WorldWideScience

Sample records for pre-pilot manufacturing facility

  1. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    International Nuclear Information System (INIS)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment

  2. Bio-Manufacturing to market pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Dressen, Tiffaney [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companies and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.

  3. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    Science.gov (United States)

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  5. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  6. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  7. Recycling entire DOE facilities: The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1996-01-01

    The Mission of the National Conversion Pilot Project - to demonstrate, at the Rocky Flats Site, the feasibility of economic conversion of DOE Sites - is succeeding. Contaminated facilities worth $92 million are being cleaned and readied for reuse by commercial industry to manufacture products needed in the DOE cleanup and elsewhere. Former Rocky Flats workers have been hired, recultured, are conducting the cleanup and are expected to perform the future manufacturing by recycling DOE RSM and other metals requiring special environmental controls. Stakeholder sway over project activities is welcome and strong

  8. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  9. 14 CFR 21.43 - Location of manufacturing facilities.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of manufacturing facilities. 21.43... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.43 Location of manufacturing facilities... location of the manufacturer's facilities places no undue burden on the FAA in administering applicable...

  10. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  11. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  12. A modern depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980's, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality

  13. Surrogate Plant Data Base : Volume 3. Appendix D : Facilities Planning Data ; Operating Manpower, Manufacturing Budgets and Pre-Production Launch ...

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  14. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  15. General description and production lines of the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.; Elseaidy, I.M.

    1999-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a new facility, producing an MTR-type fuel elements required for the Egyptian Second Research Reactor, ETRR-2, as well as other plates or elements for an external clients with the same type and enrichment percent or lower, (LEU). General description is presented. The production lines in FMPP, which begin from uranium hexaflouride (UF 6 , 19.7±0.2 % U 235 by wt), aluminum powder, and nuclear grade 6061 aluminium alloy in sheets, bars, and rods with the different heat treatments and dimensions as a raw materials, are processed through a series of the manufacturing, inspection, and quality control plan to produce the final specified MTR-type fuel elements. All these processes and the product control in each step are presented. The specifications of the final product are presented. (author)

  16. Modular Hydropower Engineering and Pilot Scale Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, Phillip C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, the castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously

  17. Decommissioning plan depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Bernhardt, D.E.; Pittman, J.D.; Prewett, S.V.

    1987-01-01

    Aerojet Ordnance Tennessee, Inc. (Aerojet) is decommissioning its California depleted uranium (DU) manufacturing facility. Aerojet has conducted manufacturing and research and development activities at the facility since 1977 under a State of California Source Materials License. The decontamination is being performed by a contractor selector for technical competence through competitive bid. Since the facility will be released for uncontrolled use it will be decontaminated to levels as low as reasonably achievable (ALARA). In order to fully apply the principles of ALARA, and ensure the decontamination is in full compliance with appropriate guides, Aerojet has retained Rogers and Associaties Engineering Corporation (RAE) to assist in the decommissioning. RAE has assisted in characterizing the facility and preparing contract bid documents and technical specifications to obtain a qualified decontamination contractor. RAE will monitor the decontamination work effort to assure the contractor's performance complies with the contract specifications and the decontamination plan. The specifications require a thorough cleaning and decontamination of the facility, not just sufficient cleaning to meet the numeric cleanup criteria

  18. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  19. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities.

    Science.gov (United States)

    Kreider, Marisa L; Cyrs, William D; Tosiano, Melissa A; Panko, Julie M

    2015-11-01

    Current recommendations for nanomaterial-specific exposure assessment require adaptation in order to be applied to complicated manufacturing settings, where a variety of particle types may contribute to the potential exposure. The purpose of this work was to evaluate a method that would allow for exposure assessment of nanostructured materials by chemical composition and size in a mixed dust setting, using carbon black (CB) and amorphous silica (AS) from tire manufacturing as an example. This method combined air sampling with a low pressure cascade impactor with analysis of elemental composition by size to quantitatively assess potential exposures in the workplace. This method was first pilot-tested in one tire manufacturing facility; air samples were collected with a Dekati Low Pressure Impactor (DLPI) during mixing where either CB or AS were used as the primary filler. Air samples were analyzed via scanning transmission electron microscopy (STEM) coupled with energy dispersive spectroscopy (EDS) to identify what fraction of particles were CB, AS, or 'other'. From this pilot study, it was determined that ~95% of all nanoscale particles were identified as CB or AS. Subsequent samples were collected with the Dekati Electrical Low Pressure Impactor (ELPI) at two tire manufacturing facilities and analyzed using the same methodology to quantify exposure to these materials. This analysis confirmed that CB and AS were the predominant nanoscale particle types in the mixing area at both facilities. Air concentrations of CB and AS ranged from ~8900 to 77600 and 400 to 22200 particles cm(-3), respectively. This method offers the potential to provide quantitative estimates of worker exposure to nanoparticles of specific materials in a mixed dust environment. With pending development of occupational exposure limits for nanomaterials, this methodology will allow occupational health and safety practitioners to estimate worker exposures to specific materials, even in scenarios

  20. Alpha Decontamination and Disassembly Pilot Facility. Final report

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Clark, H.E.

    1985-04-01

    The Alpha Decontamination and Disassembly (AD and D) Pilot Facility was built to develop and demonstrate a reference process for the decontamination and size reduction of noncombustible transuranic (TRU) waste. The goals of the reference process were to remove >99% of the surface contamination to the high-level waste tanks, and to achieve volume reduction factors greater than 15:1. Preliminary bench-scale decontamination work was accomplished at Savannah River Laboratory (SRL), establishing a reference decontamination process. Initially, the pilot facility did not achieve the decontamination goals. As the program continued, and modifications to the process were made, coupon analysis idicated that 99% of the surface contamination was removed to the high-level drain system. Prior to the AD and D Pilot Facility, no size reduction work had been done at SRL. Several other Department of Energy (DOE) facilities were experimenting with plasma arc torches for size reduction work. Their methods were employed in the AD and D hot cell with moderate success. The experimental work concluded with recommendations for further testing of other size reduction techniques. 11 figs., 6 tabs

  1. Pilot production & commercialization of LAPPD{sup ™}

    Energy Technology Data Exchange (ETDEWEB)

    Minot, Michael J., E-mail: mjm@incomusa.com [Incom Inc, 294 Southbridge Road, Charlton, MA 01507 (United States); Bennis, Daniel C.; Bond, Justin L.; Craven, Christopher A.; O' Mahony, Aileen; Renaud, Joseph M.; Stochaj, Michael E. [Incom Inc, 294 Southbridge Road, Charlton, MA 01507 (United States); Elam, Jeffrey W.; Mane, Anil U.; Demarteau, Marcellinus W.; Wagner, Robert G. [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439-4814 (United States); McPhate, Jason B.; Helmut Siegmund, Oswald [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Elagin, Andrey; Frisch, Henry J.; Northrop, Richard; Wetstein, Matthew J. [University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States)

    2015-07-01

    We present a progress update on plans to establish pilot production and commercialization of Large Area (400 cm{sup 2}) Picosecond Photodetector (LAPPD{sup ™}). Steps being taken to commercialize this MCP and LAPPD{sup ™} technology and begin tile pilot production are presented including (1) the manufacture of 203 mm×203 mm borosilicate glass capillary arrays (GCAs), (2) optimization of MCP performance and creation of an ALD coating facility to manufacture MCPs and (3) design, construction and commissioning of UHV tile integration and sealing facility to produce LAPPDs. Taken together these plans provide a “pathway toward commercialization”.

  2. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Science.gov (United States)

    2012-08-15

    ... manufacture, preproduction design validation (including a process to assess the performance of a tobacco... about the manufacturing practices and processes unique to your facility and regulated tobacco products... process, package, label, and distribute different types of regulated tobacco products (cigarettes...

  3. Establishing a LEU MTR fuel manufacturing facility in South Africa

    International Nuclear Information System (INIS)

    Jamie, R.W.; Kocher, A.

    2010-01-01

    The South African MTR Fuel Manufacturing Facility was established in the 1970's to supply SAFARI-1 with Fuel Elements and Control Rods. South African capability was developed in parallel with the uranium enrichment program to meet the needs of the Reactor. Further to the July 2005 decision by the South African Governmnent to convert both SAFARI-1 and the Fuel Plant to LEU, the SAFARI-1 phase has been successfully completed and Necsa has commenced with the conversion of the MTR Fuel Manufacturing Facility. In order to establish, validate and qualify the facility, Necsa has entered into a co-operation and technology transfer agreement with AREVA CERCA, the French manufacturer of Research Reactor fuel elements. Past experiences, conversion challenges and the status of the MTR Fuel Facility Project are discussed. On-going co-operation with AREVA CERCA to implement the local manufacture of LEU fuel is explained and elaborated on. (author)

  4. Verification of criticality Safety for ETRR-2 Fuel Manufacturing pilot Plant (FMPP) at Inshas

    International Nuclear Information System (INIS)

    Aziz, M.; Gadalla, A.A.; Orabi, G.

    2006-01-01

    The criticality safety of the fuel manufacturing pilot plant (FMPP) at inshas is studied and analyzed during normal and abnormal operation conditions. the multiplication factor during all stages of the manufacturing processes is determined. several accident scenarios were simulated and the criticality of these accidents were investigated. two codes are used in the analysis : MCNP 4 B code, based on monte Carlo method, and CITATION code , based on diffusion theory. the results are compared with the designer calculations and satisfactory agreement were found. the results of the study indicated that the safety of the fuel manufacturing pilot plant is confirmed

  5. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  6. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV through an animal food manufacturing facility.

    Directory of Open Access Journals (Sweden)

    Loni L Schumacher

    Full Text Available New regulatory and consumer demands highlight the importance of animal feed as a part of our national food safety system. Porcine epidemic diarrhea virus (PEDV is the first viral pathogen confirmed to be widely transmissible in animal food. Because the potential for viral contamination in animal food is not well characterized, the objectives of this study were to 1 observe the magnitude of virus contamination in an animal food manufacturing facility, and 2 investigate a proposed method, feed sequencing, to decrease virus decontamination on animal food-contact surfaces. A U.S. virulent PEDV isolate was used to inoculate 50 kg swine feed, which was mixed, conveyed, and discharged into bags using pilot-scale feed manufacturing equipment. Surfaces were swabbed and analyzed for the presence of PEDV RNA by quantitative real-time polymerase chain reaction (qPCR. Environmental swabs indicated complete contamination of animal food-contact surfaces (0/40 vs. 48/48, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05 and near complete contamination of non-animal food-contact surfaces (0/24 vs. 16/18, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05. Flushing animal food-contact surfaces with low-risk feed is commonly used to reduce cross-contamination in animal feed manufacturing. Thus, four subsequent 50 kg batches of virus-free swine feed were manufactured using the same system to test its impact on decontaminating animal food-contact surfaces. Even after 4 subsequent sequences, animal food-contact surfaces retained viral RNA (28/33 positive samples/total samples, with conveying system being more contaminated than the mixer. A bioassay to test infectivity of dust from animal food-contact surfaces failed to produce infectivity. This study demonstrates the potential widespread viral contamination of

  7. Pre-Study Walkthrough with a Commercial Pilot for a Preliminary Single Pilot Operations Experiment

    Science.gov (United States)

    O'Connor-Dreher, Ryan; Roberts, Z.; Ziccardi, J.; Vu, K-P. L.; Strybel, T.; Koteskey, Robert William; Lachter, Joel B.; Vi Dao, Quang; Johnson, Walter W.; Battiste, V.

    2013-01-01

    The number of crew members in commercial flights has decreased to two members, down from the five-member crew required 50 years ago. One question of interest is whether the crew should be reduced to one pilot. In order to determine the critical factors involved in safely transitioning to a single pilot, research must examine whether any performance deficits arise with the loss of a crew member. With a concrete understanding of the cognitive and behavioral role of a co-pilot, aeronautical technologies and procedures can be developed that make up for the removal of the second aircrew member. The current project describes a pre-study walkthrough process that can be used to help in the development of scenarios for testing future concepts and technologies for single pilot operations. Qualitative information regarding the tasks performed by the pilots can be extracted with this technique and adapted for future investigations of single pilot operations.

  8. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  9. Humboldt SK pilot biodigester receives funding

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-09-30

    The Canada-Saskatchewan Western Economic Partnership Agreement (WEPA) will provide funding for Canada's first pilot-scale biodigester to be built in Humboldt, Saskatchewan. The $208,138 pilot facility will use household garbage as well as agricultural waste such as manure and livestock operations, abattoirs and food processing to create heat or power and fertilizer. Support for this bio-energy facility, which could also reduce greenhouse gases, will come from the Prairie Agricultural Machinery Institute which has received $186,138 from Canada and Saskatchewan in the form of cost-shared federal-provincial funding. The pilot plant will test different combinations of waste material feedstocks and the characteristics of the resulting gas end products. The pilot facility will also provide design information for full-scale biodigester manufacturers in Canada. It is expected that 25 full-scale biodigesters will be constructed in Canada in the near future.

  10. Pre-commissioning, commissioning, start-up and operation of a major extension to an LNG manufacturing facility in Bintulu, Sarawak

    International Nuclear Information System (INIS)

    Wong, T.

    1997-01-01

    In 1989, a decision was taken by the Shareholders of Malaysia LNG Sdn Bhd (MLNG) to expand their existing LNG manufacturing facility of some 8.0 million tonnes per annum, and to minimise the capital investment by maximizing the use of available off-plot facilities and utilities, together with the introduction of proven technological enhancements. Accordingly a new Company (MLNG Dua) was set up to own and manage this project and joint venture between existing shareholders. This paper describes the organisation, planning, and execution of the precommissioning, commissioning, start-up, and operation of the off-plot facilities, integrated utilities, and the first new process module, such that on-grade LNG rundown into MLNG's existing storage capacity was achieved within 26 days of the process module being signed off as Ready for Start-up (RFSU). (au)

  11. Visit to China's ARJ21 Aircraft Manufacturing Facility

    National Research Council Canada - National Science Library

    Balut, Stephen J; McNicol, David L; Nelson, J. R; Harmon, Bruce R; Holder, Stephen G

    2008-01-01

    During a December 2007 visit to China to share information about civilian aircraft costs, a delegation from IDA visited the Shanghai Aircraft Manufacturing Facility where the commercial chinese ARJ21...

  12. Installation of Tc-99m generator manufacturing facilities

    International Nuclear Information System (INIS)

    Shin, B. C.; Choung, W. M.; Park, J. H.; Park, S. H.; Kim, S. J.; Park, K. B.

    2004-01-01

    For the characteristics of radiopharmaceuticals, the manufacturing facility should be complied with the radiation safety standards for operators as well as GMP (Good Manufacturing Practice) cleanness standards for production. We intensively modified the existing Radioisotope production facilities, which were installed only in radiation safety points of view, to meet cleanness criteria. And the concept of multi-barrier buffer zones was introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room. The manufacturing area for Tc-99m Generator can be entered only through a second change. The doors of each change area are interlocked to maintain air pressure differentials. The pass box for material transfer are also interlocked so that only one side may be opened at any one time to keep cleanness. Two door-type autoclave was installed crossing the wall between preparing room and aseptic room to keep cleanness after sterilization. Three lead hot cells were installed and final inspection including gamma survey test were performed. The clean room was installed and TAB for this facility was performed in order to acquire the necessary air flow. The filter bank for filtration of exhausted radiation air was installed and its efficiency test was performed. In this facility, radiation shielding utilities and manufacturing instruments were set up and their operating manuals were documented. Efficiency tests for every utilities and instruments were satisfied and the approval for use of the facilities was achieved from MOST (Ministry of Science and Technology). The Sam Young Unitech, the lessee of the facilities set up the equipment in the hot cell, which is needed to produce Tc-99m Generator, supported by IPPE in Russia. They are composing the systems complied with the guidelines and the regulations, and keep in contact to KFDA for acquiring its approval. It is expected to produce Tc-99m Generator within

  13. 76 FR 63988 - Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits

    Science.gov (United States)

    2011-10-14

    ...-0097] Pilot Project on NAFTA Trucking Provisions; Pre-Authorization Safety Audits AGENCY: Federal Motor... motor carriers that applied to participate in the Agency's long-haul pilot program to test and... intent to proceed with the initiation of a United States- Mexico cross-border long-haul trucking pilot...

  14. Pre-feasibility study template for nZEB pilot projects development

    OpenAIRE

    Crespo Sánchez, Eva

    2015-01-01

    This document corresponds to Task 5.2 NZEB pilot projects development, Deliverable 5.2 Basic project conceptual design with feasibility analysis for eight pilot project of the SUSTAINCO project and should present a structure of pre-feasibility studies for eight NZEB projects implementation. It aims to give an overview of how SUSTAINCO project implementation is to be prepared and which technical and financial parameters to concern.

  15. Pilot scale digestion of source-sorted household waste as a tool for evaluation of different pre-sorting and pre-treatment strategies

    DEFF Research Database (Denmark)

    Svärd, Å; Gruvberger, C.; Aspegren, H.

    2002-01-01

    Pilot scale digestion of the organic fraction of source-sorted household waste from Sweden and Denmark was performed during one year. The study includes 17 waste types with differences in originating municipality, housing type, kitchen wrapping, sack type, pre-treatment method and season. The pilot...... scale digestion has been carried out in systems with a 35-litres digester connected to a 77-litres gas tank. Four rounds of digestion were performed including start-up periods, full operation periods for evaluation and post-digestion periods without feeding. Different pre-sorting and pre-treatment...

  16. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  17. EUV mask defect inspection and defect review strategies for EUV pilot line and high volume manufacturing

    Science.gov (United States)

    Chan, Y. David; Rastegar, Abbas; Yun, Henry; Putna, E. Steve; Wurm, Stefan

    2010-04-01

    Reducing mask blank and patterned mask defects is the number one challenge for extreme ultraviolet lithography. If the industry succeeds in reducing mask blank defects at the required rate of 10X every year for the next 2-3 years to meet high volume manufacturing defect requirements, new inspection and review tool capabilities will soon be needed to support this goal. This paper outlines the defect inspection and review tool technical requirements and suggests development plans to achieve pilot line readiness in 2011/12 and high volume manufacturing readiness in 2013. The technical specifications, tooling scenarios, and development plans were produced by a SEMATECH-led technical working group with broad industry participation from material suppliers, tool suppliers, mask houses, integrated device manufacturers, and consortia. The paper summarizes this technical working group's assessment of existing blank and mask inspection/review infrastructure capabilities to support pilot line introduction and outlines infrastructure development requirements and tooling strategies to support high volume manufacturing.

  18. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    Science.gov (United States)

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pre-brazed casting and hot radial pressing: A reliable process for the manufacturing of CFC and W monoblock mock-ups

    International Nuclear Information System (INIS)

    Visca, Eliseo; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2007-01-01

    ENEA is involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities and, in particular, for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters. During last years, ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mock-ups. This technique is the HRP (hot radial pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only internal tube and by keeping the joining zone in vacuum at the required bonding temperature. The heating is obtained by a standard air furnace. The HRP technique is now used for the manufacturing of CFC armoured monoblock components. For this purpose, some issues have to be faced, like the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface, and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mock-up by HRP. A casting of a soft copper interlayer between the tube and the tile was obtained by a new technique: the pre-brazed casting (PBC, ENEA patent). Some preliminary mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. These activities were performed in the frame of ITER-EFDA contracts

  20. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  1. Dispatching capacity in manufacturing facility offshoring

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Knudsen, Mette Præst

    2010-01-01

    This paper investigates how a dispatching capacity of motivation, relational dynamics and structures seen from the sending context influence the entire knowledge transfer process in manufacturing facility offshoring. An inductive and qualitative approach is taken and five main themes are derived...... from the four empirical cases. In the discussion, the five themes i.e. extra tasks, previous experiences, involvement of all groups of employees, teaching skills and organizational support in the dispatching context are linked with a theoretical model leading to the identification of seven testable...

  2. Coordination in International Manufacturing: The Role of Competitive Priorities and the Focus of Globally Dispersed Facilities

    Directory of Open Access Journals (Sweden)

    Ahmed Sayem

    2018-04-01

    Full Text Available In this era of globalization, network integration has received great attention, as it certainly has implications for the competitiveness in international manufacturing. A key issue in integration is to coordinate activities of dispersed facilities in a way to align the target of locating abroad and the priorities to be competitive. This study explores and clarifies the effect of competitive priority and focus of dispersed facilities on coordinating the activities in intra-firm network manufacturing. Based on a multiple case study involving four different companies manufacturing in globally dispersed facilities, the results confirm that both competitive priorities and specific focus of global manufacturing are important for selecting mechanisms to coordinate overseas facilities, with the competitive priorities ‘quality’ and ‘flexibility’ being the more important. Furthermore, the findings reveal that companies place emphasis on informal mechanisms to coordinate the low-cost focused facilities. In turn, the importance of formal mechanisms seems equal for coordinating both low-cost focused facilities and those focused on capturing a local market. Finally, the findings of this paper suggest that elements of competitive priority, as well as the focus of dispersed facilities, should be considered towards making the choice for mechanisms of coordination. The findings bear important implications for the effective coordination of activities in international manufacturing.

  3. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    Science.gov (United States)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images

  4. Elimination of Porcine Epidemic Diarrhea Virus in an Animal Feed Manufacturing Facility.

    Directory of Open Access Journals (Sweden)

    Anne R Huss

    Full Text Available Porcine Epidemic Diarrhea Virus (PEDV was the first virus of wide scale concern to be linked to possible transmission by livestock feed or ingredients. Measures to exclude pathogens, prevent cross-contamination, and actively reduce the pathogenic load of feed and ingredients are being developed. However, research thus far has focused on the role of chemicals or thermal treatment to reduce the RNA in the actual feedstuffs, and has not addressed potential residual contamination within the manufacturing facility that may lead to continuous contamination of finished feeds. The purpose of this experiment was to evaluate the use of a standardized protocol to sanitize an animal feed manufacturing facility contaminated with PEDV. Environmental swabs were collected throughout the facility during the manufacturing of a swine diet inoculated with PEDV. To monitor facility contamination of the virus, swabs were collected at: 1 baseline prior to inoculation, 2 after production of the inoculated feed, 3 after application of a quaternary ammonium-glutaraldehyde blend cleaner, 4 after application of a sodium hypochlorite sanitizing solution, and 5 after facility heat-up to 60°C for 48 hours. Decontamination step, surface, type, zone and their interactions were all found to impact the quantity of detectable PEDV RNA (P < 0.05. As expected, all samples collected from equipment surfaces contained PEDV RNA after production of the contaminated feed. Additionally, the majority of samples collected from non-direct feed contact surfaces were also positive for PEDV RNA after the production of the contaminated feed, emphasizing the potential role dust plays in cross-contamination of pathogen throughout a manufacturing facility. Application of the cleaner, sanitizer, and heat were effective at reducing PEDV genomic material (P < 0.05, but did not completely eliminate it.

  5. Comparison of conventional Injection Mould Inserts to Additively Manufactured Inserts using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2016-01-01

    Polymer Additive Manufacturing can be used to produce soft tooling inserts for injection moulding. Compared to conventional tooling, the energy and time consumption during production are significantly lower. As the life time of such inserts is significantly shorter than the life time of traditional...... of their potential environmental impact and yield throughout the development and pilot phase. Insert geometry is particularly advantageous for pilot production and small production sizes. In this research, Life Cycle Assessment is used to compare the environmental impact of soft tooling by Additive Manufacturing...... (using Digital Light Processing) and three traditional methods for the manufacture of inserts (milling of brass, steel, and aluminium) for injection moulds during the pre-production phase....

  6. Pre-Brazed Casting and Hot Radial Pressing: A Reliable Process for the Manufacturing of CFC and W Monoblock Mockups

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2006-01-01

    ENEA association is involved in the European International Thermonuclear Experimental Reactor (ITER) R-and-D activities and in particular for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters: During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mockups. This technique is the HRP (Hot Radial Pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only the internal tube and by keeping the joining zone in vacuum and at the required bonding temperature. The heating is obtained by a standard air furnace. The next step was to apply the HRP technique for the manufacturing of CFC armoured monoblock components. For this purpose some issues have to be solved like as the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mockup by HRP. An ad hoc rig able to maintain the CFC in a compressive constant condition was also designed and tested. The casting of a soft copper interlayer between the tube and the tile was performed by a new technique: the Pre-Brazed Casting (PBC, ENEA patent). Some mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. (author)

  7. Third party testing : new pilot facility for mining processes opens in Fort McKay

    International Nuclear Information System (INIS)

    Jaremko, D.

    2007-01-01

    Fort McKay lies 65 kilometres north of Fort McMurray, Alberta and is the centre of operational oilsands mining activity. As such, it was chosen for a pilot testing facility created by the Geneva-based SGS Group. The reputable facility provides an opportunity for mining producers to advance their processes, including environmental performance, by allowing them to test different processes on their own oilsands. The Northern Lights partnership, led by Synenco Energy, was the first client at the facility. Due to outsourcing, clients are not obligated to make substantial capital investment into in-house research. The Northern Lights partnership will be using the facility to test extraction processes on bitumen from its leases. Although the Fort McKay facility is SGS's first venture into the oilsands industry, it operates in more than 140 companies globally, including the mineral industry, and specializes in inspection, verification, testing and certification. SGS took the experience from its minerals extraction business to identify what could be done to help the oilsands industry by using best practices developed from global operations. The facility lies on the Fort McKay industrial park owned by the Fort McKay First Nation. An existing testing facility called McMurray Resources Research and Testing was expanded by the SGS Group to include environmental analysis capabilities. The modular units that lie on 6 acres include refrigerated ore storage to maintain ore integrity; modular ore and materials handling systems; extraction equipment; and, zero discharge process water and waste disposal systems. Froth treatment will be added in the near future to cover the entire upstream side of the mining processing business. A micro-upgrader might be added in the future to manufacture synthetic crude. 3 figs

  8. Third party testing : new pilot facility for mining processes opens in Fort McKay

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2007-12-15

    Fort McKay lies 65 kilometres north of Fort McMurray, Alberta and is the centre of operational oilsands mining activity. As such, it was chosen for a pilot testing facility created by the Geneva-based SGS Group. The reputable facility provides an opportunity for mining producers to advance their processes, including environmental performance, by allowing them to test different processes on their own oilsands. The Northern Lights partnership, led by Synenco Energy, was the first client at the facility. Due to outsourcing, clients are not obligated to make substantial capital investment into in-house research. The Northern Lights partnership will be using the facility to test extraction processes on bitumen from its leases. Although the Fort McKay facility is SGS's first venture into the oilsands industry, it operates in more than 140 companies globally, including the mineral industry, and specializes in inspection, verification, testing and certification. SGS took the experience from its minerals extraction business to identify what could be done to help the oilsands industry by using best practices developed from global operations. The facility lies on the Fort McKay industrial park owned by the Fort McKay First Nation. An existing testing facility called McMurray Resources Research and Testing was expanded by the SGS Group to include environmental analysis capabilities. The modular units that lie on 6 acres include refrigerated ore storage to maintain ore integrity; modular ore and materials handling systems; extraction equipment; and, zero discharge process water and waste disposal systems. Froth treatment will be added in the near future to cover the entire upstream side of the mining processing business. A micro-upgrader might be added in the future to manufacture synthetic crude. 3 figs.

  9. RPC industries - UV and EB equipment manufacturers

    International Nuclear Information System (INIS)

    Rodrigues, A.M.

    1987-01-01

    RPC Industries has been manufacturing electron beam and ultraviolet equipment for the industrial processing of materials for more than 15 years. RPC maintains its headquarters and electron processor manufacturing plant in Hayward, California. UV equipment is made in the company's plant near Chicago. Sales offices are maintained in New York, Illinois, and California in the USA, and in Germany, Japan, Australia, Italy, Israel, and Sweden. Complete testing and pilot facilities are available in Hayward (EB) and near Chicago (UV). Described below are the basic system components, applications and advantages of RPC's UV and EB systems. (orig.)

  10. Pre-brazed casting and hot radial pressing: A reliable process for the manufacturing of CFC and W monoblock mock-ups

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy)], E-mail: visca@frascati.enea.it; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, RM (Italy); Testani, C. [CSM S.p.A., IT-00128 Castel Romano, RM (Italy)

    2007-10-15

    ENEA is involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities and, in particular, for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters. During last years, ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mock-ups. This technique is the HRP (hot radial pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only internal tube and by keeping the joining zone in vacuum at the required bonding temperature. The heating is obtained by a standard air furnace. The HRP technique is now used for the manufacturing of CFC armoured monoblock components. For this purpose, some issues have to be faced, like the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface, and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mock-up by HRP. A casting of a soft copper interlayer between the tube and the tile was obtained by a new technique: the pre-brazed casting (PBC, ENEA patent). Some preliminary mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m{sup 2} without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. These activities were performed in the frame of ITER-EFDA contracts.

  11. Pilot scale, alpha disassembly and decontamination facility at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Cadieux, J.R.; Becker, G.W. Jr.; Richardson, G.W.; Coogler, A.L.

    1982-01-01

    An alpha-contained pilot facility is being built at the Savannah River Laboratory (SRL) for research into the disassembly and dcontamination of noncombustible, Transuranic (TRU) waste. The design and program objectives for the facility are presented along with the initial test results from laboratory scale decontamination experiments with Pu-238 and Cm-244

  12. Achievement report (edition B) for fiscal 1999 on development of technology to manufacture coal gas for fuel cells. Studies by using pilot test facilities (Volumes for equipment fabrication and constructions, and trial run design); 1999 nendo seika hokokusho (B ban). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot setsubi ni yoru kenkyu (kisokoji kiki seisaku hen shiunten sekkei hen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to develop a coal gas manufacturing system for fuel cells, research and development has been performed on a oxygen-blown coal gasifier and researches on a technology to purify gases for fuel cells. This paper summarizes the achievements in fiscal 1999. The current fiscal year has performed, among other the pilot plant construction works, execution of the above-the-ground constructions for the operation center and compressor room building, construction of the cooling water tanks, and partial improvement of roads in the plant site. In the gasifier facilities, items of equipment were fabricated, some of the outsourced articles were procured, and the installations thereof were carried out. For the gas purifying equipment, installation of the gas analyzer room was executed. In the trial run design, discussions were given on the systematic improvements in the test items, the gas sampling procedures, the unit protecting interlock, and the facility protecting logic. For the trial run design, establishment has been implemented on the efficient and functional test plans by establishing priority on the tests to be executed, so that the development items demanded in the pilot test and research can be achieved within the limited test processes. (NEDO)

  13. Hybrid and disposable facilities for manufacturing of biopharmaceuticals: pros and cons.

    Science.gov (United States)

    Ravisé, Aline; Cameau, Emmanuelle; De Abreu, Georges; Pralong, Alain

    2009-01-01

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.In this chapter, four case studies are presented which outline ways to reduce significantly R&D and manufacturing costs by using disposable technology in the frame of a the transfer of an antibody manufacturing process, the preparation of media and buffers in commercial manufacturing and a direct comparison of a traditional and a fully disposable pilot plant.

  14. Fiscal 2000 achievement report. Development of coal gas production technology for fuel cells (Research using pilot test facility - for public release); 2000 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the development of a coal gasification furnace optimum for fuel cells, research and development was conducted of a coal gas production technology using the oxygen-blown coal gasification technology, and the fiscal 2000 results are put together. In the construction of the pilot test facility, part of the road in the site was constructed as continued from the preceding fiscal year. In the construction of the coal gasification facility, some of the devices were built, which were the coal feeding system, coal gasification furnace, heat recovery boiler, and the char recovery device, and some of the thus-built devices and procured devices were installed. In the study of the control of the operation of the oxygen-blown coal gasification system, the pilot test facility was divided into unit devices and, for each of the unit devices, detailed procedures for pre-start preparation, start, stop, and for the stop of accessorise were deliberated, and important operating steps were worked out. Timing charts were prepared for the operation of each of the facilities during plant start/stop operations. In the effort to deal with serious accidents, special operation procedures were studied and prepared on the case-by-case basis. (NEDO)

  15. Mechanical Design and Manufacturing Preparation of Loading Unloading Irradiation Facility in Reflector Irradiation Position

    International Nuclear Information System (INIS)

    Hasibuan, Djaruddin

    2004-01-01

    Base on planning to increase of the irradiation service quality in Multi purpose Reactor-GAS, the mechanical design and manufacturing of the (n,γ) irradiation facility has been done. The designed of (n,γ) irradiation facility is a new facility in Multi purpose Reactor-GAS. The design doing by design of stringer, guide bar and hanger. By the design installation, the continuous irradiation service of non fission reaction will be easy to be done without reactor shut down. The design of the facility needs 3 pieces Al pipe by 36 x 1.5 mm, a peace of Al round bar by 80 mm diameter and a piece of Al plate by 20 x 60 x 0.2 mm for the stringer and guide bar manufacturing. By the building of non fission irradiation facility in the reflector irradiation position, will make the irradiation service to be increased. (author)

  16. Fact Sheet for Friction Materials Manufacturing Facilities Residual Risk and Technology Review

    Science.gov (United States)

    proposed amendments to the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Friction Materials Manufacturing Facilities to address the results of the residual risk and technology review

  17. A novel microgrid demand-side management system for manufacturing facilities

    Science.gov (United States)

    Harper, Terance J.

    Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid

  18. Use of Pilot Plants for Developing Used Nuclear Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Chris; Arm, Stuart [EnergySolutions LLC (United States); Banfield, Zara; Jeapes, Andrew; Taylor, Richard [National Nuclear Laboratory (United Kingdom)

    2009-06-15

    EnergySolutions and its teaming partners are working with the US Department of Energy (DOE) to develop processes, equipment and facilities for recycling used nuclear fuel (UNF). Recycling significantly reduces the volume of wastes that ultimately will be consigned to the National Geologic Repository, enables the re-use in new fuel of the valuable uranium and plutonium in the UNF, and allows the long-lived minor actinides to be treated separately so they do not become long term heat emitters in the Repository. A major requirement of any new UNF recycling facility is that pure plutonium is not separated anywhere in the process, so as to reduce the nuclear proliferation attractiveness of the facility. EnergySolutions and its team partner the UK National Nuclear Laboratory (NNL) have developed the NUEX process to achieve this and to handle appropriately the treatment of other species such as krypton, tritium, neptunium and technetium. NUEX is based on existing successful commercial UNF recycling processes deployed in the UK, France and imminently in Japan, but with a range of modifications to the flowsheet to keep some uranium with the plutonium at all times and to minimize aerial and liquid radioactive discharges. NNL's long-term experience in developing the recycling and associated facilities at the Sellafield site in the UK, and its current duties to support technically the operation of the Thermal Oxide Reprocessing Plant (THORP) at Sellafield provides essential input to the design of the US NUEX-based facility. Development work for THORP and other first-of-kind nuclear plants employed miniature scale fully radioactive through large scale inactive pilot plants. The sequence of development work that we have found most successful is to (i) perform initial process development at small (typically 1/5000) scale in gloveboxes using trace active materials, (ii) demonstrate the processes at the same small scale with actual irradiated fuel in hot cells and (iii

  19. Cost benefit of investment on quality in pharmaceutical manufacturing: WHO GMP pre- and post-certification of a Nigerian pharmaceutical manufacturer.

    Science.gov (United States)

    Anyakora, Chimezie; Ekwunife, Obinna; Alozie, Faith; Esuga, Mopa; Ukwuru, Jonathan; Onya, Steve; Nwokike, Jude

    2017-09-18

    Pharmaceutical companies in Africa need to invest in both facilities and quality management systems to achieve good manufacturing practice (GMP) compliance. Compliance to international GMP standards is important to the attainment of World Health Organization (WHO) prequalification. However, most of the local pharmaceutical manufacturing companies may be deterred from investing in quality because of many reasons, ranging from financial constraints to technical capacity. This paper primarily evaluates benefits against the cost of investing in GMP, using a Nigerian pharmaceutical company, Chi Pharmaceuticals Limited, as a case study. This paper also discusses how to drive more local manufacturers to invest in quality to attain GMP compliance; and proffers practical recommendations for local manufacturers who would want to invest in quality to meet ethical and regulatory obligations. The cost benefit of improving the quality of Chi Pharmaceuticals Limited's facilities and system to attain WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was calculated by dividing the annual benefits derived from quality improvement interventions by the annual costs of implementing quality improvement interventions, referred to as a benefit-cost ratio (BCR). Cost benefit of obtaining WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was 5.3 (95% confidence interval of 5.0-5.5). Investment in quality improvement intervention is cost-beneficial for local manufacturing companies. Governments and regulators in African countries should support pharmaceutical companies striving to invest in quality. Collaboration of local manufacturing companies with global companies will further improve quality. Local pharmaceutical companies should be encouraged to key into development opportunities available for pharmaceutical companies in Africa.

  20. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S.

    2005-10-01

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site

  1. Utilization of the Pilot Scale Demonstration Facility for Vitrification of Low and Intermediate Level Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Choi, W. K.; Jung, C. H.; Won, H. J.; Song, P. S.; Min, B. Y.; Park, H. S.; Jung, K. K.; Yun, K. S

    2005-10-15

    A series of maintenance and repair work for normalization of the pilot scale vitrification demonstration facility was completed successfully to develop the waste treatment in high temperature and melting technology. It was investigated that the treatment of combustible and non-combustible wastes produced at the KAERI site is technically feasible in the pilot scale vitrification demonstration facility which is designed to be able to treat various kinds of radioactive wastes such as combustible and non-combustible wastes including soil and concrete. The vitrification test facility can be used as the R and D and the technology demonstration facility for melt decontamination of the metallic wastes which have a fixed specification. The modification of the RI storage room in the pilot scale vitrification demonstration facility and the licensing according to the facility modification were completed for the R and D on melt decontamination of dismantled metallic wastes which is carrying out as one of the national long-term R and D projects on nuclear energy. The lab-scale melt decontamination apparatus was installed in modified RI storage room and the characteristics of melt decontamination will be examined using various metallic wastes. It is expected that the economical feasibility on the volume reduction and recycle of metallic wastes will be escalated in the present situation when the unit cost for waste disposal has the tendency to grow up gradually. Therefore, the pilot scale vitrification demonstration facility can be used for the technology development for the volume reduction and recycle of the metallic wastes generated from on-going projects on the decommissioning of research reactors and the environmental restoration of uranium conversion plant, and for the treatment of radioactive solid wastes produced at the KAERI site.

  2. Consequence assessment for Airborne Releases of SO2 from the Y-12 Pilot Dechlorination Facility

    International Nuclear Information System (INIS)

    Pendergrass, W.R.

    1992-06-01

    The Atmospheric Turbulence and Diffusion Division was requested by the Department of Energy's Oak Ridge Operations Office to conduct a consequence assessment for potential atmospheric releases of SO 2 from the Y-12 Pilot Dechlorination Facility. The focus of the assessment was to identify ''worst'' case meteorology which posed the highest concentration exposure potential for both on-site as well as off-site populations. A series of plausible SO 2 release scenarios were provided by Y-12 for the consequence assessment. Each scenario was evaluated for predictions of downwind concentration, estimates of a five-minute time weighted average, and estimate of the dimension of the puff. The highest hazard potential was associated with Scenario 1, in which a total of eight SO 2 cylinders are released internally to the Pilot Facility and exhausted through the emergency venting system. A companion effort was also conducted to evaluate the potential for impact of releases of SO 2 from the Pilot Facility on the population of Oak Ridge. While specific transport trajectory data is not available for the Pilot Facility, extrapolations based on the Oak Ridge Site Survey and climatological records from the Y-12 meteorological program does not indicate the potential for impact on the city of Oak Ridge. Steering by the local topographical features severely limits the potential impact ares. Due to the lack of specific observational data, both tracer and meteorological, only inferences can be made concerning impact zones. It is recommended tat the Department of Energy Oak Ridge Operations examine the potential for off-site impact and develop the background data to prepare impact zones for releases of hazardous materials from the Y-12 facility

  3. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    Science.gov (United States)

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Safety aspects of the FMPP (Fuel Manufacturing Pilot Plant) setup constructed by INVAP in the Arabic Republic of Egypt; Aspectos de seguridad en la puesta en marcha de la FMPP (Fuel Manufacturing Pilot Plant) construida por INVAP en la Republica Arabe de Egipto

    Energy Technology Data Exchange (ETDEWEB)

    Cinat, Enrique; Boero, Norma L [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Combustibles Nucleares

    1999-07-01

    The FMPP is a fuel plates manufacturing plant for test reactors. This facility was designed, constructed in El Cairo and turned-key handled by INVAP SE to the Arabian Republic of Egypt. In this project, CNEA participated in the transference of technology, elaboration of documents, training of Egyptian personnel and technical services during the setup of the facility in El Cairo. These tasks were undertaken by UPMP (Uranium Powder Manufacturing Plant) and ECRI (Research Reactors Fuel Elements Plant) personnel. Both plants in CNEA served as a FMPP design basis. During the setup of the facility a fuel element with natural uranium was firstly manufactured and then another one using uranium with 20% enrichment. In this paper the responses of the system regarding safety, after finishing the first two stages of manufacturing, are analyzed and evaluated. (author)

  5. Aerospace Manufacturing and Rework Facilities: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    Find regulatory information regarding the NESHAP for Aerospace manufacturing and rework facilities. This page contains the rule summary, rule history, and related rules and additional resources for this standard.

  6. Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors

    Directory of Open Access Journals (Sweden)

    Jinying Li

    2018-01-01

    Full Text Available As many said, industry 4.0 is an epoch-making revolution which brought the manufacturing market much faster changes and severer competitions. As an important part of the manufacturing system, facility layout has direct impact on business benefit; at the same time, despite the intelligent factory, intelligent production has its own characteristics. However, there is one point on which industry and academia have basically formed a consensus: it is not true that industry 4.0 does not need human beings; on the contrary, human initiative plays an unabated role in the development of industry 4.0. This paper will focus on the dynamic facility layout of the manufacturing unit. Based on the system above and the traditional optimization model, a mathematic model is built to find the best solution combining safety, sustainability, high efficiency, and low cost. And penalty function with adaptive penalty factor and advanced artificial bee colony algorithm is used to solve the constrained model. In the end, by studying few cases, the model is proved to be effective in both efficiency improvement and the implementation of safe and comfort human-machine interaction.

  7. Safety aspects of the FMPP (Fuel Manufacturing Pilot Plant) setup constructed by INVAP in the Arabic Republic of Egypt

    International Nuclear Information System (INIS)

    Cinat, Enrique; Boero, Norma L.

    1999-01-01

    The FMPP is a fuel plates manufacturing plant for test reactors. This facility was designed, constructed in El Cairo and turned-key handled by INVAP SE to the Arabian Republic of Egypt. In this project, CNEA participated in the transference of technology, elaboration of documents, training of Egyptian personnel and technical services during the setup of the facility in El Cairo. These tasks were undertaken by UPMP (Uranium Powder Manufacturing Plant) and ECRI (Research Reactors Fuel Elements Plant) personnel. Both plants in CNEA served as a FMPP design basis. During the setup of the facility a fuel element with natural uranium was firstly manufactured and then another one using uranium with 20% enrichment. In this paper the responses of the system regarding safety, after finishing the first two stages of manufacturing, are analyzed and evaluated. (author)

  8. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  9. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    Science.gov (United States)

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  10. Realizing Sustainability in Facilities Management: a pilot study at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Møller, Jacob Steen; Jäschke, Stefan

    2012-01-01

    , qualitative research and the preliminary analysis of a single, pilot case study of The Technical University of Denmark. Progress with the other complementary cases will be included in the presentation. The cases should be supplemented by more research on sustainable facilities management. Originality......, stakeholder interviews, focus groups, usability evaluations and practice-research workshops. The Technical University of Denmark (DTU) is the pilot case of an international collaboration, and more studies are planned to follow. Findings: The paper presents a framework for qualitative research on Sustainable...... Facilities Management (SFM), which can guide future research on Sustainability in FM and increase comparability between case studies. The research identifies the challenges and opportunities for integrating ecological, social and economical sustainability in university FM. The paper presents the analysis...

  11. Pilot material handling system for radiation processing of agricultural and medical products

    International Nuclear Information System (INIS)

    Sandha, R.S.; Nageswar Rao, J; Dwivedi, Jishnu; Petwal, V.C.; Soni, H.C.

    2005-01-01

    A 10 MeV, 10 kW electron LINAC based radiation processing facility is being constructed at Centre for Advanced Technology, Indore for radiation processing of various food products like potatoes, onion, spices, home pack items and medical sterilization. A pilot material handling system has been designed, manufactured, and installed at CAT to verify process parameters viz. conveying speed, dose uniformity, and to study the effect of packing shape and size for radiation processing of different product. This paper describes various features of pilot material handling system. (author)

  12. A pilot plant for solar-cell manufacture; Ligne pilote de fabrication de cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.; Ziegler, Y.; Closset, A. [VHF - Technologies SA, Yverdon-les-Bains (Switzerland)

    2005-07-01

    A pilot plant for the manufacture of amorphous silicon solar cells on plastic film substrate was built allowing the annual production of 40 kW peak power. The production steps comprise: a) the continuous coating of n-i-p solar cells by VHF-PECVD with a capacity of 28.5 meters in 8.5 hours; b) transparent-conducting-oxide (TCO) top contact structuring using a continuous process; c) series connection step (scribing and Ag-paste) with a capacity of 28 meters in 6 hours; d) back and top contact sputtering with 3 parallel magnetrons; e) integration of a large-area vacuum laminator enabling the simultaneous lamination of 4 products of 4 Wp. In parallel with this project, a complete cost model was established enabling a more quantitative approach of the future technological and industrial strategy of the company. An increase of the capacity to 100 kWp has been planned for summer 2005.

  13. Manufacturing and testing of a ITER First Wall Semi-Prototype for EUDA pre-qualification

    International Nuclear Information System (INIS)

    Banetta, S.; Bellin, B.; Lorenzetto, P.; Zacchia, F.; Boireau, B.; Bobin, I.; Boiffard, P.; Cottin, A.; Nogue, P.; Mitteau, R.; Eaton, R.; Raffray, R.; Bürger, A.; Du, J.; Linke, J.; Pintsuk, G.; Weber, T.

    2015-01-01

    Highlights: • Three ITER First Wall Small Scale Mock-ups were manufactured passing factory acceptance tests. • One of the Small Scale Mock-ups passed the thermal fatigue tests (15,000 cycles at 2 MW/m"2). • The ITER First Wall Semi-Prototype was manufactured and is being High Heat Flux tested. • Preliminary results upto 2 MW/m"2 show an overall compliance with the acceptance criteria. • Next step for EU Domestic Agency qualification is the fabrication and testing of a Full-Scale Prototype. - Abstract: This paper describes the main activities carried out in the frame of EU-DA prequalification for the supply of Normal Heat Flux (NHF) First Wall (FW) panels to ITER. A key part of these activities is the manufacturing development, the fabrication and the factory acceptance tests of a reduced scale FW prototype (Semi-Prototype (SP)) of the NHF design. The SP has a dimension of 221 mm × 665 mm, corresponding to about 1/6 of a full-scale panel, with six full-scale “fingers” and bearing a total of 84 beryllium tiles. It has been manufactured by the AREVA Company in France. The manufacturing process has made extensive use of Hot Isostatic Pressing, which was developed over more than a decade during the ITER Engineering Design Activity phase. The main manufacturing steps for the Semi-Prototype are recalled, with a summary of the lessons learned and the implications with regard to the design and manufacturing of the full-scale prototype and of the series fabrication of the EU-DA share of the ITER first wall (215 NHF panels). The fabricated SP is then tested under High Heat Flux (HHF) in the dedicated test facility of JUDITH-II in Forschungszentrum Jülich, Germany. The objective of the HHF testing is the demonstration of achieving the requested performance under thermal fatigue. The test protocol and facility qualification are presented and the behaviour of the fingers under the 7500 cycles at 2 MW/m"2 is described in detail.

  14. Manufacturing and testing of a ITER First Wall Semi-Prototype for EUDA pre-qualification

    Energy Technology Data Exchange (ETDEWEB)

    Banetta, S., E-mail: stefano.banetta@f4e.europa.eu [Fusion For Energy, Torres Diagonal Litoral, B3, Carrer Josep Pla 2, 08019 Barcelona (Spain); Bellin, B.; Lorenzetto, P.; Zacchia, F. [Fusion For Energy, Torres Diagonal Litoral, B3, Carrer Josep Pla 2, 08019 Barcelona (Spain); Boireau, B.; Bobin, I.; Boiffard, P.; Cottin, A.; Nogue, P. [AREVA NP PTCMI-F, Centre Technique, Fusion, 71200 Le Creusot (France); Mitteau, R.; Eaton, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Bürger, A.; Du, J.; Linke, J.; Pintsuk, G.; Weber, T. [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany)

    2015-10-15

    Highlights: • Three ITER First Wall Small Scale Mock-ups were manufactured passing factory acceptance tests. • One of the Small Scale Mock-ups passed the thermal fatigue tests (15,000 cycles at 2 MW/m{sup 2}). • The ITER First Wall Semi-Prototype was manufactured and is being High Heat Flux tested. • Preliminary results upto 2 MW/m{sup 2} show an overall compliance with the acceptance criteria. • Next step for EU Domestic Agency qualification is the fabrication and testing of a Full-Scale Prototype. - Abstract: This paper describes the main activities carried out in the frame of EU-DA prequalification for the supply of Normal Heat Flux (NHF) First Wall (FW) panels to ITER. A key part of these activities is the manufacturing development, the fabrication and the factory acceptance tests of a reduced scale FW prototype (Semi-Prototype (SP)) of the NHF design. The SP has a dimension of 221 mm × 665 mm, corresponding to about 1/6 of a full-scale panel, with six full-scale “fingers” and bearing a total of 84 beryllium tiles. It has been manufactured by the AREVA Company in France. The manufacturing process has made extensive use of Hot Isostatic Pressing, which was developed over more than a decade during the ITER Engineering Design Activity phase. The main manufacturing steps for the Semi-Prototype are recalled, with a summary of the lessons learned and the implications with regard to the design and manufacturing of the full-scale prototype and of the series fabrication of the EU-DA share of the ITER first wall (215 NHF panels). The fabricated SP is then tested under High Heat Flux (HHF) in the dedicated test facility of JUDITH-II in Forschungszentrum Jülich, Germany. The objective of the HHF testing is the demonstration of achieving the requested performance under thermal fatigue. The test protocol and facility qualification are presented and the behaviour of the fingers under the 7500 cycles at 2 MW/m{sup 2} is described in detail.

  15. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  16. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    Science.gov (United States)

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is

  17. Factors associated with malaria microscopy diagnostic performance following a pilot quality-assurance programme in health facilities in malaria low-transmission areas of Kenya, 2014.

    Science.gov (United States)

    Odhiambo, Fredrick; Buff, Ann M; Moranga, Collins; Moseti, Caroline M; Wesongah, Jesca Okwara; Lowther, Sara A; Arvelo, Wences; Galgalo, Tura; Achia, Thomas O; Roka, Zeinab G; Boru, Waqo; Chepkurui, Lily; Ogutu, Bernhards; Wanja, Elizabeth

    2017-09-13

    Malaria accounts for ~21% of outpatient visits annually in Kenya; prompt and accurate malaria diagnosis is critical to ensure proper treatment. In 2013, formal malaria microscopy refresher training for microscopists and a pilot quality-assurance (QA) programme for malaria diagnostics were independently implemented to improve malaria microscopy diagnosis in malaria low-transmission areas of Kenya. A study was conducted to identify factors associated with malaria microscopy performance in the same areas. From March to April 2014, a cross-sectional survey was conducted in 42 public health facilities; 21 were QA-pilot facilities. In each facility, 18 malaria thick blood slides archived during January-February 2014 were selected by simple random sampling. Each malaria slide was re-examined by two expert microscopists masked to health-facility results. Expert results were used as the reference for microscopy performance measures. Logistic regression with specific random effects modelling was performed to identify factors associated with accurate malaria microscopy diagnosis. Of 756 malaria slides collected, 204 (27%) were read as positive by health-facility microscopists and 103 (14%) as positive by experts. Overall, 93% of slide results from QA-pilot facilities were concordant with expert reference compared to 77% in non-QA pilot facilities (p malaria diagnosis. Microscopists who had recently completed refresher training and worked in a QA-pilot facility performed the best overall. The QA programme and formal microscopy refresher training should be systematically implemented together to improve parasitological diagnosis of malaria by microscopy in Kenya.

  18. Characterization of exposure to silver nanoparticles in a manufacturing facility

    Science.gov (United States)

    Park, Junsu; Kwak, Byoung Kyu; Bae, Eunjoo; Lee, Jeongjin; Kim, Younghun; Choi, Kyunghee; Yi, Jongheop

    2009-10-01

    An assessment of the extent of exposure to nanomaterials in the workplace will be helpful in improving the occupational safety of workers. It is essential that the exposure data in the workplace are concerned with risk management to evaluate and reduce worker exposure. In a manufacturing facility dealing with nanomaterials, some exposure data for gas-phase reactions are available, but much less information is available regarding liquid-phase reactions. Although the potential for inhaling nanomaterials in a liquid-phase process is less than that for gas-phase, the risks of exposure during wet-chemistry processes are not negligible. In this study, we monitored and analyzed the exposure characteristics of silver nanoparticles during a liquid-phase process in a commercial production facility. Based on the measured exposure data, the source of Ag nanoparticles emitted during the production processes was indentified and a mechanism for the growth of Ag nanoparticle released is proposed. The data reported in this study could be used to establish occupational safety guidelines in the nanotechnology workplace, especially in a liquid-phase production facility.

  19. Development and manufacture of a Nb3Sn superconductor for the high-field test facility

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Cornish, D.N.; Spencer, C.R.; Gregory, E.; Adam, E.

    1981-01-01

    The High-Field Test Facility (HFTF) project has two primary goals. The first is to establish manufacturing capability for a Nb 3 Sn conductor suitable for use in a mirror fusion coil. The second is to provide a test facility for evaluating other fusion conductor designs at high fields. This paper describes some of the problems encountered and the solutions devised in working toward the first goal. Construction of the test facility coils will be described in a subsequent paper

  20. 100-OL-1 Operable Unit Pilot Study: XRF Evaluation of Select Pre-Hanford Orchards

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Fritz, Brad G.; Pulsipher, Brent A.; Gorton, Alicia M.; Bisping, Lynn E.; Brandenberger, Jill M.; Pino, Christian; Martinez, Dominique M.; Rana, Komal; Wellman, Dawn M.

    2014-11-20

    Prior to the acquisition of land by the U.S. Department of War in February 1943 and the creation of the Hanford Site, the land along the Columbia River was home to over 1000 people. Farming and orchard operations by both homesteaders and commercial organizations were prevalent. Orchard activities and the associated application of lead arsenate pesticide ceased in 1943, when residents were moved from the Hanford Site at the beginning of the Manhattan Project. Today, the residues from historical application of lead arsenate pesticide persist in some locations on the Hanford Site. In 2012, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology established the 100-OL-1 Operable Unit (OU) through the Hanford Federal Facility Agreement and Consent Order, known as the Tri-Party Agreement. The pre-Hanford orchard lands identified as the 100-OL-1 OU are located south of the Columbia River and east of the present-day Vernita Bridge, and extend southeast to the former Hanford townsite. The discontinuous orchard lands within 100-OL-1 OU are approximately 20 km2 (5000 ac). A pilot study was conducted to support the approval of the remedial investigation/feasibility study work plan to evaluate the 100-OL-1 OU. This pilot study evaluated the use of a field portable X-ray fluorescence (XRF) analyzer for evaluating lead and arsenic concentrations on the soil surface as an indicator of lead arsenate pesticide residues in the OU. The objectives of the pilot study included evaluating a field portable XRF analyzer as the analytical method for decision making, estimating the nature and extent of lead and arsenic in surface soils in four decision units, evaluating the results for the purpose of optimizing the sampling approach implemented in the remedial investigation, and collecting information to improve the cost estimate and planning the cultural resources review for sampling activities in the remedial investigation. Based on

  1. `Climate wise` program at the Cosmair, Inc. Clark Manufacturing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kraly, K.

    1997-12-31

    Viewgraphs from the conference presentation are reproduced in this paper, which outlines energy efficiency improvements and emissions reductions at a hair care products manufacturing facility. Program management focuses on employee involvement in internal audits, utility tracking, public relations, and preventative maintenance. Energy savings, cost savings, and emission reductions are presented for 1996 and projected to the year 2000. Other program aspects outlined include a summary of utility costs; solid waste; chilled water system modifications; lighting modifications; boiler upgrades; and heating, ventilating, and air conditioning improvements.

  2. Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    Full Text Available Abstract The aim of this work is to follow the structural variations of polyaniline (PAni obtained by chemical oxidation on a pre-pilot scale, with different reaction times. Synthesis of PAni is well known, but when it is carried out on a pre-pilot scale, several factors can lead to structural changes and understanding these changes is important to improve controls on the synthesis process. The polymers formed were characterized by spectroscopic techniques (Raman spectroscopy, Fourier Transform Infrared - FTIR and UV-Visible. Degree of oxidation and yield were calculated for each reaction time. The analysis by FTIR, the calculated degree of oxidation and the yield showed significant changes in polymer structure at reaction times of 65 and 80 min. This result was attributed to the excessive oxidation of PAni, with the breaking of its polymer chain. The changes observed in the structure of PAni gave subsidies to the optimization of the process of obtaining polyaniline by chemical synthesis.

  3. Pre-Project planning of Capital Facilities at NASA

    OpenAIRE

    Barrow, Benjamin John

    1999-01-01

    This thesis details the development of a NASA specific Project Definition Rating Index (PDRI) tool. This tool is to be used as a checklist for determining the necessary steps to follow in defining project scope and as a means to monitor progress and assess scope definition completeness at various stages during the NASA Pre-Project Planning process. This thesis also describes and identifies specific points in the NASA Capital Facility Programming Cycle for the performance of PDRI assessments ...

  4. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    International Nuclear Information System (INIS)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices

  6. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  7. Manufacturing cost study on the ion sources for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    A study of the cost of manufacturing 48 ion sources for the Mirror Fusion Test Facility is described. The estimate is built up from individual part costs and assembly operation times for the 80 kV prototype source constructed by LLL and described by LLL drawings furnished during December 1978. Recommendations for cost reduction are made

  8. Nonradioactive demonstration of the Alpha D and D Pilot Facility

    International Nuclear Information System (INIS)

    Wobser, J.K.

    1983-01-01

    The Alpha-Contained Decontamination and Disassembly (AD and D) pilot facility was designed to demonstrate the process flowsheet under conditions typical to those expected in a production facility. To achieve this, nonradioactive waste items similar to those in retrievable storage at the Savannah River Plant burial ground (e.g. gloveboxes), were chemically sprayed and size reduced. During process runs, parameters such as feed rate, oxide removal, etching rate, and secondary waste generation were determined. The exhaust system was monitored during operation to ensure that exhaust from the facility was sufficiently filtered before release to the atmosphere. The strategy for decontamination techniques required development during the nonradioactive testing period. Under investigation during process runs were both once-through and recirculating washes, and their correlation to oxide removal and etching rates on the stainless steel feed items. Wash products of the decontamination process were analyzed for concentration of Ni, Cr, Fe, Mn, and Si, major components of stainless steel. Size reduction techniques were also developed during the nonradioactive testing period. An array of conventional power and pneumatic tools were tested and evaluated. Plasma arc torch operating parameters; standoff distance, ampere setting, and cutting angle were determined

  9. Testing of high heat flux components manufactured by ENEA for ITER divertor

    International Nuclear Information System (INIS)

    Visca, Eliseo; Escourbiac, F.; Libera, S.; Mancini, A.; Mazzone, G.; Merola, M.; Pizzuto, A.

    2009-01-01

    ENEA is involved in the International Thermonuclear Experimental Reactor (ITER) R and D activities and in particular in the manufacturing of high heat flux plasma-facing components, such as the divertor targets. During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and HIPping. A new manufacturing process that combines two main techniques PBC (Pre-Brazed Casting) and the HRP (Hot Radial Pressing) has been set up and widely tested. A full monoblock medium scale vertical target, having a straight CFC armoured part and a curved W armoured part, was manufactured using this process. The ultrasonic method was used for the non-destructive examinations performed during the manufacturing of the component, from the monoblock preparation up to the final mock-up assembling. The component was also examined by thermography on SATIR facility (CEA, France), afterwards it was thermal fatigue tested at FE200 (200 kW electron beam facility, CEA/AREVA France). The successful results of the thermal fatigue testing performed according the ITER requirements (10 MW/m 2 , 3000 cycles of 10 s on both CFC and W part, then 20/15 MW/m 2 , 2000 cycles of 10 s on CFC/W part, respectively) have confirmed that the developed process can be considerate a candidate for the manufacturing of monoblock divertor components. Furthermore, a 35-MW/m 2 Critical Heat Flux was measured at relevant thermal-hydraulics conditions at the end of the testing campaign. This paper reports the manufacturing route, the thermal fatigue testing results, the pre and post non-destructive examination and the destructive examination performed on the ITER vertical target medium scale mock-up. These activities were performed in the frame of EFDA contracts (04-1218 with CEA, 93-851 JN with AREVA and 03-1054 with ENEA).

  10. Study on Safety Assessment for TINT- Pre disposal Radioactive Waste Management Facilities by the Application of SAFRAN Software

    International Nuclear Information System (INIS)

    Ya-anant, Nanthavan

    2011-06-01

    Full text: The Radioactive Waste Management Center, Thailand Institute of Nuclear Technology (TINT) provides a centralized radioactive waste management (RWM) service in the country. The pre disposal RWM facilities are composed of low and intermediate level waste treatment and storage facilities. The benefits of this study are (1) to improve the safety of pre disposal RWM facilities (2) to experience with the SAFRAN software tool for the safety assessment of pre disposal RWM facilities, which has been developed following to the methodology from International Atomic Energy Agency (IAEA). The work was performed on collecting all waste management data, the diagram of facilities, buildings, location, procedure, waste classification, waste form, radiological/chemical/physical properties including scenarios in normal and accidental conditions. The result of normal condition is that the effective dose per year of worker and public is less than 20 mSv and 1 mSv respectively. So the TINT-RWM operation is safe, as referred to the regulation

  11. Use of a Data-Linked Weather Information Display and Effects on Pilot Navigation Decision Making in a Piloted Simulation Study

    Science.gov (United States)

    Yuchnovicz, Daniel E.; Novacek, Paul F.; Burgess, Malcolm A.; Heck, Michael L.; Stokes, Alan F.

    2001-01-01

    This study provides recommendations to the FAA and to prospective manufacturers based on an exploration of the effects of data link weather displays upon pilot decision performance. An experiment was conducted with twenty-four current instrument rated pilots who were divided into two equal groups and presented with a challenging but realistic flight scenario involving weather containing significant embedded convective activity. All flights were flown in a full-mission simulation facility within instrument meteorological conditions. The inflight weather display depicted NexRad images, graphical METARs and textual METARs. The objective was to investigate the potential for misuse of a weather display, and incorporate recommendations for the design and use of these displays. The primary conclusion of the study found that the inflight weather display did not improve weather avoidance decision making. Some of the reasons to support this finding include: the pilot's inability to easily perceive their proximity to the storms, increased workload and difficulty in deciphering METAR textual data. The compelling nature of a graphical weather display caused many pilots to reduce their reliance on corroborating weather information from other sources. Minor changes to the weather display could improve the ability of a pilot to make better decisions on hazard avoidance.

  12. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  13. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    Science.gov (United States)

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (Pfacilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  14. The proposed irradiation facility and applications

    International Nuclear Information System (INIS)

    Singson, C.C.; Navarro, Q.O.

    As early as 1972, the Philippine Atomic Energy Commission proposed the setting up of a radiation facility for the sterilization of medical products. A result of a market survey with the assistance of an IAEA expert was conducted to determine the market potential for such venture. With the Food Terminal, Inc. (FTI) a government agro-industrial fair which explored the economic benefits of project, encouraging results have been obtained with finances from FAO and IAEA. The proposed pilot plant will serve as a multi purpose facility for the sterilization of medical and laboratory products, irradiation of food and agricultural produce and manufacture of wood plastic compositions for the textile and furniture industries. With the benefits derived from the said project, it is hoped that its early installation be pushed through. (author)

  15. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  16. Design and construction of a pre-injector for the Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Sadeghipanah

    2015-09-01

    Full Text Available Every synchrotron accelerator requires a pre-injector for primary injection of the electrons into the booster ring. The Iranian Light Source Facility (ILSF pre-injector is a 150 MeV S-band linear accelerator with a thermionic cathode RF gun. The design of the pre-injector lattice and its beam dynamics calculation results together with the design of RF gun, alpha magnet, quadrupole magnets and linear accelerator structures are described in this article. The measurement results of the RF gun prototype fabricated in Iran demonstrate a dimension error less than 20 μm and a surface roughness of less than 0.8 μm

  17. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  18. Specifying and manufacturing piping for the fast flux test facility

    International Nuclear Information System (INIS)

    Moen, R.A.; O'Keefe, D.P.; Irvin, J.E.; Tobin, J.C.

    1974-01-01

    Specification of materials for liquid metal reactor coolant piping, at service temperatures up to 1200 0 F, involves a number of considerations unique to these systems. The mechanical property/design allowable stress considerations which led to the selection and specification of specific materials for the Fast Flux Test Facility piping are discussed. Additional considerations are described indicating allowances made for material changes anticipated in service. These measures primarily involved raising the minimum carbon content to a value that would insure the strength of the material always remains above that assumed in the initial design, although other considerations are discussed. The processes by which this piping was manufactured, its resulting characteristics and methods of subsequent handling/assembly are briefly discussed. (U.S.)

  19. Capacity optimization and scheduling of a multiproduct manufacturing facility for biotech products.

    Science.gov (United States)

    Shaik, Munawar A; Dhakre, Ankita; Rathore, Anurag S; Patil, Nitin

    2014-01-01

    A general mathematical framework has been proposed in this work for scheduling of a multiproduct and multipurpose facility involving manufacturing of biotech products. The specific problem involves several batch operations occurring in multiple units involving fixed processing time, unlimited storage policy, transition times, shared units, and deterministic and fixed data in the given time horizon. The different batch operations are modeled using state-task network representation. Two different mathematical formulations are proposed based on discrete- and continuous-time representations leading to a mixed-integer linear programming model which is solved using General Algebraic Modeling System software. A case study based on a real facility is presented to illustrate the potential and applicability of the proposed models. The continuous-time model required less number of events and has a smaller problem size compared to the discrete-time model. © 2014 American Institute of Chemical Engineers.

  20. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review.

    Science.gov (United States)

    Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D

    2011-09-15

    The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials

  1. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    Science.gov (United States)

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  2. Resident challenges with daily life in Chinese long-term care facilities: A qualitative pilot study.

    Science.gov (United States)

    Song, Yuting; Scales, Kezia; Anderson, Ruth A; Wu, Bei; Corazzini, Kirsten N

    As traditional family-based care in China declines, the demand for residential care increases. Knowledge of residents' experiences with long-term care (LTC) facilities is essential to improving quality of care. This pilot study aimed to describe residents' experiences in LTC facilities, particularly as it related to physical function. Semi-structured open-ended interviews were conducted in two facilities with residents stratified by three functional levels (n = 5). Directed content analysis was guided by the Adaptive Leadership Framework. A two-cycle coding approach was used with a first-cycle descriptive coding and second-cycle dramaturgical coding. Interviews provided examples of challenges faced by residents in meeting their daily care needs. Five themes emerged: staff care, care from family members, physical environment, other residents in the facility, and personal strategies. Findings demonstrate the significance of organizational context for care quality and reveal foci for future research. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Progress report on the design of a Low-Level Waste Pilot Facility at ORNL

    International Nuclear Information System (INIS)

    Hensley, L.C.; Turner, V.L.; Pruitt, A.S.

    1980-01-01

    All low-level radioactive solid wastes, excluding TRU wastes, are disposed of by shallow land burial at the Oak Ridge National Laboratory. Contaminated liquids and sludges are hydrofractures. The TRU wastes are stored in a retrievable fashion in concrete storage facilities. Currently, the capacity for low-level radioactive waste burial at the Oak Ridge National Laboratory is adequate for another six years of service at the current solids disposal rate which ranges between 80,000 and 100,000 cu ft per year. Decontamination and decommissioning of a number of ORNL facilities will be a significant activity in the next few years. Quantities of radioactive materials to be stored or disposed of as a result of these activities will be large; therefore, the technology to dispose of large quantities of low-level radioactive wastes must be demonstrated. The UCC-ND Engineering Division, in concert with divisions of the Oak Ridge National Laboratory, has been requested to prepare a conceptual design for a facility to both dispose of the currently produced low-level radioactive waste and also to provide a test bed for demonstration of other processes which may be used in future low-level radioactive wastes disposal facilities. This facility is designated as the Low-Level Waste Pilot Facility (LLWPF). This paper describes the status of the conceptual design of a facility for disposal of the subject radioactive waste

  4. Development of a pilot size of electrochemical flushing equipment for radioactive soil and concrete

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Moon, Jei Kwon; Choi, Wang Kyu; Yang, Byeong Il; Shon, Jong Sik; Hong, Dae Seok

    2010-01-01

    A pilot size of electrochemical flushing equipment will be manufactured suitable to the contamination characteristics of radioactive soil and concrete stored in KAERI radioactive waste storage. An optimal reagent and an optimal decontamination conditions should be decided through many experiments. - Contamination characterises analysis of TRIGA radioactive soil and concrete - Manufacture of pilot-scale electrochemical flushing equipment - Manufacture and improvement of suitable electrochemical flushing equipment for contamination characteristics in pilot size - Decontamination experiments of electrochemical flushing equipment in a pilot scale

  5. Decommissioning of uranium pilot plants at IPEN-CNEN/SP: Facilities dismantling, decontamination and reuse as new laboratories for strategic programs

    International Nuclear Information System (INIS)

    Oliveira Lainetti, P.; Freitas, A.; Cotrim, M.; Pires, M.

    2014-01-01

    Radical changes of the Brazilian nuclear policy, in the beginning of 1990s, determined the interruption of most nuclear fuel cycle activities and the facilities shutdown at IPEN. Those facilities had already played their roles of technological development and personnel's training, with transfer of the technology for institutions entrusted of the ''scale up'' of the units. Most of the pilot plants interrupted the activities more than ten years ago, due to the lack of resources for the continuity of the research. The appropriate facilities maintenance had been also harmed by the lack of resources, with evident signs of deterioration in structures and equipment. The existence of those facilities also implicated in the need of constant surveillance, representing additional obligations, costs and problems. It should be emphasized that one of the most concerning aspects, with relationship to the future of the facilities and the postponement of the dismantling, was the loss of the experience accumulated by the personnel that set up and operated the referred units. Besides the mentioned aspects, other reasons to promote the dismantling of the IPEN´s Nuclear Fuel Cycle Pilot Plants elapsed mainly from the need of physical space for new activities, since the R in the nuclear fuel cycle area were interrupted. In the last decade IPEN has changed its “nuclear profile” to a “comprehensive and multidisciplinary profile”. During this period, IPEN has been restructured in 13 Research Centers. With the end of most nuclear fuel cycle activities, the former facilities were distributed in four different centers: Environmental and Chemical Technology Center; Fuel Cell Center; Materials Science and Engineering Center; Nuclear Fuel Center. Each center has adopted a different strategy and priority to face the R problem and to reintegrate the areas. The resources available depend on the specific program developed in each area (resources available from other sources, not only CNEN

  6. Measuring Athletic Facility Managers’ Knowledge Of Access And The Americans With Disabilities Act: A Pilot Study

    OpenAIRE

    Joshua R. Pate; Steven N. Waller

    2012-01-01

    The purpose of this exploratory research was measuring facility managers’ knowledge of the Americans with Disabilities Act (ADA), and it may assist in decreasing the gap in knowledge between facility managers and the needs of people with physical disabilities. An existing survey examining ADA knowledge was slightly modified and used for this study. Four athletic facility managers from universities in a large Bowl Championship Series conference participated in the study. Results provided a pre...

  7. Implementation of a configurable laboratory information management system for use in cellular process development and manufacturing.

    Science.gov (United States)

    Russom, Diana; Ahmed, Amira; Gonzalez, Nancy; Alvarnas, Joseph; DiGiusto, David

    2012-01-01

    Regulatory requirements for the manufacturing of cell products for clinical investigation require a significant level of record-keeping, starting early in process development and continuing through to the execution and requisite follow-up of patients on clinical trials. Central to record-keeping is the management of documentation related to patients, raw materials, processes, assays and facilities. To support these requirements, we evaluated several laboratory information management systems (LIMS), including their cost, flexibility, regulatory compliance, ongoing programming requirements and ability to integrate with laboratory equipment. After selecting a system, we performed a pilot study to develop a user-configurable LIMS for our laboratory in support of our pre-clinical and clinical cell-production activities. We report here on the design and utilization of this system to manage accrual with a healthy blood-donor protocol, as well as manufacturing operations for the production of a master cell bank and several patient-specific stem cell products. The system was used successfully to manage blood donor eligibility, recruiting, appointments, billing and serology, and to provide annual accrual reports. Quality management reporting features of the system were used to capture, report and investigate process and equipment deviations that occurred during the production of a master cell bank and patient products. Overall the system has served to support the compliance requirements of process development and phase I/II clinical trial activities for our laboratory and can be easily modified to meet the needs of similar laboratories.

  8. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    Haijtink, B.

    1992-01-01

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  9. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  10. Properties and Performance of SOFCs Produced on a Pre-Pilot Plant Scale

    DEFF Research Database (Denmark)

    Hagen, Anke; Menon, Mohan; Barfod, Rasmus

    2006-01-01

    specific cell resistance at 850 °C was found to be 0.24 Ω cm2 with a standard deviation of 0.05 Ω cm2. The variation in performance between the cells can be largely attributed to variations in the cathode performance. Experimental evidence will be presented on full 4 × 4 cm2 cells, symmetric cells with two......In the present paper, anode supported solid oxide fuel cells (SOFCs), produced on a pre-pilot plant scale in ten batches of ∼100 cells, are characterised with respect to performance. The main purpose was to evaluate the reproducibility of the scaled-up process. Based on 20 tests, the average area...

  11. Comparison of MR and fluoroscopic mucous fistulography in the pre-operative evaluation of infants with anorectal malformation: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Jose C.G.; Lotz, Jan W.; Pitcher, Richard D. [Stellenbosch University, Division of Radiodiagnosis, Department of Medical Imaging and Clinical Oncology, Tygerberg Academic Hospital, Cape Town (South Africa); Sidler, Daniel [Stellenbosch University, Division of Pediatric Surgery, Department of Surgical Sciences, Tygerberg Academic Hospital, Cape Town (South Africa)

    2013-08-15

    Anorectal malformations are often associated with rectal pouch fistulas. Surgical correction requires accurate evaluation of the presence and position of such fistulas. Fluoroscopy is currently the chosen modality for the detection of fistulas. The role of MRI is unexplored. To compare the diagnostic accuracy of MR versus fluoroscopic fistulography in the pre-operative evaluation of infants with anorectal malformation. We conducted a pilot study of infants requiring defunctioning colostomy for initial management of anorectal malformation. Dynamic sagittal steady-state free-precession MRI of the pelvis was acquired during introduction of saline into the mucous fistulas. Findings were compared among MR fistulography, fluoroscopic fistulography and intraoperative inspection. Eight children were included. Median age at fistulography was 15 weeks, inter-quartile range 13-20 weeks; all were boys. There was full agreement among MR fistulography, fluoroscopic fistulography and surgical findings. The pilot data suggest that MR fistulography is promising in the pre-operative evaluation of children with anorectal malformation. (orig.)

  12. Early Maladaptive Schemas in a Sample of Airline Pilots seeking Residential Substance Use Treatment: An Initial Investigation.

    Science.gov (United States)

    Shorey, Ryan C; Brasfield, Hope; Anderson, Scott; Stuart, Gregory L

    2014-01-01

    Recent research has begun to examine the early maladaptive schemas of substance abusers, as it is believed that targeting these core beliefs in treatment may result in improved substance use outcomes. One special population that has received scant attention in the research literature, despite high levels of substance use, is airline pilots. The current study examined the early maladaptive schemas of a sample of airline pilots ( n = 64) who were seeking residential treatment for alcohol dependence and whether they differed in early maladaptive schemas from non-pilot substance abusers who were also seeking residential treatment for alcohol dependence ( n = 45). Pre-existing medical records from patients of a residential substance abuse treatment facility were reviewed for the current study. Of the 18 early maladaptive schemas, results demonstrated that pilots scored higher than non-pilots on the early maladaptive schema of unrelenting standards (high internalized standards of behavior), whereas non-pilots scored higher on insufficient self-control (low frustration tolerance and self-control). Early maladaptive schemas may be a relevant treatment target for substance abuse treatment seeking pilots and non-pilots.

  13. A product-process approach for development of the manufacturing footprint

    DEFF Research Database (Denmark)

    Farooq, Sami; Yang, Cheng; Johansen, John

    2009-01-01

    to ever changing global business environment there are certain other external factors that act as drivers for the manufacturing facility development process and therefore should be given considerable importance as they play a major role in defining the future footprint of a manufacturing organisation....... elaborating the development and establishment of various manufacturing facilities of a Danish pump manufacturer is then described. The discussion from the case leads to the conclusion that developing new manufacturing facilities can be explained using existing theories of manufacturing strategy. However due...

  14. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Thomas [NUKEM Technologies GmbH, Alzenau (Germany); NUKEM Technologies GmbH, Slavutich (Ukraine)

    2009-07-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  15. Industrial complex for solid radwaste management (ICSRM) at Chernobyl nuclear power plant pre-commissioning of the facilities

    International Nuclear Information System (INIS)

    Pietsch, Thomas

    2009-01-01

    NUKEM was awarded to build the industrial complex for solid radwaste management (ICSRM) at the NPP Chernobyl. ICSRM consists of four facilities: SLWS (solid low waste storage), solid waste retrieval facility, solid waste processing plant, repository for the disposal of short-lived waste. The contribution describes the approach for testing and pre-commissioning the following systems: sorting, compaction, incineration, transport systems, monitoring, tracking and retrieval. Start-up of the facilities is planned for 2009.

  16. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    International Nuclear Information System (INIS)

    May, T.H.; Gehner, P.D.; Stegen, Gary; Hymas, Jay; Pajunen, A.L.; Sexton, Rich; Ramsey, Amy

    2009-01-01

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  17. Standard protocol for conducting pre-operational environmental surveillance around nuclear facilities

    International Nuclear Information System (INIS)

    Hegde, A.G.; Verma, P.C.; Rajan, M.P.

    2009-02-01

    This document presents the standard procedures for evaluation of site specific environmental transfer factors around NPP sites. The scope of this document is to provide standard protocol to be followed for conducting pre-operational environmental surveillance around nuclear facilities. Such surveillances have been proposed to be carried out by university professionals under DAE-BRNS projects. This document contains a common methodology in terms of sampling, processing, measurements and analysis of elemental/radionuclides, while keeping the site specific requirements also in place. (author)

  18. Standard protocol for conducting pre-operational environmental surveillance around nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, A G; Verma, P C; Rajan, M P [Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai (India)

    2009-02-15

    This document presents the standard procedures for evaluation of site specific environmental transfer factors around NPP sites. The scope of this document is to provide standard protocol to be followed for conducting pre-operational environmental surveillance around nuclear facilities. Such surveillances have been proposed to be carried out by university professionals under DAE-BRNS projects. This document contains a common methodology in terms of sampling, processing, measurements and analysis of elemental/radionuclides, while keeping the site specific requirements also in place. (author)

  19. The need for powder characterisation in the additive manufacturing industry and the establishment of a national facility

    Directory of Open Access Journals (Sweden)

    Benson, Jeffrey Malcolm

    2015-08-01

    Full Text Available The characteristics of powders used in additive manufacturing can have significant effects on process efficiencies and the quality of the final products. Powder sizes and morphologies need to be optimised for a particular process, and this requires the facilities to perform these measurements as well as provide a quality check on powder batches that are purchased. The establishment of a national powder characterisation facility has been identified by the Titanium Centre of Competence (a DST-funded initiative as a critical form of support for the development of a South African titanium metal industry. This paper discusses what effect the different powder characteristics can have on the selective laser sintering processes, as well as the state of development of this national facility.

  20. [A pilot study on pain assessment among elderly with severe dementiain residential aged care facilities of Reggio Emilia district].

    Science.gov (United States)

    Bargellini, Annalisa; Mastrangelo, Stefano; Cervi, Monica; Bagnasco, Michele; Reghizzi, Jlenia; Coriani, Sandra

    2017-01-01

    . A pilot study on pain assessment among elderly with severe dementia in residential aged care facilities of Reggio Emilia district. Despite the availability of pain assessment tools and best practice recommendations for the assessment and management of pain in people with severe dementia, pain in residential aged care facilities is still undetected or misinterpreted. To assess pain prevalence and analgesic load medication in people with severe cognitive impairment admitted to residential aged care facilities of Reggio Emilia (Italy) province. A pilot cross-sectional study was conducted on 84 elderly patients affected by severe dementia and resident in aged care facilities. Pain was assessed with the PAINAD observational scale, both at rest and during routine procedures: positioning in bed, from bed to standing position, from bed to chair or during the medication of a pressure sore (under challenge). 33.4% of patients had pain at rest, mainly mild, and 86.9 % under challenge. During routine interventions, in 64 patients (76.2%) pain increased compared to at rest condition (for 39, 2/3, moderate-severe); although 46 of them were prescribed as-required analgesic medication, none had received the drug. Also patients with analgesics on regular basis experienced more pain during routine procedures. Many patients experienced pain during routine procedures. The regular use of pain assessment tools and adequate training of all healthcare professionals are essential requirements for an effective pain control.

  1. High heat flux facility GLADIS

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; McNeely, P.

    2007-01-01

    The new ion beam facility GLADIS started the operation at IPP Garching. The facility is equipped with two individual 1.1 MW power ion sources for testing actively cooled plasma facing components under high heat fluxes. Each ion source generates heat loads between 3 and 55 MW/m 2 with a beam diameter of 70 mm at the target position. These parameters allow effective testing from probes to large components up to 2 m length. The high heat flux allows the target to be installed inclined to the beam and thus increases the heated surface length up to 200 mm for a heat flux of 15 MW/m 2 in the standard operating regime. Thus the facility has the potential capability for testing of full scale ITER divertor targets. Heat load tests on the WENDELSTEIN 7-X pre-series divertor targets have been successfully started. These tests will validate the design and manufacturing for the production of 950 elements

  2. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  3. Dissolution off-gases at the marcoule pilot facility: Iodine trapping and off-gas characterization unit

    International Nuclear Information System (INIS)

    Pouyat, D.; Vignau, B.; Roux, J.P.

    1993-01-01

    The Marcoule Pilot Reprocessing Facility (APM) reprocesses spent fuel from light water reactors and fast breeder reactors. A batch dissolution process is used with an annual throughput capacity of 5 metric tons. The off-gas treatment unit is described together with its characterization laboratory in order to highlight the functions and potential of the facilities. The objectives are consistent with the Marcoule site policy regarding diminished iodine release and investigation of the off-gas treatment process. The equipment used to meet these objectives is described from a functional standpoint. The facility implements measurement techniques to allow continuous quantitative measurements of nitrogen oxides, oxygen, iodine and krypton, as well as continuous monitoring of the demister inlet flow by γ spectrometry. Sorbents used for iodine trapping may be tested over a wide range of operating conditions (temperature, flow rate, iodine concentration) with representative dissolution off-gases. An X-ray and γ counting system is used to assess the activity of the adsorbed radionuclides, notably 129 I

  4. Validation of a pre-existing safety climate scale for the Turkish furniture manufacturing industry.

    Science.gov (United States)

    Akyuz, Kadri Cemil; Yildirim, Ibrahim; Gungor, Celal

    2018-03-22

    Understanding the safety climate level is essential to implement a proactive safety program. The objective of this study is to explore the possibility of having a safety climate scale for the Turkish furniture manufacturing industry since there has not been any scale available. The questionnaire recruited 783 subjects. Confirmatory factor analysis (CFA) tested a pre-existing safety scale's fit to the industry. The CFA indicated that the structures of the model present a non-satisfactory fit with the data (χ 2  = 2033.4, df = 314, p ≤ 0.001; root mean square error of approximation = 0.08, normed fit index = 0.65, Tucker-Lewis index = 0.65, comparative fit index = 0.69, parsimony goodness-of-fit index = 0.68). The results suggest that a new scale should be developed and validated to measure the safety climate level in the Turkish furniture manufacturing industry. Due to the hierarchical structure of organizations, future studies should consider a multilevel approach in their exploratory factor analyses while developing a new scale.

  5. Intelligent manufacturing through participation : a participative simulation environment for integral manufacturing enterprise renewal

    NARCIS (Netherlands)

    Eijnatten, F.M. van

    2002-01-01

    This book deals with a 'Participative Simulation environment for Intelligent Manufacturing' (PSIM). PSIM is a software environment for use in assembly operations and it is developed and pilot-demonstrated in five companies: Volvo (Sweden), Finland Post, Fiat (Italy), Yamatake (Japan), Ford (USA).

  6. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    Science.gov (United States)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  7. High heat flux tests of the WENDELSTEIN 7-X pre-series target elements

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; Plankensteiner, A.; Schedler, B.

    2007-01-01

    The high heat flux (HHF) testing of WENDELSTEIN 7-X pre-series target elements is an indispensable step in the qualification of the manufacturing process. A set of 20 full scale pre-series elements was manufactured by PLANSEE SE to validate the materials and manufacturing technologies prior to the start of the series production. The HHF tests were performed in the ion beam test facility GLADIS. All actively water-cooled elements were tested for about 100 cycles at 10 MW/m 2 (10-15 s pulse duration). Several elements were loaded with even higher cycle numbers (up to 1000) and heat loads up to 24 MW/m 2 . Hot spots were, observed at the edges of several tiles during the HHF tests indicating local bonding problems of the CFC. The thermo-mechanical behaviour under HHF loading has been evaluated and compared to the FEM predictions. The measured temperatures and strains confirm the chosen FEM approach. This allows a component optimisation to achieve a successful series production of the W7-X divertor target elements

  8. Wii-Fit for Improving Gait and Balance in an Assisted Living Facility: A Pilot Study

    Science.gov (United States)

    Padala, Kalpana P.; Padala, Prasad R.; Malloy, Timothy R.; Geske, Jenenne A.; Dubbert, Patricia M.; Dennis, Richard A.; Garner, Kimberly K.; Bopp, Melinda M.; Burke, William J.; Sullivan, Dennis H.

    2012-01-01

    Objectives. To determine the effects on balance and gait of a Wii-Fit program compared to a walking program in subjects with mild Alzheimer's dementia (AD). Methods. A prospective randomized (1 : 1) pilot study with two intervention arms was conducted in an assisted living facility with twenty-two mild AD subjects. In both groups the intervention occurred under supervision for 30 minutes daily, five times a week for eight weeks. Repeated measures ANOVA and paired t-tests were used to analyze changes. Results. Both groups showed improvement in Berg Balance Scale (BBS), Tinetti Test (TT) and Timed Up and Go (TUG) over 8 weeks. However, there was no statistically significant difference between the groups over time. Intragroup analysis in the Wii-Fit group showed significant improvement on BBS (P = 0.003), and TT (P = 0.013). The walking group showed a trend towards improvement on BBS (P = 0.06) and TUG (P = 0.07) and significant improvement in TT (P = 0.06). Conclusion. This pilot study demonstrates the safety and efficacy of Wii-Fit in an assisted living facility in subjects with mild AD. Use of Wii-Fit resulted in significant improvements in balance and gait comparable to those in the robust monitored walking program. These results need to be confirmed in a larger, methodologically sound study. PMID:22745909

  9. Wii-Fit for Improving Gait and Balance in an Assisted Living Facility: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kalpana P. Padala

    2012-01-01

    Full Text Available Objectives. To determine the effects on balance and gait of a Wii-Fit program compared to a walking program in subjects with mild Alzheimer’s dementia (AD. Methods. A prospective randomized (1 : 1 pilot study with two intervention arms was conducted in an assisted living facility with twenty-two mild AD subjects. In both groups the intervention occurred under supervision for 30 minutes daily, five times a week for eight weeks. Repeated measures ANOVA and paired t-tests were used to analyze changes. Results. Both groups showed improvement in Berg Balance Scale (BBS, Tinetti Test (TT and Timed Up and Go (TUG over 8 weeks. However, there was no statistically significant difference between the groups over time. Intragroup analysis in the Wii-Fit group showed significant improvement on BBS (P=0.003, and TT (P=0.013. The walking group showed a trend towards improvement on BBS (P=0.06 and TUG (P=0.07 and significant improvement in TT (P=0.006. Conclusion. This pilot study demonstrates the safety and efficacy of Wii-Fit in an assisted living facility in subjects with mild AD. Use of Wii-Fit resulted in significant improvements in balance and gait comparable to those in the robust monitored walking program. These results need to be confirmed in a larger, methodologically sound study.

  10. 76 FR 39127 - Manufacturer of Controlled Substances; Notice of Application

    Science.gov (United States)

    2011-07-05

    ... Administration (DEA) to be registered as a bulk manufacturer of Remifentanil (9739) the basic class of controlled substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the... primary manufacturing facility in West Deptford, New Jersey. The controlled substances manufactured in...

  11. Americium/Curium Vitrification Pilot Tests - Part II

    International Nuclear Information System (INIS)

    Marra, J.E.; Baich, M.A.; Fellinger, A.P.; Hardy, B.J.; Herman, D.T.; Jones, T.M.; Miller, C.B.; Miller, D.H.; Snyder, T. K.; Stone, M.E.

    1998-05-01

    Isotopes of americium (Am) and curium (Cm) were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. These highly radioactive and valuable isotopes have been stored in an SRS reprocessing facility for a number of years. Vitrification of this solution will allow the material to be more safely stored until it is transported to the DOE Oak Ridge Reservation for use in research and medical applications. A previous paper described operation results from the Am-Cm Melter 2A pilot system, a full-scale non-radioactive pilot facility. This paper presents the results from continued testing in the Pilot Facility and also describes efforts taken to look at alternative vitrification process operations and flowsheets designed to address the problems observed during melter 2A pilot testing

  12. A pilot study for the extraction and treatment of groundwater from a manufactured gas plant site. Final report

    International Nuclear Information System (INIS)

    1997-12-01

    This report describes a pilot study involving treatment of contaminated groundwater at a former manufactured gas plant site on the eastern seaboard of the US. The work was performed in order to provide the design basis for a full-scale groundwater extraction and treatment system at the site, as well as to develop a generic approach to selection of groundwater treatment sequences at other MGP sites. It included three main components: hydrogeologic investigations, bench-scale treatability studies, and pilot-scale treatability studies. Technologies evaluated in bench-scale work included gravity settling, filtration, and dissolved air flotation (DAF) for primary treatment of nonaqueous phase materials; biological degradation, air stripping, and carbon adsorption for secondary treatment of dissolved organics; and carbon adsorption as tertiary treatment of remaining dissolved contaminants. Pilot-scale studies focused on collecting system performance data fore three distinct levels of contamination. Two treatment trains were evaluated. One consisted of DAF, fluidized-bed biotreatment, and filtration plus carbon adsorption; the other used the same steps except to substitute air stripping for fluidized bed treatment. The final effluents produced by both treatment sequences were similar and demonstrated complete treatment of the groundwater. Besides detailing system design and performance for the treatability studies, the report includes an analysis of groundwater treatment applications to MGP sites in general, including a discussion of capital and operating costs

  13. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  14. Design of commercial dyeing wastewater treatment facility with e-beam (based on the results of pilot plant)

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Sung Myun; Kim, Jin-Kyu; Kim, Yuri; Yang, Mun Ho; Choi, J.S.; Ahn, S.J.; Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.

    2001-01-01

    A pilot plant for a large-scale test of dyeing facility wastewater (flow rate of 1,000m 3 per day from 80,000m 3 /day of total wastewater) was constructed and operated with the electron accelerator of 1MeV, 40kW. The accelerator was installed in February 1998 and the Tower Style Biological treatment facility (TSB) was also installed in October 1998. The wastewater is injected under the e-beam irradiation area through the nozzle type injector to obtain the adequate penetration depth. The speed of injection could be varied upon the dose and dose rate. Performance statistics are given

  15. 77 FR 5849 - Manufacturer of Controlled Substances; Notice of Registration

    Science.gov (United States)

    2012-02-06

    ... (DEA) to be registered as a bulk manufacturer of Remifentanil (9739), the basic class of controlled substance in schedule II. The company plans to utilize this facility to manufacture small quantities of the... manufacturing facility in West Deptford, New Jersey. The controlled substances manufactured in bulk at this...

  16. Analysis of thermal issues associated with the pre-amplifier modules in the National Ignition Facility

    International Nuclear Information System (INIS)

    Lam, K.L.

    1998-01-01

    The design of the National Ignition Facility (NIF) calls for a desired temperature field of 20.00 ± 0.28 C throughout the facility. This design requirement is needed to prevent degradation of the operating performance and net yield of the NIF by heat loads generated within the facility. In particular, the potential interference of waste heat from the lighting fixtures and equipment such as the electronics racks, and pre-amplifier modules (PAMs), and its impact on the operational performance of the laser beam transport tubes and optical alignment components must be evaluated. This report describes the thermal analyses associated with the PAMs. Evaluation of thermal issues for the other equipment is discussed elsewhere

  17. Progress Report on the ISCR Pilot Test Conducted at the Former CCC/USDA Grain Storage Facility in Montgomery City, Missouri, as of April 2013

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division. Applied Geoscience and Environmental Restoration Program

    2013-06-01

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) is conducting an environmental investigation at the former CCC/USDA grain storage facility on the county fairgrounds in Montgomery City, Missouri, to evaluate contamination associated with the former use of grain fumigants containing carbon tetrachloride at the site. The CCC/USDA studies have identified carbon tetrachloride in the soils (primarily unconsolidated glacial tills) at concentrations that exceed the U.S. Environmental Protection Agency (EPA) regional screening level (RSL) values for this compound in residential soils (610 μg/kg) but are below the corresponding RSL for industrial soils (3,000 μg/kg). Concentrations of carbon tetrachloride greater than the EPA maximum contaminant level (MCL; 5.0 μg/L) for this contaminant in drinking water were also identified in the shallow groundwater (Argonne 2012). On the basis of these findings, remedial actions are considered necessary to mitigate the present and potential future impacts of the contamination. In cooperation with the Missouri Department of Natural Resources (MDNR), the CCC/USDA has initiated a field-scale pilot test to evaluate an in situ technology for treatment of the carbon tetrachloride contamination. In this approach, a chemical amendment consisting primarily of slow-release organic matter and zero-valent iron is employed to induce oxygen-depleted, chemically reducing conditions in the subsurface. These conditions foster the in situ chemical reduction (ISCR) of carbon tetrachloride and its degradation products (chloroform, methylene chloride, and chloromethane) via both inorganic and biologically mediated processes. The chemical amendment being used, EHC™, was developed by the Adventus Group, Freeport, Illinois, and is now manufactured and distributed by FMC Environmental Solutions, Philadelphia, Pennsylvania. With the approval of the MDNR (2012), the ISCR technology is being tested in two target areas

  18. Agile Web Pilot Program

    National Research Council Canada - National Science Library

    Lang, Mark

    1997-01-01

    ... in an increasingly competitive global marketplace. The pilot program allowed 18 small and medium sized enterprises to experiment with new agile business practices in competitive manufacturing environments by forming virtual organizations within...

  19. Paramedics' experiences of financial medicine practices in the pre-hospital environment. A pilot study

    Directory of Open Access Journals (Sweden)

    Craig Vincent-Lambert

    2016-10-01

    Objectives: This qualitative pilot study explored and described the experiences of South African Paramedics with regard to the practicing of financial medicine in the local pre-hospital emergency care environment. Method: A sample of South African Paramedics were interviewed either face-to-face or telephonically. The interviews were audio recorded and transcripts produced. Content analysis was conducted to explore, document and describe the participants' experiences with regard to financial medicine practices in the local pre-hospital environment. Results: It emerged that all of the participants had experienced a number of financial medicine practices and associated unethical conduct. Examples included Over-servicing, Selective Patient Treatment, Fraudulent Billing Practices, Eliciting of kickbacks, incentives or benefits and Deliberate Time Wasting. Conclusion: The results of this study are concerning as the actions of service providers described by the participants constitute gross violations of the ethical and professional guidelines for health care professionals. The authors recommend additional studies be conducted to further explore these findings and to establish the reasons for, and ways of, limiting financial medicine practices in the South African emergency care environment.

  20. Resource conversation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume II contains attachments for Module II and Module III. Attachments for Module II are: part A permit application; examples of acceptable documentation; Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program; inspection schedule and monitoring schedule; inspection log forms; personnel training course outlines; hazardous waste job position training requirements; contingency plan; closure plan; and procedures for establishing background for the underground units. One attachment, facility process information, is included for Module III. Remaining attachments for this module are in Volume III

  1. Potential criticality accident at the General Electric Nuclear Fuel and Component Manufacturing Facility, May 29, 1991

    International Nuclear Information System (INIS)

    1991-08-01

    At the General Electric Nuclear Fuel and Component Manufacturing facility, located near Wilmington, North Carolina, on May 28 and 29, 1991, approximately 150 kilograms of uranium were inadvertently transferred from safe process tanks to an unsafe tank located at the waste treatment facility, thus creating the potential for a localized criticality safety problem. The excess uranium was ultimately safely recovered when the tank contents were centrifuged to remove the uranium-bearing material. Subsequently, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to determine what happened, to identify probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents the team's findings and conclusions. 48 figs., 8 tabs

  2. Power electronic modules design and manufacture

    CERN Document Server

    Sheng, William W

    2004-01-01

    IntroductionSelection ProcedureMaterialsInsulating Substrate and MetallizationBase PlateBonding MaterialPower Interconnection and TerminalEncapsulantPlastic Case and Cover Manufacturing of Power IGBT ModulesManufacturing Process Process Control/Long-Term ReliabilityManufacturing FacilitiesManufacturing Flow Charts DesignThermal ManagementCircuit PartitioningDesign Guidelines and ConsiderationsThermal Results of Different Samples

  3. Manufacturing of nuclear power components in CDM

    International Nuclear Information System (INIS)

    Krishnan, J.; Jawale, S.B.

    2002-01-01

    Full text: In the nuclear research programme in India, Dr. H.J. Bhabha, the architecture of the Indian Nuclear programme felt a need for proto-type development and precision manufacturing facility to fulfill the requirements of mechanical components in establishing the manufacturing capability for the successful and self sustained nuclear programme. Centre for Design and Manufacture (CDM) hitherto known as CWS was established in 1964 to cater to the specific requirements of DAE and other associated units like ISRO, DRDO. Since then CDM has made multiple technological achievements and changes towards high quality products. The acquisition of up-to-date machines during High-Tech facility under VIII Plan project and Advance Precision Fabrication facility under IX Plan project has changed the capability of CDM towards CAD, CAM, CAE and CNC machining centres. Considering the rapid growth in the design and manufacturing, it was renamed as Centre for Design and Manufacture in March 2002, with the mission of quality output through group effort and team work

  4. Plan for the civil reprocessing pilot plant of China

    International Nuclear Information System (INIS)

    Wang, D.Y.; Chen, M.

    1987-01-01

    Based on the R and D work, experience on plant operation and site situation, the necessity and feasibility of building a pilot plant for civil reprocessing in China are discussed. The capacity of 100 kg HM/day (LWR) and 3 kg HM/day (MTR) has been proposed. The plant consists of cold testing facility and hot pilot facility. It is expected to complete the pilot plant in 1990's. This paper also describes the purpose, scale, process and equipment of the pilot plant

  5. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa, E-mail: jcft@cdtn.b, E-mail: masl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SEPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Servico de Protecao Radiologica; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da, E-mail: ltcn@cdtn.b, E-mail: silvajb@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (SECPRA/ CDTN/CNEN-MG) Belo Horizonte, MG (Brazil). Secao de Producao de Radiofarmacos

    2011-07-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[{sup 18}F]fluoro-2- deoxy-D-glucose ({sup 18}FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of {sup 18}FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  6. Manufacturing and test of a low cost polypropylene bag to reduce the radioactive gas released by a radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Tavares, Jose Carlos Freitas; Lacerda, Marco Aurelio de Sousa; Nascimento, Leonardo Tafas Constantino do; Silva, Juliana Batista da

    2011-01-01

    The main objective of this work was to evaluate the efficiency of a plastic gas storage bag to reduce the radioactive gas released by the chimney of a radiopharmaceutical production facility during the 2-[ 18 F]fluoro-2- deoxy-D-glucose ( 18 FDG) synthesis. The studied facility was the Development Centre of Nuclear Technology (CDTN/CNEN) in Belo Horizonte, Brazil. The bag was manufactured utilizing foils of polypropylene of 360 x 550 x 0.16 mm and disposable components of the cassette of the synthesizer. Two synthesis of 18 FDG were done using the same hot cell and synthesizer to evaluate the efficiency of the bag. The manufactured bag was put in the gas exit of the synthesizer and the activity reported by the online radiation monitoring system in the first synthesis. These results were compared to the activity released in a synthesis performed without the bag. We observed when the bag was used the amount released was about 0.2% in 270 minutes. The second synthesis was performed without the bag, about 7,1% of the input activity was released by the exhaust of the facility in the same time interval. The bag presented a very good efficiency in the reducing of the radioactive gas released by the chimney of the radiopharmaceutical production facility. (author)

  7. Pre/post evaluation of a pilot prevention with positives training program for healthcare providers in North West Province, Republic of South Africa.

    Science.gov (United States)

    Kemp, Christopher G; de Kadt, Julia; Pillay, Erushka; Gilvydis, Jennifer M; Naidoo, Evasen; Grignon, Jessica; Weaver, Marcia R

    2017-05-02

    Prevention interventions for people living with HIV/AIDS are an important component of HIV programs. We report the results of a pilot evaluation of a four-hour, clinic-based training for healthcare providers in South Africa on HIV prevention assessments and messages. This pre/post pilot evaluation examined whether the training was associated with providers delivering more prevention messages. Seventy providers were trained at four public primary care clinics with a high volume of HIV patients. Pre- and post-training patient exit surveys were conducted using Audio-Computer Assisted Structured Interviews. Seven provider appropriate messaging outcomes and one summary provider outcome were compared pre- and post-training using Poisson regression. Four hundred fifty-nine patients pre-training and 405 post-training with known HIV status were interviewed, including 175 and 176 HIV positive patients respectively. Among HIV positive patients, delivery of all appropriate messages by providers declined post-training. The summary outcome decreased from 56 to 50%; adjusted rate ratio 0.92 (95% CI = 0.87-0.97). Sensitivity analyses adjusting for training coverage and time since training detected fewer declines. Among HIV negative patients the summary score was stable at 32% pre- and post-training; adjusted rate ratio 1.05 (95% CI = 0.98-1.12). Surprisingly, this training was associated with a decrease in prevention messages delivered to HIV positive patients by providers. Limited training coverage and delays between training and post-training survey may partially account for this apparent decrease. A more targeted approach to prevention messages may be more effective.

  8. Manufacture of the Poloidal Field Conductor Insert Coil (PFCI)

    International Nuclear Information System (INIS)

    Baker, W.; Rajainmaeki, H.; Salpietro, E.; Keefe, C.

    2006-01-01

    Within the framework of the R(and)D programme for ITER (International Thermonuclear Experimental Reactor) the European team EFDA (European Fusion Development Agreement) have been charged with the design and manufacture of the Poloidal Field Conductor Insert Coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long length full scale NbTi conductors in ITER relevant conditions. The PFCI will be tested in the Central Solenoid Model Coil test facility at the JAEA Naka Japan. This paper details the complete manufacturing details of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single layer wound solenoid of 9 turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, pre-formed and machined glass resin composite filler pieces are assembled with the winding and finally Vacuum Pressure Impregnated to create a single assembly unit. The PFCI is enclosed for assembly in a support structure which consist of an upper and lower flange that each are made up by 4 machined stainless steel castings which are electrically insulated by epoxy glass sheet material and 12 tie rods which preload the complete assembly in the vertical direction while the upper flange is equipped with 4 radial restraining jacks and the lower flange is equipped with 4 sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil is in the process of final impregnation and should be completed and delivered before the summer of this year. (author)

  9. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.

    1992-01-01

    solubilization was 10-13% of the suspended COD. The liquid phase of the hydrolyzed sludge, the hydrolysate, was separated from the suspended fraction by centrifugation and added to the biological nitrogen removal stage to support denitrification. The hydrolysate COD consisted mainly of volatile fatty acids......A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation......, resulting in high denitrification rates. Nitrogen reduction was performed based on the Bio-Denitro principle in an activated sludge system. Nitrogen was reduced from 45 mg/l to 9 mg/l and phosphorus was reduced from 11 mg/l to 0.5 mg/l. The sludge yield was low, approx. 0.3-0.4 gCOD/gCOD removed...

  10. The Importance of Pilot Studies

    OpenAIRE

    Van Teijlingen, Edwin; Hundley, Vanora

    2001-01-01

    The term 'pilot studies' refers to mini versions of a full-scale study (also called 'feasibility' studies), as well as the specific pre-testing of a particular research instrument such as a questionnaire or interview schedule. \\ud Pilot studies are a crucial element of a good study design. Conducting a pilot study does not guarantee success in the main study, but it does increase the likelihood. \\ud Pilot studies fulfil a range of important functions and can provide valuable insights for othe...

  11. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  12. Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend

    OpenAIRE

    Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; Garcia-Cano, Jorge

    2015-01-01

    We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons ...

  13. WIPP - Pre-Licensing and Operations: Developer and Regulator Perspectives

    International Nuclear Information System (INIS)

    Peake, Tom; Patterson, R.

    2014-01-01

    The Waste Isolation Pilot Plant (WIPP) is a disposal system for defense-related transuranic (TRU) radioactive waste. Developed by the Department of Energy (DOE), WIPP is located in Southeastern New Mexico: radioactive waste is disposed of 2,150 feet underground in an ancient layer of salt with a total capacity of 6.2 million cubic feet of waste. Congress authorized the development and construction of WIPP in 1980 for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States. This paper makes a historical review of the site development, site operations (waste disposal operations started in 1999), communications between US EPA and DOE, the chronology of pre-licensing and pre-operations, the operational phase and the regulatory challenges, and the lessons learned after 12 years of operations

  14. Manufacturing progress of EDIPO. A Nb{sub 3}Sn-dipole for the ITER conductor test facility

    Energy Technology Data Exchange (ETDEWEB)

    Borlein, M.; Amend, J.; Theisen, W.; Walter, W. [Babcock Noell GmbH, Wuerzburg (Germany); Baker, W.; Fernandez-Cano, E.; Portone, A.; Salpietro, E. [Fusion For Energy F4E, Barcelona (Spain)

    2010-05-15

    ITER (International Thermonuclear Experimental Reactor) is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. For the construction of ITER and the manufacturing of its components, high quality standards must be met. Especially the coils of the magnet system - the heart of the ITER machine - are unique in size and complexity. Therefore the magnet coil manufacturing must be followed by a lot of quality measures. One of the necessary tests is the control of the conductor - to be sure that the conductor fulfils the technical performance needed for a proper magnet operation. As the conductor will experience a magnetic field of approx. 12-13 T during operation, it has to be tested within a magnetic background field. The European Dipole-magnet, called EDIPO, will be the heart of this conductor test facility which will be constructed at the CRPP Villigen (CH). Following the presentation, given in the Annual Meeting on Nuclear Technology in 2007, this paper shows the current status of the manufacturing of this complex Nb{sub 3}Sn-Magnet. At first, the design of the EDIPO shall be described. (orig.)

  15. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  16. An analysis of workplace exposures to benzene over four decades at a petrochemical processing and manufacturing facility (1962-1999).

    Science.gov (United States)

    Sahmel, J; Devlin, K; Burns, A; Ferracini, T; Ground, M; Paustenbach, D

    2013-01-01

    Benzene, a known carcinogen, can be generated as a by-product during the use of petroleum-based raw materials in chemical manufacturing. The aim of this study was to analyze a large data set of benzene air concentration measurements collected over nearly 40 years during routine employee exposure monitoring at a petrochemical manufacturing facility. The facility used ethane, propane, and natural gas as raw materials in the production of common commercial materials such as polyethylene, polypropylene, waxes, adhesives, alcohols, and aldehydes. In total, 3607 benzene air samples were collected at the facility from 1962 to 1999. Of these, in total 2359 long-term (>1 h) personal exposure samples for benzene were collected during routine operations at the facility between 1974 and 1999. These samples were analyzed by division, department, and job title to establish employee benzene exposures in different areas of the facility over time. Sampling data were also analyzed by key events over time, including changes in the occupational exposure limits (OELs) for benzene and key equipment process changes at the facility. Although mean benzene concentrations varied according to operation, in nearly all cases measured benzene quantities were below the OEL in place at the time for benzene (10 ppm for 1974-1986 and 1 ppm for 1987-1999). Decreases in mean benzene air concentrations were also found when data were evaluated according to 7- to 10-yr periods following key equipment process changes. Further, an evaluation of mortality rates for a retrospective employee cohort (n = 3938) demonstrated that the average personal benzene exposures at this facility (0.89 ppm for the period 1974-1986 and 0.125 ppm for the period 1987-1999) did not result in increased standardized mortality ratio (SMRs) for diseases or malignancies of the lymphatic system. The robust nature of this data set provides comprehensive exposure information that may be useful for assessing human benzene exposures at

  17. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  18. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  19. Characterization of contaminated nuclear sites, facilities and materials: radioisotope and radiopharmaceutical manufacturers and suppliers. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Environmental Protection Agency (EPA) is developing environmental protection standards for evaluating the risks and characterizing problems associated with disposal of radioactive wastes arising from decontamination and decommissioning DandD operations. Information on operations conducted at sites authorized to possess radioactive materials for the production and/or distribution of radioisotopes and radiopharmaceuticals was compiled and evaluated. This information was used to project the types, nature, and volumes of wastes which are likely to be generated during decontamination and decommissioning at representative facilities and identifying special problems that may occur. Radioisotope and radiopharmaceutical manufacturers have been grouped together because decommissioning operations will be similar. Nuclear pharmacies were also evaluated because of their increasing numbers and their role as middlemen between manufacturers and users of radiopharmaceuticals. The majority of the radioactive waste will arise from the decontamination of the laboratories, rather than the disposal of components

  20. Pilot-scale reverse osmosis testing for the F and H Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    Pilot-scale reverse osmosis (RO) tests were completed with a 10 gpm unit to demonstrate the performance of RO in the F and H Area Effluent Treatment Facility (F/H ETF). RO will be used in the WMETF to remove soluble salts and soluble radioactivity. The advantage of using RO (over ion exchange) is that it is nondescriminanting and removes virtually all dissolved solids species, regardless of ionic charge. RO also generates less than half the waste volume produced by ion exchange. Test results using a 200-Area nonradioactive effluent simulant demonstrated salt rejections of 98% and water recoveries of 94% by using recycle on a single stage pilot unit. For a full-scale, multi-staged unit overall salt rejections will be 95% (DF = 20) while obtaining a 94% water recovery (94% discharge, 6% concentrated waste stream). Identical performance is expected on actual radioactive streams, based on shielded cells testing performed by Motyka and Stimson. Similarly, if the WMETF RO system is configured in the same manner as the SRL ECWPF, a DF of 20 and a water recvery of 94% should be obtained

  1. Automation in Siemens fuel manufacturing - the basis for quality improvement by statistical process control (SPC)

    International Nuclear Information System (INIS)

    Drecker, St.; Hoff, A.; Dietrich, M.; Guldner, R.

    1999-01-01

    Statistical Process Control (SPC) is one of the systematic tools to perform a valuable contribution to the control and planning activities for manufacturing processes and product quality. Advanced Nuclear Fuels GmbH (ANF) started a program to introduce SPC in all sections of the manufacturing process of fuel assemblies. The concept phase is based on a realization of SPC in 3 pilot projects. The existing manufacturing devices are reviewed for the utilization of SPC. Subsequent modifications were made to provide the necessary interfaces. The processes 'powder/pellet manufacturing'. 'cladding tube manufacturing' and 'laser-welding of spacers' are located at the different locations of ANF. Due to the completion of the first steps and the experience obtained by the pilot projects, the introduction program for SPC has already been extended to other manufacturing processes. (authors)

  2. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  3. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  4. Pilot plant study

    International Nuclear Information System (INIS)

    Morris, M.E.

    1978-01-01

    Sandia Laboratories undertook the design and fabrication of an 8 ton/day dry sewage sludge irradiatior. The facility is intended (1) to function as a high-gamma-dose rate research facility; (2) to be a testbed for the unique electrical and mechanical components to be used in larger facilities; (3) to fulfill the formal requirements of a pilot plant so that design and construction of a demonstration facility could proceed; and (4) to provide accurate data base on construction and operating experience for the Environmental Impact Assessment (EIA), the Safety Analysis Report (SAR), and the cost analyses for a larger facility. The facility and its component systems are described in detail

  5. DU-AGG pilot plant design study

    International Nuclear Information System (INIS)

    Lessing, P.A.; Gillman, H.

    1996-07-01

    The Idaho National Engineering Laboratory (INEL) is developing new methods to produce high-density aggregate (artificial rock) primarily consisting of depleted uranium oxide. The objective is to develop a low-cost method whereby uranium oxide powder (UO[sub 2], U[sub 3]O[sub ]8, or UO[sub 3]) can be processed to produce high-density aggregate pieces (DU-AGG) having physical properties suitable for disposal in low-level radioactive disposal facilities or for use as a component of high-density concrete used as shielding for radioactive materials. A commercial company, G-M Systems, conducted a design study for a manufacturing pilot plant to process DU-AGG. The results of that study are included and summarized in this report. Also explained are design considerations, equipment capacities, the equipment list, system operation, layout of equipment in the plant, cost estimates, and the proposed plan and schedule

  6. Production of U3O8 by uranyl formate precipitation and calcination in a full-scale pilot facility

    International Nuclear Information System (INIS)

    Kendrick, L.S.; Wilson, W.A.; Mosley, W.C.

    1984-08-01

    The uranyl formate process for the production of U 3 O 8 with a controlled particle size has been extensively studied on a laboratory scale. Based on this study, a pilot-scale facility (the Uranyl Formate Facility) was built to investigate the key steps of the process on a larger scale. These steps were the precipitation of a uranyl formate monohydrate salt and the calcination of this salt to U 3 O 8 . Tests of the facility and process were conducted at conditions recommended by the laboratory-scale studies for a full-scale production facility. These tests demonstrated that U 3 O 8 of the required particle size for the PM process can be produced on a plant scale by the calcination of uranyl formate crystals. The performance of the U 3 O 8 produced by the uranyl formate process in fuel tube fabrication was also investigated. Small-scale extrusion tests of U 3 O 8 -Al cores which used the U 3 O 8 produced in the Uranyl Formate Facility were conducted. These tests demonstrated that the U 3 O 8 quality was satisfactory for the PM process

  7. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  8. Industrial Manufacturing Facilities, Located during MicroData field address collection 2004-2006. Kept in Spillman database for retrieval., Published in 2004, Vilas County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Industrial Manufacturing Facilities dataset current as of 2004. Located during MicroData field address collection 2004-2006. Kept in Spillman database for retrieval..

  9. Improvements in Operational Readiness by Distributing Manufacturing Capability in the Supply Chain through Additive Manufacturing

    Science.gov (United States)

    2017-12-01

    Second, the report presents the results of laboratory tests designed to evaluate additive manufacturing time of four repair parts. C. RESEARCH...since the production repeatability and reliability of the parts are not well understood (Merritt 2015, 9). The Army’s Additive Manufacturing ...that has a single factory that produces all of their products . This definition is expanded to include a network of manufacturing facilities where each

  10. Production of recombinant antigens and antibodies in Nicotiana benthamiana using 'magnifection' technology: GMP-compliant facilities for small- and large-scale manufacturing.

    Science.gov (United States)

    Klimyuk, Victor; Pogue, Gregory; Herz, Stefan; Butler, John; Haydon, Hugh

    2014-01-01

    This review describes the adaptation of the plant virus-based transient expression system, magnICON(®) for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called "deconstructed" viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins. By taking advantage of well established R&D tools for optimizing the expression of protein of interest using this system, product concepts can reach the manufacturing stage in highly competitive time periods. At the manufacturing stage, the system offers many remarkable features including rapid production cycles, high product yield, virtually unlimited scale-up potential, and flexibility for different manufacturing schemes. The magnICON system has been successfully adaptated to very different logistical manufacturing formats: (1) speedy production of multiple small batches of individualized pharmaceuticals proteins (e.g. antigens comprising individualized vaccines to treat NonHodgkin's Lymphoma patients) and (2) large-scale production of other pharmaceutical proteins such as therapeutic antibodies. General descriptions of the prototype GMP-compliant manufacturing processes and facilities for the product formats that are in preclinical and clinical testing are provided.

  11. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    International Nuclear Information System (INIS)

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems

  12. Evolution of Additively Manufactured Injection Molding Inserts Investigated by Thermal Simulations

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David B.; Tosello, Guido

    Injection molding using inserts from vat polymerization, an additive manufacturing technology, has been investigated for pilot production and rapid prototyping purposes throughout the past years. A standard mold is equipped with additively manufactured inserts in a rectangular shape of (20 x 20 x 2...

  13. Single-use disposable technologies for biopharmaceutical manufacturing.

    Science.gov (United States)

    Shukla, Abhinav A; Gottschalk, Uwe

    2013-03-01

    The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Participation : the key to intelligent manufacturing improvement

    NARCIS (Netherlands)

    Vink, P.; Eijnatten, van F.M.; Arisawa, H.; Kambayashi, Y.; Kumar, V.

    2002-01-01

    This paper describes the background and objectives of the IST project "Organizational Aspects of Human-Machine Coexisting Systems" (HUMACS), that develops and pilot-demonstrates a Participative Simulation environment for Integral (i.e., logistics, technology and human factors) Manufacturing

  15. Pellet to Part Manufacturing System for CNCs

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chesser, Phillip C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bandari, Yashwanth Kumar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Jason [Hybrid Manufacturing Technologies, Swadlincote (United Kingdom); Gaul, Katherine T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-03-14

    Oak Ridge National Laboratory’s Manufacturing Demonstration Facility worked with Hybrid Manufacturing Technologies to develop a compact prototype composite additive manufacturing head that can effectively extrude injection molding pellets. The head interfaces with conventional CNC machine tools enabling rapid conversion of conventional machine tools to additive manufacturing tools. The intent was to enable wider adoption of Big Area Additive Manufacturing (BAAM) technology and combine BAAM technology with conventional machining systems.

  16. Quality characteristics of Dutch-style fermented sausages manufactured with partial replacement of pork back-fat with pure, pre-emulsified or encapsulated fish oil

    NARCIS (Netherlands)

    Josquin, N.M.; Linssen, J.P.H.; Houben, J.H.

    2012-01-01

    Dutch-style fermented sausages were manufactured with 15% and 30% pork back-fat substitution by pure or commercial encapsulated fish oil, either added as such or as pre-emulsified mixture with soy protein isolate. Adding commercial encapsulated fish oil was the most important factor influencing the

  17. Participation : The key to intelligent manufacturing improvement

    NARCIS (Netherlands)

    Vink, P.; Eijnatten, F.M. van

    2002-01-01

    This paper describes the background and objectives of the IST project “Organizational Aspects of Human-Machine Coexisting Systems” (HUMACS), that develops and pilot-demonstrates a Participative Simulation environment for Integral (i.e., logistics, technology and human factors) Manufacturing

  18. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CUTTING AND WELDING EQUIPMENT

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has funded a pilot program to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so in an effort to assist these manufacturers Waste Minimization Assessment Cent...

  19. Chalon/Saint-Marcel manufacturing plant

    International Nuclear Information System (INIS)

    2008-01-01

    AREVA is the world leader in the design and construction of nuclear power plants, the manufacture of heavy components, and the supply of nuclear fuel and nuclear services such as maintenance and inspection. The Equipment Division provides the widest range of nuclear components and equipment, manufactured at its two facilities in Jeumont, northern France, and St. Marcel, in Burgundy. The St. Marcel plant, set on 35 ha (87.5 acres) near Chalon-sur-Saone, was established in 1973 in a region with a long history of specialized metalworking and mechanical activities to meet the demand for non-military nuclear requirements in France. The site offers two advantages: - excellent facilities for loading and transporting heavy components on the Saone river, - it's proximity to other group sites. Since its completion in 1975, the Chalon/St. Marcel facility has manufactured all the heavy components for French pressurized water reactors (PWRs) ranging from 900 MW to 1500 MW. It has also completed a significant number of export contracts that have made AREVA world leader. Nearly 600 heavy components (reactor vessels, steam generators, pressurizers and closure heads) have been manufactured or are currently being manufactured since the plant opened in 1975. The plant is at the heart of the manufacturing chain for nuclear steam supply systems (NSSS) supplied by AREVA. On the basis of engineering data, the plant manufactures reactor vessels, reactor vessel internals, steam generators, pressurizers and related components such as accumulators, auxiliary heat exchangers and supporting elements. Vessel upper internals Other similar components such as reactor vessels for boiling water reactors (BWR) or high temperature reactors (HTR) and other types of steam generators can also be manufactured in the plant (for example Once Through Steam Generators - OTSG). The basic activities performed at Chalon/St. Marcel are metalworking and heavy machining. These activities are carried out in strict

  20. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  1. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  2. Distribution of Trauma Care Facilities in Oman in Relation to High-Incidence Road Traffic Injury Sites: Pilot study.

    Science.gov (United States)

    Al-Kindi, Sara M; Naiem, Ahmed A; Taqi, Kadhim M; Al-Gheiti, Najla M; Al-Toobi, Ikhtiyar S; Al-Busaidi, Nasra Q; Al-Harthy, Ahmed Z; Taqi, Alaa M; Ba-Alawi, Sharif A; Al-Qadhi, Hani A

    2017-11-01

    Road traffic injuries (RTIs) are considered a major public health problem worldwide. In Oman, high numbers of RTIs and RTI-related deaths are frequently registered. This study aimed to evaluate the distribution of trauma care facilities in Oman with regards to their proximity to RTI-prevalent areas. This descriptive pilot study analysed RTI data recorded in the national Royal Oman Police registry from January to December 2014. The distribution of trauma care facilities was analysed by calculating distances between areas of peak RTI incidence and the closest trauma centre using Google Earth and Google Maps software (Google Inc., Googleplex, Mountain View, California, USA). A total of 32 trauma care facilities were identified. Four facilities (12.5%) were categorised as class V trauma centres. Of the facilities in Muscat, 42.9% were ranked as class IV or V. There were no class IV or V facilities in Musandam, Al-Wusta or Al-Buraimi. General surgery, orthopaedic surgery and neurosurgery services were available in 68.8%, 59.3% and 12.5% of the centres, respectively. Emergency services were available in 75.0% of the facilities. Intensive care units were available in 11 facilities, with four located in Muscat. The mean distance between a RTI hotspot and the nearest trauma care facility was 34.7 km; however, the mean distance to the nearest class IV or V facility was 83.3 km. The distribution and quality of trauma care facilities in Oman needs modification. It is recommended that certain centres upgrade their levels of trauma care in order to reduce RTI-associated morbidity and mortality in Oman.

  3. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  4. Use of fused deposit modeling for additive manufacturing in hospital facilities: European certification directives.

    Science.gov (United States)

    Otero, Joel J; Vijverman, An; Mommaerts, Maurice Y

    2017-09-01

    The goal of this study was to identify current European Union regulations governing hospital-based use of fused deposit modeling (FDM), as implemented via desktop three-dimensional (3D) printers. Literature and Internet sources were screened, searching for official documents, regulations/legislation, and views of specialized attorneys or consultants regarding European regulations for 3D printing or additive manufacturing (AM) in a healthcare facility. A detailed review of the latest amendment (2016) of the European Parliament and Council legislation for medical devices and its classification was performed, which has regularly updated published guidelines for medical devices, that are classified by type and duration of patient contact. As expected, regulations increase in accordance with the level (I-III) of classification. Custom-made medical devices are subject to different regulations than those controlling serially mass-produced items, as originally specified in 98/79/EC European Parliament and Council legislation (1993) and again recently amended (2016). Healthcare facilities undertaking in-house custom production are not obliged to fully follow the directives as stipulated, given an exception for this scenario (Article 4.4a, 98/79/EC). Patient treatment and diagnosis with the aid of customized 3D printing in a healthcare facility can be performed without fully meeting the European Parliament and Council legislation if the materials used are ISO 10993 certified and article 4.4a applies. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Fabrication and testing of W7-X pre-series target elements

    International Nuclear Information System (INIS)

    Boscary, J; Boeswirth, B; Greuner, H; Grigull, P; Missirlian, M; Plankensteiner, A; Schedler, B; Friedrich, T; Schlosser, J; Streibl, B; Traxler, H

    2007-01-01

    The assembly of the highly-loaded target plates of the WENDELSTEIN 7-X (W7-X) divertor requires the fabrication of 890 target elements (TEs). The plasma facing material is made of CFC NB31 flat tiles bonded to a CuCrZr copper alloy water-cooled heat sink. The elements are designed to remove a stationary heat flux and power up to 10 MW m -2 and 100 kW, respectively. Before launching the serial fabrication, pre-series activities aimed at qualifying the design, the manufacturing route and the non-destructive examinations (NDEs). High heat flux (HHF) tests performed on full-scale pre-series TEs resulted in an improvement of the design of the bond between tiles and heat sink to reduce the stresses during operation. The consequence is the fabrication of additional pre-series TEs to be tested in the HHF facility GLADIS. NDEs of this bond based on thermography methods are developed to define the acceptance criteria suitable for serial fabrication

  6. PVMaT improvements in the manufacturing of the PVI Powergrid{trademark}: Phase I annual technical report, 26 October 1995--25 October 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kaminar, N; Curchod, D; Hobden, P [Photovoltaics International, LLC (PVI), Sunnyvale, CA (United States); and others

    1997-05-01

    The PVI Powergrid is a linear focus concentrator which uses low-cost components and manufacturing techniques that are intended to reduce the price of a photovoltaic system to a level required for broad level deployment of PV. The Powergrid uses a linear-focus Fresnel lens made by a plastic extrusion process, the lowest cost method of manufacturing. The plastic module sides are also extruded. The Powergrid uses solar cells manufactured using the low-cost methods used for one-sun cells. Twelve modules are mounted on a stationary panel frame to move in unison for single-axis tracking. The components for the Powergrid have been shown to be low cost. Reducing the cost of manufacturing the Powergrid, while increasing the output and reliability, are key to reaching the strategic goals of the company. During a project sponsored in part under contracts with Sandia National Laboratories and the California Energy Commission, PVI developed a pilot production facility. The company was able to demonstrate 830 KW/yr production capability, but several manufacturing areas were discovered that needed additional development. This resulted in the formulation of PVI`s PVMaT program.

  7. Overview of the testing activities on ITER sub-scale pre-compression rings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati, Rome (Italy); Capobianchi, Mario; Crescenzi, Fabio; Massimi, Alberto; Mugnaini, Giampiero; Pizzuto, Aldo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati, Rome (Italy); Knaster, Juan [ITER Organisation, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France); Rajainmaki, Hannu [FUSION FOR ENERGY, Josep Pla no. 2, Torres Diagonal Litoral Edificio B3, 08019 Barcelona (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer ENEA developed a high strength glass fiber-epoxy composite for ITER pre-compression rings. Black-Right-Pointing-Pointer High UTS values were obtained at RT on linear specimens (2200 MPa) and on scaled ring mock-ups (1550 MPa). Black-Right-Pointing-Pointer Creep tests showed very low creep strain and creep rates. Black-Right-Pointing-Pointer Long term tests showed no significant stress relaxation on the ring mock-ups. - Abstract: After a first R and D and testing activity to develop and characterize by tensile and creep tests a high strength glass fiber-epoxy composite as reference material for the manufacture of ITER pre-compression rings, ENEA designed and manufactured a dedicated testing facility and different sub-scale composite ring mock-ups in order to characterize their mechanical properties. The paper reports the results of the overall testing activities performed during the last years on a total number of eleven sub-scale pre-compression ring mock-ups manufactured by winding S2 glass fibers on a diameter of 1 m (1/5 of the full scale) both by vacuum pressure epoxy impregnation (VPI) and filament wet winding techniques (WW). The first three rings were manufactured by ENEA Frascati thanks to a particular VPI technique; one of them was used as base composite material to manufacture different sets of specimens for shear, compression and non destructive tests (NDT). Then, five other mock-ups were manufactured following ENEA VPI process and three using WW technique by two different industrial companies. The rings were tested in ENEA Frascati in a dedicated hydraulic testing machine consisting of 18 radial actuators working in position control with a total load capability of 1000 tons. The complete testing campaign consisted of six ultimate tensile strength (UTS) tests and four stress relaxation (SR) tests. The tests demonstrated that the composite (S2 glass-epoxy) is a valid and viable solution for the ITER pre

  8. Age Learning Factors Affecting Pilot Education.

    Science.gov (United States)

    Torbert, Brison

    This document, intended for pilot education and flight safety specialists, consists chiefly of a review of the literature on physiological factors that affect pilot education and an examination of environmental factors that should be scrutinized in order to improve the effectiveness of aviation learning facilities. The physiological factors…

  9. Pre-series and testing route for the serial fabrication of W7-X target elements

    International Nuclear Information System (INIS)

    Boscary, J.; Greuner, H.; Friedrich, T.; Traxler, H.; Mendelevitch, B.; Boeswirth, B.; Schlosser, J.; Smirnow, M.; Stadler, R.

    2009-01-01

    The fabrication of the actively cooled high-heat flux divertor of the WENDELSTEIN 7-X stellarator (W7-X) requires the delivery of 890 target elements, which are designed to withstand a stationary heat flux of 10 MW/m 2 . The organization of the manufacturing and testing route for the serial fabrication is the result of the pre-series activities. Flat CFC Sepcarb NB31 tiles are bonded to CuCrZr copper alloy cooling structure in consecutive steps. A copper layer is active metal cast to CFC tiles, and then an OF-copper layer is added by hot isostatic pressing to produce bi-layer tiles. These tiles are bonded by electron beam welding onto the cooling structure, which was manufactured independently. The introduction of the bi-layer technology proved to be a significant improvement of the bond reliability under thermal cycling loading. This result is also the consequence of the improved bond inspections throughout the manufacturing route performed in the ARGUS pulsed thermography facility of PLANSEE. The repairing process by electron beam welding of the bonding was also qualified. The extended pre-series activities related to the qualification of fabrication processes with the relevant non-destructive examinations aim to minimize the risks for the serial manufacturing and to guarantee the steady-state operation of the W7-X divertor.

  10. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  11. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  12. Piloting laboratory quality system management in six health facilities in Nigeria.

    Directory of Open Access Journals (Sweden)

    Henry Mbah

    Full Text Available Achieving accreditation in laboratories is a challenge in Nigeria like in most African countries. Nigeria adopted the World Health Organization Regional Office for Africa Stepwise Laboratory (Quality Improvement Process Towards Accreditation (WHO/AFRO- SLIPTA in 2010. We report on FHI360 effort and progress in piloting WHO-AFRO recognition and accreditation preparedness in six health facility laboratories in five different states of Nigeria.Laboratory assessments were conducted at baseline, follow up and exit using the WHO/AFRO- SLIPTA checklist. From the total percentage score obtained, the quality status of laboratories were classified using a zero to five star rating, based on the WHO/AFRO quality improvement stepwise approach. Major interventions include advocacy, capacity building, mentorship and quality improvement projects.At baseline audit, two of the laboratories attained 1- star while the remaining four were at 0- star. At follow up audit one lab was at 1- star, two at 3-star and three at 4-star. At exit audit, four labs were at 4- star, one at 3-star and one at 2-star rating. One laboratory dropped a 'star' at exit audit, while others consistently improved. The two weakest elements at baseline; internal audit (4% and occurrence/incidence management (15% improved significantly, with an exit score of 76% and 81% respectively. The elements facility and safety was the major strength across board throughout the audit exercise.This effort resulted in measurable and positive impact on the laboratories. We recommend further improvement towards a formal international accreditation status and scale up of WHO/AFRO- SLIPTA implementation in Nigeria.

  13. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility

    International Nuclear Information System (INIS)

    Hinck, Jo Ellen; Norstrom, Ross J.; Orazio, Carl E.; Schmitt, Christopher J.; Tillitt, Donald E.

    2009-01-01

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p'- and o,p'-DDT isomer concentrations and o,p'- versus p,p'-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p'-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife. - DDT persists in the environment near a former manufacturing facility that ceased production over 40 years ago, and concentrations represent a risk to fish and piscivorous birds in the area

  14. International Facility for Food Irradiation Technology

    International Nuclear Information System (INIS)

    Farkas, J.

    1982-01-01

    The International Facility for Food Irradiation Technology (IFFIT) was set up in November 1978 for a period of five years at the Pilot Plant for Food Irradiation, Wageningen, The Netherlands under an Agreement between the FAO, IAEA and the Ministry of Agriculture and Fisheries of the Government of the Netherlands. Under this Agreement, the irradiation facilities, office space and services of the Pilot Plant for Food Irradiation are put at IFFIT's disposal. Also the closely located Research Foundation, ITAL, provides certain facilities and laboratory services within the terms of the Agreement. The FAO and IAEA contribute US-Dollar 25,000. Annually for the duration of IFFIT. (orig.) [de

  15. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. A similarity score-based two-phase heuristic approach to solve the dynamic cellular facility layout for manufacturing systems

    Science.gov (United States)

    Kumar, Ravi; Singh, Surya Prakash

    2017-11-01

    The dynamic cellular facility layout problem (DCFLP) is a well-known NP-hard problem. It has been estimated that the efficient design of DCFLP reduces the manufacturing cost of products by maintaining the minimum material flow among all machines in all cells, as the material flow contributes around 10-30% of the total product cost. However, being NP hard, solving the DCFLP optimally is very difficult in reasonable time. Therefore, this article proposes a novel similarity score-based two-phase heuristic approach to solve the DCFLP optimally considering multiple products in multiple times to be manufactured in the manufacturing layout. In the first phase of the proposed heuristic, a machine-cell cluster is created based on similarity scores between machines. This is provided as an input to the second phase to minimize inter/intracell material handling costs and rearrangement costs over the entire planning period. The solution methodology of the proposed approach is demonstrated. To show the efficiency of the two-phase heuristic approach, 21 instances are generated and solved using the optimization software package LINGO. The results show that the proposed approach can optimally solve the DCFLP in reasonable time.

  17. Relationships between Food Manufacturers and Retailers and Possible Implications for Training.

    Science.gov (United States)

    King, Richard; Kruse, Wilfried

    A pilot study examined the relationship between the retail sector and food and beverages industries and their implications for training. A range of case studies were undertaken in food manufacturing and retailing enterprises in the United Kingdom (UK) and Germany. The UK case studies examined the problems of manufacturers, both small and large,…

  18. 78 FR 9884 - Approval of Subzone Status; Zimmer Manufacturing BV; Ponce, Puerto Rico

    Science.gov (United States)

    2013-02-12

    ...; Zimmer Manufacturing BV; Ponce, Puerto Rico Pursuant to its authority under the Foreign-Trade Zones Act... subzone at the facility of Zimmer Manufacturing BV located in Ponce, Puerto Rico (FTZ Docket B-81-2012... hereby approves subzone status at the facility of Zimmer Manufacturing BV located in Ponce, Puerto Rico...

  19. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J [ORNL

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  20. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Hu, Jia [Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu (China); Wang, Jinqi; Chen, Xuerong; Yao, Na [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Tao, Jing, E-mail: jingtao1982@126.com [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhou, Yi-Kai, E-mail: zhouyk@mails.tjmu.edu.cn [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2015-03-01

    Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n = 6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n = 142). Total PAEs varied from 2.21 to 157.62 mg kg{sup −1} in non-industrialized areas and from 8.63 to 171.64 mg kg{sup −1} in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P < 0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r{sup 2} = 0.944, P < 0.01) and the industrialized area (r{sup 2} = 0.860, P < 0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization. - Highlights: • A new method for determining phthalate esters in soil samples was developed. • Investigate six phthalates near an industry and a

  1. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    Science.gov (United States)

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost

  2. Recent developments in the Los Alamos National Laboratory Plutonium Facility Waste Tracking System-automated data collection pilot project

    International Nuclear Information System (INIS)

    Martinez, B.; Montoya, A.; Klein, W.

    1999-01-01

    The waste management and environmental compliance group (NMT-7) at the Los Alamos National Laboratory has initiated a pilot project for demonstrating the feasibility and utility of automated data collection as a solution for tracking waste containers at the Los Alamos National Laboratory Plutonium Facility. This project, the Los Alamos Waste Tracking System (LAWTS), tracks waste containers during their lifecycle at the facility. LAWTS is a two-tiered system consisting of a server/workstation database and reporting engine and a hand-held data terminal-based client program for collecting data directly from tracked containers. New containers may be added to the system from either the client unit or from the server database. Once containers are in the system, they can be tracked through one of three primary transactions: Move, Inventory, and Shipment. Because LAWTS is a pilot project, it also serves as a learning experience for all parties involved. This paper will discuss many of the lessons learned in implementing a data collection system in the restricted environment. Specifically, the authors will discuss issues related to working with the PPT 4640 terminal system as the data collection unit. They will discuss problems with form factor (size, usability, etc.) as well as technical problems with wireless radio frequency functions. They will also discuss complications that arose from outdoor use of the terminal (barcode scanning failures, screen readability problems). The paper will conclude with a series of recommendations for proceeding with LAWTS based on experience to date

  3. Manufacture of the poloidal field conductor insert coil (PFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany); Keefe, C. [Tesla Engineering, Storrington, Sussex (United Kingdom); Rajainmaeki, H. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)], E-mail: hannu.rajainmaki@tech.efda.org; Salpietro, E. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)

    2007-10-15

    Within the framework of the R and D programme for international thermonuclear experimental reactor (ITER) the European team European Fusion Development Agreement (EFDA) has been charged with the design and manufacture of the poloidal field conductor insert coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long-length full-scale NbTi conductors in ITER-relevant conditions. The PFCI will be tested in the central solenoid model coil test facility at the JAEA, Naka, Japan. This paper details the complete manufacturing of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single-layered wound solenoid of nine turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, preformed and machined glass resin composite filler pieces are assembled with the winding and is finally vacuum pressure impregnated (VPI) to create a single assembly unit. The PFCI is enclosed for assembly in a support structure, which consists of an upper and lower flange, each made up of four electrically insulated machined stainless steel castings, and 12 tie rods preloading the complete assembly in the vertical direction. The upper flange is equipped with four radial restraining jacks and the lower flange is equipped with four sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil has passed the final acceptance tests and it is in the support structure assembly stage.

  4. Development and pilot testing of daily Interactive Voice Response (IVR) calls to support antiretroviral adherence in India: A mixed-methods pilot study

    OpenAIRE

    Swendeman, Dallas; Jana, Smarajit; Ray, Protim; Mindry, Deborah; Das, Madhushree; Bhakta, Bhumi

    2015-01-01

    This two-phase pilot study aimed to design, pilot, and refine an automated Interactive Voice Response (IVR) intervention to support antiretroviral adherence for people living with HIV (PLH), in Kolkata, India. Mixed-methods formative research included a community advisory board (CAB) for IVR message development, one-month pre-post pilot, post-pilot focus groups, and further message development. Two IVR calls are made daily, timed to patients’ dosing schedules, with brief messages (

  5. Advanced Manufacturing - National Information Infrastructure (AM-NII) Final Report CRADA No. TO-4013-01

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2001-03-23

    Advanced Manufacturing - National Information Infrastructure (AM-NII) was a multiyear DOE/DP program, involving multiple DOE laboratories and production facilities, focused on improving the manufacturing capabilities of the Nuclear Weapons Complex (NWC) through the application of modem information technologies. AM-NII's published mission states: "In partnership with the manufacturing business sector, AMNII will leverage DOE capabilities to develop, demonstrate, and pilot industrial information infrastructure and applications that enhance national security." LLNL's AM-NII project targeted two opportunities for improving NWC manufacturing capabilities. First was the link between the NWC and its outside suppliers of manufactured parts - web-based supply-chain integration. Second was the cross-site enterprise integration (EI) within the Complex itself. The general approach to supply-chain integration was to leverage the National Information Infrastructure (including Internet) to demonstrate the procurement of fabricated electrical and mechanical parts using a completely paperless procurement process. The general approach to NWC enterprise integration was to utilize SecureNet, a network that provides a secure, high-speed data link among the various NWC sites. If one looks at SecureNet as "the track," our goal was to get the trains running. Cross-site enterprise integration presupposes there is some level of local integration, so we worked both local and cross-site is sues simultaneously. Our EI work was in support of the LLNL Stockpile Life Extension Programs (SLEPs), the Submarine Launch Ballistic Missile Warhead Protection Program (SWPP), and the Laser Cutter Workstation installed at Y-12.

  6. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SILICON-CONTROLLED RECTIFIERS AND SCHOTTKY RECTIFIERS

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Ce...

  7. Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan

    Science.gov (United States)

    Mahmood, Khurram; Haroon, General

    2012-11-01

    Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.

  8. Production of fiberglass/metal composite material suitable for building habitat and manufacturing facilities

    Science.gov (United States)

    1987-01-01

    The production of a fiberglass/metal composite material suitable for building habitats and manufacturing facilities was the project for Clemson. The concept and development of the knowledge necessary to produce glass fibers originated in the spring semester. During the summer, while at Johnson Space Center, fiberglass from a rock composition similar to ones found at the Apollo 16 site on the moon was successfully produced. The project this year was a continuation of last year's studies. We addressed the following problems which emerged as the work progressed: (1) Methods for coating the fibers with a metal were explored. We manufactured composites in two stages: Glass fibers without any coating on them; and fibers coated with metals as they were made. This proved to be a difficult process. Future activities include using a chemical vapor deposition process on fibers which have been made. (2) A glass furnace was developed which relies primarily on solar energy for melting the glass. The temperature of the melted glass is maintained by electrical means. The design is for 250 kg of glass per day. An electrical engineering student developed a scheme for controlling the melting and manufacturing process from the earth. This was done to minimize the human risk. Graphite refractories are relied on to contain the melt. (3) The glass composition chosen for the project is a relatively pure anorthite which is available in the highland regions of the lunar surface. A major problems with this material is that it melts at a comparatively high temperature. This problem will be solved by using graphite refractory materials for the furnace. The advantage of this glass composition is that it is very stable and does not tend to crystallize. (4) We have also refined the experimental furnace and fiber making machinery which we will be using at Johnson Space Center this summer. We believe that we will be able to draw and coat glass fibers in a vacuum for use in composites. We intend to

  9. Contribution of components of Green Supply Chain Execution-Supply Loops in Green Supply Chain Performance measurement-A Pilot Empirical Study of the Indian Automobile Manufacturing Sector

    OpenAIRE

    Mohd. Asif Gandhi

    2017-01-01

    This paper is one of the several extensions of the research works done by [5]. Green Supply Chain Practices have been known to have an impact on Green Supply Chain Performance [5].This paper tests empirically through a pilot study of the Indian Automobile Manufacturing Sector, the contribution of the three variables constituting the construct Green Supply Chain Execution-Supply Loops in Green Supply Chain Performance measurement. Also the paper establishes the reliability of the questionnaire...

  10. Robotics and automation in manufacture

    International Nuclear Information System (INIS)

    Glasgow, J.R.

    1989-01-01

    NEI involvement in Heysham II and Torness included contracts for equipment both for the Nuclear Island and for non-nuclear associated plant. Fundamental to the approach to manufacture was the capital investment in plant and facilities to ensure the quality requirements were met with economic production methods and prompt delivery. Some of the production facilities for a selection of varied components are described. Examples of subsequent development of facilities are given to illustrate their current capability. (author)

  11. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    Science.gov (United States)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  12. Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China.

    Science.gov (United States)

    Wang, Yawei; Fu, Jianjie; Wang, Thanh; Liang, Yong; Pan, Yuanyuan; Cai, Yaqi; Jiang, Guibin

    2010-11-01

    Perfluorinated compounds (PFCs) can be released to the surrounding environment during manufacturing and usage of PFC containing products, which are considered as main direct sources of PFCs in the environment. This study evaluates the release of perfluorooctane sulfonate (PFOS) and other PFCs to the ambient environment around a manufacturing plant. Among the nine PFCs analyzed, only PFOS, perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) were found in dust, water, soil, and chicken eggs. Very high concentrations of PFOS and PFOA were found in dust from the production storage, raw material stock room, and sulfonation workshop in the manufacturing facility, with the highest value at 4962 μg/g (dry weight) for PFOS and 160 μg/g for PFOA. A decreasing trend of the three PFCs concentrations in soils, water, and chicken eggs with increasing distance from the plant was found, indicating the production site to be the primary source of PFCs in this region. Risk quotients (RQs) assessment for surface water >500 m away from the plant were less than unity. Risk assessment of PFOS using predicted no-effect concentration (PNEC, 3.23 ng/g on a logarithmic scale) indicated no immediate ecological risk of a reduction in offspring survival. PFOS concentrations in most egg samples did not exceed the benchmark concentration derived in setting a reference dose for noncancer health effects (0.025 μg/(kgxd)).

  13. Extensive characterisation of advanced manufacturing solutions for the ITER Central Solenoid pre-compression system

    CERN Document Server

    Langeslag, S.A.E.; Libeyre, P.; Marcinek, D.J.; Zhang, Z.

    2015-01-01

    The ITER Central Solenoid (CS), positioned in the center of the ITER tokamak, will provide a magnetic field, contributing to the confinement of the plasma. The 13 m high CS consists of a vertical stack of 6 independently driven modules, dynamically activated. Resulting opposing currents can lead to high separation forces. A pre-compression structure is implemented to counteract these opposing forces, by realising a continuous 180 MN coil-to-coil contact loading. Preload is applied by mechanical fastening via 9 subunits, positioned along the coil stack, each consisting of 2 outer and 1 inner tie plate. The tie plates therefore need to feature outstanding mechanical behaviour in a large temperature range. High strength, Nitronic®-50 type F XM-19 austenitic stainless steel is selected as candidate material. The linearised stress distribution reaches approximately 250 MPa, leading to a required yield strength of 380 MPa at room temperature. Two different manufacturing methods are being studied for the procuremen...

  14. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  15. 106-AN grout pilot-scale test HGTP-93-0501-02

    International Nuclear Information System (INIS)

    Bagaasen, L.M.

    1993-05-01

    The Grout Treatment Facility (GTF) at Hanford, Washington will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over 1,000,000 gal of Phosphate/Sulfate Waste were solidified in the first production campaign with this facility. The next tank scheduled for treatment is 106-AN. After conducting laboratory studies to select the grout formulation, part of the normal formulation verification process is to conduct tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL). The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilot-scale equipment and to collect thermal information to help determine the best way to manage the grout hydration heat

  16. Technical Proposal Salton Sea Geothermal Power Pilot Plant Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-03-28

    The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and

  17. 10 CFR 611.206 - Existing facilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Existing facilities. 611.206 Section 611.206 Energy... PROGRAM Facility/Funding Awards § 611.206 Existing facilities. The Secretary shall, in making awards to those manufacturers that have existing facilities, give priority to those facilities that are oldest or...

  18. Computer-controlled ultrasonic equipment for automatic inspection of nuclear reactor components after manufacturing

    International Nuclear Information System (INIS)

    Moeller, P.; Roehrich, H.

    1983-01-01

    After foundation of the working team ''Automated US-Manufacture Testing'' in 1976 the realization of an ultrasonic test facility for nuclear reactor components after manufacturing has been started. During a period of about 5 years, an automated prototype facility has been developed, fabricated and successfully tested. The function of this facility is to replace the manual ultrasonic tests, which are carried out autonomically at different stages of the manufacturing process and to fulfil the test specification under improved economic conditions. This prototype facility has been designed as to be transported to the components to be tested at low expenditure. Hereby the reproduceability of a test is entirely guaranteed. (orig.) [de

  19. The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities

    International Nuclear Information System (INIS)

    Noroozi, Alireza; Khakzad, Nima; Khan, Faisal; MacKinnon, Scott; Abbassi, Rouzbeh

    2013-01-01

    Human factors play an important role in the safe operation of a facility. Human factors include the systematic application of information about human characteristics and behavior to increase the safety of a process system. A significant proportion of human errors occur during the maintenance phase. However, the quantification of human error probabilities in the maintenance phase has not been given the amount of attention it deserves. This paper focuses on a human factors analysis in pre-and post- pump maintenance operations. The procedures for removing process equipment from service (pre-maintenance) and returning the equipment to service (post-maintenance) are considered for possible failure scenarios. For each scenario, human error probability is calculated for each activity using the Success Likelihood Index Method (SLIM). Consequences are also assessed in this methodology. The risk assessment is conducted for each component and the overall risk is estimated by adding individual risks. The present study is aimed at highlighting the importance of considering human error in quantitative risk analyses. The developed methodology has been applied to a case study of an offshore process facility

  20. Content and functions of the pilot version 1 of RODOS/RESY

    International Nuclear Information System (INIS)

    Benz, G.; Ehrhardt, J.; Faude, D.; Fischer, F.; Paesler-Sauer, J.; Rafat, M.; Schichtel, T.; Schuele, O.; Steinhauer, C.

    1994-01-01

    RODOS/RESY is an integrated real-time on-line decision support system for external emergency management after nuclear accidents. It is part of the comprehensive RODOS-system (real-time on-line decision support), which is designed for use in Europe after accidental releases of radioactive material to the atmosphere and hydrosphere. RODOS/RESY is limited in its applicability to the near range of nuclear facilities and the early phase of an accident with airborne radioactive releases. Therefore, it serves directly as a decision-aiding tool for countermeasure actions in the responsibility of local emergency management authorities. At present, RODOS is and RandD project which aims at the further development for operational use of the first prototype version completed in autumn 1992. A first step towards this goal will be the pilot version 1 of RODOS/RESY, which bill be ready by the end of 1994 for coupling to monitoring networks of nuclear reactor remote control surveillance systems and pre-operational use. The report describes the structure, content and functions of this pilot version. (orig.) [de

  1. 21 CFR 606.40 - Facilities.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Facilities. 606.40 Section 606.40 Food and Drugs... GOOD MANUFACTURING PRACTICE FOR BLOOD AND BLOOD COMPONENTS Plant and Facilities § 606.40 Facilities. Facilities shall be maintained in a clean and orderly manner, and shall be of suitable size, construction and...

  2. Pilot-scale ultrafiltration testing for the F and H area effluent treatment facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    An F and H Area Effluent Treatment Facility (F/H ETF) is being designed to treat low activity aqueous effluents which are produced from F and H Area daily operations. The treatment scheme for the F/H ETF will include pretreatment (pH adjustment and filtration) followed by Reverse Osmosis and/or Ion Exchange to remove dissolved species. Several alternative treatment processes are being considered for the F/H ETF. One of the alternatives in the pretreatment step is tubular Ultrafiltration (UF), using a dynamically formed zirconium oxide membrane supported on a porous stainless steel backing. Pilot-scale testing with a single membrane module (13 ft 2 area) and 200-Area effluent simulant has demonstrated that UF is a viable filtration option for the F/H ETF. UF testing at TNX has defined the operating conditions necessary for extended operation and also demonstrated excellent filtration performance (filtrate SDI 2 /day) flux and will provide excellent pretreatment for both reverse osmosis and ion exchange. 2 refs

  3. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  4. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  5. A Single-use Strategy to Enable Manufacturing of Affordable Biologics

    Directory of Open Access Journals (Sweden)

    Renaud Jacquemart

    2016-01-01

    Full Text Available The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.

  6. Technical Details on Beyond Design Basis Event Pilot Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-01-01

    The primary focus of the BDBE pilot project was the review of BDBE analysis and mitigation features at four DOE nuclear facilities representing a range of DOE sites, nuclear facility types/activities, and responsible program offices. The pilots looked at (1) how beyond design basis accidents were evaluated and documented in the facility Documented Safety Analysis, (2) potential BDBE vulnerabilities and margins to failure of facility safety features as obtained from general area and specific system walkdowns and design documents reviews, and (3) preparations made in facility and site emergency management programs to respond to severe accidents. It also evaluated whether draft BDBE guidance on safety analysis and emergency management could be used to improve the analysis of and preparations for mitigating severe and beyond design basis accidents. The details of these activities are organized in this report as described below.

  7. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  8. Process improvement of reconversion facilities

    International Nuclear Information System (INIS)

    Park, J. H.; Chang, I. S.; Kim, E. H.; Kim, T. J.; Jeong, K. C.; Woo, M. S.; Hong, S. B.; Choi, J. H.; Chung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. W.; Kim, Y. K.; Choi, C. S.

    1993-01-01

    The project is for the development of recovery and reusing process of ammonium carbonate(AC) which is generated as a waste liquid from the reconversion facilities to reduce the manufacturing cost and the quantity of the waste liquid, and also for the development of the continuous fludized bed reaction process to promote the economics and safeties of the calcination and reduction process. In this second year report, measured the properties of AC solution and analyzed the AC concentration quantitatively. Examined the properties of AUC to investigate the properties of UO 2 powder which was converted from AUC, prepared with AC solution. Designed and installed the 2 tons-U/year pilot plant. Experimented in powder properties to set up the range of operating conditions. Modeled CFB reactor to estimate the conversion of reactor and to analyze the change of fluorine concentration to carry out the defluorination reaction. Experimented out the optimum conditions of the major operating parameters : solid circulation rate, gas velocity, solid holdup and initial inventory in cold bed to get the referential design data for hot bed. (Author)

  9. Challenges in teaching modern manufacturing technologies

    Science.gov (United States)

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-07-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.

  10. Fatigue mitigation effects of en-route napping on commercial airline pilots flying international routes

    Science.gov (United States)

    Baldwin, Jarret Taylor

    The introduction of ultra-long range commercial aircraft and the evolution of the commercial airline industry has provided new opportunities for air carriers to fly longer range international route segments while deregulation, industry consolidation, and the constant drive to reduce costs wherever possible has pressured airline managements to seek more productivity from their pilots. At the same time, advancements in the understanding of human physiology have begun to make their way into flight and duty time regulations and airline scheduling practices. In this complex and ever changing operating environment, there remains an essential need to better understand how these developments, and other daily realities facing commercial airline pilots, are affecting their fatigue management strategies as they go about their rituals of getting to and from their homes to work and performing their flight assignments. Indeed, the need for commercial airline pilots to have access to better and more effective fatigue mitigation tools to combat fatigue and insure that they are well rested and at the top of their game when flying long-range international route segments has never been greater. This study examined to what extent the maximum fatigue states prior to napping, as self-accessed by commercial airline pilots flying international route segments, were affected by a number of other common flight assignment related factors. The study also examined to what extent the availability of scheduled en-route rest opportunities, in an onboard crew rest facility, affected the usage of en-route napping as a fatigue mitigation strategy, and to what extent the duration of such naps affected the perceived benefits of such naps as self-accessed by commercial airline pilots flying international route segments. The study utilized an online survey tool to collect data on crew position, prior flight segments flown in the same duty period, augmentation, commuting, pre-flight rest obtained in the

  11. Analysis of adverse events with Essure hysteroscopic sterilization reported to the Manufacturer and User Facility Device Experience database.

    Science.gov (United States)

    Al-Safi, Zain A; Shavell, Valerie I; Hobson, Deslyn T G; Berman, Jay M; Diamond, Michael P

    2013-01-01

    The Manufacturer and User Facility Device Experience database may be useful for clinicians using a Food and Drug Administration-approved medical device to identify the occurrence of adverse events and complications. We sought to analyze and investigate reports associated with the Essure hysteroscopic sterilization system (Conceptus Inc., Mountain View, CA) using this database. Retrospective review of the Manufacturer and User Facility Device Experience database for events related to Essure hysteroscopic sterilization from November 2002 to February 2012 (Canadian Task Force Classification III). Online retrospective review. Online reports of patients who underwent Essure tubal sterilization. Essure tubal sterilization. Four hundred fifty-seven adverse events were reported in the study period. Pain was the most frequently reported event (217 events [47.5%]) followed by delivery catheter malfunction (121 events [26.4%]). Poststerilization pregnancy was reported in 61 events (13.3%), of which 29 were ectopic pregnancies. Other reported events included perforation (90 events [19.7%]), abnormal bleeding (44 events [9.6%]), and microinsert malposition (33 events [7.2%]). The evaluation and management of these events resulted in an additional surgical procedure in 270 cases (59.1%), of which 44 were hysterectomies. Sixty-one unintended poststerilization pregnancies were reported in the study period, of which 29 (47.5%) were ectopic gestations. Thus, ectopic pregnancy must be considered if a woman becomes pregnant after Essure hysteroscopic sterilization. Additionally, 44 women underwent hysterectomy after an adverse event reported to be associated with the use of the device. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.

  12. Fiscal 1997 report of the development of high efficiency waste power generation technology. No.2 volume. Pilot plant verification test; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (pilot plant jissho shiken). 1997 nendo hokokusho (daini bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As to a high efficiency waste power generation system using general waste as fuel, the details of the following were described: design/construction management and operational study of pilot plant, design/manufacture/construction of pilot plant, and study of an optimal total system. Concerning the construction management and operational study, the paper described the application for governmental/official inspection procedures and taking inspection, process management of pilot plant, site patrol, safety management, management of trial run of pilot plant, drawing-up of a verification test plan and test run, etc. Relating to the design/manufacture/construction of pilot plant, an outline of the pilot plant was described. The paper also stated points to be considered in design of furnace structure and boiler structure, points to be considered of the verification test, etc. As to the study of an optimal total system, the following were described: survey of waste gasification/slagging power generation technology, basic study on RDF production process, survey of trends of waste power generation technology in the U.S., etc. 52 refs., 149 figs., 121 tabs.

  13. Rapsodie first core manufacture. 1. part: processing plant

    International Nuclear Information System (INIS)

    Masselot, Y.; Bataller, S.; Ganivet, M.; Guillet, H.; Robillard, A.; Stosskopf, F.

    1968-01-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [fr

  14. Different training responses to eccentric endurance exercise at low and moderate altitudes in pre-diabetic men: a pilot study.

    Science.gov (United States)

    Klarod, Kultida; Philippe, Marc; Gatterer, Hannes; Burtscher, Martin

    2017-01-01

    This pilot study aimed (a) to evaluate the effects of eccentric exercise training at low and moderate altitudes on physical fitness in pre-diabetic men and (b) to establish whether or not oxidative stress levels and antioxidant status were associated with performance improvements. In this crossover trial, five pre-diabetic men conducted nine downhill walking sessions (3 days/week, 3 consecutive weeks) at low altitude (from 1360 to 850 m) and one year later at moderate altitude (from 2447 to 2000 m). Exercise testing and the determination of parameters of oxidative stress and antioxidant capacity were performed pre- and post-training. The biological antioxidant activity of plasma (BAP) increased after eccentric training at moderate altitude ( p  training at moderate-altitude training ( p  = 0.009). Maximum power output improved after training at low altitude and the changes were significantly related to baseline BAP/dROMs ratio ( r  = 0.90). No decrease was seen for fasting plasma glucose. Eccentric exercise training in pre-diabetic men improved performance only when performed at low altitude and this improvement was positively related to the baseline BAP/dROMs ratio. In contrast, 3 weeks of eccentric exercise training increased BAP levels and the BAP/dROMs ratio only at moderate altitude without improving the performance. Thus, one might speculate that the BAP/dROMs ratio has to increase before performance improvements occur at moderate altitude.

  15. Work control in separations facilities

    International Nuclear Information System (INIS)

    Olson, L.D.

    1990-01-01

    The topic addressed in this technical review is the development and implementation of a work control program in one of the chemical separations facilities at the Savannah River Site (SRS) in Aiken, SC. This program will be used as a pilot for the Nuclear Materials Processing Division at the site. The SRS Work Control Pilot program is based on the Institute of Nuclear Power Operations (INPO) good practices and guidelines for the conduct of maintenance and complies with SRS quality assurance and DOE orders on maintenance management. The program follows a ten-step process for control of maintenance and maintenance-related activities in a chemical separations facility. The program took the existing maintenance planning and scheduling system and upgraded it to comply with all INPO work control and related guidelines for histories, post-maintenance testing and scheduling. The development process of adapting a nuclear-related- based plan to a batch/continuous chemical separations plant was a challenge. There were many opportunities to develop improvements in performance while being creative and realistic in applying reactor maintenance technology to chemical plant maintenance. This pilot program for work control in a nonreactor nuclear facility will provide valuable information for applying a controlled maintenance process to a multiphase chemical operating plant environment

  16. Pilot-benchmarking of the WENRA safety reference levels for the spent fuel intermediate storage facility Ahaus

    International Nuclear Information System (INIS)

    Lorenz, Bernd; Roeder, Markus; Brandt, Klaus-Dieter

    2008-01-01

    Full text: The Western European Nuclear Regulator's Association (WENRA) has 2007 issued the draft of the 'Waste and Spent Fuel Storage Safety Reference Levels'. The objective of WENRA is to strive for a harmonized safety level of nuclear facilities within the European Community and these Reference Levels are a benchmark method to demonstrate the achieved level for the regulatory system and the implementation as well. Safety Reference Levels exist at the moment for Reactor Safety, Waste Storage and Decommissioning in different stages of development. ENISS, the European Nuclear Installations Safety Standards Initiative, a FORATOM based special organisation of nuclear operators, has discussed these Safety Reference Levels very intensively with WENRA and the agreement was to make a implementation benchmark-exercise for the storage facilities before the authorities finally agree on the Reference Levels. This benchmark was scheduled for the year 2008. Because of the special situation in Germany where a large number of storage facilities is in operation the German authorities felt that it would be useful to initiate a Pilot-Benchmark to get first results on the feasibility of the Reference Levels and the burden imposed to authorities and operators by these benchmark-exercises. GNS, a subsidiary company of the utilities, agreed to step into this process on a voluntary basis with its storage facility for spent fuel in Ahaus. The exercise was done in a very efficient way and in good co-operation between the authorities, local and federal, and the operator. The results in terms of safety assessments have been very satisfactory showing the high degree of safety. Although the facility was for the first time licensed already in 1987 the compliance with nearly all Reference Levels from 2007 could be demonstrated. It became also clear that newer facilities would fulfil the desired safety standard too. Nevertheless, in spite of the good results the exercise revealed some weak

  17. Respiratory symptoms as health status indicators in workers at ceramics manufacturing facilities.

    Science.gov (United States)

    Rondon, Edilaura Nunes; Silva, Regina Maria Veras Gonçalves da; Botelho, Clovis

    2011-01-01

    To assess the prevalence of respiratory symptoms and their association with sociodemographic variables and with the characteristics of the work environment. A cross-sectional study comprising 464 workers employed at ceramics manufacturing facilities located in the city of Várzea Grande, Brazil. Data were collected by means of a questionnaire comprising questions regarding sociodemographic variables, work environment characteristics, and respiratory symptoms. Data were analyzed by means of prevalence ratios and their respective 95% CIs between the dependent variable (respiratory symptoms) and the other explanatory variables. In the multivariate analysis, two hierarchical models were built, the response variables being "all respiratory symptoms" and "severe respiratory symptoms". In the sample studied, the prevalence of "all respiratory symptoms" was 78%, whereas that of "severe respiratory symptoms" was 35%. The factors associated with "all respiratory symptoms" were gender, age bracket, level of education, type of occupation, exposure to dust, and exposure to chemical products. The factors associated with "severe respiratory symptoms" were level of education, exposure to dust, and exposure to chemical products. Our results indicate the presence of upper and lower airway disease in the population studied.

  18. Production and setting of fractional elution facility for recovery of useful rare metals from seawater

    International Nuclear Information System (INIS)

    Seko, Noriaki; Kasai, Noboru; Tamada, Masao; Hasegawa, Shin; Katakai, Akio

    2005-01-01

    In September 1999, we have soaked 200 kg of fibrous amidoxime absorbents, synthesized by radiation-induced graft polymerization, into seawater to evaluate their performance. Fractional elution facility was set effectively to elute the rare metals on adsorbents in Mutsu-Establishment. This facility consists of two parts of pre-washing and elution. The present report dealt with planning, manufacture and setting of fractional facility. Marine organism and slime on adsorbent cassette (290 x 295 x 160 mm) were washed out and every 72 cassettes were set in elution unit (1210 x 1210 x H1460 mm) with nonwoven materials as a packing to avoid elution loss. In the elution process alkaline and alkaline earth metals were eluted with low concentration hydrochloric acid (0.01M) and rare metals were eluted with high concentration (0.5 M) after the packing of elution unit into fractional elution facility. Adsorbent cassettes were regenerated with alkaline solution after elution procedure. (author)

  19. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  20. After-sales service to manufactured goods on technological basis

    Directory of Open Access Journals (Sweden)

    Miriam Borchardt

    2008-07-01

    Full Text Available This theoretical and exploratory paper aims to build a critical analysis on after-sales services, mainly regarded to manufactured goods on technological basis. The purpose of the research is to achieve some better understanding about the essential elements that are to be taken into account in conceiving such a service, after different approaches. After-sales service is a member of the service package and it can influence customer satisfaction. The studied issues can integrate policies to guiding firms in designing after-sales services. They are: definition of the service itself; strategic issues; the facilities and premises; and the operation management. We aim this theoretical research to be a pre-requisite to launch further empirical researches, mainly in the field of inter-organizational relationships. Key-words: service management; after-sales service; service operations; goods associated to services; inter-organizational relationships.

  1. A facile approach to manufacturing non-ionic surfactant nanodipsersions using proniosome technology and high-pressure homogenization.

    Science.gov (United States)

    Najlah, Mohammad; Hidayat, Kanar; Omer, Huner K; Mwesigwa, Enosh; Ahmed, Waqar; AlObaidy, Kais G; Phoenix, David A; Elhissi, Abdelbary

    2015-03-01

    In this study, a niosome nanodispersion was manufactured using high-pressure homogenization following the hydration of proniosomes. Using beclometasone dipropionate (BDP) as a model drug, the characteristics of the homogenized niosomes were compared with vesicles prepared via the conventional approach of probe-sonication. Particle size, zeta potential, and the drug entrapment efficiency were similar for both size reduction mechanisms. However, high-pressure homogenization was much more efficient than sonication in terms of homogenization output rate, avoidance of sample contamination, offering a greater potential for a large-scale manufacturing of noisome nanodispersions. For example, high-pressure homogenization was capable of producing small size niosomes (209 nm) using a short single-step of size reduction (6 min) as compared with the time-consuming process of sonication (237 nm in >18 min) and the BDP entrapment efficiency was 29.65% ± 4.04 and 36.4% ± 2.8. In addition, for homogenization, the output rate of the high-pressure homogenization was 10 ml/min compared with 0.83 ml/min using the sonication protocol. In conclusion, a facile, applicable, and highly efficient approach for preparing niosome nanodispersions has been established using proniosome technology and high-pressure homogenization.

  2. Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

    Science.gov (United States)

    Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy

    2016-05-01

    Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.

  3. The impact of manufacturing variables on in vitro release of clobetasol 17-propionate from pilot scale cream formulations.

    Science.gov (United States)

    Fauzee, Ayeshah Fateemah Beebee; Khamanga, Sandile Maswazi; Walker, Roderick Bryan

    2014-12-01

    The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 2(4) full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer-Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.

  4. 14 CFR 61.87 - Solo requirements for student pilots.

    Science.gov (United States)

    2010-01-01

    ...; (5) Emergency procedures and equipment malfunctions; (6) Operation of hot air or gas source, ballast... balloon or an airship requiring more than one pilot flight crewmember. (b) Aeronautical knowledge. A... and procedures for pre-solo flight training in a balloon. A student pilot who is receiving training in...

  5. 21 CFR 123.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 123.5 Section...) FOOD FOR HUMAN CONSUMPTION FISH AND FISHERY PRODUCTS General Provisions § 123.5 Current good manufacturing practice. (a) Part 110 of this chapter applies in determining whether the facilities, methods...

  6. 21 CFR 1271.190 - Facilities.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Facilities. 1271.190 Section 1271.190 Food and... CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.190 Facilities. (a) General. Any facility used in the manufacture of HCT/Ps must be of suitable size, construction, and location to prevent...

  7. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  8. Online pre-race education improves test scores for volunteers at a marathon.

    Science.gov (United States)

    Maxwell, Shane; Renier, Colleen; Sikka, Robby; Widstrom, Luke; Paulson, William; Christensen, Trent; Olson, David; Nelson, Benjamin

    2017-09-01

    This study examined whether an online course would lead to increased knowledge about the medical issues volunteers encounter during a marathon. Health care professionals who volunteered to provide medical coverage for an annual marathon were eligible for the study. Demographic information about medical volunteers including profession, specialty, education level and number of marathons they had volunteered for was collected. A 15-question test about the most commonly encountered medical issues was created by the authors and administered before and after the volunteers took the online educational course and compared to a pilot study the previous year. Seventy-four subjects completed the pre-test. Those who participated in the pilot study last year (N = 15) had pre-test scores that were an average of 2.4 points higher than those who did not (mean ranks: pilot study = 51.6 vs. non-pilot = 33.9, p = 0.004). Of the 74 subjects who completed the pre-test, 54 also completed the post-test. The overall post-pre mean score difference was 3.8 ± 2.7 (t = 10.5 df = 53 p online education demonstrated a long-term (one-year) increase in test scores. Testing also continued to show short-term improvement in post-course test scores, compared to pre-course test scores. In general, marathon medical volunteers who had no volunteer experience demonstrated greater improvement than those who had prior volunteer experience.

  9. Advanced Process Chains for Prototyping and Pilot Production based on Additive Manufacturing

    DEFF Research Database (Denmark)

    Mischkot, Michael

    2015-01-01

    For many years, Additive Manufacturing (AM) has been a well-established production technology used mainly for rapid prototyping. But the need for increased flexibility and economic low volume production led to the discovery of Additive Manufacturing as a suitable fabrication technique (Mellor 2013...

  10. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  11. Economic Analysis of Additive Manufacturing Integration in Injection Molding Process Chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    The purpose of this research is to analyze how additive manufacturing can create value when it is utilized as a supportive technology to injection molding by quantifying the cost advantages that can be obtained. Tooling for the product development phase is investigated as pilot integration area...... of additive manufacturing with injection molding. Cost considerations are discussed through the development of a cost estimation model. The study shows that integration of additive manufacturing in the product development phase for fabrication of soft tooling is economically convenient with a cost reduction...... of 79,8% and 89,9%. The cost models on additive manufacturing have been built so far on the idea of substituting injection molding with additive manufacturing. In response to this literature gap, this research addresses the advantages of additive manufacturing utilized in a synergistic rather than...

  12. Biological fluidized-bed treatment of groundwater from a manufactured gas plant site

    International Nuclear Information System (INIS)

    Grey, G.M.; Scheible, O.K.; Maiello, J.A.; Guarini, W.J.; Sutton, P.M.

    1995-01-01

    Bench- and pilot-scale biological treatability studies were performed as part of a comprehensive study for developing an on-site treatment system for contaminated groundwater at a former manufactured gas plant site. The bench-scale work, which included evaluations of activated sludge and fluidized-bed biological processes, indicated that a carbon-based fluidized-bed process was most appropriate. The process was then demonstrated on a pilot level at the site. The bench and pilot studies demonstrated significant reductions of chemical oxygen demand (COD), and all target organics including polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)

  13. 21 CFR 120.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 120.5 Section... Provisions § 120.5 Current good manufacturing practice. Part 110 of this chapter applies in determining whether the facilities, methods, practices, and controls used to process juice are safe, and whether the...

  14. Extensive characterisation of advanced manufacturing solutions for the ITER Central Solenoid pre-compression system

    Energy Technology Data Exchange (ETDEWEB)

    Langeslag, S.A.E., E-mail: stefanie.langeslag@cern.ch [CERN, CH-1211 Genève 23 (Switzerland); Sgobba, S. [CERN, CH-1211 Genève 23 (Switzerland); Libeyre, P. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Marcinek, D.J. [Cracow University of Technology, Warszawska 24, 30-962 Kraków (Poland); Zhang, Z. [CERN, CH-1211 Genève 23 (Switzerland); EPFL, CH-1015 Lausanne (Switzerland)

    2015-10-15

    The ITER Central Solenoid (CS), positioned in the center of the ITER tokamak, will provide a magnetic field, contributing to the confinement of the plasma. The 13 m high CS consists of a vertical stack of 6 independently driven modules, dynamically activated. Resulting opposing currents can lead to high separation forces. A pre-compression structure is implemented to counteract these opposing forces, by realising a continuous 180 MN coil-to-coil contact loading. Preload is applied by mechanical fastening via 9 subunits, positioned along the coil stack, each consisting of 2 outer and 1 inner tie plate. The tie plates therefore need to feature outstanding mechanical behaviour in a large temperature range. High strength, Nitronic®-50 type F XM-19 austenitic stainless steel is selected as candidate material. The linearised stress distribution reaches approximately 250 MPa, leading to a required yield strength of 380 MPa at room temperature. Two different manufacturing methods are being studied for the procurement of these 15 m long tie plates. A welded solution originates from individual head- and slab-forgings, welded together by Gas Metal Arc Welding (GMAW). In parallel, a single piece forged solution is proven feasible, impressively forged in one piece by applying successive open die forging steps, followed by final machining. Maximum internal stress is experienced during cool-down to 4 K as a result of a large difference in thermal contraction between the support system and the coils. Furthermore, the varying magnetic fields in the independently driven coils introduce cyclic loading. Therefore, assessment of the two manufacturing solutions, in terms of both static and dynamic mechanical behaviour, is performed at ambient as well as cryogenic temperature. An extensive characterisation including microstructural and mechanical examination is conducted, evaluating the comparative performance of both solutions, reporting, amongst others, yield strength reaching the

  15. Pre-feasibility study on the investment in a new SPA & wellness facility : Case Study: based on a hotel-restaurant in Germany

    OpenAIRE

    Jahn, Moritz

    2011-01-01

    The object of investigation has at the present a wellness facility which is however out-dated and does not longer support the general appearance. Therefore, a new investment has to be done which will be assessed with regard to its conceptual, economic and financial viability. In particular, the economic and financial viability of the new SPA & wellness facility by itself had to be assessed, as this is the main criteria for the principal. The extent of the pre-feasibility study is a limited ve...

  16. Analysis of Driven Pile Capacity within Pre-Bored Soil : Research Project Capsule

    Science.gov (United States)

    2017-10-01

    Pre-boring is a method used to facilitate large displacement pile driving in hard/dense soils (see Figure 1). By pre-boring a pilot hole, the end bearing and side friction within the pre-bored zone are reduced, thus aiding pile driving installation. ...

  17. Optimized MBR for greywater reuse systems in hotel facilities.

    Science.gov (United States)

    Atanasova, Natasa; Dalmau, Montserrat; Comas, Joaquim; Poch, Manel; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi

    2017-05-15

    Greywater is an important alternative water source, particularly in semi-arid, touristic areas, where the biggest water demand is usually in the dry period. By using this source wisely, tourist facilities can substantially reduce the pressure to scarce water resources. In densely urbanized touristic areas, where space has high value, compact solutions such as MBR based greywater reuse systems appear very appropriate. This research focuses on technical and economical evaluation of such solution by implementing a pilot MBR to a hotel with separated grey water. The pilot was operated for 6 months, with thorough characterisation of the GW performed, its operation was monitored and its energy consumption was optimized by applying a control system for the air scour. Based on the pilot operation a design and economic model was set to estimate the feasibility (CAPEX, OPEX, payback period of investment) of appropriate scales of MBR based GW systems, including separation of GW, MBR technology, clean water storage and disinfection. The model takes into account water and energy prices in Spain and a planning period of 20 years. The results demonstrated an excellent performance in terms of effluent quality, while the energy demand for air-scour was reduced by up to 35.2%, compared to the manufacturer recommendations. Economical evaluation of the entire MBR based GW reuse system shows its feasibility for sizes already at 5 m 3 /day (60 PE). The payback period of the investment for hotels like the demonstration hotel, treating 30 m 3 /day is 3 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Engineering and technology in the deconstruction of nuclear materials production facilities

    International Nuclear Information System (INIS)

    Kingsley, R.S.; Reynolds, W.E.; Heffner, D.C.

    1996-01-01

    Technology and equipment exist to support nuclear facility deactivation, decontamination, and decommissioning. In reality, this statement is not surprising because the nuclear industry has been decontaminating and decommissioning production plants for decades as new generations of production technology were introduced. Since the 1950s, the Babcock and Wilcox Company (B ampersand W) has operated a number of nuclear materials processing facilities to manufacture nuclear fuel for the commercial power industry and the U.S. Navy. These manufacturing facilities included a mixed oxide (PuO 2 -UO 2 ) nuclear fuel manufacturing plant, low- and high-enriched uranium (HEU/LEU) chemical and fuel plants, and fuel assembly plants. In addition, B ampersand W designed and build a major nuclear research center in Lynchburg, Virginia, to support these nuclear fuel manufacturing activities and to conduct nuclear power research. These nuclear research facilities included two research reactors, a hot-cell complex for nuclear materials research, four critical experiment facilities, and a plutonium fuels research and development facility. This article describes the B ampersand W deactivation, decomtanimation, and decommisioning program

  19. PERANCANGAN ULANG TATA LETAK FASILITAS DENGAN PENDEKATAN LEAN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Alexander Prasetya

    2016-01-01

    Full Text Available One of the big investment in a business is facility design. It is a long-term investment due to great value. In its development, PT. Dwi Putra Sakti faced some problems related to facility layout. Problems that can be identified, such as work in process that has accumulated on the production floor, as well as the anorganizad facility layout. Therefore, it is necessary to redesign the layout for the production process more effective and efficient. This study uses a lean manufacturing approach to redesign facility layout. It used value stream mapping, seven waste, cellular manufacturing and 5S principle. Analysis of the implementation result is used to design the layout of the new facility. Level layout that will be examined are the macro-and micro-layout layout. Results of macro-layout design is decreasing production cycle time of trousers. While the micro-layout design is decreasing in material handling displacement.

  20. Radioactive-waste isolation pilot plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1977-01-01

    The objective of the Waste Isolation Pilot Plant (WIPP) program is to demonstrate the suitability of bedded salt, specifically, the bedded salt deposits in the Los Medanos area of southeastern New Mexico, as a disposal medium for radioactive wastes. Our program responsibilities include site selection considerations, all aspects of design and development, technical guidance of facility operation, environmental impact assessment, and technical support to ERDA for developing public understanding of the facility

  1. Influence of Different Container Closure Systems and Capping Process Parameters on Product Quality and Container Closure Integrity (CCI) in GMP Drug Product Manufacturing.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander

    2016-01-01

    Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range

  2. Flexible manufacturing systems and their relevance in nuclear fuel fabrication in India

    International Nuclear Information System (INIS)

    Ramakumar, M.S.

    1989-01-01

    Fabrication of nuclear reactor fuel bundle involves several materials and a number of complicated technologies and the process of manufacture has to conform to stringent standards. The Indian Nuclear Programme relies heavily on indigeneous capability of manufacture of nuclear fuels as well as automation of the related facilities. Automation of the existing nuclear facilities is a challenge in view of the characteristic plant environments and process demands as well as the various mechanical and metallurgical steps involved. This paper discusses their requirements and the measures initiated for achieving a high order of automation in Indian nuclear facilities. As a first step, specific automation steps are being incorporated in the existing plants. Such interface automation will enhance productivity and avoid the need for building new totally automated palnts. Flexible manufacturing system as applied here, has a different connotation vis-a-vis conventional manufacturing industry. Robotic devices, even for stacking jobs, have not been used on a large scale the world over. (author). 6 figs

  3. Manufacturing Educational Change: Impact Evaluation of the Lansing Area Manufacturing Partnership Pilot Program. Executive Summary.

    Science.gov (United States)

    MacAllum, Keith; Taylor, Susan Hubbard; Johnson, Amy Bell

    The Lansing Area Manufacturing Partnership (LAMP) is an academically rigorous, business/labor-driven school-to-career program in Lansing, Michigan, that includes business, union, school, and parent partners and provides participating students with work-based learning experiences for 2.5 hours every day throughout their senior year. LAMP's…

  4. Fiscal 2001 achievement report. Development of coal gas production technology for fuel cells - Research using pilot test facility - for public release (Part 1 - Construction and test operation); 2001 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu (Sono 1 - Koji shiken unten hen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the development of a coal gasification furnace optimum for fuel cells, research and development was conducted of a coal gas production technology using the oxygen-blown coal gasification technology, and the fiscal 2001 results are put together. In the construction of the pilot test facility, work involved the road in the site, road illumination system installation in the site, and an unauthorized entry prevention system. In the construction of the coal gasification facility, work involved electrical instrumentation and painting for the coal feeding system, coal gasification furnace, heat recovery boiler, and so forth, and the installation of a series of devices was completed. In July following the completion, power was received and test operations were started, which included the operation of the coal gasification facility alone. Renting was started in August for the coal pretreatment facility, air separation facility, and the slag treatment device. In the study of the operation control technology for the oxygen-blown coal gasification furnace system, test operations were conducted based on the operating procedures prepared in the preceding fiscal year, which included a test operation performed for the pilot test facility alone. Parameters for equipment control obtained through the test operations, and improvements on operating steps carried out as required, were all reflected on the operating procedures. (NEDO)

  5. Manufacturing of cells and stacks for SOFC development, test and demonstration projects and SOFC hotbox design development

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The purpose of this project is to support the continued SOFC development through manufacturing process optimization and manufacturing of SOFC cells and stacks. These cells and stacks will serve as a necessary base for the development activities and for the establishment of a number of test and demonstration activities. The manufacture will also help provide operating experience and reduce manufacturing cost. Another main focus of the manufacturing is to assure technical improvements and reliability. It is imperative to the eventual success of the technology that test and demonstration is carried out in the pre-market conditions that will exist for the next years in the three market segments targeted by TOFC (Distributed generation, micro CHP and APU incl. marine APU). Finally, the project also includes development activities focusing on the stack-system interface (hotbox design development) and on dealing with transients and start up and shut down times, which is of particular importance for APU and micro CHP applications. Three topics are addressed:1) Cell manufacture, including production development, capacity lift and manuf. of cells for test and demonstration; 2) Stack manufacture and test, including a test facility, stack manuf. and test of stacks in a system at HCV; 3) Hotbox design development, including design, prototype construction and testing. The progress of this project is documented. Major achievements are successful manufacture of adequate amounts of cells and stacks according to the application. Furthermore significant over-performance in design, construction and test of a methanol based hotbox prototype as well as publication of this. (au)

  6. Methodology on sizing and selecting thermoelectric cooler from different TEC manufacturers in cooling system design

    International Nuclear Information System (INIS)

    Tan, F.L.; Fok, S.C.

    2008-01-01

    The search and selection for a suitable thermoelectric cooler (TEC) to optimize a cooling system design can be a tedious task as there are many product ranges from several TEC manufacturers. Although the manufacturers do provide proprietary manuals or electronic search facilities for their products, the process is still cumbersome as these facilities are incompatible. The electronic facilities often have different user interfaces and functionalities, while the manual facilities have different presentations of the performance characteristics. This paper presents a methodology to assist the designer to size and select the TECs from different manufacturers. The approach will allow designers to find quickly and to evaluate the devices from different TEC manufacturers. Based on the approach, the article introduces a new operational framework for an Internet based thermoelectric cooling system design process that would promote the interaction and collaboration between the designers and TEC manufacturers. It is hoped that this work would be useful for the advancement of future tools to assist designers to develop, analyze and optimize thermoelectric cooling system design in minimal time using the latest TECs available on the market

  7. Manufacturing pre-qualification of a Short Breeder Unit mockup (SHOBU) as part of the roadmap toward the out-of-pile validation of a full scale Helium Cooled Pebble Bed Breeder Unit

    International Nuclear Information System (INIS)

    Hernández, Francisco A.; Rey, Jorg; Neuberger, Heiko; Krasnorutskyi, Sergii; Niewöhner, Reinhard; Felde, Alexander

    2015-01-01

    Highlights: • A relevant mockup of a HCPB Breeder Unit for ITER (SHOBU) has been manufactured. • The manufacturing technologies used in SHOBU and its assembly sequence are reported. • Preliminary qualification of the welds has been successfully done after codes. • Future work foreseen to manufacture a feasibility mockup according to RCC-MRx code. - Abstract: The key components of the Helium Cooled Pebble Bed Test Blanket Module (HCPB TBM) in ITER are the Breeder Units (BU). These are the responsible for the tritium breeding and part of the heat extraction in the HCPB TBM. After a detailed design and engineering phase performed during the last years in the Karlsruhe Institute of Technology (KIT), a reference model for the manufacturing of a HCPB BU mock-up has been obtained. The mid-term is the out-of-pile qualification of the thermal and thermo-mechanical performance of a full-scale HCPB BU mock-up in a dedicated helium loop. Several key manufacturing technologies have been developed for the fabrication of the HCPB BU. In order to pre-qualify these techniques, a Short Breeder Unit mock-up (SHOBU) is under construction and to be tested. This paper aims at describing the relevance of SHOBU with a full-scale HCPB BU, the constitutive parts of SHOBU, the manufacturing and joining technologies involved, the assembly sequence (taking into consideration functional steps like its filling with Li_4SiO_4 pebbles or its assembly in the HCPB TBM) and the welding procedures studied. The paper concludes with a description of the required pre-qualification tests performed to SHOBU, i.e. pressure and leak tightness tests, according to the standards.

  8. Twin Screw Mixer/Fine Grind Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 40-mm Twin-Screw Mixer/Extruder (TSE) pilot plant is a continuous, remotely operated, flexible facility that can significantly enhance safety and environmental...

  9. 10 CFR 50.55 - Conditions of construction permits, early site permits, combined licenses, and manufacturing...

    Science.gov (United States)

    2010-01-01

    ... construction or manufacture, or any defect found in the final design of a facility as approved and released for..., combined licenses, and manufacturing licenses. 50.55 Section 50.55 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance, Limitations, and Conditions of...

  10. Challenges with the introduction of radio-frequency identification systems into a manufacturer's supply chain - a pilot study

    Science.gov (United States)

    Kumar, Sameer; Kadow, Brooke B.; Lamkin, Melissa K.

    2011-05-01

    As radio-frequency identification (RFID) implementation becomes more widespread it is important for managers to consider if this technology is right for their businesses. This study examines challenges of RFID implementation along with a cost-benefit analysis of a pharmaceuticals manufacturer's supply chain. Research was gathered from a variety of sources on the topic of RFID to provide an in-depth analysis of challenges and benefits found with RFID systems. Furthermore, the study reviews the real case applications of the RFID technology in healthcare and customer services. Many of the challenges with RFID stem from improper planning of the synchronisation of the supply chain and the integration of RFID technology into facilities and software systems. Customer privacy, excess information and obsolete technology are also of concern to companies considering RFID. Benefits such as increased information sharing, product visibility and real-time information help to offset these challenges. In addition, pharmaceuticals manufacturer real case application showed cost savings from reducing labour and decreased opportunities for lost product counteract the expense to implement an RFID system. This study will be of value to managers who are attempting to implement RFID technology in their companies. It is intended that readers, both academics and practitioners, will be able to identify possible challenges and mitigate them as the RFID technology is put into practice.

  11. Topology Optimization for Reducing Additive Manufacturing Processing Distortions

    Science.gov (United States)

    2017-12-01

    distribution is unlimited. 1. Introduction Additive manufacturing (AM) is a production method that involves gradual, layer- by-layer building of material... design space—allowing the production of pre- viously unmanufacturable topologically optimized structures—constraints remain. One constraint, for...ARL-TR-8242•DEC 2017 US Army Research Laboratory Topology Optimization for ReducingAdditive Manufacturing ProcessingDistortions by Raymond A Wildman

  12. Additive manufacturing in maxillofacial reconstruction

    Directory of Open Access Journals (Sweden)

    Dincă Luciana Laura

    2017-01-01

    Full Text Available In this paper the benefits of using additive manufacturing technologies in maxillofacial reconstruction are highlighted. Based on a real clinical case, the paper describes the manufacture of an implant prototype replacing the right zygomatic bone and a part of maxilla using additive manufacturing technologies. The face is the most expressive part of the human body that makes us unique. It was shown that the maxillofacial prostheses help to improve the psychological state of patients affected by, because low self esteem feeling appears commonly to this patients with the facial defects. The aim of this paper is to show how using additive manufacturing technologies methods within this research, the producing a surgical model will help surgeon to improve the pre-operative planning. For this we used additive manufacturing technologies such as Stereolitography to achieve the biomodel and FDM-fused deposition modelling to obtain a prototype model because these technologies make it possible to obtain prosthesis according to the physical and mechanical requirements of the region of implantation.

  13. Development and Pilot Testing of Daily Interactive Voice Response (IVR) Calls to Support Antiretroviral Adherence in India: A Mixed-Methods Pilot Study.

    Science.gov (United States)

    Swendeman, Dallas; Jana, Smarajit; Ray, Protim; Mindry, Deborah; Das, Madhushree; Bhakta, Bhumi

    2015-06-01

    This two-phase pilot study aimed to design, pilot, and refine an automated interactive voice response (IVR) intervention to support antiretroviral adherence for people living with HIV (PLH), in Kolkata, India. Mixed-methods formative research included a community advisory board for IVR message development, 1-month pre-post pilot, post-pilot focus groups, and further message development. Two IVR calls are made daily, timed to patients' dosing schedules, with brief messages (pilot results (n = 46, 80 % women, 60 % sex workers) found significant increases in self-reported ART adherence, both within past three days (p = 0.05) and time since missed last dose (p = 0.015). Depression was common. Messaging content and assessment domains were expanded for testing in a randomized trial currently underway.

  14. Transfer of manufacturing units

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2008-01-01

    The ongoing and unfolding relocation of activities is one of the major trends, that calls for attention in the domain of operations management. In particular, prescriptive models outlining: stages of the process, where to locate, and how to establish the new facilities have been studied, while...... and dilemmas to be addressed when transferring manufacturing units....

  15. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ... Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To Provide... regulation to amend the calculation and monitoring provisions in the Electronics Manufacturing portion of the... Electronics Manufacturing 334111 Microcomputer manufacturing facilities. 334413 Semiconductor, photovoltaic...

  16. Volatile organic compounds and particulate matter in child care facilities in the District of Columbia: Results from a pilot study.

    Science.gov (United States)

    Quirós-Alcalá, L; Wilson, S; Witherspoon, N; Murray, R; Perodin, J; Trousdale, K; Raspanti, G; Sapkota, A

    2016-04-01

    Many young children in the U.S. spend a significant portion of their day in child care facilities where they may be exposed to contaminants linked to adverse health effects. Exposure data on volatile organic compounds (VOCs) and particulate matter (PM) in these settings is scarce. To guide the design of a larger exposure assessment study in urban child care facilities, we conducted a pilot study in which we characterized indoor concentrations of select VOCs and PM. We recruited 14 child care facilities in the District of Columbia (Washington, DC) and measured indoor concentrations of seven VOCs (n=35 total samples; 2-5 samples per facility): benzene, carbon tetrachloride, chloroform, ethylbenzene, o-xylene, p-xylene, and toluene in all facilities; and collected real-time PM measurements in seven facilities. We calculated descriptive statistics for contaminant concentrations and computed intraclass correlation coefficients (ICC) to evaluate the variability of VOC levels indoors. We also administered a survey to collect general health information on the children attending these facilities, and information on general housekeeping practices and proximity of facilities to potential sources of target contaminants. We detected six of the seven VOCs in the majority of child care facilities with detection frequencies ranging from 71% to 100%. Chloroform and toluene were detected in all samples. Median (range) concentrations for toluene, chloroform, benzene, o-xylene, ethylbenzene, and carbon tetrachloride were: 5.6µg/m(3) (0.6-16.5µg/m(3)), 2.8µg/m(3) (0.4-53.0µg/m(3)), 1.4µg/m(3) (below the limit of detection or air fresheners and/or scented candles were used in half of the facilities, and at least one child in each facility had physician-diagnosed asthma (median asthma prevalence rate=10.2%). We found quantifiable levels of VOCs and PM in the child care facilities sampled. Given that exposures to environmental contaminants during critical developmental stages may

  17. Integrated computer aided design simulation and manufacture

    OpenAIRE

    Diko, Faek

    1989-01-01

    Computer Aided Design (CAD) and Computer Aided Manufacture (CAM) have been investigated and developed since twenty years as standalone systems. A large number of very powerful but independent packages have been developed for Computer Aided Design,Aanlysis and Manufacture. However, in most cases these packages have poor facility for communicating with other packages. Recently attempts have been made to develop integrated CAD/CAM systems and many software companies a...

  18. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  19. CAD And Distributed Manufacturing Solutions for Pellet Boiler Producers

    Directory of Open Access Journals (Sweden)

    Timur Mamut

    2016-12-01

    Full Text Available The paper is summarizing the research activities that had been carried out for defining an appropriate manufacturing concept and the system architecture for a manufacturing plant of pellet boilers. The concept has been validated through the implementation of a solution of computer integrated manufacturing that includes a CAD platform and a CAM facility including laser cutting machines, rolling and welding machines and advanced technologies for assembly, quality control and testing.

  20. Design of good manufacturing facility for sterile radioactive pharmaceuticals

    International Nuclear Information System (INIS)

    Shin, B.C.; Choung, W.M.; Park, S.H.; Lee, K.I.; Park, J.H.; Park, K.B.

    2002-01-01

    Based on the GMP codes for radiopharmaceuticals in U.K. and some advanced countries, suitable guidelines for the production facility have been established and followed them up. The facility designs were fairly modified to maintain cleanliness criteria for installation in the existing radioisotope production facilities which are installed only in radiation safety points of view. Detailed design brief was drawn up by the Hyundai Engineering staffs, on the basis of initial planning and conceptual design was carried out by authors. Hot cells were installed in preparation room for radioactive handling. As hot cells under negative air pressure are not properly airtight, the surrounding environment was designed to keep less than class 10,000. Hot cells were designed to maintain less than class 1 0,000 and partially less than class 1 00 for production of sterile products. Final products will be autoclaved for sterilization after filling. To avoid contamination by microorganisms and particles of surrounding area, air curtain with vertical laminar flow will be installed between anteroom and corridor. In a pharmaceutical environment, the main consideration is the protection of the product. Thus, work station is held above ambient pressure. However, when handling radioactive materials, air pressure for work station should be lower than in surrounding areas to protect the operators and the remainder of the facility from airborne radioactive contamination. As Radiopharmaceuticals are radioactive materials for medical use, changing room could be held higher pressure than any other zones. It is expected that the facility will be effectively used for both routine preparation and research for sterile radiopharmaceuticals. (Author)

  1. Pilot research projects for underground disposal of radioactive wastes in the United States of America

    International Nuclear Information System (INIS)

    Stein, R.; Collyer, P.L.

    1984-01-01

    Disposal of commercial radioactive waste in the United States of America in a deep underground formation will ensure permanent isolation from the biosphere with minimal post-closure surveillance and maintenance. The siting, design and development, performance assessment, operation, licensing, certification and decommissioning of an underground repository have stimulated the development of several pilot research projects throughout the country. These pilot tests and projects, along with their resulting data base, are viewed as important steps in the overall location and construction of a repository. Beginning in the 1960s, research at pilot facilities has progressed from underground spent fuel tests in an abandoned salt mine to the production of vitrified nuclear waste in complex borosilicate glass logs. Simulated underground repository experiments have been performed in the dense basalts of Washington State, the volcanic tuffaceous rock of Nevada and both domal and bedded salts of Louisiana and Kansas. In addition to underground pilot in situ tests, other facilities have been constructed or modified to monitor the performance of spent fuel in dry storage wells and self-shielded concrete casks. As the National Waste Terminal Storage (NWTS) programme advances to the next stage of underground site characterization for each of three different geological sites, additional pilot facilities are under consideration. These include a Test and Evaluation Facility (TEF) for site verification and equipment performance and testing, as well as a salt testing facility for verification of in situ simulation equipment. Although not associated with the NWTS programme, the construction of the Waste Isolation Pilot Plant (WIPP) in the bedded salts of New Mexico is well under way for deep testing and experimentation with the defence programme's transuranic nuclear waste. (author)

  2. Additive manufacturing for the production of inserts for micro injection moulding

    DEFF Research Database (Denmark)

    Mischkot, Michael; Hansen, Hans Nørgaard; Pedersen, David Bue

    2015-01-01

    The production of inserts for micro injection moulding using additive manufacturing technology has the potential to greatly improve the efficiency of pilot production and reduce overall time to market. In this work, Digital Light Processing (DLP) was used to produce micro injection moulding inserts...

  3. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CUSTOM MOLDED PLASTIC PRODUCTS

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected ...

  4. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, M Ignacio

    2014-09-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique.

  5. Design of a continuous emissions monitoring system at a manufacturing facility recycling hazardous waste

    International Nuclear Information System (INIS)

    Harlow, G.; Bartman, C.D.; Renfroe, J.

    1991-01-01

    In March 1988, Marine Shale Processors, Inc. (MSP) initiated a project to incorporate a continuous emissions monitoring system (CEMS) at its manufacturing facility in Amelia, Louisiana, which recycles hazardous material into light-weight, general purpose aggregate. The stimuli for the project were: To quantify stack gas emissions for the purpose of risk assessment; To use the data generated for process control and evaluation purposes; and, MSP's commitment to advance the science of continuous monitoring of stack gas emissions. In order to successfully respond to these goals, MSP sought a system which could monitor combustion products such as NOx, SO 2 , HCl and CO 2 , as well as speciated organic compounds. Several analytical technologies and sampling system designs were reviewed to determine the best fit to satisfy the requirements. A process mass spectrometer and a heated sample extraction subsystem were selected for the project. The purpose of this paper is to review the available analytical technologies for CEMS and sample extraction subsystems and to describe the CEMS now installed at MSP

  6. Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters

    Science.gov (United States)

    Scott, Tia-Marie; Phillips, Patrick J.; Kolpin, Dana W.; Colella, Kaitlyn M.; Furlong, Edward T.; Foreman, William T.; Gray, James L.

    2018-01-01

    Discharges from pharmaceutical manufacturing facilities (PMFs) previously have been identified as important sources of pharmaceuticals to the environment. Yet few studies are available to establish the influence of PMFs on the pharmaceutical source contribution to wastewater treatment plants (WWTPs) and waterways at the national scale. Consequently, a national network of 13 WWTPs receiving PMF discharges, six WWTPs with no PMF input, and one WWTP that transitioned through a PMF closure were selected from across the United States to assess the influence of PMF inputs on pharmaceutical loading to WWTPs. Effluent samples were analyzed for 120 pharmaceuticals and pharmaceutical degradates. Of these, 33 pharmaceuticals had concentrations substantially higher in PMF-influenced effluent (maximum 555,000 ng/L) compared to effluent from control sites (maximum 175 ng/L). Concentrations in WWTP receiving PMF input are variable, as discharges from PMFs are episodic, indicating that production activities can vary substantially over relatively short (several months) periods and have the potential to rapidly transition to other pharmaceutical products. Results show that PMFs are an important, national-scale source of pharmaceuticals to the environment.

  7. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    Science.gov (United States)

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  8. PWR heavy equipments manufacture for nuclear power plants

    International Nuclear Information System (INIS)

    Boury, C.; Terrien, J.F.

    1983-10-01

    The manufacture of boilers has been imported by the French nuclear program to the societe FRAMATOME. FRAMATOME, because of the size of this market, has constructed two special plants for manufacturing of nuclear components (vapor generators, reactor tanks, pressurizers); these two high technical facilities are presented: production, staff training, technical overseas assistance, and technical and economical repercussions on the industrial vicinity [fr

  9. Production of RVNRL and manufacture of products from it

    International Nuclear Information System (INIS)

    Vijayakumar, K.C.; Jacob, J.

    1996-01-01

    The procedure of the trial irradiation of latex at the pilot plant are discussed. Factory influencing the quality of RVNRL during trial production are identified. Procedure for processing of radiation prevulcanised latex into end products has been standardised. Household gloves, industrial gloves, to), balloons, blood transfusion tubes and nipples are manufactured commercially from RVNRL produced at Rubber Board

  10. Quality of frozen fruit bars manufactured through infrared pre-dehydration

    Science.gov (United States)

    In this study, frozen restructured whole apple and strawberry bars were manufactured by partial dehydration, using infrared (IR) heating, followed by restructuring and freezing. The objective of this investigation was to determine the effect of IR partial dehydration on the quality of restructured f...

  11. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Science.gov (United States)

    2011-06-22

    ... Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing (Subpart I) To... proposing changes to the calculation and monitoring provisions in the Electronics Manufacturing portion... Category Examples of affected Category NAICS facilities Electronics Manufacturing......... 334111...

  12. Information technology in fuel manufacturing

    International Nuclear Information System (INIS)

    Seshagiri Rao, G.R.; Arora, U.K.; Mohanty, Deepak; Siva Kumar, G.V.S.M.; Banerjee, P.K.

    2012-01-01

    NFC, Hyderabad is engaged in manufacturing of fuel assemblies required for Indian Nuclear Power Programme. During the manufacturing process, the basic Uranium Fuel and Zirconium alloy cladding tubes travels through several work centers, machines and exposes to various process parameters. For analyzing the fuel performance these parameters are indicators and is a requirement to record such history by both manufacturer and customer. NFC has planned to deploy Information Technology (IT) Systems from MDU/UOC Dissolution to Finished Fuel Assembly dispatch stage by using Radio Frequency IDentification (RFID)/Barcode Technologies. IT Systems are connected to electronic weigh balances to acquire material weight data automatically. The IT Systems are also designed to receive data from small Island Systems like Helium leak testing equipments. As a pilot project the system is initially implemented from empty tube Tray preparation stage to Fuel Assembly Packing and dispatch stage, containing about more than 14 processes. The system was built using open source technology platform and was deployed on a cost effective Hardware environment. The present paper describes the development process of the system, Implementation challenges faced and change management. The paper also discusses about fruits of implementation and productivity improvements. (author)

  13. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented

  14. Setup of a Biomedical Facility to Study Physiologically Relevant Flow-Structure Interactions

    Science.gov (United States)

    Mehdi, Faraz; Sheng, Jian

    2013-11-01

    The design and implementation of a closed loop biomedical facility to study arterial flows is presented. The facility has a test section of 25 inches, and is capable of generating both steady and pulsatile flows via a centrifugal and a dual piston pump respectively. The Reynolds and Womersley numbers occurring in major blood vessels can be matched. The working fluid is a solution of NaI that allows refractive index matching with both rigid glass and compliant polymer models to facilitate tomographic PIV and holographic PIV. The combination of these two techniques allows us to study both large scale flow features as well as flows very close to the wall. The polymer models can be made with different modulus of elasticity and can be pre-stressed using a 5-axis stage. Radially asymmetric patches can also be pre-fabricated and incorporated in the tube during the manufacturing process to simulate plaque formation in arteries. These tubes are doped with tracer particles allowing for the measurement of wall deformation. Preliminary flow data over rigid and compliant walls is presented. One of the aims of this study is to characterize the changes in flow as the compliancy of blood vessels change due to age or disease, and explore the fluid interactions with an evolving surface boundary.

  15. Exposure monitoring of graphene nanoplatelets manufacturing workplaces.

    Science.gov (United States)

    Lee, Ji Hyun; Han, Jong Hun; Kim, Jae Hyun; Kim, Boowook; Bello, Dhimiter; Kim, Jin Kwon; Lee, Gun Ho; Sohn, Eun Kyung; Lee, Kyungmin; Ahn, Kangho; Faustman, Elaine M; Yu, Il Je

    2016-01-01

    Graphenes have emerged as a highly promising, two-dimensional engineered nanomaterial that can possibly substitute carbon nanotubes. They are being explored in numerous R&D and industrial applications in laboratories across the globe, leading to possible human and environmental exposures to them. Yet, there are no published data on graphene exposures in occupational settings and no readily available methods for their detection and quantitation exist. This study investigates for the first time the potential exposure of workers and research personnel to graphenes in two research facilities and evaluates the status of the control measures. One facility manufactures graphene using graphite exfoliation and chemical vapor deposition (CVD), while the other facility grows graphene on a copper plate using CVD, which is then transferred to a polyethylene terephthalate (PET) sheet. Graphene exposures and process emissions were investigated for three tasks - CVD growth, exfoliation, and transfer - using a multi-metric approach, which utilizes several direct reading instruments, integrated sampling, and chemical and morphological analysis. Real-time instruments included a dust monitor, condensation particle counter (CPC), nanoparticle surface area monitor, scanning mobility particle sizer, and an aethalometer. Morphologically, graphenes and other nanostructures released from the work process were investigated using a transmission electron microscope (TEM). Graphenes were quantified in airborne respirable samples as elemental carbon via thermo-optical analysis. The mass concentrations of total suspended particulate at Workplaces A and B were very low, and elemental carbon concentrations were mostly below the detection limit, indicating very low exposure to graphene or any other particles. The real-time monitoring, especially the aethalometer, showed a good response to the released black carbon, providing a signature of the graphene released during the opening of the CVD reactor

  16. Evaluation of a laboratory quality assurance pilot programme for malaria diagnostics in low-transmission areas of Kenya, 2013.

    Science.gov (United States)

    Wanja, Elizabeth; Achilla, Rachel; Obare, Peter; Adeny, Rose; Moseti, Caroline; Otieno, Victor; Morang'a, Collins; Murigi, Ephantus; Nyamuni, John; Monthei, Derek R; Ogutu, Bernhards; Buff, Ann M

    2017-05-25

    One objective of the Kenya National Malaria Strategy 2009-2017 is scaling access to prompt diagnosis and effective treatment. In 2013, a quality assurance (QA) pilot was implemented to improve accuracy of malaria diagnostics at selected health facilities in low-transmission counties of Kenya. Trends in malaria diagnostic and QA indicator performance during the pilot are described. From June to December 2013, 28 QA officers provided on-the-job training and mentoring for malaria microscopy, malaria rapid diagnostic tests and laboratory QA/quality control (QC) practices over four 1-day visits at 83 health facilities. QA officers observed and recorded laboratory conditions and practices and cross-checked blood slides for malaria parasite presence, and a portion of cross-checked slides were confirmed by reference laboratories. Eighty (96%) facilities completed the pilot. Among 315 personnel at pilot initiation, 13% (n = 40) reported malaria diagnostics training within the previous 12 months. Slide positivity ranged from 3 to 7%. Compared to the reference laboratory, microscopy sensitivity ranged from 53 to 96% and positive predictive value from 39 to 53% for facility staff and from 60 to 96% and 52 to 80%, respectively, for QA officers. Compared to reference, specificity ranged from 88 to 98% and negative predictive value from 98 to 99% for health-facility personnel and from 93 to 99% and 99%, respectively, for QA officers. The kappa value ranged from 0.48-0.66 for facility staff and 0.57-0.84 for QA officers compared to reference. The only significant test performance improvement observed for facility staff was for specificity from 88% (95% CI 85-90%) to 98% (95% CI 97-99%). QA/QC practices, including use of positive-control slides, internal and external slide cross-checking and recording of QA/QC activities, all increased significantly across the pilot (p malaria QA/QC practices over the pilot. However, these advances did not translate into improved accuracy of

  17. 76 FR 39128 - Manufacturer of Controlled Substances; Notice of Registration

    Science.gov (United States)

    2011-07-05

    ... February 23, 2011, 76 FR 10068, Johnson Matthey Pharmaceutical Materials Inc., Pharmaceutical Service, 25...) II Sufentanil (9740) II Hydrocodone (9193) II The company plans to utilize this facility to... support of the company's primary manufacturing facility in West Deptford, New Jersey. The controlled...

  18. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  19. Simulated annealing and joint manufacturing batch-sizing

    Directory of Open Access Journals (Sweden)

    Sarker Ruhul

    2003-01-01

    Full Text Available We address an important problem of a manufacturing system. The system procures raw materials from outside suppliers in a lot and processes them to produce finished goods. It proposes an ordering policy for raw materials to meet the requirements of a production facility. In return, this facility has to deliver finished products demanded by external buyers at fixed time intervals. First, a general cost model is developed considering both raw materials and finished products. Then this model is used to develop a simulated annealing approach to determining an optimal ordering policy for procurement of raw materials and also for the manufacturing batch size to minimize the total cost for meeting customer demands in time. The solutions obtained were compared with those of traditional approaches. Numerical examples are presented. .

  20. Benchmarks of Global Clean Energy Manufacturing: Summary of Findings

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  1. Combustion behaviour and deposition characteristics of Cynara Cardunculus/Greek lignite co-firing under various thermal shares in a thermal pilot-scale facility

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Aaron; Maier, Joerg; Scheffknecht, Guenter [Stuttgart Univ. (Germany). Inst. of Combustion and Power Plant Technology; Pawlak-Kruczek, Halina [Wroclaw Univ. of Technology (Poland). Inst. of Heat Engineering and Fluid Mechanics; Karampinis, Emmanouil; Grammelis, Panagiotis; Kakaras, Emmanuel [Centre for Research and Technology Hellas, Ptolemais (Greece). Chemical Process and Energy Resources Inst.; National Technical Univ. of Athens (Greece). Lab. of Steam Boilers and Thermal Plants

    2013-06-01

    The combustion of herbaceous biomass in industrial boilers, either as co-firing fuel or in dedicated combustion units, possess significant operating challenges due to increased risks for corrosion and slagging/fouling. The present work aims at investigating the combustion behaviour of Cynara Cardunculus (cardoon) in a range of thermal shares (0 to 100 %) with a Greek lignite. Combustion tests were performed in a 0.5 MW thermal input pulverised fuel pilot-scale test facility. Deposits were characterised in terms of morphological and ash fusion behaviour, and slagging/fouling tendencies were determined. (orig.)

  2. Pilot plant study for treating sewage in the waste water treatment plant at Crevillente-Derramador, Alicante, Spain; Estudio con plant piloto para el tratamiento de aguas residuales en la EDAR de Crevillente-Derramador (Alicante)

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla Martinez, J. J.; Bernacer Bonora, I.; Santos Asensi, J. M.; Martinez Muro, M. A.; Sanchez Ventral, A.; Martinez Cosin, J. M.

    2002-07-01

    It is much easier to carry out preliminary studies before a waste water treatment plant is built or enlarged or to identify existing problems and their possible solutions by using a portable pilot plant that is capable of operating under real conditions using the actual waste water that is causing the problem. A pilot plant was used to conduct treatability studies on the ground in the waste water treatment plant at Crevillente-Derramador, Alicante, Spain. The project was set up and directed by the Public Waste Water Treatment Agency of the Autonomous Community of Valencia. The work was aimed at finding a solution to existing problems in the plant and in pre dimensioning its future facilities. (Author) 8 refs.

  3. QA engineering for the LCP USA magnet manufacturers

    International Nuclear Information System (INIS)

    Childress, C.E.; Batey, J.E.; Burn, P.B.

    1981-01-01

    This paper describes the QA and QC efforts and results used in fabricating the superconducting magnets of competing designs being developed by American Manufacturers for testing in the ORNL Large Coil Test Facility. Control of the design, materials and processes to assure proper functioning of the magnets in the test facility as well as the content of archival data being compiled is discussed

  4. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  5. Robotics In Manufacturing: Army View

    Science.gov (United States)

    Michel, F. J.

    1983-05-01

    (Figure 1) This is an outline of my presentation today. The U. S. Army has a dual interest in the use of robots, namely: 1. As a substitute for or an extension of the soldier in the battlefield, and 2. in the factories that make Army materiel, or - as we call it -the the production base. The Production Base can again be divided into three separate segments, i.e., the Army owned and operated facilities or GOG6s, such as Rock Island and Watervliet arsenals, and not to be overlooked, the depot operations. There the Army manufactures gun tubes and other related parts for artillery weapons and repairs and overhauls them. A second category is the Army owned and contractor operated facilities or GOCOs,such as the ammunition plants, the tank plants at Lima, Ohio and Warren, Michigan and the Stratford Engine Plant in Connecticut where gas turbines for helicopter and the Abrams tank are manufactured. The last category covers the industrial base, that is those factories which are not only operated but also owned by the contractor himself also referred to as COCOs. You can see from this description that the Army is supported by a base which produces a diversified line of products. Therefore, the task of technology development and technology insertion is considerably more complex than what one encounters in the average U. S. Manufacturing organization.

  6. A Single-use Strategy to Enable Manufacturing of Affordable Biologics

    OpenAIRE

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adop...

  7. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.; Johnson, J. R.; Williams, P. J.; Koros, W. J.

    2012-01-01

    research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system

  8. Additively Manufactured, Net Shape Powder Metallurgy Cans for Valves Used in Energy Production

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H. [ORNL; Gandy, David [Electric Power Research Institute (EPRI); Lannom, Robert [Oak Ridge National Laboratory (ORNL)

    2018-01-01

    This CRADA NFE-14-05241 was conducted as a Technical Collaboration project within the Oak Ridge National Laboratory (ORNL) Manufacturing Demonstration Facility (MDF) sponsored by the US Department of Energy Advanced Manufacturing Office (CPS Agreement Number 24761). Opportunities for MDF technical collaborations are listed in the announcement “Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced Manufacturing and Materials Technologies” posted at http://web.ornl.gov/sci/manufacturing/docs/FBO-ORNL-MDF-2013-2.pdf. The goal of technical collaborations is to engage industry partners to participate in short-term, collaborative projects within the Manufacturing Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.ORNL would like to acknowledge the leadership of EPRI in pulling together the extensive team and managing the execution of the project. In addition, ORNL would like to acknowledge the other contributions of the team members associated with this project. Quintus provided time, access, expertise, and labor of their hydro forming capabilities to evaluate both conventional and additively manufactured tools through this process. Crane ChemPharma Energy provided guidance and information on valve geometries. Carpenter Powder Products was involved with the team providing information on powder processing as it pertains to the canning and hot isostatic pressing of powder. on providing powder and knowledge as it pertains to powder supply for hot isostatic pressing; they also provided powder for the test trials by the industrial team. Bodycote provided guidance on hot isostatic pressing and can requirements. They were also responsible for the hot isostatic pressing of the test valve

  9. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Moy, Ming M.; Leasure, Craig S.

    1998-01-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately$16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition,$8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately$35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004

  10. New achievements in RF cavity manufacturing

    International Nuclear Information System (INIS)

    Lippmann, G.; Pimiskern, K.; Kaiser, H.

    1993-01-01

    Dornier has been engaged in development, manufacturing and testing of Cu-, Cu/Nb- and Nb-cavities for many years. Recently, several different types of RF cavities were manufactured. A prototype superconducting (s.c.) B-Factory accelerating cavity (1-cell, 500 MHz) was delivered to Cornell University, Laboratory of Nuclear Studies. A second lot of 6 s.c. cavities (20-cell, 3000 MHz) was fabricated on contract from Technical University of Darmstadt for the S-DALINAC facility. Finally, the first copper RF structures (9-cell, 1300 MHz) for TESLA were finished and delivered to DESY, two s.c. niobium structures of the same design are in production. Highlights from the manufacturing processes of these cavities are described and first performance results will be reported

  11. Phase 1 sampling and analysis plan for the 304 Concretion Facility closure activities

    International Nuclear Information System (INIS)

    Adler, J.G.

    1994-01-01

    This document provides guidance for the initial (Phase 1) sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 304 Concretion Facility. Over its service life, the 304 Concretion Facility housed the pilot plants associated with cladding uranium cores, was used to store engineering equipment and product chemicals, was used to treat low-level radioactive mixed waste, recyclable scrap uranium generated during nuclear fuel fabrication, and uranium-titanium alloy chips, and was used for the repackaging of spent halogenated solvents from the nuclear fuels manufacturing process. The strategy for clean closure of the 304 Concretion Facility is to decontaminate, sample (Phase 1 sampling), and evaluate results. If the evaluation indicates that a limited area requires additional decontamination for clean closure, the limited area will be decontaminated, resampled (Phase 2 sampling), and the result evaluated. If the evaluation indicates that the constituents of concern are below action levels, the facility will be clean closed. Or, if the evaluation indicates that the constituents of concern are present above action levels, the condition of the facility will be evaluated and appropriate action taken. There are a total of 37 sampling locations comprising 12 concrete core, 1 concrete chip, 9 soil, 11 wipe, and 4 asphalt core sampling locations. Analysis for inorganics and volatile organics will be performed on the concrete core and soil samples. Separate concrete core samples will be required for the inorganic and volatile organic analysis (VOA). Analysis for inorganics only will be performed on the concrete chip, wipe, and asphalt samples

  12. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-del Pozo, Julia Mª; Guerra-Romero, M. Ignacio

    2014-01-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique. PMID:28788188

  13. Modular manufacturing processes : Status, challenges, and opportunities

    NARCIS (Netherlands)

    Baldea, Michael; Edgar, Thomas F.; Stanley, Bill L.; Kiss, Anton A.

    2017-01-01

    Chemical companies are constantly seeking new, high-margin growth opportunities, the majority of which lie in high-grade, specialty chemicals, rather than in the bulk sector. To realize these opportunities, manufacturers are increasingly considering decentralized, flexible production facilities:

  14. An evaluation of the effectiveness of the EPA comply code to demonstrate compliance with radionuclide emission standards at three manufacturing facilities

    International Nuclear Information System (INIS)

    Smith, L.R.; Laferriere, J.R.; Nagy, J.W.

    1991-01-01

    Measurements of airborne radionuclide emissions and associated environmental concentrations were made at, and in the vicinity of, two urban and one suburban facility where radiolabeled chemicals for biomedical research and radiopharmaceuticals are manufactured. Emission, environmental and meteorological measurements were used in the EPA COMPLY code and in environmental assessment models developed specifically for these sites to compare their ability to predict off-site measurements. The models and code were then used to determine potential dose to hypothetical maximally exposed receptors and the ability of these methods to demonstrate whether these facilities comply with proposed radionuclide emission standards assessed. In no case did the models and code seriously underestimate off-site impacts. However, for certain radionuclides and chemical forms, the EPA COMPLY code was found to overestimate off-site impacts by such a large factor as to render its value questionable for determining regulatory compliance. Recommendations are offered for changing the code to enable it to be more serviceable to radionuclide users and regulators

  15. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  16. Some tooling for manufacturing research reactor fuel plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment. (author)

  17. Some Tooling for Manufacturing Research Reactor Fuel Plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment

  18. ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF PRINTED PLASTIC BAGS

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established ...

  19. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  20. Design and construction of the microalgal pilot facility AlgaePARC

    NARCIS (Netherlands)

    Bosma, R.; Vree, de J.H.; Slegers, P.M.; Janssen, M.G.J.; Wijffels, R.H.; Barbosa, M.J.

    2014-01-01

    Microalgae gained much interest from industry as promising sustainable feedstock for the production of food, feed, bulk chemicals, and biofuels. Pilot scale research on microalgae is needed to bridge the gap between laboratory scale research and commercial applications. The AlgaePARC (Algae

  1. WTP Pilot-Scale Evaporation Tests

    International Nuclear Information System (INIS)

    QURESHI, ZAFAR

    2004-01-01

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  2. Regional energy facility siting analysis

    International Nuclear Information System (INIS)

    Eberhart, R.C.; Eagles, T.W.

    1976-01-01

    Results of the energy facility siting analysis portion of a regional pilot study performed for the anticipated National Energy Siting and Facility Report are presented. The question of cell analysis versus site-specific analysis is explored, including an evaluation of the difference in depth between the two approaches. A discussion of the possible accomplishments of regional analysis is presented. It is concluded that regional sitting analysis could be of use in a national siting study, if its inherent limits are recognized

  3. Hydrogen manufacturing using plasma reformers

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  4. Pre-test analysis for identification of natural circulation instabilities in TALL-3D facility

    Energy Technology Data Exchange (ETDEWEB)

    Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2017-04-01

    Highlights: • Global optimum search method was used to identify a region of instability. • Parametric study was used for detailed investigation of system behavior modes. • The results include identification of sustained mass flow rate oscillations. • Recommendations are made for selection of optimal experimental conditions. - Abstract: TALL-3D facility is a lead-bismuth eutectic (LBE) thermal-hydraulic loop designed to provide experimental data on thermal-hydraulics phenomena for validation of stand-alone and coupled System Thermal Hydraulics (STH) and Computational Fluid Dynamics (CFD) codes. Pre-test analysis is crucial for proper choice of experimental conditions at which the experimental data would be most useful for code validation and benchmarking. The goal of this work is to identify these conditions at which the experiment is challenging for the STH codes yet minimizes the 3D-effects from the test section on the loop dynamics. The analysis is focused on the identification of limit cycle flow oscillations in the TALL-3D facility main heater leg using a global optimum search tool GA-NPO to find a general region in the parameter space where oscillatory behavior is expected. As a second step a grid study is conducted outlining the boundaries between different stability modes. Phenomena, simulation results and methodology for selection of the test parameters are discussed in detail and recommendations for experiments are provided.

  5. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  6. Adaptive Controller Effects on Pilot Behavior

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.

    2014-01-01

    Adaptive control provides robustness and resilience for highly uncertain, and potentially unpredictable, flight dynamics characteristic. Some of the recent flight experiences of pilot-in-the-loop with an adaptive controller have exhibited unpredicted interactions. In retrospect, this is not surprising once it is realized that there are now two adaptive controllers interacting, the software adaptive control system and the pilot. An experiment was conducted to categorize these interactions on the pilot with an adaptive controller during control surface failures. One of the objectives of this experiment was to determine how the adaptation time of the controller affects pilots. The pitch and roll errors, and stick input increased for increasing adaptation time and during the segment when the adaptive controller was adapting. Not surprisingly, altitude, cross track and angle deviations, and vertical velocity also increase during the failure and then slowly return to pre-failure levels. Subjects may change their behavior even as an adaptive controller is adapting with additional stick inputs. Therefore, the adaptive controller should adapt as fast as possible to minimize flight track errors. This will minimize undesirable interactions between the pilot and the adaptive controller and maintain maneuvering precision.

  7. WIPP facility representative program plan

    International Nuclear Information System (INIS)

    1994-01-01

    This plan describes the Department of Energy (DOE), Carlsbad Area Office (CAO) facility representative (FR) program at the Waste Isolation Pilot Plant (WIPP). It provides the following information: (1) FR and support organization authorities and responsibilities; (2) FR program requirements; and (3) FR training and qualification requirements

  8. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  9. Surrogate Plant Data Base : Volume 4. Appendix E : Medium and Heavy Truck Manufacturing

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  10. WIPP conceptual design report. Addendum C. Cost worksheets for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The cost worksheets for the Waste Isolation Pilot Plant (WIPP) are presented. A summary cost estimate, cost estimate for surface facilities, and cost estimate for shafts and underground facilities are included

  11. General features of conceptual design for the pilot plant to manufacture fuel rods from mixed oxides

    International Nuclear Information System (INIS)

    Quesada, C.A.; Adelfang, P.; Esteban, A.; Aparicio, G.; Friedenthal, M.; Orlando, O.S.

    1987-01-01

    This paper conceptually describes: 1) the processes in the manufacturing lines; 2) the distribution of quality controls and glove boxes in manufacturing lines; 3) the Control and Radiological Safety Room; 4) the Dressing Room; 5) the requirements of the ventilation system. The plant will be located in the first floor of the Radiochemical Processes Laboratory building, occupying a surface of 600 m 2 . The necessary equipment for the following manufacturing lines will be provided: a) conversion from Pu(NO3)4 to PuO 2 (through Pu(III)oxalate); b) manufacture of homogeneous of mixed oxides of U and Pu; c) manufacture of (U,Pu)O 2 pellets; d) manufacture of fuel rods of mixed uranium and plutonium oxides. (Author)

  12. Safeguardability assessment on pilot-scale advanced spent fuel conditioning facility

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Pickett, S.E.; Miller, M.C.; Ko, W.I.; Kim, H.D.

    2006-01-01

    Full text: In South Korea, approximately 6,000 metric tons of spent nuclear fuel from commercial reactor operation has been accumulated with the expectation of more than 30,000 metric tons, three times the present storage capacity, by the end of 2040. To resolve these challenges in spent fuel management, the Korea Atomic Energy Research Institute (KAERI) has been developing a dry reprocessing technology called Advanced Spent Fuel Conditioning Process (ACP). This is an electrometallurgical treatment technique to convert oxide-type spent fuel into a metallic form, and the electrolytic reduction (ER) technology developed recently is known as a more efficient concept for spent fuel conditioning. The goal of the ACP study is to recover more than 99% of the actinide elements into a metallic form with minimizing the volume and heat load of spent fuel. The significant reduction of the volume and heat load of spent fuel is expected to lighten the burden of final disposal in terms of disposal size, safety, and economics. In the framework of R and D collaboration for the ACP safeguards, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and KAERI. The purpose of this study is to address the safeguardability of the ACP technology, through analysis of material flow and development of a proper safeguards system that meet IAEA's comprehensive safeguards objective. The sub-processes and material flow of the pilot-scale ACP facility were analyzed, and subsequently the relevant material balance area (MBA) and key measurement point (KMP) were designed for material accounting. The uncertainties in material accounting were also estimated with international target values, and design requirements for the material accounting systems were derived

  13. Sunglass Filter Transmission and Its Operational Effect in Solar Protection for Civilian Pilots.

    Science.gov (United States)

    Chorley, Adrian C; Lyachev, Andrey; Higlett, Michael P; Khazova, Marina; Benwell, Martin J; Evans, Bruce J W

    2016-05-01

    The ocular effects of excess solar radiation exposure are well documented. Recent evidence suggests that ocular ultraviolet radiation (UVR) exposure to professional pilots may fall outside international guideline limits unless eye protection is used. Nonprescription sunglasses should be manufactured to meet either international or national standards. The mean increase in UVR and blue light hazards at altitude has been quantified and the aim of this research was to assess the effectiveness of typical pilot sunglasses in reducing UVR and blue light hazard exposure in flight. A series of sunglass filter transmittance measurements were taken from personal sunglasses (N = 20) used by pilots together with a series of new sunglasses (N = 18). All nonprescription sunglasses measured conformed to international standards for UVR transmittance and offered sufficient UVR protection for pilots. There was no difference between right and left lenses or between new and used sunglasses. All sunglasses offered sufficient attenuation to counter the mean increase in blue light exposure that pilots experience at altitude, although used sunglasses with scratched lenses were marginally less effective. One pair of prescription sunglasses offered insufficient UVR attenuation for some flights, but would have met requirements of international and national standards for UV-A transmittance. This was likely due to insufficient UVR blocking properties of the lens material. Lenses manufactured to minimally comply with standards for UVR transmittance could result in excess UVR exposure to a pilot based on in-flight irradiance data; an additional requirement of less than 10% transmittance at 380 nm is recommended.

  14. Delisting strategy for the Hanford Site 242-A Evaporator PUREX Plant Condensate Treatment Facility

    International Nuclear Information System (INIS)

    1992-04-01

    This document describes the strategy that the US Department of Energy, Richland Field Office intends to use in preparing the delisting petition for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Because the 242-A Evaporator/PUREX Plant Condensate Treatment Facility will not be operational until 1994, the delisting petition will be structured as an up-front petition based on the ''multiple waste treatment facility'' approach outline in the 1985 US Environmental Protection Agency's Petitions to Delist Hazardous Waste. The 242-A evaporator/PUREX Plant Condensate Treatment Facility effluent characterization data will not be available to support the delisting petition, because the delisting petition will be submitted to the US Environmental Protection Agency before start-up of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Therefore, the delisting petition will be based on data collected during the pilot plant testing for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. This pilot plant testing will be conducted on synthetic waste. The composition of the synthetic waste will be based on: (1) constituents of regulatory concern, and (2) on process knowledge. The pilot plant testing will be performed to determine the removal efficiencies of the process equipment at concentrations greater than reasonably could be expected in the actual waste. This strategy document also describes the logic used to develop the synthetic waste, to develop the pilot plant testing program, and to prepare the delisting petition. This strategy document also described how full-scale operating data will be collected during initial operation of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility to verify information presented in the delisting petition

  15. Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  16. Pilot-scale reactor activation facility at SRL

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1976-01-01

    The Hydrogeocemical and Stream Sediment Reconnaissance portion of the National Uranium Resource Evaluation program requires an analytical technique for uranium and other elements. Based on an automated absolute activation analysis technique using 252 Cf, a pilt-scale facility installed in a production reactor has provided analyses for 2800 samples. Key features include: an automated sample transport system, a delayed neutron detector, two GeLi detectors, a loader, and an unloader, with all components controlled by a microprocessor; a dedicated PDP-9 computer and pulse height analyzer; and correlation and reduction of acquired data by a series of programs using an IBM 360/195 computer. The facility was calibrated with elemental and isotopic standards. Results of analyses of standard reference materials and operational detection limits for typical sediment samples are presented. Plans to increase sample throughput are discussed briefly

  17. ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION FOR A MANUFACTURER OF COMPRESSED AIR EQUIPMENT COMPONENTS

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...

  18. The present status and future growth of maintenance in US manufacturing: results from a pilot survey.

    Science.gov (United States)

    Jin, Xiaoning; Siegel, David; Weiss, Brian A; Gamel, Ellen; Wang, Wei; Lee, Jay; Ni, Jun

    A research study was conducted (1) to examine the practices employed by US manufacturers to achieve productivity goals and (2) to understand what level of intelligent maintenance technologies and strategies are being incorporated into these practices. This study found that the effectiveness and choice of maintenance strategy were strongly correlated to the size of the manufacturing enterprise; there were large differences in adoption of advanced maintenance practices and diagnostics and prognostics technologies between small and medium-sized enterprises (SMEs). Despite their greater adoption of maintenance practices and technologies, large manufacturing organizations have had only modest success with respect to diagnostics and prognostics and preventive maintenance projects. The varying degrees of success with respect to preventative maintenance programs highlight the opportunity for larger manufacturers to improve their maintenance practices and use of advanced prognostics and health management (PHM) technology. The future outlook for manufacturing PHM technology among the manufacturing organizations considered in this study was overwhelmingly positive; many manufacturing organizations have current and planned projects in this area. Given the current modest state of implementation and positive outlook for this technology, gaps, future trends, and roadmaps for manufacturing PHM and maintenance strategy are presented.

  19. Special emission measurements on Riley Stoker's advanced CFB pilot facility co-firing non-recyclable de-inking paper fiber and high sulfur eastern bituminous coal

    International Nuclear Information System (INIS)

    Dixit, V.B.; Mongeon, R.K.; Reicker, E.L.

    1993-01-01

    Riley Stoker has developed advanced industrial CFB designs that utilize eastern bituminous coals as fuel, and have the potential to use coal in combination with other fuels. Various fiber waste streams in paper recycling processes have sufficient carbonaceous content to be considered as possible sources of such fuels that could fire FBC combustors. The American Paper Institute estimates that by the mid-1990's more than 40% of the waste paper will be recycled, reaching much higher numbers by the year 2000. To evaluate the effectiveness of co-firing such fuels, a test program was conducted on Riley's pilot-scale circulating fluidized bed test facility. A de-inked newsprint derived fiber waste was successfully co-fired with high sulfur coal. The waste fiber material containing approximately 50% moisture had a heating value of 3500 Btu/lb. The coal was strip-mined and contained a lot of clay and excessive quantities of fines making it difficult to burn in conventional boilers. Tests were also conducted with a combination fuel consisting of coal, fiber waste and a high carbon fly ash. In addition to obtaining performance data on combustion efficiency, sulfur capture, and NO x emissions, special emission measurements were also made to quantify the organics, trace metals and hydrochloric acid levels in the flue gas. The co-firing tests achieved a maximum combustion efficiency of 98% and sulfur capture of 90%. The effect of Ca/S mole ratio and temperature is discussed. Although there are no formal regulations in place for FBC systems regarding special emissions, the levels measured were far below the allowable limits for waste incinerators. Materials handling experience on the pilot facility relating to co-firing is also discussed. This is done to identify special considerations for designing commercial facilities. A brief overview of the de-inking waste fiber combustion market is also presented

  20. 'Serial review on clinical PET tracers'. Manufacturing and quality control of positron emitting radiopharmaceuticals produced by in-house cyclotron

    International Nuclear Information System (INIS)

    Saji, Hideo

    2009-01-01

    In order to establish PET diagnosis as a routine clinical tool, manufacture's compliance with regulations under the Good Manufacturing Practice (GMP) principle for PET radiopharmaceuticals is necessary. For this purpose, the Sub-committee on Medical Application of Positron Emitting Radionuclides, Medical Science and Pharmaceutical Committee of Japan Radioisotopes Association has proposed 'Standards for Compounds Labeled with Emitting Radionuclides Approved as Established Techniques for Medical Use'. This guideline includes the general notices, general rules for preparations, general tests for the quality control, quality of each PET agents, guideline for manufacturing environment and manufacturing process at manufacturing facilities of PET agents. Each facility should have a committee and establish an internal system to account for manufacturing compounds labeled with positron emitting radionuclides produced in the facility, and compile standards by referring to the 'Established Standard Techniques of Labeling Compounds with Emitting Radionuclides for use as Radiopharmaceuticals: approved by the Subcommittee on Medical Application of Cyclotron-Produced Radionuclides (revised in 2009)', in order to maintain the quality of radiopharmaceuticals. (author)

  1. Results of the examinations of the W7-X pre-series target elements

    International Nuclear Information System (INIS)

    Boscary, J.; Boeswirth, B.; Greuner, H.; Streibl, B.; Missirlian, M.; Schlosser, J.; Schedler, B.; Scheiber, K.

    2006-01-01

    The highly heat-loaded area of the target plates of the WENDELSTEIN 7-X (W7-X) divertor is formed by 890 water-cooled target elements (TEs). This surface is designed to sustain a maximum stationary heat flux of 10 MW/m 2 and to remove a maximum power of 100 kW per element. Flat tiles made of CFC Sepcarb(r) NB31 are bonded to a CuCrZr heat sink. This joint is manufactured in two stages. In the first step, an OFHC copper interlayer is cast onto the tile by active metal casting (AMC(r)). At this stage, the joint copper-CFC is inspected by X-ray and lock-in thermography. In the second step, the AMC(r)-NB31 tiles are joined to CuCrZr. Two technologies have been investigated: electron beam welding (EBW) and hot isostatic pressing (HIP). The joint copper-CuCrZr is examined by ultrasonic method. At the end of the fabrication, the bond between the heat sink and the CFC tiles is inspected by thermography methods. The produced CFC NB31 material for W7-X showed a large scatter in the tensile strength in the ex-pitch direction in the range of 50 - 110 MPa. Pre-series TEs have been manufactured to qualify the design, the fabrication, the relevant non-destructive examinations (NDEs) and the delivered CFC for the serial production. The whole manufacturing route is validated if the delivered elements withstand operating conditions similar to those in W7-X in the high heat flux (HHF) test facility GLADIS without degradation of performance and integrity. HHF tests did not show any effect that could be attributed to the CFC grade or to the joining method. The HHF test results exhibited a high percentage of defective tiles, indicated by hot spots at the border of the CFC surface. Visual inspections after HHF tests have mostly correlated these spots to the initiation and /or propagation of cracks at the lateral edge of the tiles in CFC at the interface CFC-copper. The pre-series activities have been extended to reduce the stresses at the critical AMC(r) interface. By means of

  2. An Ice Protection and Detection Systems Manufacturer's Perspective

    Science.gov (United States)

    Sweet, Dave

    2009-01-01

    Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.

  3. Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Kimes, Katerina A.; Stevens, Erica L.; Toman, Jakub; Krimer, Yuval L.; Ullakko, Kari; Chmielus, Markus

    2017-01-01

    This study investigated microstructural evolution, phase transformation and magnetic behavior of additively manufactured magnetic shape memory alloy foam. Pre-alloyed angular Ni-Mn-Ga ball-milled powder was binder jet printed and sintered at 1020 °C for 4 h in both vacuum and argon atmospheres. Porosity of the manufactured foams was studied using micro-computed x-ray tomography and it was found that the relative density of the sintered parts was about 50–60%. In the printed sample that was sintered in argon, electron microscopy with elemental analysis showed no compositional gradient. X-ray diffraction indicated that 10M modulated martensite was present in the pre-alloyed powder as well as the sample sintered in argon. Differential scanning calorimetry and thermomagnetic results showed that martensitic transformation of the sample sintered in argon was at 34 °C, while barely detectable in the sample sintered in vacuum. Saturation magnetization of the printed sample sintered in argon atmosphere was around 68.4 Am"2/kg. Production of a magnetic shape memory alloy by printing would enable complex-shaped elements for demanding applications, and intentionally including porosity could allow these polycrystals to exhibit the magnetic shape memory effect. Therefore, a facile method for sintering of Ni–Mn–Ga printed parts has been presented for the first time.

  4. Fresh fuel pre-heating device in reactor facility

    International Nuclear Information System (INIS)

    Samejima, Asakuni.

    1988-01-01

    Purpose: To simplify the structure of a fresh nuclear fuel pre-heating device and improve the reliability to gas supply. Constitution: Fresh fuels taken out from a fresh fuel stredge rack and contained in a fuel strage pipe of a fuel transportation cask are pre-heated at the pre-stage of transfer by sending heating gases from the outside. Gas outlet pipes of the device are led out from the lower portion of the strage pipe, disposed side by side at the top of the strage pipe and opened upwardly. Further, gas supply pipes are connected to the inside of a movable guiding cylinder on the side of the floor surface and the opening end of return pipes are opposed to the exit opening end of the strage pipe. In such a constitution, a gas recycling loop can be formed between the strage pipe and the gas heating device by way of the movable guiding cylinder only by the operation of combining the fuel strage pipe of the transportation cask and the movable guiding pipe disposed on the side of the floor surface. Thus, the coupling structure is facilitated, the connection operation can surely be conducted to improve the reliability as compared with the conventional case. (Horiuchi, T.)

  5. A Pilot Computer-Aided Design and Manufacturing Curriculum that Promotes Engineering

    Science.gov (United States)

    2002-01-01

    Elizabeth City State University (ECSU) is located in a community that is mostly rural in nature. The area is economically deprived when compared to the rest of the state. Many businesses lack the computerized equipment and skills needed to propel upward in today's technologically advanced society. This project will close the ever-widening gap between advantaged and disadvantaged workers as well as increase their participation with industry, NASA and/or other governmental agencies. Everyone recognizes computer technology as the catalyst for advances in design, prototyping, and manufacturing or the art of machining. Unprecedented quality control and cost-efficiency improvements are recognized through the use of computer technology. This technology has changed the manufacturing industry with advanced high-tech capabilities needed by NASA. With the ever-widening digital divide, we must continue to provide computer technology to those who are socio-economically disadvantaged.

  6. Motivation and Resolve of U.S. Air Force Pilot Candidates

    Science.gov (United States)

    2017-06-15

    demonstrated character and emotional composure (stability), and a consistent desire and proven resolve to become, and remain, a pilot ( motivation ). MFS-N... motivation used at MFS-N. The goals of this research are to better understand what motivates pilot candidates to pursue aviation careers and to establish...baseline motivation and grit scores. These scores can then be utilized, in conjunction with other MFS-N testing information, to understand pre-morbid

  7. The manufacturers' viewpoint

    International Nuclear Information System (INIS)

    Davis, D.A.

    1986-01-01

    This paper describes the approach by six separate manufacturers to the problem of availability from their particular view point. This presentation demonstrates basic strategy: attention to high reliability at the design phase, based on positive and detailed feedback from existing plant; quality assurance at the production stage which has been planned into the production process in the form of a Q.A. manual in design; sophisticated test procedures and facilities; simplicity of design with high accuracy in production; provision of a clear operational maintenance manual, etc. The manufacturers agreed on the need to make a conscious commitment to design for high availability, taking into account both initial and ongoing operating costs in life cycle cost assessment. Predictability, reliability, maintainability, efficiency, market acceptability and maintenance support based on high quality feedback between operator and supplier were all stressed on the grounds that prevention is always better than cure

  8. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  9. Manufacturing study of beryllium bonded structures

    International Nuclear Information System (INIS)

    Onozuka, M.; Hirai, S.; Kikuchi, K.; Oda, Y.; Shimizu, K.

    2004-01-01

    Manufacturing study has been conducted on Be-bonded structures employed in the first-wall panel of the blanket system for the ITER. For Be tiles bonded to the Cu-Cr-Zr alloy heat sink with stainless-steel cooling pipes, a one-axis hot press with two heating process has been used to bond the three materials. First, Cu-alloy and SS materials are bonded diffusively. Then, Be tiles are bonded to the pre-bonded structure under 20 MPa and at 560 degree C. An Al-Si base interlayer has been used to bond Be to the Cu-Alloy. Because of the limited heat processes using a conventional hot press, the manufacturing cost can be minimized. Using the above bonding techniques, a partial mockup of a blanket first-wall panel with 16 Be tiles (with 50 mm in size) has been successfully manufactured. (author)

  10. UTN's gamma irradiation facility: design and concept

    International Nuclear Information System (INIS)

    Mohamad Noor Mohamad Yunus

    1986-01-01

    UTN is building a multipurpose gamma irradiation facility which compromises of research and pilot scale irradiation cells in The Fifth Malaysia Plan. The paper high-lights the basic futures of the facility in terms of its design and selection including layout sketches. Plant performances and limitations are discussed. Plants safety is briefly highlighted in block diagrams. Lastly, a typical specification brief is tabled in appendix for reference purposes. (author)

  11. Americium/Curium Melter 2A Pilot Tests

    International Nuclear Information System (INIS)

    Smith, M.E.; Fellinger, A.P.; Jones, T.M.; Miller, C.B.; Miller, D.H.; Snyder, T.K.; Stone, M.E.; Witt, D.C.

    1998-05-01

    Isotopes of americium (Am) and curium (Cm) were produced in the past at the Savannah River Site (SRS) for research, medical, and radiological applications. These highly radioactive and valuable isotopes have been stored in an SRS reprocessing facility for a number of years. Vitrification of this solution will allow the material to be more safely stored until it is transported to the DOE Oak Ridge Reservation for use in research and medical applications. To this end, the Am/Cm Melter 2A pilot system, a full-scale non- radioactive pilot plant of the system to be installed at the reprocessing facility, was designed, constructed and tested. The full- scale pilot system has a frit and aqueous feed delivery system, a dual zone bushing melter, and an off-gas treatment system. The main items which were tested included the dual zone bushing melter, the drain tube with dual heating and cooling zones, glass compositions, and the off-gas system which used for the first time a film cooler/lower melter plenum. Most of the process and equipment were proven to function properly, but several problems were found which will need further work. A system description and a discussion of test results will be given

  12. Effects of manufacturing process on impact properties and microstructures of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, Takashi, E-mail: tanno.takashi@jaea.go.jp; Ohtsuka, Satoshi; Yano, Yasuhide; Kaito, Takeji; Tanaka, Kenya

    2014-12-15

    Oxide dispersion strengthened (ODS) steels are notable advanced alloys with durability to a high-temperature and high-dose neutron irradiation environment because of their good swelling resistance and mechanical properties under neutron irradiation. 9–12Cr-ODS martensite steels have been developed in the Japan Atomic Energy Agency as the primary candidate material for the fast reactor fuel cladding tubes. They would also be good candidates for the fusion reactor blanket material which is exposed to high-dose neutron irradiation. In this work, modification of the manufacturing process of 11Cr-ODS steel was carried out to improve its impact property. Two types of 11Cr-ODS steels were manufactured: pre-mix and full pre-alloy ODS steels. Miniature Charpy impact tests and metallurgical observations were carried out on these steels. The impact properties of full pre-alloy ODS steels were shown to be superior to those of pre-mix ODS steels. It was demonstrated that the full pre-alloy process noticeably improved the microstructure homogeneity (i.e. reduction of inclusions and pores)

  13. FY 1989 report on the section meeting of gasification technology of the Coal Gasification Committee; 1989 nendo sekitan gasuka iinkai gasuka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The paper reported activities of the Coal Gasification Committee in FY 1989. The 1st Coal Gasification Committee Meeting was held on July 21,1989, and report/discussion were made about an outline of the FY 1989 research plan. In the 2nd Meeting, report/discussion were made about activities of each of the section meetings and the progress of the development of coal gasification technology. In FY 1998, as the 4th design/construction of pilot plant, manufacture/installation were conducted of a part (equipment of coal supply system/char recycle system) of the gasification process equipment/facilities. As to recycle gas facilities, manufacture of equipment/facilities was conducted. Concerning a part of the pipe rack/central control panel/electric panel, manufacture/installation of equipment were made. In the support study of a pilot plant (trial development of materials for plant use equipment), refractory was studied in terms of the evaluation of durability of furnace materials against liquefaction residue slag, study of furnace materials responsive to liquefaction residue and gasification of high ash melting point coal, etc. (NEDO)

  14. Stockpiling anti-viral drugs for a pandemic: the role of Manufacturer Reserve Programs.

    Science.gov (United States)

    Harrington, Joseph E; Hsu, Edbert B

    2010-05-01

    To promote stockpiling of anti-viral drugs by non-government organizations such as hospitals, drug manufacturers have introduced Manufacturer Reserve Programs which, for an annual fee, provide the right to buy in the event of a severe outbreak of influenza. We show that these programs enhance drug manufacturer profits but could either increase or decrease the amount of pre-pandemic stockpiling of anti-viral drugs.

  15. Pre-crash system validation with PRESCAN and VEHIL

    NARCIS (Netherlands)

    Gietelink, O.J.; Verburg, D.J.; Labibes, K.; Oostendorp, A.F.

    2004-01-01

    This paper presents the tools for design and validation of Pre-Crash Systems: the software tool PRE-crash SCenario ANalyzer (PRESCAN) and the VEhicle-Hardware-In-the-Loop (VEHIL) facility. PRESCAN allows to investigate a pre-crash scenario in simulation. This scenario can then be compared with tests

  16. Development of steam generator manufacturing technology

    International Nuclear Information System (INIS)

    Grant, J.A.

    1979-01-01

    In 1968 Babcock and Wilcox (Operations) Ltd., received an order from the CEGB to design, manufacture, install and commission 16 Steam Generators for 2 x 660 Mw (e) Advanced Gas Cooled Reactor Power Station at Hartlepool. This order was followed in 1970 by a similar order for the Heysham Power Station. The design and manufacture of the Steam Generators represented a major advance in technology and the paper discusses the methods by which a manufacturing facility was developed, by the Production Division of Babcock, to produce components to a quality, complexity and accuracy unique in the U.K. commercial boilermaking industry. The discussion includes a brief design background, a description of the Steam Generators and a view of the Production Division background. This is followed by a description of the organisation of the technological development and a consideration of the results. (author)

  17. Space Facility for Orbital Remote Manufacturing (SPACEFORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA need in continued cost efficient International Space Station (ISS) exploration FOMS Inc. proposes to develop and deploy Space Facility for Orbital...

  18. The significance of the pilot conditioning plant (PKA) for spent fuel management

    International Nuclear Information System (INIS)

    Willax, H.O.

    1996-01-01

    The pilot conditioning plant (PKA) is intended as a multi-purpose facility and thus may serve various purposes involved in the conditioning or disposal of spent fuel elements or radwaste. Its design as a pilot plant permits development and trial of various methods and processes for fuel element conditioning, as well as for radwaste conditioning. (orig./DG) [de

  19. Laser Additive Manufacturing of Magnetic Materials

    Science.gov (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  20. 303-K Radioactive Mixed-Waste Storage Facility closure plan

    International Nuclear Information System (INIS)

    1991-11-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors chemical-separation systems, and related facilities used for the production o special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 303-K Radioactive Mixed-Waste Storage Facility (303-K Facility) has been used since 1943 to store various radioactive,and dangerous process materials and wastes generated by the fuel manufacturing processes in the 300 Area. The mixed wastes are stored in US Department of Transportation (DOT)-specification containers (DOT 1988). The north end of the building was used for storage of containers of liquid waste and the outside storage areas were used for containers of solid waste. Because only the north end of the building was used, this plan does not include the southern end of the building. This closure plan presents a description of the facility, the history of materials and wastes managed, and a description of the procedures that will be followed to chose the 303-K Facility as a greater than 90-day storage facility. The strategy for closure of the 303-K Facility is presented in Chapter 6.0

  1. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Shields, K.D.

    1999-01-01

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP

  2. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, M.Y.; Shields, K.D.

    1999-04-02

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

  3. Impact of Latino Parent Engagement on Student Academic Achievement: A Pilot Study

    Science.gov (United States)

    Araque, Juan Carlos; Wietstock, Cathy; Cova, Heather M.; Zepeda, Steffanie

    2017-01-01

    The current pilot study examines the impact of the "Ten Education Commandments for Parents" program on (1) new immigrant Latino parents' knowledge of the U.S. public education system, (2) parent engagement, and (3) their children's academic achievement. Utilizing a pre-experimental, pre- and post-test research design, four schools with…

  4. A mixed method pilot study: the researchers' experiences.

    Science.gov (United States)

    Secomb, Jacinta M; Smith, Colleen

    2011-08-01

    This paper reports on the outcomes of a small well designed pilot study. Pilot studies often disseminate limited or statistically meaningless results without adding to the body knowledge on the comparative research benefits. The design a pre-test post-test group parallel randomised control trial and inductive content analysis of focus group transcripts was tested specifically to increase outcomes in a proposed larger study. Strategies are now in place to overcome operational barriers and recruitment difficulties. Links between the qualitative and quantitative arms of the proposed larger study have been made; it is anticipated that this will add depth to the final report. More extensive reporting on the outcomes of pilot studies would assist researchers and increase the body of knowledge in this area.

  5. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  6. Manufacture of seamless stainless steel tubings and related equipment

    International Nuclear Information System (INIS)

    Wali, D.K.; Chaudhary, S.

    1997-01-01

    Production of seamless tubes for special application is one of the important production activities of Nuclear Fuel Complex (NFC), Hyderabad. NFC had set up facility of Hot Extrusion Press and Cold Pilger Mills with related finishing and inspection equipment for manufacturing quality seamless tubes of zirconium alloy for application in nuclear power reactors in early 70''s. Being aware that the demand for seamless tube in a developing economy gradually increases till it reaches around 30 to 40% of the total requirement of tubes and pipes and also of the fact that manufacturing technology developed for production of zircaloy seamless tubes for nuclear application, can easily be harnessed and spinned off for production of seamless tubes in materials generally difficult to hot roll (in other than extrusion process), NFC augmented its seamless tube manufacturing facility by adding, a vertical piercing press, series of induction furnaces and large size pilger mills to meet existing market demand of power sector, engineering, fertilisers and petro chemical industries and any other specialised applications

  7. Development of zirconium alloy tube manufacturing technology

    International Nuclear Information System (INIS)

    Kim, In Kyu; Park, Chan Hyun; Lee, Seung Hwan; Chung, Sun Kyo

    2009-01-01

    In late 2004, Korea Nuclear Fuel Company (KNF) launched a government funded joint development program with Westinghouse Electric Co. (WEC) to establish zirconium alloy tube manufacturing technology in Korea. Through this program, KNF and WEC have developed a state of the art facility to manufacture high quality nuclear tubes. KNF performed equipment qualification tests for each manufacturing machine with the support of WEC, and independently carried out product qualification tests for each tube product to be commercially produced. Apart from those tests, characterization test program consisting of specification test and characterization test was developed by KNF and WEC to demonstrate to customers of KNF the quality equivalency of products manufactured by KNF and WEC plants respectively. As part of establishment of performance evaluation technology for zirconium alloy tube in Korea, KNF carried out analyses of materials produced for the characterization test program using the most advanced techniques. Thanks to the accomplishment of the development of zirconium alloy tube manufacturing technology, KNF is expected to acquire positive spin off benefits in terms of technology and economy in the near future

  8. Residual Strength Characterization of Unitized Structures Fabricated Using Different Manufacturing Technologies

    Science.gov (United States)

    Seshadri, B. R.; Smith, S. W.; Johnston, W. M.

    2008-01-01

    This viewgraph presentation describes residual strength analysis of integral structures fabricated using different manufacturing procedures. The topics include: 1) Built-up and Integral Structures; 2) Development of Prediction Methodology for Integral Structures Fabricated using different Manufacturing Procedures; 3) Testing Facility; 4) Fracture Parameters Definition; 5) Crack Branching in Integral Structures; 6) Results and Discussion; and 7) Concluding Remarks.

  9. Final report for the Pre-Freshman Enrichment Program (PREP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This project reflected cooperation across the disciplines in the physical sciences, engineering, mathematics and computer science. The University of the Pacific served as the center for this pre-college program. The idea was to use this link as a pilot program.

  10. DESIGN OF FILL AND FINISH FACILITY FOR ACTIVE PHARMACEUTICAL INGREDIENTS (API

    Directory of Open Access Journals (Sweden)

    NUUR LAILA KHAIRUDDIN

    2016-08-01

    Full Text Available Fill and finish operations continue to be one of the most heavily outsourced activities in the biopharmaceutical manufacturing market today. There are a few aspects that need to be consider in outsource activities like logistic, storage condition, facility certification and audit as regulations and standards which the manufacturer should adhere. Risk would be greater and extra care should be taken when outsource from foreign fill and finish facility. Thus, the internal aseptic fill and finish facility with audit checklist will help to minimize the risk during logistic and storage and also minimize the cost for outsource fill and finish facility. The data collections are through survey and conceptual design with simulation as the execution part.

  11. Chalon/Saint-Marcel manufacturing plant; L'usine de Chalon/Saint-Marcel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    AREVA is the world leader in the design and construction of nuclear power plants, the manufacture of heavy components, and the supply of nuclear fuel and nuclear services such as maintenance and inspection. The Equipment Division provides the widest range of nuclear components and equipment, manufactured at its two facilities in Jeumont, northern France, and St. Marcel, in Burgundy. The St. Marcel plant, set on 35 ha (87.5 acres) near Chalon-sur-Saone, was established in 1973 in a region with a long history of specialized metalworking and mechanical activities to meet the demand for non-military nuclear requirements in France. The site offers two advantages: - excellent facilities for loading and transporting heavy components on the Saone river, - it's proximity to other group sites. Since its completion in 1975, the Chalon/St. Marcel facility has manufactured all the heavy components for French pressurized water reactors (PWRs) ranging from 900 MW to 1500 MW. It has also completed a significant number of export contracts that have made AREVA world leader. Nearly 600 heavy components (reactor vessels, steam generators, pressurizers and closure heads) have been manufactured or are currently being manufactured since the plant opened in 1975. The plant is at the heart of the manufacturing chain for nuclear steam supply systems (NSSS) supplied by AREVA. On the basis of engineering data, the plant manufactures reactor vessels, reactor vessel internals, steam generators, pressurizers and related components such as accumulators, auxiliary heat exchangers and supporting elements. Vessel upper internals Other similar components such as reactor vessels for boiling water reactors (BWR) or high temperature reactors (HTR) and other types of steam generators can also be manufactured in the plant (for example Once Through Steam Generators - OTSG). The basic activities performed at Chalon/St. Marcel are metalworking and heavy machining. These activities are carried out in

  12. Auditing radiation sterilization facilities

    Science.gov (United States)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  13. Winter Maintenance Wash-Water Heavy Metal Removal Pilot Scale Evaluation

    Directory of Open Access Journals (Sweden)

    Christopher M. Miller

    2016-01-01

    Full Text Available To encourage sustainable engineering practices, departments of transportation are interested in reusing winter maintenance truck wash water as part of their brine production and future road application. Traffic-related metals in the wash water, however, could limit this option. The objective of this work was to conduct a pilot scale evaluation of heavy metal (copper, zinc, iron, and lead removal in a filtration unit (maximum flow rate of 45 L/minute containing proprietary (MAR Systems Sorbster® media. Three different trials were conducted and approximately 10,000 L of wash water collected from a winter maintenance facility in Ohio was treated with the pilot unit. Lab studies were also performed on six wash-water samples from multiple facilities to assess particle size removal and estimate settling time as a potential removal mechanism during wash-water storage. Pilot unit total metal removal efficiencies were 79%, 77%, 63%, and 94% for copper, zinc, iron, and lead, respectively. Particle settling calculation estimates for copper and zinc show that 10 hours in storage can also effectively reduce heavy metal concentrations in winter maintenance wash water in excess of 70%. These pilot scale results show promise for reducing heavy metal concentrations to an acceptable level for reuse.

  14. Evaluation of the theory-based Quality Improvement in Physical Therapy (QUIP) programme: a one-group, pre-test post-test pilot study.

    Science.gov (United States)

    Rutten, Geert M; Harting, Janneke; Bartholomew, L Kay; Schlief, Angelique; Oostendorp, Rob A B; de Vries, Nanne K

    2013-05-25

    Guideline adherence in physical therapy is far from optimal, which has consequences for the effectiveness and efficiency of physical therapy care. Programmes to enhance guideline adherence have, so far, been relatively ineffective. We systematically developed a theory-based Quality Improvement in Physical Therapy (QUIP) programme aimed at the individual performance level (practicing physiotherapists; PTs) and the practice organization level (practice quality manager; PQM). The aim of the study was to pilot test the multilevel QUIP programme's effectiveness and the fidelity, acceptability and feasibility of its implementation. A one-group, pre-test, post-test pilot study (N = 8 practices; N = 32 PTs, 8 of whom were also PQMs) done between September and December 2009. Guideline adherence was measured using clinical vignettes that addressed 12 quality indicators reflecting the guidelines' main recommendations. Determinants of adherence were measured using quantitative methods (questionnaires). Delivery of the programme and management changes were assessed using qualitative methods (observations, group interviews, and document analyses). Changes in adherence and determinants were tested in the paired samples T-tests and expressed in effect sizes (Cohen's d). Overall adherence did not change (3.1%; p = .138). Adherence to three quality indicators improved (8%, 24%, 43%; .000 ≤ p ≤ .023). Adherence to one quality indicator decreased (-15.7%; p = .004). Scores on various determinants of individual performance improved and favourable changes at practice organizational level were observed. Improvements were associated with the programme's multilevel approach, collective goal setting, and the application of self-regulation; unfavourable findings with programme deficits. The one-group pre-test post-test design limits the internal validity of the study, the self-selected sample its external validity. The QUIP programme has the potential to change physical

  15. Self-audit of lockout/tagout in manufacturing workplaces: A pilot study.

    Science.gov (United States)

    Yamin, Samuel C; Parker, David L; Xi, Min; Stanley, Rodney

    2017-05-01

    Occupational health and safety (OHS) self-auditing is a common practice in industrial workplaces. However, few audit instruments have been tested for inter-rater reliability and accuracy. A lockout/tagout (LOTO) self-audit checklist was developed for use in manufacturing enterprises. It was tested for inter-rater reliability and accuracy using responses of business self-auditors and external auditors. Inter-rater reliability at ten businesses was excellent (κ = 0.84). Business self-auditors had high (100%) accuracy in identifying elements of LOTO practice that were present as well those that were absent (81% accuracy). Reliability and accuracy increased further when problematic checklist questions were removed from the analysis. Results indicate that the LOTO self-audit checklist would be useful in manufacturing firms' efforts to assess and improve their LOTO programs. In addition, a reliable self-audit instrument removes the need for external auditors to visit worksites, thereby expanding capacity for outreach and intervention while minimizing costs. © 2017 Wiley Periodicals, Inc.

  16. A Note on the Profit Distribution among a Manufacturer and its Retailers

    OpenAIRE

    Naoki Watanabe

    2005-01-01

    Examining two polar forms of restricted franchise contract, Nariu (2004) studied the pricing behavior of manufacturers and retailers and the market outcomes. This note provides a concise justification for his assumptions on contractual restraints. Introducing some fixed amount that a manufacturer must invest to build up its production facility, we show that a bargaining solution to distribute the total net profit among a manufacturer and its exclusive retailers assigns zero franchise fee paym...

  17. Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing

    DEFF Research Database (Denmark)

    Govindan, Kannan; Jha, P. C.; Garg, Kiran

    2016-01-01

    that emerge from that business’s economical, environmental and social dimensions. In this paper, we propose a multi-objective mixed integer mathematical problem for a generic closed-loop supply chain (CLSC) network to rationalise how a system’s product recovery helps to improve manufacturing sustainability....... The CLSC network proposed in this study consists of a hybrid manufacturing facility, warehouse, distribution centres, collection centres and a hybrid recovery facility (HRF). The proposed model determines the best location for the HRF and optimal flow of products, recovered parts and material...

  18. Design, construction and monitoring of temporary storage facilities for removed contaminants

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Funaki, Hironori; Kurikami, Hiroshi; Sakamoto, Yoshiaki; Tokizawa, Takayuki

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011, decontamination work has been conducted in the surrounding environment within the Fukushima prefecture. Removed contaminants including soil, grass and trees are to be stored safely at temporary storage facilities for up to three years, after which they will be transferred to a planned interim storage facility. The decontamination pilot project was carried out in both the restricted and planned evacuation areas in order to assess decontamination methods and demonstrate measures for radiation protection of workers. Fourteen temporary storage facilities of different technical specifications were designed and constructed under various topographic conditions and land use. In order to support the design, construction and monitoring of temporary storage facilities for removed contaminants during the full-scale decontamination within the prefecture of Fukushima, technical know-how obtained during the decontamination pilot project has been identified and summarized in this paper. (author)

  19. Performance Simulation and Verification of Vat Photopolymerization Based, Additively Manufactured Injection Molding Inserts with Micro-Features

    DEFF Research Database (Denmark)

    Mischkot, Michael; Hofstätter, Thomas; Michailidou, Ifigeneia

    2017-01-01

    Injection molding soft tooling inserts manufactured additively with vat photopolymerization represent a valid technology for prototyping and pilot production of polymer parts. However, a significant drawback is the low heat conductivity of photopolymers influencing cycletime and part quality...

  20. Good manufacturing practice

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    2001-01-01

    In this presentation author deals with the Implementation of good manufacturing practice for radiopharmaceuticals. The presentation is divided into next parts: Batch size; Expiration date; QC Testing; Environmental concerns; Personnel aspects; Radiation concerns; Theoretical yields; Sterilizing filters; Control and reconciliation of materials and components; Product strength; In process sampling and testing; Holding and distribution; Drug product inspection; Buildings and facilities; Renovations at BNL for GMP; Aseptic processing and sterility assurance; Process validation and control; Quality control and drug product stability; Documentation and other GMP topics; Building design considerations; Equipment; and Summary

  1. Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)

    Energy Technology Data Exchange (ETDEWEB)

    2010-08-01

    This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  2. DESIGN OF FILL AND FINISH FACILITY FOR ACTIVE PHARMACEUTICAL INGREDIENTS (API)

    OpenAIRE

    NUUR LAILA KHAIRUDDIN; NORLIZA ABD. RAHMAN; NUR SYAFIQAH KAMARUDIN

    2016-01-01

    Fill and finish operations continue to be one of the most heavily outsourced activities in the biopharmaceutical manufacturing market today. There are a few aspects that need to be consider in outsource activities like logistic, storage condition, facility certification and audit as regulations and standards which the manufacturer should adhere. Risk would be greater and extra care should be taken when outsource from foreign fill and finish facility. Thus, the internal aseptic fill and fin...

  3. 78 FR 22553 - Generic Drug Facilities, Sites, and Organizations

    Science.gov (United States)

    2013-04-16

    ...] Generic Drug Facilities, Sites, and Organizations AGENCY: Food and Drug Administration, HHS. ACTION.... Generic drug facilities, certain sites, and organizations identified in a generic drug submission are... active pharmaceutical ingredients and certain other sites and organizations that support the manufacture...

  4. Robot skills for manufacturing

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    -asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... products are introduced by manufacturers. In order to compete on global markets, the factories of tomorrow need complete production lines, including automation technologies that can effortlessly be reconfigured or repurposed, when the need arises. In this paper we present the concept of general, self...... in running production facilities at an industrial partner. It follows from these experiments that the use of robot skills, and associated task-level programming framework, is a viable solution to introducing robots that can intuitively and on the fly be programmed to perform new tasks by factory workers....

  5. The impact of the manufacturing process on the hardness and sensory properties of milk chocolate

    Directory of Open Access Journals (Sweden)

    Zarić Danica B.

    2012-01-01

    Full Text Available The aim of this paper was to examine the impact of the manufacturing process on the textural characteristics and sensory properties of milk chocolate. The research was conducted on the samples of chocolate produced in a ball mill during 30, 60 and 90 minutes of refining, each of them being pre-crystallized at 26, 28 and 30°C. A chocolate mass of identical ingredient composition was also produced using a standard manufacturing process at the same pre-crystallization temperatures. Chocolate hardness was examined using a piece of equipment called Texture Analyser, measuring the stress intensity which leads to chocolate crushing. Sensory analysis was performed using the point scoring method. The new manufacturing process, i.e. the manufacturing of chocolate in a ball mill improves sensory properties and hardness of milk chocolate. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014

  6. 27 CFR 19.206 - Curtailment and extension of plant premises for the manufacture of eligible flavors.

    Science.gov (United States)

    2010-04-01

    ... of plant premises for the manufacture of eligible flavors. 19.206 Section 19.206 Alcohol, Tobacco... and extension of plant premises for the manufacture of eligible flavors. (a) General. The premises of... permit the use of the facilities for the manufacture of eligible flavors. (b) Qualifying documents. When...

  7. An e-learning program to prevent pressure ulcers in adults with spinal cord injury: a pre- and post- pilot test among rehabilitation patients following discharge to home.

    Science.gov (United States)

    Schubart, Jane

    2012-10-01

    Pressure ulcers (PrUs) are the most common medical complication following spinal cord injury (SCI), as well as costly and potentially life-threatening. Every individual with SCI is at life-long risk for developing PrUs, yet many lack access to readily available, understandable, and effective PrU prevention strategies and practices. To address barriers to adequate PrU prevention education, an interactive e-learning program to educate adults with SCI about PrU prevention and management was developed and previously pilot-tested among inpatients. This recent pilot study was conducted to evaluate the feasibility of using the learning portion of the program by adults with SCI following discharge to home among 15 outpatients with SCI. Fourteen patients (nine men, five women, median age 37 years) completed the program intervention and pre- and follow-up questionnaires. The median score for pre-program knowledge and skin care management practice was 96 (possible score: 0 to 120; range 70-100). Post-program use median score was 107 (range 97-114). The greatest improvement was in the responses to knowledge and practice questions about skin checks and preventing skin problems (P effect of this e-learning program on PrU incidence. Internet interventions that are proven effective hold tremendous potential for bringing prevention education to groups who would otherwise not receive it.

  8. Total Quality Management in Space Shuttle Main Engine manufacturing

    Science.gov (United States)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  9. Manufacturing and quality assurance for the MFTF superconductor core

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Johnston, J.E.; Waide, P.A.; Zeitlin, B.A.; Smith, G.B.; Nelson, C.T.

    1979-01-01

    A total of 55,000 m of multifilamentary Nb-Ti superconductor in minimum lengths of 380 m are required for the Mirror Fusion Test Facility. This conductor is a large cross-section monolith and, as such, has presented several new manufacturing challenges. In addition, a monolith requires more stringent quality assurance procedures than braids or cables. This paper describes the manufacturing steps and the quality assurance program which have been developed for the MFTF superconductor core

  10. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility

    Science.gov (United States)

    Hinck, J.E.; Norstrom, R.J.; Orazio, C.E.; Schmitt, C.J.; Tillitt, D.E.

    2009-01-01

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p???- and o,p???-DDT isomer concentrations and o,p???- versus p,p???-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p???-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife.

  11. 40 CFR 60.540 - Applicability and designation of affected facilities.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.540 Applicability and designation of affected... each of the following affected facilities in rubber tire manufacturing plants that commence...

  12. Manufacture of the first fuel charge for the SUPER-PHENIX 1 reactor

    International Nuclear Information System (INIS)

    Pajot, J.; Beche, M.; Heyraud, J.

    1988-01-01

    After summarizing same general points on the Super Phenix core, the performances of fuel essemblies, the remainder of this discussion will deal with the manufacture by the CFCa of the first charge of fuel assemblies. The following aspects are considered in sequence - contract - production facilities - manufacturing procedures finally a few assessments will be presented

  13. Manufacturing studies of double wall components for the ITER EC H and CD upper launcher

    International Nuclear Information System (INIS)

    Spaeh, P.; Aiello, G.; Goldmann, A.; Kleefeldt, K.; Kroiss, A.; Meier, A.; Obermeier, C.; Scherer, T.; Schreck, S.; Serikov, A.; Strauss, D.; Vaccaro, A.

    2012-01-01

    Highlights: ► Double wall manufacturing technologies for ITER In-vessel components. ► Rigid and safe accommodation of ECRH heating and current drive systems. ► Thermo hydraulic analysis of coolant flow in double-wall structures. - Abstract: To counteract plasma instabilities, Electron Cyclotron Launchers will be installed in four of the ITER Upper Ports. The structural system of an EC Upper Launcher accommodates the MM-wave-components and has to meet strong demands on alignment, removal of nuclear heat loads, mechanical strength and nuclear shielding. The EC Upper Launcher has successfully undergone the Preliminary Design Review in 2009 and is now in the final design phase. Nuclear heat loads from 0.1 W/cm 3 up to 0.8 W/cm 3 will affect the front area of the launcher main frame. To guarantee save and homogenous removal of those heat loads, the front part of the launcher main frame is designed as a double wall steel-casing with cooling channels inside the shell structure. To finalize the design of this double wall component, the main emphasis is now to define the cooling channels geometry and to identify the optimum manufacturing route to assure adequate flow of coolant and sufficient mechanical strength in compliance with required dimension tolerances and quality of the welds. Several manufacturing options have been investigated and were evaluated by computational analysis and fabrication of pre-prototypes. To come to a final design, the most promising route will be chosen to manufacture a full-size mock-up of the double wall main frame. It will be tested at the KIT Launcher Handling Test facility to check the compliance with the design goals related to geometrical accuracy and thermo-hydraulic characteristics. This paper describes the design and the manufacturing routes of the prototypic double wall main frame.

  14. Manufacturing studies of double wall components for the ITER EC H and CD upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, P., E-mail: peter.spaeh@kit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, G. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Goldmann, A. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kleefeldt, K. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kroiss, A. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Meier, A. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Obermeier, C. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Scherer, T.; Schreck, S. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Serikov, A. [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Strauss, D.; Vaccaro, A. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Double wall manufacturing technologies for ITER In-vessel components. Black-Right-Pointing-Pointer Rigid and safe accommodation of ECRH heating and current drive systems. Black-Right-Pointing-Pointer Thermo hydraulic analysis of coolant flow in double-wall structures. - Abstract: To counteract plasma instabilities, Electron Cyclotron Launchers will be installed in four of the ITER Upper Ports. The structural system of an EC Upper Launcher accommodates the MM-wave-components and has to meet strong demands on alignment, removal of nuclear heat loads, mechanical strength and nuclear shielding. The EC Upper Launcher has successfully undergone the Preliminary Design Review in 2009 and is now in the final design phase. Nuclear heat loads from 0.1 W/cm{sup 3} up to 0.8 W/cm{sup 3} will affect the front area of the launcher main frame. To guarantee save and homogenous removal of those heat loads, the front part of the launcher main frame is designed as a double wall steel-casing with cooling channels inside the shell structure. To finalize the design of this double wall component, the main emphasis is now to define the cooling channels geometry and to identify the optimum manufacturing route to assure adequate flow of coolant and sufficient mechanical strength in compliance with required dimension tolerances and quality of the welds. Several manufacturing options have been investigated and were evaluated by computational analysis and fabrication of pre-prototypes. To come to a final design, the most promising route will be chosen to manufacture a full-size mock-up of the double wall main frame. It will be tested at the KIT Launcher Handling Test facility to check the compliance with the design goals related to geometrical accuracy and thermo-hydraulic characteristics. This paper describes the design and the manufacturing routes of the prototypic double wall main frame.

  15. POLLUTION PREVENTION ASSESSMENT FOR A MANUFACTURER OF FOOD SERVICE EQUIPMENT (EPA/600/S-95/026)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...

  16. ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF REBUILT RAILWAY CARS AND COMPONENTS

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at se...

  17. Developing a tool for the preparation of GMP audit of pharmaceutical contract manufacturer.

    Science.gov (United States)

    Linna, Anu; Korhonen, Mirka; Mannermaa, Jukka-Pekka; Airaksinen, Marja; Juppo, Anne Mari

    2008-06-01

    Outsourcing is rapidly growing in the pharmaceutical industry. When the manufacturing activities are outsourced, control of the product's quality has to be maintained. One way to confirm contract manufacturer's GMP (Good Manufacturing Practice) compliance is auditing. Audits can be supported for instance by using GMP questionnaires. The objective of this study was to develop a tool for the audit preparation of pharmaceutical contract manufacturers and to validate its contents by using Delphi method. At this phase of the study the tool was developed for non-sterile finished product contract manufacturers. A modified Delphi method was used with expert panel consisting of 14 experts from pharmaceutical industry, authorities and university. The content validity of the developed tool was assessed by a Delphi questionnaire round. The response rate in Delphi questionnaire round was 86%. The tool consisted of 103 quality items, from which 90 (87%) achieved the pre-defined agreement rate level (75%). Thirteen quality items which did not achieve the pre-defined agreement rate were excluded from the tool. The expert panel suggested only minor changes to the tool. The results show that the content validity of the developed audit preparation tool was good.

  18. Flexibility in fuel manufacturing

    International Nuclear Information System (INIS)

    Reparaz, A.; Stavig, W.E.; McLees, R.B.

    1987-01-01

    From its inception Exxon Nuclear has produced both BWR and PWR fuels. This is reflected in a product line that, to date, includes over 20 fuel designs. These range from 6x6 design at one end of the spectrum to the recently introduced 17x17 design. The benefits offered include close tailoring of the fuel design to match the customer's requirements, and the ability to rapidly introduce product changes, such as the axial blanket design, with a minimal impact on manufacturing. This flexibility places a number of demands on the manufacturing organization. Close interfaces must be established, and maintained, between the marketing, product design, manufacturing, purchasing and quality organizations, and the information flows must be immediate and accurate. Production schedules must be well planned and must be maintained or revised to reflect changing circumstances. Finally, the manufacturing facilities must be designed to allow rapid switchover between product designs with minor tooling changes and/or rerouting of product flows to alternate work stations. Among the tools used to manage the flow of information and to maintain the tight integration necessary between the various manufacturing, engineering and quality organizations is a commercially available, computerized planning and tracking system, AMAPS. A real-time production data collection system has been designed which gathers data from each production work station for use by the shop floor control module of AMAPS. Accuracy of input to the system is improved through extensive use of bar codes to gather information on the product as it moves through and between work stations. This computerized preparation of material tracing has an impact on direct manufacturing records, quality control records, nuclear material records and accounting and inventory records. This is of benefit to both Exxon Nuclear and its customers

  19. Central receiver solar thermal power system, Phase 1. CRDL Item 2. Pilot plant preliminary design report. Volume III, Book 2. Collector subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The methods and plans for the manufacture of the 10-MW collector heliostats and associated controls for the pilot plant are detailed. An in-depth description of the production, installation, and verification testing of heliostats for the pilot plant is presented. Specifications for the performance, design, and test requirements for the pilot plant collector subsystem are included. Also, a heliostat location summary report is given. (WHK)

  20. Pilot demonstration of cerium oxide coated anodes

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  1. Collaborating With Parents of Children With Chronic Conditions and Professionals to Design, Develop and Pre-pilot PLAnT (the Parent Learning Needs and Preferences Assessment Tool).

    Science.gov (United States)

    Nightingale, Ruth; Wirz, Lucy; Cook, Wendy; Swallow, Veronica

    This study aimed to design, develop and pre-pilot an assessment tool (PLAnT) to identify parents' learning needs and preferences when carrying out home-based clinical care for their child with a chronic condition. A mixed methods, two-phased design was used. Phase 1: a total of 10 parents/carers and 13 professionals from six UK's children's kidney units participated in qualitative interviews. Interview data were used to develop the PLAnT. Eight of these participants subsequently took part in an online survey to refine the PLAnT. Phase 2: thirteen parents were paired with one of nine professionals to undertake a pre-pilot evaluation of PLAnT. Data were analyzed using the Framework approach. A key emergent theme identifying parents' learning needs and preferences was identified. The importance of professionals being aware of parents' learning needs and preferences was recognised. Participants discussed how parents' learning needs and preferences should be identified, including: the purpose for doing this, the process for doing this, and what would the outcome be of identifying parents' needs. The evidence suggests that asking parents directly about their learning needs and preferences may be the most reliable way for professionals to ascertain how to support individual parents' learning when sharing management of their child's chronic condition. With the increasing emphasis on parent-professional shared management of childhood chronic conditions, professionals can be guided by PLAnT in their assessment of parents' learning needs and preferences, based on identified barriers and facilitators to parental learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    International Nuclear Information System (INIS)

    Menard, J.E.; Bromberg, L.; Brown, T.; Burgess, Thomas W.; Dix, D.; Gerrity, T.; Goldston, R.J.; Hawryluk, R.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G.H.; Neumeyer, C.L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.G.; Zarnstorff, M.C.

    2011-01-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  3. Glocalized Production - A Holistic Approach for Future Manufacturing at The LEGO Group

    DEFF Research Database (Denmark)

    Hadar, Ronen

    2014-01-01

    ) and Rapid Manufacturing (RM). RMS is a manufacturing system that is designed for rapid changes. It is based on core characteristics such as modularity, convertibility, customized flexibility, etc.. RM is the use of Additive Manufacturing (AM –commonly referred to as 3D printing) for the production......Global production is changing. Changes in production paradigms, global competition, manufacturing technologies, and new mega trends such as individualization, inflict immense challenges on global manufacturers. A new holistic approach for facing supply chain and production challenges is proposed...... facilities, the establishment of production close to main markets, and the creation of a global network of independent factories and supply chains with local manufacturing. Doing so will potentially increase responsiveness, cut transportation costs, reduce complexity, enable production to demand rather than...

  4. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs

  5. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  6. Analysis and Design of the Logistics System for Rope Manufacturing Plant

    Directory of Open Access Journals (Sweden)

    Sun Xue

    2017-01-01

    Full Text Available In order to promote logistics system for manufacturing plant, this paper proposed a new design for the logistics system of a rope manufacturing plant. Through the analysis in the aspects of workshop facility layout, material handling and inventory management, the original logistics system of the plant is optimized. According to the comparison of the simulation results between original and optimized design, the optimized model has the higher productive efficiency. This can provide the references for the other manufacturing plant in analysis and design of the logistics system to improve plant efficiency.

  7. High Throughput Manufacturing of Thin-Film CdTe Photovoltaic Materials; Final Subcontract Report, 16 November 1993-31 December 1998

    International Nuclear Information System (INIS)

    Sandwisch, D.W.

    1999-01-01

    This report describes work performed by Solar Cells, Inc. (SCI), during this Photovoltaic Manufacturing Technology (PVMaT) subcontract. Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. SCI has developed this technology and is preparing to scale its pilot production capabilities to a multi-megawatt level. This four-phase PVMaT subcontract supports these efforts. The work was related to product definition, process definition, equipment engineering, and support programs development. In the area of product definition and demonstration, two products were specified and demonstrated-a grid-connected, frameless, high-voltage product that incorporates a pigtail potting design and a remote low-voltage product that may be framed and may incorporate a junction box. SCI produced a 60.3-W thin-film CdTe module with total-area efficiency of 8.4%; SCI also improved module pass rate on the interim qualification test protocol from less than 20% to 100% as a result of work related to the subcontract. In the manufacturing process definition area, the multi-megawatt manufacturing process was defined, several of the key processes were demonstrated, and the process was refined and proven on a 100-kW pilot line that now operates as a 250-kW line. In the area of multi-megawatt manufacturing-line conceptual design review, SCI completed a conceptual layout of the multi-megawatt lines. The layout models the manufacturing line and predicts manufacturing costs. SCI projected an optimized capacity, two-shift/day operation of greater than 25 MW at a manufacturing cost of below$1.00/W

  8. High Throughput Manufacturing of Thin-Film CdTe Photovoltaic Materials; Final Subcontract Report, 16 November 1993-31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Sandwisch, D. W. (Solar Cells, Inc.)

    1999-09-02

    This report describes work performed by Solar Cells, Inc. (SCI), during this Photovoltaic Manufacturing Technology (PVMaT) subcontract. Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. SCI has developed this technology and is preparing to scale its pilot production capabilities to a multi-megawatt level. This four-phase PVMaT subcontract supports these efforts. The work was related to product definition, process definition, equipment engineering, and support programs development. In the area of product definition and demonstration, two products were specified and demonstrated-a grid-connected, frameless, high-voltage product that incorporates a pigtail potting design and a remote low-voltage product that may be framed and may incorporate a junction box. SCI produced a 60.3-W thin-film CdTe module with total-area efficiency of 8.4%; SCI also improved module pass rate on the interim qualification test protocol from less than 20% to 100% as a result of work related to the subcontract. In the manufacturing process definition area, the multi-megawatt manufacturing process was defined, several of the key processes were demonstrated, and the process was refined and proven on a 100-kW pilot line that now operates as a 250-kW line. In the area of multi-megawatt manufacturing-line conceptual design review, SCI completed a conceptual layout of the multi-megawatt lines. The layout models the manufacturing line and predicts manufacturing costs. SCI projected an optimized capacity, two-shift/day operation of greater than 25 MW at a manufacturing cost of below $1.00/W.

  9. Combat Ration Network for Technology Implementation. Polymeric Tray Manufacturability, Part 2 (Short Term Project - STP1002B)

    National Research Council Canada - National Science Library

    Bruins, Henderikus

    1999-01-01

    .... Therefore, a second Polymeric Tray Manufacturability at the CORANET Demonstration Site at Rutgers University Food Manufacturing Technology Facility was conducted on June 9-10, 1998 to specifically address these issues...

  10. Safety in manufacturing of nuclear fuel

    International Nuclear Information System (INIS)

    Daste, Bernard

    1980-01-01

    Production of low enriched uranium fuel raises specific safety problems resulting from the very nature of the manufacturing process as from the industrial size generally given to the new facilities for this kind of production. The author exposes the experience so far acquired by F.B.F.C. (Societe franco-belge de fabrication du combustible) which is making important investments in order to meet the fuel needs of the French nuclear programme. After a short description of the fuel and the principal stages of its production, he analyses the potential nuclear hazards of the F.B.F.C. facilities operation and the adequate safety measures taken [fr

  11. Manufacture of high purity metal fluorides

    International Nuclear Information System (INIS)

    Vance, J.M.

    1984-01-01

    The Oak Ridge Gaseous Diffusion Plant has been developing technologies of many kinds since the early forties. The primary purpose of this R and D was to reduce the amount of electrical power and capital expense associated with the enrichment of uranium in the 235 isotope. One area that has received a lot of attention is the chemistry of fluorine and metal fluorides. The producing facility at ORGDP is a chemical pilot plant which has been used through the years to demonstrate new processes. Presently existing in this facility are: absorption columns which have been used to remove trace quantities of krypton and oxides of nitrogen and sulfur from gas streams; a flame reactor that is being used to reduce isotopically altered sulfur hexafluoride for conversion to SO 2 which will be used in acid rain studies; an environmental hold system in which methods were developed to remove or neutralize environmental insulting compounds; a fluid bed reactor, and of course the tungsten hexafluoride process. A rhenium hexafluoride facility is also located in the pilot plant. It is basically the same as the tungsten line with three small muffles being used in place of the large WF6 reactor. The product from each process is heated and transferred to approved 5-inch shipping cylinders and transported to the analytical chemistry laboratory for sampling and analysis. These cylinders must be used for shipment and may require modification of the customer facility to accommodate them. Liquid samples are obtained from the product cylinders and a visual examination of the samples for color and melting temperature provides a good indication of the conversion. X-ray fluorescence is utilized to determine the amount of tungsten and the percent conversion to the hexafluoride is calculated from the weighed sample. Infrared in addition to mass spectrometer analyses are performed to verify the findings. The material is then analyzed by spectrographic methods for contaminants

  12. Using rice straw to manufacture ceramic bricks

    Directory of Open Access Journals (Sweden)

    Gorbunov German Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options: 1 rice straw combustion and ash formation outside the oven (in the oxidizing medium, and further application of ash as the additive in the process of burning clay mixtures; 2 adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

  13. 25 CFR 170.415 - What is pre-project planning?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is pre-project planning? 170.415 Section 170.415... PROGRAM Planning, Design, and Construction of Indian Reservation Roads Program Facilities Long-Range Transportation Planning § 170.415 What is pre-project planning? (a) Pre-project planning is part of overall...

  14. Effect of pre-entry instruction as an additional part of radiation training beginner's course on reduction of radioactive contamination in two independent unsealed radioisotope facilities

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki; Kaneko, Mamoru; Okumura, Yutaka; Shimasaki, Tatsuya; Kojima, Akihiro; Shiraishi, Yoshioki; Horiuchi, Seikoh

    2005-01-01

    The education for radiation workers is essential for the safety of radiation facility that stands on radiation protection practice by each worker. Japanese laws concerning radiation safety requires each radiation worker attending the 6 hours beginner's training course before entering the control area. However, in unsealed radioisotope facilities, radioactive contaminations in the control area may still take place because practical procedures for radiation safety vary depending on the type of experiments and the characteristics of radioisotopes. Therefore, an additional and practical training for each radiation worker is needed. In an attempt to give the workers an additional training of this kind, the pre-entry instruction was performed independently in Center for Frontier Life Sciences, Nagasaki University and in Institute of Resource Development and Analysis Kumamoto University. In this study, the efficacy of the instruction in each facility was assessed quantitatively on the basis of the incidence of contamination in the control area. The instruction covered laboratory rules, radioisotope ordering information, description of sign-up sheets, radioactive waste management, use of survey meters, and lab tour with an appropriate modification to meet with a specificity of each experiment. The instruction was given to beginners and to refreshers who have not handled radioisotopes for a long period, in a face-to-face manner for 1 hour before they start working radioisotopes. To examine the education effect on the reduction of contamination in a typical and frequently used laboratory, the contamination in molecular biology room of Nagasaki University was surveyed directly by a GM survey meter on a daily basis. In Kumamoto University, contamination on the surface of the entire floor in the control area was surveyed monthly by the smear method to know the education effect on general reduction of contamination. The results revealed that the number of contamination decreased

  15. Characterization results for 106-AN grout produced in a pilot-scale test

    International Nuclear Information System (INIS)

    Lokken, R.O.; Bagaasen, L.M.; Martin, P.F.C.; Palmer, S.E.; Anderson, C.M.

    1993-06-01

    The Grout Treatment Facility (GTF) at Hanford. Washington, will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over one million gallons of phosphate/sulfate waste were solidified in the first production campaign with this facility. The next tank waste scheduled for treatment is 106-AN (the waste from Tank 241-AN-106). After laboratory studies were conducted to select the grout formulation, tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL) were conducted as part of the formulation verification process. The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilotscale equipment. to collect thermal information to help determine the best way to manage the grout hydration heat, and to characterize the solidified grout

  16. PanDA Pilot Submission using Condor-G: Experience and Improvements

    CERN Document Server

    Zhao, Xin; The ATLAS collaboration; Wlodek, Tom; Wenaus, Torre; Frey, Jaime; Tannenbaum, Todd; Livny, Miron

    2010-01-01

    PanDA is the workload management system of the ATLAS experiment, used to run production and user analysis jobs on the grid. As a late-binding, pilot-based system, the maintenance of a smooth and steady stream of pilot jobs to all grid sites is critical for PanDA operation. The ATLAS Computing Facility (ACF) at BNL, as the ATLAS Tier 1 center in the US, operates the pilot submission systems for the US. This is done using the PanDA "AutoPilot" scheduler component which submits pilot jobs via Condor-G, a grid job scheduling system developed at the University of Wisconsin-Madison. In this talk, we discuss the operation and performance of the Condor-G pilot submission at BNL, with emphasis on the challenges and issues encountered in the real grid production environment. With the close collaboration of Condor and PanDA teams, the scalability and stability of the overall system has been greatly improved over the last year. We review improvements made to Condor-G resulting from this collaboration, including isolation...

  17. Evolution of ESR Technology and Equipment for Long Hollow Ingots Manufacture

    Science.gov (United States)

    Medovar, Lev; Stovpchenko, Ganna; Dudka, Grigory; Kozminskiy, Alexander; Fedorovskii, Borys; Lebid, Vitalii; Gusiev, Iaroslav

    In this paper development of both ESR technology and equipment for hollow ingot manufacture review and analysis are presented. The real complications of hollow ingot manufacture and some tendentious issues which restrict process dissemination are discussed. An actual data of modern manufacture of as-cast pipes for heat and power engineering by traditional ESR with consumable electrode are given. Results of microstructure and nonmetal inclusion investigations have shown the high quality of as-cast ESR pipes. On the basis of these results the possibility to produce huge ESR hollows (up 5000 mm in dia) with final goal drastically to reduce setting ratio on forged shells and rings or even replace it by ESR hollows as-cast is grounded. Two new ESR technologies — consumable electrodes change and liquid metal usage — have passed pilot tests for heavy hollow production and shown very prospective results to be presented.

  18. Development of technology for brown coal liquefaction. Design, construction and operation of pilot plant; development of 50t/d pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    As for the development of 50t/d pilot plant for the development of liquefaction plant of Victorian brown coal in Austraria, outline of the contents about the second stage construction following the first stage construction up to this time is reported from the following 4 viewpoints; 1: design of process apparatuses, 2: manufacture of apparatuses, 3: fieldwork of the construction and 4: operation of the first stage facilities. On the first item the outline of detail design made by Japanese and Australian companies is described. On the second item the acceptance of purchasing goods from Japan and Australia and the condition of inspection and quality assurance to specific principal parts are described. On the third item the supplementary construction of the first stage, contents of constructions of the second stage are described. On the fourth item, preparation for operation, target, the whole circumstances and the results of maintenance, especially review of operation technique, training of operators, and occurrence and repair of troubles are described. As other relevant works, envirommental assessment, waste disposal, enviromental monitoring for exhaust gases, drainage and working enviroments, safety measure, educational training and moreover activities for local district people and the state of labor market as the support for execution of the project are described.

  19. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    International Nuclear Information System (INIS)

    Park, Nam Gyu; Kim, K. T.; Park, J. K.

    2006-12-01

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation

  20. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Gyu; Kim, K. T.; Park, J. K. [KNF, Daejeon (Korea, Republic of)] (and others)

    2006-12-15

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation.

  1. STS-44 Atlantis, OV-104, Pilot Henricks in FB-SMS training at JSC

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Pilot Terence T. Henricks, seated at the pilots station on the forward flight deck, reviews checklists before a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Surrounding Henricks are the seat back, the overhead panels, forward panels, and forward windows.

  2. Develop and Manufacture an airlock sliding tray

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Cindy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-26

    The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  3. Interim measure conceptual design for remediation at the former CCC/USDA grain storage facility at Centralia, Kansas : pilot test and remedy implementation.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-11-09

    This document presents an Interim Measure Work Plan/Design for the short-term, field-scale pilot testing and subsequent implementation of a non-emergency Interim Measure (IM) at the site of the former grain storage facility operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Centralia, Kansas. The IM is recommended to mitigate both (1) localized carbon tetrachloride contamination in the vadose zone soils beneath the former facility and (2) present (and potentially future) carbon tetrachloride contamination identified in the shallow groundwater beneath and in the immediate vicinity of the former CCC/USDA facility. Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory have demonstrated that groundwater at the Centralia site is contaminated with carbon tetrachloride at levels that exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency's maximum contaminant level of 5.0 {micro}g/L for this compound. Groundwater sampling and analyses conducted by Argonne under a monitoring program approved by the Kansas Department of Health and Environment (KDHE) indicated that the carbon tetrachloride levels at several locations in the groundwater plume have increased since twice yearly monitoring of the site began in September 2005. The identified groundwater contamination currently poses no unacceptable health risks, in view of the absence of potential human receptors in the vicinity of the former CCC/USDA facility. Carbon tetrachloride contamination has also been identified at Centralia in subsurface soils at concentrations on the order of the Kansas Tier 2 RBSL of 200 {micro}g/kg in soil for the soil-to-groundwater protection pathway. Soils contaminated at this level might pose some risk as a potential source of carbon tetrachloride contamination to groundwater. To mitigate the existing contaminant levels and decrease the potential future concentrations of

  4. Hybrid and Disposable Facilities for Manufacturing of Biopharmaceuticals: Pros and Cons

    Science.gov (United States)

    Ravisé, Aline; Cameau, Emmanuelle; de Abreu, Georges; Pralong, Alain

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.

  5. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  6. Current manufacturing processes of drug-eluting sutures.

    Science.gov (United States)

    Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine

    2017-11-01

    Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.

  7. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  8. Manufacturing of neutral beam sources at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Baird, E.D.; Duffy, T.J.; Harter, G.A.; Holland, E.D.; Kloos, W.A.; Pastrone, J.A.

    1979-01-01

    Over 50 neutral beam sources (NBS) of the joint Lawrence Berkeley Laboratory (LBL)/Lawrence Livermore Laboratory (LLL) design have been manufactured, since 1973, in the LLL Neutral Beam Source Facility. These sources have been used to provide start-up and sustaining neutral beams for LLL mirror fusion experiments, including 2XIIB, TMX, and Beta II. Experimental prototype 20-kV and 80-kV NBS have also been designed, built, and tested for the Mirror Fusion Test Facility (MFTF)

  9. Facilely prepared, N, O-codoped nanosheet derived from pre-functionalized polymer as supercapacitor electrodes

    Science.gov (United States)

    Wang, Jun; Yang, Ting; Zeng, Zheling; Deng, Shuguang

    2018-04-01

    Nitrogen and oxygen codoped carbon nanosheets derived from pre-functionalized polymer were prepared using a facile direct pyrolysis method. The carbon microstructures are tunable with micro- and mesopore size distribution and a large specific surface area (1628.9-2146.1 m2 g-1). Furthermore, a significant morphology change, from carbon granules to carbon nanosheets, occurred at an annealing temperature of 1273 K. The unique carbon sheet morphology guaranteed a good specific capacitance of 246.4 F g-1 at 0.5 A g-1 in 1 M H2SO4 aqueous solution and an excellent rate capability with a retention of 87.9% at 5 A g-1 as coin cell. The outstanding capacitance attributes to the combination of pseudocapacitance due to the N,O dual-doping and unique nanosheet morphology. Moreover, its outstanding cycling performance with 95% retention over 10,000 cycles at 10 A g-1 and an acceptable energy density of 8.6 Wh kg-1 at 0.2 A g-1 make the N,O-codoped carbon nanosheet potent and promising electrode material for high performance supercapacitors.

  10. A methodology for Manufacturing Execution Systems (MES) implementation

    Science.gov (United States)

    Govindaraju, Rajesri; Putra, Krisna

    2016-02-01

    Manufacturing execution system is information systems (IS) application that bridges the gap between IS at the top level, namely enterprise resource planning (ERP), and IS at the lower levels, namely the automation systems. MES provides a media for optimizing the manufacturing process as a whole in a real time basis. By the use of MES in combination with the implementation of ERP and other automation systems, a manufacturing company is expected to have high competitiveness. In implementing MES, functional integration -making all the components of the manufacturing system able to work well together, is the most difficult challenge. For this, there has been an industry standard that specifies the sub-systems of a manufacturing execution systems and defines the boundaries between ERP systems, MES, and other automation systems. The standard is known as ISA-95. Although the advantages from the use of MES have been stated in some studies, not much research being done on how to implement MES effectively. The purpose of this study is to develop a methodology describing how MES implementation project should be managed, utilising the support of ISA- 95 reference model in the system development process. A proposed methodology was developed based on a general IS development methodology. The developed methodology were then revisited based on the understanding about the specific charateristics of MES implementation project found in an Indonesian steel manufacturing company implementation case. The case study highlighted the importance of applying an effective requirement elicitation method during innitial system assessment process, managing system interfaces and labor division in the design process, and performing a pilot deployment before putting the whole system into operation.

  11. HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing

    OpenAIRE

    Broomes, Peter; Dornfeld, David A

    2003-01-01

    Heating, ventilation, and air conditioning (HVAC) systems used in the clean room environment of biotechnology and drug development and manufacturing, are extremely energy and water intensive and represent a significant operating cost for these facilities [1]. HVAC systems are also the primary source of environmental emissions for the majority of companies operating within the biotechnology and drugs sector. While the processes used in drug manufacture have negligible environmental impact...

  12. Near-net shape manufacturing of miniature spur gears by wire spark erosion machining

    CERN Document Server

    Gupta, Kapil

    2016-01-01

    This work describes an experimental investigation with the aim to evaluate and establish wire spark erosion machining (WSEM) as a viable alternative for high quality miniature gear manufacturing. External spur type miniature brass (ASTM 858) gears with 12 teeth, 9.8 mm outside diameter and 5 mm face width were manufactured by WSEM. The research work was accomplished in four distinct experimental stages viz., preliminary, pilot, main and confirmation. The aim, scope and findings of each stage are progressively presented and discussed. In essence, the investigation found that it was possible to manufacture miniature gears to high quality by using WSEM. Gears up to DIN 5 quality with a good surface finish (1.2 µm average roughness) and satisfactory surface integrity were achieved. The results suggest that WSEM should be considered a viable alternative to conventional miniature gear manufacturing techniques and that in some instances it may even be superior. This work will prove useful to researchers and profess...

  13. Advanced Instrumentation, Information and Control (II and C) Research and Development Facility Buildout and Project Execution of LWRS II and C Pilot Projects 1 and 3

    International Nuclear Information System (INIS)

    Farris, Ronald; Oxstrand, Johanna; Weatherby, Gregory

    2011-01-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II and C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II and C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results

  14. Surrogate Plant Data Base : Volume 2. Appendix C : Facilities Planning Baseline Data

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  15. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrop, G.

    2003-02-27

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  16. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    International Nuclear Information System (INIS)

    Harrop, G.

    2003-01-01

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  17. Real-time product attribute control to manufacture antibodies with defined N-linked glycan levels.

    Science.gov (United States)

    Zupke, Craig; Brady, Lowell J; Slade, Peter G; Clark, Philip; Caspary, R Guy; Livingston, Brittney; Taylor, Lisa; Bigham, Kyle; Morris, Arvia E; Bailey, Robert W

    2015-01-01

    Pressures for cost-effective new therapies and an increased emphasis on emerging markets require technological advancements and a flexible future manufacturing network for the production of biologic medicines. The safety and efficacy of a product is crucial, and consistent product quality is an essential feature of any therapeutic manufacturing process. The active control of product quality in a typical biologic process is challenging because of measurement lags and nonlinearities present in the system. The current study uses nonlinear model predictive control to maintain a critical product quality attribute at a predetermined value during pilot scale manufacturing operations. This approach to product quality control ensures a more consistent product for patients, enables greater manufacturing efficiency, and eliminates the need for extensive process characterization by providing direct measures of critical product quality attributes for real time release of drug product. © 2015 American Institute of Chemical Engineers.

  18. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  19. Rapid assessment of infrastructure of primary health care facilities - a relevant instrument for health care systems management.

    Science.gov (United States)

    Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen

    2015-05-01

    Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.

  20. Manufacturing and Construction of Fresh Fuel Storage Rack for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this study is to provide the manufacturing and construction information regarding the Fresh Fuel Storage Rack (FFSR). The main function of a FFSR is to store and protect the 2 core new fuel assemblies for the operation of the research reactor. The fresh fuel assemblies are stored in a rack made of stainless steel and the storage rack is installed in the fresh fuel storage room. The fresh fuel facility provides fresh fuel assemblies with dry storage space. General design requirements of the fresh fuel storage facilities are given in the ANSI-57.3. Design, manufacturing, and construction of the fresh fuel storage rack are introduced. The analysis is performed to confirm the structural intensity of the fresh fuel storage rack under the seismic loads. The fresh fuel storage rack designed for storage of fresh fuel assemblies should be manufactured and installed with consideration of predicted number of fresh fuel assemblies, structural integrity, resistivity to corrosion and radiation, cleaning, and workability.

  1. Manufacturing and Construction of Fresh Fuel Storage Rack for a Research Reactor

    International Nuclear Information System (INIS)

    Oh, Jinho; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo

    2016-01-01

    The objective of this study is to provide the manufacturing and construction information regarding the Fresh Fuel Storage Rack (FFSR). The main function of a FFSR is to store and protect the 2 core new fuel assemblies for the operation of the research reactor. The fresh fuel assemblies are stored in a rack made of stainless steel and the storage rack is installed in the fresh fuel storage room. The fresh fuel facility provides fresh fuel assemblies with dry storage space. General design requirements of the fresh fuel storage facilities are given in the ANSI-57.3. Design, manufacturing, and construction of the fresh fuel storage rack are introduced. The analysis is performed to confirm the structural intensity of the fresh fuel storage rack under the seismic loads. The fresh fuel storage rack designed for storage of fresh fuel assemblies should be manufactured and installed with consideration of predicted number of fresh fuel assemblies, structural integrity, resistivity to corrosion and radiation, cleaning, and workability

  2. The psychophysiological assessment method for pilot's professional reliability.

    Science.gov (United States)

    Zhang, L M; Yu, L S; Wang, K N; Jing, B S; Fang, C

    1997-05-01

    Previous research has shown that a pilot's professional reliability depends on two relative factors: the pilot's functional state and the demands of task workload. The Psychophysiological Reserve Capacity (PRC) is defined as a pilot's ability to accomplish additive tasks without reducing the performance of the primary task (flight task). We hypothesized that the PRC was a mirror of the pilot's functional state. The purpose of this study was to probe the psychophysiological method for evaluating a pilot's professional reliability on a simulator. The PRC Comprehensive Evaluating System (PRCCES) which was used in the experiment included four subsystems: a) quantitative evaluation system for pilot's performance on simulator; b) secondary task display and quantitative estimating system; c) multiphysiological data monitoring and statistical system; and d) comprehensive evaluation system for pilot PRC. Two studies were performed. In study one, 63 healthy and 13 hospitalized pilots participated. Each pilot performed a double 180 degrees circuit flight program with and without secondary task (three digit operation). The operator performance, score of secondary task and cost of physiological effort were measured and compared by PRCCES in the two conditions. Then, each pilot's flight skill in training was subjectively scored by instructor pilot ratings. In study two, 7 healthy pilots volunteered to take part in the experiment on the effects of sleep deprivation on pilot's PRC. Each participant had PRC tested pre- and post-8 h sleep deprivation. The results show that the PRC values of a healthy pilot was positively correlated with abilities of flexibility, operating and correcting deviation, attention distribution, and accuracy of instrument flight in the air (r = 0.27-0.40, p < 0.05), and negatively correlated with emotional anxiety in flight (r = -0.40, p < 0.05). The values of PRC in healthy pilots (0.61 +/- 0.17) were significantly higher than that of hospitalized pilots

  3. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing.

    Science.gov (United States)

    Oh, Ji-Hyeon

    2018-12-01

    With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

  4. MOX manufacturing perspectives in a fast growing future and the MELOX plant

    International Nuclear Information System (INIS)

    Bekiarian, A.; Le Bastard, G.

    1991-01-01

    The potential MOX fuel market will grow regularly in the nineties. In view of satisfying the needs of the market, mixed-oxide fuel manufacturers have a strong incentive to increase the capacity of existing facilities and to build new ones. The Belgonucleaire plant at Dessel has been in operation since 1973. It has been backfitted up to a capacity of 35 t/y of LWR fuel which is now fully available. To satisfy the need of MOX fuel it was equally decided to adapt facilities in Cadarache where a production line, with a capacity of 15 t/y, is now delivering its production. But planned production up to the end of the century implies further increases in manufacturing capacities : MELOX, a plant for 120 t/y is under construction on the COGEMA site of Marcoule as well as a further expansion of Belgonucleaire plant at Dessel (P1) is studied to reach 70 t/y on this site. Similar developments are also planned by SIEMENS for a new manufacturing capability at Hanau (Germany). MELOX as well as all the new facilities have to get high levels of safety concerning environment and personnel. This leads to largely automated operations, and a particular care for waste treatment. (author)

  5. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  6. 77 FR 20356 - Foreign-Trade Zone 277-Western Maricopa County, AZ; Application for Manufacturing Authority...

    Science.gov (United States)

    2012-04-04

    ... Maricopa County, AZ; Application for Manufacturing Authority; Suntech Arizona, Inc., (Solar Panel... facility is used for the manufacture of 275 and 290 watt solar panels for industrial use. Components and... to solar panels (duty-free) for the foreign inputs noted above. Suntech would also be exempt from...

  7. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME III: LABEL MANUFACTURING CASE STUDY: NASHUA CORPORATION

    Science.gov (United States)

    This volume discusses Nashua Corporation's Omaha facility, a label and label stock manufacturing facility that no longer uses solvent-based adhesives. Information obtained includes issues related to the technical, economic, and environmental barriers and opportunities associated ...

  8. Preliminary conceptual design and cost estimation for Korea Advanced Pyroprocessing Facility Plus (KAPF+)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il, E-mail: nwiko@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Ho Hee, E-mail: nhhlee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Sungyeol, E-mail: csy@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Ki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Byung Heung, E-mail: b.h.park@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, In Tae, E-mail: nitkim@kaeri.re.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Han Soo, E-mail: hslee5@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-10-01

    Highlights: • Conceptual design is created for a pilot pyroprocessing plant treating PWR spent fuel. • Pilot-scale design is based on a capacity of 400 tHM/yr with 60 years lifetime. • All individual processes are integrated into a single system from feed to products. • Overall facility design is developed for a pilot pyroprocessing plant. • Unit process cost is estimated for pyroprocessing with uncertainties. - Abstract: Korea has developed pyroprocessing technology as a potential option for recycling spent fuels (SFs) from pressurized water reactors (PWRs). The pyroprocessing consists of various key unit processes and a number of research activities have been focused on each process. However, to realize the whole pyroprocessing concept, there is a critical need for integrating the individual developments and addressing a material flow from feed to final products. In addition, the advancement on overall facility design is an indispensable aspect for demonstration and commercialization of the pyroprocessing. In this study, a facility named as Korea Advanced Pyroprocess Facility Plus (KAPF+) is conceptualized with a capacity of 400 tHM/yr. The process steps are categorized based on their own characteristics while the capacities of process equipment are determined based on the current technical levels. The facility concept with a site layout of 104,000 m{sup 2} is developed by analyzing the operation conditions and materials treated in each process. As an economic approach to the proposed facility, the unit cost (781 $/kgHM denominated in 2009 USD) for KAPF+ is also analyzed with the conceptual design with preliminary sensitivity assessments including decontamination and decommissioning costs, a discount rate, staffing costs, and plant lifetime. While classifying and describing cost details of KAPF+, this study compares the unit cost of KAPF+ treating PWR SF to that of the pyroprocessing facility treating sodium-cooled fast reactor (SFR) SF.

  9. Optimal Manufacturing-Remanufacturing Production Policy for a Closed-Loop Supply Chain under Fill Rate and Budget Constraint in Bifuzzy Environments

    Directory of Open Access Journals (Sweden)

    Soumita Kundu

    2014-01-01

    Full Text Available We study a closed-loop supply chain involving a manufacturing facility and a remanufacturing facility. The manufacturer satisfies stochastic market demand by remanufacturing the used product into “as-new” one and producing new products from raw material in the remanufacturing facility and the manufacturing facility, respectively. The remanufacturing cost depends on the quality of used product. The problem is maximizing the manufacturer’s expected profit by jointly determining the collected quantity of used product and the ordered quantity of raw material. Following that we analyze the model with a fill rate constraint and a budget constraint separately and then with both the constraints. Next, to handle the imprecise nature of some parameters of the model, we develop the model with both constraints in bifuzzy environment. Finally numerical examples are presented to illustrate the models. The sensitivity analysis is also conducted to generate managerial insight.

  10. Damage evolution and failure mechanisms in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Holly D., E-mail: carlton4@llnl.gov [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Haboub, Abdel [Lincoln University, Life and Physical Sciences Department, 820 Chestnut St, Jefferson City, MO 65101 (United States); Gallegos, Gilbert F. [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Parkinson, Dilworth Y.; MacDowell, Alastair A. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-01-10

    In situ tensile tests were performed on additively manufactured austenitic stainless steel to track damage evolution within the material. For these experiments Synchrotron Radiation micro-Tomography was used to measure three-dimensional pore volume, distribution, and morphology in stainless steel at the micrometer length-scale while tensile loading was applied. The results showed that porosity distribution played a larger role in affecting the fracture mechanisms than measured bulk density. Specifically, additively manufactured stainless steel specimens with large inhomogeneous void distributions displayed a flaw-dominated failure where cracks were shown to initiate at pre-existing voids, while annealed additively manufactured stainless steel specimens, which contained low porosity and randomly distributed pores, displayed fracture mechanisms that closely resembled wrought metal.

  11. Additive Manufacturing Technology for Biomedical Components: A review

    Science.gov (United States)

    Aimi Zaharin, Haizum; Rani, Ahmad Majdi Abdul; Lenggo Ginta, Turnad; Azam, Farooq I.

    2018-03-01

    Over the last decades, additive manufacturing has shown potential application in ranging fields. No longer a prototyping technology, it is now being utilised as a manufacturing technology for giant industries such as the automotive, aircraft and recently in the medical industry. It is a very successful method that provides health-care solution in biomedical sectors by producing patient-specific prosthetics, improve tissues engineering and facilitate pre-operating session. This paper thus presents a brief overview of the most commercially important additive manufacturing technologies, which is currently available for fabricating biomedical components such as Stereolithography (SLA), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Fused Deposition Modelling (FDM) and Electron Beam Melting (EBM). It introduces the basic principles of the main process, highlights some of the beneficial applications in medical industry and the current limitation of applied technology.

  12. Manufacturing scheduling systems an integrated view on models, methods and tools

    CERN Document Server

    Framinan, Jose M; Ruiz García, Rubén

    2014-01-01

    The book is devoted to the problem of manufacturing scheduling, which is the efficient allocation of jobs (orders) over machines (resources) in a manufacturing facility. It offers a comprehensive and integrated perspective on the different aspects required to design and implement systems to efficiently and effectively support manufacturing scheduling decisions. Obtaining economic and reliable schedules constitutes the core of excellence in customer service and efficiency in manufacturing operations. Therefore, scheduling forms an area of vital importance for competition in manufacturing companies. However, only a fraction of scheduling research has been translated into practice, due to several reasons. First, the inherent complexity of scheduling has led to an excessively fragmented field in which different sub problems and issues are treated in an independent manner as goals themselves, therefore lacking a unifying view of the scheduling problem. Furthermore, mathematical brilliance and elegance has sometime...

  13. Optimization of instant dalia dessert pre-mix production by using response surface methodology.

    Science.gov (United States)

    Jha, Alok; Shalini, B N; Patel, Ashok Ambalal; Singh, Mithilesh; Rasane, Prasad

    2015-02-01

    Dalia, a wheat-based, particulate containing dairy dessert is popularly consumed as a breakfast food and is also considered as a health food. Though popular throughout Northern parts of the country, its limited shelf-life even under refrigeration imposes severe restrictions on its organized manufacture and marketing. In order to promote dalia dessert as a marketable product, in the present study, a process was developed for manufacture of instant dalia pre-mix, as a dry product with long shelf-life, which could be attractively packaged and easily reconstituted for consumption. During the investigation, the effect of different levels of milk solids and wheat solids was studied on dalia pre-mix quality by employing a central composite rotatable design (CCRD). The suggested formulation had 17.82 % milk solids and 2.87 % wheat solids. This formulation was found to be most appropriate for manufacture of instant dalia pre-mix with predicted sensory scores (Max. 100) of 85.35, 41.98 and 67.27 for mouthfeel, consistency and flavor, respectively; the viscosity of the product was 941.0 cp.

  14. Pre-treatment of Biomass By Rolling - A Combined Experimental and Numerical Analysis

    DEFF Research Database (Denmark)

    Hansen, Klaus Schütt; Ravn, Christian; Nielsen, Emil Krabbe

    2017-01-01

    Pre-treatment of bulk straw material by rolling is studied as a possible method to prepare for subsequent biogas production. A combined experimental and theoretical study is presented. A pilot rolling mill with a double screw feeder is designed and constructed for crushing of bulk straw. Experime...... process window for pre-treatment of wheat straw by roll pressing varying the feed, the roll gap, the roll speed and the moisture content of the bulk straw.......Pre-treatment of bulk straw material by rolling is studied as a possible method to prepare for subsequent biogas production. A combined experimental and theoretical study is presented. A pilot rolling mill with a double screw feeder is designed and constructed for crushing of bulk straw....... Experiments show that the roll speed and the roll reduction should be chosen within a specific range depending on the injection screw speed to avoid blocking or insufficient compaction. A mechanical testing procedure of the bulk straw material including closed die compaction testing as well as simple...

  15. The Marcoule pilot plant

    International Nuclear Information System (INIS)

    Faugeras, P.; Calame Longjean, A.; Le Bouhellec, J.; Revol, G.

    1986-06-01

    The Marcoule spent fuel reprocessing pilot facility was built in 1960-1961 for extended testing of the PUREX process with various types of fuel under conditions similar to those encountered in a production plant. Extensive modification work was undertaken on the facility in 1983 in the scope of the TOR project, designed with the following objectives: - increase the throughput capacity to at least 5 metric tons of PHENIX equivalent fuel per year, - extend equipment and process R and D capability, - improve job safety by maximum use of remote handling facilities, - maximize waste conditioning treatments to produce waste forms suitable for direct storage, - provide a true industrial process demonstration in continuous operation under centralized control using computerized procedures. The redesigned plant is scheduled to begin operation during the second half of 1986. The proximity of the Industrial Prototypes Service and the ATALANTE radiochemical research laboratory scheduled to begin operation in 1990, will provide a synergistic environment in which R and D program may be carried out under exceptional conditions

  16. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Science.gov (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2016-01-10

    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant

    International Nuclear Information System (INIS)

    Garcia-Segura, Sergi; Brillas, Enric

    2014-01-01

    Highlights: • Assessment of an autonomous solar pre-pilot plant for solar photoelectro-Fenton. • Total decolorization and 96-97% mineralization for solutions of Direct Yellow 4 diazo dye at pH 3.0. • More rapid dye decay and mineralization at 0.50 mmol dm −3 Fe 2+ and maximum current of 5.0 A. • 11 aromatics, 22 hydroxylated derivatives and 9 carboxylic acids detected as intermediates. • Release of NH 4 + and SO 4 2− as main inorganic ions. - Abstract: Here, an overview on the advances in solar photoelectro-Fenton (SPEF) is initially presented to show that it is the more potent electrochemical advanced oxidation process based on Fenton's reaction chemistry to remove organic pollutants from waters, due to the synergistic action of generated hydroxyl radicals and solar irradiation. As a novel advance for SPEF, an autonomous solar pre-pilot plant is proposed to make an energetically inexpensive process that can be viable at industrial level. The plant of 10 dm 3 capacity contained a Pt/air-diffusion cell with 90.2 cm 2 electrode area, coupled to a solar compound parabolic collectors (CPCs) photoreactor of 1.57 dm 3 irradiation volume and to a solar photovoltaic panel that provides a maximum average current of 5.0 A. The oxidation ability of this plant was assessed by studying the degradation of Direct Yellow 4 (DY4) diazo dye, which involved the predominant destruction of organics by ·OH formed from Fenton's reaction between H 2 O 2 generated at the cathode and added Fe 2+ , along with the photolysis of Fe(III)-carboxylate complexes with sunlight in the CPCs photoreactor. The effect of Fe 2+ and dye contents as well as current on decolorization rate, substrate decay and mineralization rate was examined. About 96-97% mineralization was rapidly attained using 0.50 mmol dm −3 Fe 2+ and up to 0.32 mmol dm −3 DY4 at 5.0 A. The DY4 decay always obeyed a pseudo-first-order kinetics. Eleven aromatic products, twenty two hydroxylated derivatives

  18. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    1992-01-01

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  19. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  20. Technological and economical assessment of alternative process chains for blisk manufacture

    OpenAIRE

    Klocke, Fritz; Schmitt, Robert; Zeis, Markus; Heidemanns, Lukas; Kerkhoff, Johannes; Heinen, Daniel; Klink, Andreas

    2015-01-01

    Due to the increase of blisk (blade integrated disk) demands instead of the conventional fir-tree design in current aero-engine concepts there is a high resource-driven need for a comprehensive evaluation of different process chain alternatives for blisk manufacture. Therefore, in this paper different manufacturing chains consisting of roughing, pre-finishing and finishing/polishing are compared to each other by the example of a HPC-blisk out of Inconel 718. Beside conventional milling and el...

  1. A feasibility study for a manufacturing technology deployment center

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  2. The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Roberts, A.V.

    1995-01-01

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process

  3. CERN-MEDICIS (Medical Isotopes Collected from ISOLDE: A New Facility

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel dos Santos Augusto

    2014-05-01

    Full Text Available About 50% of the 1.4 GeV CERN (European Organization for Nuclear Research, www.cern.ch protons are sent onto targets to produce radioactive beams by online mass separation at the Isotope Separator Online Device (ISOLDE facility, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to Phase I trials. Five hundred megabecquerel isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. A possible future upgrade with gigabecquerel pharmaceutical-grade i.e., current good manufacturing practices (cGMP batch production capabilities is finally presented.

  4. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Science.gov (United States)

    2010-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a) Purchases by executive agencies of prison-made products carried in GSA supply distribution facilities must...

  5. Improving obstetric care in low-resource settings: implementation of facility-based maternal death reviews in five pilot hospitals in Senegal

    Directory of Open Access Journals (Sweden)

    Fournier Pierre

    2009-07-01

    Full Text Available Abstract Background In sub-Saharan Africa, maternal and perinatal mortality and morbidity are major problems. Service availability and quality of care in health facilities are heterogeneous and most often inadequate. In resource-poor settings, the facility-based maternal death review or audit is one of the most promising strategies to improve health service performance. We aim to explore and describe health workers' perceptions of facility-based maternal death reviews and to identify barriers to and facilitators of the implementation of this approach in pilot health facilities of Senegal. Methods This study was conducted in five reference hospitals in Senegal with different characteristics. Data were collected from focus group discussions, participant observations of audit meetings, audit documents and interviews with the staff of the maternity unit. Data were analysed by means of both quantitative and qualitative approaches. Results Health professionals and service administrators were receptive and adhered relatively well to the process and the results of the audits, although some considered the situation destabilizing or even threatening. The main barriers to the implementation of maternal deaths reviews were: (1 bad quality of information in medical files; (2 non-participation of the head of department in the audit meetings; (3 lack of feedback to the staff who did not attend the audit meetings. The main facilitators were: (1 high level of professional qualifications or experience of the data collector; (2 involvement of the head of the maternity unit, acting as a moderator during the audit meetings; (3 participation of managers in the audit session to plan appropriate and realistic actions to prevent other maternal deaths. Conclusion The identification of the barriers to and the facilitators of the implementation of maternal death reviews is an essential step for the future adaptation of this method in countries with few resources. We

  6. PanDA Pilot Submission using Condor-G: Experience and Improvements

    CERN Document Server

    Zhao, X; The ATLAS collaboration; Wlodek, T; Wenaus, T; Frey, J; Tannenbaum, T; Livny, M

    2011-01-01

    PanDA (Production and Distributed Analysis) is the workload management system of the ATLAS experiment, used to run managed production and user analysis jobs on the grid. As a late-binding, pilot-based system, the maintenance of a smooth and steady stream of pilot jobs to all grid sites is critical for PanDA operation. The ATLAS Computing Facility (ACF) at BNL, as the ATLAS Tier1 center in the US, operates the pilot submission systems for the US. This is done using the PanDA “AutoPilot” scheduler component which submits pilot jobs via Condor-G, a grid job scheduling system developed at the University of Wisconsin-Madison. In this paper, we discuss the operation and performance of the Condor-G pilot submission at BNL, with emphasis on the challenges and issues encountered in the real grid production environment. With the close collaboration of Condor and PanDA teams, the scalability and stability of the overall system has been greatly improved over the last year. We review improvements made to Condor-G resu...

  7. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  8. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  9. Additive Manufacturing for Highly Efficient Window Inserts CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Roschli, Alex C. [ORNL; Chesser, Phillip C. [ORNL; Love, Lonnie J. [ORNL

    2018-04-01

    ORNL partnered with the Mackinac Technology Company to demonstrate how additive manufacturing can be used to create highly energy efficient window inserts for retrofit in pre-existing buildings. Many early iterations of the window inserts were fabricated using carbon fiber reinforced thermoplastics and polycarbonate films as a stand in for the low-e coated films produced by the Mackinac Technology Company. After demonstration of the proof of concept, i.e. custom window inserts with tensioned film, the materials used for the manufacture of the frames was more closely examined. Hollow particle-filled syntactic foam and low-density polymer composites formed by expandable microspheres were explored as the materials used to additively manufacture the frames of the inserts. It was concluded that low-cost retrofit window inserts in custom sizes could be easily fabricated using large scale additive manufacturing. Furthermore, the syntactic and expanded foams developed and tested satisfy the mechanical performance requirements for the application.

  10. 77 FR 16537 - Approval for Expansion of Manufacturing Authority, Foreign-Trade Subzone 78A, Nissan North...

    Science.gov (United States)

    2012-03-21

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1820] Approval for Expansion of Manufacturing Authority, Foreign-Trade Subzone 78A, Nissan North America, Inc. (Electric Passenger Vehicles..., Nissan North America, Inc. (NNA), operator of Subzone 78A, at the NNA manufacturing facilities in Smyrna...

  11. STS-105/Discovery/ISS 7A.1: Pre-Launch Activities, Launch, Orbit Activities and Landing

    Science.gov (United States)

    2001-01-01

    The crew of Space Shuttle Discovery on STS-105 is introduced at their pre-launch meal and at suit-up. The crew members include Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Patrick Forrester and Daniel Barry, together with the Expedition 3 crew of the International Space Station (ISS). The Expedition 3 crew includes Commander Frank Culbertson, Soyuz Commander Vladimir Dezhurov, and Flight Engineer Mikhail Tyurin. When the astronauts depart for the launch pad in the Astrovan, their convoy is shown from above. Upon reaching the launch pad, they conduct a walk around of the shuttle, display signs for family members while being inspected in the White Room, and are strapped into their seats onboard Disciovery. The video includes footage of Discovery in the Orbiter Processing Facility, and some of the pre-launch procedures at the Launch Control Center are shown. The angles of launch replays include: TV-1, Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, OTV-70, Onboard, IGOR, and UCS-23. The moment of docking between Discovery and the ISS is shown from inside Discovery's cabin. While in orbit, the crew conducted extravehicular activities (EVAs) to attach an experiments container, and install handrails on the Destiny module of the ISS. The video shows the docking and unloading of the Leonardo Multipurpose Logistics Module (MPLM) onto the ISS. The deployment of a satellite from Discovery with the coast of the Gulf of Mexico in the background is shown. Cape Canaveral is also shown from space. Landing replays include VAB, Tower 1, mid-field, South End SLF, North End SLF, Tower 2, Playalinda DOAMS, UCS-23, and Pilot Point of View (PPOV). NASA Administrator Dan Goldin meets the crew upon landing and participates in their walk around of Discovery. The video concludes with a short speech by commander Horowitz.

  12. Evaluation of Advanced Polymers for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kutchko, Cindy [PPG Industries, Pittsburgh, PA (United States); Fenn, David [PPG Industries, Pittsburgh, PA (United States); Olson, Kurt [PPG Industries, Pittsburgh, PA (United States)

    2017-09-08

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.

  13. Manufacturing Process Simulation of Large-Scale Cryotanks

    Science.gov (United States)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  14. Cutting techniques for facilities dismantling in decommissioning projects

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2011-01-01

    Fuel cycle related activities were accomplished in IPEN-CNEN/SP in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years. During the operational activities in the decommissioning of old nuclear fuel cycle facilities, the personnel involved in the task had to face several problems. In old facilities, the need of large components dismantling and material removal use to present some difficulties, such as lack of available and near electricity supply. Besides this, the spread out of the superficial contamination in the form of dust or aerosols and the exposure of workers should be as much as possible avoided. Then, the selection and availability of suitable tools for the task, mainly those employed for cutting and segmentation of different materials is of significant importance. Slight hand tools, mainly those powered by rechargeable batteries, facilitate the work, especially in areas where the access is difficult. Based on the experience in the dismantling of some old nuclear facilities of IPEN-CNEN/SP, some tools that would have facilitated the operations were identified and their availability could have improved the quality and efficiency of different individual tasks. In this paper different cutting problems and techniques, as well as some available commercial hand tools, are presented as suggestion for future activities. (author)

  15. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  16. Intelligent manufacturing: the challenge for manufacturing strategy in China in the 21st century--what we will do

    Science.gov (United States)

    Yang, Shuzi; Lei, Ming; Guan, Zai-Lin; Xiong, Youlun

    1995-08-01

    This paper first introduces the project of intelligent manufacturing in China and the research state of the IIMRC (Intelligent and Integrated Manufacturing Research Centre) of HUST (Huazhong University of Science and Technology), then reviews the recent advances in object- oriented and distributed artificial intelligence and puts forth the view that these advances open up the prospect of systems that will enable the true integration of enterprises. In an attempt to identify domain requirements and match them with research achievements, the paper examines the current literature and distinguishes 14 features that are common. It argues that effective enterprise-wide support could be greatly facilitated by the existence of intelligent software entities with autonomous processing capabilities, that possess coordination and negotiation facilities and are organized in distributed hierarchical states.

  17. Safety concerns in composite manufacturing and machining

    Science.gov (United States)

    Asmatulu, Eylem; Alonayni, Abdullah; Alamir, Mohammed

    2018-03-01

    Because of the superior properties, composites have been used in many industrial applications, including aerospace, wind turbines, ships, cars, fishing rods, storage tanks, swimming pool panels, and baseball bats. Each application may require different combinations of reinforcements and matrices, which make the manufacturing safety even more challenging while working on these substances. In this study, safety issues in composite manufacturing and machining were investigated in detail, and latest developments were provided for workers. The materials most frequently used in composite manufacturing, such as matrix (polyester, vinylester, phenolic, epoxies, methyl ethyl ketone peroxide, benzoil peroxide, hardeners, and solvents), and reinforcement materials (carbon, glass and Kevlar fibers, honeycomb and foams) can be highly toxic to human body. These materials can also be very toxic to the environment when dumped out uncontrollably, creating major future health and environmental concerns. Throughout the manufacturing process, workers inhale vapors of the liquid matrix, hardeners and solvents / thinners, as well as reinforcement materials (chopped fibers and particles) in airborne. Milling, cutting and machining of the composites can further increase the toxic inhalations of airborne composite particles, resulting in major rashes, irritation, skin disorders, coughing, severe eye and lung injury and other serious illnesses. The major portions of these hazardous materials can be controlled using appropriate personal protective equipment for the chemicals and materials used in composite manufacturing and machining. This study provides best possible safety practices utilized in composite manufacturing facilities for workers, engineers and other participants.

  18. HNF - Helmholtz Nano Facility

    Directory of Open Access Journals (Sweden)

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  19. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  20. Emerging Global Trends in Advanced Manufacturing

    Science.gov (United States)

    2012-03-01

    facility. Such distributed manufacturing could be made accessible to large masses even in remote areas (Ehmann 2011). For example, Zara is a Spanish...consumers. It has tightened its supply-chain management so that the consumer “pulls” the design. Zara uses state-of-the-art IT and distribution...systems to collect data daily on trends so they can quickly turn out new designs. Zara keeps costs down by using existing materials in stock and through

  1. 76 FR 72974 - Manufacturer of Controlled Substances Notice of Application

    Science.gov (United States)

    2011-11-28

    ... is notice that on September 15, 2011, Johnson Matthey Pharmaceutical Materials Inc., Pharmaceutical... (9193) II Alfentanil (9737) II Remifentanil (9739) II Sufentanil (9740) II The company plans to utilize... conduct analytical testing in support of the company's primary manufacturing facility in West Deptford...

  2. SEBIM pilot operated valves - CANDU and other applications

    International Nuclear Information System (INIS)

    Schaumburg, Gerald; Hera, Vlad

    1999-01-01

    The SEBIM Group, located at Chateauneuf-les-Martigues, near Marseilles, on the Mediterranean coast of France, is a market leader for the pilot operated safety relief valves in the nuclear industry. Its valves, which are subject to rigorous safety and reliability criteria, are intended to satisfy the most exigent requirements of not only the nuclear but also other demanding applications. The group manufacturing units are equipped with the state-of-the-art machinery, technical equipment and computer facilities. All personnel is highly specialized and trained. Among many applications the valves designed and manufactured by SEBIM for the biggest CANDU reactors in Canada were subjected to exceptionally difficult testing conditions, prior of being excepted by Ontario Hydro and passed all tests successfully. As a consequence Darlington N.G.S. was equipped with one of the most advanced SEBIM pressure protection piece of equipment, the Tandem Pilot Operated Pressure Relief Valve. Due to the demonstrated qualities of our product we were able to obtain the necessary registration of our valve original design with the appropriate Canadian authorities, both at the provincial level and at the federal level. One may find SEBIM protection and other type of equipment in civilian nuclear plants all over Europe as well as in military applications, like the French Navy. The SEBIM valves, covering a range between 15 mm and 160 mm diameter and capable of withstanding an inlet pressure from 2 MPa to 20 MPa and the temperature of the fluid up to 450 dec. C, are very strong competitors in the specialized field. Among these valves the tandems have special design and special qualities, for special applications. As mentioned above, two of these tandems are used, in parallel, on the Bleed Condenser vessels of the Darlington units to provide the ultimate protection of the Pressure and Inventory Control System and, through it, to the Main Heat Transfer System which is the primary cooling source

  3. Leveraging Lean in construction: A case study of a BIM-based HVAC manufacturing process

    Directory of Open Access Journals (Sweden)

    Colin J. Conway

    2014-12-01

    Full Text Available The impetus towards efficiency in the AECO (Architecture, Engineering, Construction & Operations sector is driving the implementation of Lean practices. BIM technologies and BIM processes provide methods by which this can be achieved. Major clients of building services contractors have begun to mandate the use of BIM and some are using BIM preparedness/experience as pre-tender qualification criteria. In this case study, an initial review has been conducted of the achievements of a major Irish M&E contractor in implementing BIM. The firm purpose-built a facility for the off-site manufacture of building services components. The operations of the plant are efficient and quality assured through the use of an appropriately skilled workforce at all stages of manufacture, and tracking software that has developed as the knowledge of the contractor grew. Standardised processes have been developed which have resulted in greater efficiencies and lower costs for the contractor as a result of fewer requirements for onsite modifications (such as those caused by clashes, less waste, and greater flexibility. Despite some initial objections, the employees of the company are now more satisfied with their working conditions and are, as a result, more productive. Through investment in BIM-based, Lean processes, the contractor can now better compete when tendering for large-scale projects in Ireland and worldwide, including the rapidly-increasing number where BIM experience and preparedness is mandated.

  4. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  5. 1974 conceptual design description of a bedded salt pilot plant in southeast New Mexico

    International Nuclear Information System (INIS)

    1977-06-01

    The policy of the United States Atomic Energy Commission is to take custody of all commercial high-level radioactive wastes and maintain control of them in perpetuity. This policy (Title 10, Code of Federal Regulations, Part 50, Appendix F) requires that the high-level wastes from nuclear fuels reprocessing plants be solidified within five years after reprocessing and then shipped to a federal repository within ten years after reprocessing. Ultimate disposal sites and/or methods have not yet been selected and are not expected to be ready when waste deliveries begin about 1983. Therefore, the AEC plans to build an interim storage facility, called Retrievable Surface Storage Facility (RSSF), to store and isolate the waste from man and his environment until the suitability of the permanent repository is demonstrated and public acceptance has been established. Meantime, the AEC is proceeding with the study and development of an ultimate disposal method. Bedded salt is being considered for ultimate waste disposal, and work is in progress to develop a Bedded Salt Pilot Plant to demonstrate its acceptability. The pilot plant will permit in situ verification of laboratory work on the interaction of heat and radioactivity of the waste with the salt and surroundings. One concept of such a pilot facility is described

  6. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  7. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    International Nuclear Information System (INIS)

    Dobson, D.; Churby, A.; Krieger, E.; Maloy, D.; White, K.

    2011-01-01

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance and Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  8. Mining manufacturing data for discovery of high productivity process characteristics.

    Science.gov (United States)

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  9. Establishment and Operation of User Facilities

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Kye Ryung

    2008-05-01

    PEFP(Proton Engineering Frontier Project) has launched on a new enterprise to develop the technologies for the future relating to the proton beam and spin-off technologies in 2002. PEFP planned to supply 20MeV and 100MeV proton beam by the development of the 100MeV, 20mA linear accelerator during ten years from 2002 to 2012. The final goal of this project is establishment of 20MeV and 100MeV user facilities. To do this, we must develop the key technologies for establishing user facilities. Before the main facilities are normally operated, we have established the test user facilities to support various kinds of users' basic experiments and pilot studies. The necessity of this research are as follows; - Domestic achievement of key technologies for the development and design of the user facilities for the several tens to hundreds MeV class high current proton beam - Beam application researches can be revitalized and improved the efficiency by the establishment and operation of user facilities and test facilities. - Ion implantation facilities have contributed to increase Industrial applications - It is more effective in saving money that users use the PEFP's user facility than other country's user facilities. - It is possible to contribute to the local society and commercialize the beam application technologies by the establishment of PEFP's research branch in Kyungju

  10. Program Evolves from Basic CAD to Total Manufacturing Experience

    Science.gov (United States)

    Cassola, Joel

    2011-01-01

    Close to a decade ago, John Hersey High School (JHHS) in Arlington Heights, Illinois, made a transition from a traditional classroom-based pre-engineering program. The new program is geared towards helping students understand the entire manufacturing process. Previously, a JHHS student would design a project in computer-aided design (CAD) software…

  11. Activation analysis for the IFF system in RAON facility

    International Nuclear Information System (INIS)

    LEE, Cheol Woo; LEE, Young-Ouk; KIM, Jong Won; KIM, Mijung

    2014-01-01

    A heavy-ion accelerator facility is under a development in Korea to use in the basic science research and various application areas. In this facility, the In-Flight Fragment (IFF) target and isotope separator has been designed to produce various isotopes and transport the interesting isotopes into the experimental rooms. In this work, activation analysis for the pre-separator was performed in the IFF target room. In this work, activation analysis for the pre-separator was performed for the IFF target system in RAON heavy-ion accelerator facility. At first, radiation source terms were evaluated with the primary beams and target conditions. Using the evaluated source terms, induced activities in all component of pre-separator were calculated. The decay gamma-rays produced after a shutdown was estimated based on the activation analysis and gamma-ray dose rate according to the cooling time was evaluated

  12. Proliferation Resistance and Safeguardability Assessment of a SFR Metal Fuel Manufacturing Facility (SFMF) using the INPRO Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. L.; Ko, W. I.; Park, S. H.; Kim, H. D.; Park, G. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To illustrate the proposed Prosta process, to demonstrate its usefulness, and to provide input to a revision of the INPRO manual in the area of proliferation resistance, a case study has been carried out with a conceptually designed sodium cooled fast reactor (SFR) metal fuel manufacturing facility (SFMF), representing novel technology still in the conceptual design phase. A coarse acquisition path analysis has been carried out of the SFMF to demonstrate the assessment process with identified different target materials. The case study demonstrates the usefulness of the proposed PROSA PR assessment process and the interrelationship of the PR assessment with the safeguards-by-design process, identifying potential R and D needs. The PROSA process has been applied to a conceptually designed SFMF, representing novel technology that is still in the conceptual design phase at KAERI. The case study demonstrated that the proposed PROSA process is simpler and easier to perform than the original INPRO methodology and can be applied from the early stage of design showing the relationship of PR assessment to the safeguard-by-design process. New evaluation questionnaire for UR1 is more logical and comprehensive, and provides the legal basis enabling the IAEA to achieve its safeguards objectives including the detection of undeclared nuclear materials and activities. NES information catalogue replacing UR2 was a useful modification and supports safeguardability assessment at the NES and facility level. The proposed PROSA process is also capable to identify strengths and weaknesses of a system in the area of proliferation resistance in a generally understandable form, including R and D gaps that need to be filled in order to meet the criteria for proliferation resistance of a nuclear energy system.

  13. An integrated approach for safer, productive and reliable PHWR fuel manufacturing at NFC

    International Nuclear Information System (INIS)

    Saibaba, N.

    2013-01-01

    India has been pursuing three-stage nuclear power programme and has developed comprehensive capabilities in all aspects of nuclear power and fuel cycle and is now recognized as a country with advanced nuclear technologies in the comity of nations. The first stage of Pressurized Heavy Water Reactors (PHWRs) based on natural uranium has reached a state of maturity. In view of civilian nuclear safeguards agreement with NSG and IAEA, Nuclear Power Reactors in India and associated fuel manufacturing facilities at Nuclear Fuel Complex (NFC) are grouped into IAEA safeguarded and out-of-safeguarded facilities. The civilian nuclear energy generation has to be accelerated for achieving energy security for the country. NFC has pioneered manufacturing technologies of UO 2 fuel, fuel clad and structural components for the PHWRs 220, 540 and PHWR700. Nearly 20 GWe of nuclear energy generation is being planned through PHWR route. Several technological improvements that were carried out recently in the production lines are the key to achieve higher productivity and safety. NFC has also been pursuing capacity augmentation by adding newer equipment in the existing facility and setting up new plants both for uranium production as well as zirconium production. Flexible manufacturing systems consisting of automatic workstations and robots were introduced in the 19 and 37 element PHWR fuel assembly lines. Various safety measures were introduced right from design stage for improving radiological safety for workmen. State-of-art equipment were designed, developed and commissioned for reduction/elimination of fatigue-oriented operations. In addition to natural uranium oxide fuel, NFC has also successfully manufactured virgin slightly enriched uranium (SEU) fuel and reprocessed depleted uranium fuels which were irradiated in the operating PHWRs. The paper brings out NFC's role in Indian nuclear power program and its manufacturing capabilities for types of PHWR fuel, zircaloy structural

  14. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO 2 , MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  15. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    Science.gov (United States)

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  16. Waste incineration and immobilization for nuclear facilities. Status report, October 1977--March 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Burkhardt, S.C.; Ledford, J.A.; Williams, P.M.

    1979-01-01

    Fluidized bed incineration and processes for immobilization of wastes generated at nuclear facilities are undergoing development. After minor piping modifications to eliminate dust collecting points, a pilot plant fluidized bed incinerator run of 225 continuous hours was successfully completed in a demonstration of component reliability. Vitrification of incinerator ash and other wastes is now being accomplished using a pilot scale unit developed as a continuous flow process

  17. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    Science.gov (United States)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  18. Startup of the Whiteshell irradiation facility

    International Nuclear Information System (INIS)

    Barnard, J.W.; Stanley, F.W.

    1989-01-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation. (orig.)

  19. Startup of the whiteshell irradiation facility

    Science.gov (United States)

    Barnard, J. W.; Stanley, F. W.

    1989-04-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation.

  20. 76 FR 77257 - Manufacturer of Controlled Substances; Notice of Application

    Science.gov (United States)

    2011-12-12

    ...), this is notice that on September 15, 2011, Johnson Matthey Pharma Services, 70 Flagship Drive, North... Schedule Amphetamine (1100) II Methylphenidate (1724) II Hydrocodone (9193) II The company plans to utilize... conduct analytical testing in support of the company's primary manufacturing facility in West Deptford...