import. The Canadian Medical Device Regulations were based on the Medical Device Directives of the European Union thus facilitating approval of Canadian devices for the European market. The United States Food and Drug Administration has separate and distinct requirements for safety and quality of medical devices. While effort has been made to facilitate approval and trade of Canadian medical devices in the United States and the European Union, obtaining approval from multiple regulatory bodies can result in increased device development time and cost. The Global Harmonization Task Force is an organization composed of members from Japanese, Australian, European, Canadian and American medical device regulatory bodies. This organization was formed with the objective of harmonizing medical device regulations in an effort to facilitate international trade and standardize the quality of medical devices available to all countries. This paper discusses the requirements that must be met by manufacturers when designing and manufacturing medical devices.

  15. LEAN Manufacturing - Part of Business and Manufacturing Strategy

    DEFF Research Database (Denmark)

    Bilberg, Arne

    . The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  16. Introduction to semiconductor manufacturing technology

    CERN Document Server

    2012-01-01

    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  17. Strategi Bersaing dengan Agile Manufacturing

    Directory of Open Access Journals (Sweden)

    Hamidah Tussifah

    2017-06-01

    Full Text Available Competitive advantage now increasingly rests upon a dynamic capability to compete successfully in an environment of frequent, challenging and unpredictable change. The agile manufacturing a recently popularized concept has been advocated as the 21st century manufacturing paradigm. In adopting and developing the key elements of agile manufactruring, there is requirement for enterprises to overcome the philosophical challenges of a shift from mass/lean production to the customization of agility. Beside that, enterprises should explore the key success factors to support succesfull agile implementation.

  18. Analysis of manufacturing based on object oriented discrete event simulation

    Directory of Open Access Journals (Sweden)

    Eirik Borgen

    1990-01-01

    Full Text Available This paper describes SIMMEK, a computer-based tool for performing analysis of manufacturing systems, developed at the Production Engineering Laboratory, NTH-SINTEF. Its main use will be in analysis of job shop type of manufacturing. But certain facilities make it suitable for FMS as well as a production line manufacturing. This type of simulation is very useful in analysis of any types of changes that occur in a manufacturing system. These changes may be investments in new machines or equipment, a change in layout, a change in product mix, use of late shifts, etc. The effects these changes have on for instance the throughput, the amount of VIP, the costs or the net profit, can be analysed. And this can be done before the changes are made, and without disturbing the real system. Simulation takes into consideration, unlike other tools for analysis of manufacturing systems, uncertainty in arrival rates, process and operation times, and machine availability. It also shows the interaction effects a job which is late in one machine, has on the remaining machines in its route through the layout. It is these effects that cause every production plan not to be fulfilled completely. SIMMEK is based on discrete event simulation, and the modeling environment is object oriented. The object oriented models are transformed by an object linker into data structures executable by the simulation kernel. The processes of the entity objects, i.e. the products, are broken down to events and put into an event list. The user friendly graphical modeling environment makes it possible for end users to build models in a quick and reliable way, using terms from manufacturing. Various tests and a check of model logic are helpful functions when testing validity of the models. Integration with software packages, with business graphics and statistical functions, is convenient in the result presentation phase.

  19. ON INTELLIGENTIZED TECHNOLOGIES FOR MODERN WELDING MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    Chen Shanben; Qiu Tao; Lin Tao; Wu Yixiong

    2003-01-01

    A short survey on researching and developing status of intelligent technologies in modem welding manufacturing is given. According to the developing trend of advanced manufacturing technology, a concept on intelligentized welding manufacturing engineering (IWME), is presented for systematization of researching and developing domains on welding automation, intelligentized welding,robotic and flexible welding and advanced welding manufacturing technologies. And key technologies of welding intelligent manufacturing and its developing trend in the future are investigated.

  20. A framework for distributed manufacturing applications

    OpenAIRE

    Leitão, Paulo; Restivo, Francisco

    2000-01-01

    The new organisational structures used in world wide manufacturing systems require the development of distributed applications, which present solutions to their requirements. The work research in the distributed manufacturing control leads to emergent paradigms, such as Holonic Manufacturing Systems (HMS) and Bionic Manufacturing Systems (BMS), which translates the concepts from social organisations and biological systems to the manufacturing world. This paper present a Framework for the deve...

  1. e-Manufacturing: Characteristics, applications and potentials

    Institute of Scientific and Technical Information of China (English)

    Kai Cheng; Richard J. Bateman

    2008-01-01

    In this paper, an engineering oriented approach is proposed towards e-manufacturing and its applications. The characteristics and potential of e-manufacturing are presented with a number of application examples developed by the authors'research group. The advances in e-manufacturing and applications are also highlighted and critically reviewed. The paper concludes with a further discussion on the promises and impact of e-manufacturing technology and philosophy on modem manufacturing industry and the practices.

  2. Evaluation of Agile Manufacturing Enterprises%Evaluation of Agile Manufacturing Enterprises

    Institute of Scientific and Technical Information of China (English)

    黄新刚; 王先逵; 刘成颖

    2001-01-01

    Agile manufacturing is an important manufacturing philosophy todevelop advanced manufacturing enterprises to improve competivity. The evaluation of Agile Manufacturing Enterprises (AME) is one of the key activities in implementing agile manufacturing. This paper proposes a method for evaluating AME, establishes a basic feature model of AME based on the feature tree and discusses the hierarchical decomposition algorithm based on the model with an example.

  3. Rapid Time Response: A solution for Manufacturing Issue

    Directory of Open Access Journals (Sweden)

    Norazlin N.

    2017-01-01

    Full Text Available Respond time in manufacturing give the major impact that able to contribute too many manufacturing issues. Based on two worst case scenario occurred where Toyota in 2009 made a massive vehicles call due to car complexity of 11 major models and over 9 million vehicles. The recalls cost at least $2 billion in cost of repair, lost deals and result in lost 5% of its market share in United State of America, while A380 was reported on missing target in new production and leads to delayed market entry due to their weak product life cycle management (PLM. These cases give a sign to all industries to possess and optimize the facilities for better traceability in shortest time period. In Industry 4.0, the traceability and time respond become the factors for high performance manufacturing and rapid time respond able to expedite the traceability process and strengthen the communication level between man, machine and management. The round trip time (RTT experiment gives variant time respond between two difference operating system for intra and inter-platform signal. If this rapid time respond is adopted in any manufacturing process, the delay in traceability on every issue that lead to losses can be successfully avoided.

  4. Experiences on IGSCC crack manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Veron, P. [Equipos Nucleares, S.A., Maliano (Spain)

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  5. Order release in synchronous manufacturing

    NARCIS (Netherlands)

    Riezebos, J.

    2010-01-01

    Synchronous manufacturing aims at achieving the benefits of intermittent production lines in production situations that operate without lines. Benefits such as short and constant throughput times and predictable capacity loading can be acquired through an appropriate design of the synchronous manufa

  6. CNC Preparation Meets Manufacturing Opportunity

    Science.gov (United States)

    Cassola, Joel

    2006-01-01

    This article features the machining technology program at Cape Fear Community College (CFCC) of Wilmington, North Carolina. North Carolina's Cape Fear Community College is working to meet diverse industry needs through its CNC training. The school's program has gained the attention of the local manufacturing community and students when it shifted…

  7. In-Space Rapid Manufacturing

    Science.gov (United States)

    Cooper, Kenneth G.

    1998-01-01

    In-space manufacturing objectives are: (1) Develop and demonstrate capability to directly fabricate components in space using rapid prototyping technology - ceramics (alumina, silicon nitride, zirconia), metallics (stainless, inconel, etc.), high strength/temperature plastics (PEEK). and ABS plastics (starting point). (2) Perform material science experiments on rapid prototyping candidate materials in microgravity.

  8. Organic photovoltaics: technologies and manufacturing

    NARCIS (Netherlands)

    Galagan, Y.O.; Andriessen, H.A.J.M.

    2012-01-01

    It is assumed, that the organic electronics industries and organic solar cells in particular, are in the transition stage towards commercialization. The companies and R&D institutes in this area are moving now from research and development stage to manufacturing. The biggest challenges are how to

  9. Additively manufactured porous tantalum implants

    NARCIS (Netherlands)

    Wauthle, Ruben; Van Der Stok, Johan; Yavari, Saber Amin; Van Humbeeck, Jan; Kruth, Jean Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-01-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of it

  10. The future of manufacturing configuration

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Slepniov, Dmitrij; Johansen, John

    2012-01-01

    knowledge intensity and level of complexity of these operations, growing coordination needs, and the issues of internal competition in the operations networks and increasingly challenging the role of the home base operation. As these trends are relatively new, the industrial development patterns...... and individual firms' ability to compete on the basis of an increasingly global manufacturing network remain unclear....

  11. Prosthetics & Orthotics Manufacturing Initiative (POMI)

    Science.gov (United States)

    2012-12-21

    regions either smeared unacceptably or the joint between the disparate regions was unacceptably weak during thermoforming events. The solution was to...The thin sheets were able to survive the thermoforming process and function as sensors. Prosthetics & Orthotics Manufacturing Initiative (POMI

  12. Process for manufacturing multilayer capacitors

    Science.gov (United States)

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  13. Engineering in the Manufacturing Process

    Science.gov (United States)

    1993-03-01

    DFMs the Seville ," Manufacturing Engineering, 108:2, February, 1992, p. 66. "Purchasing’s role in a concurrent engineering environment," International...ELECTRONICS INDUSTRY THE CHALLENGE TO COMMERCIALIZE A siege mentality has been settling in on the Defense Industry ever since the fall of the Iron

  14. CNC Preparation Meets Manufacturing Opportunity

    Science.gov (United States)

    Cassola, Joel

    2006-01-01

    This article features the machining technology program at Cape Fear Community College (CFCC) of Wilmington, North Carolina. North Carolina's Cape Fear Community College is working to meet diverse industry needs through its CNC training. The school's program has gained the attention of the local manufacturing community and students when it shifted…

  15. Order release in synchronous manufacturing

    NARCIS (Netherlands)

    Riezebos, J.

    2010-01-01

    Synchronous manufacturing aims at achieving the benefits of intermittent production lines in production situations that operate without lines. Benefits such as short and constant throughput times and predictable capacity loading can be acquired through an appropriate design of the synchronous manufa

  16. Sustainability Characterization for Additive Manufacturing

    Science.gov (United States)

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  17. Sustainability Characterization for Additive Manufacturing.

    Science.gov (United States)

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  18. Josiah Wedgwood, Manufacturing and Craft

    DEFF Research Database (Denmark)

    Holt, Robin; Popp, Andrew

    2016-01-01

    Craft and industrial manufacture are often seen as dichotomous, with craft being marginalized during the process of industrialization. We want to look beyond this position, searching for craft in places where it has gone unnoticed and where it might have bloomed anew in the interstices created...

  19. Organic photovoltaics: technologies and manufacturing

    NARCIS (Netherlands)

    Galagan, Y.O.; Andriessen, H.A.J.M.

    2012-01-01

    It is assumed, that the organic electronics industries and organic solar cells in particular, are in the transition stage towards commercialization. The companies and R&D institutes in this area are moving now from research and development stage to manufacturing. The biggest challenges are how to sc

  20. Integrated manufacturing approach to attain benchmark team performance

    Science.gov (United States)

    Chen, Shau-Ron; Nguyen, Andrew; Naguib, Hussein

    1994-09-01

    A Self-Directed Work Team (SDWT) was developed to transfer a polyimide process module from the research laboratory to our wafer fab facility for applications in IC specialty devices. The SDWT implemented processes and tools based on the integration of five manufacturing strategies for continuous improvement. These were: Leadership Through Quality (LTQ), Total Productive Maintenance (TMP), Cycle Time Management (CTM), Activity-Based Costing (ABC), and Total Employee Involvement (TEI). Utilizing these management techniques simultaneously, the team achieved six sigma control of all critical parameters, increased Overall Equipment Effectiveness (OEE) from 20% to 90%, reduced cycle time by 95%, cut polyimide manufacturing cost by 70%, and improved its overall team member skill level by 33%.

  1. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  2. Means for Transferring Knowledge in the Relocation of Manufacturing Units

    DEFF Research Database (Denmark)

    Yang, Cheng; Madsen, Erik Skov; Liangsiri, Jirapha

    2009-01-01

    The global spread of production makes companies relocating their manufacturing units to achieve economies of scale, enjoy low-cost labor, or access to new markets. For the relocation, not only equipments, systems and facilities, need to be moved, but also operational knowledge and experience. Based...... on two action research projects, this paper investigates and discusses appropriate means for transfer knowledge when relocating manufacturing units. Different relocation situations are distinguished. Different groups of means including documents or manuals and peer-to-peer training, scenarios on real...... systems, prototypes and games, and emulation, are identified and classified according to their usages. Finally, a framework is summarized to integrate all the elements systematically. This provides strong supports and clear directions to managers and could be used as the guideline and the process model...

  3. Means for Transferring Knowledge in the Relocation of Manufacturing Units

    DEFF Research Database (Denmark)

    Yang, Cheng; Madsen, Erik Skov; Liangsiri, Jirapha

    2009-01-01

    The global spread of production makes companies relocating their manufacturing units to achieve economies of scale, enjoy low-cost labor, or access to new markets. For the relocation, not only equipments, systems and facilities, need to be moved, but also operational knowledge and experience. Based...... on two action research projects, this paper investigates and discusses appropriate means for transfer knowledge when relocating manufacturing units. Different relocation situations are distinguished. Different groups of means including documents or manuals and peer-to-peer training, scenarios on real...... systems, prototypes and games, and emulation, are identified and classified according to their usages. Finally, a framework is summarized to integrate all the elements systematically. This provides strong supports and clear directions to managers and could be used as the guideline and the process model...

  4. Improved Methods for Production Manufacturing Processes in Environmentally Benign Manufacturing

    Directory of Open Access Journals (Sweden)

    Yan-Yan Wang

    2011-09-01

    Full Text Available How to design a production process with low carbon emissions and low environmental impact as well as high manufacturing performance is a key factor in the success of low-carbon production. It is important to address concerns about climate change for the large carbon emission source manufacturing industries because of their high energy consumption and environmental impact during the manufacturing stage of the production life cycle. In this paper, methodology for determining a production process is developed. This methodology integrates process determination from three different levels: new production processing, selected production processing and batch production processing. This approach is taken within a manufacturing enterprise based on prior research. The methodology is aimed at providing decision support for implementing Environmentally Benign Manufacturing (EBM and low-carbon production to improve the environmental performance of the manufacturing industry. At the first level, a decision-making model for new production processes based on the Genetic Simulated Annealing Algorithm (GSAA is presented. The decision-making model considers not only the traditional factors, such as time, quality and cost, but also energy and resource consumption and environmental impact, which are different from the traditional methods. At the second level, a methodology is developed based on an IPO (Input-Process-Output model that integrates assessments of resource consumption and environmental impact in terms of a materials balance principle for batch production processes. At the third level, based on the above two levels, a method for determining production processes that focus on low-carbon production is developed based on case-based reasoning, expert systems and feature technology for designing the process flow of a new component. Through the above three levels, a method for determining the production process to identify, quantify, assess, and optimize the

  5. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  6. Lean manufacturing in Indian context: A survey

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2015-04-01

    Full Text Available This paper is an attempt to examine the implementation of Lean Manufacturing system in the Indian industries. Predominant elements of Lean Manufacturing, benefits gained after its implementation and obstacles observed by Indian Industry have been recognized. The results of this survey support the opinion that Lean Manufacturing had potential to improve the organizational performance of Indian industries. Nevertheless, Indian industries are required to be passionate to transform their manufacturing by adopting Lean manufacturing to gain the full benefits. A large numbers of literature papers are available on the better side of Lean manufacturing approach and its benefits gained by manufacturing organizations after implementation. But the adverse impacts of Lean manufacturing are not discussed to a great extent. Some drawbacks of Lean manufacturing are also highlighted in this paper.

  7. The VIRMOS mask manufacturing tools; 2, Mask manufacturing and handling

    CERN Document Server

    Conti, G; Mattaini, E; MacCagni, D; Lefèvre, O; Saisse, M; Vettolani, G

    1999-01-01

    We describe the VIRMOS Mask Manufacturing Unit (MMU) configuration, composed of two units:the Mask Manufacturing Machine (with its Control Unit) and the Mask Handling Unit (inclusive of Control Unit, Storage Cabinets and robot for loading of the Instrument Cabinets). For both VIMOS and NIRMOS instruments, on the basis of orders received by the Mask Preparation Software (see paper (a) in same proceedings), the function of the MMU is to perform an off-line mask cutting and identification, followed by mask storing and subsequent filling of the Instrument Cabinets (IC). We describe the characteristics of the LPKF laser cutting machine and the work done to support the choice of this equipment. We also describe the remaining of the hardware configuration and the Mask Handling Software.

  8. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  9. 78 FR 49546 - Manufacturer of Controlled Substances; Notice of Application; IRIX Manufacturing, Inc.

    Science.gov (United States)

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; IRIX Manufacturing... that on January 18, 2013, IRIX Manufacturing, Inc., 309 Delaware Street, Greenville, South...

  10. Modular mechatronic control of reconfigurable manufacturing system for mass customization manufacturing

    CSIR Research Space (South Africa)

    Xing, B

    2007-01-01

    Full Text Available Manufacturing companies are faced with the challenge of unpredictable, high frequency market changes in both local and international markets. There is a need for greater, more effective responsiveness by manufacturers to change their manufacturing...

  11. 75 FR 36421 - Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing...

    Science.gov (United States)

    2010-06-25

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing Changes Reportable in Annual Reports; Availability AGENCY: Food and... the availability of a draft guidance for industry entitled ``CMC Postapproval Manufacturing Changes...

  12. 75 FR 78715 - Small Entity Compliance Guide: Current Good Manufacturing Practice in Manufacturing, Packaging...

    Science.gov (United States)

    2010-12-16

    ... HUMAN SERVICES Food and Drug Administration Small Entity Compliance Guide: Current Good Manufacturing Practice in Manufacturing, Packaging, Labeling, or Holding Operations for Dietary Supplements; Availability...) is announcing the availability of a guidance entitled ``Current Good Manufacturing Practice in...

  13. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  14. Thermal distortion test facility

    Science.gov (United States)

    Stapp, James L.

    1995-02-01

    The thermal distortion test facility (TDTF) at Phillips Laboratory provides precise measurements of the distortion of mirrors that occurs when their surfaces are heated. The TDTF has been used for several years to evaluate mirrors being developed for high-power lasers. The facility has recently undergone some significant upgrades to improve the accuracy with which mirrors can be heated and the resulting distortion measured. The facility and its associated instrumentation are discussed.

  15. Connecting American Manufacturers (CAM) Virtual Manufacturing Marketplace (VMM)

    Science.gov (United States)

    2013-11-01

    at a time. The GDIT Team tried several free web scraping utilities/programs that were just not up to the task for various reasons. The GDIT Team...which resulted in a more robust vendor profile. • A framework on the web site where vendors could update their profile. • A framework on the web site...team developed a web site where Government and commercial buyers could post their manufacturing requirements. o The buyers could post their

  16. 76 FR 43259 - Foreign-Trade Zone 109-Watertown, NY, Application for Manufacturing Authority, North American...

    Science.gov (United States)

    2011-07-20

    ...) with textile backing material for the U.S. market and export. The manufacturing process under FTZ..., North American Tapes, LLC, (Textile Athletic Tape), Watertown, NY A request has been submitted to the... textile fabrics (duty rates: 10.5, 14.9%). The facility can produce up to 12.5 million square meters of...

  17. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Science.gov (United States)

    2010-07-01

    ... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities must... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Purchase of...

  18. Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture

    Science.gov (United States)

    Hehr, Adam; Wenning, Justin; Terrani, Kurt; Babu, Sudarsanam Suresh; Norfolk, Mark

    2016-12-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. It is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.

  19. Five-Axis Ultrasonic Additive Manufacturing for Nuclear Component Manufacture

    Science.gov (United States)

    Hehr, Adam; Wenning, Justin; Terrani, Kurt; Babu, Sudarsanam Suresh; Norfolk, Mark

    2017-03-01

    Ultrasonic additive manufacturing (UAM) is a three-dimensional metal printing technology which uses high-frequency vibrations to scrub and weld together both similar and dissimilar metal foils. There is no melting in the process and no special atmosphere requirements are needed. Consequently, dissimilar metals can be joined with little to no intermetallic compound formation, and large components can be manufactured. These attributes have the potential to transform manufacturing of nuclear reactor core components such as control elements for the High Flux Isotope Reactor at Oak Ridge National Laboratory. These components are hybrid structures consisting of an outer cladding layer in contact with the coolant with neutron-absorbing materials inside, such as neutron poisons for reactor control purposes. UAM systems are built into a computer numerical control (CNC) framework to utilize intermittent subtractive processes. These subtractive processes are used to introduce internal features as the component is being built and for net shaping. The CNC framework is also used for controlling the motion of the welding operation. It is demonstrated here that curved components with embedded features can be produced using a five-axis code for the welder for the first time.

  20. Progress and Future of Manufacturing Technology

    Institute of Scientific and Technical Information of China (English)

    Lu Yongxiang

    2001-01-01

    This paper reviews the development of manufacturing technology and the progress that has so far been made in this field.It points out that manufacturing technology is not only the pillar of material civilization and the base of spiritual civilization of man,but also the foundation of a country's competitivendess.The paper also attempts to review the future of manufacturing technology through the description of the new pattern of manufacturing market,new features of manufactured products,new characteristics of technologies as well as the emerging trends of manufacturing enterprises and man-agement in the 21 st cetury.

  1. A conceptual model for manufacturing performance improvement

    Directory of Open Access Journals (Sweden)

    M.A. Karim

    2009-07-01

    Full Text Available Purpose: Important performance objectives manufacturers sought can be achieved through adopting the appropriate manufacturing practices. This paper presents a conceptual model proposing relationship between advanced quality practices, perceived manufacturing difficulties and manufacturing performances.Design/methodology/approach: A survey-based approach was adopted to test the hypotheses proposed in this study. The selection of research instruments for inclusion in this survey was based on literature review, the pilot case studies and relevant industrial experience of the author. A sample of 1000 manufacturers across Australia was randomly selected. Quality managers were requested to complete the questionnaire, as the task of dealing with the quality and reliability issues is a quality manager’s major responsibility.Findings: Evidence indicates that product quality and reliability is the main competitive factor for manufacturers. Design and manufacturing capability and on time delivery came second. Price is considered as the least important factor for the Australian manufacturers. Results show that collectively the advanced quality practices proposed in this study neutralize the difficulties manufacturers face and contribute to the most performance objectives of the manufacturers. The companies who have put more emphasize on the advanced quality practices have less problem in manufacturing and better performance in most manufacturing performance indices. The results validate the proposed conceptual model and lend credence to hypothesis that proposed relationship between quality practices, manufacturing difficulties and manufacturing performances.Practical implications: The model shown in this paper provides a simple yet highly effective approach to achieving significant improvements in product quality and manufacturing performance. This study introduces a relationship based ‘proactive’ quality management approach and provides great

  2. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  3. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  4. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  5. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  6. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  7. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  8. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  9. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  10. Region 9 NPDES Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates...

  11. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  12. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  13. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  14. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural Analyses The ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide...

  15. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  16. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long qaodmasdkwaspemas5ajkqlsmdqpakldnzsdfls 22 ft wide qaodmasdkwaspemas4ajkqlsmdqpakldnzsdfls 7 ft deep concrete...

  17. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  18. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  19. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  20. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  1. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance Computing The ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  2. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  3. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  4. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  5. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  6. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  7. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  8. Efficient transformer study: Analysis of manufacture and utility data

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Klaehn [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cordaro, Joe [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McIntosh, John [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McConnell, Benjamin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hammerstrom, Donald [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-05-16

    Distribution transformers convert power from the distribution system voltage to the end-customer voltage, which consists of residences, businesses, distributed generation, campus systems, and manufacturing facilities. Amorphous metal distribution transformers (AMDT) are also more expensive and heavier than conventional silicon steel distribution transformers. This and the difficulty to measure the benefit from energy efficiency and low awareness of the technology have hindered the adoption of AMDT. This report presents the cost savings for installing AMDT and the amount of energy saved based on the improved efficiency.

  9. Continued Evolution of Automated Manufacturing – Cloud-Enabled Digital Manufacturing

    Directory of Open Access Journals (Sweden)

    Chung-Hung Huang

    2015-02-01

    Full Text Available In contrast to conventional manufacturing, digital manufacturing is not affected by marginal costs; that is, the cost for producing a single prototype is not different from producing several thousand ones. Digital manufacturing consequently eliminates the requirement for large sums of capital necessary for conventional manufacturing. Digital manufacturing combined with cloud platforms and cloud-enabled databases will allow large-quantity virtual product development while minimizing costs, which will consequently reflect on the efficient manufacturing of physical products.

  10. OPTIMIZATION OF MULTI-OBJECTVE FACILITY LAYOUT USING NON-TRADITIONAL OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    S. NARAYANA REDDY

    2012-02-01

    Full Text Available Increased global competition in manufacturing and increased consciousness towards reducing manufacturing costs has renewed interest in the efficient design of facility layout. The success of a manufacturing organization depends on the proper design of various systems required in the production cycle. One such system is design of the facility that is able to adapt quickly and effectively, the technological changes and market requirements. Facility layout problem deals with the physical arrangement of a given number of machines or departments within a given configuration. The assignment of facilities to locations is one of the most important issues that must be resolved in manufacturing systems. The facilities layout focuses on the organization of a company’s physical facilities to promote the efficient use of resources such as equipment, material, people and energy. Well-studied combinatorial optimization problem arises in a variety of problems such as schools, airports, etc. but the focus of our work is on solving the facility layout of manufacturing plants. Several researchers have used different methodologies for getting better solutions of facility layout problems. The methodologies that are used to solve the facility layout problems are discussed briefly in this paper work. Alternative layouts are generated for the arrangement of facilities using a software program written in Turbo C++, taking qualitative and quantitative inputs in the form of flow matrix, distance matrix and closeness rating matrix. Scores are computed for each of thealternative layout generated. Based on their scores, the alternative layouts are evaluated and the best among them is selected. The results are obtained by running the program. The best layout among the alternatives is evaluated based on lowest objective function value.

  11. Manufacturing

    Directory of Open Access Journals (Sweden)

    Kovalenko Iaroslav

    2017-04-01

    Full Text Available This article describes a method of in-situ process monitoring in the digital light processing (DLP 3D printer. It is based on the continuous measurement of the adhesion force between printing surface and bottom of a liquid resin bath. This method is suitable only for the bottom-up DPL printers. Control system compares the force at the moment of unsticking of printed layer from the bottom of the tank, when it has the largest value in printing cycle, with theoretical value. Implementation of suggested algorithm can make detection of faults during the printing process possible.

  12. A framework for structural modelling of an RFID-enabled intelligent distributed manufacturing control system

    Directory of Open Access Journals (Sweden)

    Barenji, Ali Vatankhah

    2014-08-01

    Full Text Available A modern manufacturing facility typically contains several distributed control systems, such as machining stations, assembly stations, and material handling and storage systems. Integrating Radio Frequency Identification (RFID technology into these control systems provides a basis for monitoring and configuring their components in real-time. With the right structural modelling, it is then possible to evaluate designs and translate them into new operational applications almost immediately. This paper proposes an architecture for the structural modelling of an intelligent distributed control system for a manufacturing facility, by utilising RFID technology. Emphasis is placed on a requirements analysis of the manufacturing system, the design of RFID-enabled intelligent distributed control systems using Unified Modelling Language (UML diagrams, and the use of efficient algorithms and tools for the implementation of these systems.

  13. Target Visualization at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Daniel Abraham [Univ. of California, Davis, CA (United States)

    2011-01-01

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

  14. Photovoltaic manufacturing technology, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Izu, M. (Energy Conversion Devices, Inc., Troy, MI (United States))

    1992-03-01

    This report examines manufacturing multiple-band-gap, multiple- junction solar cells and photovoltaic modules. Amorphous silicon alloy material is deposited (using microwave plasma-assisted chemical vapor deposition) on a stainless-steel substrate using a roll-to-roll process that is continuous and automated. Rapid thermal equilibration of the metal substrate allows rapid throughput of large-area devices in smaller production machines. Potential improvements in the design, deposition, and module fabrication process are described. Problems are also discussed that could impede using these potential improvements. Energy Conversion Devices, Inc. (ECD) proposes cost and time estimates for investigating and solving these problems. Manufacturing modules for less than $1.00 per peak watt and stable module efficiencies of greater than 10% are near-term goals proposed by ECD. 18 refs.

  15. The Frontiers of Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-03

    Additive manufacturing, more commonly known as 3-D printing, has become a ubiquitous tool in science for its precise control over mechanical design. For additive manufacturing to work, a 3-D structure is split into thin 2D slices, and then different physical properties, such as photo-polymerization or melting, are used to grow the sequential layers. The level of control allows not only for devices to be made with a variety of materials: e.g. plastics, metals, and quantum dots, but to also have finely controlled structures leading to other novel properties. While 3-D printing is widely used by hobbyists for making models, it also has industrial applications in structural engineering, biological tissue scaffolding, customized electric circuitry, fuel cells, security, and more.

  16. RESHORING IN MANUFACTURING AND SERVICES

    Directory of Open Access Journals (Sweden)

    Serghei MĂRGULESCU

    2014-05-01

    Full Text Available The extent of offshoring and outsourcing recorded in manufacturing and services in the last two decades has gradually eroded the advantage of the global arbitrage of labor costs. Along with other factors, this process began to change the options of international relocation of some companies that initially had adopted such a strategy, generating a reverse trend for returning in the country of origin of manufacturing and other activities. This process, called "reshoring," has recently started to gain some consistency. The trend is most notable in the sphere of production. In terms of business and IT services we cannot yet speak of a tangible start of the reshoring phenomenon, as it does in the sphere of production. Nevertheless we can see a slowdown in the offshoring of services and the emergence of new strategies in the field.

  17. Reshoring in Manufacturing and Services

    Directory of Open Access Journals (Sweden)

    SERGHEI MĂRGULESCU

    2014-05-01

    Full Text Available The extent of offshoring and outsourcing recorded in manufacturing and services in the last two decades has gradually eroded the advantage of the global arbitrage of labor costs. Along with other factors, this process began to change the options of international relocation of some companies that initially had adopted such a strategy, generating a reverse trend for returning in the country of origin of manufacturing and other activities. This process, called "reshoring" has recently started to gain some consistency. The trend is most notable in the sphere of production. In terms of business and IT services we cannot yet speak of a tangible start of the reshoring phenomenon, as it does in the sphere of production. Nevertheless we can see a slowdown in the offshoring of services and the emergence of new strategies in the field.

  18. Manufacturing in the knowledge economy

    DEFF Research Database (Denmark)

    Hansen, Teis; Winther, Lars

    2015-01-01

    Recent studies stress the relevance of a broad conceptualization of the knowledge economy which goes beyond the strong, current policy focus on high-tech industries. Today, low-tech industries continue to have a significant role in European manufacturing in terms of employment, value added......-tech industries. This calls for a rethinking of manufacturing’s position in contemporary capitalism and a redefinition of the central categories based on research and development (R & D) intensity that dominate the debate on the knowledge economy....... and export. However, the character and activities of these industries are profoundly changing as they become increasingly knowledge intensive. Thus, innovation processes and knowledge production in manufacturing are much more complex than suggested by the classic division into high-, medium-and low...

  19. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  20. Manufacturing Outsourcing A Knowledge Perspective

    CERN Document Server

    Rolstadås, Asbjørn; O'Sullivan, David

    2012-01-01

    All companies which reach a critical size are faced with outsourcing decisions that can increase the value of their products and services primarily through lower costs, greater reliability and improved efficiency. Successful outsourcing decisions have an important knowledge dimension, where the outsourcing professionals need to be supported by historical and contextual knowledge regarding their own products performance but also the performance of suppliers. Outsourcing in Manufacturing: the Knowledge Dimension explains in detail how a manager can acquire, create, transfer and use knowledge that optimizes their outsourcing decisions and improves the changes of marketplace success.              Outsourcing in Manufacturing: the Knowledge Dimension gives examples of the key decisions that needs to be taken by managers regarding effective outsourcing. Decisions are divided around the structural and infrastructural aspects of outsourcing and the key knowledge that needs to be managed to support good de...